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Characterization of laser propagation through turbulent media 
by quantifiers based on the wavelet transform: Dynamic study

Abstract

We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has 
propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) 
two quantifiers are used, the Hurst parameter, H, and the normalized total wavelet entropy. The temporal evolution of 
both quantifiers, obtained from the laser spot data stream, is studied and compared. This allows us to extract information 
on the stochastic process associated with the turbulence dynamics.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this work is to statistically describe laser beam propagation through time-changing 
laboratory generated turbulence. To do so, we analyze data stream corresponding to the centroid position of 
the laser spot by using two different quantifiers obtained from the wavelet theory: the Hurst parameter, H, and 
the normalized total wavelet entropy (NTWS). The former quantifier results from modeling the centroid’s 
coordinates as a fractional Brownian motion (fBm) at stationary turbulence strength [1], while the latter has 
been used for a wider set of stochastic processes—see Ref. [2].

The fBm was discovered by Kolmogorov [3] and defined by Mandelbrot and Van Ness [4] as the only family 
of processes which are Gaussian, self similar, and with stationary increments. The normalized family of these 
gaussian processes, BH, is the one with ^ ( 0 )   0 almost surely, E[R//(i)]  0, and covariance
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These features are due to the fact that the wavelet family if/a b is generated by dilations and translations of a 
unique admissible mother wavelet tJ/(t). So, the family itself exhibits scale invariance. It should be noted that 
the first two properties are valid for any process with stationary increments [9].

In particular these properties are widely used for estimating H  or the related spectral exponent a  2H  +  1 
[5,10,11]. Through the Logscale Diagram the threefold objective: detection, identification and measurements of 
the scaling exponent can be achieved [12]. Basically the estimation problem turns into a linear regression slope 
estimation.

In order to model the time-changing turbulence situation we consider a generalization where the parameter 
H  is no longer constant, but is a continuous function of the time t (H > H{t)). This generalization was 
introduced in financial research to model the behavior of stock market index time series [13-15]. Also, it was 
recently used to characterize dynamic speckle or biospeckle [16]. A single scaling exponent would be unable to 
show the complex dynamics inherent to the data. The constraint of stationary increments is relaxed in this 
case. Multifractional Brownian motion (mBm) [17] was formalized as a class of processes which satisfies these 
properties.

We calculate the time-dependent Hurst exponent by using the wavelet properties. Provided that variations 
of H  are smooth enough, the signal is divided into i non overlapping temporal windows and the scaling 
exponent is calculated for each subset according to the procedure described in Ref. [1]. A sequence of Hurst 
parameter values is obtained. They give the local scaling exponent around a given instant of time. Artificially 
mBm were analyzed in order to test the quality of our estimator. In Fig. 1 one can compare the theoretical and 
experimental results for an mBm with H  changing linearly from 0.1 to 0.9 with t. The Matlab code introduced 
by Coeurjolly [18] was implemented to simulate the mBm. The signal was divided into 64 temporal windows of 
512 data points. We used the orthogonal cubic spline functions as the mother wavelet and the resolution levels 
from j  = 9 to j   1 .

At the same time, the NTWS is also applied to study this time-changing turbulence. Introduced as a 
measure of the degree of order disorder of the signal [2], it provides information about the underlying
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Remember that this equation is not a valid power spectrum in the theory of stationary processes since it is a
non-integrable function in the classical sense.

Several properties evidence that wavelet analysis is well-suited to fBm:

(1) fBm is nonstationary but the wavelet coefficients form a stationary process at each scale [6,7].
(2) fBm exhibits a positive long-range correlation in the range \< H < \  but wavelet coefficients have a 

correlation which is highly small as soon as N  > H  + where N  is the number of vanishing moments 
associated with the mother wavelet \]/(t) [7,8].

(3) The self-similarity of fBm is reproduced in its wavelet coefficients, whose variance varies as a power law as 
a function of scale j  [6,7]

(3)

(2)

for s, t ϵ R. The power exponent H  is also known as the scaling exponent and its range is bounded 
between 0 and 1. The estimation of this parameter plays a key role modeling an fBm time series. 
One remarkable property of this family BH is that the H  parameter regulates the presence or absence 
of memory. In fact, it can be separated into three subfamilies accordingly: long-memory for 
1<H<  1, memoryless at H   \  (ordinary Brownian motion), and short-memory in the case 0 <H < \. 
Likewise, the Hurst parameter can be condensed to be the probability of the next increment of the 
signal having the same sign as the previous increment. Thus, it tunes the trajectory regularity. Fractional 
Brownian motions are continuous but non-differentiable processes (in the usual sense), and only 
give generalized spectra 1 //“ with exponents a between 1 and 3. As a nonstationary process, the fBm 
does not have a spectrum defined in the usual sense; however, it is possible to define a power spectrum of the 
form [5]:
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Fig. 1. Top: synthetically generated mBm signal with H  changing linearly from 0.1 to 0.9 with t. Middle: theoretical (dashed curve) and 
measured (continuous curve) Hurst parameter for this simulated mBm. Bottom: measured NTWS.
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with i j   E[Cj(k)\ being the energy at each resolution level j  = —N , . . . , 2 , 1  and $t0t = J2j<o They 
yield, at different scales, the probability distribution for the energy. It should be remarked that an orthogonal 
mother wavelet must be used within this theory further details can be found in Ref. [1]. Indeed, a very 
ordered process can be represented by a signal with a narrow band spectrum. A wavelet representation of such 
a signal will be resolved in a few wavelet resolution levels, i.e., all RWE will be (almost) zero except at the 
wavelet resolution levels which include the representative signal frequency. For these special levels the RWE 
will be almost equal to one. As a consequence, the NTWS will acquire a very small, disappearing value. A 
signal generated by a totally random process or chaotic one can be taken as representative of a very disordered 
behavior. This kind of signal will have a wavelet representation with significant contributions from all 
frequency bands. Moreover, one could expect that all contributions will be of the same order. Consequently, 
the RWE will almost be equal at all resolution levels, and the NTWS will acquire its maximum possible value. 
Higher values for wavelet entropy means higher dynamical complexity, higher irregular behavior and, of 
course, lower predictability.

The time evolution of NTWS can be easily implemented. So, it is widely used to study a wide set of 
nonstationary natural signals. In particular, it was introduced to quantify the degree of disorder in the 
electroencephalographic epileptic records giving information about the underlying dynamical process in the 
brain [19], more specifically of the synchrony of the group cells involved in the different neural responses. 
Also, monthly time series of different solar activity indices (sunspot numbers, sunspot areas and flare index) 
were analyzed [20,21]. The disorder content of solar cycle activity can be derived by analyzing the wavelet 
entropy time evolution. Likewise, the dynamic speckle phenomenon mentioned above has also been analyzed 
by using these wavelet-based entropy concepts [22]. In a recent paper the relation existing between these two 
quantifiers—H  and NTWS when they are used for analyzing fBm was investigated [23]. Fig. 1 (top and 
bottom) shows the mBm and its corresponding NTWS, where the same temporal windows, mother wavelet 
and resolution levels were used.

The experimental measures were performed in a laboratory by producing thermal convective turbulence 
with two electrical heaters in a row. Three different turbulence intensities were generated by changing the 
amount of heat dissipated for each electrical heater: normal, soft and hard turbulence. Along the laser path 
three electronic thermometers sense the air temperature 7T, T2 and 73; see Fig. 2 (bottom). A time series 
corresponding to the fluctuations of the centroid position of a laser beam’s spot (wandering) over a screen, 
after propagation through this time-changing laboratory generated turbulence, were recorded with a position- 
sensitive detector located as a screen at the end of the path. This record consists of 2,500,000 spot beam 
centroid coordinates’ measurements with 500,000 data for each laboratory generated turbulence condition. 
Further details of the experiment can be found in Ref. [1]. The temperature and signal records can be observed 
in Fig. 2. There, it can be observed that the turbulence is increased, and subsequently decreased to recover the 
initial situation.
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dynamical process associated with the signal. We define the NTWS as

(4)

(5)

(6)

where

with N  the base 2 logarithm of the number of data points and [pj] represent the relative wavelet energy (RWE). 
These are defined as

2. Experimental setup and data acquisition
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Fig. 2. Experimental records for the x (top) and y  (middle) coordinates and the associated temperature record (bottom).
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In the present work, we employ orthogonal cubic spline functions as mother wavelets. Among several 
alternatives, cubic spline functions are symmetric and combine smoothness in a suitable proportion with 
numerical advantages. They have become a recommendable tool for representing natural signals [24,25]. The 
signal was divided into 606 non overlapping temporal windows of 4096 data points. Resolution levels between 
j  = 7 and j  = 3 were used to calculate both quantifiers. The first two levels (j = — 1 and j  = 2) were 
dropped to reduce the noise introduced by the system, while the lower levels were excluded to reduce 
nonstationary effects as commented in Ref. [1].

Fig. 3 shows the quantifiers’ temporal evolution. Both quantifiers reveal that when the turbulence is normal 
the detector is not able to resolve position differences, and electronic noise associated with the detector is 
observed. The NTWS close to one as expected for a signal generated by a totally random process and the a 
value matches with a white noise. When the turbulence is increased the system changes in an abrupt way—see 
coordinates’ graphs at Fig. 2. It is interesting to observe the transition between the different intensities of 
turbulence for the signal and its corresponding quantifiers. The Hurst parameter discriminates between the 
other two increased turbulences. It is possible, in average, to associate a value ax = 1.17, <xy = 1.04 for the soft 
case and a*  1.62, a.y = 1.51 for the hard turbulence. It should be noted that the signal has more regularity 
for the strongest turbulence. The NTWS diminishes notably showing an increment in the order of the system 
but it is unable to distinguish between soft and hard turbulence giving values of NTWS*  0.63, NTWS^  
0.66 for the soft turbulence and NTWS*  0.57, NTWSj,  0.63 for the hard turbulence.

Fig. 3. Quantifiers temporal evolution: a (top) and NTWS (bottom) for the x  (left) and y  (right) coordinates.
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3. Results and conclusions
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It can be followed by comparing Figs. 2 and 3 that the behavior of the signal is different for both 
coordinates. Nevertheless, the temporal evolution of the quantifiers is very similar. It can also be observed that 
the system has a hysteresis effect (see Figs. 2 and 3) as was expected.

The mBm model is justified for modeling the dynamics associated with these processes. We conclude that 
the associated scaling exponent changes continuously with the turbulence strength. In the future a new 
generalization will be considered and studied: the generalized multifractional Brownian motion (gmBm) [26]. 
These processes consider that scaling exponent variations may be very erratic and not necessarily a continuous 
function of time. The latter condition is a strong limitation in turbulence studies where the scaling exponent 
can change widely from time to time.
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