Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusion de la Creacion Intelectual

Some Classical Problems of Inheritance
Networks in the Light of Defeasible Ontology
Reasoning

Sergio Alejandro Gémez

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, ARGENTINA
Email: sag@cs.uns.edu.ar

Abstract. Reasoning with possibly inconsistent ontologies is an impor-
tant reasearch topic for the implementation of the Semantic Web as they
pose a problem for performing instance checking. We contend that De-
feasible Logic Programming (DeLP) is a reliable tool for doing ontology
reasoning when Description Logic ontologies can be interpreted as DeLLP
programs. In this work we present some classical problems of the field
of inheritance networks and show how they are modeled as inconsistent
ontologies and thus how the problem of instance checking is solved; we
also show how issues in reasoning with argumentation frameworks based
on Dung’s grounded semantics are also solved when applied to ontology
reasoning, and we revise the main algorithm for instance checking when
using DeLLP with inconsistent ontologies.

1 Introduction

Reasoning with Description Logics ontologies [I] is an important topic for the
implementation of the Semantic Web [2]. In the Semantic Web, the meaning of
data resources is defined in terms of ontologies thus making them machine pro-
cessable. Traditional reasoners, such as Racer [3] or Pellet [4], infer a taxonomy
of concepts from an ontology and are used, among other tasks, to determine the
membership of individuals to concepts—a problem known as instance checking.
Inconsistent ontologies pose a problem for this because when reasoners detect an
inconsistency, in the best scenario, they point to the definition that is causing
trouble. After this, the knowledge engineer has to debug the ontology, that is
making it consistent again. Many times this is not possible for many reasons,
one of them is that the field being modeled can be intrinsically contradictory,
another is that the engineer may not have the authority to edit the ontology’s
contents. Many approaches have been proposed for dealing with this situation,
such as paraconsistent logics [5] and belief revision [6] (for an in-depth revision
of related work, see [7I8[9]).

The hypothesis of this work is that defeasible argumentation [I0] is a reli-
able tool for reasoning with possibly inconsistent ontologies and, in this regard,

https://core.ac.uk/display/76480213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Defeasible Logic Programming, as an implementation of defeasible argumenta-
tion, is an appropriate tool for this. In [7], Gémez et al. developed a framework
for ontology reasoning based on defeasible argumentation called J-ontologies;
reasoning on this program instead of on the ontology. Instance checking com-
prise performing a dialectical process weighing opposing reasons supporting and
rejecting the membership of individuals to concepts.

The contribution of this paper is three-fold: (i) it consolidates research re-
sults on the J-ontology framework presented previously by Goémez et al. [78]
and Gémez and Simari [9], (ii) it discusses how some historical problems in in-
heritance networks [I1] are solved in d-ontologies and, finally, (iii) it shows how
issues in reasoning with argumentation frameworks based on Dung’s grounded
semantics are also solved in the J§-ontologies framework. Our research method-
ology includes the gathering of representative examples in the literature and
showing how the J-ontologies framework handles the problem of instance check-
ing in these examples. In brief, this contribution reaffirms the results of previous
work and can be considered an expansion of past work in the field.

Outline: In Section [2] we present the fundamentals of Description Logic on-
tologies, Defeasible Logic Programming and how inconsistent ontologies are han-
dled with DeLP. In Section[3| we present some classical problems of the field of in-
heritance networks and argumentation and how they are handled as §-ontologies.
Finally, in Section [l we revise the main algorithm for computing instance check-
ing, discuss future work and present the conclusions.

2 Fundamentals of Ontologies Treated in Defeasible
Argumentation

2.1 Description Logic ontologies

Description Logics (DL) are a well-known family of knowledge representation
formalisms [I]. They are based on the notions of concepts (unary predicates,
classes) and roles (binary relations), and are mainly characterized by the con-
structors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunction (C M D), disjunc-
tion (C U D), negation (—C), existential restriction (IR.C), and value restriction
(VR.C). To define the semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain.

A DL ontology consists of two finite and mutually disjoint sets: a Thox which
introduces the terminology and an Abox which contains facts about particular
objects in the application domain. Inclusion Thbox statements have the form
C C D, where C and D are possibly complex concept descriptions, meaning that
every individual of C is also a D. Objects in the Abox are referred to by a
finite number of individual names and these names may be used in two types of
assertional statements: concept assertions a : C (meaning the individual a is a
member of concept C) and role assertions (a,b) : R (meaning that a is related
to b through the role R).

Many reasoning Abox reasoning tasks are defined in DL, in this work we are
only insterested in instance checking, that refers to determining if an individual
is a member of a certain class. An ontology is incoherent if it has empty concepts
and inconsistent if it is contradictory.

2.2 Argumentation in Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [12] provides a language for knowledge
representation and reasoning that uses defeasible argumentation to decide be-
tween contradictory conclusions through a dialectical analysis, and providing a
good trade-off between expressiveness and implementability for dealing with in-
complete and potentially contradictory information. In a DeLP program P =
(I, A), a set IT of strict rules P < @Q1,...,Q, (which encode certain knowl-
edge), and a set A of defeasible rules P —= Qq, ..., @, (which encode knowledge
with possible exceptions) can be distinguished. As in logic programming, P is
the head of the rule and Qq,...,Q, comprise its body. An argument (A, H) is
a minimal non-contradictory set of ground defeasible clauses A of A that allows
to derive a ground literal H possibly using ground rules of II. Since arguments
may be in conflict (concept captured in terms of a logical contradiction), an
attack relationship between arguments can be defined. To decide between two
conflicting arguments, we will use generalized specificity—a syntactic criterion
that prefers arguments more informed and arguments based on shorter deriva-
tions. If the attacking argument is strictly preferred over the attacked one, then
it is called a proper defeater. If no comparison is possible, or both arguments
are equi-preferred, the attacking argument is called a blocking defeater. To de-
termine whether a given argument A is ultimately undefeated (or warranted),
a dialectical process is recursively carried out, where defeaters for A, defeaters
for these defeaters, and so on, are taken into account. Given a DeLP program
P and a query H, the final answer to H w.r.t. P is based on such dialectical
analysis. The answer to a query can be: Yes (when there exists a warranted
argument (A, H)), No (when there exists a warranted argument (A, ~H)), Un-
decided (when neither (A, H) nor (A, ~H) are warranted), or Unknown (when
H does not belong to P).

2.3 Expressing Description Logic Ontologies in DeLP with
6-Ontologies

In the presence of inconsistent ontologies, traditional DL reasoners issue an er-
ror message and the knowledge engineer must then debug the ontology (i.e.
making it consistent) to be able to perform instance checking. Gémez et al. [7]
showed how DeLLP can be used for coping with inconsistencies in ontologies such
that the task of dealing with them is automatically solved by the reasoning sys-
tem. d-ontologies comprise an important subset of DL ontologies that can be
be translated into logic programming (DL Lj-classes can be translated, using
Lloyd-Topor’s transformations, as bodies of DelLP rules, £;-classes as heads of

DeLLP rules, and Lp,-classes work both at bodies and heads of rules). An ontol-
ogy will be separated into a strict terminology T's that will be understood as a
strict set of DeLP rules, a defeasible terminology Tp that will be translated as
a set of defeasible rules and an assertional box A that will be considered a set
of DeLP facts. Formally:

Definition 1 (§-Ontology). Let C be an Ly-class, D an Ly-class, A,B Lpp-
classes, P, Q roles, a,b individuals. Let T be a set of inclusion and equality DL
axioms of the foom CC D, A=B, TCVP.D, TC VP .D,PCQ,P=Q,
P=Q™, or PT C P such that T can be partitioned into two disjoint sets Tg and
Tp. Let A be a set of assertions disjoint with T' of the forma: D or (a,b) : P. A
d-ontology X' is a tuple (Ts,Tp, A). The set Ts is called the strict terminology
(or Sbox), Tp the defeasible terminology (or Dbox) and A the assertional box
(or Abox).

For giving semantics to a d-ontology, two translation functions Ta(:) and
Tr(+) from DL to DeLP are defined based on the work of [I3] (for details see [7]).
First, axioms are considered to be in negation-normal form, meaning that nega-
tions are pushed inward class expressions. Informally, an axiom of the form
C C D will be translated as d(X) < ¢(X) when it belongs to the Shox and as
d(X)——=c(X) when it is a member of the Dbox. Abox assertions of the form
a : C are translated as DeLP facts ¢(a) and (a,b) : r as r(a,b). Moreover, a
formula of the form 3r.C C D is translated as d(X)—r(X,Y),c(Y), and one
of the form CUD C E as two axioms C C E and D C E. The interpretation of
X is a DeL.P program P = (T (Ts) U Tz (A), Ta(Tp)). Notice that not to lose
possible inferences T (Ts) computes transposes of rules (e.g., T ({C C D}) is
{(d(X) + (X)), (~e(X) «~d(X))}). To keep consistency within arguments
obtained from a given Y, it must not be possible to derive two complementary
literals from 77 (Ts) U T (A). Instance checking in d-ontologies is redefined to
handle possible inconsistencies while retaining classic DL functionality where
there is none: If C is a class and a an individual, (i) a is a potential member of C
iff there exists an argument (A4, C(a)) w.r.t. P; (ii) a is a justified member of C iff
there exists a warranted argument (A, C(a)) w.r.t. P; (iii) a is a strict member
of C iff there exists an argument (, C(a)) w.r.t. P, and (iv) the membership of
a to C is undecided iff there is no argument for C'(a).

3 Problems of Inheritance Networks in §-Ontologies

Here we review classical examples in the light of its representation and reasoning
within d-ontologies. The examples presented in this section are based on [I1]
and [I4], and are taken from the area of inheritance networks [15] and defeasible
reasoning [10].

Ezample 1. Consider this d-ontology Xm= (Ts,Tp, A) where:

Black_widow C Spider

Spider C Arachnid
Pet C Lives_with_human

Ts ,ITp = {

Arachnid C Exoskeleton
Mammal C —Exoskeleton
Beagle C Dog

Dog C Mammal

A {SPOT : Beagle }

Dog C Pet
Spider C —\Pet} and

PEPA : Black_widow
This ontology is interpreted as the DeLP program Ay = (II, A) where:
spider(X) < black_widow(X). ~black_widow(X) <~ spider(X).
arachnid(X) « spider(X). ~spider(X) <~ arachnid(X).
lives_with_human(X) < pet(X). ~pet(X) <~ lives_with_human(X).
exoskeleton(X) < arachnid(X). ~arachnid(X) <~ exoskeleton(X).

=9~ ezoskeleton(X) < mammal(X). ~mammal(X) < ezoskeleton(X).
dog(X) <« beagle(X). ~beagle(X) +~dog(X).
mammal(X) < dog(X). ~dog(X) <—~mammal(X).
beagle(spot). black_widow(pepa).

A = { pet(X)—=dog(X). ~pet(X)—arachnid(X). }

Bender points out that from this representation, we should be able to reach
conclusions such as: “a black widow spider has an exoskeleton”, “Spot is a dog”,
“beagles live with humans”, “spiders are not pets” (not true because people in
the real world keep tarantulas as pets), “dogs do not have exoskeletons”, “pets
are not arachnids”, and “Spot is not a black widow spider”.

Let us see what the possible conclusions of this DeLLP program are: First,
we see that the Pepa spider has an exoskeleton (in this case we an argument
formed by strict rules—Pepa is a black widow spider, which is an arachnid, and
arachnids have exoskeletons); so Pepa is a strict member of the Exoskeleton.
Spot is a dog because he is a beagle (we have again an argument formed solely
by strict rules). Spot lives with humans (Spot is a beagle, beagles are dogs,
dogs are pets, pets live with humans). We reach one of the limits of the model
when we query if Pepa lives with humans; in this case, the answer is undecided
because there is no argument in favor of lives_with_human(pepa). Pepa is not a
pet (clearly, Pepa is a spider and spider are not pets). Spot has no exoskeleton
(Spot is dog, dogs are mammals, mammals don’t have exoskeleton). When we
ask if pets are not arachnids, we note that we cannot build an argument (not
even adding pet(a) to IT). Again, asking if Spot is not a black widow spider, the
answer that DeLP brings is undecided (as we have no argument for it). Clearly
this limitations are motivated by two issues: the model is inherently incomplete
and rule systems allow for less conclusions that first-order logic, which is good,
otherwise an inconsistency would produce that anything is a conclusion of our
system.

Adding additional relations {Bird C —Milk; Pigeon C Bird; Pigeon C Milk; Tweety :
Pigeon} to the previous example yields the additional rules {~ milk(X)—bird(X);
bird(X) + pigeon(X); ~pigeon(X) +~bird(X); milk(X)—pigeon(X); pigeon(tweety)}.
This example codifies the knowledge that we believe that mammals give milk and

birds do not. But, actually, pigeons secrete a cheeselike substance, called pigeon’s
milk, into their crops and regurgitate it for nestlings. This program contains a
contradiction because we can conclude that pigeons do not milk (thus contra-
dicting that pigeons milk). In this case we conclude that Tweety milks because
he is a pigeon and pigeons milk (there is an argument (A, ~ milk(tweety)) that is
defeated by (B, milk(tweety))), where: A = {~ milk(tweety)—bird (tweety)} and
B = {milk(tweety)——pigeon(tweety)}). Notice that this situation would not arise
in the case of birds that are not pigeons, thus producing the intuitive result.

Ezample 2 (Based on [11)]). Species in the phylum of Mollusca, which includes
clams and snails, normally have external shells. Mollusca contains the class
Cephalopoda, which includes squid and octopi. Cephalopods normally lack ex-
ternal shells; however they include the genus Nautilus, and nautiloids normally
have external shells. Formally, we have Y5 = (Ts,Tp, A) where:

i C
{ Nautilus Cephalopoda } { Nautilus C External_shell }
5 = D =

Mollusca C External_shell
C C
Cephalopoda & Mollusca Cephalopoda C —External_shell

A = {a: Nautilus }

Consider the query “Is the chambered nautilus likely to have an external
shell?” First, because nautiloids normally have external shells, we could answer
“Yes”. Second, since nautiloids are cephalopods and since cephalopods generally
lack external shells, we maybe could affirm “No”. Third, because cephalopods
are mollusks, which generally have external shells, maybe “Yes” is correct after
all. This ontology is interpreted as the DelLP program:
cephalopoda(X) + nautilus(X).
mollusca(X) < cephalopoda(X).
~nautilus(X) <~ cephalopoda(X).
~ cephalopoda(X) +—~mollusca(X).
nautilus(a).

{ external_shell(X)—nautilus(X). }
A=

]
|

external _shell(X)—mollusca(X).
~ external _shell(X)—— cephalopoda(X).

In this case, there are two arguments supporting opposing conclusions: A
supporting external_shell(a) and B supporting ~ external_shell(a), where A =
{external_shell(a)——nautilus(a)} and B = {~ external_shell(a)—— cephalopoda(a)}.
Here A is defeated by B because B is more specific than A.

Ezample 3 (Based on [11]). Mammals usually do not fly. Bats normally fly.
Vampires are mammals. Bats are mammals. Given that Dracula is a vampire,
what should we believe about Dracula’s ability to fly? Given that Tea Tray is
a bat, should we believe that Tea Tray flies? This situation is represented by
Zig] = (TS7 TD, A) where:
Vampire C Mammal}
Ts =
Bat C Mammal
A— { DRACULA : Vampire}

D =

Mammal C =Fly
Bat C Fly

TEA_TRAY : Bat
This ontology is interpreted as Ay = (II, A):

mammal(X) < vampire(X).
mammal(X) < bat(X).

g1 vampire(X) <—~mammal(X). | ~fly(X)—=mammal(X).
) ~bat(X) +~mammal(X). O Ay (X)—=bat(X).
vampire(dracula).

bat(tea_tray).

If we ask if Dracula flies, DeLP finds an undefeated argument A for ~
fly(dracula), where A = {~ fly(dracula)——<mammal(dracula)}, stating that Drac-
ula does not fly because he is a mammal as he is a vampire. So the DRACULA
is a strict member of —Fly. When we query if Tea Tray can fly, we get a simi-
lar argument but this one is defeated by another argument that says that Tea
Tray can fly because he is a bat and bats fly. Formally, (C,~ fly(tea_tray)) is
defeated by (D, fly(tea_tray)), where: C = {~ fly(tea_tray)—mammal(tea_tray)}
and D = {fly(tea_tray)——bat(tea_tray)}.

Ezample 4 (Based on [11], who originally took it from [16]). Utah residents are
usually Mormons. Mormons usually do not drink beer. BYU alumni living in
Utah are usually football fans. Football fans usually drink beer. Formally, we
must code this knowledge as Y= (0, Tp, A) where:

Lives_in_utah C Mormon

Mormon C —Drinks

Football_fan C Drinks

BYU_Alumni C Football_fan

A= {a : BYU_Alumni a: Lives,in,utah,}

Should we believe that BYU alumni living in Utah drink beer? The interpre-
tation of Ygis Ry = (II, A) where:

Tp =

II = { byu_alumni(a). lives_in_utah(a). }
mormon (X)—lives_in_utah(X).
Al drinks(X)—mormon(X).

drinks(X)—=football_fan(X).
football _fan(X)—byu_alumni(X).

This case presents the same pattern of the Nixon’s diamond in the sense
that it propagates undecidability. We can find two equally strong arguments:
(A, drinks(a)) and (B, ~drinks(a)) where

A= drinks(a)——=football_fan(a)

“ | football_fan(a)——byu_alumni(a)
[~drinks(a)—mormon(a)
| mormon(a)—lives_in_utah(a)

Therefore the membership of a to Drinks is undecided.

The next example is a classical one that Caminada and Amgoud refer to as
a situation that presents problems in certain argumentation systems because it
yields to unintuitive results such us warranting literals that should not (see [14]).

Ezample 5 (Based on [13)]). Let Y= (Ts,Tp, A) be a J-ontology where:

Ts

Bachelor C —HasWife;
{ Married C HasWife }

T — {HasWeddingRing C Married;}

P = GoesOutLate C Bachelor
A {JOHN : HasWeddingRing; }
" | JOHN : GoesOutLate

It says that someone who is a bachelor does not have a wife and somebody who
is married do have a wife; usually someone who wears a wedding ring is married
and someone who is a bachelor goes out at night, and it is known that John
wears a wedding ring and goes out at night. The DeLP program g = (II, A)
that represents g is:
has WeddingRing(john);
goesOutLate(john);
~hasWife(X) < bachelor(X);
hasWife(X) < married(X)

A { married(X)—hasWeddingRing(X); }

~ | bachelor(X)——<goesOutLate(X)

The answer to the query bachelor(john) is Undecided because the argument
structure (A, bachelor(john)) is defeated by (B, has Wife(john)) where E|

A = { bachelor(john)— goesOutLate(john) }

B— { hasWife(john) <— married(john); }

married(john)—<has WeddingRing (john) [

II =

Likewise, the answer to the query married(john) is Undecided because the
argument (C, married(john)) is defeated by (D, ~hasWife(john)) where:

C = { married(john)—has WeddingRing(john) }

D ~ hasWife(john) < bachelor(john);

" | bachelor(X)——<goesOutLate(john)

The answers to the queries hasWife(john) and ~ hasWife(john) are Unde-
cided as well because (£, hasWife(john)) and (F, ~hasWife(john)) are blocking
defeaters of each other, where:

c— hasWife(john) < married(john)

" | married (john)——<has WeddingRing(john)

7 ~hasWife(john) < bachelor(john);

" | bachelor(john)——=goesOutLate(john) |

As noted by Caminada and Amgoud [14], DeLP handles this situation cor-
rectly, so the instance checking problems JOHN : Married and JOHN : Bachelor
are undecided and no counterintuitive solution is inferred in the J-ontologies
framework.

4 Discussion and Conclusions

In Figure we present a revised version of the algorithm presented in [7] for com-
puting instance checking of possibly inconsistent DL ontologies. In this version,

! Notice that we abuse the notation here and add strict rules in arguments for em-
phasis.

when the ontology is both consistent and coherent, we just use the RacerPro
reasoner to compute instance checking; otherwise, we rely on DeLLP to compute
answers. Besides, to translate from DL to Prolog, we rely on the dlpconvert
tool (see [I7]) and from reasoning in DeLP in the DeLP Server application (see
[18]). In [7] we decided to translate all ontologies into DeLP. In our opinion, the
version presented in this paper is an improvement because not all ontologies can
be translated to DeLP. Notice that this algorithm shows influences from [5] as
they rely on paraconsistent logic reasoning only when ontologies are inconsistent.

Algorithm AnswerQueryFromOntology(DL Ontology X', Query C(a))
Submit X' and C(a) to RacerPro DL reasoner
If ' is consistent and coherent Then
print RacerPro answer
Else
Submit X' to dlpconvert to get Prolog program Pproiog
If X could be translated into Prolog Then
Convert Pprolog to get DeLP program P
Submit Q(a) and P to the DeLP Server
If Del.P’s answer is Yes Then
If the argument for C'(a) is empty Then
Print a is a strict member of C'
Else
Print a is a justified member of C
End If
Else
If DeLP’s answer for C(a) is No Then
If the argument for ~C(a) is empty Then
Print a is a strict member of =C'
Else
Print a is a justified member of =C
End If
Else
If DeLP’s answer for C'(a) is Undecided Then
Print the membership of a to C' is undecided
End If
End If
End If
End If
End If
End Algorithm

Fig. 1. Revised algorithm for instance checking

We presented some classical examples in the area of inheritance networks and
what the behavior of the J-ontologies framework is when presented with them.
As our current reasearch work, we are considering the implementation of the

framework proposed and contrasting its performance against the complexity of
real-world ontologies.

Acknowledgments: This research is funded by Secretaria General de Ciencia
y Técnica, Universidad Nacional del Sur, Argentina.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook — Theory, Implementation and Applications.
Cambridge University Press (2003)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
2001

%—Iaars)lev7 V., Méller, R.: RACER System Description. Technical report, University
of Hamburg, Computer Science Department (2001)

Parsia, B., Sirin, E.: Pellet: An OWL DL Reasoner. In: 3rd International Semantic
Web Conference (ISWC2004). (2004)

Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with Inconsistent Ontologies.
In Kaelbling, L.P., Saffiotti, A., eds.: Proc. 19th International Joint Conference on
Artificial Intelligence (IJCAT’05), Edinburgh, Scotland (August 2005) 454-459
Ribeiro, M.M., Wassermann, R.: Base revision for ontology debugging. J. Log.
Comput. 19(5) (2009) 721-743

Goémez, S.A., Chesnevar, C.I., Simari, G.R.: Reasoning with Inconsistent Ontolo-
gies Through Argumentation. Applied Artificial Intelligence 1(24) (2010) 102-148
Gémez, S.A., Chesnevar, C.I., Simari, G.R.: ONTOarg: A Decision Support Frame-
work for Ontology Integration based on Argumentation. Expert Systems with
Applications 40 (2013) 1858-1870

Gémez, S.A.; Simari, G.R.: Merging of ontologies using belief revision and defea-
sible logic programming. Inteligencia Artificial 16(52) (2013) 1628
Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15) (2007) 619-641

Bender, E.: Mathematical Methods in Artificial Intelligence. IEEE Computer
Society Press (1996)

Garcfa, A., Simari, G.: Defeasible Logic Programming an Argumentative Ap-
proach. Theory and Practice of Logic Programming 4(1) (2004) 95-138

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171 (2007) 286-310

Horty, J.F., Thomasson, R.H., Touretzky, D.S.: A skeptical theory of inheritance
in nonmonotonic semantic networks. Artificial Intelligence (42) (1990) 311-348
Nute, D.: Basic defeasible logic. Intensional Logics for Programming (1992) 125-
154

Motik, B., Vrandecié¢, D., Hitzler, P., Sure, Y., Studer, R.: dlpconvert: Converting
OWL DLP statements to logic programs. In: European Semantic Web Conference
2005 (ESWC 2005) Demos and Posters. (2005)

Garcia, A.J., Rotstein, N.D., Tucat, M., Simari, G.R.: An Argumentative Reason-
ing Service for Deliberative Agents. In Zhang, Z., Siekmann, J.H., eds.: KSEM.
Volume 4798 of Lecture Notes in Computer Science., Springer (2007) 128-139

	Some Classical Problems of Inheritance Networks in the Light of Defeasible Ontology Reasoning
	Sergio Alejandro Gómez
	Abstract
	Introduction
	Fundamentals of Ontologies Treated in Defeasible Argumentation
	Description Logic ontologies
	Argumentation in Defeasible Logic Programming
	Expressing Description Logic Ontologies in DeLP with delta-Ontologies

	Problems of Inheritance Networks in delta-Ontologies
	Discussion and Conclusions
	Acknowledgments
	References

