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ABSTRACT

We present a preliminary framework for reasoning with
possibilistic description logics ontologies with disjunctive
assertions (PoDLoDA ontologies for short). Given a PoD-
LoDA ontology, its terminological box is expressed in
the description logic programming fragment but its asser-
tional box allows four kinds of statements: an individual is
a member of a concept, two individuals are related through
a role, an individual is a member of the union of two or
more concepts or two individuals are related through the
union of two or more roles. Axioms and statements in
PoDLoDA ontologies have a numerical certainty degree
attached. A disjunctive assertion expresses a doubt respect
to the membership of either individuals to union of con-
cepts or pairs of individuals to the union of roles. Because
PoDLoDA ontologies allow to represent incomplete and
potentially inconsistent information, instance checking is
addressed through an adaptation of Bodanza’s Supposi-
tional Argumentation System that allows to reason with
modus ponens and constructive dilemmas. We think that
our approach will be of use for implementers of reasoning
systems in the Semantic Web where uncertainty of mem-
bership of individuals to concepts or roles is present.

Keywords: Suppositional argumentation, ontology rea-
soning, inconsistency handling, Possibilistic Description
Logics, Semantic Web, Artificial Intelligence

1. INTRODUCTION

Reasoning with Description Logics (DL) [3] is fundamen-
tal in the ontology layer of the Semantic Web [8], where
the meaning of data resources described in terms of the
Web Ontology Language (OWL-DL) are machine pro-
cessable. Traditionally, an ontology is a set of axioms that
define intensionally (by means of a Tbox or terminolog-
ical box) a set of concepts and roles and extensionally a
set individuals belonging to some of the concepts and/or
relating to each other through roles (by means of an Abox
or assertional box).

In the last years approaches for reasoning with inconsis-
tent ontologies have gained interest in the Semantic Web
community. An inconsistent ontology implies that at least
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one individual is a member of both a concept and its com-
plement, thus making anything derivable from such an on-
tology. Inconsistent ontologies pose a problem because
they have to be debugged by the knowledge engineer prior
to deployment of applications. Many times though it is not
possible to do this because the domain being modeled is
intrinsically contradictory or, as is the case with imported
ontologies, the programmer does not have the authority to
edit the ontology’s contents. Many approaches have been
proposed for dealing with this situation which is usually
solved in one of two ways. The first kind of approaches
consists of eliminating part of the ontology to restore con-
sistency (e.g. approaches based on Belief Revision the-
ory [24, 25] or on paraconsistent logics [22]). The sec-
ond kind consists of accepting inconsistency and using a
non-standard reasoning mechanism to get some meaning-
ful answers from an inconsistent knowledge base (e.g. ar-
gumentation [2, 17, 18, 19]). In this paper we will rely on
the latter approach.

Defeasible argumentation is an approach to non-
monotonic reasoning that can be used when several di-
verging opinions may exist (each opinion is supported by
an argument instead of a proof), so differences can be re-
solved by considering all pros and cons of a given claim
through a dialectical analysis [4, 12, 27]. Given a claim,
this process usually takes into account defeaters (i.e. other
claims that are against the original claim and seem to have
greater importance) and defeaters of those defeaters (thus
maybe reinstating the original claim) as part of a recur-
sive process that ends when no defeater can be found.
Defeasible Logic Programming (DeLP) [14] is a rule-
based implementation of defeasible argumentation based
on the Prolog programming language. Possibilistic DeLP
(or just PDeLP) [1] is another argumentative approach to
non-monotonic reasoning that derives from DeLP. Unlike
DeLP, that uses specificity for comparing arguments dur-
ing the dialectical analysis, PDeLP uses possibilistic de-
grees associated to each rule to qualify arguments indicat-
ing its relative weight (or certainty), and thus imposing a
rule priority principle for comparing arguments based on
the idea that an argument is as credible as its weakest link.

The hypothesis underlying this work is that defeasible
argumentation is a reliable tool for dealing with the prob-
lem of reasoning with possibly inconsistent ontologies
having disjunctive assertions. Therefore, we will extend
PDeLP for it to be able to handle facts with disjunctions.
We call the extension presented here Suppositional Possi-
bilistic Defeasible Logic Programming (SPDeLP). There-
fore SPDeLP, beside being an extension of PDeLP, can be
considered also an adaptation of Bodanza’s Suppositional
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Argumentation System [10] with an emphasis in the fea-
tures that will allow its future computational implementa-
tion.

We then extend traditional DL ontologies with disjunc-
tive assertional statements of the form “an individual is
a member of the union of two or more classes” and “two
individuals are related through the union of two or more
roles”. Each axiom in the ontology is coupled with a
weight or certainty degree in order to decide between con-
tradicting axioms about the membership of individuals to
concepts, a reasoning task known as instance checking.
We chose to call this new kind of ontologies PoDLoDA
ontologies. We then interpret PoDLoDA ontologies as
SPDeLP programs to answer queries of membership of
individual to classes (or the relationship of pairs through
roles) in the presence of inconsistency. We think that
this approach could extend the range of applications in
which ontologies are used, such as performing decision-
making with uncertain knowledge. As proof of concept,
we present a running example that shows how SPDeLP al-
lows to compute instance checking in a small PoDLoDA
ontology.

The rest of the article is structured as follows. In Sec-
tion 2, we present the fundamentals of PoDLoDA ontolo-
gies. In Section 3, we describe the argumentation ap-
proach to reasoning with SPDeLP and how it is used to
perform instance checking in PoDLoDA ontologies. In
Section 4, we discuss related work. Finally, Section 5 con-
cludes.

2. POSSIBILISTIC DESCRIPTION
LOGIC ONTOLOGIES WITH
DISJUNCTIVE ASSERTIONS

We introduce here possibilistic description logic ontolo-
gies with disjunctive assertions. In brief, they are ontolo-
gies with numeric degrees attached to axioms and that fea-
ture disjunctive assertions of membership of individuals
to concepts and roles. We briefly recall reasoning in de-
scription logics along with the variation proposed for pos-
sibilistic description logics, and finally present ontologies
with disjunctive assertions.

A Brief Recall of Description Logics

Description Logics (DL) are a well-known family of
knowledge representation formalisms [3]. They are based
on the notions of concepts (unary predicates, classes) and
roles (binary relations), and are mainly characterized by
the constructors that allow complex concepts and roles to
be built from atomic ones. Let C and D stand for con-
cepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunc-
tion (C uD), disjunction (C tD), negation (¬C), exis-
tential restriction (∃R.C), and value restriction (∀R.C).
To define the semantics of concept descriptions, concepts
are interpreted as subsets of a domain of interest, and roles
as binary relations over this domain. Other constructors
include inverse R− and transitive R+ roles.

A DL ontology consists of two finite and mutually dis-
joint sets: a Tbox which introduces the terminology and an
Abox (assertional box) which contains facts about partic-

ular objects in the application domain. A Tbox contains
inclusion axioms C v D, where C and D are (possibly
complex) concept descriptions, meaning that every indi-
vidual of C is also a D, and equality axioms C ≡ D
meaning that C and D are equivalent concepts (i.e. ev-
ery individual in C is an individual in D and vice versa).
Objects in the Abox are referred to by a finite number of
individual names and these names may be used in asser-
tional statements: concept assertions of two types: a : C
(meaning the individual a is a member of concept C), and
role assertions of the type 〈a, b〉 : R (meaning that a is
related to b through the role R).

Many reasoning Tbox and Abox reasoning tasks are de-
fined for DL ontologies (see [3]), but in this work we are
only interested in instance checking that refers to deter-
mining if an individual is a member of a certain class.

One form of assigning semantics to a DL ontology is
based on the fact that DL is isomorphic with first-order
logic restricted to two variables. Then, for example, the
inclusion axiom C v D can be interpreted as the first-
order logic formula (∀x)(c(x) → d(x)) and an assertion
a : C as c(a). Description Logic Programming (DLP)
approaches [20] take advantage of this to interpret such
axioms as the Prolog rules “d(X) :- c(X).” and “c(a).”,
resp. We will apply this in Section 3 to redefine instance
checking in terms of defeasible argumentation allowing to
infer that a is a member of the concept D by finding a
proof for the goal “:- d(a)” (see [17] for details).

Fundamentals of Possibilistic Description Logics

We now recall the fundamentals of possibilistic descrip-
tion logic ontologies. Our presentation is based on [16]
and [7]. Let LDL be a DL description language, a possi-
bilistic DL ontology is a set of possibilistic axioms of the
form (ϕ,W (ϕ)) where ϕ is an axiom expressed in LDL

and W (ϕ) ∈ [0, 1] is the degree of certainty (or priority)
of ϕ. Namely, a possibilistic DL ontology Σ is such that
Σ = {(ϕi,W (ϕi)) : i = 1, . . . , n}. Only somewhat cer-
tain information is explicitly represented in a possibilistic
ontology. That is, axioms with a null weight (W (ϕ) = 0)
are not explicitly represented in the knowledge base. The
weighted axiom (ϕ,W (ϕ)) means that the certainty de-
gree of ϕ is at least equal to W (ϕ). A possibilistic DL
ontology Σ will also be represented by a pair Σ = (T,A)
where elements in both T and A may be uncertain. Note
that if we consider all W (ϕi) = 1, then we find a clas-
sical DL ontology Σ∗ = {ϕi : (ϕi,W (ϕi)) ∈ Σ}. We
say that Σ is consistent if the classical ontology obtained
from Σ by ignoring the weights associated with axioms
is consistent, and inconsistent otherwise. Notice that the
weights W (·) for axioms must be provided by the knowl-
edge engineer that designs the knowledge base.

Introducing Possibilistic Description Logic On-
tologies with Disjunctive Assertions

We now introduce the concept of possibilistic descrip-
tion logic ontology with disjunctive assertions. These new
kind of ontologies are the possibilistic DL ontologies in-
troduced above in Section 2 but with axioms formed in a
particular way allowing to translate them into equivalent
logic program rules and with assertional statements that
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encode uncertainty about the membership of an individual
to a disjunction of concepts. Gómez et al. [16, 17, 18] ex-
ploited the Description Logic Programming approach for
translating DL ontologies into logic programming rules to
reason on inconsistent DL ontologies in DeLP and PDeLP.
Although these previous works handle a big number of
cases, they are not able to handle the kinds of ontologies
we introduce in this work and for this we present a new
reasoning framework in Section 3.

The form of DL ontologies belonging to the DLP frag-
ment comply with certain restrictions that make them to
be successfully expressed in a logic programming set-
ting [20]. Our aim is to translate inclusion axioms C v D
into logic programming rules d(X) ← c(X). Lb-classes
C can appear in the body of logic programming rules,
i.e. in the left-hand side of DL inclusion axioms C v D;
Lh-classes D can appear in the head of logic program-
ming rules (e.g. they cannot be existentially quantified),
so they appear in the right-hand side of DL inclusion ax-
ioms C v D; finally, as DL equality axioms C ≡ D are
more restrictive, Lhb-classes C and D can appear in the
head and the body of rules.

Definition 1 Let C,C1, . . . , Cn be Lb-classes, D an Lh-
class, A,B Lhb-classes, P, P1, . . . , Pn, Q properties, a, b
individuals. Let T be a set of pairs (ϕ,W (ϕ)) whose first
component is an inclusion or an equality axiom ϕ in LDL

coupled with a second component W (ϕ) which is a pos-
sibilistic degree between 0 and 1. The axioms ϕ are of
the form C v D, A ≡ B, > v ∀P.D, > v ∀P−.D,
P v Q, P ≡ Q, P ≡ Q−, or P+ v P . Let A be a set of
concept and role assertions (ϕ,W (ϕ)) disjoint with T of
the form a : (C1 t . . . t Cn) or 〈a, b〉 : (P1 t . . . t Pn).
A suppositional description logic ontology Σ is a pair
(T,A). The set T is called the possibilistic terminology
(or just possibilistic Tbox), and A the suppositional pos-
sibilistic assertional box (or just supossitional possibilistic
Abox).

Next we present an example that is based on [10]. We
will use this as a running example to show how the ap-
proach proposed handles the instance checking reasoning
task in the presence of disjunction in assertional boxes of
possibly inconsistent ontologies.

Example 1 Consider the ontology Σ1 = (T,A) that ex-
presses that ambulances and school buses are vehicles,
regular vehicles are not allowed to park unless they are
ambulances or school buses; also it is known that a is an
ambulance or a school bus, and also a vehicle:

T =


(Ambulance t SchoolBus v Vehicle, 1),
(Vehicle v ¬Parking, 0.6),
(Ambulance t SchoolBus v Parking, 0.9)


A=

{
(a : (Ambulance t SchoolBus), 1),
(a : Vehicle, 1)

}
We now explain intuitively why Σ1 is inconsistent con-

sidering Σ∗
1. Suppose that a is an ambulance, then a is

a member of Parking. But as ambulances are vehicles,
then a is also a vehicle. Therefore a is also a member of
¬Parking. Then a is a member of Parking u ¬Parking,
i.e. a is a member of ⊥. Absurd. The same reasoning ap-
plies when we suppose that a is a school bus. Next we will

present a framework that will allow to deal with the situa-
tions introduced here in an elegant, natural, simple way.

3. REASONING WITH ONTOLOGIES
HAVING DISJUNCTIVE

ASSERTIONS IN SUPPOSITIONAL
ARGUMENTATION SYSTEMS

Here we deal with the problem of reasoning with possi-
bilistic description logic ontologies with disjunctive as-
sertions (PoDLoDA ontologies for short). For this, we
first introduce suppositional possibilistic defeasible logic
programming (SPDeLP) that is a reasoning framework
that we created; it allows to deal with uncertain informa-
tion codified as suppositions and statements with numeri-
cal degrees of certainty. This framework is adaptation of
Bodanza’s suppositional argument system [10]. Second,
we show PoDLoDA ontologies are expressed as SPDeLP
programs and how reasoning task in ontologies are inter-
preted in this framework. Finally, we discuss differences
and similarities of our interpretation of suppositional ar-
gumentation with the original framework proposed by Bo-
danza.

SPDeLP: Suppositional Possibilistic Defeasible
Logic Programming

Suppositional argumention systems (SAS) introduced by
Bodanza [10] provide a foundation for dealing intuitively
with disjunctive information in a defeasible reasoning
framework. Bodanza’s view is that suppositional reason-
ing is present in defeasible arguments involving disjunc-
tions, just as reasoning by cases appears in classical logic.
Disjunctive information can express different plausible al-
ternatives, and SAS study in what extent an argument as-
suming such possible alternatives can be considered rel-
evant on the basis of its explicative power in comparison
with other explanations. In this work we will present a
adaptation of Bodanza’s SAS to put emphasis in its im-
plementability, thus providing a simpler presentation. We
will adapt the language of Possibilistic Defeasible Logic
Programming (PDeLP) [1] for allowing to represent facts
having disjunctive literals.

A suppositional possibilistic defeasible logic (SPDeLP)
program P is a set of rules (P ← Q1, . . . , Qn, α) where
0 < α ≤ 1 is a possibilistic degree. When n = 0, we
will note them simply as (P, α). Facts have the form
(P1 OR . . . OR Pk, α), where the Pi are either unary
or binary predicates, meaning that at least one Pi, i =
1, . . . , k holds with degree α (when k = 1 we have tradi-
tional PDeLP facts). P ,Q1, . . . ,Qn are called literals and
can be positive or negative atoms (i.e. classically negated
with ∼). A set of rules is contradictory iff it allows to de-
rive a pair of complementary literals L and∼L with some
degree α1 and α2, resp. The tentative conclusions of the
system are called, as usual, arguments and are built by the
rules of derivation presented below.

Definition 2 Let P be a SPDeLP program and α be a real
number such that 0 < α ≤ 1. An argument is a structure
〈D,S, H, α〉, where D is a finite set of ground instances
of rules in P (called the argument’s defeasible support),
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(1) (vehicle(X)← ambulance(X), 1)
(2) (vehicle(X)← schoolbus(X), 1)
(3) (∼parking(X)← vehicle(X), 0.6)
(4) (parking(X)← ambulance(X), 0.9)
(5) (parking(X)← schoolbus(X), 0.9)
(6) (ambulance(a) OR schoolbus(a), 1)
(7) (vehicle(a), 1)

Figure 1: Program P1 from Example 2

S is a set of ground literals called suppositions, and H is
a ground literal called the argument conclusion such that
D ∪ S allows to derive H with strength α derived mini-
mally according to the following deductive rules:

• Fact (Fact): If (H,α) ∈ P , then it holds that
〈∅, ∅, H, α〉 is an argument.

• Supposition (Sup): If (H1 OR . . . OR Hn, α) ∈
P , then it holds that 〈∅, {Hi}, Hi, α〉 are arguments
for i = 1, . . . , n.

• Generalized Modus Ponens (GMP): If
〈D1,S1, B1, α1〉, . . . , 〈Dn,Sn, Bn, αn〉,
(H ← B1, . . . , Bn, α) ∈ P and
(
⋃n

i=1Di) ∪ (
⋃n

i=1 Si) ∪ {H ← B1, . . . , Bn}
is not contradictory, then 〈

⋃n
i=1Di ∪ {H ←

B1, . . . , Bn},
⋃n

i=1 Si, H,min(α1, . . . , αn, α)〉 is
an argument.

• Constructive Dilemma (CD): If
〈Di, {Hi} ∪ Si, B, αi〉 for i = 1, . . . , n
and (H1 OR . . . OR Hn, α) ∈ P , and
(
⋃n

i=1Di) ∪ (
⋃n

i=1 Si) is not contradictory,
then 〈

⋃n
i=1Di,

⋃n
i=1 Si, B,min(α1, . . . , αn, α)〉

is an argument.

Notice that we propose the CD rule based on the intu-
ition that propositional logics allows to infer r from p∨ q,
p → r and q → r. Besides, we will say that an argument
〈D,S, H, P 〉 is self-defeating iffD∪S allows to derive a
pair of contradictory literals. Notice that, by construction,
there are no self-defeating arguments in SPDeLP.

We refine the usual notion of disagreement: a set of
arguments S is in disagreement if there are at least two ar-
guments for some L and∼L in S that have the same set of
suppositions. If S is not in disagreement, it is said to be in
agreement. The conclusions of the system are obtained in
the same way as in traditional PDeLP—through a dialec-
tical process that considers all the arguments for a query,
then all of its defeaters and defeaters for those defeaters
and so on. Given two (contradicting) arguments, if the
attacking argument is strictly preferred over the attacked
one (i.e. its weight is greater), then it is called a defeater.
Given a SPDeLP program P and a query H , the final an-
swer to H w.r.t. P is based on such dialectical analysis.
The answer to a query can be: Yes (when there exists a
warranted argument 〈D,S, H, α〉), No (when there exists
a warranted argument 〈D,S,∼H,α〉), Undecided (when
neither 〈D,S, H, α〉 nor 〈D,S,∼H,α〉 are warranted),
or Unknown (when H does not belong to P).

We now introduce how the ontology presented in Exam-
ple 1 is treated in SPDeLP. In Section 3, we will discuss
how the translation from DL to SPDeLP is achieved.

Example 2 (Continues Example 1) The ontology Σ1 is
interpreted as the program P1 in Fig. 1. Some of the argu-
ments we can build from this program are:

(8) A1 = 〈∅, ∅, vehicle(a), 1〉 (by Fact from (7))

(9) A2 = 〈∅, {ambulance(a)}, ambulance(a), 1〉 (by
Sup from (6))

(10) A3 = 〈∅, {schoolbus(a)}, schoolbus(a), 1〉 (by
Sup from (6))

(11) A4 = 〈{∼ parking(a) ← vehicle(a)}, ∅,∼
parking(a), 0.6〉 (by GMP from (3) and (8))

(12) A5 = 〈{(parking(a) ←
ambulance(a)}, {ambulance(a)}, parking(a), 0.9〉
(by GMP from (4) and (9))

(13) A6 = 〈{parking(a) ←
schoolbus(a)}, {schoolbus(a)}, parking(a), 0.9〉
(by GMP from (5) and (10))

(14) A7 = 〈{parking(a) ←
ambulance(a), parking(a) ←
schoolbus(a)}, ∅, parking(a), 0.9〉 (by CD from
(6), (12) and (13)).

We see thatA5,A6 andA7 are in agreement and disagree
with A4. Argument A7 defeats argument A4, therefore a
can park becauseA4 is warranted. Notice thatA5 andA6

cannot attack A4 because, even entailing opposing con-
clusions, the set of suppositions for each argument are dif-
ferent.

Interpreting Suppositional Possibilistic DL On-
tologies in SPDeLP

For assigning semantics to a description logics ontology,
we define a translation function T (·) from DL to SPDeLP
based on the work of [20] (for details, see [17] to study the
case in which ontologies belonging to the DLP fragment
of DL are translated into DeLP). First, axioms are consid-
ered to be in negation-normal form, meaning that nega-
tions are pushed inward class expressions. Informally, an
axiom of the form C v D will be translated as d(X) ←
c(X). Abox assertions of the form a : (C1 t . . .tCn) are
translated as facts c1(a) OR . . . OR cn(a) and 〈a, b〉 :
(r1 t . . . t rn) as r1(a, b) OR . . . OR rn(a, b). More-
over, a formula of the form ∃r.C v D is translated as
d(X)← r(X,Y ), c(Y ), and one of the form CtD v E
as two axiomsC v E andD v E. See Fig. 2 for a formal
account of the translation function. The interpretation of
Σ is a SPDeLP program P = T (T ) ∪ T (A).

We redefine instance checking to handle possible incon-
sistencies while retaining classical DL functionality: If C
is a class, a an individual and α a real number between 0
and 1, then (i) a is a potential member of C iff there exists
an argument 〈A, ∅, C(a), α〉 w.r.t. P , and, (ii) a is a jus-
tified member of C iff there exists a warranted argument
〈A, ∅, C(a), α〉 w.r.t. P .

Example 3 (Continues Example 2) Consider again Σ1.
The individual a is a justified member of the concept
Parking.
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T ({C v D}) =df

{
Th(D,X)← Tb(C,X)

}
, if C is an Lb-class and D an Lh-class

T ({C ≡ D}) =df T ({C v D}) ∪ T ({D v C}), if C and D are Lhb-classes
T ({> v ∀P.D}) =df

{
Th(D,Y )← P (X,Y )

}
, if D is an Lh-class

T ({> v ∀P−.D}) =df

{
Th(D,X)← P (X,Y )

}
, if D is an Lh-class

T ({a : (D1 t . . . tDn)}) =df

{
Th(D1, a) OR . . . OR Th(Dn, a)

}
, if Di are Lh-classes

T ({〈a, b〉 : (P1 t . . . t Pn)}) =df

{
P1(a, b) OR . . . OR Pn(a, b)

}
T ({P v Q}) =df

{
Q(X,Y )← P (X,Y )

}
T ({P ≡ Q}) =df

{
Q(X,Y )← P (X,Y )
P (X,Y )← Q(X,Y )

}
T ({P ≡ Q−}) =df

{
Q(X,Y )← P (Y,X)
P (Y,X)← Q(X,Y )

}
T ({P+ v P}) =df

{
P (X,Z)← P (X,Y ) ∧ P (Y, Z)

}
T ({s1, . . . , sn}) =df

⋃n
i=1 T ({si}), if n > 1

where:
Th(A,X) =df A(X)

Th((C uD), X) =df Th(C,X) ∧ Th(D,X)
Th((∀R.C), X) =df Th(C, Y )← R(X,Y )

Tb(A,X) =df A(X)
Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)
Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)
Tb((∃R.C), X) =df R(X,Y ) ∧ Tb(C, Y )

Figure 2: Mapping T from DL ontologies with assertions to SPDeLP rules

Instance Checking with Contrapositive Reason-
ing

The approach is presented so far does not allow to per-
form contrapositive reasoning (i.e. we cannot deduce that
a is an instance of ¬C from C v D and a : ¬D). The
simplest solution to this problem is to consider adding
transposes of rules for so-called strict rules (i.e. rules
with weight equal to 1), a resource that will allow us to
perform reasoning by contrapositive reasoning while re-
taining the implementability of the system. This feature
is based on approaches such as Vreeswijk’s system AS-
PIC (see http://aspic.cossac.org/) and Alsinet
et al. [1].

Definition 3 Let r = (H ← B1, B2, . . . , Bn, α) be a
rule. The set of transposes of r, denoted as Trans(r), is

Trans(r) =


(H ← B1, B2, . . . , Bn, α),
(∼B1 ←∼H,B2, . . . , Bn, α),
(∼B2 ← B1,∼H, . . . , Bn, α),
. . .
(∼Bn ← B1, B2, . . . ,∼H,α)



Example 4 Consider again the axiom (Ambulance t
SchoolBus v Vehicle, 1) from Example 1. Accord-
ing to the translation function T (·) in Figure 2, by
Lloyd-Topor transformations, we obtain rules (1) and
(2) from the axioms (Ambulance v Vehicle, 1) and
(SchoolBus v Vehicle, 1) (see program P1 in Figure 1).
Yet if we had (b : ¬Vehicle, 0.9) as an additional as-
sertional expression in A, we would not be able to de-
duce that b is not a member of Ambulance solely from
rules (1) and (2). Instead, by considering their trans-
poses, viz. (∼ ambulance(X) ←∼ vehicle(X), 1) and
(∼ schoolbus(X) ←∼ vehicle(X), 1), by GMP we can
infer (∼ambulance(b), 0.9), thus concluding that b is not
an ambulance with strength 0.9.

4. RELATED WORK

Comparison with Bodanza’s SAS: Here we briefly dis-
cuss how our proposal for suppositional argumentation
differs from the one presented by Bodanza in [10]. Bo-
danza includes a deduction rule that is too powerful to be
implemented because it relies on deduction in first-order
classical logic (see [10, p. 27]). We instead chose to in-
clude a simpler rule such as CD. We also chose to drop the
conditionalization rule of Bodanza; this makes our system
less expressive in the sense that we cannot discharge sup-
positions (except by using CD). However, adding trans-
poses of strict rules allows to perform contrapositive rea-
soning without recurring to first-order logic rules. We
use weights attached to rules for ultimately comparing the
strength of arguments but Bodanza chooses to use gener-
alized specificity as a comparison criterion. It can be ar-
gued that the inclusion of numerical weights in our system
obscures the knowledge representation but we think that
this feature allows the knowledge engineer to have more
control and simplifies the implementation of the reasoning
system.

Disjunction in argumentation: Reasoning with dis-
junctive knowledge bases is an interesting research topic
that has been addressed in the past by earlier non-
monotonic reasoning systems such as default logic [15,
28]. Wang and Chen [29, 30] study the relationship exist-
ing between abduction-based argumentation and disjunc-
tive logic programming. In their proposal, disjunctions of
negative literals are regarded as possible assumptions and
are used to represent incomplete information. They de-
fine three semantics corresponding to credulous, moderate
and skeptical reasoning, resp. They claim to be the first
argumentation-based abductive approach applied to dis-
junctive logic programs. Wang and Chen consider full dis-
junctive logic programming rules (i.e. rules with disjunc-
tions in the head and non-empty bodies); our approach,
however, is preliminary in that sense because we only con-
sider facts with disjunctions (i.e. rules with disjunctions
in the head and empty bodies). Moreover, considering the
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three main kinds (in a philosophical sense) of reasoning
(viz., deductive, inductive and abductive) our approach is
deductive and Wang’s is abductive.

Bochman [9] introduces an extension of an abstract ar-
gumentation framework that provides a direct representa-
tion of global conflicts between sets of arguments. The
extension, called collective argumentation, is suitable for
representing semantics of disjunctive logic programs. Col-
lective argumentation theories possess a four-valued se-
mantics as our system does. Two special kinds of collec-
tive argumentation, positive and negative argumentation,
are considered in which the opponents can share their ar-
guments. Negative argumentation turns out to be espe-
cially appropriate for analyzing stable sets of arguments.
Positive argumentation generalizes certain alternative se-
mantics for logic programs. In Bochman’s examples, only
disjunctive facts are considered and default negation is
used instead of classical negation. Bochman’s attack re-
lationship allows for collective attacks among arguments;
our approach in turn only allows for pairwise attack be-
tween arguments.

Nieves et al. [26] present a possibilistic disjunctive logic
programming approach where its semantics is character-
ized by a fixed-point operator. To manage inconsistency,
they define a preference criterion to decide between in-
consistent possibilistic models and use cuts to restore con-
sistency. The proposal of Nieves et al. is more expressive
than ours because full disjunctive rules are allowed and not
only disjunctive facts. However, we accept inconsistency
and deal with it with an argumentative process instead of
repairing a disjunctive program.

Inconsistency handling in weighted ontologies: Be-
ferhat and Bouraoui [5] affirm that Hollunder [21] was the
first in proposing combining possibilistic logics and on-
tologies and then Dubois et al. [13] discussed again the
idea. Gómez et al. [16] presented a reasoning framework
for dealing with possibly inconsistent ontologies repre-
sented in the description logic programming (DLP) frag-
ment of DL based on possibilistic defeasible logic pro-
gramming known as weighted ontologies. They handle
uncertainty by adding possibilistic weights to rules like
we do.

Lukasiewicz [23] presents the expressive probabilis-
tic description logics P-SHIF(D) and P-SHOIN (D),
which are probabilistic extensions of the SHIF(D) and
SHOIN (D) description logics, resp. They are semanti-
cally based on the notion of probabilistic lexicographic en-
tailment from probabilistic default reasoning, which inter-
prets terminological and assertional probabilistic knowl-
edge about random and concrete instances resp., which
is semantically interpreted as in Lehmann’s lexicographic
entailment in default reasoning from conditional knowl-
edge bases. Possibilistic approaches to reasoning asso-
ciate each piece of knowledge with a certainty degree.
Lukasiewicz, instead, proposes conditional probability
statements having a probability range.

Benferhat and Bouraoui [5, 6] present a possibilistic
version of DL-Lite, called π-DL-Lite, suitable for han-
dling inconsistency. We deal with disjunction which is not
allowed DL-Lite, and, despite the simplicity of the exam-
ples presented here, our framework is targeted to the DLP
fragment of DL which allows to handle richer knowledge

representations. Nonetheless, DL-Lite allows the equiva-
lent of existential quantifiers in the head of rules, a fea-
ture that logic programming does not allow. In particular
in [7], they only deal with inconsistency in the Abox and
not in the Tbox. On the contrary, we assume a consistent
Abox having disjunctive assertions and the inconsistency
is given by considering the information in the Tbox along
with the Abox.

5. CONCLUSIONS AND FUTURE
WORK

This paper proposed a kind of DL ontologies that allow
to represent disjunctive assertions of membership of in-
dividuals to concepts and roles where the ontology ax-
ioms have been assigned possibilistic degrees of certainty,
and also proposed a variation of suppositional argumen-
tation to handle the reasoning task of instance checking
in such ontologies. Inconsistent ontologies are interpreted
into a possibilistic suppositional argumentation system re-
defining instance checking via a warrant procedure in such
system. For every disjunctive assertion, if the supposi-
tion of each disjunct allows the system to reach a certain
conclusion, then that conclusion can be taken for granted.
Because the ontology can be potentially inconsistent, the
reasoning framework takes this possibility into account to
compute defeaters and defeaters for these defeaters to per-
form a dialectical analysis to warrant conclusions. In our
approach, the possibilistic degrees of certainty are used to
compute the relative weight of each possible conclusion,
which, in turn, are used to decide which arguments pre-
vail. Much work remains to be done such us proposing
larger case studies. With respect to knowledge representa-
tion aspects, we would like to adapt the system to have dis-
junctions in the head of rules. Also considering different
argumentation semantics for the definition of the dialecti-
cal process appears to be a promising avenue of research.
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