

Performance Evaluation of Parallel Computing on Agent-Based Models:

The Minority Game Case

Santiago Montiel, Sebastian Guala

Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina

{smontiel, sguala}@ungs.edu.ar

Abstract: Simulations of agent-based models developed for topics of learning and inductive

reasoning in artificial intelligence, social behavior, decision making, etc., are progressively requiring

higher power processes while they increase their participation as management and political decisions

support. In this work we develop the implementation of the Minority Game Model for HPC platforms

in order to analyze the performance of simulations related to contexts of agent-based models for large

scales. We compare times to parallel and sequential processes for several instances and get the

corresponding speedup. For this work we use the MPI system with a hardware configuration of

Master-Worker (Slave) paradigm with a cluster of upto 10 processors as workers. In order to improve

efficiency, we evaluate performances for several sizes of clusters varying the size of the instances of

the problem and detect optimum configurations for some instances of simulation.

Keywords: HPC, Minority Game, Simulations of Complex Systems.

1. Introduction

During the last decades, research in computer modeling and simulations of complex systems has become

dominant. Scientific community has turned its attention to problems focused on the emergence of aggregates like

economic behavior, social options, strategical choices, patterns of decision, etc., as a result of the dynamical

interaction of many individuals with complex and heterogeneous behaviors within realistic environments [1].

These agent-based models (ABM) consider explicitly the dynamical approach by inductive (rather than deductive)

evolution, adaptation and learning of individuals; through the study of many interacting degrees of freedom. ABM

uses a bottom-up approach to analyze the complexity of human interactions and understand the emergence of

global processes from individuals to the system as a whole. The key point in that kind of models is that the

individual behavior of agents depends on the environment, the social interaction and the individual outcomes of

previous actions. In many of these situations, the computational approach to dynamical interaction results more

effective than other techniques like formal mathematical models.

After that description, it is clear that advances in ABM require increasingly high computational power.

Despite lots of characteristics emergent behaviors can be observed in different scales, ABM simulations tend to be

small and the agents definition tends to be simple. Therefore, researchers could be missing phenomena only

observed in large-scale or in more complex scenarios. As those ABM become larger, they require much greater

computing capability. In this sense, high-performance computing (HPC) systems allow to perform simulations at

scales that can address the interactions of several millions of individuals with artificial intelligence algorithms and

high computing costs. Therefore, new efforts involve the development of techniques and experiments focused in

the application of HPC platforms to the new challenging scales of ABM [2]. In our case, by HPC platforms we

focus on parallel programming over multiple processes with Message Passing Interface (MPI) applications.

In the context of ABM, one of the most popular models dealing with complex systems, inductive learning

and social behavior which attracted the attention of the statistical mechanics community in the last decade is the

so-called Minority Game problem. The Minority Game (MG) is a discrete adaptive model based on the “El Farol”

bar problem [3], which was introduced in [4] in order to study strategical behaviors. It is associated to the analysis

of simple financial markets due to the similar kind of binary decisions that must be made (e.g., “buy” or “sell”) and

to the bounded rationality and incomplete information that the individuals have. Given the number of scenarios

where the MG-like applications can be encountered and the large amount of agents potentially involved, in this

work we analyze the advantage of implementing HPC (in particular, MPI) platforms in order to improve the

performance of models related to MG-like contexts. The rest of this paper is organized as follow. Section 2 defines

formally the model. Section 3 shows the parallelization and the design of internodes communications. Section 4

shows experimental results. Finally, Section 5 gives conclusions and future works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76480201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. The Minority Game Model

The MG is an ABM inspired in real complex systems which presents interesting collective properties like

coordination among agents [5]. However, from a more general sense, its behavior tries to capture essential

characteristics of some real situations in which belonging to the minority group turns out to be the most convenient

position (e.g., financial systems, traffic problems, data networks, fishing places, price promotions,

etc.)[6][7][8][9][10][11]

In the MG model, N agents must independently choose between two options (usually denoted by 0 and 1),

and the agents who make the minority decision win. Each agent's choice depends on a set of s strategies. A

strategy is a prediction function.

Table 1: Example of typical strategy that tries to predict the minority side considering the last 3 previous outcomes.

m=3 Prediction

000 1

001 1

010 0

011 1

100 0

101 0

110 0

111 1

In our case, every agent has s=2 strategies at hand and at each step of the game, she plays using her best one (i.e.,

the one which most often has predicted the minority option).

To this end, the strategies that have predicted the correct outcome for each step are rewarded with one point,

regardless of usage. Then, the strategies of every agent are ranked according to the number of rounds that each one

has correctly predicted the minority side. Whenever an agent's two strategies are equally ranked, she chooses one

of them randomly. Each strategy predicts the next winning option (0 or 1) by processing the sequence of outcomes

from the last m time steps, which is the only available public information. The value m is known as the agents

memory. Since every strategy contains the possible historic states (see Table 1), the whole pool has

strategies; and at the beginning of the game each agent randomly draws her set of s of them (maybe repeated

by chance). Far away from the possibility of knowing her maximization-of-payoff choice, each agent is confined to

play in the way her own best performing strategy (i.e., the one from her set with the best score until that moment)

suggests. The most studied variable in the MG is the reduced variance

(

)

 [12]. It measures the

population's waste of resources by averaging the quadratic deviation from N/2. When crowds emerge in the game,

their contribution to

 is very important, indicating that the minority is small, thus fewer resources are being

allocated to the population as a whole. On the other hand, the main point of the game is that for certain values of

the parameters m, N, and s,

 results notably smaller than that obtained for a game in which each of the N agents

randomly chooses between the two options. That is the most remarkable emerging behavior of the MG because it

means that hundreds or thousands of agents, only based on a small public information and searching for self-

benefit, are able to inductively learn to coordinate decisions to be on average in the minority more times than

choosing side randomly. In particular, the region of maximum coordination is around

 thus, it is where

our particular attention is paid.

Table 2: Example of a matrix of strategies for the sequential implementation of the MG for m=3 and N agents. The tuples (st

x,ag y) mean strategy x of the agent y.

m=3 (st 1, ag 1) (st 2, ag 1) (st 1, ag 2) (st 1, ag 1) … (st 2, ag N)

000 1 0 0 0 … 1

001 1 1 0 0 … 0

010 0 1 1 0 … 1

011 1 1 0 1 … 1

100 0 1 1 1 … 0

101 0 0 0 0 … 1

110 0 0 1 1 … 0

111 1 0 0 1 … 0

score 10 5 7 12 … 9

3. Implementation

For the sequential implementation of the MG, a matrix is constructed in such a way that every agent has her 2

strategies (see Table 2): each row of the first column corresponds to a history (i.e., the possible previous m

outcomes). From the second column on: in the first two columns, two strategies are allocated corresponding to the

agent 1; in the second two columns, two strategies are allocated corresponding to the agent 2, and so on. The last

row of each column saves the score of the strategy, which is what the agent looks to decide one of her two

strategies to follow to make the next choice. Initially, all the points are 0 and in case of tied scores, agent takes one

of the couple randomly.

After getting the less chosen option, those strategies that guest the outcome are rewarded with one point

and the history is updated.

The application of this model is parallelized by an implementation on a network of CPU's family [13] with

processors Double - Intel Dual Core Xeon 5030 2.67 Ghz, memory Double - Kingston 1Gb 533Mhz DDR2 ECC

FBDIMM, in which the middleware used is MPI under the hierarchical Master-Worker(Slave) paradigm [14][15]

with up to 10 processors as workers and INFINIBAND HCA Cards MHEA28-2TC PCI-E. During the evaluation,

we set different instances of MG and several random benchmarks are generated to test and compare performances.

As the parallel implementation is based on the Master-Worker in “star” configuration. Each worker has a

proportional part of the whole matrix previously mentioned, corresponding to a subset of agents. Workers initialize

their strategies (2 columns per agent and the last row save the score). Each worker makes their agents vote (agents

bet according to the row corresponding to the given history and their best scored strategies), then compute their

decisions and pass the sum to the Master. The Master receives the partial sums from the workers, obtains the

minority option, updates the current history (which is the same for all the agents) and it is passed (in decimal

system) to the workers by collective communication.

Table 3: Speedup for 1000 agents with m=10 and 100000 rounds and averaged over 10 realizations. The sequential time for

this instance is 27.29 seconds.

Workers MPI time Speedup

2 6.69 4.08

4 6.13 4.45

5 5.99 4.56

8 6.91 3.95

10 7.64 3.57

Table 4: Speedup for 100000 rounds of 1000 agents with 5 workers and averaged over 10 realizations.

Memory m Sequential Time MPI time Speedup

5 13.76 5.85 2.35

6 13.61 5.82 2.34

7 14.03 5.72 2.45

8 17.75 5.71 3.11

9 24.17 5.75 4.20

10 27.29 5.99 4.56

Finally, workers update the scores of their strategies and a new step begins. For instance, if the number of agents is

100 and the total sum is 54, it means the minority option is 0. For the parallel implementation, the data structure is

a matrix of size 2*(number of agents / available workers).

4. Results
In order to evaluate acceleration of processes, different length of history were tested, which change the size of the

matrices. In particular between m=5 (strategies have 129 rows, 128 histories + 1 for score) and m=10 (strategies

have 1025 rows, 1024 histories + 1 for score). To analyze the performance for large scales of the model we set

different instances of configuration from which some observations can be made. As it can be seen in Table 3, the

speedup grows until the number of workers reaches 5. Then, it decays because communication process starts to

play a significant role just where computation capacity for the size of such an instance leads the parallelization

advantage [16][17] [18][19]. Therefore, with focus on 5 workers, note from Table that the speedup grows even

more when the scale of the model is larger. As one can expect, we will see that such a 5-worker optimum is not

longer effective for larger instances.

Table 5: Speedup for 1000000 rounds of 10000 agents with 5 workers (5W), 8 workers (8W) and 10 workers (10W), averaged

over 10 realizations.

Memory m Sequential

Time

MPI time

(5 w)

Speedup (5

w)

MPI time

(8 w)

Speedup (8

w)

MPI time

(10 w)

Speedup

(10 w)

5 4600.09 189.59 24.26 150.74 30.62 143.22 32.12

6 4903.12 182.33 26.89 146.38 33.50 132.85 36.91

7 5132.12 176.49 29.08 142.57 36.00 134.40 38.18

8 5287.42 172.07 30.73 140.54 37.62 135.08 39.14

9 5421.53 168.91 32.10 138.01 39.28 130.98 41.39

10 5422.24 166.32 32.60 135.86 39.91 129.16 41.98

In order to study performances for large-scale instances, we fix, in turns, the number of workers in 5, 8 and 10 with

1000000 rounds of 10000 agents, varying the memory m between 5 and 10, as shown in Table . Consistently with

what we saw previously, the larger both instances and scale of the model, the larger is the performance gap

between parallel and sequential implementation. There we see that the speedup increases from 24.26x until 32.60x

with 5 workers for m=5 and m=10, respectively; and from 32.12x until 41.98x with 10 workers for m=5 and m=10,

respectively. Note that, as we mentioned above, we are focusing our particular attention to the region of maximum

coordination of the MG model (

). Therefore, the reason why we do not go further m=10 is that between

N=1000 and N=10000 the most coordinated behavior among agents appears around m=5 and m=10 [5]. This is the

most important region, where the phase transition of the model takes place [12]. Therefore, even we see that in

Table 5 the speedup grows as m increases, for instances of 10000 agents the simulations are lacking in interest

further about m=10. As an interesting observation, note from Table that, as the size of memory grows, the speedup

and the sequential time also grows, which is expected, but the MPI time decreases. Due to the size of the problem

duplicates when the memory increases a unit, the reason of that is not completely clear as long as we know.

However, several complementary testing simulations seem to confirm that. As one of these examples, note from

Table that small instances of 100000 rounds and 1000 agents take a minimum around m=8. In principle, it could

suggest that, for a given number of agents, the minimum MPI time might depend on the memory size. In fact,

Table extends this observation to memory m=11, m=12, m=14 and m=16 for 5 workers and 1000000 rounds, to

improve accuracy, and minimum MPI time is found around m=7 for 100 agents, m=9 for 1000 agents and m=12

for 10000 agents, then time increases in all cases.

Table 6: MPI time for 1000000 rounds with 5 workers and averaged over 10 realizations.

Memory m 100 agents 1000 agents 10000 agents

5 45.61 58.34 182.13

6 45.47 57.25 174.13

7 45.35 56.52 169.10

8 45.45 55.68 165.05

9 45.59 55.35 162.36

10 45.59 55.63 158.80

11 45.66 55.68 156.53

5. Conclusions

In this work we developed the implementation of the Minority Game model by implementing HPC (in particular,

MPI) platforms in order to analyze the performance improvement of contexts related to agent-based models,

specially for large scales. Our simulations took up to 11 nodes, used 10 processors of them as workers, covering

performance from 2 to 10 workers. Measuring times for the parallel MPI implementation it was possible to see a

maximum performance for 5 workers, given improvements of 4.85x, and a subsequent performance reduction

when the number of 5 workers is exceeded for instances of 100000 rounds of 1000 agents with m=10. The reason

was attributed to the communications capacity, which is known to start playing a significant role.

 As usual instances of the MG typically concern scales of the order of 100000-decision rounds per run,

with 1000 agents, in this work we set that size as a sort of lower bound and we evaluated larger instances until

1000000 rounds with 10000 agents. As an example in such a mentioned instance, MPI time was about 2 minutes

while the sequential realizations took of the order of one and a half hour time. For memory sizes between 5 and 10

and 1000 agents, we have got the best performances with 10 workers (as long as we could try), with improvements

of speedup of the order of 42x.

To what large scales of ABM concerns, it is interesting to note that MPI time keeps nearly constant for

instances of sizes between 32 (m=5) and 1024 (m=10), whereas the sequential time grows. What we found from

the time consuming point of view is that a heavy work is concentrated on the construction, decision and updating

processes of the strategies matrix as the one seen in Table . Therefore, the HPC implementation for large scale

ABM appears to be remarkably useful as the complexity of the model grows, not only to run the simulations but

also for the initial startup.

 Finally, it was observed that the MPI time decreases as memory size grows, and for some instances a

minimum MPI time was found. As it would imply optimum memory sizes depends on the instance and the

workers, further researches are strongly encouraged in order to explain the reasons, which can contribute to

characterize ABM instances to improve future performances.

References

1. Helbing, D.: Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent

Social Behavior, Understanding Complex Systems Series. Springer-Verlag (2012).

2. N. Collier : Parallel agent-based simulation with Repast for High Performance Computing SIMULATION

(2012)

3. Arthur, B. : Inductive Reasoning and Bounded Rationality (The El Farol Problem),. American Economic

Review, (A.E.A. Papers and Proc.) (1994)

4. D. Challet: Emergence of cooperation and organization in an evolutionary game. Physica A. (1997)

5. D. Challet: Minority Games. Oxford University Press (2005)

6. D. Guo: The Modeling and Simulation of the Traffic Congestion Drift Induction Mechanism Based on

Minority Game, 2nd International Conference on Networking and Information Technology IPCSIT vol.17

IACSIT Press (2011).

7. G. Bianconi: Effects of Tobin taxes in minority game markets, Journal of Economic Behavior and

Organization (2009)

8. K. Kim: Dynamics of the minority game for patients. Physica A (2004)

9. P. Mähönen: Minority game for cognitive radios: Cooperating without cooperation, Physical

Communication (2008)

10. R.D. Groot: Minority Game of price promotions in fast moving consumer goods markets. Physica A.

(2005)

11. T. Takama: Forecasting the effects of road user charge by stochastic agent-based modelling,.

Transportation Research Part A (2008)

12. R. Savit: Adaptive competition, market efficiency, and phasse transitions. Phys. Rev. Lett. (1999)

13. Centre for High Performance Computing. (n.d.). Buenos Aires University, http://cecar.fcen.uba.ar.

14. G. Hager: Introduction to High Performance Computing for Scientists and Engineers, Chapman and

Hall/CRC Computational Science (2010)

15. P. Pacheco.: Parallel Programming with MPI, . Morgan Kaufmann Publishers (1996).

16. A.I. El-Nashar: To parallelize or not to parallelize, speed up issue, International Journal of Distributed

and Parallel Systems (IJDPS) (2011)

17. B.R. Nanjesh: MPI Based Cluster Computing for Performance Evaluation of Parallel Applications,

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT). JeJu

(2013)

18. D.A. Mallón: Performance Evaluation of MPI, UPC and OpenMP on Multicore Architectures, M. Ropo

et al. (Eds.): EuroPVM/MPI 2009, LNCS 5759, Springer-Verlag Berlin Heidelberg (2009)

19. M. Zhu: Performance Evaluation of a Communication Optimization Model in Network-based Parallel

Computing, Proceedings of International Workshops on Parallel Processing (2000)

http://cecar.fcen.uba.ar/

