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ABSTRACT 

 

This thesis investigated the effect of acute psychological stress and β-adrenergic receptor 

(βAR) stimulation on the mobilization of CD8+ T lymphocytes (CD8TLs) and progenitor cell 

(PC) populations. Chapter 2 demonstrated that CD8TL stress- and βAR- sensitivity increases 

in parallel with greater effector functions and cell differentiation. As Cytomegalovirus (CMV) 

infection influences CD8TL differentiation, Chapter 3 compared the mobilization of cytotoxic 

lymphocytes in CMV seropositive and seronegative individuals; CMV infection enhanced the 

stress reactivity of CD8TLs, CD4TLs and NKT-like cells. Chapter 4 examined whether 

antigen-specificity could modulate CD8TL stress- and βAR-sensitivity. CMV-specific cells 

demonstrated enhanced mobilization compared to the total-memory CD8TL and the total 

Epstein-Barr virus (EBV) population. In Chapter 5, we demonstrated that PC subsets, 

capable of both replenishing leukocyte populations and maintaining endothelial integrity, 

were also mobilized by acute psychological stress. This result was not replicated by βAR-

agonist infusion suggesting the involvement of αAR or non-adrenergic mechanism. In sum, 

the current findings suggest that stress mobilization serves to protect the host by increasing 

immune protection and tissue repair mechanisms. However, such a response may also be 

detrimental dependent on the circumstance, i.e., infection versus inflammation.  
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PREFACE: BASIC ASSUMPTIONS, AIMS, AND OUTLINE 

 

 

STRESS AND HEALTH 

 

The basic assumption underlying the research in this thesis is that psychological stress is a 

risk factor for diseases in which the immune system plays a key role. Animal and human 

studies support this conjecture and demonstrate an association between stress and 

infectious diseases, inflammatory and autoimmune conditions, cardiovascular disease, 

metabolic disorders and wound healing (Alboni and Alboni, 2006; Bose et al., 2009; Chen 

and Miller, 2007; Chida and Steptoe, 2010; Cohen et al., 2007; Falagas et al., 2010; Glaser 

and Kiecolt-Glaser, 2005; Godbout and Glaser, 2006; Hamer and Stamatakis, 2008; Kemeny 

and Schedlowski, 2007; Kiecolt-Glaser et al., 2002; Kivimaki et al., 2006; Melamed et al., 

2006; Miller, 2008; Miller et al., 2009; Miller and Blackwell, 2006; Mohr et al., 2004; Rainforth 

et al., 2007; Walburn et al., 2009). For example, results from meta-analyses demonstrate a 

strong relationship between stress and wound healing (r=−0.42, 95% CI=−0.51 to−0.32, 

p<.01), and yield an adjusted relative risk ratio of coronary heart disease for high verse low 

job strain of 1.16 (95% CI 0.94−1.43) (Hamer and Stamatakis, 2008; Kivimaki et al., 2006; 

Walburn et al., 2009). It is outside the scope of this thesis to thoroughly review this literature, 

and the interested reader is referred to the reviews and empirical studies cited in this section. 

In sum, the evidence for a relationship between stress and health is considered compelling 

(Glaser and Kiecolt-Glaser, 2005; Miller et al., 2009).   

 

Although it has long been asserted that stress enhances susceptibility to disease, evidence 

for a biological mechanism did not emerge until the development of psycho-neuro-

immunology (PNI) (Bonneau et al., 2007; Kemeny and Schedlowski, 2007; Miller et al., 
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2009). PNI research investigates interactions between the brain, behaviour, and the immune 

system. It is now clear that the immune, neural and endocrine systems “communicate”, and 

that the immune system may respond to psychological factors (Ader, 2006; Elenkov et al., 

2000; Glaser and Kiecolt-Glaser, 2005; Miller et al., 2009; Webster et al., 2002). This 

modulation of immune function lends biological plausibility to the observed association 

between stress and impaired health.  

 

 

THE INFLUENCE OF STRESS ON IMMUNE FUNCTION  

 

What is stress? 

The emotion researcher Richard Lazarus proposed a useful way to define psychological 

stress, by describing it as a process consisting of three distinct steps (Folkman and Lazarus, 

1988; Lazarus, 1984). First, a stimulus (i.e., the stressor) has to be present and perceived. 

Second, the stimulus initiates a conscious or sub-conscious appraisal whereby it is evaluated 

in relation to available coping options. The situation is perceived as stressful, i.e., seen as a 

threat, challenge or loss, when it is believed that the demands of the situation are too taxing 

or plainly outstrip the ability to cope (the stress perception). Thirdly, the stress perception 

results in a stress response which takes the form of emotional (e.g., anxiety, 

embarrassment), behavioural (e.g., altering the environment, fight/flight), and biological (e.g., 

autonomic-endocrine-immune) adaptations. To summarize in simplified terms, stress occurs 

when a situation exceeds the perceived ability to cope. In line with this definition, in this 

thesis the term stress refers to a process whereby a situation is perceived as a challenge or 

threat (i.e., a stressor) which then induces congruent emotional and biological perturbations, 

such as increases in anxiety and activation of the sympathetic nervous system.  

 

Chronic stress versus acute stress 
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Meta-analyses demonstrate that chronic stress is associated with immunosuppression 

(Zorrilla et al., 2001; Segerstrom, 2004). For example, the chronic stress of care-giving for a 

family member is associated with reduced antibody responses to vaccine and with slower 

wound healing (Gallagher et al., 2009a, b; Glaser et al., 2000; Kiecolt-Glaser et al., 1996; 

Kiecolt-Glaser et al., 1995). Such suppressive effects tend to be emphasized in the literature, 

possibly because of their potential clinical relevance. However, the most significant and life-

threatening stressors in the animal kingdom are acute stressors lasting only a matter of 

minutes, such as escaping a predator or hunting prey (Cannon, 1929; Sapolsky, 1994).Under 

such conditions, immune-enhancement would seem the most beneficial response, as it 

appears improbably that eons of evolution would select for, for example, a cardiovascular 

and metabolic system that helps to rapidly escape the jaws of a predator, only to later 

succumb to the “jaws” of an infection (Dhabhar, 2002). Indicative of an evolved ability to 

rapidly adapt to danger, all vertebrates, including humans, have the remarkable capacity to 

swiftly alter the leukocyte composition of peripheral blood and tissues in response to acute 

stress (Benschop et al., 1996; Dhabhar, 2002; Dhabhar and McEwen, 1997; Dhabhar et al., 

1995). Further, experimental animal studies have confirmed that acute stress, and the 

accompanied cell redistribution, predicts stronger delayed-type hypersensitivity responses, 

enhanced vaccine responses, an increased migration of leukocytes into wounded tissue, and 

faster wound healing (Dhabhar, 2002; Dhabhar and McEwen, 1996, 1997; Silberman et al., 

2003; Viswanathan et al., 2005; Viswanathan and Dhabhar, 2005). Indeed, one of the most 

comprehensive meta-analyses on stress and immunity in humans to date, reviewing over 

300 empirical articles, found that the most robust and replicable findings in PNI are 

associated with acute stress, thus further suggesting an important role of acute stress 

responses (Segerstrom and Miller, 2004). For example, the effect size of acute stress 

responses, such as cell redistribution and salivary antibody secretion rates ranged between 

r=-.17 and r=.43, whilst the largest effect of chronic stress was much small (e.g. reduced 

antibody response to immunization; r=−.22).  
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ACUTE STRESS AND LEUKOCYTE DISTRIBUTION IN THE BLOOD 

 

During the first few minutes of acute stress the absolute number of granulocytes, monocytes 

and lymphocytes increases (Benschop et al., 1996; Dhabhar and McEwen, 1999; Dhabhar et 

al., 1995, 1996; Schedlowski et al., 1993). The acute lymphocytosis response has been 

extensively studied; it is now know that βAR-mechanisms govern the detachment of 

lymphocytes from endothelial cells facilitating cell release into the circulation (Benschop et 

al., 1996; Dhabhar, 2002; Dhabhar et al., 1995; Dimitrov et al., 2010; Kuhlwein et al., 2001; 

Mills et al., 1995; Mills et al., 1997; Segerstrom and Miller, 2004; Willemsen et al., 2002; 

Zorrilla et al., 2001). What is also known is that this lymphocytosis is largely confined to 

cytotoxic lymphocytes, i.e., which have the ability to lyse infected or transformed (cancerous) 

cells, such as NK cells, gamma delta (γδ) T cells, and CD8+ T lymphocytes (CD8TLs) (Anane 

et al., 2009; Segerstrom and Miller, 2004). Within these cytotoxic cell types there is a further 

subdivision, whereby mobilized cytotoxic cells characteristically exhibit a high tissue 

migratory potential (CD11ahigh and CD62Llow/neg) and a differentiated memory phenotype, as 

indicated by the expression of NK cell receptors, such as, KLRG1 and CD57+ (Anane et al., 

2010; Bosch et al., 2005; Campbell et al., 2009; Gannon et al., 2002; Goebel and Mills, 2000; 

Kurokawa et al., 1995; Mills et al., 2003; Simpson et al., 2007; Timmons and Cieslak, 2008). 

These phenotypic characteristics are also associated with the ability to rapidly eliminating 

foreign antigens in peripheral tissue (Masopust et al., 2004; Sallusto et al., 2004; Weninger 

et al., 2001).  

  

 

AIMS OF THIS THESIS: 

1) Characterisation of CD8TLs mobilized by acute psychological stress and βAR-agonist 

infusion. In these analyses the focus is on describing CD8TLs in terms of memory 

and differentiation phenotype. 
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2) The differentiation of CD8TLs is strongly influenced by infection history; in particular, 

infection with Cytomegalovirus (CMV) is known to drive cell differentiation. Hence, the 

second aim was to determine whether infection with CMV is associated with stress-

induced mobilization of the CD8TL population.  

3) Lymphocyte mobilization is driven by activation of beta-adrenergic receptors. These 

receptors are also expressed on progenitor cells. Therefore the final aim was to 

determine whether progenitor cells (PCs) were also mobilized by acute stress and 

βAR-stimulation. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 

 A BRIEF INTRODUCTION TO THE IMMUNE SYSTEM  

 

Despite its immense complexity, there are several ways of categorising cells of the immune 

system (leukocytes). Distinguishing between innate and adaptive cells is a useful and 

common way of describing the immune response. Cells of the innate immune system utilize 

general-purpose recognition strategies to identify their targets; they express receptors that 

recognize generic molecular patters typical for infectious agents and derailed host cells, such 

as cancerous cells. Innate immunity can respond when challenged in a relatively short time 

period (minutes to hours) and thus plays an important role in containing infections and acting 

as an early warning system. A large proportion of innate cells, such as neutrophils, 

monocytes (or macrophages once located in the tissue) and dendritic cells, are able to engulf 

and destroy targets such as bacteria by the process of phagocytosis. Following tissue injury 

or infection, neutrophils are the predominating cell type to bind to activated endothelium and 

to extravasate into the tissue, where they contribute to inflammation. Inflammation is a 

sequence of events, starting with vasodilation and increased capillary permeability, and 

resulting in further recruitment of leukocytes to the site of tissue damage or infection. The 

influx of cells promotes antigen clearance and wound healing. The innate immune response 

also involves Natural killer (NK) cells, which are lymphocytes that kill infected and cancerous 

cells by releasing toxic substance, such as perforin or granzyme A/B, which induce 

apoptosis.  
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The adaptive immune response, involving B lymphocytes and T lymphocytes is initiated 

within the lymph nodes. Lymphocytes express surface receptors (B cell receptor (BCR) and 

T cell receptor (TCR) respectively) that are highly selective for a particular antigenic peptide 

(protein fragment). The BCR can interact directly with free antigen, although cell activation 

may also require T cell help as discussed shortly. In contrast, the TCR can only interact with 

antigen bound to a major histocompatibility complex (MHC) expressed by specialized antigen 

presenting cells (APCs), including dendritic cells, macrophages and B cells. Thus, an 

important function of innate cells, in particular dendritic cells, is to capture antigen at the site 

of inflammation and then migrate towards lymph nodes, where they may present processed 

peptide fragments within MHC molecules to the lymphoid-residing T cells. Interaction with 

antigen triggers an adaptive immune response, which involves the activation and 

differentiation of antigen-specific T and B lymphocytes. When activated, lymphocytes 

proliferate and produce a progeny of clones with the same antigen-specificity. This process 

efficiently creates a large number of cells able to migrate to the original site of 

infection/inflammation when they will usually eradicate the infection. After the infection is 

cleared, most antigen-specific clones will die. The selectivity of the adaptive response helps 

to prevent bystander damage to the surrounding healthy tissue. The downside of adaptive 

immunity is the time lapse between initial infection and the production of the antigen-specific 

population which, during initial antigen encounter, can take up to 6 days. In the mean time 

the body must rely on the innate immune system to contain the infection. The major 

advantage of adaptive immunity probably is immunological “memory”. That is, after the initial 

immune response, a small number of the antigen-specific lymphocytes remain as long lived 

memory cells. Upon subsequent antigen encounter, these memory cells are capable of 

mounting a very rapid immune response (as early as 2 days) which is fast enough to prevent 

disease symptoms from presenting.  
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Adaptive immunity is conferred by three main types of lymphocytes. B cells produce 

immunoglobulins; these are soluble glycoproteins that can perform a number of functions 

including, neutralising antigens and hereby prevent binding and entry into a host cell, 

complement activation, and opsonisation (coating of an antigen by immunoglobulin to 

increase the efficiency of phagocytosis). Where as all other immune cells need to physically 

interact with the relevant antigens, B cells can conveniently secrete their antigen-specific 

antibodies, and thus exert their immunological actions in an endocrine fashion. T cells can be 

broadly divided into CD4+ T lymphocytes (CD4TLs) also called T-helpers (Th), and CD8+ T 

lymphocytes (CD8TLs) also called cytotoxic T lymphocytes (CTLs). The main function of 

CD4TLs is to orchestrate the immune response by releasing cytokines. There is a great 

diversity of functionally distinct CD4TLs, depending on their pattern of cytokine release. 

Identified subsets are Th1, Th2, Th17, and Treg, and this list is still expanding. Th1 cells 

secrete cytokines like IFN-y that stimulate macrophages and CD8TLs, and hereby promote a 

cell mediated/ phagocytic inflammatory response. Cytokines produced by Th2 cells (e.g. IL-

4) promote allergic inflammation, immunity directed towards extracellular pathogens, such as 

parasites and fungi, and immunoglobulin production. CD8TLs recognise infected cells or 

otherwise compromised self cells (e.g. transformed cells) and lyse those cells.   

 

 

CYTOTOXIC LYMPHOCYTES  

 

CD8+ T lymphocytes (CD8TLs) 

CD8TLs (CD8+CD3+ lymphocytes) are lytic cells critical in the detections and elimination of 

altered self cells. CD8TLs are activated by antigen presented in MHC-I molecules which are 

expressed by all nucleated cells, thus, in theory, allowing elimination of any altered cell. 

CD8TL-mediated apoptotic death can induce target (altered) cell lyses by release of cytotoxic 

proteins, such as perforin, or via interaction with Fas-ligand.  
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The CD8TL population is extremely heterogeneous and as many as fourteen subsets may 

exist (Chen et al., 2001; Hamann et al., 1997; Monteiro et al., 2007; Romero et al., 2007; 

Sallusto et al., 2004). Cells with particular functions can be identified by their expression of 

cell surface markers, e.g., a propensity for lymph node homing is indicated by the expression 

of CD62L and/ or CCR7. What makes this a particularly useful way of characterizing cells is 

that a particular marker, e.g., a lymph node homing marker, also relates to various functional 

characteristics of the cell. For example, naïve cells migrate between the lymph nodes, in 

order to find antigen presented by APCs. For these purposes they express homing markers 

such as CCR7 and CD62L and co-stimulatory molecules like CD28 and CD27, and not 

markers of effector cells like perforin and Fas-ligand. Thus the presence of one surface 

molecule (e.g., CCR7) automatically allows inferences about other characteristics of the 

cells. Another important conclusion that can be drawn from this fact is that migratory potential 

(e.g., CCR7+ verses CCR7−) also says something about the specific functional capacity of 

that cell (e.g., lytic/ effector capability). Thus, cell migration and function are two sides of the 

same coin (von Andrian and Mackay, 2000).  

 

Over the last ten years, immunologists have developed several systems that allow the 

phenotyping of functionally different memory CD8TL subsets. A marker commonly used is 

the leukocyte common antigen isoform CD45RA. CD45RA is one of the three isoforms of the 

leukocyte surface protein CD45R. This isoform is present on naive T cells and replaced by 

the isoform CD45RO after antigenic stimulation. However, CD45RA is re-expressed on a 

subset of so-called ‘revertant’ memory cells. Thus CD45RA is not sufficient to distinguish 

between naive and memory cells, and therefore CD45RA is typically combined with other 

markers such as the chemokine receptor CCR7 (because naive cells are lymph node 

homing) or costimulatory receptors CD28 and CD27 (which are present on all naive cells but 

not all memory cells).  
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On the basis of such dual surface expression four distinct subsets were identified: Naïve 

(NA; CD45RA+, CCR7+); Central Memory (CM; CD45RA−, CCR7+); Effector Memory (EM; 

CD45RA−, CCR7−); and CD45RA+ effector memory (EMRA; CD45RA+, CCR7−) (Sallusto et 

al., 2004; Sallusto et al., 1999). Naïve and CM cells tend to travel to the lymph nodes, where 

they interact with APCs and can proliferate and produce a population of antigen specific cells 

with effector functions. CM cells, which have responded to the infection previously, can 

produce effector cells in a much shorter time frame to naive cells. In contrast EM and EMRA 

CD8TL have immediate effector functions; including cytotoxicity, tissue migratory potential, 

and IFN-γ production, thus they preferentially migrate to the peripheral tissues where they 

may mediate a rapid protective response.  

 

Shortly after the above classification system became established, a second categorization 

method was introduced which identified three memory subsets on the basis of surface 

expression of CD28 and CD27 (Appay et al., 2002a). The resulting cell types are denoted as 

early (CD28+CD27+), intermediate (CD28−CD27+) or late (CD28−CD27−) differentiated cells, 

according to their position along a linear pathway of increasing effector potential and, 

possibly, increasing cell differentiation.  

 

Recent technical advances in polychromatic flow cytometry has allowed the development of 

a classification system that combined the two methods described above, leading to 

characterisation of nine new CD8TL populations (Chapter 2, Figure 1 and Table 1). First, NA, 

CM, EM and EMRA cell are identified by CD45RA and CCR7 expression. These subsets are 

subsequently characterised for simultaneous expression of CD28 and CD27. The NA and 

CM populations are homogenous with consistent expression of both molecules. However, 

each effector memory CD8TL population have been found to be heterogeneous (Monteiro, 

Evaristo et al. 2007; Romero, Zippelius et al. 2007), revealing seven additional subsets: 
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CD28+CD27+ EM1 and EMRA1 sub-types; CD28−CD27+ EM2 and EMRA2 sub-types; 

CD28−CD27− EM3 and EMRA3 sub-types; and the CD28+CD27− EM4 sub-type. 

Characterisation of the novel memory subsets suggest that cells progressively differentiate 

from EM1/ EMRA1 to EM2/ EMRA2 and finally to EM3/ EMRA3 cells, and that this increasing 

differentiation is paralleled by enhancing effector functions (Romero et al., 2007).  

 

Other cytotoxic populations studied in this thesis 

CD4+ T lymphocytes (CD4TLs) 

The CD8TL differentiation pattern described above can be applied to CD4TLs (CD4+CD3+ 

lymphocytes) (Baars et al., 1995; Hamann et al., 1996; Jenkins et al., 2001; Sallusto et al., 

1999). The common known function of CD4TLs is there role in orchestrating the immune 

system (Appay, 2004). A significant fraction of the minor EMRA CD4TLs (which form 0.5%-

3% of total CD4TL) however, can lyse target cells by expression of perforin and granzymes, 

and are thus cytotoxic cells (Appay et al., 2002b; Casazza et al., 2006). EMRA CD4TLs 

exhibit distinct functional properties reminiscent of late-differentiate CD8TLs; in addition to 

having cytotoxic potential they are highly differentiated (CD28−CD27−), IFN-γ producing and 

poised for tissue migration (Appay, 2004; Appay et al., 2002b; Casazza et al., 2006; Fletcher 

et al., 2005). 

 

Natural Killer T (NKT) cells  

Natural killer T cells (NKT cells) are a small (~0.1-0.5% of peripheral blood leukocytes) 

heterogeneous T cell populations that are characterized by the co-expression of TCR and 

various NK cell receptors, including CD16, CD56, CD161, CD94, CD158a and CD158b 

(Godfrey et al., 2000). The exact role of NKT cells at sites of inflammation is not known, 

however their rapid release of cytokines that may promote or suppress different immune 

response, has earned NKT cells the moniker of the “double-edged sword” (Cui et al., 1999; 

Godfrey and Kronenberg, 2004; Mempel et al., 2002; Shi et al., 2001; Smyth and Godfrey, 
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2000; van der Vliet et al., 2004). Further, NKT cells can exhibit lytic capacity in both a Fas 

and perforin dependent manner (Arase et al., 1994; Smyth et al., 2000). “True” NKT cells 

express a unique semi-invariant TCR and thus are called invariant NKT cells. This 

specialised TCR facilitates recognition of the non-polymorphic CD1d molecule, an antigen-

presenting molecule that binds self- and foreign lipids and glycolipids. NKT cells can thus be 

identified by CD1d-tetramers loaded with glycosphingolipid antigen α-galactosylcermide or by 

anti-Vα24/Vβ11 that directly binds to invariant TCR (Berzins et al., 2005). NKT-like cells can 

be identified by simultaneous expression of CD3 and CD56 (Atanackovic et al., 2006; 

Dimitrov et al., 2010; Sondergaard et al., 1999). However, late-differentiated CD8TLs/ 

CD4TLs and gamma-delta (γδ) T cells also express NK cell receptors, thus results obtained 

using this non-specific identification method may only partially represent the NKT population.  

 

Natural Killer cells (NK cells) 

Natural killer (NK) cells are innate lymphocytes identified by expressing CD56 and lack of a T 

cell receptor, as indicated by lack of the TCR accessory molecule, CD3 (Cooper et al., 

2001a). Two functionally distinct NK cell subsets exist: CD56low cells function as cytotoxic 

cells, whereas CD56high cells have an immunomodulatory role as they secrete large amounts 

of cytokines (Cooper et al., 2001a; Cooper et al., 2001b). CD56low NK cells predominant in 

the peripheral circulation (90% of circulating NK cells) and contain high concentrations of 

preformed cytolytic granules in their cytoplasm, such as perforin (Cooper et al., 2001a). 

Similar to effector memory T cells, CD56low NK cells express adhesion molecules that 

support homing to peripheral tissue (Frey et al., 1998; Lima et al., 2001). Following migration 

into inflamed tissues, CD56low NK cells may exert their cytotoxic function and lyse target cells 

(Cooper et al., 2001a; Moretta et al., 2002).  

 

 

 

http://en.wikipedia.org/wiki/Polymorphism_(biology)
http://en.wikipedia.org/wiki/CD1d_receptor
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Lipids
http://en.wikipedia.org/wiki/Glycolipids
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INFECTION HISTORY AND CELL DIFFERENTATION 

 

Viral Infection and CD8TL differentiation 

The precise pathway and mechanisms of CD8TL differentiation and development of distinct 

memory subsets after initial antigen encounter have not been fully elucidated. It is thought, 

that the frequency of antigen encounter and/ or stimulation of the cell by homeostatic 

cytokines, such as IL-7 and IL-15 are key factors (Kaech et al., 2003; Schluns and 

Lefrancois, 2003; Weng et al., 2002). Studies of CD8TLs demonstrate that differentiation is 

related to particular viral antigens and, accordingly, different subsets appear to provide 

protection against different groups of antigens (Appay et al., 2002a; van Lier et al., 2003). 

For example, immunological control of Cytomegalovirus (CMV), a common herpes virus 

carried by 50-70% of western populations, is largely provided by the late-differentiated 

effector-memory subsets (CD45RA+/−CCR7−CD28−CD27−). CD8TLs directed against 

Epstein-Barr virus (EBV), another very common (~90% infected) latent herpes virus, mostly 

exhibit an early or intermediate (CD45RA−/+ CCR7−CD28+/−CD27+) effector-memory 

phenotype (Appay et al., 2002a; Monteiro et al., 2007; van Lier et al., 2003). A final example 

is immunity towards influenza, a virus that does not result in chronic infections. Influenza-

specific CD8TLs are mostly of a CM phenotype (CD45RA−CCR7+CD28+CD27+). The reasons 

for this viral specificity are unknown. It is likely due to a combination of factors such as, the 

different functional properties necessary to control each virus, the distinct microenvironment 

at the time of T cell priming, and the frequency of reactivation (Appay et al., 2002a). It is also 

possible that viruses are able to directly block or divert T cell differentiation as part of their 

evasion of host immunity (Appay et al., 2002a).  

 

Viral infections and CD4TLs, NKT cells and NK cells 

Homeostasis of memory CD4TLs is regulated in a similar fashion to the CD8TL memory 

population, that is the long-lived memory pool is maintained by cytokines, mainly IL-7, and 
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potentially antigen-specific stimulation (Seder and Ahmed, 2003). However, the outcomes of 

antigen-specific activation are less dramatic than those seen for the CD8TL population. For 

example, CMV infection does induce the accumulation of differentiated effector-like perforin+ 

CD4TLs but to a much lesser extent than is seen for the CD8TL population (Gamadia et al., 

2004; Pourgheysari et al., 2007; Saez-Borderias et al., 2006). Accumulation of highly 

differentiated CD56+ NKT cells is also observed during chronic antigen activation (Tarazona 

et al., 2000). No such affect is observed in the NK cell population. However, CMV infection 

may alter the NK cell repertoire of NK cells (Guma et al., 2004).  

 

 

CELL MIGRATION, IMMUNE FUNCTION, AND BLOOD 

 

Cell migration is the directed movement of cells between the blood, lymph organs and 

peripheral tissue. This continuous recirculation increases the chance that a cell will 

encounter a particular antigen and thus the development of an immune response. Cell 

migration is regulated by the interaction of Cell Adhesion Molecules (CAMs) expressed on 

leukocytes and tissues and by gradients of tissue-derived chemokines that interact with 

corresponding receptors expressed on immune cells. For example, the entrance of a naïve 

cell into a lymph node is facilitated by interactions between CD62L, expressed on 

lymphocytes, and glycoproteins (e.g. MAdCAM-1) expressed on specialized blood vessel 

endothelia (high endothelial venules, HEV) leading into lymph nodes (Berg et al., 1993). 

Such interactions are further facilitated through the actions of chemokines (von Andrian and 

Mackay, 2000). Chemokines are small polypeptides that control the adhesion, chemotaxis 

and activation of leukocytes. Dysfunction of cell migration (e.g., altered adhesion molecule or 

chemokine receptor expression, degradation of extra-cellular matrix) is a key pathological 

element in diseases such as cancer, atherosclerosis, and rheumatoid arthritis (Itoh, 2006; 

Konttinen et al., 1998; Pap et al., 2000; Rajavashisth et al., 1999; Seiki, 2003). 



 10

   

The blood is the main conduit for lymphocyte trafficking: these cells migrate in and out of the 

blood in order to sample the various lymphoid and peripheral tissues. This continuous 

redeployment is thus key to immunesurveillance (Dhabhar et al., 1995; Sprent and Tough, 

1994; von Andrian and Mackay, 2000). Whereas the blood contains less than 2% of all 

leukocytes, sampling its cellular content provides a window on migratory behaviour between 

tissues and the activation status of the immune system (Dhabhar et al., 1995). The fact that 

acute stressors rapidly increase leukocyte numbers in peripheral blood may thus 

meaningfully be interpreted as a heightened immunosurveillance and readiness to respond 

to a challenge. For example, increased numbers of cells expressing CAMs and chemokine 

receptors that are associated with tissue migration may indicate an enhanced capacity to 

mount an inflammatory response. Indeed, both animal and human studies have shown that 

enhanced lymphocyte mobilization during stress (e.g., pre-operative anxiety, immobilization) 

is associated with increased lymphocyte infiltration into the tissues and better surgical 

recovery (Dhabhar, 2002; Dhabhar and McEwen, 1996, 1997; Rosenberger et al., 2009; 

Viswanathan et al., 2005; Viswanathan and Dhabhar, 2005). 

 

 

NEUROENDOCRINE MODULATORS OF IMMUNE FUNCTION 

 

Psychological stress can manifest within the host and cause immune alterations by two 

major pathways; the sympathetic-adrenal medullary (SAM) and the hypothalamic-pituitary-

adrenal (HPA) axes (Black, 1994; Padgett and Glaser, 2003; Segerstrom and Miller, 2004). 

Perceived stress induces the release of neurotransmitters, including norepinephrine, 

serotonin, and acetylcholine, which stimulate the production of corticotrophin (CRF) from the 

paraventricular nucleus of the hypothalamus (Lightman and Young, 1989; Tsagarakis et al., 

1988). CRF, the coordinator of the stress response, then acts in two ways. The first is 
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induction of norepinephrine secretion from sympathetic fibres which innervate many organs 

including primary (bone marrow and thymus) and secondary (spleen and lymph nodes) 

lymphoid tissue (Dunn and Berridge, 1990; Elenkov et al., 2000; Melia and Duman, 1991). 

Central activation of the sympathetic nervous system (SNS) is also transmitted to chromaffin 

cells within the adrenal medulla which stimulates the release of epinephrine into the 

circulation. The second function of CRF is to induce production of adrenocorticotropic 

hormone (ACTH) from the anterior pituitary gland (Black, 1994). ACTH, in turn, stimulates 

the adrenal cortex to synthesize and secrete glucocorticoids (GC) which, together with the 

catecholamines (CA), norepinephrine and epinephrine, are the major stress hormones.  

 

All leukocytes express functional receptors for these stress hormones, thereby rending 

immunity under the direct influence of products produced by the HPA and SAM axes (Rabin, 

1999). Modulatory effects of the major stress hormones, include; immune cellularity, 

migration and proliferation, antibody secretion, cytotoxic activity and cytokine production 

(Black, 1994; Liao et al., 1995; Munck and Naray-Fejes-Toth, 1994; Padgett and Glaser, 

2003; Wiegers et al., 1995). Further, immune cells produce cytokines, such as interleukin-1 

(IL-1), which can stimulate production of CRH by the hypothalamus (Yang and Glaser, 2000). 

Therefore, not only can neuro-endocrine mediators alter immune function, the immune 

system can regulates the release of such mediators and influence its own function by 

“communicating” with the brain (Elenkov et al., 2000).  

 

Lymphocytosis, mobilization of lymphocytes from stores, such as marginal pools or the 

spleen, into peripheral circulation, is dependent on beta-2-adrenergic receptor (β2AR) 

mechanisms (Benschop et al., 1996b). Since acute stressors, such as short-term 

psychological stress or exercise, induce a similar lymphocytosis to epinephrine infusion, and 

in the view that both these stressors are associated with the release of norepinephrine and 

epinephrine, it was predicted that lymphocytosis was CA-mediated. Further, lymphocytes 
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express adrenergic receptors, and in particular, the β2AR. Blockade of βARs prior to infusion 

with epinephrine completely abrogates lymphocytosis and demonstrates the involvement of 

βARs in the response (Gader, 1974). Similarly, βAR-antagonist also inhibits lymphocytosis 

induced by exercise or psychological stress (Ahlborg and Ahlborg, 1970; Benschop et al., 

1996a; Benschop et al., 1994a). β2AR-selective antagonists, but not β1AR-selective 

antagonists, inhibit the mobilization of NK cells during CA infusion, further confirming the role 

of the β2AR in particular. In addition, β2AR-antagonists can prevent epinephrine induced NK 

cell detachment from endothelia cells in culture (Benschop et al., 1994b). Although activation 

of β2ARs upon the endothelial cells may play a negligible role, stimulation of β2ARs present 

on NK cells is sufficient to cause endothelial cell detachment, thus, mobilization is likely 

caused by stimulation of receptors present on the lymphocytes themselves. More recently, 

CD8+ T lymphocytes (CD8TLs), gamma delta (γδ) T cells and NKT-like cells were found to 

detach from endothelial cells following addition of epinephrine in-vitro (Dimitrov et al., 2010). 

Finally, enhanced cell mobilization corresponds to greater expression of the β2AR subtype 

thus suggesting that differential mobilization of lymphocyte subsets is governed by the level 

of receptor expression; NK cells demonstrate the greatest mobilization and the highest 

receptor expression, CD8TLs have intermediate receptor expression levels and exhibit 

intermediate mobilization, whilst CD4TLs and B cells do not mobilize and express the lowest 

level of β2AR. Together these findings indicate that stress-lymphocytosis is mediated by 

stimulation of the β2AR subtype present upon the cell surface of lymphocytes, which induces 

detachment from endothelial cells and subsequent cell mobilization into the blood.  

 

 

PROGENITOR CELLS 

 

What are progenitor cells? 
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Progenitor cells (PCs) are non-lineage committed cells that have unique cellular 

characteristics such as, strong ability for clonal expansion (i.e., to multiply) and resistance to 

cellular stress (Urbich and Dimmeler, 2004). They act as a repair system for the host, 

replenishing specialized somatic cells and also maintaining the normal turnover of 

regenerative organs, such as the blood or skin. Recent evidence suggests that PCs may also 

promote angiogenesis and vascular regeneration (Asahara et al., 1997; Khakoo and Finkel, 

2005; Takakura et al., 2000).  

 

Haematopoietic stem cells (HSCs) 

Distinct PC subsets can be identified in the peripheral circulation (Chapter 4, Table 1 and 

Figure 1). Virtually all unipotent PCs express CD34 antigen (Sutherland et al., 1993). 

Haematopoietic stem cells (HSCs), that give rise to the common myeloid progenitor (CMP) 

subset and the common lymphoid progenitor subset (CLP), are CD34+ PCs that express low 

levels of the common leukocyte antigen CD45 and have low granularity (as indicated by a 

low side scatter (SSC) profile) (Barnett et al., 1999; Gajkowska et al., 2006; Hirschi et al., 

2008; Ribatti, 2007; Sutherland et al., 1994). CMPs, which further give rise to 

megakaryocyte/ erythrocyte progenitors (MEPs) and granulocyte/ macrophage progenitors 

(GMPs), can be identified from the HSC population by differential expression of the leukocyte 

activation antigen CD38, CD123 (the IL-3Rα chain associated with cell cycle progression and 

differentiation), the CD45 isoform, CD45RA (Akashi et al., 2000; Manz et al., 2002). CLPs 

are HSCs that are CD7+ (an antigen that appears early in the development of lymphoid 

lineages) and may or may not express CD38 (Galy et al., 1995; Hao et al., 2001; Hoebeke et 

al., 2007; Kondo et al., 1997; Terstappen et al., 1991). A less extensive way to identify HSCs 

which have multi-lineage potential (early HSCs) or lineage committed HSCs (late HSCs) is 

by lack of CD38 expression and positive CD38 expression, respectively (Terstappen et al., 

1991). 
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Endothelial progenitor cells (EPC) 

Research has been unable to establish an unique identifying marker for EPCs (Hirschi et al., 

2008). Combined with the low abundance of these cells in normal adult circulation, EPCs are 

particularly difficult to study (Fadini et al., 2008). However, researchers have utilised different 

combinations of markers commonly used to identify HSCs and mature endothelial cells 

(Timmermans et al., 2009). Thus, EPCs have been identified by positive expression of CD34 

in combination with: 1) markers associated with mature progenitor populations, such as 

CD38; 2) markers expressed on mature endothelial cells, such as KDR (a receptor for 

vascular endothelium growth factor (VEGF), often referred to as VEGFR); 3) markers that 

are not expressed by mature EC such as CD133; and/ or, 4) markers that are expressed by 

leukocytes, such as CD45. Recently, it was demonstrated that isolated CD34+CD45− cells 

can form endothelial cell colonies (Case et al., 2007; Timmermans et al., 2007). The 

CD34+CD45− cells often expressed KDR but were negative for CD133 expression 

(Timmermans et al., 2007). Thus, EPCs may be identified as CD34+CD45− cells that may 

also express KDR but not CD133 (Fadini et al., 2008; Hristov et al., 2009; Timmermans et 

al., 2009).   

 

Adrenergic sensitivity of progenitor cells (PCs) 

Results suggest that exercise can induce PC mobilization (Barrett et al., 1978; Bonsignore et 

al., 2002; Goussetis et al., 2009; Morici et al., 2005; Rehman et al., 2004; Schmidt et al., 

2007). Further, PCs are reported to be mobilized by myocardial infarction, which is an 

alternative form of physiological acute stress (Turan et al., 2007; Wojakowski et al., 2006). 

Thus it is reasonable to consider that PC mobilization during physiological stress may be 

induced by activation of the SNS, similar to lymphocytosis. First both murine and human PCs 

express functional adrenergic receptor subtypes, α1, α2 and β2 (Muthu et al., 2007; Spiegel et 

al., 2007). Second the bone marrow, the major reservoir for adult PCs, is highly innervated 

by sympathetic nerve fibres (Elenkov et al., 2000). Third, there is experimental evidence that 
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physiologic stimuli and infectious challenge can increase the turnover of norepinephrine in 

the bone marrow and that injury induced adrenergic stimuli can upregulate erythropoiesis 

and monocytopoiesis (Fonseca et al., 2004; Tang et al., 2001; Tang et al., 1999). The latter 

finding can be reversed by sympathetic ablation of nerve terminals and therefore 

convincingly demonstrates the modulation of PCs by adrenergic mechanisms (Cohen et al., 

2004; Tang et al., 2001). Finally, sympathetic stimulation regulates murine PC mobilization 

from bone marrow into the peripheral blood, and this finding can be replicated by 

administration of β2AR-agonist (Katayama et al., 2006; Spiegel et al., 2007). Together these 

results provide convincing evidence of the functional influence that sympathetic stimulation 

can exhibit on the PC populations, in particular their mobilization.  

 

 

THESIS OVERVIEW AND SUMMARY 

  

There is sound empirical and mechanistic/biological basis to expect a modulatory effect of 

acute stress and βAR-stimuli on blood cell composition. Various neuro-endocrine systems, 

including the sympathetic nervous system, respond to stress resulting in the release of 

neurotransmitters (such as norepinephrine) and stress hormones (such as epinephrine). 

Lymphocytes are sensitive to these changes via the expression of cognate neuro-endocrine 

receptors. Cytotoxic T cells respond very sensitively to such changes, possibly due to distinct 

β2AR expression by different T cell phenotypes (Dimitrov et al., 2009; Holmes et al., 2005). 

The aim of the current thesis was to characterize this βAR-responsivity further, in particular 

concentrating on the effects of CMV on T cell mobilization.  

 

Chapter 2 describes the stress and βAR-agonist-induced mobilization of CD8TL memory 

subsets. As hypothesised, late differentiated “effector-like” CD8TLs that were recently found 

to express high levels of β2AR, demonstrated the greatest mobilization during βAR-stimuli. 
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As CMV infection is thought to cause the accumulation of stress sensitive late-differentiated 

CD8TLs, in Chapter 3 the mobilization of CD8TLs in CMV infected (positive) and CMV 

negative individuals was compared; CD8TL mobilization was greater in CMV positive 

individuals. By examining the mobilization of antigen-specific (CMV and EBV) CD8TLs, 

Chapter 4 investigated whether this previous finding was solely explained by the 

accumulation of late-differentiate cells within CMV positive individuals, or whether CMV-

specific cells were intrinsically more stress-sensitive. For example, would early-differentiated 

CMV-specific cells mobilize greater than early-EBV specific cells? Experimental studies have 

recently shown that stem cells, in both humans and mice, also express adrenergic receptors, 

suggesting that these cells may also demonstrate sensitivity to stress. Thus, Chapter 5 

describes progenitor cell responses to psychological stress and βAR-stimulation. Chapter 6, 

the final chapter, provides a summary and discussion of the results. 
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CHAPTER 2 

 

ACUTE PSYCHOLOGICAL STRESS AND BETA-ADRENERGIC 

RECECPTOR AGONIST INFUSION PREFERENTIALLY MOBILIZE 

EFFECTOR MEMORY CD8+ T LYMPHOCYTES THAT EXHIBIT 

ENHANCED EFFECTOR POTENTIAL 

 

ABSTRACT 

 

Objective: Beta-adrenergic receptor (βAR) stimuli, such as acute psychological stress and 

exercise, induce mobilization of lymphocytes into the peripheral circulation, in particular CD8+ 

T lymphocytes (CD8TLs) and Natural Killer (NK) cells. Recent evidence suggests that 

CD8TL mobilization is largely attributed to the selective increase in cells exhibiting immediate 

effector potential, i.e., effector-memory cells. The current study further tested this hypothesis 

utilizing multicoloured flow cytometry and an advance CD8TL subset classification system. 

Methods: Two separate studies compared CD8TL mobilization in response to an acute 

speech stress task (n=28) and βAR-agonist infusion at ~ 1µg/min/1.73 m2 BSA (n=16). A 

sub-group of volunteers completed the infusion protocol under two conditions; βAR-

antagonist administration and placebo (n=8). CD8TLs were classified into naïve (NA), central 

memory (CM), effector memory 1-3 (EM1, EM2 and EM3) or CD45RA+ effector memory 1-3 

(EMRA1, EMRA2 and EMRA3) subsets using simultaneous expression of the surface 

markers CCR7, CD27, CD28 and CD45RA. Results: A stepwise increase in CD8TL subset 

mobilization that paralleled an increase in effector potential was found (EMRA3/ EM3 > 

EMRA2/ EM2 > EMRA1/ EM1 > CM/ NA). During both the stress task and βAR-agonist 

infusion the greatest increase in cell numbers was observed for the EMRA3 CD8TLs (+144% 
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and +186% respectively) and the smallest for naïve cells (+11% and -17% respectively). 

Prior administration with the βAR-antagonist inhibited mobilization during the βAR-agonist 

infusion thus, confirming the involvement of βAR mechanisms in the response. Conclusion: 

The increase in CD8TL numbers during stress and βAR-stimuli can be explained by the 

mobilization of effector memory subsets, in particular the cells with the greatest effector 

potential. By increasing the peripheral numbers of cytotoxic and tissue migratory CD8TLs, 

stress and βAR-stimulus may evoke enhanced immune surveillance in anticipation of 

wounding and concurrent infection. 
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INTRODUCTION 

 

Lymphocytes continuously traffic from the blood, into various tissues, and back into the 

blood. This continuous migration is essential to maintain an effective immune-defence 

network (von Andrian and Mackay, 2000). Characterizing how stress affects this lymphocyte 

redeployment may help explain how stressors affect the ability of the immune system to 

protect its host (Bosch et al., 2005). Stressors like heat, psychological stress, and physical 

exercise, have the remarkable capacity to acutely change the proportions of different 

leukocyte populations in the blood and tissue (Benschop et al., 1996; Bouchama et al., 1992; 

Pedersen and Hoffman-Goetz, 2000). These changes are associated with the release of 

epinephrine and norepinephrine that bind adrenergic receptors, in particular the beta-2-

adrenergic receptor (β2AR) subtype, which is expressed on lymphocytes (Benschop et al., 

1996). Stimulation of β2ARs mediates endothelial detachment and subsequent recirculation 

of lymphocytes into peripheral blood (Benschop, Nijkamp et al. 1994). Although stress-

leukocytosis is a robust and well-known phenomenon, described as early as 1910 (Schulz, 

1983), its exact immunological functions are not yet understood. A further phenotypic 

characterization of this response may enhance understanding on how stress may alter 

immune function.  

 

Research has shown that cytotoxic lymphocytes are more readily mobilised by stress than 

other lymphocyte subsets (Anane et al., 2009; Atanackovic et al., 2006; Bosch et al., 2005; 

Campbell et al., 2009). For example, psychological stress rapidly increases NK cell numbers 

and, to a somewhat lesser extent, gamma-delta T cells and CD8+ T lymphocyte (CD8TL) 

numbers (Anane et al., 2009). Within each cytotoxic population there is greater mobilization 

of subsets that show a high cytotoxic ability (e.g., perforin expression) and tissue migrating 

potential (Millsl et al. 2000; Bosch et al. 2003; Bosch, et al. 2005). Stress strongly mobilizes 

the cytotoxic and tissue-migrating CD56low NK cells, while the regulatory and lymph node 
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homing CD56high NK subset do not become mobilized (Bosch et al. 2005). A similar pattern 

has been shown for CD8TLs in response to psychological stress, exercise or βAR-agonist 

infusion; preferentially mobilized cells display markers associated with tissue migration (e.g., 

CD11a+, CD62L-) (Mills, Karnik et al. 1997; Goebel and Mills 2000; Mills, Goebel et al. 2000; 

Bosch, Berntson et al. 2003) and cytotoxicity (e.g., perforin, CD57) (Atanackovic et al., 

2006). These alterations have often been interpreted as reflecting rapid changes in surface 

molecule expression and/ or functional capacity. More recently, it has emerged that these 

individual observations may instead reflect exclusive mobilization of specific subsets of 

memory cells which constitutively exhibit the above characteristics (Campbell et al., 2009).  

 

Over the last ten years, immunologists have developed an elaborate system for phenotyping 

functionally different CD8TL subsets. Initially, the CD8TL population was categorised into 

subsets using one of two different classification systems (Appay et al., 2002; Sallusto et al., 

2004; Sallusto et al., 1999). In the first, CD8TLs are divided into four functionally distinct 

subsets identified by CD45RA and CCR7 expression: Naïve (NA; CD45RA+, CCR7+); Central 

Memory (CM; CD45RA−, CCR7+); Effector Memory (EM; CD45RA−-, CCR7−); and RA effector 

memory (EMRA; CD45RA+, CCR7−) (Sallusto et al., 2004; Sallusto et al., 1999). NA and CM 

cells tend to travel to the secondary lymphoid organs where they interact with antigen 

presenting cells. The NA and CM cells do not express effector mediators, such as perforin or 

IFN-γ. In contrast, EM and, in particular, EMRA cells have effector functions including 

cytotoxicity, tissue migratory potential, and IFN-γ production. Therefore, these cells migrate 

into the peripheral tissue where they may encounter antigen and mediate a rapid protective 

response. In the second classification system, three subsets are identified by the expression 

of surface molecules CD28 and CD27 (Appay et al., 2002). The cells are defined as early 

(CD28+CD27+), intermediate (CD28−CD27+) or late (CD28−CD27−) according to their position 

along a linear pathway of increasing effector potential and, possibly, increasing cell 

differentiation.  
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More recently, polychromatic flow cytometry has allowed the combination of these two 

classification methods, and has led to the characterisation of nine new CD8TL populations 

(Figure 1 and Table 1). First, NA, CM, EM and EMRA cell are identified by CD45RA and 

CCR7 expression. These subsets are subsequently characterised for simultaneous 

expression of CD28 and CD27. The NA and CM populations are homogenous with 

consistent expression of both molecules. However, each effector memory CD8TL population 

have been found to be heterogeneous (Monteiro, Evaristo et al. 2007; Romero, Zippelius et 

al. 2007), revealing seven additional subsets:CD27+CD28+ EM1 and EMRA1 sub-types; 

CD27+CD28− EM2 and EMRA2 sub-types; CD27−CD28− EM3 and EMRA3 sub-types; and 

the CD27−CD28+ EM4 sub-type. It has been hypothesised that the cells progressively 

differentiate from EM1/ EMRA1 to EM2/ EMRA2 and finally to EM3/ EMRA3 cells (Romero et 

al., 2007). A stepwise increase in effector gene mRNA expression (granzyme B, perforin, 

IFN-y, and NK receptor CD94) was found from EM1/ EMRA1 to EM3/ EMRA3 cells. In 

addition, comparisons of cytolytic activity revealed that the EM1 population had a ten times 

lower ex-vivo lytic capacity than the EM3 population (Romero et al., 2007). Thus, it appears 

that the EM3/ EMRA3 cells represent differentiated effector-like memory cells.  

 

The aim of the current study was to investigate the mobilization of these newly identified 

CD8TL effector-memory subsets utilizing multicoloured flow cytometry. The study aimed to 

further test the hypothesis that stress and βAR-agonist infusion selectively redistributes 

effector-memory cells with immediate effector functions. 

 

 

METHODS 

 

Participants 
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Participants were recruited from community volunteers and staff and students attending the 

University of Birmingham (UoB), UK or University of California San Diego (UCSD), US. All 

volunteers reported to be in good health and were non-medicated with the exception of the 

contraceptive pill. Participants were instructed not to engage in strenuous physical exercise 

and to refrain from consuming alcohol or non-prescription drugs 24 hours before their 

experimental session, and to abstain from smoking and caffeine on the day of the 

experiment. Student volunteers performing the psychological stress task and all volunteers 

undertaking the infusion procedure received monetary compensation for their participation. 

Participants provided informed consent and study protocols were approved by the 

appropriate institutional review board (UoB or UCSD).  

 

Psychological stress study 

Procedure  

Upon participant (age 38.3 years, SD±13.4; 17 female/ 11 males) arrival at the UoB: (1) 

electrodes for electrocardiography (ECG) and impedance cardiography (ICG) were attached; 

(2) a 20-gauge intravenous cannula (Becton-Dickinson) was placed in a palpable vein of the 

lower arm; and (3) an occluding cuff was placed over the brachial artery of the other arm for 

blood pressure measurements. Subsequently, while seated in a comfortable upright position, 

participants filled out several questionnaires and engaged in leisure reading. After 20 

minutes, a baseline blood sample was obtained and the procedure for the laboratory stressor 

was initiated.  

 

Public Speaking Task  

To induce stress, participants performed two back-to-back speeches, each with 2 minutes of 

preparation and 4 minutes of speech delivery (Bosch et al., 2005; Bosch et al., 2003b) Social 

stress was enhanced by recording the speeches on videotape and by the attendance of an 

audience of three. For the first speech, the participant had to defend him/herself after being 
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falsely accused of shoplifting (Saab et al., 1989) and, for the second speech, the participant 

gave a presentation about his or her best and worst personal characteristics (van Eck et al., 

1996). Instructions for the task were presented via a DVD recording, which ensured 

standardization of instructions and timing of the tasks. Including instructions, the task lasted 

15 minutes. A blood sample was obtained during the second presentation, 13 minutes after 

initiation of the task. Following the task, the participants again engaged in leisure reading, 

and a final blood sample was obtained after 15 minutes of recovery. 

 

Cardiovascular assessment  

Assessment of cardiovascular responses focused on cardiac sympathetic and vagal control 

as previously described (Berntson et al., 1993; Bosch et al., 2003a). In brief; indices of 

sympathetic and parasympathetic drive were obtained by analysis of ECG and ICG signals. 

The thoracic ICG and ECG signals were recorded from six Ag-AgClspot-electrodes (AMI type 

1650-005, Medtronic) using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS) 

device. The ECG and ICG complexes were ensemble averaged with reference to the ECG 

R-wave across 30-sec periods. From these 30-sec ensembles, average levels were 

computed for heart rate (HR) and pre-ejection period (PEP). These means were further 

averaged over a 6-min pre-task baseline and over each 6-min task. Changes in PEP were 

used to index changes in cardiac sympathetic drive, whereas heart rate variability, or Root 

Mean Square of Successive Difference (RMSSD), was used to index changes in cardiac 

vagal tone.  

 

βAR-agonist infusion study 

Procedure 

Isoproterenol infusion was performed according to a standardized protocol (Goebel et al., 

2000; Mills et al., 2002; Mills et al., 2000; Mills et al., 1997). In brief, upon arrival at the 

UCSD, participant (age 35.9 years, SD±9.3; 8 female/ 8 males) height and weight were taken 
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to confirm correct calculation of body surface area (BSA) used to calculate the isoproterenol 

infusion rate according to standard hospital procedures. Subsequently, participants were 

asked to lie in a semi-supine position for 15 minutes following placement of; 1) two 22-gauge 

intravenous cannulas (Becton-Dickinson), one for drawing blood samples and one for 

isoproterenol infusion, inserted into a palpable vein in opposite lower arms; 2) three spot 

ECG electrodes; and 3) an occluding cuff on the non-infusion arm.  

 

βAR-agonist was then infused at incremental rates (0.1µg, 0.5µg and 1µg /min/1.73 m2 BSA 

for 5 minutes) for 15 minutes until the participants heart rate had increased by ~20 beats per 

minute (bpm) compared to resting heart rate. The final infusion rate was maintained for 10 

minutes. On average, the maximal dose reached 1µg/min/1.73 m2 BSA. Blood was taken 

prior to initiation of isoproterenol infusion (‘baseline’) and in the final minutes of the infusion. 

ECG, heart rate and systolic blood pressure (SBP)/ diastolic blood pressure (DBP) were 

monitored throughout the infusion. The half-life of isoproterenol is approximately 2–3 min 

(Goebel et al., 2000). The infusion was generally well-tolerated and all participants 

successfully completed the protocol.     

 

βAR-antagonist (blockade) procedure 

A sub group of 8 participants (age 34.6 years, SD±11.5; 2 female) performed the βAR-

agonist infusion procedure under two conditions: 1) following five consecutive days of 

administration with 80mg of the βAR-antagonist propranolol; and 2) following 5 days 

administration of a placebo. Drug administrations were counter balanced and single blinded. 

Only volunteers with a normal resting heart rate greater than 50 bpm were selected to 

perform the blockade treatment.   
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Questionnaires 

In all studies, health and lifestyle variables were assessed by self-report questionnaire. 

These variables included recent symptoms of illness, exercise behaviour, alcohol 

consumption, caffeine consumption, smoking, and use of recreational drugs. Affective 

responses to the psychological stress task were assessed using the short-form of the Profile 

of Mood States (POMS) (McNair et al., 1992). Participants completed the POMS at baseline, 

immediately post-task and at 15-minutes recovery.  

 

Flow cytometry  

Whole blood was collected into EDTA tubes, maintained at room temperature and processed 

within 4 hours after collection. Whole blood (100µl) was incubated for 20 minutes at 4°C in 

the dark with a cocktail of fluorescent-labelled monoclonal antibodies: CD28-FITC, CD3-

PerCP, CD27-APC, CD8-APC-Cy7 (obtained from Becton-Dickinson, Oxford, UK), CCR7-PE 

(eBioscience, purchased from Insight Biotechnology Ltd, Middlesex, UK) and CD45RA-PB 

(Invitrogen, Paisley, UK). Subsequently, red blood cells were lysed and removed by 

centrifugation (283G, 7-min at room temperature) following incubation with FACS Lysing 

solution (Becton Dickenson, Oxford, UK). The remaining cell pellet was re-suspended in 

250µl PBS containing 1.5% paraformaldehyde, and stored in the dark at 4°C until analyses. 

Preparations were read within 18 hours. Approximately 80,000 gated lymphocytes were 

acquired from each preparation using a triple-laser (Cyan ADP, DAKO, Cambridgeshire, UK) 

or a dual-laser flow cytometer (FACS-Canto II, Becton Dickinson, Oxfordshire UK). Data 

were analyzed using Flowjo 7.4 (Treestar Inc, Ashland, OR, USA). A complete white blood 

cell count was obtained for each blood sample using a haematology analyzer (Coulter 

ACTdiff, Beckman Coulter, High Wycombe, UK or Coulter GEN-S haematology analyser, 

Beckman-Coulter, Miami, USA). 
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Data analysis 

Repeated-measures Analysis of Variance (ANOVA) was used to assess the effects of the 

psychological stress task on mood and cardiovascular parameters and to examine the 

effects of the psychological stress task, β-agonist infusion and βAR-antagonist procedure on 

immunological measures. Variations in degrees of freedom reflect occasional missing data. 

Where means are presented, standard deviation is given in brackets. Percentage changes in 

cell numbers between time points and differences in the magnitude of mobilization between 

CD8TL subsets were examined by the one sample T-test and the Student paired T-test 

respectively. Data were analyzed using SPSS 16 for windows (SPSS Inc, Chicago, Illinois).  

 

 

RESULTS 

 

Psychological stress study 

Anxiety and cardiovascular responses 

Increases in the tension-anxiety POMS subscale confirmed that the speech tasks were 

perceived as stressful (+7.7 (SD = 4.5); F(2, 54) = 45.1, p<.001). A physiological stress 

response was confirmed by the significant increases in SBP (+26.6 mmHg (SD = 9.8); F (2, 54) 

=156.7, p<.001), DBP (+17.5 mmHg (SD = 8.0); F(2, 54) = 75.4, p<.001), and HR (+20.8 bpm 

(SD = 11.8); F(2, 54) = 81.9, p<.001), reflecting an increase in sympathetic drive as evidenced 

by a decrease in PEP (–10.5 ms (SD = 10.5); F(2, 46) = 15.3, p<.001). Additionally, there was a 

significant decrease in RMSSD (–17.1 ms (SD = 23.9); F(2, 48) = 17.7, p<.001), reflecting 

vagal withdrawal. At 15-min recovery, all cardiovascular and autonomic measures had 

returned to baseline values. 
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Preferential mobilization of effector-memory CD8TL during psychological stress 

As can be seen in Table 2, the speech task induced a moderate but statistically significant 

increase in lymphocyte and total CD8TL numbers from baseline to stress (+27% and +31% 

respectively, both p<.001), indicating that the laboratory task effectively induced immune cell 

mobilization. Further, as can be seen in Figure 2, substantial and significant increases were 

found in EM2, EMRA2, EM3 and EMRA3 subsets, all of which are effector-like memory cells. 

The EM3 and EMRA3 responses were significantly greater than the EM2 (Δ%; t(27) = 3.6, 

p<.001) and EMRA2 (Δ% t(27) = 5.1, p<.001) responses, respectively. A small, but still 

significant, mobilization was also observed for the less-differentiated EM1 and CM subsets. 

Finally, the percentage change in cell numbers of the EMRA populations were also 

significantly greater than the equivalent EM subsets (EMRA2 to EM2; Δ%; t(27) = 3.4, p=.002 

and EMRA3 to EM3; Δ%; t(27) = 3.9, p=.001). In most participants, the number of EM4 

CD8TLs was too small to reliably calculate changes in cell number. Age, BMI and gender 

were included as potential modifiers in our statistical model. Controlling for these variables 

yielded comparable results.  

 

Predictors of CD8TL stress reactivity 

The relationship between CD8TL mobilization (increase in CD8TL number: ∆ CD8TL) and 

baseline values of each CD8TL subset was examined using Pearson’s correlation coefficient. 

As demonstrated in Figure 3, there was a strong positive correlation between heightened 

CD8TL reactivity and larger baseline values for EM3 cells (r(26) =.68, p<.001) and EMRA3 

cells (r(26) =.46, p=.014).  

 

βAR-agonist infusion study 

βAR-agonist preferentially mobilized effector-memory CD8TLs and βAR-antagonist 

administration inhibited the response 
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Overall, the results of this study replicate the findings of the stress study. Table 3 

demonstrates that the βAR-agonist infusion induced a pronounced lymphocytosis and 

CD8TL mobilization. It also increased all CD8TL effector memory subsets, apart from the 

EMRA1, and unexpectedly, the EM3 subtype, and induced a decrease in circulating NA and 

CM cell numbers. As illustrated by Figure 4, EMRA3 showed the greatest mobilization, 

followed by EM2 and EMRA2, and then the EM1 and EMRA1 subsets (in pairwise 

comparisons, all p<.01). Age, BMI and gender were again included as potential modifiers in 

our statistical model and similarly controlling for these variables yielded comparable results. 

 

As can be seen in Table 3 and Figure 4, administration of the βAR-antagonist abrogated the 

effects of βAR-agonist infusion. These findings further implicate βAR mechanisms in CD8TL 

mobilization.   

 

Again, a strong positive correlation between heightened CD8TL reactivity and larger baseline 

values for EM3 cells (r(14) =.48, p<.063) and EMRA3 cells (r(14) =.85, p<.001) was 

demonstrated.  
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Figure 1. Identification of CD8TL subsets. A) CD3+CD8+ gated lymphocytes (CD8TLs) were 
separated into four subsets (NA, CM, EM and EMRA) based on surface expression of 
CD45RA and CCR7. B) The four subsets were further characterized for CD27 and CD28 
expression, yielding nine populations of CD8TLs (NA, CM, EM1-4, EMRA 1-3)
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Table 1. Description of CD8TL subsets grouped by phenotypic and functional similarities 

 

CD8TL 
subtype Phenotype Cell characteristics Cytotoxic 

potential 

Tissue 
migration 
potential 

Antigen 
experience/ 
replicative 

history 

NA CD45RA+CCR7+CD27+CD28+ Mature cell that has not yet contacted cognate antigen 
in the peripheral lymphoid organs - - - 

      

CM CD45RA-CCR7+CD27+CD28+ 

Primed memory cell, low expression of effector 
mediators, rapidly proliferate and differentiate to effector 
cells following antigenic stimulation, short replicative 
history 

+ + + 
 

      

EM1 CD45RA-CCR7-CD27+CD28+ 
Central memory-like cells: low expression of effector 
mediators; short replicative history 

++ ++ ++ 

EMRA1 CD45RA+CCR7-CD27+CD28+  ++  

EM4 CD45RA-CCR7-CD27-CD28+ ++ ++  

      

EM2 CD45RA-CCR7-CD27+CD28- Primed memory cells, intermediate effector functions 
and replicative history, migrate to inflamed tissue 

+++ +++ ++ 

EMRA2 CD45RA+CCR7-CD27+CD28-  +++  

      

EM3 CD45RA-CCR7-CD27-CD28- Primed effector-like memory cells, high effector 
mediator expression and cytolytic activity, extensive 
replicative history, inflamed tissue migratory 

++++ ++++ +++ 

EMRA3 CD45RA+CCR7-CD27-CD28- +++++ ++++ ++++ 
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Table 2. Mean (SD) cell numbers at each time point during the psychological stress study, 
with results from repeated measures ANOVA 

Cell type (cells/μl) Baseline Task Recovery F(df) p 

Lymphocytes 1789 (426) 2271 (781) 1925 (579) F(2,54) = 17.6  <.001 

CD8TLs 390.3 (122) 502.5 (184) 424.4 (135) F(2,54) = 12.9  <.001 

NA 139.6 (93) 150.6 (100) 142.1 (86) F(2,54) = 1.9  =.155 

CM 17.0 (7.7) 19.7 (12) 17.7 (9.0) F(2,54) = 4.0 =.025 

EM1 96.0 (38) 109.7 (44) 104.6 (45) F(2,54) = 4.0 =.023 

EM2 22.2 (17) 32.5 (22) 25.4 (19) F(2,54) = 18.1 <.001 

EM3 15.2 (21) 32.6 (52) 19.2 (27) F(2,54) = 7.7  =.001 

EMRA1 30.8 (21) 33.34(21) 31.6 (22) F(2,54) = 2.3 =.111 

EMRA2 28.7 (20) 45.8 (38) 32.7 (26) F(2,54) = 16.3 <.001 

EMRA3 30.9 (37) 64.1 (79) 39.5 (48) F(2,54) = 12.6 <.001 
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Table 3. Mean (SD) cell numbers at each time point during the βAR-agonist infusion and βAR-antagonist administration, with results from 
repeated measures ANOVA 
 βAR-agonist and placebo βAR-agonist and βAR-antagonist 

Cell type 
(cells/μl) Baseline 1st Infusion 

Rate F(df) p Baseline 1st Infusion 
Rate F(df) p 

Lymphocytes 1722 (522) 2241 (676) F(1,11) = 8.8 =.013 1584 (369) 1627 (303) F(1,2) = 8.3 =.103 

CD8TLs 405.9 (174) 549.6 (253) F(1,11) = 7.2 =.022 394.6 (147) 402.6 (132) F(1,2) = 32.2 =.030 

NA 116.3 (87) 93.3 (75) F(1,11) = 12.0 =.005 119.6 (100) 110.7 (84) F(1,2) = 29.4 =.032 

CM 18.2 (12) 15.5 (9.3) F(1,11) = 15.7 =.002 16.2 (7.2) 16.0 (7.7) F(1,2) =7.0 =.117 

EM1 103.5 (57) 102.5 (52) F(1,11) = 1.3 =.278 87.9 (32) 87.5 (31) F(1,2) = 3.8 =.191 

EM2 17.7 (12) 28.1 (18) F(1,11) = 37.1 <.001 20.9 (14) 23.9 (17) F(1,2) = 3.4 =.207 

EM3 11.8 (13) 29.2 (34) F(1,11) = 4.0 =.070 8.3 (6.8) 10.8 (13) F(1,2) = 0.2 =.737 

EMRA1 34.4 (31) 37.4 (38) F(1,11) = 2.9 =.119 30.1 (28) 28.9 (25) F(1,2) = 0.6 =.533 

EMRA2 24.6 (12) 52.8 (31) F(1,11) = 15.9 =.002 28.8 (14) 30.4 (13) F(1,2) = 2.3 =.272 

EMRA3 53.1 (51) 157.6 (158) F(1,11) = 8.1 =.016 53.1 (52) 62.3 (63) F(1,2) = 0.4 =.599 
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Figure 2. Effects of a psychological stressor on the mobilization of CD8TL subsets. Relative change in cell number (∆%; SEM) of the eight 
CD8TL subsets in response to stress. *p<.05, **p<.01, ***p<.001 indicates mobilization is significantly different between the individual 
CD8TL subsets. 
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Figure 3. Scatter plots showing the relationship between CD8TL reactivity and baseline 
values of EM3 and EMRA3 CD8TL subsets.  
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Figure 4. Effects of βAR-agonist and βAR-antagonist administration on the mobilization of CD8TL subsets. Relative change in cell number 
(∆%; SEM) of the eight CD8TL subsets in response to stress. *p<.05, **p<.01, ***p<.001 indicates mobilization is significantly different 
between the individual CD8TL subsets. 
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DISCUSSION 

 

Acutely stressful events rapidly mobilize CD8+ T cells (CD8TLs) into peripheral blood. In the 

present study, a detailed phenotypic analysis of this response found a marked specificity in 

the mobilization of certain memory phenotypes associated with the progressive loss of 

CCR7, CD28 and CD27. The largest increase during stress was seen for the memory 

subsets that exhibit a strong effector potential (CCR7-CD28-CD27- EM3 and EMRA3 cells); 

these are characterised by high tissue migratory ability, high cytotoxicity, and greater 

production of IFN-γ (Monteiro et al., 2007; Romero et al., 2007). Indeed, >67% of CD8TL 

stress reactivity may be explained by the combined mobilization of EM3 and EMRA3 

subsets. Effector memory cells with a lesser effector potential (i.e. EM2 and EMRA2 cells) 

were mobilized to a lesser extent, and little or no change was seen for subsets that have little 

or no immediate effector potential (NA, CM, EM1 and EMRA1). This pattern of response was 

replicated by infusion of the β-adrenergic receptor (βAR) agonist, isoproterenol, suggesting 

mediation by βAR mechanisms. Further, preferentially mobilized cells have demonstrated 

higher β2AR expression, suggesting that increase levels of this receptor may provide the 

selectivity of the mobilization response (Dimitrov et al., 2009; Holmes et al., 2005). Finally, 

the results showed that different markers can be used to identify sensitivity of CD8TL 

subsets to stress and β-adrenergic stimulation; lack of CCR7 expression was common to all 

mobilized CD8TLs, whereas lack of CD28 expression identified the most sensitive cells.  

 

The current datum confirms the proposition that stress and beta-adrenergic stimulation 

selectively mobilizes highly differentiated, effector-like, memory cells (Anane et al., 2010; 

Campbell et al., 2009; Dimitrov et al., 2010). Recent studies have provided a detailed 

characterization of the immunological properties of these mobilized subsets (Monteiro et al., 

2007; Romero et al., 2007). Hence it is known that the mobilized cells have short telomere 

length (a marker of extensive replicative history) and decreased telomerase activity. These 
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cells also display other features of a senescent profile, such as a loss of a proliferative 

response to mitogens and impaired proliferation to antigen (however they may proliferate in 

response to homeostatic cytokines such as IL-7 and IL-15), reduced IL-2 production, and 

expression of NK cell receptors (CD57 and NKG2D) (Azuma et al., 1993; Brenchley et al., 

2003; Champagne et al., 2001; Hamann et al., 1997; van Leeuwen et al., 2002; Voehringer 

et al., 2002). Further, the EM3 and EMRA3 subtypes have a ten-fold greater ex-vivo cytolytic 

capacity than the non-responsive EM1 subset, express the apoptosis inducer Fas-ligand, 

and are the main producers of pro-inflammatory mediators like IFN-y, RANTES, and 

macrophage inflammatory protein-1β (Monteiro et al., 2007; Romero et al., 2007). The 

mobilized CD8TL subsets also display adhesion molecule (e.g., CD11a) and chemokine 

receptor (e.g., CCR5) profiles that are associated with a tissue homing potential, paralleled 

by low expression of lymph node homing markers, such as CD62L and CCR7 (Atanackovic 

et al., 2006; Dimitrov et al., 2010; Monteiro et al., 2007). Finally, the stress sensitive subsets 

are often enriched by cells specific for latent herpes viruses, such as Cytomegalovirus 

(Appay et al., 2002; van Lier et al., 2003). In summary, redistribution of CD8TLs by stress 

and β-adrenergic stimuli is highly selective for late-differentiated cells that are characterised 

by vast and immediate effector function, tissue migration potential, altered proliferative 

capacity and cytokine production, and may often provide immunity to latent herpes viruses. 

 

The current study provides an encompassing interpretation of previous observations of 

phenotypic and functional immune changes in response to acute stress (e.g. adhesion 

molecule expression, chemotaxis, proliferative capacity). Rather than reflecting changes in 

individual cells, our findings suggest the more parsimonious explanation that stress 

selectively mobilises cells already exhibiting exactly those specific phenotypic and functional 

characteristics. For example, instead of mobilized T cells “altering” their expression of 

adhesion molecules, stress preferentially mobilizes cells that already exhibit this (i.e., 

CD62Llow and CD11ahigh) receptor profile (Bosch et al., 2003a; Bosch et al., 2005; Mills et al., 
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2000). This explanation can also be applied to previous observations that stress and 

adrenergic stimuli mobilize cells that are senescent (Simpson et al., 2007), express cytotoxic 

granules (Atanackovic et al., 2006), have potential for tissue migration, and express 

inflammatory mediators (Bosch et al., 2003a); these seemingly independent observations 

can be subsumed under the mobilisation of effector memory CD8TLs that exhibit this exact 

constellation of characteristics. Thus, selective mobilization of effector-memory CD8TLs 

unifies, and appears to at least in part account for, a large number of earlier observations. 

This would suggest that future studies examining functional immune changes during acute 

stress would do well to account for selective mobilisation, before making inferences about 

functional changes to individual cells.  

 

It has been proposed that stress lymphocytosis enhances immune surveillance during 

perceived threat when the risk of injury and concurrent infection are heightened (Benschop et 

al., 1996; Dhabhar and McEwen, 1997; Segerstrom and Miller, 2004). However, some 

stressors, such as heatstroke, evoke lymphocytosis but are not typically accompanied by an 

increased risk of infection (Bouchama et al., 1992; Bruunsgaard et al., 1999; Karandikar et 

al., 2002; Simpson et al., 2007). It is plausible, therefore, that lymphocytosis may have an 

alternative role beyond antigen-specific immunosurveillance. Although CD8TLs typically 

require recognition of cognate antigen in order to extravasate and rapidly exert effector 

function in the tissue, there is evidence that they can “sense” non-specific signals from the 

environment (Kundig et al., 1996a; Kundig et al., 1996b; Ogasawara and Lanier, 2005). As 

expression of NK cell receptors are limited to differentiated CD8TL subsets, only stress 

sensitive cells exhibit innate-like cell functions (Bauer et al., 1999; Weng et al., 2009). 

Damaged or stressed tissue (e.g. caused by wounding, heat shock, malignant transformation 

or infection) induces the expression of cellular “stress” signals, such as MHC class I-related 

antigen (MICA), which can activate the NK cell receptors when present upon CD8TLs (Eagle 

et al., 2009; Ogasawara and Lanier, 2005). Through expression of NK cell receptors, stress 
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mobilized CD8TLs may therefore be able to enhance infectious and tumour immunity, and/or 

aid wound healing and the clearance of damaged tissue using both specific and non-specific 

pathways (Agaiby and Dyson, 1999; Diefenbach et al., 2001; Ogasawara and Lanier, 2005; 

Toulon et al., 2009). Indeed, stress induced immune cell redistribution is associated with 

improved wound healing following surgery (Rosenberger et al., 2009). It is important to note, 

however, that mobilization of cytotoxic CD8TLs with innate characteristics may also have 

detrimental effects. Increasing the surveillance of CD8TLs that are not regulated by antigen-

specific activation could exacerbate inflammation and autoimmune disorders (Bosch et al., 

2003a; Nyklicek et al., 2005; Straub et al., 2005; Weng et al., 2009). For example, stress 

increases leukocyte infiltration into inflamed areas (Sanders and Straub, 2002), and it is 

plausible that expression of NKG2D ligand in the affected tissue could interact with the 

effector-like CD8TLs (Eagle et al., 2009; Meresse et al., 2004; Ogasawara and Lanier, 2005). 

In addition, late-differentiated (CD28-) CD8TLs have increased lymphocyte function 

associated antigen-1 (LFA-1) expression which lowers the T cell activation threshold and 

further predispose cells to the breakage of self-tolerance and the induction of autoimmunity 

(Weng et al., 2009; Yung et al., 1996). In summary, one may speculate that stress-induced 

CD8TL redistribution could have clinically relevant implications; however, the specific health 

outcome will likely depend on the type of immune response involved and the duration and 

timing of stress (Dhabhar, 2001; Dhabhar, 2009).  

 

Some limitations should be noted. First, the ability of mobilized cells to exhibit effector 

functions was not assessed. However, the characteristics of the novel CD8TL subsets have 

been extensively described elsewhere (Monteiro et al., 2007; Romero et al., 2007). 

Secondly, the role of adrenergic receptor stimulation in the stress response could only be 

inferred from correlations with changes in cardiac sympathetic drive. However, the 

subsequent infusion and blockade study strongly supported this proposition. Additional 
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pharmacological studies (e.g., selective βAR- antagonist infusion during stress) may further 

strengthen this evidence.  

 

In conclusion, the present study demonstrates a preferential mobilization of effector memory 

CD8TL subsets during acute psychological stress and βAR-agonist infusion, whilst naïve and 

regulatory memory CD8TL numbers remain largely unchanged. It is proposed that this 

immune alteration may serve a protective function although, dependent on the circumstance, 

this response may not always be beneficial. Further research into the antigen-specificity of 

these mobilised cells is warranted. In sum, the highly selectively and robust redistribution of 

effector memory CD8TLs is consistent with the notion that stress and sympathetic activation 

create a circulatory environment that is conducive to inflammation and microbial clearance. 
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CHAPTER 3 

 

CYTOMEGALOVIRUS INFECTION AS A DETERMINANT OF 

LYMPHOCYTE MOBILIZATION DURING STRESS AND BETA-

ADRENERGIC STIMULATION 

 

 

ABSTRACT 

 

Objective: Recently we demonstrated that CD8+ T Lymphocyte (CD8TL) subsets with a 

differentiated, effector-like phenotype are selectively mobilized by stress, exercise and βAR-

agonist infusion. Latent infection with Cytomegalovirus (CMV) dramatically increases the 

number and proportions of these responsive late-differentiated CD8TLs. Therefore, the 

current study tested if infection with CMV increased CD8TL responsivity to acute stress and 

β-adrenergic stimulation. Methods: In two studies, we compared CD8TL mobilization in 

response to an acute stress (speech task; n=32) and βAR-agonist infusion (isoproterenol 

infusion without (n=20) or with (n=8) prior administration of a βAR-antagonist). CMV infection 

was measured by ELISA. CD8TLs, CD4 T lymphocytes (CD4TLs), NKT-like, and NK cells 

were determined by flow cytometry. The response of each lymphocyte subset was compared 

for CMV positive (CMVpos) and CMV negative (CMVneg) individuals. Results: CMV infection 

increased the mobilization of CD8TLs during stress (F(1,30) = 5.2, p=.029), and correlated with 

greater baseline numbers of late differentiated cells (r(18)
 = .49-.82, p’s<.05). The enhanced 

CD8TL mobilization was replicated during βAR-agonist infusion, and also found for cytotoxic 

CD4TL and NKT-like cells. Administration of the βAR-antagonist propranolol abrogated the 

responses to infusion. Conclusion: This is the first study to demonstrate that infection 
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history is a potent determinant of immunological responses to stress and adrenergic 

stimulation. 
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INTRODUCTION 

 

Stimuli that activate the sympathetic nervous system, such as acute psychological stress and 

exercise, rapidly invoke a robust mobilization of lymphocytes into the circulation via 

stimulation of lymphocyte β2-adrenergic receptors (β2AR) (Benschop et al., 1996a; Benschop 

et al., 1994a; Benschop et al., 1994b; Benschop et al., 1996b; Dimitrov et al., 2010; 

Pedersen and Hoffman-Goetz, 2000; Schedlowski et al., 1996; Segerstrom and Miller, 2004). 

This lymphocytosis predominantly involves cells exhibiting relatively high levels of β2AR and 

a cytotoxic ability, such as natural killer (NK) cells, gamma-delta (γδ) T cells, and CD8+ T 

lymphocytes (CD8TLs) (Anane et al., 2009; Campbell et al., 2009; Elenkov et al., 2000). 

Further, among these, only differentiated subsets with enhanced effector and tissue 

migrating potential are mobilized (Anane et al., 2010; Atanackovic et al., 2006; Bosch et al., 

2005; Campbell et al., 2009; Dimitrov et al., 2010). These stress-sensitive CD8TL subsets 

also express heightened levels of the β2AR suggesting that enhanced expression may 

provide a mechanism for their selective mobilization (Dimitrov et al., 2009). Thus, stress 

enriches the blood with β2ARhigh lymphocytes that are prone to engage in tissue migration, 

target cell killing and production of inflammatory cytokines (Benschop et al., 1996b; Bosch et 

al., 2005; Dhabhar and McEwen, 1997; Segerstrom and Miller, 2004).  

 

The CD8TL population is highly heterogeneous and we recently reported (Chapter 2) that 

distinct subsets vary greatly in the ability to mobilize during stress. Stress-induced 

mobilization gradually becomes stronger in phenotypes that have accumulated more effector 

characteristics (e.g., cytotoxicity, IFN-y production) and a stronger tissue-migrating ability. 

This differentiation can roughly be monitored by the sequential loss of the surface markers 

CCR7, CD28, and CD27 (Monteiro et al., 2007; Romero et al., 2007; Sallusto et al., 1999). 

Thus, highly differentiated CD8TLs (EM3 or EMRA3 cells; CD45RA+/-CCR7-CD28-CD27-) 

show a substantially larger mobilization than intermediate-differentiated cells (EM2 or 
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EMRA2 cells; CD45RA+/-CCR7-CD28CD27+), while early-differentiated cells (EM1 or 

EMRA1; CD45RA+/-CCR7CD28+CD27+), central memory cells (CM; CD45RA-

CCR7+CD28+CD27+) and naïve CD8TLs (NA; CD45RA+CCR7+CD28+CD27+) demonstrate 

little to no mobilization.  

 

The composition of the CD8TL memory pool, and therefore potentially the CD8TL response 

to stress and adrenergic stimulation, is driven to a large extent by infection history (Appay et 

al., 2002a; van Lier et al., 2003). For example, latent infection with Cytomegalovirus (CMV) 

dramatically increases the number and proportions of late-differentiated, and stress-

responsive, CD8TLs (Gillespie et al., 2000; Khan et al., 2002). CMV is a herpes virus that is 

carried by 30-70% of western populations, and infection rate is increased by age and with 

various social-demographic factors (e.g., higher infection rates with lower socio-economic 

status) (Dowd et al., 2009; Gillespie et al., 2000; Khan, 2007; Khan et al., 2002). After 

primary infection, the virus remains dormant in the body (latency), where it is believed to 

intermittently reactivate (van Lier et al., 2003). The resulting repeated activation of CMV-

specific CD8TLs is thought to underlie differentiation of these cells into a so-called late 

differentiated phenotype (i.e., CCR7−CD27−CD28−) (Appay et al., 2002a; Khan et al., 2007; 

Romero et al., 2007; van Lier et al., 2003). Thus, the primary hypothesis tested in the current 

study is that CD8TL mobilization in response to stress and adrenergic receptor stimulation 

will be amplified in CMV infected individuals. Further, it was hypothesised that the increased 

response will be associated with greater numbers of late differentiated (EM3 and EMRA3) 

CD8TLs.   

 

CMV infection does not only alter the composition of the CD8TL memory pool, but also 

causes accumulation of cytotoxic perforin+ CD4TLs, a minor subset of CD4TLs, and natural 

killer-like T cells (NKT-like, i.e., CD56+ T cells) (Gamadia et al., 2004; Pourgheysari et al., 

2007; Saez-Borderias et al., 2006; Tarazona et al., 2000). Similar to CMV-specific CD8TLs, 
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CMV-specific CD4TLs are often highly differentiated (CD28−CD27−) perforin+ cells that 

likewise exhibit an enhanced sensitivity to stress and adrenergic stimulation (Anane, In 

preparation; Appay et al., 2002b; Casazza et al., 2006; Fletcher et al., 2005). NKT-like cells 

can be mobilized by adrenaline infusion and thus are also expected to be mobilized by acute 

stress and βAR-stimulation (Dimitrov et al., 2010). Thus a second hypothesis was that 

mobilization of NKT-like and perforin+ CD4TLs will also be amplified by CMV infection. This 

study presents the first investigation into the effects of viral infection on immunological 

sensitivity to stress and neuroendocrine stimulation. 

 

 

METHODS 

 

Participants 

Participants were recruited from community volunteers and staff and students attending the 

University of Birmingham (UoB), UK, or the University of California San Diego (UCSD), USA. 

All study volunteers reported to be in good health and were non-medicated with the 

exception of the contraceptive pill. Participants were instructed not to engage in strenuous 

physical exercise and to refrain from consuming alcohol or non-prescription drugs 24 hours 

before their experimental session, and to abstain from smoking and caffeine on the day of 

the experiment. Student volunteers performing the psychological stress task and all 

volunteers undertaking the infusion procedure received monetary compensation for their 

participation. Participants provided informed consent and study protocols were approved by 

the appropriate institutional review boards (UoB or UCSD).  

 

Psychological stress study 

Procedure  
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32 volunteers took part (age 25.8 years, SD ±8.0; 23 female). Upon arrival at the Exercise 

and Behavioural Immunology Laboratory, UoB: (1) electrodes for electrocardiography (ECG) 

and impedance cardiography (ICG) were attached; (2) a 20-gauge intravenous cannula 

(Becton-Dickinson) was placed into a palpable vein in the lower arm; and (3) an occluding 

cuff was placed over the brachial artery of the other arm for systolic (SBP) and diastolic 

(DBP) blood pressure measurements. Subsequently, while seated in a comfortable upright 

position, participants filled out several questionnaires and engaged in leisure reading. After 

20 minutes, a baseline blood sample was obtained and the procedure for the laboratory 

stressor was initiated.  

 

Public Speaking Task  

To induce stress, participants performed two back-to-back speeches, each with 2 minutes of 

preparation and 4 minutes of speech delivery (Bosch et al., 2005; Bosch et al., 2003b). 

Social stress was enhanced by recording the speeches on videotape and by the attendance 

of an audience of three. For the first speech, the participant had to defend him/herself from 

being falsely accused of shoplifting (Saab et al., 1989) and, for the second speech, the 

participant discussed his or her best and worst personal characteristics (van Eck et al., 

1996). Instructions for the task were presented via a DVD recording, which ensured 

standardization of instructions and timing of the tasks. Including instructions, the task lasted 

15 minutes. A blood sample was obtained during the second presentation, 13 minutes after 

initiation of the task. Following the task, the participants again engaged in leisure reading, 

and a final blood sample was obtained after 15 minutes of recovery. 

 

Cardiovascular assessment  

Assessment of cardiovascular responses focused on cardiac sympathetic and vagal control 

as previously described (Berntson et al., 1993; Bosch et al., 2003a). In brief, indices of 

sympathetic and parasympathetic drive were obtained by analysis of ECG and ICG signals. 
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The thoracic ICG and ECG signals were recorded from six Ag-AgClspot-electrodes (AMI type 

1650-005, Medtronic) using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS) 

device. The ECG and ICG complexes were ensemble averaged with reference to the ECG 

R-wave across 30-sec periods. From these 30-sec ensembles, average levels were 

computed for heart rate (HR) and pre-ejection period (PEP). These means were further 

averaged over a 6-min pre-task baseline and over each 6-min task. Changes in PEP were 

used to index changes in cardiac sympathetic drive, whereas heart rate variability, or Root 

Mean Square of Successive Difference (RMSSD), was used to index changes in cardiac 

vagal tone.  

 

βAR-agonist infusion study 

Procedure 

20 volunteers took part (age 35.9 years, SD±9.3; 8 female). βAR-agonist (isoproterenol) 

infusion was performed according to a standardized protocol (Mills et al., 2000; Mills et al., 

1997). In brief, upon arrival at the laboratory, UCSD, participant height and weight were 

taken to ensure correct calculation of body surface area (BSA) used to determine the βAR-

agonist infusion rate. Subsequently, participants were in a semi-supine position for 15 

minutes following placement of: 1) two 22-gauge intravenous cannulas (Becton-Dickinson) of 

which one was for drawing blood samples and one was for βAR-agonist infusion, inserted 

into a palpable veins in opposite lower arms; 2) three spot ECG electrodes; and 3) an 

occluding cuff on the non-infusion arm.  

 

βAR-agonist was infused at incremental rates (0.1µg, 0.5µg and 1µg /min/1.73 m2 BSA for 5 

minutes each) for 15 minutes until the participants heart rate had increased by ~20 beats per 

minute (bpm) compared to resting heart rate. The final infusion rate was maintained for 10 

minutes. On average, the maximal dose reached 1µg/min/1.73 m2 BSA. Blood was taken 

prior to initiation of isoproterenol infusion (‘baseline’) and in the final minutes of the infusion. 
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ECG, heart rate and blood pressure were monitored throughout the infusion. The half-life of 

isoproterenol is approximately 2–3 min (Goebel et al., 2000). The infusion was generally 

well-tolerated and all participants successfully completed the protocol.   

 

βAR-antagonist (blockade) procedure 

A sub group of 8 participants (age 34.6 ±11.5 years, 2 female) underwent the infusion twice 

following a 5-day course of either of 80mg of the βAR- antagonist propranolol or placebo. 

Condition was counter balanced and single blinded.   

 

Questionnaires 

In both studies, health and lifestyle variables were assessed by self-report questionnaire. 

Variables included recent symptoms of illness, exercise behaviour, alcohol consumption, 

caffeine consumption, smoking, and use of recreational drugs. Affective responses to the 

psychological stress task were assessed using the short-form of the Profile of Mood States 

(POMS) (McNair et al., 1992). Participants completed the POMS at baseline, immediately 

post-task and at 15-minutes recovery.  

 

Flow cytometry  

Blood was collected into EDTA tubes, maintained at room temperature and processed within 

4 hours after collection. Whole blood (100µl for CD8TL enumeration, 60µl for CD4TL 

enumeration and 25µl for NK/ NKT-like cell enumeration) was incubated for 20 minutes at 

4°C in the dark with a cocktail of fluorescent-labelled monoclonal antibodies: CD27-FITC, 

CD28-FITC, CD56-PE, perforin-PE, IgG2b-PE, CD3-PerCP, CD4-APC, CD27-APC, CD8-

APC-Cy7, (obtained from Becton-Dickinson, Oxford, UK), CCR7-PE (eBioscience, 

purchased from Insight Biotechnology Ltd, Middlesex, UK) and CD45RA-pacific blue 

(Invitrogen, Paisley, UK). Subsequently, red blood cells were lysed and removed by 

centrifugation (283G, 7-min at room temperature) following incubation with FACS Lysing 
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solution (Becton Dickenson, Oxford, UK). The remaining cell pellet was re-suspended in 100-

250ul PBS containing 1.5% paraformaldehyde, and stored in the dark at 4°C until analyses. 

Preparations were read within 18 hours using either a dual-laser flow cytometer (FACS-

Canto II; Becton Dickinson). Data were analyzed using Flowjo 7.4 (Treestar Inc, Ashland, 

OR, USA). A complete white blood cell count was obtained for each blood sample using a 

haematology analyzer (Coulter ACTdiff (Beckman Coulter, High Wycombe, UK). 

 

Assessment of CMV serostatus 

Anti-CMV Immunoglobulin G (IgG) in EDTA plasma was measured using a commercially 

available Enzyme-linked Immunosorbent Assay (ELISA) (Biocheck Inc, Forster City, CA) 

according to the manufacturer’s instructions. The presence of CMV-binding IgG 

(seropositive, CMVpos) indicates that an individual has been infected with CMV.   

 

Statistical analysis 

Repeated-measures Analysis of Variance (ANOVA) was used to assess changes in mood, 

cardiovascular parameters, and immunological measures. For pairwise comparisons, student 

t-tests were used. Variations in degrees of freedom reflect occasional missing data. Where 

means are presented, standard deviations (SD) were added in brackets while Standard 

Errors of Mean (SEM) are presented in Figures. Data were analyzed using SPSS 16 for 

Windows (SPSS Inc, Chicago, Illinois). 

 

 

RESULTS 

 

Psychological stress study 

Anxiety and cardiovascular responses 
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Increases in the tension-anxiety POMS subscale confirmed that the speech tasks were 

perceived as stressful (+7.8 (±4.6); F(1, 34) = 99.2, p<.001). As Figure 1a demonstrates, a 

physiological stress response was shown by the significant increases in SBP (+25.7 (±8.2) 

mmHg; F(1,35) = 353.7, p<.001), DBP (+16.8 (±8.3) mmHg; F(1,35) = 146.5, p<.001), and heart 

rate (+21.2 (±12.0) bpm; F(1, 35) = 113.5, p<.001), reflecting an increase in sympathetic drive 

as evidenced by a decrease in PEP (–11.6 (±12.1) ms; F(1, 24) = 23.2, p<.001). Additionally, 

there was a significant decrease in RMSSD (–23.7 (±21.9) ms; F(1,25) = 25.5, p<.001), 

reflecting vagal withdrawal. After a 15-min post-task recovery, all cardiovascular and 

autonomic measures had returned to baseline values. Further analyses confirmed that the 

task evoked a similar cardiovascular response within both serostatus groups (F values range 

between .03 - . 196, all p’s >.05). 

 

CMV serostatus is associated with enhanced mobilization of CD8TLs during 

psychological stress 

As can be seen in Figure 1b, the speech task induced a statistically significant increase in 

lymphocyte, total CD8TL, NK cell and NKT-like cell numbers. Repeated measures ANOVA 

yielded a significant time by serostatus interaction for total CD8TLs (F(1,30) = 5.2 p=.029), 

related to a larger increase in seropositive individuals. Further, a similar enhanced 

mobilization pattern was observed for lymphocytes (F(1,30) = 3.1, p=.090) and NKT-like cells 

(F(1,16) = 2.68 p=.121) within the CMVpos group. Within the various CD8TL subsets, shown in 

Table 1, a significant time by serostatus effect was also seen for the EM3 and the EMRA3 

CD8TL subsets. After adjustment for baseline values, this interaction remained significant for 

total CD8TLs and EM3 CD8TLs. The CMVpos and CMVneg groups were similar in terms of 

age, BMI, sex, and smoking distribution, and, unsurprisingly, the above results remained 

essentially unaltered when these variable were entered as covariates.  
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Figure 2 demonstrates significant results of bivariate correlations; an association existed 

between greater CD8TL stress reactivity and baseline values for NA (r(18) = -.33, p=.017), 

EM3 (r(18) =.82, p<.001) and EMRA3 CD8TLs (r(18) =.49, p=.027).  

 

βAR-agonist infusion study 

CMV serostatus is associated with enhanced mobilization of CD8TLs, NKT-like, and 

cytotoxic CD4TL cells during βAR-agonist infusion 

Overall, the results of the βAR-agonist infusion study replicated the findings of the stress 

study. Figure 3 demonstrates that the βAR-agonist infusion induced a pronounced 

lymphocytosis and mobilization of CD8TLs, NK cells and NKT-like cells. Analyses of time by 

serostatus interactions confirmed a significantly greater mobilization for CMVpos individuals of 

lymphocytes (F(1,17) = 4.9, p=.041), CD8TLs (F(1,17) = 24.1, p<.001) and NKT-like cells (F(1,17) = 

12.9, p=.002). The CD8TL and NKT-like cell results remained unaltered after correcting for 

baseline numbers. Table 2 compares the change in cell number between the CMVpos and 

CMVneg group for CD8TL and CD4TL subsets. A significant time by serostatus interaction 

was found for EM3 CD8TLs, EMRA2 CD8TLs and EMRA3 CD8TLs. Subsequent analyses 

was performed on CD4TL subsets, despite not finding a main effect of time for total CD4TLs, 

as we have recently demonstrated that minor cytotoxic CD4TL subsets are stress sensitive 

(Anane, In preparation). A significant time by serostatus interaction was found for 

CD27−CD4TLs, both perforin+ and perforin−. After adjusting for baseline values, these 

interaction effects remained significant for EM3 CD8TLs, EMRA2 CD8TLs, total 

CD27−CD4TLs and perforin−CD27−CD4TLs. Mean BMI, sex, and smoking distribution were 

again similar in the CMVpos and CMVneg group but, on this occasion, the CMVpos were 

significantly older than the CMVneg group (F(1,18) = 5.6, p=.03). Therefore, all analyses were 

repeated with age as a covariate and it was found that results were unaffected.  
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Figure 2 demonstrates significant results of bivariate correlations. Similar to the stress study, 

an association existed between greater CD8TL stress reactivity and baseline levels of EM3 

CD8TLs (r(15) =.46, p<.001) and EMRA3 CD8TLs (r(15) =.86, p=.027).  

 

Administration of the βAR-antagonist uniformly abrogated the effects of βAR-agonist infusion 

(data not shown) with the exception of NKT-like cell mobilization (F(1,6) = 8.9, p=.025), 

however the percentage change in cell number was small. Further, there was no difference 

in mobilization of NKT-like cells between the CMVpos and CMVneg groups (F(1,6) = 5.2, p=.063). 
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Figure 1. Effects of psychological stress on cardiovascular parameters (A) and on the mobilization of lymphocyte subsets (B). Lines 
indicate means (±SEM). *p<.05, *p<.01 and ***p<.001 indicates main effects of time for each group (CMVpos and CMVneg). ◊ p<.05 
indicates time by serostatus interaction. Results are from repeated measures ANOVA.
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Table 1. Mean (±SD) CD8+ T lymphocyte (CD8TL) subsets in CMV negative and CMV positive individuals at baseline, during the 
psychological stress task and following a 15 minute recovery, with results from repeated measures ANOVA.   

 
*p<.05, **p<.01 and ***p<.001 indicates a main effect for time within the participant group (CMV positive or CMV negative). 
 
 
 
 
 
 
 
 
 
 
 

 CMV negative CMV positive Time * CMV 

Cells/ µl Baseline Task Baseline Task F(df) p 

CD8TL Subsets       

NA 157 (27) 158 (87) 128 (84) 150 (109) F(1,19) = 2.77 =.112 

CM 17.1 (4) 18.3 (5) 18.9 (8.8) 24.8 (18) F(1,19) = 2.79 =.111 

EM1 99.9 (31) 111 (39)* 116 (35) 137 (54) F(1,19) = 0.67 =.424 

EM2 16.6 (9) 25.1 (16)*** 30.4 (16) 42.5 (17) F(1,19) = 0.64 =.435 

EM3 3.77 (3.4) 7.94 (8.8)** 36.2 (28) 78.7 (8.8)* F(1,19) = 6.69 =.018 

EMRA1 29.9 (12) 32.4 (11) 26.2 (9.4) 28.0 (8.6) F(1,19) = 0.15 =.705 

EMRA2 21.5 (8.6) 33.4 (14)*** 27.3 (15) 39.6 (10.4)** F(1,19) = 0.01 =.909 

EMRA3 5.86 (21) 13.9 (4.5)*** 46.9 (24) 91.8 (46)** F(1,19) = 12.86 =.002 
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Figure 2. Scatter plots showing significant relationships between CD8TL reactivity and 

baseline values of CD8TL subsets during psychological stress (A) and βAR-agonist infusion 

(B).
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Figure 3. Effects of β-adrenergic receptor (βAR) agonist infusion on the mobilization of lymphocyte subsets. Lines indicate means 
(±SEM). *p<.05, *p<.01 and ***p<.001 indicates main effects of time for each group (CMVpos and CMVneg). ◊p<.05, ◊◊p<.01 and ◊◊◊p<.001 
indicates time by serostatus interaction.  
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Table 2. Mean (±SD) CD8+ T lymphocyte (CD8TL) and CD4+ T lymphocytes (CD4TL) in CMV negative and CMV positive individuals at 
baseline and during β-AR agonist infusion, with results from repeated measures ANOVA. 

 CMV negative CMV positive Time*CMV 

Cells/ µl Baseline 1st Infusion Baseline 1st Infusion F(df) p 

CD8TL Subsets       

NA 122 (63) 95.7 (43)* 111 (107) 95.6 (101)* F(1,16) = 0.30 =.875 

CM 21.3 (13) 18.9 (10) 16.1 (11) 13.7 (8.9)* F(1,16) = 0.14 =.709 

EM1 134 (75) 127 (66) 88.0 (46) 88.5 (41) F(1,14) = 1.60 =.227 

EM2 25.5 (14) 36.8 (20)** 11.9 (5.9) 20.8 (11)** F(1,14) = 0.06 =.807 

EM3 8.2 (7.6) 15.6 (15)* 15.4 (16) 42.5 (42)* F(1,14) = 8.26 =.012 

EMRA1 34.9 (30) 34.2 (30) 34.0 (32) 40.3 (45) F(1,14) = 0.94 =.348 

EMRA2 21.7 (9.6) 37.2 (17)*** 27.4 (13) 68.0 (36)** F(1,14) = 6.54 =.023 

EMRA3 12.9 (14) 31.1 (29)** 92.4 (44) 282 (130)** F(1,14) = 26.49 <.001 

       

CD4TL Subsets       

CD27+ 800 (354) 641 (287)*** 697 (181) 608 (160)* F(1,16) = 0.90 =.356 

CD27− 53.4 (21) 46.3 (22)** 105 (63) 131 (67)* F(1,16) = 8.82 =.009 

CD27− perforin+ 0.39 (.31) 0.50 (0.33) 2.28 (1.4) 5.59 (3.4)** F(1,16) = 17.07 =.001 

CD27‒ perforin− 53.0 (21) 45.8 (22)** 103 (62) 126 (66)* F(1,16) = 6.30 =.023 
 

*p <.05, **p<.01 and ***p<.001 indicates a main effect of time within the participant group (CMVpos vs. CMVneg). 
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DISCUSSION 

 

The present study investigated the effects of CMV serostatus on the mobilization of 

lymphocyte subsets. During acute psychological stress, CMVpos individuals demonstrated an 

enhanced mobilization of CD8TLs. This enhanced reactivity was unrelated to autonomic, 

cardiovascular or psychological responses, and withstood correction for initial values (total 

CD8TLs at baseline), gender, age, and BMI. Further, the results were replicated by βAR-

agonist infusion, and blocked by βAR-antagonist administration, indicating involvement of β-

adrenergic mechanisms. To the best of our knowledge, this is the first study to demonstrate 

that infection history is a determinant of immune system responses to acute stress and 

neuro-endocrine stimulation.  

 

Replicating prior findings (Gillespie et al., 2000; Khan et al., 2002), we found that CMV 

serostatus was associated with substantial differences in the composition of the CD8TL 

memory pool. For example, CMVpos individuals had between 7 and 11 times more EM3 and 

EMRA3 CD8TLs than did CMVneg individuals. As these subsets express greater levels of 

β2AR and respond sensitively to adrenergic stimuli such as stress (Chapter 2) and exercise 

(Campbell et al., 2009), it was anticipated that CMVpos individuals would show an enhanced 

CD8TL response to stress and beta-adrenergic stimulation. Further, greater numbers of 

stress sensitive late-differentiated cells at baseline predicted an enhanced CD8TL 

mobilization, whilst high numbers of stress-unresponsive naive CD8TLs correlated with low 

mobilization. These analyses suggest that the enhanced CD8TL reactivity among CMVpos 

individuals, although unrelated to the total number of CD8TLs, is largely explained by a 

greater proportion of these CD8TLs being of a stress-responsive late-differentiated 

phenotype. The results of the βAR-agonist infusion similarly showed a substantially larger 

increase of EM3, EMRA2 and EMRA3 CD8TLs in seropositive individuals. In sum, CMV 

infection does substantially enhance the reactivity of the CD8TL population during stress and 
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βAR stimulation. Accumulation of late-differentiated CD8TL due to the latent infection may to 

a large extent explain this phenomenon.  

 

Further exploration of our data showed that NKT-like (CD56+CD3+) cells were successfully 

mobilized by acute psychological stress and βAR-stimulation and that CD27−CD4TL 

numbers were increased by βAR-agonist infusion. Further, CMV infection enhanced the 

βAR-induced mobilization of NKT-like cells and CD27−CD4TLs. Consistent with the literature, 

we found that CMV infection increased the number of perforin+ and perforin− CD27−CD4TLs 

(Casazza et al., 2006; Fletcher et al., 2005; Pourgheysari et al., 2007; Saez-Borderias et al., 

2006). We recently demonstrated that the cytotoxic CD4TL subset sensitively mobilizes to 

stress (Anane, In preparation). On that basis, we anticipated that the mobilization of 

perforin+CD27−CD4TLs would also be particularly enhanced in CMVpos individuals. However, 

the perforin+CD27− and the perforin−CD27−CD4TL subsets demonstrated greater mobilization 

in CMVpos participants. Thus, the enhanced response of CD27−CD4TLs in the CMVpos group 

may be explained by differentiation of CD4TLs (as demonstrated by loss of CD27 

expression) as a result of the infection, but is not necessarily related to cytotoxicity of the cell.   

 

Although still speculative at this point, the increased numbers of stress-sensitive T cells due 

to CMV infection, and subsequent higher stress-reactivity, may impact the efficiency of 

immunological processes, such as inflammation. CD28− T cells are readily activated by 

inflammation and can thereafter perpetuate and amplify the inflammatory response (Goronzy 

and Weyand, 2003; Weng et al., 2009). For example, late-differentiated T cells express 

stimulatory NK receptors, such as CD161 and CD144, which reduce the threshold of antigen-

specific activation and, under certain circumstance, may render cell activation independent of 

recognition of cognate antigen (Groh et al., 2003; Groh et al., 2001; Meresse et al., 2004; 

Nakajima et al., 2002; Saez-Borderias et al., 2006; Speiser et al., 2001; Verneris et al., 

2004). The inflammatory potential of mobilized cells is consistent with the idea that acute 
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stress may promote the migration of inflammatory cells and cause exacerbation of conditions 

such as atherosclerosis (Bosch et al., 2003a; Bosch et al., 2003b; Marsland et al., 2002; 

Nyklicek et al., 2005).  

 

The dramatic effects of CMV on the memory T cell population may, apart from CD8TL 

mobilization, influence other immunological parameters frequently studied in psycho-neuro-

immunology (PNI). This may include in-vivo measures such as vaccine responses, as well as 

in-vitro tests, such as mitogen-induced proliferation. For example, both CMV infection and 

the associated accumulation of differentiated T cells are linked with poorer vaccines 

responses (Saurwein-Teissl et al., 2002; Trzonkowski et al., 2003). Likewise, late-

differentiated T cells lack the ability to proliferate to mitogen (Effros, 1997). Thus CMV 

infection may be a relevant confounding factor in PNI research, in particular since a number 

of characteristics, such as socio-economic status and ethnicity, have been associated with 

CMV infection and correlate with both psychological and physical health (Aiello et al., 2009; 

Czernochowski et al., 2008; Gallagher et al., 2009; Glaser et al., 2000; Gouin et al., 2008; 

Lupien et al., 2007; Nelson et al., 2007; Pawelec et al., 2005; Trzonkowski et al., 2003; 

Wikby et al., 2005; Zajacova et al., 2009). Taking CMV serostatus into account may thus 

potentially partly explain previous observations in this field.  

 

A few limitations of the study are noted. Firstly, the enhanced NKT-like cell mobilization in 

CMVpos individuals did not quite reach significance in the psychological stress study. It is 

likely that this is due to a lack of power, as the pattern of responses between the two studies 

was remarkably consistent. Second, from the data obtained, any potential mechanism that 

may change mobilization potential in CMV infected individuals, other than altered baseline 

numbers, can not be determined. For example, it is possible that CMV-specific cells have 

greater stress sensitivity. Third, CD4TL mobilization was only assessed in the βAR-agonist 

infusion study and thus, it may only be inferred that psychological stress may induce a similar 
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heightened CD27−CD4TL mobilization in CMVpos individuals. Finally, only young (<48 years) 

healthy participants were included in the study. On the basis of the knowledge that cell 

differentiation, and thus cell mobilization, is related to age and CMV infection, it would be 

interesting to assess difference in cell mobilization in an older population.  

 

In sum, the current study demonstrates that CMV infection enhances the stress reactivity of 

T cell subsets. The result may have implications for health outcomes such as progression of 

inflammatory diseases. Although CMV is often studied due to its immunodominance, it 

should be remembered that it is one of many latent viruses that may alter T cell immunity. As 

such, it is possible that a number of infections, such as Epstein-Barr virus or Varicella virus, 

may also alter the stress reactivity of lymphocytes. These infectious agents are consider to 

be harmless to immunocompetent individuals, but the current results suggest that chronic 

viral infections may affect immunity, and stress mediated alterations in immunity, which in 

turn, may have implications for host health.  
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CHAPTER 4 

 

MOBILIZATION OF CMV- AND EBV-SPECIFIC CD8+ T 

LYMPHOCYTES DURING ACUTE PSYCHOLOGICAL STRESS AND 

β-ADRENERGIC RECEPTOR STIMULATION 

 

 

ABSTRACT 

 

Objective: Recently we demonstrated that CD8+ T Lymphocyte (CD8TL) subsets with a 

differentiated, effector-like phenotype become selectively mobilized by adrenergic stimuli 

such as stress, exercise and βAR-agonist infusion. CD8TL differentiation is related to the 

antigen-specificity of the cell; for example, Cytomegalovirus (CMV)-specific CD8TLs show a 

further degree of differentiation than, for example, Epstein-Barr virus (EBV)-specific CD8TLs. 

Further, recent findings demonstrate that infection with CMV can increase the stress-

reactivity of the CD8TL population. Therefore, the current study tested if antigen-specificity is 

a determinant of CD8TL responsivity to acute stress and β-adrenergic stimulation and 

further, whether CMV-specific cells demonstrate heightened mobilization. Methods: In two 

studies, we compared CD8TL mobilization in response to an acute stress (speech task; 

n=29) and βAR-agonist infusion (isoproterenol infusion with (n=6) or without (n=4) prior 

administration of a βAR-antagonist). CMV-specific and EBV-specific CD8TLs were identified 

using MHC-class I tetramers and were further classified into early-, intermediate- or late- 

differentiated cells using the surface markers CD45RA, CD28, and CD27. Results: During 

acute stress, CMV tetramer positive (CMVtet+) CD8TLs (+94 Δ%) showed a larger 

mobilization response than EBV tetramer positive (EBVtet+) CD8TLs (+54 Δ%, p<.05) and the 
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total memory CD8TL populations (+61 Δ%, p<.01). Subsequent analyses revealed that 

CD28− (intermediated- and late-differentiated) cells mobilized more than CD28+ (early) cells 

regardless of antigen-specificity. However, early and intermediate CMVtet+ cells and early 

EBVtet+ CD8TLs demonstrated enhanced stress responsiveness when compared to the 

corresponding phenotype within the total CD8TL population (i.e. intermediate with 

intermediate). Infusion of a βAR-agonist replicated the stress findings, and agonist-induced 

mobilization was abrogated by βAR-antagonist administration. Conclusion: In conclusion, 

cell differentiation is a major determinant of CD8TL mobilization but antigen-specificity may 

also explain the distinct stress- and βAR-sensitivity of antigen-specific cells. Such differential 

sensitivity could have implications for the control of viral reactivation during stress. 
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INTRODUCTION 

 

Lymphocytosis is one of the most replicated effects of stress upon the immune system and is 

largely driven by an increase in cytotoxic cell numbers, such as CD8+ T lymphocytes 

(CD8TLs), gamma-delta (γδ) T cells, and natural killer (NK) cells (Anane et al., 2009; 

Benschop et al., 1996b; Campbell et al., 2009; Dimitrov et al., 2010; Segerstrom and Miller, 

2004). It has been proposed that stress lymphocytosis enhances immunosurveillance, in 

parallel with increasing cardiovascular and metabolic activity, in the face of potential threat 

(Benschop et al., 1996b; Bosch et al., 2005; Dhabhar and McEwen, 1997; Dopp et al., 2000). 

The essential role of sympathetic activation in mobilization has been conclusively 

demonstrated, and involves stimulation of beta-2-adrenergic receptors (β2AR) that are 

expressed upon the surface of lymphocytes (Benschop et al., 1996a; Benschop et al., 1996b; 

Dimitrov et al., 2010).  

 

Cytotoxic lymphocyte mobilization displays a marked selectivity for differentiated memory 

CD8TLs that have developed an effector phenotype and express enhanced β2AR expression 

(Anane et al., 2010; Campbell et al., 2009; Dimitrov et al., 2010). For example, the 

magnitude of stress mobilization is greater in late-differentiated CD8TLs (CD28−CD27−) than 

in intermediate-differentiated cells (CD28−CD27+), while early-differentiated cells 

(CD28+CD27+) demonstrate the smallest response. The greater expression of β2ARs on late-

differentiated cells compared to early-differentiated CD8TLs may provide a mechanism for 

enhanced stress and βAR-stimuli. As CD8TLs differentiate into effector memory phenotypes, 

they gain effector functions such as cytotoxicity (perforin+, granzyme+), a tissue migratory 

profile (CCR7−CD62L−CD11a+), and increased production of IFN-γ (Monteiro et al., 2007; 

Romero et al., 2007). Similar to stress sensitivity, the effector potential of CD8TLs increases 

from early-differentiation, to intermediate, and finally to late (Monteiro et al., 2007; Romero et 

al., 2007). Further, late-differentiated cells express NK cell receptors, such as NKG2D, and 
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can therefore exhibited innate effector functions (Ogasawara and Lanier, 2005; Weng et al., 

2009). CD8TLs differentiation is caused by repeated cell activation and extensive rounds of 

cell division and thus, stress sensitive cells are also characterized by short telomeres and 

decreased telomerase activity (Akbar and Vukmanovic-Stejic, 2007; Effros, 2004; Monteiro et 

al., 2007; Romero et al., 2007). In sum, acutely stressful events rapidly mobilize highly 

differentiated memory CD8TLs that can migrate into inflamed tissue and have immediate 

effector potential.  

 

The differentiation of CD8TLs is largely driven by infectious history. It is thought that 

repeated antigen exposure results in concomitant rounds of activation and cell division and 

gradually drives antigen-specific CD8TLs towards a late-differentiated phenotype (Appay et 

al., 2002; van Lier et al., 2003). For example, Cytomegalovirus (CMV), a latent herpes virus 

carried by 50-70% of western populations, may never reach true latency and has the 

strongest impact on differentiation; CD8TLs directed against CMV-infected cells typically 

exhibit a late-differentiated phenotype. In contrast, less vigorously reactivating latent viruses, 

such as Epstein-Barr virus (EBV), another very common (~90% infected) latent herpes virus, 

typically generate EBV-specific CD8TLs of an early- or intermediate-memory phenotype 

(Appay et al., 2002; Monteiro et al., 2007; van Lier et al., 2003). The total CD8TL population 

is mainly constituted by stress-unresponsive naïve cells and early-memory cells. On this 

basis, it would be predicted that CMV-specific CD8TLs would display the strongest sensitivity 

to acute stressors and that EBV-specific CD8TLs mobilization would be similar to the total 

CD8TL response. Normal CD8TL immunity is paramount in controlling latent viruses as 

demonstrated by the increased risk of CMV reactivation in stem cell transplant recipients who 

have dysfunctional CMV-specific T cell responses (Gratama et al., 2008; Lilleri et al., 2008; 

Morita-Hoshi et al., 2008; Ozdemir et al., 2002). As such, this phenomenon may have 

relevance for the association between latent virus reactivation and stress (Sarid et al., 2001, 

2004; Stowe et al., 2001). In addition, the results may determine whether the enhanced 
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CD8TL response within CMV infected individuals, as described in chapter 3, is due to a 

enhanced mobilization of CMV-specific cells, or whether phenotype (i.e., irrespective of 

antigen specificity) is a determinant of mobilization.  

 

Virus-specific CD8TLs can be identified using major histocompatibility complex (MHC)-class I 

tetramers. The CD8TL T cell receptor (TCR) can bind to specific viral peptides if the peptides 

are presented within a MHC-class I molecule. MHC-class I molecules that contain peptides 

from a chosen virus can be synthesised and combined to form a tetramer structure that is 

conjugated to a fluorochrome (Altman et al., 1996). Tetramers bind to peptide-specific 

CD8TLs in-vitro and the bound cells can be detected by flow cytometry. The aim of the 

current study was to determine if viral specificity, as well as cell differentiation, could predict 

the stress sensitivity of CD8TLs. A secondary aim was to determine whether any effect of 

stress could be reproduced by βAR-stimulation. We analysed the mobilization of CMV-

specific and EBV-specific CD8TLs using flow cytometry and MHC-class I tetramers. Viral-

specificity was determined simultaneously with expression of the differentiation markers 

CD45RA, CD28 and CD27. This study represents the first detailed investigation on stress-

induced mobilisation of virus-specific CD8TLs. 

 

 

METHODS 

 

Participants and virus-specific CD8TL screening 

Participants were recruited from community volunteers and staff and students attending the 

University of Birmingham (UoB), UK or University of California San Diego (UCSD), US. 

During an initial visit to the laboratory, participants gave informed consent and provided a 

2ml EDTA blood sample by venepuncture from a palpable lower arm vein. Blood was 

analysed for the presence of CMV tetramer positive (CMVtet+) and EBV tetramer positive 
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(EBVtet+) CD8TLs (method described in Flow cytometry section). Participants found to have 

CMVtet+ and/or EBVtet+ CD8TLs were then invited to partake in the psychological stress or 

βAR-agonist infusion study. All study volunteers reported to be in good health and were non-

medicated with the exception of the contraceptive pill. Participants were instructed not to 

engage in strenuous physical exercise and to refrain from consuming alcohol or non-

prescription drugs 24 hours before their experimental session, and to abstain from smoking 

and caffeine on the day of the experiment. Student volunteers performing the psychological 

stress task and all volunteers undertaking the infusion procedure received monetary 

compensation for their participation. Participants provided informed consent and study 

protocols were approved by the appropriate institutional review board (UoB or UCSD).  

 

Psychological stress study 

Procedure  

Upon participant (age 32.6 years, SD±14.5; 14 female/ 15 males) arrival at the UoB: (1) 

electrodes for electrocardiography (ECG) and impedance cardiography (ICG) were attached; 

(2) a 20-gauge intravenous cannula (Becton-Dickinson) was placed into a palpable vein in 

the lower arm; and (3) an occluding cuff was placed over the brachial artery of the other arm 

for blood pressure measurements. Subsequently, while seated in a comfortable upright 

position, participants filled out several questionnaires and engaged in leisure reading. After 

20 minutes, a baseline blood sample was obtained and the procedure for the laboratory 

stressor was initiated.  

 

Public Speaking Task  

To induce stress, participants performed two back-to-back speeches, each with 2 minutes of 

preparation and 4 minutes of speech delivery (Bosch et al., 2005; Bosch et al., 2003b) Social 

stress was enhanced by recording the speeches on videotape and by the attendance of an 

audience of three. For the first speech, the participant had to defend him/herself after being 
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falsely accused of shoplifting (Saab et al., 1989) and, for the second speech, the participant 

gave a presentation about his or her best and worst personal characteristics (van Eck et al., 

1996). Instructions for the task were presented via a DVD recording, which ensured 

standardization of instructions and timing of the tasks. Including instructions, the task lasted 

15 minutes. A blood sample was obtained during the second presentation, 13 minutes after 

initiation of the task. Following the task, the participants again engaged in leisure reading, 

and a final blood sample was obtained after 15 minutes of recovery. 

 

Cardiovascular assessment  

Assessment of cardiovascular responses focused on cardiac sympathetic and vagal control 

as previously described (Berntson et al., 1993; Bosch et al., 2003a). Indices of sympathetic 

and parasympathetic drive were obtained by analysis of ECG and ICG signals. The thoracic 

ICG and ECG signals were recorded from six Ag-AgClspot-electrodes (AMI type 1650-005, 

Medtronic) using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS) device. The 

ECG and ICG complexes were ensemble averaged with reference to the ECG R-wave 

across 30-sec periods. From these 30-sec ensembles, average levels were computed for 

heart rate (HR) and pre-ejection period (PEP). These means were further averaged over a 6-

min pre-task baseline, each 6-min task and a 6 minute post task recovery. Changes in PEP 

were used to index changes in cardiac sympathetic drive, whereas heart rate variability, or 

Root Mean Square of Successive Difference (RMSSD), was used to index changes in 

cardiac vagal tone.  

 

β-agonist infusion study 

Procedure 

Isoproterenol infusion was performed according to a standardized protocol (Mills et al., 2000; 

Mills et al., 1997). Upon arrival at the laboratory, UCSD, participant (age 40.3 years, SD±9.1; 

2 female/ 4 male) height and weight were taken to confirm correct calculation of body surface 
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area (BSA) used to determine the βAR-agonist infusion rate. Subsequently, participants were 

in a semi-supine position for 15 minutes following placement of: 1) two 22-gauge intravenous 

cannulas (Becton-Dickinson), one for drawing blood samples and one for βAR-agonist 

infusion, inserted into a palpable vein in opposite lower arms; 2) three spot ECG electrodes; 

and 3) an occluding cuff on the non-infusion arm.  

 

βAR-agonist was then infused at incremental rates (0.1µg, 0.5µg and 1µg /min/1.73 m2 BSA 

for 5 minutes each) for 15 minutes until the participants heart rate had increased by ~20 

beats per minute (bpm) compared to resting heart rate. The final infusion rate was 

maintained for 10 minutes. On average, the maximal dose reached 1µg/min/1.73 m2 BSA. 

Blood was taken prior to initiation of isoproterenol infusion (‘baseline’) and in the final 

minutes of the infusion. ECG, heart rate and blood pressure were monitored throughout the 

infusion. The half-life of isoproterenol is approximately 2–3 min (Goebel et al., 2000). The 

infusion was generally well-tolerated and all participants successfully completed the protocol.    

 

βAR-antagonist (blockade) procedure 

A sub group of 4 participants (age 43.3 ±10.0 years, 1 female) performed the βAR-agonist 

infusion procedure twice; once following five consecutive days of administration with 80mg of 

the βAR-antagonist propranolol and once following 5 days administration of a placebo. Drug 

administrations were counter-balanced and single-blinded.   

 

Questionnaires 

In all studies, health and lifestyle variables were assessed by self-report questionnaire. 

These variables included recent symptoms of illness, exercise behaviour, alcohol 

consumption, caffeine consumption, smoking, and use of recreational drugs. Affective 

responses to the psychological stress task were assessed using the short-form of the Profile 
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of Mood States (POMS) (McNair et al., 1992). Participants completed the POMS at baseline, 

immediately post-task and at 15-minutes recovery.  

 

Flow cytometry  

Whole blood was collected into EDTA tubes, maintained at room temperature and processed 

within 4 hours after collection. In brief, 9 ml of ammonium chloride lysis solution (0.15M 

NH4Cl, 10mM KHCO3, 0.1mM EDTA) was added to 1 ml of whole blood to remove red blood 

cells. After 10 minutes of gentle rotation on ice, 5 ml of phosphate-buffered saline (PBS) was 

added to stop the reaction, and the samples were centrifuged (283G, 7-min at room 

temperature). After supernatant removal, the sample was incubated for 25 minutes at room 

temperature with MHC-I tetramers, conjugated with streptavidin phycoerythrin (PE) directed 

against CMV or EBV epitopes (Table 1). Tetramers used were restricted to common HLA 

class I subtypes (population coverage ~ 10-55% each) and directed against highly 

immunodominant viral epitopes (Khan et al., 2002a; Longmate et al., 2001; Mori et al., 1997; 

Price et al., 2005; Sette and Sidney, 1999; Steven et al., 1997). The PE-streptavidin was 

purchased from Invitrogen, Paisley UK and the tetramers were synthesized in house 

(Institute for Cancer Studies, University of Birmingham, UK; (Altman et al., 1996)). 

Subsequently, samples were incubated for 20 min at room temperature with a cocktail of 

fluorescent-labelled monoclonal antibodies: CD45RA-FITC, CD3-PerCP, CD27-APC, CD8-

APC-Cy7 (Becton-Dickinson, Oxford, UK) and CD28-PE-Cy7 (eBioscience, Insight 

Biotechnology Ltd, Middlesex, UK). Cell suspensions were then washed and re-suspended in 

500µl PBS containing 1.5% paraformaldehyde, and stored in the dark at 4°C until analysis. 

Preparations were read within 18 hours. Approximately 1x106 gated lymphocytes were 

acquired from each preparation using a dual-laser flow cytometer (FACS-Canto II, Becton 

Dickinson, Oxfordshire UK). Data were analyzed using Flowjo 7.4 (Treestar Inc, Ashland, 

OR, USA). A complete white blood cell count was obtained for each blood sample using a 
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haematology analyzer (Coulter ACTdiff, Beckman Coulter, High Wycombe, UK or Coulter 

GEN-S haematology analyser, Beckman-Coulter, Miami, USA). 

 

Data analysis 

CD8TL mobilization 

The aim of this study was to compare the mobilization of the total CD8TL population with that 

of the total CMVtet and EBVtet+ CD8TL populations. All antigen-specific cells are stress 

sensitive (CCR7-) memory cells (Atanackovic et al., 2006). To ensure fair comparisons were 

made, antigen-specific CD8TL mobilization was compared to the “total-memory CD8TL” 

response by removing non-stress responsive naïve (CD45RA+CD28+CD27+) CD8TLs from 

the total CD8TL analysis. For the same reason, naïve CD8TLs were also removed from the 

early CD8TL population and the response of the remaining “early-memory CD8TLs” was 

then compared to that of early EBVtet+ and early CMVtet cells.    

 

Statistical analysis 

The Kolmogorov-Smirnov test indicated that the immunological data was not normally 

distributed. Therefore non-parametric analysis (Friedman test) was used to examine the 

effects of the psychological stress task on cardiovascular, psychological and immunological 

parameters and the effect of β-agonist infusion and βAR-antagonist procedure on cell 

numbers. For pairwise comparisons, Wilcoxon signed rank tests were used. Where medians 

are presented, interquartile range is given in brackets. Variations in degrees of freedom 

reflect occasional missing data. Data were analyzed using SPSS 16 for windows (SPSS Inc, 

Chicago, Illinois). 
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RESULTS 

 

Psychological stress study 

Anxiety and cardiovascular responses 

Increases in the tension-anxiety POMS subscale confirmed that the speech tasks were 

perceived as stressful (+9.0 (6.5); χ2 (27) = 44.7, p<.001). A physiological stress response was 

demonstrated by the significant increases in SBP (+30.0 (13.1) mmHg; χ 2 (27) = 51.1, 

p<.001), DBP (+17.3 (9.0) mmHg; χ 2 (27) = 42.6, p<.001), and HR (+ 23.1 (13.0) bpm; χ 2 (27) = 

43.5, p<.001), reflecting an increase in sympathetic drive as evidenced by a decrease in PEP 

(–7.5 (10.6) ms; χ 2 (27) = 21.4, p<.001). Additionally, there was a significant decrease in 

RMSSD (–12.8 (26.5) ms; χ 2 (27) = 21.6, p<.001), reflecting vagal withdrawal. At 15-min 

recovery, all cardiovascular and autonomic measures had returned to baseline values. 

 

Preferential mobilization of CMV-specific CD8TLs during psychological stress 

As can be seen in Table 2, the speech task effectively induced significant mobilization of 

lymphocytes and all CD8TL populations. Figure 2 shows the total CMVtet+ CD8TL response 

(+94 Δ%) was significantly greater than the total EBVtet+ CD8TL mobilization (+54 Δ%; z = -

2.2, p=.025) and total memory CD8TL response (+61 Δ%; z = -2.7, p=.008). The mobilization 

of the total memory CD8TL population was not different from the total EBVtet+ CD8TL 

population.  

 

Figure 2 demonstrates that, consistent with previous findings, stress responsiveness 

increased from the early phenotype, to intermediate and then to late, in each of the CD8TL 

populations, apart from the CMV-specific cells; no difference was observed between the 

intermediate and late CMVtet+ subsets. Not all cells at the same stage of differentiation but 

with different antigen-specificity mobilized to the same extent; early EBVtet+ and early CMVtet 

CD8TLs had greater stress sensitivity than the total early-memory CD8TL population (Δ%; z 
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= -3.0, p=.003 and Δ%; z = -2.8, p=.004 respectively). Further, intermediate CMVtet+ CD8TLs 

mobilized to a greater extent than the total intermediate CD8TL subset (Δ%; z = -2.4, 

p=.016). No other subset differences were found between the mobilizations of distinct 

antigen-specific CD8TLs.  

 

βAR-agonist infusion study 

βAR-agonist mobilized CMV-specific CD8TLs and βAR-antagonist administration 

inhibited the response 

As shown in Figure 3, the βAR-agonist infusion data replicated the findings of the 

psychological stress study, although the difference in mobilization between CMVtet+ CD8TLs 

and the total memory CD8TL population was not significant, perhaps due to the small sample 

size. However, the findings do confirm that the CMVtet+ CD8TL mobilization is mediated by 

βAR-mechanisms as demonstrated by successful mobilization of CMVtet+ cells during the 

βAR-agonist infusion and the subsequently abrogation of this effect by βAR-antagonist. In 

addition, Figure 3 demonstrates that the mobilization of early CMVtet+ CD8TLs was 

significantly greater than the early-memory CD8TL subset response (Δ%; z = -2.2, p=.028). 

No differences were found between intermediate and late CMVtet+ subset mobilization when 

compared to the total intermediate and total late CD8TL subset responses respectively.  
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Table 1. MHC class I restricted peptides used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Virus Viral Antigen HLA-
Restriction 

Sequence 
Positions Peptide Sequence 

CMV pp50 A1 245-253 VTEHDTLLY 

     

 Lower matrix protein pp65 A2 495-503 NLVPMVATV 

 Lower matrix protein pp65 B7 265-275 RPHERNFGTVL 

 Lower matrix protein pp65 B7 417-426 TPRVTGGGAM 

     

 Intermediate early protein-1 B8 199-207 ELKRKMIYM 
     

EBV LMP2 protein (latent cycle) A2 426-434 CLGGLLTMV 

     

 BMLF1 protein (lytic cycle) A2 280-288 GLCTLVAML 

     

 BZLF-1 protein (lytic cycle) B8 190-197 RAKFKQLL 
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Figure 1. Pie charts showing the subset constitution of antigen-specific CD8TLs. Consistent 
with the literature, the majority of EBVtet+ CD8TLs were of the low stress-responding early 
phenotype (A) and a large proportion of CMVtet+ CD8TLs were stress sensitive late 
differentiated cells (B).  
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Table 2. Median (interquartile range) of lymphocytes and CD8TL subset numbers at each 
time point during the psychological stress study.  

All p-values were <.035 when analysed using the non-parametric Friedman test (χ 2-values ranged 
between 6.7 and 41.3) and when analysed using the parametric repeated measures ANOVA on the Ln 
(1+ cell number) (F-values ranged between 7.77 and 90.9). 
 
 

Cell type (cells/μl) Baseline Task Recovery n 

Lymphocytes 1700 (550) 2400 (1000) 2000 (850) 29 

     

Total CD8TLs 392.2 (207) 580.2 (322) 474.4 (308) 29 

Total Memory CD8TLs 236.9 (194) 356.5 (444) 267.0 (247) 19 

Naïve CD8TLs 132.2 (78) 134.3 (107) 134.7 (101) 19 

Early-memory CD8TLs 110.3 (82) 129.1 (79) 125.6 (85) 19 

Intermediate CD8TLs 43.68 (53) 89.82 (104) 56.44 (66) 19 

Late CD8TLs 72.12 (118) 159.99 (448) 61.48 (254) 19 

     

Total EBVtet+ CD8TLs 2.180 (3.2) 3.201 (5.1) 2.527 (3.6) 20 

Early EBVtet+ CD8TLs 1.313 (1.8) 1.914 (2.8) 1.468 (2.4) 12 

Intermediate EBVtet+ CD8TLs 0.604 (1.1) 0.853 (2.4) 0.648 (1.4) 12 

Late EBVtet+ CD8TLs 0.105 (0.1) 0.219 (0.2) 0.140 (0.2) 12 

     

Total CMVtet+ CD8TLs 5.431 (25) 7.306 (55) 4.605 (31) 17 

Early CMVtet+ CD8TLs 1.866 (17) 3.103 (27) 1.913 (13) 11 

Intermediate CMVtet+ CD8TLs 5.619 (18) 10.68 (44) 6.514 (26) 11 

Late CMVtet+ CD8TLs 13.80 (29) 31.70 (93) 19.72 (50) 11 
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Figure 2. Individual effects of a psychological stress task on the mobilization of CD8TLs, EBVtet+ CD8TLs and CMVtet+ CD8TL populations. 
Median relative change in cell number (∆ %) in response to stress (Wilcoxon signed ranks test). *p<.05, **p<.01 and ***p<.001 indicates 
the magnitude of mobilization is significantly different between subsets. 
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Figure 3. Individual effects of a βAR-agonist infusion and βAR-antagonist administration on the mobilization of CD8TL and CMVtet+ CD8TL 
populations. Relative change in cell number (∆ %) in response to stress (Wilcoxon signed ranks test). *p<.05 indicates the magnitude of 
mobilization is significantly different between subsets. 
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DISCUSSION 

 

The present study investigated the effect of acute psychological stress and β-adrenergic 

receptor (βAR) stimulation on the mobilization of CMV and EBV-specific CD8TLs. As 

anticipated, the results showed a strong heterogeneity in responses; CMV tetramer positive 

(CMVtet+) CD8TLs (+94 Δ%) showed a larger mobilization response than EBV tetramer 

positive (EBVtet+) CD8TLs (+54 Δ%, p<.05) and the total memory CD8TL populations 

(CD45RA−CD28+CD27+; +61 Δ%, p<.01). CMVtet+ and EBVtet+ subset mobilization increased 

in parallel with greater differentiation (late > intermediate > early) similar to total CD8TLs and 

consistent with previous findings (Chapter 2). The mobilization of CMVtet+ CD8TLs was 

replicated by βAR-agonist infusion and blocked by βAR-antagonist administration, 

suggesting involvement of beta-adrenergic mechanisms.  

 

Differences in the stress responsiveness of antigen-specific CD8TLs may be explained by 

their varying levels of differentiation. As demonstrated in chapter 2, and consistent with the 

literature, CD8TL mobilization increases in parallel with increasing cell differentiation towards 

an effector-like phenotype (Atanackovic et al., 2006; Campbell et al., 2009; Dimitrov et al., 

2010). Indeed, CMVtet+ and EBVtet+ subsets demonstrated similar mobilization response 

pattern to total CD8TLs (late > intermediate > early). As shown in Figure 1, CMVtet+ CD8TLs 

were mainly of an intermediate or late phenotype and thus, are highly stress responsive. In 

contrast, nearly all (~96%) of EBVtet+ CD8TLs were of a less stress sensitive early- or 

intermediate-differentiated phenotype. However, differentiation status may not fully explain 

the larger mobilization of CMVtet+ CD8TLs, as the early and intermediate CMVtet+ subsets 

showed an enhanced responsivity compared to the same subsets within the total CD8TL 

population. This suggests that CMV-specific cells may be intrinsically more responsive, even 

at the same stage of differentiation. As such, greater mobilization of CD8TLs within CMV 

seropositive individuals, as demonstrated in Chapter 3, may not be solely explained by an 
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increase in the number of stress-responsive late-differentiated cells. The mechanisms 

underlying such enhanced sensitivity would require further investigation. 

 

Although there was a clear difference between the mobilization of total memory CD8TL and 

CMVtet+ CD8TLs, this difference is likely larger than demonstrated here. The tetramers only 

identify CMV-specific cells that specifically recognize the CMV peptide fragments used, and it 

is likely many other CMV-specific cells remained undetected (Betts et al., 2000; Khan et al., 

2002b; Sylwester et al., 2005). It is estimated that a large proportion (~10%) of memory 

CD8TLs are indeed CMV-specific in healthy CMVpos adults and this number may rise to 

>20% in almost a third of the population (Sylwester et al., 2005). The unidentified and 

CMVtet+ cells were included within the total CD8TL population and thereby may have 

increased the total memory CD8TL stress response. This aspect may explain why during 

infusion the response of CMVtet+ CD8TLs and total memory CD8TLs did not significantly 

differ from each other, although the relatively small samples size may also have contributed. 

The theory can be extended to CD8TL subsets and may have prevented further differences 

between CMVtet+ subsets and CD8TLs subsets from being demonstrated i.e., late CMVtet+ 

compared to late CD8TLs during the stress task.  

 

The current study used a βAR-agonist and a βAR-antagonist. Therefore, it was only possible 

to infer that βAR, rather than α-AR, mechanisms, were involved in the mobilization of CMVtet+ 

CD8TLs; this methodology did not allow us to identify the specific βAR subtype involved. 

However, evidence suggests that increased expression of the β2AR on stress responsive 

CD8TLs may explain the specificity of stress mobilization (Dimitrov et al., 2010). This would 

follow results found for natural killer cells (Benschop et al., 1994; Schedlowski et al., 1996). 

Indeed, CMV infection up-regulates β2AR gene (ADRB2) expression, which may infer 

increase protein expression and, in turn, raise the stress sensitivity of CD8TLs (Bosch, In 

preparation). Inclusion of a β1AR- and β3AR-antagonist would clarify β2AR receptor subtype 
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involvement in future studies (Benschop et al., 1994; Benschop et al., 1996b; Schedlowski et 

al., 1996).  

 

Increased β-adrenergic sensitivity may not merely change a cell’s mobilization response; it 

could also alter other functions. Indeed, adrenergic stimulation of T cells has been shown to 

alter a variety of effector functions including proliferation, lytic activity, and cytokine 

production (Bartik et al., 1993; Borger et al., 1998; Hatfield et al., 1986; Kalinichenko et al., 

1999; Leo and Bonneau, 2000; Sekut et al., 1995). Considering normal cell mediated 

immunity is essential for controlling latent viruses, extrapolation of enhanced β-adrenergic 

sensitivity to other latent-virus specific cell functions may provide a mechanism for the 

observed loss of viral control during acute stress (Glaser and Kiecolt-Glaser, 2005; Gratama 

et al., 2008; Lilleri et al., 2008; Morita-Hoshi et al., 2008; Ozdemir et al., 2002; Sarid et al., 

2001, 2004). Supporting evidence for this notion can be drawn from the murine model; 

stress-induced reactivation of Herpes Simple Virus type-1 (HSV1) is associated with reduced 

CD8TL IFN-γ production and cell proliferation, and further, stress alters HSV1-specific 

CD8TL surveillance of latently infected neurons (Freeman et al., 2007; Padgett et al., 1998). 

The classic explanation for the link between stress and loss of latent viral control is that 

stress hormones directly stimulate viral gene expression via activation of promoter regions 

within the virus genome (Glaser et al., 1995; Prosch et al., 2000). However, altered CD8TL 

immunity by βAR-stimulation may provide another possible mechanism.  

 

It has been speculated previously that mobilization may enhance inflammation (Bosch et al., 

2003a; Bosch et al., 2003b; Marsland et al., 2002; Nyklicek et al., 2005). Here, we will focus 

specifically on how CMV infection may amplify stress-exacerbated inflammation. CMV 

infection of endothelial cells induces expression of surface molecules that promote leukocyte 

recruitment and migration, such as ICAM-1 (Groh et al., 2001; Kloover et al., 2000; Knight et 

al., 1999; Waldman and Knight, 1996; Waldman et al., 1998). Further, CMV-infected 
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endothelial cells can activate T cells, possibly through the transfer of CMV antigens by 

exosome-like particles to antigen presenting cell (Walker et al., 2009). Moreover, recruited T 

cells can proliferate and cause endothelial cell damage (Bolovan-Fritts et al., 2004; Waldman 

and Knight, 1996; Waldman et al., 1998). Migration of leukocytes into tissue is a major 

aspect in various inflammatory conditions, such as atherosclerosis, and enhanced 

mobilization of CMV-specific cells may promote initial cell recruitment (Libby et al., 2002; 

Ross, 1999). Heightened cell recruitment may also enhance autoimmune conditions such as 

rheumatoid arthritis (RA). Indeed, CD8TLs found in synovial fluid are activated late-

differentiated cells and a large proportion (up to 15.5%) are EBVtet+ or CMVtet+ (Tan et al., 

2000). As infection of synovial tissue by EBV and CMV is increased in RA patients, it is 

possible that recruited T cells will elicit an immune response in the inflamed joint (Mehraein 

et al., 2004).  

 

It has frequently been noted that stress appears to have a larger impact on immunity with 

increasing age (Gouin et al., 2008; Graham et al., 2006; Segerstrom et al., 2008). For 

example, older adults tend to have poorer vaccine responses than younger individuals and 

chronic stress further reduces the poor immunisation response, particularly in older 

individuals (Goodwin et al., 2006; Kiecolt-Glaser et al., 1996; Pedersen et al., 2009). 

Interestingly, cells that accumulate in immunosenescence and are likely, therefore, to 

contribute to the age-related decline in immune function, are the same cells that exhibited an 

increased sensitivity to acute stress and βAR-stimulation: late-differentiated and CMV-

specific CD8TLs (Gillespie et al., 2000; Khan, 2007; Khan et al., 2002b; Sansoni et al., 

2008). For example, increased numbers and proportions of late-differentiated cells and CMV 

infection predicts weaker vaccination responses, faster cognitive decline, and increased 

incidences of morbidity and mortality in older adults (Pawelec et al., 2005; Trzonkowski et al., 

2003; Wikby et al., 2005). That the differentiated, or ‘aged’, CD8TL exhibits altered neuro-



 94

endocrine sensitivity may thus, provide a mechanistic explanation for why stress could have 

a larger impact in older adults.  

 

In summary, this study is the first to demonstrate that stress-induced mobilization of CD8TLs 

is, in part, determined by antigen-specificity. Larger responses were seen for CMV-specific 

cells compared to EBV-specific and total CD8TLs, and appeared driven by a greater 

differentiation and concomitant enhanced adrenergic sensitivity of CMV-specific CD8TLs. As 

our understanding of the impact of CMV infection upon adaptive immunity grows, future 

research on the potential clinical outcomes of this phenomenon will be increasingly 

warranted. 
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CHAPTER 5 

 

PROGENITOR CELLS ARE MOBILIZED BY ACUTE 

PSYCHOLOGICAL STRESS BUT NOT BETA-ADRENERGIC 

RECEPTOR AGONIST INFUSION 

 

ABSTRACT  

 

Objectives: Stimuli that activate the sympathetic nervous system, such as acute 

psychological stress and exercise, rapidly invoke a robust mobilization of lymphocytes into 

the circulation. Recent evidence suggests that bone marrow-derived progenitor cells (PCs) 

also mobilize in response to sympathetic stimulation such as exercise and trauma. Methods: 

In two studies, we investigated PC mobilization in response to an acute psychological 

stressor (speech task; n=26) and βAR-agonist infusion (isoproterenol; n=20). A subset of 8 

participants completed the infusion protocol twice, with or without administration of the βAR-

antagonist propranolol. Haematopoietic stem cell (HSC) subsets (common lymphoid PCs, 

common myeloid PCs, granulocyte/ macrophage PCs and megakaryocyte/ erythrocyte PCs) 

and endothelial PCs (EPCs) were enumerated by flow cytometry. Results: Psychological 

stress induced a significant mobilisation of total PCs, HSCs, and EPCs into the peripheral 

circulation. However, these findings were not replicated by infusion of a βAR-agonist. 

Conclusion: PCs are mobilized by psychological stress via mechanisms independent of 

βAR-stimulation. The increase in peripheral HSC and EPC numbers during stress may be 

part of an adaptive mechanism to promote repair in situations of increased risk for wounding 

and immune activation. 
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INTRODUCTION 

 

Progenitor cells (PCs) are clonogenic cells capable of both self renewal and multi-lineage 

differentiation (Till and Mc, 1961; Weissman, 2000). They act as a repair system for the host, 

replenishing specialized somatic cells and maintaining the normal turnover of regenerative 

organs, such as the blood or skin. Haematopoietic stem cells (HSCs) are a subset of PCs 

that give rise to all blood cell types, including leukocyte populations. They can be used 

clinically to reconstitute the obliterated haematopoietic system in patients undergoing 

chemotherapeutic or radiation treatments (Akashi et al., 2000; Kondo et al., 1997; Stewart et 

al., 1999; Thomas, 1991). Endothelial PCs (EPCs), another PC subset, also have angiogenic 

and vascular regenerative properties (Asahara et al., 1997; Khakoo and Finkel, 2005; 

Takakura et al., 2000).  

 

The majority of PCs reside in the bone marrow, with a small number continually migrating 

into the circulation and tissue and then re-homing back to the bone marrow (Abkowitz et al., 

2003; Wright et al., 2001). This process of PC egress into the peripheral circulation is utilized 

in modern clinical stem cell transplantation, whereby HSCs can be harvested from the blood 

rather than from bone marrow grafting. Enhanced mobilization of EPCs into the blood has 

been associated with improved endothelial function and repair and thus may promote 

cardiovascular health (Foresta et al.; Hill et al., 2003; Werner et al., 2005; Werner and 

Nickenig, 2006). Indeed, low PC number and reduced PC function is associated with 

atherosclerosis, hypertension, myocardial infarction and, increased risk of death due to 

cardiovascular causes (Hill et al., 2003; Vasa et al., 2001; Werner et al., 2005).Thus 

understanding the mechanisms governing PC mobilization from the bone marrow are of 

great clinical interest.  
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Stimuli that activate the sympathetic nervous system and the concurrent release of 

epinephrine and norepinephrine, such as acute psychological stress and exercise, rapidly 

invoke a robust mobilization of lymphocytes into the circulation (Benschop et al., 1996b; 

Pedersen and Hoffman-Goetz, 2000; Segerstrom and Miller, 2004). The mechanism of 

stress lymphocytosis has been well characterized; stimulation of beta-2-adrenergic receptors 

(β2ARs) on the lymphocyte surface facilitates endothelial detachment and release into the 

peripheral blood (Benschop et al., 1996a; Benschop et al., 1994a; Benschop et al., 1994b; 

Benschop et al., 1996b; Dimitrov et al., 2010; Schedlowski et al., 1996). Exercise studies 

have shown that in addition to lymphocytes, PCs are also mobilized (Barrett et al., 1978; 

Bonsignore et al., 2002; Goussetis et al., 2009; Morici et al., 2005; Rehman et al., 2004; 

Schmidt et al., 2007). It is possible that this mobilization is similarly regulated by βAR-

mechanisms. Firstly, both murine and human PCs express functional adrenergic receptor 

subtypes, including the β2AR-subtype (Muthu et al., 2007; Spiegel et al., 2007). Secondly, the 

bone marrow is highly innervated by sympathetic nerve fibres (Elenkov et al., 2000). Thirdly, 

there is experimental evidence that HSC and EPC numbers in peripheral blood are increased 

in response to stimuli associated with sympathetic stimulation, such as acute myocardial 

infarction and circadian sympathetic oscillations (Mendez-Ferrer et al., 2008; Shintani et al., 

2001). Finally, sympathetic stimulation regulates murine PC mobilization from bone marrow 

into the peripheral blood, and this finding can be replicated by administration of β2AR-agonist 

(Katayama et al., 2006; Spiegel et al., 2007). Thus there is strong evidence to suggest that 

heightened SNS-activity and elevated levels of plasma epinephrine may promote HSC and 

EPC mobilization (Klein et al., 1968; Little et al., 1985; McDonald et al., 1969; Turan et al., 

2007; Wojakowski et al., 2006).  

 

PCs are a highly heterogeneous population and subsets can be identified from gated 

lymphocytes and monocytes by cell surface protein expression using flow cytometry. HSCs 

are a type of PC that give rise to the common myeloid progenitor (CMP) subset and the 
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common lymphoid progenitor subset (CLP) (Akashi et al., 2000; Barnett et al., 1999; 

Gajkowska et al., 2006; Manz et al., 2002). CMP cells can further commit to either 

megakaryocyte/ erythrocyte progenitor (MEPs) or granulocyte/ macrophage progenitors 

(GMPs) lineages (Akashi et al., 2000; Manz et al., 2002). HSCs are characterised by low 

granularity, high expression of the CD34 antigen, and low levels of the common leukocyte 

antigen CD45; the subsets are further delineated using the markers CD38, CD123, CD45RA, 

and CD7 (Table 1 and Figure 1). A less extensive way to identify HSCs which have multi-

lineage potential (early HSCs) or lineage committed HSCs (late HSCs) is by lack of CD38 

expression and positive CD38 expression, respectively (Terstappen et al., 1991). Although 

there is currently no known specific maker to identify EPCs, it was recently demonstrated 

that isolated CD34+CD45− cells can form endothelial cell colonies, which is a key 

characteristic of EPCs (Case et al., 2007; Timmermans et al., 2007). These CD34+CD45- 

cells often expressed KDR but were negative for CD133 expression (Timmermans et al., 

2007). Thus, EPCs may be identified as CD34+CD45− cells that may also express KDR but 

not CD133 (Fadini et al., 2008; Hristov et al., 2009; Timmermans et al., 2009).  

 

The current study tested the hypothesis that acute stress and β-adrenergic stimulation 

(isoproterenol infusion) may promote the mobilization of HSC and EPC into the blood. 

Immune phenotyping was used to characterize mobilization of EPCs and different HSC 

subtypes.   

 

 

METHODS 

 

Participants 
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Participants were recruited from community volunteers and staff and students attending the 

University of Birmingham (UoB), UK or University of California San Diego (UCSD), USA. All 

participants reported to be in good health and were non-medicated with exception of the 

contraceptive pill. Volunteers were instructed not to engage in strenuous physical exercise 

and to refrain from consuming alcohol or non-prescription drugs 24 hours before their 

experimental session, and to abstain from smoking and caffeine on the day of the 

experiment. Student volunteers performing the psychological stress task and all volunteers 

undertaking the infusion procedure received monetary compensation for their participation. 

Participants provided informed consent and study protocols were approved by the 

appropriate institutional review board (UoB or UCSD).  

 

 

Psychological stress study 

Procedure 

26 volunteers took part (age 31.5 years, SD ±8.0; 12 female). Upon arrival at the Exercise 

and Behavioural Immunology Laboratory: (1) informed consent was obtained; (2) electrodes 

for electrocardiography (ECG) and impedance cardiography (ICG) were attached; (3) a 20-

gauge intravenous cannula (Becton-Dickinson) was placed into a palpable vein in the lower 

arm; and, (4) an occluding cuff was placed over the brachial artery of the other arm for 

systolic (SBP) and diastolic (DBP) blood pressure measurements. Subsequently, while 

seated in a comfortable upright position, participants filled out questionnaires and engaged in 

leisure reading. After 20 minutes, a baseline blood sample was obtained and the procedure 

for the laboratory stressor was initiated.  

 

Public Speaking Task  

To induce stress, participants performed two back-to-back speeches, each with 2 minutes of 

preparation and 4 minutes of speech delivery (Bosch et al., 2005; Bosch et al., 2003b). 
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Social stress was enhanced by recording the speeches on videotape and by the attendance 

of an audience of three. For the first speech, the participant had to defend him/herself 

imagining being falsely accused of shoplifting (Saab, Matthews, Stoney, & McDonald,1989), 

and for the second speech the participant gave a presentation about his or her best and 

worst personal characteristics (van Eck, Nicolson, Berkhof, & Sulon, 1996). Instructions for 

the task were presented via a DVD recording, which ensured standardization of instructions 

and timing of the tasks. Including instructions the task lasted 15 minutes. A blood sample 

was obtained during the second presentation, 13 minutes after initiation of the task. 

Following the task the participants again engaged in leisure reading, and a final blood 

sample was obtained after 15 minutes of recovery. 

  

Cardiovascular assessment  

Assessment of cardiovascular responses focused on cardiac sympathetic and vagal control 

as previously described (Berntson et al., 1993; Bosch et al., 2003a). Indices of sympathetic 

and parasympathetic drive were obtained by analysis of ECG and ICG signals. The thoracic 

ICG and ECG signals were recorded from six Ag-AgClspot-electrodes (AMI type 1650-005, 

Medtronic) using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS) device 

(Berntson et al., 1997). The ECG and ICG complexes were ensemble averaged with 

reference to the ECG R-wave across 30-sec periods. From these 30-sec ensembles, 

average levels were computed for heart rate (HR) and pre-ejection period (PEP). These 

means were further averaged over a 6-min pre-task baseline, each 6-min task and a 6 

minute post task recovery. Changes in PEP were used to index changes in cardiac 

sympathetic drive, whereas hear rate variability, or Root Mean Square of Successive 

Difference (RMSSD), was used to index changes in cardiac vagal tone. 
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βAR-agonist infusion study 

Procedures 

20 volunteers took part (age 35.9 years, SD±9.3; 8 female). βAR-agonist (isoproterenol) 

infusion was performed according to a standardized protocol (Mills et al., 2000; Mills et al., 

1997). Upon arrival at the laboratory, participant height and weight were taken to ensure 

correct calculation of body surface area (BSA) used to calculate the βAR-agonist infusion 

rate. Subsequently, participants were in a semi-supine position for 15 minutes following 

placement of: 1) two 22-gauge intravenous cannulas (Becton-Dickinson) of which one was 

for drawing blood samples and one was for βAR-agonist infusion, inserted into a palpable 

veins in opposite lower arms; 2) three spot ECG electrodes; and, 3) an occluding cuff on the 

non-infusion arm.  

 

βAR-agonist was then infused at incremental rates (0.1µg, 0.5µg and 1µg /min/1.73 m2 BSA 

for 5 minutes each) for 15 minutes until the participants heart rate had increased by ~20 

beats per minute (bpm) compared to resting heart rate. The final infusion rate was 

maintained for 10 minutes. On average, the maximal dose reached 1µg/min/1.73 m2 BSA. 

Blood was taken prior to initiation of isoproterenol infusion (‘baseline’) and in the final 

minutes of the infusion. ECG, heart rate and blood pressure were monitored throughout the 

infusion. The half-life of isoproterenol is approximately 2–3 min (Goebel et al., 2000). The 

infusion was generally well-tolerated and all participants successfully completed the protocol.    

 

βAR-antagonist (blockade) procedure 

A sub group of 8 participants (age 34.6 ±11.5 years, 2 female) underwent the infusion twice 

following a 5-day course of either of 80mg of the βAR- antagonist propranolol or placebo. 

Condition was counter balanced and single blinded.   
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Questionnaires 

In both studies, health and lifestyle variables were assessed by self-report questionnaire. 

Variables included recent symptoms of illness, exercise behaviour, alcohol consumption, 

caffeine consumption, smoking, and use of recreational drugs. Affective responses to the 

psychological stress task were assessed using the short-form of the Profile of Mood States 

(POMS) (McNair et al., 1992). Participants completed the POMS at baseline, immediately 

post-task and at 15-minutes recovery.  

 

Flow cytometry  

Blood was collected into EDTA tubes, maintained at room temperature and processed within 

4 hours after collection. In brief, 9 ml of ammonium chloride lysis solution (0.15M NH4Cl, 

10mM KHCO3, 0.1mM EDTA) was added to 1 ml of whole blood to remove red blood cells. 

After 10 minutes of gentle rotation on ice, 5 ml of phosphate-buffered saline (PBS) was 

added to stop the reaction, and the samples were centrifuged (283G, 7-min at RT). After 

supernatant removal, the sample was incubated for 20 minutes at room temperature with a 

cocktail of fluorescent-labelled monoclonal antibodies to allow identification of progenitor cell 

subsets: CD34-FITC, CD45RA-FITC, CD7-PE, CD34-PE, CD133-PE, IgG Isotype-PE, 

CD45-PerCP and CD123-APC (Becton-Dickinson, Oxford, UK) and CD38-PE-Cy7 

(eBioscience, Insight Biotechnology Ltd, Middlesex, UK). Cell suspensions were then 

washed and re-suspended in 500μl PBS containing 1-2% paraformaldehyde, and stored in 

the dark at 4°C until analysis. Preparations were read within 18 hours. At least 1x106 gated 

lymphocytes and monocytes (which forms the ‘gate’ from which PCs are identified), were 

acquired from each preparation using a dual-laser flow cytometer (FACS-Canto II, Becton 

Dickinson, Oxfordshire UK). For certain markers, matched isotype controls were used to set 

negative staining criteria. Data were analyzed using Flowjo 7.4 (Treestar Inc, Ashland, OR, 

USA). A complete white blood cell count was obtained for each blood sample using a 

Haematology analyzer (Coulter ACTdiff, Beckman Coulter, High Wycombe, UK or Coulter 
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GEN-S haematology analyser, Beckman-Coulter, Miami, USA). Numbers of PCs were then 

calculated using standard dual platform methods.  

 

Total PC, HSC, early HSC and late HSC numbers were examined in both studies. 

Endothelial progenitor cell (EPC) markers were assessed in the psychological stress study 

and common myeloid precursor (CMP) and common lymphoid precursor (CLP) markers were 

analysed in the infusion study.  

 

Statistical analysis 

The Kolmogorov–Smirnov test indicated that the immunological data was not normally 

distributed. Therefore, non-parametric analyses (Friedman test) were used to examine the 

effects of the psychological stress task on cardiovascular, psychological and immunological 

parameters, and the effect of β-agonist infusion and βAR-antagonist procedure on cell 

numbers. For pairwise comparisons, Wilcoxon signed rank tests were used. Where medians 

are presented, interquartile range is given in brackets. Variations in degrees of freedom 

reflect occasional missing data. Data were analyzed using SPSS 16 for windows (SPSS Inc, 

Chicago, Illinois). 

 

 

RESULTS 

 

Psychological stress study 

Anxiety and cardiovascular responses 

Increases in the tension-anxiety POMS subscale confirmed that the speech tasks were 

perceived as stressful (+9.5 (6.0); χ2 (23) = 42.0, p<.001). A physiological stress response was 

confirmed by significant increases in SBP (+25.3 (13.2) mmHg; χ 2 (23) = 44.7, p<.001), DBP 

(+17.8 (9.8) mmHg; χ 2 (23) = 43.1, p<.001), and HR (+ 21.8 (11.5) bpm; χ 2 (23) = 37.7, 
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p<.001). These cardiovascular changes appeared driven by an increase in sympathetic 

cardiac drive, as reflected by a decrease in PEP (–8.3 (9.0) ms; χ 2 (12) = 23.2, p<.001), and a 

vagal withdrawal, as evidenced by a decrease in RMSSD (–16.3 (30.8) ms; χ 2 (12) = 19.0, 

p<.001). At 15-min post-stress, all cardiovascular and autonomic measures had returned to 

baseline values.  

 

Psychological stress induced mobilization of PC subsets 

As can be seen in Table 2, the Friedman test yielded a significant effect of time for the added 

total of lymphocytes and monocytes, PCs, HSCs, late HSCs and EPC2s. Post hoc analyses, 

using Wilcoxon signed-rank test, confirmed that the former effects were largely driven by an 

increase in cell number from baseline to stress, and that all PC numbers returned to baseline 

value at post-15 minute recovery. The added total of lymphocytes and monocytes remained 

modestly increased at recovery.  

 

Haemoconcentration significantly increased from baseline to stress (+1.7%; χ2 
(23) =11.6, 

p=.001) and blood volume decreased (−4 ∆%; t(25)= -6.2, p<.001). Cell numbers during task 

were adjusted and analyses was repeated to confirm that any significant effects were not 

explained by the change in blood volume; the results were essentially unaltered (p’s <.05).  

 

βAR-agonist infusion study 

βAR-agonist infusion did not induce PC mobilization 

Table 3 demonstrates that the results of the infusion study did not replicate the stress study 

data; an effect of time was only seen for the total of lymphocytes and monocytes. The only 

HSC population that appeared to become mobilized was the GMP subset.  
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Table 1. Progenitor cell subsets and identification methods 
Cell type Abbreviation Protocol/ Description † Reference 

Total progenitor cells PCs Milian/ Mulhouse protocol used to identify and 
enumerate mobilized progenitor cells  

(Gajkowska et al., 2006; Sutherland et 
al., 1993) 

Haematopoietic stem 
cell 

HSC International Society of Haemtotherapy and Graft 
Engineering (ISHAGE) protocol for progenitor cell 
identification 

(Barnett et al., 1999; Gajkowska et al., 
2006; Sutherland et al., 1994) 

Early Haematopoietic 
stem cell 

Early HSC Non lineage committed (early) HSC (Terstappen et al., 1991) 

Late Haematopoietic 
stem cell 

Late HSC Lineage committed (late) HSC (Terstappen et al., 1991) 

Endothelial progenitor 
cell 1 

EPC1 EPC, identification method 1  (Case et al., 2007; Timmermans et al., 
2007) 

Endothelial progenitor 
cell 2 

EPC2 EPC, identification method 2 (Timmermans et al., 2007) 

Common lymphoid 
progenitor cell 

CLP HSC committed to the lymphoid lineage †† (Galy et al., 1995; Hao et al., 2001; 
Hoebeke et al., 2007; Terstappen et al., 
1991) 

Common myeloid 
progenitor cell 

CMP HSC committed to the myeloid lineage but are still 
capable of committing to either GMP or MEP 
lineages 

(Akashi et al., 2000; Manz et al., 2002) 

Granulocyte/ 
macrophage progenitor 
cell  

GMP CMP cell committed to granulocyte/macrophage 
lineage 

(Akashi et al., 2000; Manz et al., 2002) 

Megakaryocyte/ 
erythrocyte progenitor 
cell 

MEP CMP cell committed to megakaryocyte/ 
erythrocyte lineage  

(Akashi et al., 2000; Manz et al., 2002) 

† Light scatter and marker identification methods were obtained from the protocols/ references provided. However, due to the extensive PC 
subtypes assessed in the current study, and the two-platform enumeration method used, some gating and enumeration strategies have been 
adapted.    
†† As the number of CD38−CD7+ CLP was extremely low, CLP were taken to be CD38+/−. This decision is supported by findings of Galy et al, and 
Terstappen et al, that found CD38+cells can form all lineages of lymphocytes and that lineage committed CLP can express CD38, respectively. 
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Figure 1. Cell surface markers and flow cytometry gating strategy used in the current study to identify PC subsets.  
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Table 2. Median (interquartile range) of lymphocyte and monocytes and progenitor cell 
subsets at each time point during the psychological stress study, with results from Friedman 
test (non-parametric analyses). 

Cell type 
(cells/ µl) Baseline Task Recovery χ2 (df) p 

Lymphocytes 
and monocytes 2000 (600) 2700 (1200)*** 2500 (900)* χ2 (23) = 29.65 <.001 

Total PCs 1.960 (1.14) 2.200 (1.44)*** 1.900 (1.52) χ 2 (23) = 17.77 <.001 

HSCs 1.770 (1.14) 1.991 (1.43)** 1.727 (1.46) χ 2 (23) = 13.52 =.001 

Early HSCs 0.210 (0.92) 0.209 (1.39) 0.215 (1.27) χ 2 (21) = 2.70 =.260 

Late HSCs 1.602 (0.26) 1.735 (0.32)** 1.663 (0.24) χ 2 (21) = 11.04 =.004 

EPC1 0.055 (0.04) 0.064 (0.05) 0.065 (0.05) χ 2 (23) = 3.92 =.141 

EPC2 0.047 (0.04) 0.059 (0.05)* 0.049 (0.04) χ 2 (15) = 7.18 =.028 
Results from post hoc analyses; *p<.05, **p<.01 and ***p<.001 indicates a significant 
increase in cell number from baseline value (Wilcoxon Signed Rank Test).  
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Table 3. Median (interquartile range) of lymphocyte and monocytes and progenitor cell subsets at each time point during the βAR-agonist 
infusion stress study, with results from Friedman test (non-parametric analyses). 

 βAR-agonist infusion βAR-agonist infusion and βAR-antagonist 

Cell type (cells/ µl) Baseline Infusion χ 2(df) p Baseline Infusion χ 2(df) p 
Lymphocytes and 
monocytes 2226 (1140) 2688 (770) χ 2 (17) = 8.90 =.003 2127 (570) 2122 (320) χ 2 (6) = .000 =1.00 

PCs 2.517 (2.21) 2.455 (2.34) χ 2 (17) = .474 =.491 2.350 (2.30) 2.552 (2.28) χ 2 (6) = .500 =.480 

HSCs 2.211 (2.15) 2.135 (1.91) χ 2 (17) = .053 =.819 2.122 (2.32) 2.310 (2.33) χ 2 (6) = .500 =.480 

Early HSCs 0.169 (0.24) 0.194 (0.23) χ 2 (17) = .474 =.491 0.136 (0.25) 0.195 (0.23) χ 2 (6) = .000 =1.00 

Late HSCs 1.985 (1.98) 1.814 (1.76) χ 2 (17) = .053 =.819 1.926 (2.04) 2.096 (2.05) χ 2 (6) = .000 =1.00 

CLP 0.214 (0.17) 0.193 (0.14) χ 2 (17) = .474 =.491 0.190 (0.20) 0.174 (0.24) χ 2 (6) = .500 =.480 

CMP 1.220 (1.08) 1.188 (1.58) χ 2 (16) = .000 =1.00 1.392 (1.86) 1.460 (1.82) χ 2 (6) = 2.00 =.157 

GMP 0.057 (0.07) 0.100 (0.14) χ 2 (16) = 5.56 =.018 0.110 (0.11) 0.094 (0.11) χ 2 (6) = .000 =1.00 

MEP 0.284 (0.30) 0.264 (0.37) χ 2 (16) = .222 =.637 0.313 (0.40) 0.312 (0.40) χ 2 (6) = 2.00 =.157 
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DISCUSSION 

 

Physical stressors, such as exercise and trauma rapidly mobilize progenitor cell (PC) subsets 

into peripheral blood (Barrett et al., 1978; Bonsignore et al., 2002; Goussetis et al., 2009; 

Morici et al., 2005; Rehman et al., 2004; Schmidt et al., 2007; Shintani et al., 2001). The 

present study investigated whether PC mobilization could also be induced by psychological 

stress and βAR-agonist infusion. Results demonstrated that total PCs, hematopoietic stem 

cells (HSCs), and endothelial progenitor cells (EPCs), were indeed mobilized during a mild 

acute stressor. However, mobilization was not induced by infusion of the βAR-agonist, 

isoproterenol, indicating that non-β-adrenergic mechanisms are likely to play a role in PC 

mobilization during acute psychological stress.  

 

It has been proposed that stress lymphocytosis enhances immune surveillance during 

perceived threat when the risk of injury and concurrent infection are heightened (Benschop et 

al., 1996b; Dhabhar and McEwen, 1997; Segerstrom and Miller, 2004). Concurrent 

mobilization of PCs capable of tissue regeneration and repair may further benefit the host. 

Such a protective and regenerative effect of PC mobilization has been demonstrated with 

other stressors, such as ischemia and infectious stimuli. For example, mobilized PCs home 

to sites of tissue damage, such as areas of ischemia, where they promote vasculogenesis 

and improvement of endothelial function (Asahara et al., 1997; Rafii and Lyden, 2003; 

Takahashi et al., 1999). Likewise, infection and injection of endotoxin can also induce PC 

mobilization (Cline and Golde, 1977; Yamada et al., 2005). Some PC subsets express toll-

like receptors (TLR) which, when activated, induce vigorous PC proliferation (Nagai et al., 

2006). This may boost the local supply of immune cells, such as dendritic cells and 

monocytes, to clear infection (Massberg et al., 2007). Thus, PC mobilization is produced by 

various stressors, and may directly contribute to tissue repair and clearance of microbes.  
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At present it is unclear what mechanism may play a role in stress-induced mobilization. The 

finding that βAR-agonist infusion did not induce PC mobilization, does not exclude the 

involvement of adrenergic mechanisms; HSC also express alpha-adrenergic receptors 

(αARs) (Muthu et al., 2007), In support of αAR-involvement, the impairment of PC 

mobilization was more profound in mice chemically sympathectomised than it was in mice 

injected with βAR-antagonist (Katayama et al., 2006). Further, administration of a β2AR-

agonist to mice unable to synthesis norepinephrine only partially restores the PC mobilization 

defect. Finally, β2AR-agonist did not elicit circulating PCs in mice without co-stimulation with 

G-CSF. Taken together, this data suggests the contribution of other adrenergic signals or 

non-adrenergic signals in the mobilization of PCs during acute stress (Mendez-Ferrer and 

Frenette, 2007). 

 

In addition to norepinephrine and epinephrine, several other factors released during exercise 

and psychological stressors have demonstrated the ability to induce PC mobilization. These 

include the adrenocorticotropic hormone (ACTH), granulocyte colony-stimulating factor (G-

CSF), vascular endothelial growth factor (VEGF), IL-1, IL-8, macrophage inflammatory 

protein-1 alpha (MIP-1α), and the enzyme nitric oxide synthase 3 (NOS3) (Aicher et al., 

2004; Barrett et al., 1978; Cacioppo et al., 1998; Elenkov et al., 2005; Goshen and Yirmiya, 

2009; Lapidot et al., 2005; Morici et al., 2005; Ostrowski et al., 2001; Pedersen et al., 2001; 

Steptoe et al., 2007; Suzuki et al., 2000; Winkler and Levesque, 2006; Yang et al., 2007). 

Limiting the focus on possible mediators to those that affect PC mobilization within minutes, 

as seen in the present study, IL-1, IL-8, MIPα, and NOS3 or nitric oxide are possible 

candidates (Fibbe et al., 1992; Laterveer et al., 1995; Laterveer et al., 1996; Lord et al., 

1995; Yang et al., 2007). Moreover, of these only NOS3 and nitric oxide are upregulated 

within minutes of stressor onset, which, on the basis of current knowledge, makes these 

factors and αAR-agonist relevant targets for future research.  
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A limitation of the current study is that CLPs, CMPs and MEPs were not assessed in the 

stress study, and that EPCs were not identified in the infusion study. Comparisons on the PC 

mobilizing effect of psychological stress and βAR-stimulation were possible though, as total 

PC, HSCs, early HSCs and late HSCs were assessed in both study. In addition, progenitor 

subsets were only identified using cell-surface markers; future studies may complement the 

current findings by including culture assays that ultimately determine the differentiating 

potential of mobilized cells. However, the identification methods used in the present study 

have been validated in several studies (see Table 1 for references) and we are confident, 

therefore, that the phenotypic pattern of PC mobilization would largely be replicated using 

culturing methods. One exception may perhaps be the EPC responses, as there is currently 

much debate regarding the validity of identifying EPCs by surface marker expression 

(Timmermans et al., 2009). Various phenotyping methods for EPC identification have been 

reported in the literature and most involve expression of CD34 and/ or CD133 in combination 

with KDR (VEGF receptor), with or without low expression of CD45 (Hirschi et al., 2008). 

Preliminary tests for the current study showed that the number of CD34+KDR+ cells was too 

low for reliable assessment, and thus KDR was not used to identify EPCs in the current 

study.    

 

Understanding the mechanisms by which PCs are mobilized during acute stress may have 

great clinical utility. To successful reconstitute the haematopoietic system of the recipient, at 

least 2x106 HSCs per kg body mass need to be transplanted (Villalon et al., 2000). In 

approximately 1-5% of donors, current pharmacological treatments fails to reach this 

threshold (Winkler and Levesque, 2006). As approximately 45,000 patients a year worldwide 

receive HSC treatment, improved mobilization methods are imperative. Methods to increase 

circulating progenitor cells numbers may also benefit patients with cardiovascular disease 

(CVD), as low PC number and reduced PC function are associated with atherosclerosis, 

hypertension, myocardial infarction, and increased risk of death due to cardiovascular 
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causes (Hill et al., 2003; Vasa et al., 2001; Werner et al., 2005). Sufferers of CVD may 

therefore benefit from exercise induced PC mobilization. However, in situations where 

regular exercise cannot be undertaken, alternative pharmacological methods of increasing 

the circulating number of PCs may improve vascular function. 

 

In conclusion, the present study demonstrated that acute psychological stress, but not βAR-

stimulation, can induce PC mobilization. These findings are in contrast to the clearly βAR-

mediated stress lymphocytosis, and suggest that stress-induced mobilization of PC and 

lymphocytes are governed by different mechanisms. Increased PC circulation may serve a 

protective function by being conducive to vascular repair and promoting innate immunity. 

  

 

REFERENCES 
 

Abkowitz, J.L., Robinson, A.E., Kale, S., Long, M.W., Chen, J., 2003. Mobilization of hematopoietic 
stem cells during homeostasis and after cytokine exposure. Blood 102, 1249-1253. 

Aicher, A., Heeschen, C., Dimmeler, S., 2004. The role of NOS3 in stem cell mobilization. Trends Mol 
Med 10, 421-425. 

Akashi, K., Traver, D., Miyamoto, T., Weissman, I.L., 2000. A clonogenic common myeloid progenitor 
that gives rise to all myeloid lineages. Nature 404, 193-197. 

Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., 
Schatteman, G., Isner, J.M., 1997. Isolation of putative progenitor endothelial cells for 
angiogenesis. Science 275, 964-967. 

Barnett, D., Janossy, G., Lubenko, A., Matutes, E., Newland, A., Reilly, J.T., 1999. Guideline for the 
flow cytometric enumeration of CD34+ haematopoietic stem cells. Prepared by the CD34+ 
haematopoietic stem cell working party. General Haematology Task Force of the British 
Committee for Standards in Haematology. Clin Lab Haematol 21, 301-308. 

Barrett, A.J., Longhurst, P., Sneath, P., Watson, J.G., 1978. Mobilization of CFU-C by exercise and 
ACTH induced stress in man. Exp Hematol 6, 590-594. 

Benschop, R.J., Jacobs, R., Sommer, B., Schurmeyer, T.H., Raab, J.R., Schmidt, R.E., Schedlowski, 
M., 1996a. Modulation of the immunologic response to acute stress in humans by beta-
blockade or benzodiazepines. Faseb J 10, 517-524. 

Benschop, R.J., Nieuwenhuis, E.E., Tromp, E.A., Godaert, G.L., Ballieux, R.E., van Doornen, L.J., 
1994a. Effects of beta-adrenergic blockade on immunologic and cardiovascular changes 
induced by mental stress. Circulation 89, 762-769. 

Benschop, R.J., Nijkamp, F.P., Ballieux, R.E., Heijnen, C.J., 1994b. The effects of beta-adrenoceptor 
stimulation on adhesion of human natural killer cells to cultured endothelium. Br J Pharmacol 
113, 1311-1316. 

Benschop, R.J., Rodriguez-Feuerhahn, M., Schedlowski, M., 1996b. Catecholamine-induced 
leukocytosis: early observations, current research, and future directions. Brain Behav Immun 
10, 77-91. 



 117

Berntson, G.G., Bigger, J.T., Jr., Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik, M., Nagaraja, 
H.N., Porges, S.W., Saul, J.P., Stone, P.H., van der Molen, M.W., 1997. Heart rate variability: 
origins, methods, and interpretive caveats. Psychophysiology 34, 623-648. 

Berntson, G.G., Cacioppo, J.T., Quigley, K.S., 1993. Cardiac psychophysiology and autonomic space 
in humans: empirical perspectives and conceptual implications. Psychol Bull 114, 296-322. 

Bonsignore, M.R., Morici, G., Santoro, A., Pagano, M., Cascio, L., Bonanno, A., Abate, P., Mirabella, 
F., Profita, M., Insalaco, G., Gioia, M., Vignola, A.M., Majolino, I., Testa, U., Hogg, J.C., 2002. 
Circulating hematopoietic progenitor cells in runners. J Appl Physiol 93, 1691-1697. 

Bosch, J.A., Berntson, G.G., Cacioppo, J.T., Dhabhar, F.S., Marucha, P.T., 2003a. Acute stress 
evokes selective mobilization of T cells that differ in chemokine receptor expression: a potential 
pathway linking immunologic reactivity to cardiovascular disease. Brain Behav Immun 17, 251-
259. 

Bosch, J.A., Berntson, G.G., Cacioppo, J.T., Marucha, P.T., 2005. Differential mobilization of 
functionally distinct natural killer subsets during acute psychologic stress. Psychosom Med 67, 
366-375. 

Bosch, J.A., de Geus, E.J., Veerman, E.C., Hoogstraten, J., Nieuw Amerongen, A.V., 2003b. Innate 
secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac 
autonomic activity. Psychosom Med 65, 245-258. 

Cacioppo, J.T., Berntson, G.G., Malarkey, W.B., Kiecolt-Glaser, J.K., Sheridan, J.F., Poehlmann, 
K.M., Burleson, M.H., Ernst, J.M., Hawkley, L.C., Glaser, R., 1998. Autonomic, neuroendocrine, 
and immune responses to psychological stress: the reactivity hypothesis. Ann N Y Acad Sci 
840, 664-673. 

Case, J., Mead, L.E., Bessler, W.K., Prater, D., White, H.A., Saadatzadeh, M.R., Bhavsar, J.R., Yoder, 
M.C., Haneline, L.S., Ingram, D.A., 2007. Human CD34+AC133+VEGFR-2+ cells are not 
endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35, 
1109-1118. 

Cline, M.J., Golde, D.W., 1977. Mobilization of hematopoietic stem cells (CFU-C) into the peripheral 
blood of man by endotoxin. Exp Hematol 5, 186-190. 

Dhabhar, F.S., McEwen, B.S., 1997. Acute stress enhances while chronic stress suppresses cell-
mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11, 
286-306. 

Dimitrov, S., Lange, T., Born, J., 2010. Selective mobilization of cytotoxic leukocytes by epinephrine. J 
Immunol 184, 503-511. 

Elenkov, I.J., Iezzoni, D.G., Daly, A., Harris, A.G., Chrousos, G.P., 2005. Cytokine dysregulation, 
inflammation and well-being. Neuroimmunomodulation 12, 255-269. 

Elenkov, I.J., Wilder, R.L., Chrousos, G.P., Vizi, E.S., 2000. The sympathetic nerve--an integrative 
interface between two supersystems: the brain and the immune system. Pharmacol Rev 52, 
595-638. 

Fadini, G.P., Baesso, I., Albiero, M., Sartore, S., Agostini, C., Avogaro, A., 2008. Technical notes on 
endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197, 
496-503. 

Fibbe, W.E., Hamilton, M.S., Laterveer, L.L., Kibbelaar, R.E., Falkenburg, J.H., Visser, J.W., Willemze, 
R., 1992. Sustained engraftment of mice transplanted with IL-1-primed blood-derived stem 
cells. J Immunol 148, 417-421. 

Foresta, C., De Toni, L., Ferlin, A., Di Mambro, A., Clinical implication of endothelial progenitor cells. 
Expert Rev Mol Diagn 10, 89-105. 

Gajkowska, A., Oldak, T., Jastrzewska, M., Machaj, E.K., Walewski, J., Kraszewska, E., Pojda, Z., 
2006. Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells in 
leukapheresis product and bone marrow for clinical transplantation: a comparison of three 
methods. Folia Histochem Cytobiol 44, 53-60. 

Galy, A., Travis, M., Cen, D., Chen, B., 1995. Human T, B, natural killer, and dendritic cells arise from 
a common bone marrow progenitor cell subset. Immunity 3, 459-473. 

Goebel, M.U., Mills, P.J., Irwin, M.R., Ziegler, M.G., 2000. Interleukin-6 and tumor necrosis factor-
alpha production after acute psychological stress, exercise, and infused isoproterenol: 
differential effects and pathways. Psychosom Med 62, 591-598. 

Goshen, I., Yirmiya, R., 2009. Interleukin-1 (IL-1): a central regulator of stress responses. Front 
Neuroendocrinol 30, 30-45. 



 118

Goussetis, E., Spiropoulos, A., Tsironi, M., Skenderi, K., Margeli, A., Graphakos, S., Baltopoulos, P., 
Papassotiriou, I., 2009. Spartathlon, a 246 kilometer foot race: effects of acute inflammation 
induced by prolonged exercise on circulating progenitor reparative cells. Blood Cells Mol Dis 
42, 294-299. 

Hao, Q.L., Zhu, J., Price, M.A., Payne, K.J., Barsky, L.W., Crooks, G.M., 2001. Identification of a 
novel, human multilymphoid progenitor in cord blood. Blood 97, 3683-3690. 

Hill, J.M., Zalos, G., Halcox, J.P., Schenke, W.H., Waclawiw, M.A., Quyyumi, A.A., Finkel, T., 2003. 
Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 
348, 593-600. 

Hirschi, K.K., Ingram, D.A., Yoder, M.C., 2008. Assessing identity, phenotype, and fate of endothelial 
progenitor cells. Arterioscler Thromb Vasc Biol 28, 1584-1595. 

Hoebeke, I., De Smedt, M., Stolz, F., Pike-Overzet, K., Staal, F.J., Plum, J., Leclercq, G., 2007. T-, B- 
and NK-lymphoid, but not myeloid cells arise from human CD34(+)CD38(-)CD7(+) common 
lymphoid progenitors expressing lymphoid-specific genes. Leukemia 21, 311-319. 

Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krotz, F., Sohn, 
H.Y., Nauwelaers, F.A., Weber, C., 2009. An optimized flow cytometry protocol for analysis of 
angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry A 75, 
848-853. 

Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., Frenette, P.S., 2006. 
Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from 
bone marrow. Cell 124, 407-421. 

Khakoo, A.Y., Finkel, T., 2005. Endothelial progenitor cells. Annu Rev Med 56, 79-101. 
Klein, R.F., Troyer, W.G., Thompson, H.K., Bogdonoff, M.D., Wallace, A.G., 1968. Catecholamine 

excretion in myocardial infarction. Arch Intern Med 122, 476-482. 
Kondo, M., Weissman, I.L., Akashi, K., 1997. Identification of clonogenic common lymphoid 

progenitors in mouse bone marrow. Cell 91, 661-672. 
Lapidot, T., Dar, A., Kollet, O., 2005. How do stem cells find their way home? Blood 106, 1901-1910. 
Laterveer, L., Lindley, I.J., Hamilton, M.S., Willemze, R., Fibbe, W.E., 1995. Interleukin-8 induces rapid 

mobilization of hematopoietic stem cells with radioprotective capacity and long-term 
myelolymphoid repopulating ability. Blood 85, 2269-2275. 

Laterveer, L., Lindley, I.J., Heemskerk, D.P., Camps, J.A., Pauwels, E.K., Willemze, R., Fibbe, W.E., 
1996. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single 
intravenous injection of interleukin-8. Blood 87, 781-788. 

Little, R.A., Frayn, K.N., Randall, P.E., Stoner, H.B., Yates, D.W., Laing, G.S., Kumar, S., Banks, J.M., 
1985. Plasma catecholamines in patients with acute myocardial infarction and in cardiac arrest. 
Q J Med 54, 133-140. 

Lord, B.I., Woolford, L.B., Wood, L.M., Czaplewski, L.G., McCourt, M., Hunter, M.G., Edwards, R.M., 
1995. Mobilization of early hematopoietic progenitor cells with BB-10010: a genetically 
engineered variant of human macrophage inflammatory protein-1 alpha. Blood 85, 3412-3415. 

Manz, M.G., Miyamoto, T., Akashi, K., Weissman, I.L., 2002. Prospective isolation of human 
clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99, 11872-11877. 

Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E.A., Huff, 
I.V., Junt, T., Wagers, A.J., Mazo, I.B., von Andrian, U.H., 2007. Immunosurveillance by 
hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 
994-1008. 

McDonald, L., Baker, C., Bray, C., McDonald, A., Restieaux, N., 1969. Plasma-catecholamines after 
cardiac infarction. Lancet 2, 1021-1023. 

McNair, D.M., Lorr, M., Droppleman, L.F., 1992. Manual for the Profile of Mood States. San Diego 
Educational and Industrial Testing Service. 

Mendez-Ferrer, S., Frenette, P.S., 2007. Hematopoietic stem cell trafficking: regulated adhesion and 
attraction to bone marrow microenvironment. Ann N Y Acad Sci 1116, 392-413. 

Mendez-Ferrer, S., Lucas, D., Battista, M., Frenette, P.S., 2008. Haematopoietic stem cell release is 
regulated by circadian oscillations. Nature 452, 442-447. 

Mills, P.J., Goebel, M., Rehman, J., Irwin, M.R., Maisel, A.S., 2000. Leukocyte adhesion molecule 
expression and T cell naive/memory status following isoproterenol infusion. J Neuroimmunol 
102, 137-144. 

Mills, P.J., Karnik, R.S., Dillon, E., 1997. L-selectin expression affects T-cell circulation following 
isoproterenol infusion in humans. Brain Behav Immun 11, 333-342. 



 119

Morici, G., Zangla, D., Santoro, A., Pelosi, E., Petrucci, E., Gioia, M., Bonanno, A., Profita, M., Bellia, 
V., Testa, U., Bonsignore, M.R., 2005. Supramaximal exercise mobilizes hematopoietic 
progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol 289, R1496-
1503. 

Muthu, K., Iyer, S., He, L.K., Szilagyi, A., Gamelli, R.L., Shankar, R., Jones, S.B., 2007. Murine 
hematopoietic stem cells and progenitors express adrenergic receptors. J Neuroimmunol 186, 
27-36. 

Nagai, Y., Garrett, K.P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., Takatsu, K., Kincade, P.W., 2006. 
Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system 
replenishment. Immunity 24, 801-812. 

Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., Pedersen, B.K., 2001. Chemokines are elevated in 
plasma after strenuous exercise in humans. Eur J Appl Physiol 84, 244-245. 

Pedersen, B.K., Hoffman-Goetz, L., 2000. Exercise and the immune system: regulation, integration, 
and adaptation. Physiol Rev 80, 1055-1081. 

Pedersen, B.K., Steensberg, A., Fischer, C., Keller, C., Ostrowski, K., Schjerling, P., 2001. Exercise 
and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev 7, 18-31. 

Rafii, S., Lyden, D., 2003. Therapeutic stem and progenitor cell transplantation for organ 
vascularization and regeneration. Nat Med 9, 702-712. 

Rehman, J., Li, J., Parvathaneni, L., Karlsson, G., Panchal, V.R., Temm, C.J., Mahenthiran, J., March, 
K.L., 2004. Exercise acutely increases circulating endothelial progenitor cells and monocyte-
/macrophage-derived angiogenic cells. J Am Coll Cardiol 43, 2314-2318. 

Schedlowski, M., Hosch, W., Oberbeck, R., Benschop, R.J., Jacobs, R., Raab, H.R., Schmidt, R.E., 
1996. Catecholamines modulate human NK cell circulation and function via spleen-independent 
beta 2-adrenergic mechanisms. J Immunol 156, 93-99. 

Schmidt, A., Bierwirth, S., Weber, S., Platen, P., Schinkothe, T., Bloch, W., 2007. Short intensive 
exercise increase the migratory activity of mesenchymal stem cells. Br J Sports Med. 

Segerstrom, S.C., Miller, G.E., 2004. Psychological stress and the human immune system: a meta-
analytic study of 30 years of inquiry. Psychol Bull 130, 601-630. 

Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., Sasaki, K., Shimada, T., Oike, 
Y., Imaizumi, T., 2001. Mobilization of endothelial progenitor cells in patients with acute 
myocardial infarction. Circulation 103, 2776-2779. 

Spiegel, A., Shivtiel, S., Kalinkovich, A., Ludin, A., Netzer, N., Goichberg, P., Azaria, Y., Resnick, I., 
Hardan, I., Ben-Hur, H., Nagler, A., Rubinstein, M., Lapidot, T., 2007. Catecholaminergic 
neurotransmitters regulate migration and repopulation of immature human CD34+ cells through 
Wnt signaling. Nat Immunol 8, 1123-1131. 

Steptoe, A., Hamer, M., Chida, Y., 2007. The effects of acute psychological stress on circulating 
inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21, 901-912. 

Stewart, D.A., Guo, D., Luider, J., Auer, I., Klassen, J., Ching, E., Morris, D., Chaudhry, A., Brown, C., 
Russell, J.A., 1999. Factors predicting engraftment of autologous blood stem cells: CD34+ 
subsets inferior to the total CD34+ cell dose. Bone Marrow Transplant 23, 1237-1243. 

Sutherland, D.R., Keating, A., Nayar, R., Anania, S., Stewart, A.K., 1994. Sensitive detection and 
enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol 22, 
1003-1010. 

Sutherland, D.R., Stewart, A.K., Keating, A., 1993. CD34 antigen: molecular features and potential 
clinical applications. Stem Cells 11 Suppl 3, 50-57. 

Suzuki, K., Yamada, M., Kurakake, S., Okamura, N., Yamaya, K., Liu, Q., Kudoh, S., Kowatari, K., 
Nakaji, S., Sugawara, K., 2000. Circulating cytokines and hormones with immunosuppressive 
but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol 
81, 281-287. 

Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., Magner, M., Isner, J.M., 
Asahara, T., 1999. Ischemia- and cytokine-induced mobilization of bone marrow-derived 
endothelial progenitor cells for neovascularization. Nat Med 5, 434-438. 

Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., Satake, M., Suda, T., 2000. A 
role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199-209. 

Terstappen, L.W., Huang, S., Safford, M., Lansdorp, P.M., Loken, M.R., 1991. Sequential generations 
of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor 
cells. Blood 77, 1218-1227. 

Thomas, E.D., 1991. Frontiers in bone marrow transplantation. Blood Cells 17, 259-267. 



 120

Till, J.E., Mc, C.E., 1961. A direct measurement of the radiation sensitivity of normal mouse bone 
marrow cells. Radiat Res 14, 213-222. 

Timmermans, F., Plum, J., Yoder, M.C., Ingram, D.A., Vandekerckhove, B., Case, J., 2009. 
Endothelial progenitor cells: identity defined? J Cell Mol Med 13, 87-102. 

Timmermans, F., Van Hauwermeiren, F., De Smedt, M., Raedt, R., Plasschaert, F., De Buyzere, M.L., 
Gillebert, T.C., Plum, J., Vandekerckhove, B., 2007. Endothelial outgrowth cells are not derived 
from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27, 
1572-1579. 

Turan, R.G., Brehm, M., Koestering, M., Tobias, Z., Bartsch, T., Steiner, S., Picard, F., Ebner, P., 
Schannwell, C.M., Strauer, B.E., 2007. Factors influencing spontaneous mobilization of CD34+ 
and CD133+ progenitor cells after myocardial infarction. Eur J Clin Invest 37, 842-851. 

Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A.M., Dimmeler, S., 
2001. Number and migratory activity of circulating endothelial progenitor cells inversely 
correlate with risk factors for coronary artery disease. Circ Res 89, E1-7. 

Villalon, L., Odriozola, J., Larana, J.G., Zamora, C., Perez de Oteyza, J., Jodra, M.H., Lopez, J., 
Herrera, P., Roldan, E., Ramos, M.L., Ramos, P., Navarro, J.L., 2000. Autologous peripheral 
blood progenitor cell transplantation with <2 x 10(6) CD34(+)/kg: an analysis of variables 
concerning mobilisation and engraftment. Hematol J 1, 374-381. 

Weissman, I.L., 2000. Stem cells: units of development, units of regeneration, and units in evolution. 
Cell 100, 157-168. 

Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Bohm, M., Nickenig, G., 2005. 
Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353, 999-
1007. 

Werner, N., Nickenig, G., 2006. Influence of cardiovascular risk factors on endothelial progenitor cells: 
limitations for therapy? Arterioscler Thromb Vasc Biol 26, 257-266. 

Winkler, I.G., Levesque, J.P., 2006. Mechanisms of hematopoietic stem cell mobilization: when innate 
immunity assails the cells that make blood and bone. Exp Hematol 34, 996-1009. 

Wojakowski, W., Tendera, M., Zebzda, A., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., 
Wyderka, R., Krol, M., Ochala, A., Kozakiewicz, K., Ratajczak, M.Z., 2006. Mobilization of 
CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection 
fraction and plasma NT-proBNP levels in patients with acute myocardial infarction. Eur Heart J 
27, 283-289. 

Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L., Weissman, I.L., 2001. Physiological migration 
of hematopoietic stem and progenitor cells. Science 294, 1933-1936. 

Yamada, M., Kubo, H., Ishizawa, K., Kobayashi, S., Shinkawa, M., Sasaki, H., 2005. Increased 
circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone 
marrow derived cells contribute to lung repair. Thorax 60, 410-413. 

Yang, Z., Wang, J.M., Chen, L., Luo, C.F., Tang, A.L., Tao, J., 2007. Acute exercise-induced nitric 
oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy 
subjects. J Hum Hypertens 21, 452-460. 

 
 



 121

CHAPTER 6 

 

SUMMARY AND DISCUSSION 

 

 

In the preface of this thesis three aims were set for the research in the subsequent chapters:  

 

1) To characterise the CD8TL response to stress and beta-adrenergic stimulation 

2) To determine the influence of CMV infection on CD8TL mobilization  

3) To determine whether PCs can similarly be mobilized by acute psychological stress 

and βAR-stimuli 

 

The subsequent sections summarise and discuss the main findings for each of these aims. 

We also address the possible implications of the observed results and suggest avenues for 

future exploration.  
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THE CD8+ T LYMPHOCYTE RESPONSE TO STRESS AND BETA-ADRENERGIC 

STIMULATION 

 

The data collected in Chapter 2 extended earlier observations by showing that stress-

induced mobilization of CD8TL is correlated to cell differentiation (Atanackovic et al., 2006; 

Campbell et al., 2009). Specifically, highly differentiated cells with a CCR7-CD28-CD27- 

phenotype showed the strongest mobilization during stress. These cells are known to have 

strong effector capabilities, such as high tissue migratory potential, cytotoxicity, and 

production of effector cytokines such as IFN-γ (Monteiro et al., 2007; Romero et al., 2007). 

These results were exactly replicated by βAR-agonist infusion, clearly suggesting β-

adrenergic receptor stimulation mediated the observed effects of stress. 

 

The above findings show a strong parallel with the literature on NK mobilization, which is 

similarly found to be mediated by β-adrenergic mechanisms (Benschop et al., 1996; 

Benschop et al., 1994; Schedlowski et al., 1996). It seems likely that the main β-adrenergic 

receptor involved is the β2-subtype, although this was not specifically studied here; this 

receptor was found to be upregulated on late-differentiated CD8TLs as determined by radio-

ligand studies and micro-array studies (Dimitrov et al., 2009; Holmes et al., 2005). It has 

recently been shown that epinephrine causes a rapid detachment of differentiated CD8TLs 

from cultured endothelium, clearly suggesting that this mechanism is also involved in the 

current findings (Dimitrov et al., 2010). 

 

The selective mobilization of differentiated CD8TLs provides a unifying explanation for a 

number of reported observations, such as the change in adhesion molecule expression on 

mobilized cells (i.e, decrease in CD62L, increase in CD11a), their apparently increased 

replicative senescence, and increased expression of cytotoxic granules and inflammatory 

mediators (Atanackovic et al., 2006; Bosch et al., 2003; Mills et al., 2000; Simpson et al., 
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2007). Rather than describing actual changes in cell features, these independent findings 

appear better explained by a selective mobilization of cells that share these phenotypic and 

functional characteristics, i.e., the late-differentiated CD8TLs.  

 

 It is significant that lymphocyte mobilization, in particular of cytotoxic subsets, is generalized 

over various stressors including psychological stress, exercise, trauma, heat, and cold shock 

(Bouchama et al., 1992; Bruunsgaard et al., 1999; Karandikar et al., 2002; Simpson et al., 

2007). This generalizability is consistent with the notion that mobilization is part of an 

adaptive response to threat. Using a military metaphor, Dhabhar et al, describe the 

immunoenhancing nature of this phenomenon as the body’s ‘‘soldiers” (leukocytes) exiting 

their ‘‘barracks” (spleen and bone marrow) and traveling over the ‘‘boulevards” (blood 

vessels) in order to take position at potential ‘‘battle stations” (skin and other peripheral 

organs) (Dhabhar, 2002). In support of this theory, the cells that were found mobilized during 

stress would indeed qualify as ‘soldiers’ that have a rapid killing activity without the need for 

conventional co-stimulatory signals and a propensity to migrate into inflamed, ‘battle-ground’, 

tissues. Chapters 2, 3 and 4 discuss the potential protective (e.g., during infection) and 

damaging (e.g., during inflammatory diseases) implication of this selective stress response. 

 

Immune dysregulation by stress is enhanced in older individuals (Gouin et al., 2008; Graham 

et al., 2006; Segerstrom et al., 2008). It is therefore intriguing that the cells that were found to 

be most stress and adrenergic sensitive are also denoted “aged” T cells as they accumulate 

in the older adult (Gillespie et al., 2000). Indeed, the accumulation of late-differentiated 

CD8TLs is considered a hallmark of immunosenescence and predicts increased morbidity 

and mortality in older individuals (Sansoni et al., 2008; Wikby et al., 2005). Thus, the altered 

neuro-endocrine sensitivity of these late-differentiated cells might provide a mechanistic 

explanation for why stress has a larger impact in older adults (Segerstrom and Miller, 2004).  
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THE INFLUENCE OF CMV INFECTION ON CD8+ T LYMPHOCYTE MOBILIZATION 

 

Latent CMV infection causes a dramatic expansion of late-differentiated CD8TLs (Gillespie et 

al., 2000; Khan et al., 2002). As these are the same cells that were found to be stress- and 

βAR- responsive, it was speculated that CMV infection might lead to an amplified CD8TL 

stress response. The results in Chapter 3 confirm this prediction, showing that CMVpos 

individuals, as compared to CMVneg, have a ~3-fold higher CD8TL mobilization during stress 

and an even larger increase (~17-fold) CD8TL mobilization during βAR-agonist infusion. As 

hypothesized, greater mobilization of CD8TL numbers was consistently correlated (r between 

~.46 – .86) with greater resting numbers of late-differentiated CD8TL subsets, accounting for 

the observed CMV effect. This data provides the first evidence that host-viral interactions can 

modify immunological responses to stress and neuro-endocrine stimulation.   

 

It could be excluded that the enhanced mobilization associated with latent CMV infection was 

due to a higher sensitivity to stress, which might, for example reflect neuropsychological 

effects of the virus (Lafferty, 2005; Nau and Schmidt, 2007; Perry et al., 2008; Phillips et al., 

2008). No differences were observed in psychological, autonomic, or cardiac responses 

between the two groups. Also, the enhanced effect was replicated by βAR-agonist infusion, 

excluding a mere enhanced psychological responsivity. Finally, the effect of CMV serostatus 

appeared not generalize, but was selective to CD8TLs and other T cell populations known to 

be affected by CMV infection.  

 

The expansion of late-differentiated cells in CMV-infected individuals can, at least in part, be 

attributed to an accumulation of CMV-specific CD8TLs, which are known to have a largely 

late-differentiated phenotype. This raised the question whether the enhanced response to 

stress and βAR-stimulation, described in Chapter 3, is due to an enhanced mobilization of 

CMV-specific cells, or whether phenotype (i.e., irrespective of antigen specificity) is a 
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determinant of mobilization. In other words, is the enhanced CD8TL responsivity due to an 

expansion of late-differentiated cells, or due to an expansion of CMV-specific CD8TLs? The 

data presented in Chapter 4 showed that differentiation, and not antigen-specificity, is the 

major predictor of mobilization. With the exception of the early subsets, the mobilization of 

memory phenotypes within CMVtet+ CD8TLs and total CD8TLs were similar; in both 

populations CD28– cells (i.e., intermediate- and late-differentiated) displayed at least a 2-fold 

larger mobilization than CD28+ cells (i.e., early-differentiated). Significantly, the same pattern 

was also replicated for EBV-specific CD8TLs; again confirming that phenotype and not 

antigen specificity is the main predictor of mobilization to stress.  

 

CMV infection is known to impact a number of immunological parameters frequently studied 

in psycho-neuro-immunology (PNI), such as vaccine responses, mitogen-induced 

proliferation, low grade inflammation, and telomere length (Bruunsgaard et al., 1999; Effros, 

1997; Epel et al., 2006; Saurwein-Teissl et al., 2002; Trzonkowski et al., 2003; van de Berg 

et al., 2010). This raises the possibility that CMV infection may be a confounding factor in 

PNI research. The possibility that CMV infection is a confounder in PNI seems even more 

likely because characteristics such as socio-economic status and ethnicity are associated 

with CMV infection, which, in turn, correlate with psychological and physical health outcomes 

(Aiello et al., 2009; Czernochowski et al., 2008; Lupien et al., 2007; Pawelec et al., 2005; 

Trzonkowski et al., 2003; Wikby et al., 2005; Zajacova et al., 2009). Thus, on the basis of our 

findings we suggest that CMV serostatus should be considered as a standard control 

measure in studies examining the relation between psychosocial factors and immune 

function.  

 

In humans, CMV is known to reactivate in periods of enhanced stress (e.g., end of year 

examination periods) and increased sympathetic activation (e.g., myocardial infraction) 

(Prosch et al., 2000; Sarid et al., 2004). In Chapter 4 we discussed the possibility that 
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increased β-adrenergic sensitivity of late-differentiated CD8TLs may also alter other cell 

functions such as, cell proliferation, lytic activity, and cytokine production, which, in turn, 

could contribute to a reduced control of latent CMV (Bartik et al., 1993; Borger et al., 1998; 

Gratama et al., 2008; Hatfield et al., 1986; Kalinichenko et al., 1999; Leo and Bonneau, 

2000; Ozdemir et al., 2002; Sekut et al., 1995). Alternatively, increased adrenergic sensitivity 

and enhanced immune surveillance during stress may have evolved in coexistence with 

CMV infection, as an immunological counter measure to heighten defences during periods 

when CMV reactivation is more likely to occur. 

 

 

ACUTE STRESS, BETA-ADRENERGIC RECEPTOR STIMULATION, AND PROGENITOR 

CELL MOBILIZATION  

 

To the best of our knowledge, the study presented in Chapter 5 is the first to demonstrate 

that progenitor cells (PCs) mobilize in response to psychological stress. This effect was 

observed for both the haematopoietic stem cells (HSC) and endothelial progenitor cells 

(EPC). Within the HSC and EPC population, only cells that showed late-differentiation (e.g., 

CD38+ and CD133- respectively), and are thus committed to a particular lineage, were 

mobilized. The effect of stress on PC mobilization was hypothesized because experimental 

human and animal data demonstrated adrenergic receptor expression on PCs (Muthu et al., 

2007; Spiegel et al., 2007). Moreover, mouse experiments showed that ablation of 

adrenergic neurotransmission prevented PC egress from the bone-marrow into the blood and 

that administration of a β2AR-agonist could partially reverse this affect (Katayama et al., 

2006). Hence it was unexpected that infusion of the βAR-agonist was unable to replicate the 

effects of stress. This suggests that the stress induced response is governed by αAR or non-

adrenergic mechanisms.  
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The findings in Chapter 5, can be seen as complementing a general theme, observed 

throughout the various chapters, that the effects of acute stress on blood cellularity appear to 

have adaptive utility. Indeed, based on extant data, it seems reasonable to assume that 

increased mobilization of PC subsets is conducive to restorative process including tissue 

repair, angiogenesis, and immune reconstitution (Ballard and Edelberg, 2007; Dimmeler and 

Zeiher, 2004; Foresta et al., 2010; Kocher et al., 2001; To et al., 1997; Yamada et al., 2005).   

 

 

REMAINING ISSUES 

 

Whereas the research in this thesis has brought to light a number of new facts, it also raised 

questions that require further research. One of the most relevant issues is perhaps the 

clinical relevance of leukocyte mobilization during stress. While it is possible to propose a 

number of beneficial functions for this response, at this point, such suggestions remain 

largely speculative. Studies in humans and animals do appear to provide preliminary support 

for immune-enhancement during acute stress, and extending this work is an important next 

step (Dhabhar, 2002; Gosain et al., 2006; Rosenberger et al., 2009; Shimaoka et al., 1998; 

Viswanathan et al., 2005; Viswanathan and Dhabhar, 2005).  

 

The studies presented in this thesis have provided extensive phenotyping of mobilized cells, 

in particular CD8TLs and PCs. It was proposed that future studies should address how these 

changes in blood composition affect the results of functional tests. For example, does the 

increased mobilization of late-differentiated cells, known to exhibit a reduced ability to 

respond to mitogens and an enhanced ability to produce INF-γ, lead to parallel changes in 

proliferation and INF-γ production using functional assays? Moreover, at this point it is 

unclear which, or if, cellular functions are affected in parallel with cell mobilization.  
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Another important next step would be to determine the exact mechanisms for stress-induced 

mobilization of cytotoxic lymphocytes and PCs. For example, while the research presented 

here was able to demonstrate an effect of βAR-stimulation on CD8TL mobilization, it is 

unclear which cellular events subsequently lead to the release of these cells into the blood. 

Similarly, the mechanisms governing stem cells release during acute stressors are currently 

unknown. Although the current work demonstrated that βAR-stimulation alone does not 

induce PC mobilization, we can not rule out the involvement of adrenergic or non-adrenergic 

receptor mechanisms.   

 

A final issue pertains to the role of host-microbe interactions in human behaviour and stress 

responses. It has been estimated that the number of microbial cells that infest the human 

body is at least 10-fold higher than the number of actual bodily cells (Todar, 2004). This 

number is even more impressive when considering that the calculation excludes non-cellular 

microbes such as viruses. Many of these micro-organisms have coevolved with human 

evolution, and there is ample evidence that much of our biology is shaped through this 

microbial co-existence, with perhaps the primeval incorporation of mitochondria in 

eukaryotes as a prime example (Forterre, 2006; Hunter, 2010; Raven, 1970). If microbes can 

shape our biology then that surely would not exclude our psychobiology. The fact that CMV 

infection can substantially amplify the immune response to stress and neuro-endocrine 

stimuli is one of only a few examples that have been identified thus far, and this theme 

clearly warrants further exploration.   

 

 

SUMMARY 

 

The work in this thesis will contribute to the literature with several novel findings, and 

provided explanations for previous observations. It was found that; 
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• Stress and βAR-sensitivity of CD8TLs increased in parallel with cell differentiation 

(progressive loss of CCR7, CD28 and CD27) which has been linked with accumulation 

of greater effector functions.  

• Infection with CMV enhanced the stress- and/ or βAR- reactivity of CD8TLs, CD4TLs 

and NKT-like cells. Enhanced CD8TL mobilization was associated with larger numbers 

of late-differentiated cells in CMVpos individuals.  

• CMVtet+ CD8TLs responded greater to stress and βAR-stimulation when compared to 

total CD8TLs or the EBVtet+ population. The mobilization of CMVtet+ subsets 

demonstrated the same mobilization pattern as total CD8TLs (CD28− > CD28+), 

suggesting that cell differentiation is the major determinant of stress responsiveness, 

and not antigen specificity; the total CMVtet+ population showed greater mobilization 

during stress and βAR-stimulation as a larger proportion of the cells were of the late-

differentiated phenotype.    

• PCs were mobilized by acute psychological stress but βAR-mechanisms did not 

govern the phenomenon.   

 

In sum, the current findings further support the notion that stress induced cell mobilization is 

an adaptive response geared to protect the host by increasing immune surveillance and 

tissue repair mechanisms, in the face of immediate threat. However, the actual impact on 

health outcomes may not always be beneficial depending on the particular situation, i.e., 

infection verses inflammation.  
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APPENDIX 

 

VOLUNTEER PARTICIPATION IN PSYCHOLOGICAL STRESS STUDIES 

 

Table 1. Volunteer participation in each of the four stress studies 
Participant Chapter 2 Chapter 3 Chapter 4 Chapter 5 

102 X X X  
103 X X X  
106   X X 
107  X X X 
120  X  X 
123 X  X X 
130 X X X  
131 X X  X 
139 X X X X 
142 X X X  
143 X  X X 
144   X X 
145 X X  X 
146 X X X X 
147 X X X X 
148 X X   
151 X  X  
160 X X X  
166 X X X  
167 X    
177 X X X X 
178 X X   
184 X   X 
193 X X X  
195 X X X  
198 X X X  
201  X   
202  X X  
203 X X X X 
210 X  X X 
235 X X X  
236   X X 
239 X X  X 
240 X X  X 
241 X X  X 
245  X  X 
246  X X X 
247  X X X 
248  X X X 
249   X X 
250  X X X 
251  X  X 
 

 



 II

βAR-AGONIST INFUSION STUDY- DATA COLLECTION AND VOLUNTEERS 

 

The βAR-agonist infusion study was performed at the UCSD as part of an on going 

collaboration between The School of Sport and Exercise Sciences, UoB, UK and laboratory 

of Professor Paul J Mills, UCSD, USA. The author of this thesis gained two travel awards 

which helped fund the seven week laboratory visit. The protocol was performed by nurses in 

the General Clinical Research Centre at UCSD under the supervision of Miss Natalie Riddell. 

The samples were then prepared and analysed by Miss Riddell. 

 

Table 2. Volunteer participation in each of the four infusion studies 
Participant Chapter 2 Chapter 3 Chapter 4 Chapter 5 βAR-antagonist 

procedure 
1 X X  X X 
2  X  X X 
3  X  X  
4 X X X X  
5 X X  X  
6 X X  X X 
7 X X X X X 
8 X X  X  
9 X X  X  
10 X X  X  
11 X X X X  
12 X X X X X 
13  X  X  
14  X  X  
15 X X X X X 
16 X X  X  
17 X X  X X 
18 X X X X X 
19 X X  X  
20 X X  X  
    

 


