
Thesis Overview:

Software for Multi-Core Processor-Based Architectures.

Automatic Detection of Concurrency Errors.

 Fernando Emmanuel FRATI
School of Computer Science, National University of La Plata, Argentina

PhD Thesis in High Performance Computing
Advisors: Armando E. DE GIUSTI, Marcelo NAIOUF, Katzalin OLCOZ HERRERO

{fefrati, degiusti, mnaiouf}@lidi.info.unlp.edu.ar, katzalin@ucm.es

March 2015

All commercially available processors (even the processors used in mobile devices) have the typical multicore
architecture (Yeap, 2013) – the shared memory programming model dominated over the sequential programming
model as the optimal way for obtaining maximum performance offered by these architectures. Execution order
assumptions between instructions and atomicity when accessing legacy variables from the sequential
programming model are no longer valid in the new model, whose implicit non-determinism when running
concurrent programs forces programmers to use some synchronization mechanism to make sure these properties
are present. Frequently, programmers make mistakes when synchronizing the processes, which results in new
programming errors such as deadlocks, race conditions, order violations, simple atomicity violations, and
multivariable atomicity violations. These errors cannot be detected by traditional debugging methods, so tools
that can help detecting and correcting them are required.

The main objective of this paper is to propose a software implementation model for concurrency error detection
tools that allows reducing process overhead without decreasing its detection capacity. The general model
proposed uses software dynamic instrumentation in such a way that an analysis routine can be activated from a
signal generated by a hardware event that indicates the possibility of an error occurring. The results obtained
showed that, for the case study (an atomicity violation detection algorithm called AVIO), the version that uses
the model proposed can detect the same bugs as the original version, but in only 25% of the time (in average)
required by it.

This Thesis (Frati, 2015) is organized in eight chapters and five appendixes with supplementary material related
to the topics discussed in the body.

In Chapter 1, an overview of the topic is presented, as well as the main objective of the thesis, its specific
objectives, and the research methodology to be used. The methodological design is based on the research
process, where specific objectives guide the process through the different levels of knowledge and achieving the
last specific objective results in achieving the main objective.

In Chapter 2, the reference theoretical framework on program debugging is introduced. This framework
provides a description of the characteristics that make concurrency errors unique in nature, and determines the
reasons why traditional debugging methods are not suitable for these errors. It was found that, even though
deadlocks and race conditions have gained popularity in the scientific community, only 29.5% of the reported
errors correspond to deadlocks, while the remaining 70.5% are other types of errors. Among the errors that are
not deadlocks, atomicity violations represent more than 65% of the total, 96% occur between two threads and
66% involve a single variable (Lu, Park, Seo and Zhou, 2008). After this stage, it was decided that the case study
used to guide the rest of the work would be a simple atomicity violation.

In Chapter 3, current techniques and methods proposed by the scientific community are compared, applied to
atomicity violation detection and correction. AVIO (Lu et al, 2006) is found to be the tool with the best
performance and detection ability that can be fully run on software. Since its source code is not available and
there are no commercial implementations of this tool, we developed our own implementation. This
implementation was validated based on detection ability and performance versus the data presented by the
authors in their original work. The results show that our implementation is equivalent to AVIO, since the results
reported with this tool were successfully replicated. Even though AVIO is better than previous proposals, the
overhead it introduces (25x in average) is too high to be used in production environments.

JCS&T Vol. 15 No. 2 November 2015

154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76489616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In Chapter 4, the problem to be studied is delimited, and the advantages and disadvantages of the methods used
in the previous proposals are discussed. Error detection methods use program dynamic instrumentation at the
level of the statement because software implementations require the addition of calls to an analysis routine for
each statement that accesses memory. The main cause for the overhead is identified to be instrumentation
granularity, since it penalizes execution time in more than one order of magnitude. As a consequence, the
problem to be solved is limited to reducing the overhead produced by statement-level instrumentation. It was
observed that the possibility of error occurs only during statements that access shared data, and it was
determined that there is an opportunity to optimize the instrumentation process if it is restricted to shared
memory accesses only. The best option to detect the exact time when these accesses take place is when there are
changes in the cache memory that is shared among the cores that run the processes.

In Chapter 5, the use of hardware counters is introduced to detect non-serializable interleavings (interleavings
that cause atomicity violations). This resource was previously used to optimize a race condition detection tool
(Greathouse et al, 2011). Hardware counters are a collection of special records that are available in all current
processors (Sprunt, 2002). These records can be programmed to count the number of times that an event occurs
in the processor while an application runs. The events provide information about different aspects of the
execution of a program (e.g., the number of statements executed, the number of L1 cache failures, or the number
of floating point operations executed). The discussion in this chapter allowed establishing that, even though there
is no single event that can indicate the occurrence of interleaving cases, these can be represented through
memory access patterns. As a consequence, accesses to shared data when accessing information stored in the
cache coherence protocol can be detected.

In Chapter 6, the main contributions of this thesis work are developed. The design of a general dynamic
instrumentation model is proposed that allows enabling an analysis routine (an atomicity violation detection
algorithm in our case study) from a signal that is generated by a hardware event that indicates the possibility of
an error occurring. To achieve this, an event validation method had to be defined so as to ensure that any
candidate events were appropriate for the purpose of our work. This validation involved analyzing event and
error frequency and distribution during the execution of various applications. After the suitability of the selected
event was established, experiments were run with the counters under an operation mode called sampling
(Weaver, 2014), which allows configuring counters to generate signals for a process if an event occurs. Thus,
programmers indicate the number of events that should occur before the signal is triggered, adjusting this value
based on application requirements. This operation mode was used to decide when to enable the analysis routine
of the detection tools to reduce code instrumentation. On the other hand, since counters cannot be configured to
send a signal in the case an event does not occur, the use of a timer is proposed to verify at regular time intervals
(sampling interval) whether it is safe to disable the analysis routine (e.g., because there were no atomicity
violations detected throughout the last interval).

In Chapter 7, a possible implementation is shown for the proposed model using the AVIO atomicity violation
detection tool, resulting in a new version of this tool called AVIO-SA (Share-Aware AVIO). The efficacy of the
model proposed is assessed based on overhead and detection ability. When monitored applications are started,
AVIO-SA's analysis routine is disabled. The moment an event is detected, the routine is enabled and remains
active for a while, as in the original version of AVIO. Eventually, AVIO stops detecting interleaving events and
the analysis routine is disabled. It was found that a sampling interval of 5ms allows AVIO-SA detecting
approximately the same number of interleaving events as AVIO, but with a significantly lower execution time.
To complete performance tests, experiments were carried out with HELGRIND (a race condition detection tool),
and the overhead of each tool for each application was estimated. In average, HELGRIND had an overhead of
223x; AVIO had an overhead of 32x; and AVIO-SA, one of 9x. As regards error detection ability with AVIO-SA,
experiments were carried out with known bug kernels as well as with applications with real bugs (Apache) and
reported bugs results were compared between AVIO and AVIO-SA (from SPLASH-2). AVIO-SA successfully
passed all tests.

Chapter 8 presents the conclusions of the thesis. The results obtained showed that the new version can detect the
same bugs as AVIO but using (in average) only a fourth of the time required by the original version to do so;
therefore, the general objective of the work is considered to have been achieved. In conclusion, since AVIO-SA
makes fewer changes in the monitored application execution history, this is a better option to be used in
production environments. Finally, the following new lines of work following up on the work presented in this
thesis are listed:

 Feasibility for applying the model to algorithms that detect other types of errors.

 Reliable comparison methods for error detection proposals.

 Tools for forcing potentially defective histories.

JCS&T Vol. 15 No. 2 November 2015

155

 Alternative methods for reducing instrumentation overhead.

 Dynamic instrumentation and parallel application profiles.

 Fernando Emmanuel Frati
 fefrati@lidi.info.unlp.edu.ar

References
Frati, F. E. (2015). Software para arquitecturas basadas en procesadores de múltiples núcleos. Detección
automática de errores de concurrencia. (Tesis). Facultad de Informática. Retrieved from
http://hdl.handle.net/10915/44643

Greathouse, J. L., Ma, Z., Frank, M. I., Peri, R., y Austin, T. (2011). Demand-driven software race detection
using hardware performance counters. SIGARCH Comput. Archit. News, 39 (3), 165–176. Downloaded from
http://doi.acm.org/10.1145/2024723.2000084

Lu, S., Tucek, J., Qin, F., y Zhou, Y. (2006). AVIO: detecting atomicity violations via access interleaving
invariants. SIGPLAN Not., 41 (11), 37–48. doi: http://doi.acm.org/ 10.1145/1168918.1168864

Lu, S., Park, S., Seo, E., y Zhou, Y. (2008). Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGARCH Comput. Archit. News, 36 (1), 329–339.

Sprunt, B. (2002). The basics of performance-monitoring hardware. IEEE Micro, 22 (4), 64–71.

Yeap, G. (2013, diciembre). Smart mobile SoCs driving the semiconductor industry: Technology trend,
challenges and opportunities. En Electron devices meeting (IEDM), 2013 IEEE international (pp. 1.3.1–1.3.8).
doi: 10.1109/IEDM.2013.6724540

Weaver, V. (2014, abril). Manpage of PERF_event_open. Downloaded on July 22, 2014 from
http://web.eece.maine.edu/~vweaver/projects/perf_events/perf_event_open.html

JCS&T Vol. 15 No. 2 November 2015

156

