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Abstract. We present the characteristic and minimal polynomials of the linear 

algorithms Trivium and Trivium Toy. We show the different cycles and mini-

mum lengths obtained. The existence of initial states determining short cycles is 

verified. Finally, linear Trivium Toy is shown to be as cryptologically secure as 

the linear Trivium algorithm. 
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1   Introduction 

1.1   Pseudo-random Sequences 

Pseudo-random sequences with long cycles and high linear complexity are widely 

used in the fields of communications and cryptology. 

Until recently, these sequences were generated with simple algorithms, using Line-

ar Feedback Shift Registers (LFSR) – alone or combined – along with certain non-

linear components. 

Currently, their design has become more complex. Nonetheless, two cryptological 

properties should be carefully observed and controlled: the length of the cycle and the 

linear complexity. Generators with short periods, small cycles or low linear complexi-

ty are cryptanalized and then broken. Hence, algorithm design must verify that it 

achieves an acceptable limit value of the minimum period. 

1.2   Trivium and Trivium Toy 

The stream cipher Trivium – an e-STREAM finalist- has successfully endured eve-

ry cryptological attack so far. [2, 6, 13]. However, its minimum period has not been 

determined neither by design nor by cryptanalysis, remaining as an open problem to 

this date. 
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2   Overview 

2.1   Feedback Shift Register (FSR) 

Let the polynomial f(x): 

 

f(x) = c0x
0

 + c1x
1
 + c2x

2
 +………+ cn-1x

n-1 
+x

n
 ci  {0,1} (1) 

 

be an n
th

 degree characteristic polynomial over GF(2). 

A sequence s = {si} is a length n LFSR sequence generated by f(x) if it satisfies the 

following linear recurrence relation: 
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Note that if the first n bits of s belong to the initial state, the register corresponds to 

a feedback polynomial (feedback function). 

If, on the other hand, s begins with the fed bits, except for those in the initial state, 

the characteristic polynomial is considered a feedforward function. 

The polynomial f(x) can also be interpreted as a linear Boolean function 
  

f: {0,1}
n 
→{0,1} 
 

 f(x0; x1;..; xn-1) = c0x0 + c1x1 +...+ cn-1xn-1 

(3) 

 

(4) 

 

If the resulting function is non-linear, it is considered a Non-Linear Feedback Shift 

Register (NLFSR). 

(s0; s1;…; sn-1)    
    

si  {0,1} (5) 

where si is the initial state of the LFSR generating the sequence s. 
Given any polynomial f(x) of degree n, the reciprocal polynomial f*(x) is defined 

as 
 f*(x) = x

n
 f(x

-1
) (6) 

2.2   Properties of m-sequences 

If f(x) is a primitive polynomial
1
, s is an m-sequence, thus s has a maximum cycle 

of 2
n
-1; i.e., given any initial state (except when all values equal 0), all sequences 

belong to the same cycle. 

If f(x) is not primitive, different initial states generate cycles smaller than 2
n
-1. [7] 

A minimal polynomial of s is the polynomial of the smallest degree generating s.  If 

m(x) is the minimal polynomial of s, then m(x) divides f(x). 

                                                      
1
 A polynomial f(x) over GF(2), irreducible of degree n, is primitive if the least positive integer m such that 

f(x)(xm + 1) is m = 2n-1. 
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The linear complexity of s (LC(s)) is the degree of the minimal polynomial m(x). In 

general, m(x) can be found using the Berlekamp-Massey algorithm, taking 2LC(s) 

consecutive bits [10]. 
S(f(x)) is defined as the set of all binary sequences which satisfy the recurrence re-

lation determined by f(x). 
The order of f(x) is defined as the least positive integer e such that f(x)x

e
 +1. 

The period of a sequence s equals the order of its minimal polynomial. It is the 

least integer p such that sn = sn+ p for every positive n. 

The array (s0; s1;...; sp-1) is the cycle of the sequence s and its size is equal to p. 

2.3   Linear Trivium 

The stream algorithm TRIVIUM was created by Christophe De Cannière and Bart 

Preneel. It was designed to generate at least 2
64

 bits, using an 80-bit secret key and an 

initialization vector (IV) of also 80 bits [3]. 
It consists of three combined NLFSRs. The first register controls the second, the 

second controls the third, and the last one controls the first. 

The core idea behind the design focuses on using the principles of block cipher de-

sign to create equivalent components in stream ciphers. 

Three parts can be clearly identified in the design: 

- A linear part originated by a 96-bit sub-generator which consists of three lin-

ear feedforward and feedback registers. 

- An interleave process in threes of the linear Trivium sub-generator [8]. 
- A non-linear part obtained from AND operations in the linear Trivium. 

The output consists of three combined non-linear shift registers of lengths 93, 84, 

and 111 in which particular positions are selected to obtain a key bit stream. Whereas 

no efficient attack has successfully broken the generator, its period remains undeter-

mined [11, 12]. 

A complete description is given by the following simple pseudo-code: 

 
INPUT: s0, s1,..,s287 initial state, integer n., si {0,1}. 

OUTPUT: binary sequence {kt} 

 1.Initialization. 

1.1 t1  s65  s92 
1.2 t2  s161  s176 
1.3 t3 s242  s287 

 2.While ( t<n ) do the following: 
2.1  kt t1  t2   t3 
2.2  t1 t1  s90  s91   s170 
2.3  t2 t2  s174  s175  s263 
2.4 t3 t3  s285  s286  s68 

  2.5  (s0;s1;...;s92)(t3;s0;..;s91) 
  2.6 (s93;s94;..;s176)(t1;s93;..;s175) 
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  2.7 (s177;s178;..;s287)(t2;s177;..;s285) 
 3.Return {kt} 
 

Note that  is the XOR operation and  the AND operation. 
 

 

Fig.1: Original Trivium diagram  
 

The linear Trivium algorithm follows the same procedure with the exception of the 

AND operations which are omitted. Terms s90  s91, s174  s175 and s285 s286 are eli-

minated. 

2.4   Linear Trivium Toy 

In [1] we present a reduced model of the Trivium algorithm. The reduced model - 

decimated by 3 is based on previous work by Yun Tian et al, who developed an ex-

tended model of the TRIVIUM structure [14]. 

The model consists of three NLFSRs - X, Y, and Z - of lengths 31, 28 and 37 in the 

following states: 
 

X(31): X0, X1,…………,X30 
Y(28): Y0,Y1,………….,Y27 
Z(37): Z0, Z1,………….,Z36 

 

(7) 

 

Being the feedback of each register; i.e. the bit input in each: 

 

X0: Z21  Z36  Z35 Z34  X22 
Y0: X21  X30  X29X28  Y25 
Z0 : Y22  Y27  Y26Y25  Z28 

 

(8) 

http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tian:Yun.html
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and the key bit stream: 
 

Kt: X21X30Y22Y27Z21Z36 (9) 

In a stream cipher each plaintext bit is encrypted one at a time with the correspond-

ing bit of the key bit stream, to give a bit of the ciphertext stream. 

 

Ct = Pt  Kt (10) 

where Ct is the cipher bit and Pt is the plaintext bit. 

 

The linear Trivium Toy algorithm consists of the same equations shown in (8) omit-

ting the AND operations. Terms Z35 Z34, X29X28 and Y26Y25  are eliminated. 

 

 
Fig.2: Trivium Toy diagram. 

3   Characteristic Polynomial of the Linear Trivium Sub-generator 

and the Linear Trivium Toy 

3.1   Feedforward and Feedback Functions of the Linear Trivium Sub-generator 

The feedforward and feedback functions (fi(x) and gi(x) respectively) in their 

reciprocal form (6), define the Trivium sub-generator [2] and determine their 

characteristic polynomial p(x): 
 

 

        
 
    

 

   
 
   

 

 (11) 



- 

 

  
  

  
         

  
        

  
         

   (12) 

 

  
  

  
           

  
         

  
         

   

 

(13) 

                                            

                     
(14) 

 

The polynomial is not irreducible, i.e., it can be expressed as a product of two 

polynomials such that: 

 

 

       +1 
 
 (16) 

 

                                            

                                

                                

                              

           

(17) 

 

where r(x) is a primitive polynomial. 

3.2   Feedforward and Feedback Functions of the Linear Trivium Toy 

Due to [1], consider the X register. The feedforward of the Z21 position corresponds 

to x
22

 of f3; and the feedback X22 corresponds to x
23

 of g1.  
 

For the Y register, the feed-forward of the X21 position corresponds to x
22

 of f1; and 

the feedback is Y25, corresponding to x
26

 of g2.   
 

For the Z register, the feed-forward of the Y22 position corresponds to x
23

 of f2; and 

its feedback is Z28, corresponding to x
29

 of g3. 
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As explained above, the feedforward and feedback functions (fi(x) and gi(x) 

respectively) define the linear Trivium Toy and determine its characteristic polynomial 

p(x). 
 

The characteristic polynomial of the linear Trivium Toy is obtained by applying 

formulaes (6) and (11) to f
*

i(x) and g

i(x). The resulting p(x) is the same as the 

polynomial of the linear sub-generator of Trivium, as well as the one obtained in 

formula (14). 

4   Calculating Sequences and Periods of the Linear Trivium Toy 

4.1   Background 

In order to establish the main results of this section, the following theorems must 

be considered [9]: 
 

Theorem 1: Let f(x) =    
  

 where the fi(x) are distinct irreducible polynomials 

over GF(2) and bi are positive integers. Then: 
 

               
           

             
    (20) 

 

Define        
           

             
    

to be the set of all sequences 

s1+s2+…+ sn with si  S(fi(x)
b(i)

). 
 

Theorem 2: for each i = 1; 2;…;  n, let si be a linear recurring sequence in GF(2) 

with a minimal polynomial fi(x) GF(2)[x] and a least period pi.  

If the polynomials f1(x), f2(x),..., fn(x) are pair-wise relatively prime, then the least 

period of s1+ s2+...+ sn   is equal to the least common multiple of p1; p2;…; pn. 
 

Theorem 3: let f(x) = (g(x))
b
 with g(x) GF(2)[x] irreducible over GF(2), 

g(0) ≠ 0, degree (g(x)) = k, order (g(x)) = e, and b a positive integer. Let t be the 

smallest integer with 2
t 

≥ b. Then, S(f(x)) contains the following numbers of 

sequences with  least periods: one sequence with least period 1, 2
k
-1 sequences with 

least period e, and for b ≥ 2,   
     

     sequences with least period e*2
j   

(j=1;,.;t-1), and       
     

sequences with least period e*2
t 
. 
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4.2   Linear Trivium Toy Sequences and Periods 

Formula (15) shows that the characteristic polynomial p(x) of the Linear Trivium 

Toy is reducible. Thus, different initial states yield different Least Periods or cycles. 

Theorems 1 to 3 are applied to obtain the following values: 

  

For q(x) = (x+1)
3 
from (16), given that it is not primitive: 

 

Number of 

Sequences 

Least 

 Period 

2 1 

2 2 

4 4 

Table 1: Number of sequences and least periods for q(x). 

 

For the primitive r(x) in (17), a null trivial sequence is obtained and the rest of all 

possible sequences of maximum length are shown in the following table: 
 

Number of 

Sequences 

Least 

Period 

1 1 

2
93

-1 2
93

-1 

Table 2: Number of sequences and least periods for r(x). 

 

Thus, for the polynomial p(x): 

 

Number of 

Sequences 

Least  

Period 

2 1 

2 2 

4 4 

2*(2
93

-1) 2
93

-1 

2*(2
93

-1) 2*(2
93

-1) 

4*(2
93

-1) 4*(2
93

-1) 

Table 3: Number of sequences and least periods for p(x). 

 

It can be observed that there are 8 sequences with short periods (of length 1, 2 and 4 

bits). Hence, these sequences have been generated by weak initial states. 
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5   Calculating Sequences and Periods of the Linear Trivium 

5.1   Feedforward and Feedback Functions of Linear Trivium with interleave 

process 

The feedforward and feedback functions defining the linear Trivium -i.e., the sub-

generator and the interleave process- are: 
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(22) 

 

Given that the characteristic polynomial of the linear Trivium takes the form in (11) 

but with the functions shown in (21) and (22), the characteristic polynomial p(x) is: 
 

                                               

                           
(23) 

 

 
The polynomial is not irreducible, that is, it can be expressed as the product of four 

polynomials such that: 
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 (25) 
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(28) 

5.2   Linear Trivium Sequences and Periods 

The characteristic polynomial p(x) yields different sequences and length cycles, 

depending on the initial states of the registers. 
 

For q(x) = (x+1)
3
, the same values of table 1 are obtained. For the polynomial 

 s(x) = (x
2 
+ x +1)

3
 from (26), the following values are obtained: 

 

Number of 

Sequences 

Least 

Period 

1 1 

3 3 

12 6 

48 12 

Table 4:  Number of sequences and least periods for s(x). 

 

For t(x) is primitive: 
Number of 

Sequences 

Least 

Period 

1 1 

2
93

-1 2
93

-1 

Table 5: Number of sequences and least periods for t(x). 

 

And, for u(x) irreducible but not primitive: 

 

Number of 

Sequences 

Least 

 Period 

1 1 

2
186

 -1 3*(2
93

-1) 

Table 6: Number of sequences and least periods for u(x). 
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The characteristic polynomial p(x) of the Linear Trivium obtained yields the values: 

 

Number of 

Sequences 

Least 

Period 

2 1 

2 2 

6 3 

4 4 

54 6 

444 12 

2b b 

2b 2b 

8a+6b+8ab 3b 

4b 4b 

56a+54b+56ab 6b 

448a+636b+256ab 12b 

Table 7: Number of sequences and least periods for p(x). 

Note: For clarity, values have been replaced with   a = (2186-1) and b = (293-1) 

 

Tables 3 and 7 show that the cycles of the linear Trivium Toy and the linear Trivium 

have the same order of magnitude, with a difference in the maximum length between 

them of a factor of 3. In other words, the difference observed is linear and not 

exponential or of some other type, indicating that their recursion lengths or linear 

complexities are comparable. 

 

In the case of the linear Trivium, note the existence of 512 short cycle sequences, 

among these 512, 444 sequences producing cycles of size 12. Thus, the existence of 

weak initial states can be verified. 

6   Conclusion 

This work shows a linear equivalence between the Linear Trivium and the Linear 

Trivium Toy generators. The complexity of both algorithms only differs in one linear 

factor and their minimum periods are both of the order of 2
93

. In addition, the number 

of sequences in the Linear Trivium with short periods rises significantly in 

comparison to the Linear Toy, leading to a considerable increase of weak initial states. 

7   Future Research 

Further work shall explore AND operations in the generators, analyzing them as 

NLFSR [4, 5] or as the combination of linear filters (feedforward and feedback) with 
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non-linear inputs. The authors of the stream cipher Trivium restricted their scope to 

linear expressions. Advancing their analysis to more complex forms seems a 

reasonable direction to pursue. 
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