
A Preliminary Framework for Reasoning with
Inconsistent Possibilistic Description Logics

Ontologies with Disjunctive Assertions

Sergio Alejandro Gómez

Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Email: sag@cs.uns.edu.ar

Abstract. We present a preliminary framework for reasoning with pos-
sibilistic description logics ontologies with disjunctive assertions (PDLDA
ontologies for short). PDLDA ontologies are composed of a terminology
as well as an assertional box that allows to declare three kinds of asser-
tional statements: an individual is a member of one concept, two individ-
uals are related through a role, an individual is a member of the union
of two or more concepts or two individuals are related through the union
of two or more roles. Each axiom in the ontologies has a certainty degree
as is usual in possibilistic logics. For reasoning with PDLDA ontologies,
we interpret them in terms of a adaptation of Bodanza’s Suppositional
Argumentation System. Our framework allows to reason with modus
ponens and constructive dilemmas. We use it for determining the mem-
bership of individuals to concepts when there is doubt to exactly which
one of the concepts in the union the individual belongs. We think that
our approach will be of use for implementers of reasoning systems in
the Semantic Web where uncertainty of membership of individuals to
concepts or roles is present.

Keywords: Supppositional argumentation, ontology reasoning, incon-
sistency handling, Description Logics.

1 Introduction

Reasoning with Description Logics ontologies [1] is an important topic for the
implementation of the Semantic Web [2], where data resources are described in
terms of ontologies expressed in the Web Ontology Language (OWL-DL). OWL-
DL underlying semantics are expressed in Description Logics. Traditionally, an
ontology is a set of axioms that defines intensionally (by means of a Tbox or
terminological box) a set of concepts and roles and extensionally a set individuals
belonging to some of the concepts and/or relating to each other through roles
(by means of an Abox or assertional box).

Incoherence and inconsistency are two anomalies that may affect an ontol-
ogy. An incoherent ontology has definitions that render some concepts empty.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76489486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Inconsistent ontologies imply that an individual is a member of both a concept
and its complement. Because DL ontologies are based on decidable fragments of
first-order logic, inconsistency makes anything derivable from such an ontology.

Inconsistent ontologies pose a problem for this because they have to be de-
bugged by the knowledge engineer prior to deployment of applications. Many
times it is not possible to do this because the domain being modeled is intrinsi-
cally contradictory or the programmer does not have the authority to edit the
ontology’s contents. Many approaches have been proposed for dealing with this
situation is solved in two main ways. The first kind of approaches consists of elim-
inating part of the ontology to make it consistent again (e.g. approaches based
on Belief Revision theory [3, 4] or on paraconsistent logics [5]). The second kind
consists of accepting inconsistency and using some kind of non-standard reason-
ing mechanism to get some meaningful answers from an inconsistent knowledge
base (e.g. argumentation [6–9]). We will rely on the latter approach in this paper.

Defeasible argumentation is an approach to non-monotonic reasoning that
can be used when several diverging opinions may exist (each opinion is sup-
ported by an argument instead of a proof), so differences can be resolved by
considering all pros and cons of a given claim through a dialectical analysis [10–
12]. Given a claim, this process usually takes into account defeaters (other claims
that are against the original claim and seem to have greater importance) and
defeaters of those defeaters (thus maybe reinstating the original claim) as part
of a recursive process that ends when no defeater can be found. Defeasible Logic
Programming (DeLP) [13] is a rule-based implementation of defeasible argumen-
tation based on the Prolog programming language. Possibilistic DeLP (or just
PDeLP) [14] is another argumentative approach to reasoning that derives from
DeLP. Unlike DeLP that uses specificity for comparing arguments during the
dialectical analysis, PDeLP uses possibilistic degrees associated to each rule to
qualify arguments indicating its relative weight or priority, thus imposing a rule
priority principle for comparing arguments based on the idea that an argument
is as credible as the least credible of the rules supporting it.

The hypothesis underlying this work is that defeasible argumentation is a
reliable tool for dealing with the problem of reasoning with possibly inconsis-
tent ontologies having disjunctive assertions. Therefore, in this paper, we will
extend PDeLP for it to be able to handle facts with disjunctions. We call the ex-
tension presented here Suppositional Possibilistic Defeasible Logic Programming
(SPDeLP). SPDeLP is an adaptation of Bodanza’s Suppositional Argumentation
System [15] for making it suitable for its computational implementation.

We then extend traditional DL ontologies with disjunctive assertional state-
ments of the form “an individual is a member of the union of two or more
classes”. Each axiom in the ontology is coupled with a weight or certainty de-
gree in order to decide between contradicting axioms about the membership
of individuals to concepts, a reasoning task known as instance checking. We
chose to call this new kind of ontologies PDLDA ontologies. We then interpret
PDLDA ontologies as SPDeLP programs in order to answer queries of member-
ship of individual to classes in the presence of inconsistency. We think that this



approach could extend the range of applications in which ontologies are used,
such as improving the development of applications that need dealing with un-
certain knowledge to perform decision-making. We present a running example
that shows how SPDeLP allows to reason on a given PDLDA ontology.

The rest of the article is structured as follows. In Sect. 2, we present the
fundamentals of PDLDA ontologies. In Sect. 3, we describe the argumentation
approach to reasoning with SPDeLP and how it is used to perform instance
checking in PDLDA ontologies. Finally, Sect. 4 concludes.

2 Possibilistic Description Logic Ontologies with
Disjunctive Assertions

We introduce here possibilistic description logic ontologies with disjunctive as-
sertions. In brief, they are ontologies with numeric degrees attached to axioms
and that feature disjunctive assertions of membership of individuals to concepts
and roles. First we briefly recall reasoning in description logics, second the vari-
ation proposed for possibilistic description logics, to finally present ontologies
with disjunctive assertions.

2.1 A Brief Recall of Description Logics

Description Logics (DL) are a well-known family of knowledge representation
formalisms [1]. They are based on the notions of concepts (unary predicates,
classes) and roles (binary relations), and are mainly characterized by the con-
structors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunction (C uD), disjunc-
tion (CtD), negation (¬C), existential restriction (∃R.C), and value restriction
(∀R.C). To define the semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain.
Other constructors include inverse R− and transitive R+ roles.

A DL ontology consists of two finite and mutually disjoint sets: a Tbox which
introduces the terminology and an Abox (assertional box) which contains facts
about particular objects in the application domain. A Tbox contains inclusion
axioms C v D, where C and D are (possibly complex) concept descriptions,
meaning that every individual of C is also a D, and equality axioms C ≡ D
meaning that C and D are equivalent concepts (i.e. every individual in C is
an individual in D and vice versa). Objects in the Abox are referred to by a
finite number of individual names and these names may be used in assertional
statements: concept assertions of two types: a : C (meaning the individual a is a
member of concept C), and role assertions of the type 〈a, b〉 : R (meaning that
a is related to b through the role R).

Many reasoning Abox reasoning tasks are defined in DL, but in this work we
are only interested in instance checking that refers to determining if an individual
is a member of a certain class.



One form of assigning semantics to a DL ontology is based on the fact that
DL is isomorphic with first-order logic restricted to two variables. Then, for
example, the inclusion axiom C v D can be interpreted as the first-order logic
formula (∀x)(c(x) → d(x)) and an assertion a : C as c(a). Description Logic
Programming approaches [16] take advantage of this to interpret such axioms as
the Prolog rules “d(X) :- c(X).” and “c(a).”, resp. We will apply this later on to
redefine instance checking in terms of defeasible argumentation allowing to infer
that a is a member of the concept D by finding a proof for the goal “:- d(a)”
(see [7] for details).

2.2 Fundamentals of Possibilistic Description Logics

We now recall the fundamentals of possibilistic description logic ontologies. Our
presentation is based on [17] and [18]. Let LDL be a DL description language,
a possibilistic DL ontology is a set of possibilistic axioms of the form (ϕ,W (ϕ))
where ϕ is an axiom expressed in LDL and W (ϕ) ∈ [0, 1] is the degree of cer-
tainty (or priority) of ϕ. Namely, a possibilistic DL ontology Σ is such that
Σ = {(ϕi,W (ϕi)) : i = 1, . . . , n}. Only somewhat certain information is explic-
itly represented in a possibilistic ontology. That is, axioms with a null weight
(W (ϕ) = 0) are not explicitly represented in the knowledge base. The weighted
axiom (ϕ,W (ϕ)) means that the certainty degree of ϕ is at least equal to W (ϕ).
A possibilistic DL ontology Σ will also be represented by a pair Σ = (T,A)
where elements in both T and A may be uncertain. Note that if we consider all
W (ϕi) = 1, then we find a classical DL ontology Σ∗ = {ϕi : (ϕi,W (ϕi)) ∈ Σ}.
We say that Σ is consistent if the classical ontology obtained from Σ by ignoring
the weights associated with axioms is consistent, and inconsistent otherwise.

2.3 Introducing Possibilistic Description Logic Ontologies with
Disjunctive Assertions

We now introduce the concept of Possibilistic Description Logic ontology with
disjunctive assertions. These new kind of ontologies are the possibilistic DL on-
tologies introduced above in Sect. 2.2 but with axioms formed in a particular
way allowing to translate them into equivalent logic program rules and with
assertional statements that encode uncertainty about the membership of an in-
dividual to a disjunction of concepts. Gómez et al. [7, 8, 17] exploited the De-
scription Logic Programming approach for translating DL ontologies into logic
programming rules to reason on inconsistent DL ontologies in DeLP and PDeLP.
These previous works, although they handle a big number of cases, are not able
to handle the kind of ontologies we are going to propose here. Handling these
kind of ontologies requires a new reasoning framework that we will introduce in
Sect. 3.

To understand how the translation from DL to logic programming works,
we recall some concepts presented in [7]. In the presentation, we will refer to
Lb-classes, Lh-classes and Lhb-classes. Remember that our aim is to translate
inclusion axioms C v D into logic programming rules d(X) ← c(X). Because



of the restrictive form of logic programming rules, Lb-classes C are classes that
can appear in the body of logic programming rules, that is in the left-hand side
of DL inclusion axioms C v D; Lh-classes D can appear in the head of logic
programming rules (e.g. they cannot be existentially quantified), so they appear
in the right-hand side of DL inclusion axioms C v D; finally, as DL equality
axioms C ≡ D are more restrictive, Lhb-classes C and D are such that they have
to be able to appear in the head and the body of rules.

Definition 1. Let C,C1, . . . , Cn be an Lb-class, D an Lh-class, A,B Lhb-classes,
P, P1, . . . , Pn, Q properties, a, b individuals. Let T be a set of pairs (ϕ,W (ϕ))
whose first component is an inclusion or an equality axiom ϕ in LDL coupled
with a second component W (ϕ) which is a possibilistic degree between 0 and 1.
The axioms ϕ are of the form C v D, A ≡ B, > v ∀P.D, > v ∀P−.D, P v Q,
P ≡ Q, P ≡ Q−, or P+ v P . Let A be a set of concept and role assertions
(ϕ,W (ϕ)) disjoint with T of the form a : (C1t . . .tCn) or 〈a, b〉 : (P1t . . .tPn).
A suppositional description logic ontology Σ is a pair (T,A). The set T is called
the possibilistic terminology (or just possibilistic Tbox), and A the suppositional
possibilistic assertional box (or just supossitional possibilistic Abox).

We will present now a paradigmatic example that is based on [15]. We will
use this as a running example to show how the approach proposed in this work
handles the instance checking reasoning task in the presence of disjunction in
assertional boxes of possibly inconsistent ontologies.

Example 1. Consider the ontology Σ1 = (T,A) that expresses that ambulances
and school buses are vehicles, regular vehicles are not allowed to park except
ambulances and school buses; also it is known that a is an ambulance or an
school bus, and also a vehicle:

T =

 (Ambulance t SchoolBus v Vehicle, 1)
(Vehicle v ¬Parking, 0.6)
(Ambulance t SchoolBus v Parking, 0.9)


A =

{
(a : (Ambulance t SchoolBus), 1), (a : Vehicle, 1)

}
We now explain intuitively why Σ1 is inconsistent considering Σ∗1 . Suppose

that a is an ambulance, then a is a member of Parking. But as ambulances are
vehicles, then a is also a vehicle. Therefore a is a member also of ¬Parking. Then
a is a member of Parking u ¬Parking, that is a is a member of ⊥. Absurd. The
same reasoning applies when we suppose that a is an school bus. We will present
next a framework that will allow to deal with the situations introduced here in
an elegant, natural, simple way.

3 Reasoning with Ontologies with Disjunctive Assertions
in Suppositional Argumentation Systems

In this section, we deal with the problem of reasoning with possibilistic descrip-
tion logic ontologies with disjunctive assertions (PDLDA ontologies for short).



For this, we first introduce suppositional possibilistic defeasible logic program-
ming (SPDeLP) that is a reasoning framework that we created; it allows to
to deal with uncertain information codified as suppositions and statements with
numerical degrees of certainty. This framework is adaptation of Bodanza’s suppo-
sitional argument system [15]. Second, we show PDLDA ontologies are expressed
as SPDeLP programs and how reasoning task in ontologies are interpreted in
this framework. Finally, we discuss differences and similarities of our interpre-
tation of suppositional argumentation with the original framework proposed by
Bodanza.

3.1 SPDeLP: Suppositional Possibilistic Defeasible Logic
Programming

Suppositional argumention systems (SAS) introduced by Bodanza [15] provide
a foundation for dealing intuitively with disjunctive information in a defeasible
reasoning framework. Bodanza’s view is that suppositional reasoning is present
in defeasible arguments involving disjunctions, just as reasoning by cases ap-
pears in classical logic. Disjunctive information can express different plausible
alternatives, and SAS study in what extent an argument assuming such possible
alternatives can be considered relevant on the basis of its explicative power in
comparison with other explanations. In this work we will present a adaptation
of Bodanza’s SAS to put emphasis in its implementability, thus providing a sim-
pler presentation. We will adapt the language of Possibilistic Defeasible Logic
Programming (PDeLP) [14] for allowing to represent facts having disjunctive
literals.

A suppositional possibilistic defeasible logic (SPDeLP) program P is a set of
rules (P ← Q1, . . . , Qn, α) where 0 < α ≤ 1 is a possibilistic degree. When n = 0,
we will note them simply as (P, α). Facts have the form (P1 OR . . . OR Pk, α),
where the Pi are either unary or binary predicates, meaning that at least one
Pi, i = 1, . . . , k holds with degree α (when k = 1 we have traditional PDeLP
facts). P , Q1, . . . , Qn are called literals and can be positive or negative atoms
(that is classically negated with ∼). A set of rules is contradictory iff it allows
to derive a pair of complementary literals L and ∼L with some degree α1 and
α2, resp. The tentative conclusions of the system are called, as usual, arguments
and are built by the rules of derivation presented below.

Definition 2. Let P be a SPDeLP program and α be a real number such that
0 < α ≤ 1. An argument is a structure 〈D,S, H, α〉, where D is a finite set of
ground instances of rules in P (called the argument’s defeasible support), S is
a set of ground literals called suppositions, and H is a ground literal called the
argument conclusion such that D∪S allows to derive H with strength α derived
minimally according to the following deductive rules:

– Fact (Fact): If (H,α) ∈ P, then it holds that 〈∅, ∅, H, α〉 is an argument.

– Supposition (Sup): If (H1 OR . . . OR Hn, α) ∈ P, then it holds that 〈∅, {Hi},
Hi, α〉 are arguments for i = 1, . . . , n.



– Generalized Modus Ponens (GMP): If 〈D1,S1, B1, α1〉, . . . , 〈Dn,Sn, Bn, αn〉,
(H ← B1, . . . , Bn, α) ∈ P and (

⋃n
i=1Di) ∪ (

⋃n
i=1 Si) ∪ {H ← B1, . . . , Bn} is not

contradictory, then 〈
⋃n

i=1Di∪{H ← B1, . . . , Bn},
⋃n

i=1 Si, H,min(α1, . . . , αn, α)〉
is an argument.

– Constructive Dilemma (CD): If 〈Di, {Hi} ∪ Si, B, αi〉 for i = 1, . . . , n and
(H1 OR . . . OR Hn, α) ∈ P, and (

⋃n
i=1Di) ∪ (

⋃n
i=1 Si) is not contradictory, then

〈
⋃n

i=1Di,
⋃n

i=1 Si, B,min(α1, . . . , αn, α)〉 is an argument.

Notice that the CD rule is proposed based on the intuition that in proposi-
tional logics r can be inferred from p ∨ q, p → r and q → r. Also, we will say
that an argument 〈D,S, H, P 〉 is self-defeating iff D ∪ S allows to derive a pair
of contradictory literals.

Property 1. There are no self-defeating arguments in SPDeLP.

We refine the usual notion of disagreement: a set of arguments S is in dis-
agreement if there are at least two arguments for some L and ∼ L in S that
have the same set of suppositions. If S is not in disagreement, it is said to be
in agreement. The conclusions of the system are obtained in the same way as
in traditional PDeLP—through a dialectical process that considers all the argu-
ments for a query, then all of its defeaters and defeaters for those defeaters and
so on. Given two (contradicting) arguments, if the attacking argument is strictly
preferred over the attacked one (that is its weight is greater), then it is called
a defeater. Given a SPDeLP program P and a query H, the final answer to H
w.r.t. P is based on such dialectical analysis. The answer to a query can be: Yes
(when there exists a warranted argument 〈D,S, H, α〉), No (when there exists a
warranted argument 〈D,S,∼H,α〉), Undecided (when neither 〈D,S, H, α〉 nor
〈D,S,∼H,α〉 are warranted), or Unknown (when H does not belong to P).

We now introduce how the ontology presented in Ex. 1 is treated in SPDeLP.
In Sect. 3.2, we will discuss how the translation from DL to SPDeLP is achieved.

(1) (vehicle(X)← ambulance(X), 1) (2) (vehicle(X)← schoolbus(X), 1)
(3) (∼parking(X)← vehicle(X), 0.6) (4) (parking(X)← ambulance(X), 0.9)
(5) (parking(X)← schoolbus(X), 0.9) (6) (ambulance(a) OR schoolbus(a), 1)
(7) (vehicle(a), 1)

Fig. 1. Program P1 from Example 2

Example 2. (Continues Ex. 1) The ontology Σ1 is interpreted as the program
P1 in Fig. 1. Some of the arguments we can build from this program are:

(8) A1 = 〈∅, ∅, vehicle(a), 1〉 (by Fact from (7))
(9) A2 = 〈∅, {ambulance(a)}, ambulance(a), 1〉 (by Sup from (6))

(10) A3 = 〈∅, {schoolbus(a)}, schoolbus(a), 1〉 (by Sup from (6))
(11) A4 = 〈{∼ parking(a) ← vehicle(a)}, ∅,∼ parking(a), 0.6〉 (by GMP from (3) and

(8))



(12) A5 = 〈{(parking(a) ← ambulance(a)}, {ambulance(a)}, parking(a), 0.9〉 (by GMP
from (4) and (9))

(13) A6 = 〈{parking(a) ← schoolbus(a)}, {schoolbus(a)}, parking(a), 0.9〉 (by GMP
from (5) and (10))

(14) A7 = 〈{parking(a)← ambulance(a), parking(a)← schoolbus(a)}, ∅, parking(a), 0.9〉
(by CD from (6), (12) and (13)).

We see that A5, A6 and A7 are in agreement and disagree with A4. Argument
A7 defeats argument A4, therefore a can park because A4 is warranted. Notice
that A5 and A6 cannot attack A4 because, even entailing opposing conclusions,
the set of suppositions for each argument are different.

3.2 Interpreting Suppositional Possibilistic DL Ontologies in
SPDeLP

For assigning semantics to a description logics ontology, we define a translation
function T (·) from DL to SPDeLP based on the work of [16] (for details, see [7]
to study the case in which DL ontologies are translated into DeLP). First, ax-
ioms are considered to be in negation-normal form, meaning that negations are
pushed inward class expressions. Informally, an axiom of the form C v D will be
translated as d(X) ← c(X). Abox assertions of the form a : (C1 t . . . t Cn)
are translated as facts c1(a) OR . . . OR cn(a) and 〈a, b〉 : (r1 t . . . t rn) as
r1(a, b) OR . . . OR rn(a, b). Moreover, a formula of the form ∃r.C v D is trans-
lated as d(X) ← r(X,Y ), c(Y ), and one of the form C tD v E as two axioms
C v E and D v E. See Fig. 2 for a formal account of the translation function.
The interpretation of Σ is a SPDeLP program P = T (T ) ∪ T (A).

Instance checking is redefined to handle possible inconsistencies while retain-
ing classical DL functionality: If C is a class,a an individual and α a real number
between 0 and 1, then (i) a is a potential member of C iff there exists an ar-
gument 〈A, ∅, C(a), α〉 w.r.t. P, and, (ii) a is a justified member of C iff there
exists a warranted argument 〈A, ∅, C(a), α〉 w.r.t. P.

Example 3. (Continues Ex. 2) Consider again Σ1. The individual a is a justified
member of the concept Parking.

3.3 Discussion

Here we briefly discuss how our proposal for suppositional argumentation differs
from the one presented by Bodanza in [15]. Bodanza includes a deduction rule
that is too powerful to be implemented because it relies in deduction in first-order
classical logic (see [15, p. 27]). We instead chose to include a simpler rule such
as CD. We also chose to drop the conditionalization rule of Bodanza; this makes
our system less expressive in the sense that we cannot discharge suppositions
(except by using CD) and our system does not allow reasoning by contrapositive
reasoning. Bodanza’s approach does not use weights for rules but instead uses
generalized specificity to compare arguments. Our inclusion of numerical weights
obscures the knowledge representation but gives more control to the knowledge
engineer and simplifies the implementation of the reasoning system.



T ({C v D}) =df

{
Th(D,X)← Tb(C,X)

}
, if C is an Lb-class and D an Lh-class

T ({C ≡ D}) =df T ({C v D}) ∪ T ({D v C}), if C and D are Lhb-classes
T ({> v ∀P.D}) =df

{
Th(D,Y )← P (X,Y )

}
, if D is an Lh-class

T ({> v ∀P−.D}) =df

{
Th(D,X)← P (X,Y )

}
, if D is an Lh-class

T ({a : (D1 t . . . tDn)}) =df

{
Th(D1, a) OR . . . OR Th(Dn, a)

}
, if Di are Lh-classes

T ({〈a, b〉 : (P1 t . . . t Pn)}) =df

{
P1(a, b) OR . . . OR Pn(a, b)

}
T ({P v Q}) =df

{
Q(X,Y )← P (X,Y )

}
T ({P ≡ Q}) =df

{
Q(X,Y )← P (X,Y )
P (X,Y )← Q(X,Y )

}
T ({P ≡ Q−}) =df

{
Q(X,Y )← P (Y,X)
P (Y,X)← Q(X,Y )

}
T ({P+ v P}) =df

{
P (X,Z)← P (X,Y ) ∧ P (Y, Z)

}
T ({s1, . . . , sn}) =df

⋃n
i=1 T ({si}), if n > 1

where:
Th(A,X) =df A(X)

Th((C uD), X) =df Th(C,X) ∧ Th(D,X)
Th((∀R.C), X) =df Th(C, Y )← R(X,Y )

Tb(A,X) =df A(X)
Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)
Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)
Tb((∃R.C), X) =df R(X,Y ) ∧ Tb(C, Y )

Fig. 2. Mapping T from DL ontologies with assertions to SPDeLP rules

4 Conclusions and Future Work

This paper proposed a kind of description logic ontologies that allow to repre-
sent disjunctive assertions of membership of individuals to concepts and roles
where the ontology axioms have been assigned possibilistic degrees of certainty,
and also proposed a variation of suppositional argumentation to handle the rea-
soning task of instance checking in such ontologies. The idea is to translate
the ontologies into a possibilistic suppositional argumentation system in order
to perform the reasoning on the ontologies. For every disjunctive assertion, if
supposing each disjunct allows the system to reach a conclusion, then that con-
clusion can be taken for granted. As the ontology can be potentially inconsistent,
the reasoning framework takes this possibility into account to compute defeaters
and defeaters for these defeaters to perform a dialectical reasoning in order to
warrant conclusions. The possibilistic degrees of certainty are used to compute
the relative weight of each possible conclusion, which, in turn, are used to de-
cide which arguments prevail. Much work remains to be done such us proposing
larger case studies. With respect to knowledge representation aspects, we would
like to adapt the system to have disjunctions in the head of rules. It also appears
to be interesting to consider different argumentation semantics for the definition
of the dialectical process.

Acknowledgments: This research is funded by Secretaŕıa General de Ciencia
y Técnica, Universidad Nacional del Sur, Argentina. The author would like to
thank the anonymous reviewers for their comments.



References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook – Theory, Implementation and Applications.
Cambridge University Press (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

3. Moguillansky, M.O., Falappa, M.A.: A non-monotonic Description Logics model
for merging terminologies. Inteligencia Artificial, Revista Iberoamericana de In-
teligencia Artificial 11(35) (2007) 77–88

4. Moguillansky, M.O., Rotstein, N.D., Falappa, M.A.: Generalized Abstract Argu-
mentation: A First-order Machinery towards Ontology Debugging. Inteligencia
Artificial 46 (2010) 17–33

5. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with Inconsistent Ontologies.
In Kaelbling, L.P., Saffiotti, A., eds.: Proc. 19th International Joint Conference on
Artificial Intelligence (IJCAI’05), Edinburgh, Scotland (August 2005) 454–459

6. Gómez, S.A., Simari, G.R.: Merging of ontologies using belief revision and defea-
sible logic programming. Inteligencia Artificial 16(52) (2013) 16–28

7. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Reasoning with Inconsistent Ontolo-
gies Through Argumentation. Applied Artificial Intelligence 1(24) (2010) 102–148

8. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: ONTOarg: A Decision Support Frame-
work for Ontology Integration based on Argumentation. Expert Systems with
Applications 40 (2013) 1858–1870

9. Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with
Rules and Ontologies on the Semantic Web. IEEE Transactions on Knowledge and
Data Engineering 19(2) (2007) 233–245

10. Chesñevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32(4) (December 2000) 337–383

11. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15) (2007) 619–641

12. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)
13. Garćıa, A., Simari, G.: Defeasible Logic Programming an Argumentative Ap-

proach. Theory and Practice of Logic Programming 4(1) (2004) 95–138
14. Alsinet, T., Chesñevar, C.I., Godo, L.: A level-based approach to computing war-

ranted arguments in possibilistic defeasible logic programming. In Besnard, P.,
Doutre, S., Hunter, A., eds.: COMMA. Volume 172 of Frontiers in Artificial Intel-
ligence and Applications., IOS Press (2008) 1–12

15. Bodanza, G.: Disjunctions and Specificity in Suppositional Defeasible Argumenta-
tion. Logic Journal of the Interest Group in Pure and Applied Logics 10(1) (2002)
23–49

16. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

17. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Using Possibilistic Defeasible Logic
Programming for Reasoning with Inconsistent Ontologies. In Giusti, A.D., Diaz,
J., eds.: Computer Science & Technology Series. XVII Argentine Congress of Com-
puter Science Selected Papers. (2012) 19–29

18. Benferhat, S., Bouraoui, Z., Lagrue, S., Rossit, J.: Merging Inconmensurable Pos-
sibilistic DL-Lite Assertional Bases. In Papini, O., Benferhat, S., Garcia, L., Mug-
nier, M.L., eds.: Proceedings of the IJCAI Workshop 13 Ontologies and Logic
Programming for Query Answering. (2015) 90–95


