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ABSTRACT

This paper formulates a robust control for variable 

time-delay system models. An automatic tuning 

method for PID-type controller is proposed. The 

adopted method integrates robust control design 

using Quantitative Feedback Theory (QFT) with 

Particle Swan Optimization heuristic algorithms 

(PSO) to systematize the loop-shaping stage. The 

objective of the design method is to reach a good 

compromise among robust stability, robust tracking 

and disturbance rejection with minimal control 

effort. 

The resulting algorithm has attractive features, such 

as easy implementation, stable convergence 

characteristic and good computational efficiency. In 

particular, the results of the control design for active 

queue management (AQM) systems are presented. 

Simulations show improved congestion control and 

quality of service in TCP communication networks. 

Keywords: Heuristic Optimization, PSO, Frequency 

Response, PID, Robust Control, QFT, AQM. 

1. INTRODUCTION

Time delay systems arise in many practical 

engineering applications as  inevitable consequence 

of information or material transmission. Some 

typical examples can be found in chemical 

processes, communication systems, power systems, 

and generally in any control system based on 

communication networks. Time-delay has a negative 

impact on system performance and may compromise 

stability [1],[2]. 

Their treatment is complex, especially when they 

vary over time or have uncertain values. In general, 

they are possible to be described by equivalent 

deterministic or statistical models which facilitate 

their study. Particularly for the deterministic case, 

robust control theory allows to represent them using 

the concept of uncertainty in the controller designs. 

Consequently, it ensures compliance with the 

performance criteria, independently of their value 

within the range of expected variation. 

In this paper, a robust methodology to automatic or 

tuning of PID controllers for systems with uncertain 

 varying time-delay is proposed. Quantitative 

Feedback Theory (QFT) [3] is combined with the 

Particle Swarm Optimization heuristic algorithm 

(PSO) [4] to determine the controller parameters so 

that the system achieves multiple optimal objectives 

in the conventional Pareto sense [5]. Robust 

stability, tracking properties, disturbance rejection 

and reduced sensitivity under varying operating 

conditions are specified. 

Applying PSO to loop-shaping stage guarantees an 

automatic controller tuning procedure without 

overdesign. A more efficient controller is achieved; 

hence are obtained best results with simpler 

structures such as the PID. The characteristics and 

complexity of the problem does not allow the use of 

traditional optimization techniques, so smart search 

algorithms inspired by nature are presented as an 

effective alternative. Both QFT as PSO were 

selected following the criterion of maintaining 

clarity, simplicity and versatility of the procedures 

adopted and the good results that have been reported 

in various control applications [6] - [11]. The aim of 

QFT is the synthesis of a controller as simple as 

possible, with minimum bandwidth meeting the 

specifications at the lowest cost of feedback, taking 

into account model uncertainty. 

PID controller is the most widely used control 

strategy in industry. Despite its simplicity, it can 

successfully solve a variety of complex problems 

[10]-[15].  

The presented method is applied to design an 

alternative scheme of AQM to prevent congestion 

and to optimize the quality of service (QoS) in 

networks based on TCP. From the control theory 

based approach, the goal is to optimize the link 

utilization making the system less dependent on 

network load and reducing the effect of variable 

delay transmission. The robustness of the control is 

verified by simulations carried out using the 

dynamical model of the TCP behavior based on 

fluid-flow formulation [16]-[23]. This non-linear, 

non-stationary model proposed by Misra et al. [21], 

relates the key network variables. Variable operating 

conditions are contemplated with random parameter 

variations, such as number of active sessions, link 

capacity and round trip time (RTT). 
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QFT Overview 
Quantitative Feedback Theory introduced by 

Horowitz [3] proposes a robust design methodology 

in the frequency domain based on standard feedback 

architecture of Fig. 1 (a). It allows the designer to 

meet specifications behavior over a specified region 

of uncertainty determined a priori in the modeling 

system. Regarding other methods of robust control, 

it presents greater transparency in the design process 

that relates to the complexity of the controller 

beforehand with feasibility of objectives. On the 

other hand, it quantitatively takes into account the 

cost of feedback regarding uncertainty. 

From the transfer function of the process or system 

model, QFT takes into account that parameters, gain, 

poles and zeros may vary within known finite 

ranges. This leads to consider a region within the 

parameter space associated with uncertainty, Q, and 

a family of transfer functions,  P( j , ), θ θ . 

One of them is adopted as the nominal plant model, 

P0 (j) =P (j,0), and used as the reference for the 

design. The uncertainty is included in the objectives 

to be achieved [6]. 

In Fig.1, a typical two degrees of freedom control 

configuration is shown, where P (s) represents the 

plant with uncertainty and H(s) represents the sensor 

dynamics. Disturbances are modeled by W, D1 and 

D2 processes. The potential existence of noise is 

incorporated with N; R is the reference signal and Y 

is the control objective. 

Fig. 1: Block diagram of the general control system. 

In QFT, the inner loop controller G(s) must 

compensate the uncertainty effect. The pre-filter F(s) 

can be included for a final settlement.  For plant 

P0(s) its template is defined as the set of possible 

frequency responses associated with parametric 

uncertainty space. Quantitative specifications of 

stability, temporary behavior, and rejection or 

reduction of disturbances are expressed analytically 

in the frequency operation range, through 

restrictions on modules of transfer function families 

relating different loop variables, as shown in Fig. 1. 

Typical examples are listed in Table 1, where 

L(j,) = P (j,) G(j) H(j) denotes the family 

of open loop transfer functions. For the desired 

nominal open loop function L0(j)e-jωτ =   

=G(j) P0(j) H0(j) e-jωτ  these  restrictions are

represented as admissible regions in the module-

phase complex plane known as Nichols chart. These 

regions are limited, for each frequency, by a set of 

curves called bounds. 

The design consists in achieving the controller G(j) 

such as L0(j) e-jωτ meets, as closely as possible, the

constraint set defined by the bounds to avoid 

overdesign, while the high frequency gain and the 

bandwidth are minimized. If this goal is achieved for 

the nominal plant, it also holds for all loop transfer 

functions corresponding to the template.  

From the point of view of optimum specifications 

fulfillment, the problem is of multiple targets with 

more than one possible solution Pareto efficient [5]. 

The bounds are invariable during the iterative 

optimization process, so that the calculations are 

reduced. 

Table 1.  Performance specifications in QFT design. 

Specification Constraints 

Robust stability 1 1( )
1 ( ),

1 ( , ) jL j e   
  

 
 

 θ

Robust tracking 1( )

( , ) ( )( ) ( ) ,
1 ( , )m Mj

P j G j
L j e   

 
    

 
  



θ

θ

Disturbance 
rejection 2 2( )

( , ) ( ) ( ),
1 ( , ) j

P j G j
L j e   

 
  

 
 



θ

θ

Brief Review on Particle Swarm Optimization 

Algorithm 

The robust control involves a complex formulation, 

highly nonlinear with a feasible non-convex space of 

solutions. Numerous heuristics methods of 

intelligent search have been proposed to obtain 

optimal results in this type of problems. These 

include algorithms that imitate natural phenomena 

based on populations. From a general point of view, 

it is considered a collection of individuals distributed 

within the feasible space of parameters. In the 

successive iterations, the individuals move trying to 

carry out space exploration effectively in search for 

the optimum. This is achieved in each iteration 

considering three (generally stochastic) steps: self-

adaptation or improving their own performance, 

cooperation -where all members contribute to the 

transfer of information- and competition according 

the reached success. 

Among heuristic algorithms, PSO has been found 

useful in the design of controllers. Thanks to the 

clarity of its operation and the limited number of 

specific parameters, good regulation of convergence 

is achieved [24], [25]. The search procedure 

proposed by Kennedy and Eberhart [4] reproduces 

the social interaction between members of a group 

of the same species to accomplish an objective, as it 

occurs in flocks of birds or swarm of bees. Such 

social behavior is based on each individual’s 

transmission of success to the rest of the group, 

resulting in a synergistic process enabling them to 

achieve a common goal in the best possible manner. 

In PSO, each individual in a fixed population size is 

Uncertain Plant Controller Prefilter 

Sensor 
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associated with a position in the multidimensional 

search space that represents a possible value of the 

unknown parameter vector.  

Initially, the positions are assigned randomly and go 

changing with a rate adjusted dynamically taking 

into account individual experience and the 

information shared by the rest of the group. In any 

case the best position reached by either the set or 

each member represents the set of parameters with 

which the lowest value of the objective function is 

obtained. 

If X and V define the position and velocity vectors in 

n-dimensional parameter search space, N is the 

population size, Pbest and Gbest are the best positions 

achieved by each individual and by the group, 

respectively, the dynamic evolution or update of the 

positions and velocities in the k-th iteration are 

described by the following vector expressions: 

V
i
k+1=Wk V

i
k + V

i
k

V
i
k = C1 R1 (P 

i 
best - X

i
k) + C2 R2 (G 

i 
best - X

i
k)  (1)

X
i
k+1 = X

i
k + V

i
k+1  (2) 

Wk+1 = Wmax – (Wmax – Wmin) k/kmax          (3) 

where 1≤ i ≤ N.  The inertia Wk regulates the trade-

off between the swarm global and local exploration 

abilities, and varies linearly between an initial 

maximum Wmax and a minimum Wmin on reaching 

the maximum allowed iterations, kmax. The last two 

terms in the expression (1) represent the individual 

and collective intelligences, with C1 and C2 

cognitive and social factors, and R1 and R2 random 

numbers uniformly distributed on [0,1]. 

Multi-objective Optimization in QFT Framework 

The general PID controller structure is considered. It 

includes a proportional term, an integrative term and 

another derivative term to which a pole is 

incorporated to prevent high frequency noise 

amplification. Its transfer function is given by 

1
)(




s
sK

s
KKsG

T
K

di
pPID d

 .             (4) 

The dimension of the parameter space is n = 4 and 

the position is the vector of parameters 
X = [Kp Ki Kd T ]T.

The objective function to be minimized includes 

robust stability, robust tracking, and disturbance 

rejection properties - through the distance between 

the open loop transfer function and the bounds - and 

the bandwidth constraint by the high frequency gain, 

according to 

1 2 3
1

( ) 20 log( ) ( ) ( ),
f f

lim

n n

HF bdb k UHF k
k k n

f K f f    
 

   X

( ) , 1,2, , ,bnd k k ff d k n  

( ) , , 1, , , (5)UHF k Lk lim lim ff d k n n n     

where 0 if the condition is satisfied,
1 otherwise,




 


i are weighting factors; nf is the number of

frequencies considered within the working range; dk  

and dLk  denote the distances between the nominal 

open loop transfer function , L0 (jωk), and the 

corresponding bound, and the distance between the 

nominal open loop transfer function k  ≥ lim

(k ≥ klim) and the so-called universal high frequency 

bound (UHB), respectively. This condition ensures 

good performance at high frequency. KHF is the high 

frequency gain or feedback cost as defined in Eq. (6) 

where (m-r) denotes the difference between numbers 

of poles and zeros of L0.

                         (6) 

A pair of restrictions, g1 and g2 in Eq. (7), are 

included to ensure both stability and fulfillment of 

the bounds during the process. The closed loop 

transfer function denominator is a quasi-polynomial. 

Then, to simplify the stability verification, the 

complex exponential is approximated by a zero on 

the right-half, )1(  ses . Thus, g1 is defined 

taking into account that a linear and time invariant 

system is stable if the roots of its characteristic 

polynomial, pi , are real and negative, or complexes 

with negative real part 

 

 

1
1 2

2
1

( ) ( ),0 0,

( ) ,0 0.
f

i
i m r

k
i n

g max Re p

g max d
   

 

 

 

X

X (7)

Restrictions and limits of search space treatment are 

performed by penalty method, and the criteria for 

convergence takes into account the invariance of the 

best found value of the objective function within the 

numerical tolerance considered acceptable during a 

number given iterations. 

2. PID CONTROLLER DESIGN FOR AQM

SUPPORTING TCP FLOWS  

For queue management in TCP routers, various 

techniques have been proposed in order to avoid 

congestion without waiting for the remote 

information.  

Fig.2: Schematic diagram of PID tuning method proposed. 
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The common problem is that each configuration is 

only suitable for certain traffic conditions. Hence, 

designing a PID control algorithm in the context of 

robust control theory is presented as a good 

alternative because it takes into account variable 

operating conditions through the uncertainty. Next, 

the design details based on this approach with the 

proposed  QFT-PSO methodology are presented 

(Fig. 2). 

Fluid-Flow Model of TCP Dynamics 

A model based on the fluid-flux and represented by 

nonlinear stochastic differential equations was 

proposed by Misra et al.(2000).This model describes 

the dynamics of TCP during the congestion 

prevention mode. In this work, the simplified 

approach is used ignoring the slow start and time out 

mechanisms. Moreover, it has been assumed that the 

AQM scheme implemented marks packets using 

Explicit Congestion.  

Fig. 3: Block diagram of TCP´s congestion-avoidance 

mode. 

Notification to inform the TCP sources of impending 

congestion. This model relates the mean value of the 

main network variables and is described by a system 

of two coupled nonlinear time-variant differential 

equations. It is recommended to consult [21] for 

model details and to see Fig. 3 for a block diagram. 

A block diagram representation is shown in Fig. 3, 

where W is the average TCP window size 

(packages), q is the average queue length (packets), 

R is the round-trip time (sec), C is the link capacity 

(packets/sec), Tp is the propagation delay (sec), N is 

the load factor (number of TCP sessions) and p is 

the probability of packet mark (p(0,1)).   

The first step for the model small-signal 

linearization around an operating point is the 

derivation of the time invariant equations under the 

following hypothesis: the temporal delays are 

assumed to be constant and equal to R0; the 

operation point satisfies the nonlinear time variant 

equations; the number of TCP sessions and the link 

capacity are constant;  N(t)  N : constant and  C(t)   

C : constant. [22],[23]. 

In the steady state operation point ( W0, q0, p0 ), 

0W  and 0q so, the following equations are 

obtained 2 0 0
0 0 0 02 p

q R C
W p , R T , W .

C N
     

Fig. 4: Block diagram of the  linearized model   with high 

frequency uncertainty 

The schematics for the resulting linear model is 

shown in Fig. 4 where perturbed state variables 

about the operation point are  

0 0W(t ) W(t ) W , q( t ) q( t ) q ,      

and the corresponding perturbed control action is 

0p( t ) p( t ) p .    

The linear model may be considered composed by a 

nominal part (low frequency) and a high frequency 

residual. The former is taken as the plant model for 

the TCP behavior and contains the delay and the 

dynamics both of the queue and the window. The 

latter is accounted as parasitic uncertainty following 

Eq. (8), and is to be included in the process design as 

an input disturbance [22], [26] as shown in Fig. 4 

and 5, 

sR

RCR
N

N
RC

sR e
ss

esP 






 




 


12

2

2

2

)(

)1()( 32

22 sR
CR

sN es   .       (8) 

The parametric uncertainty is established by the 

family of plants with different gain and poles 

according to the operating conditions of the network  
100 150N  , 3650 3850C  , 0 150 0 246. R .  .

The specifications imposed in this work according to 

table 1 with H0(j) = 1 and considering that 

1je    are shown in 

2=1.2, 1 ={ω: 0.01≤ ω ≤ 35}, 2={ω1:  lim= 15} 

)4)(1)(5.0(
2)(




sssm 
7.0306.1

)1(7.0
)( 2 




ss
s

M 

3 3

2
1

1 4

10C R
N

( s )( j )
s

   
 

   .               (9) 

The parameters used for the PSO are: size of the 

population N= 60, C1 =1.2, C2 = 0.5, 0.4 ≤ W ≤ 0.9. 
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Fig. 5: AQM in the QFT framework. 

The Fig. 6 shows the templates describing the 

dispersion in the frequency response due to the 

uncertainty and Fig. 7 shows the resulting design for 

the open loop frequency response with PID 

controller and the composite bounds on de Nichols 

chart. 

Fig. 6: QFT model Templates 

Fig. 7: Open loop frequency response with  PID controller 

and composite bounds on the Nichols chart. 

The achieved controller parameters are: 

[Kp  Ki  Kd  T ]T = [1.8999 10-4  1.7 10-4  4.2472 10-5  1000]T.

Robustness is guaranteed since the shaped frequency 

response, at each design frequency, lies above the 

bounds, neither enters the U-contours nor intersects 

the critical point (-180°, 0 dB). 

The phase and the gain margins along with the 

crossover frequency, MF = 50.8°, MG= 6.7 dB, ω0 = 

2.8 rad/sec. The settling time and overshoot ts = 5.7 

sec, Mp=11%.  

Robustness analysis 

Robustness can be checked by simulation using the 

non-stationary, non-lineal model implemented with 

Simulink®.  

In order to comparison a typical benchmark network 

has been selected. Following [26] and [27] random 

variation of the parameters that describe the 

stochastic nature of the network dynamics are 

considered and illustrated in Fig. 8.  

The buffer is considered to be large enough to avoid 

overflow and the average packet size is 500 bytes. 

The results are compared with those presented in 

[27] using a PI control.  

With the control proposed in this paper, the response 

is faster, the queue average value and the RTT 

present less variations around the setup point and the 

queuing delay result smaller (Fig. 9,10,11). 

Efficient queue utilization, regulated queuing delay 

and robustness are obtained. 

 Fig. 8: Random variations in the network parameters 

C, N and Tp

 Fig.9: Instantaneous queue length with controller, 
q0= 200. 
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 Fig.10: Instantaneous queue length with controller, 

q0= 400. 

Fig 11: Instantaneous RTT with the controller for q0=200. 

3. CONCLUSIONS AND FUTURE WORK

In this paper a robust methodology for the design of 

PID controllers for systems with bounded time 

variable delay using QFT and PSO algorithm is 

proposed. This combination delivers the best 

controller performance fulfilling the design 

specifications even in the worst cases as imposed by 

the uncertainty. The PSO algorithm converges to 

one of the possible optimal solutions with low 

dispersion as measured by the variance of the 

parameter vector converge value. Good results are 

obtained in an application for an actual control 

scheme queue in networks with changing operating 

conditions. Performance criteria of the control 

theory and the network analysis are both taken into 

account. Comparisons with published results are 

made and reinforce the methodology effectiveness. 

Simulations results using the non-linear model 

implemented with Simulink validate the design. The 

stochastic nature of the process was included by 

using random parameters in the network description. 

Good results are also expected with the use of a net 

simulator such as the ns2. A non trivial extension of 

this work would be to consider a network topology 

with multiple links.  
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