
LIBQIF: A Quantitative Information Flow C++
Toolkit Library

Martinelli Fernán G.

Universidad Nacional de Ŕıo Cuarto
fmartinelli@dc.exa.unrc.edu.ar

Abstract. A fundamental concern in computer security is to control
information flow, whether to protect confidential information from being
leaked, or to protect trusted information from being tainted. A classic
approach is to try to enforce non-interference. Unfortunately, achieving
non-interference is often not possible, because often there is a correlation
between secrets and observables, either by design or due to some physical
feature of the computation (side channels). One promising approach to
relaxing noninterference, is to develop a quantitative theory of informa-
tion flow that allows us to reason about how much information is being
leaked, thus paving the way to the possibility of tolerating small leaks.
In this work, we aim at developing a quantitative information flow C++
toolkit library, implementing several algorithms from the areas of QIF
(more specifically from four theories: Shannon Entropy, Min-Entropy,
Guessing Entropy and G-Leakage) and Differential Privacy. The library
can be used by academics to facilitate research in these areas, as well as
by students as a learning tool. A primary use of the library is to compute
QIF measures as well as to generate plots, useful for understanding their
behavior. Moreover, the library allows users to compute optimal differ-
entially private mechanisms, compare the utility of known mechanisms,
compare the leakage of channels, compute gain functions that separate
channels, and various other functionalities related to QIF.

Keywords:
QIF, Quantitative , Information Flow, C++ library.

1 Introduction

A fundamental concern in computer security is to control information flow,
whether to protect confidential information from being leaked, or to protect
trusted information from being tainted.

A classic approach is to try to enforce non-interference, which is a property
stating that the observables (behavior, outputs) of a system are independent
from the secrets. This means that an adversary cannot deduce anything about
the secrets from the observables. Unfortunately, achieving non-interference is
often not possible, because often there is a correlation between secrets and ob-
servables, either by design or due to some physical feature of the computation

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76479792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(side channels). One promising approach for relaxing non-interference, is to de-
velop a quantitative theory of information flow that allows us to reason about
how much information is being leaked, thus paving the way to the possibility of
tolerating small leaks.

The basis of such a theory is a measure of leakage. One of the most successful
approaches is based on information theory, the idea being that a system is seen
as a (noisy) channel, whose inputs corresponds to the secrets, and the outputs
to the observables.

The contribution of this work consists on developing a quantitative informa-
tion flow C++ toolkit library, implementing several algorithms from the areas
of Quantitative Information Flow. In addition, we present a case study over the
G-Leakage theory finding easily some interesting properties with this library.

2 Foundations of Quantitative Information Flow

The study of information theory started with Claude E. Shannon’s work on
the problem of coding messages to be transmitted through unreliable (or noisy)
channels. A communication channel is a (physical) means through which infor-
mation can be transmitted. The input is fed into the channel, but due to noise
or any other problems that can occur during the transmission, the output of
the channel may not reflect with fidelity the input. It is usual to describe the
unreliable behavior of the channel in a probabilistic way. In the discrete (finite)
case, if X = {x1, x2, . . . , xn} represent the possible inputs for the channel, and
Y = {y1, y2, . . . , ym} represent the possible outputs, the channel’s probabilistic
behavior can be represented as a channel matrix Cn×m where each element Ci,j
(1 ≤ i ≤ n, 1 ≤ j ≤ m) is defined as the probability of the channel outputting
bj when the input is ai. In this way, we can see the input and output as two
correlated random variables linked by the channel’s probabilistic behavior 1.

A unique feature of information theory is its use of a numerical measure of
the amount of information gained when the contents of a message are learned.
More specifically, information theory reasons about the degree of uncertainty of a
certain random variable, and the amount of information that it can reveal about
another random variable. Among the tools provided by information theory there
are concepts as entropy, conditional entropy, mutual information and channel
capacity.

Several works in the literature use an information theoretic approach to
model the problem of information flow and define the leakage in a quantitative
way, as for example [ZB05,CHM05,Mal07,MC08,MNS03,MNCM03,CPP08a]. The
idea is to model the computational system as an information theoretic channel.
The input represents the secret, the output represents the observable, and the
correlation between the input and output (mutual information) represents the
information leakage. The worst case leakage corresponds then to the capacity of

1 Note that we are assuming that channels are loseless, since the rows are probability
distributions instead of sub-probability distributions.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 47

the channel, which is by definition the maximum mutual information that can
be obtained by varying the input distribution.

In the works mentioned above, the notion of mutual information is based on
Shannon entropy, which (because of its mathematical properties) is the most es-
tablished measure of uncertainty. From the security point of view, this measure
corresponds to a particular model of attack and a particular way of estimat-
ing the security threat (vulnerability of the secret). Other notions have been
considered, and argued to be more appropriate for security in certain scenarios.
These include: min-entropy [R6́1,Smi09], Bayes risk [CT06,CPP08b], guessing
entropy [Mas94], and marginal guesswork [Pli00].

Whatever definition of uncertainty (i.e. vulnerability) we want to adopt, the
notion of leakage is inherent to the system and can be expressed in a uniform
way as the difference between the initial uncertainty, i.e. the degree of ignorance
about the secret before we run the system, and the remaining uncertainty, i.e.
the degree of ignorance about the secret after we run the system and observe
its outcome. Following the principle advocated by Smith [Smi09], and by many
others:

information leakage = initial uncertainty
−
remaining uncertainty

(1)

In (1), the initial uncertainty depends solely on the input distribution, aka the
a priori distribution or prior. Intuitively, the more uniform it is, the less we know
about the secret (in the probabilistic sense). After we run the system, if there
is a probabilistic correlation between input and output, then the observation of
the output should increase our knowledge of the secret. This is determined by
the fact that the distribution on the input changes. In fact we can update the
probability of each input with the corresponding conditional probability of the
same input, given the output. The new distribution is called the a posteriori
distribution. In case the input and output are independent, then the a priori
and the a posteriori distributions coincide and the knowledge should remain the
same. We will use the attributes a priori (or prior) and a posteriori to refer to
before and after the observation of the output, respectively.

The above intuitions should be reflected by any reasonable notion of uncer-
tainty: it should be higher on more uniform distributions, and it should decrease
or remain equal with the observation of related events.

Probability Distribution Vector

The notion of Probability Distribution Vector(PDV) is a vector which satisfies
that:

– all the elements are greater than or equal to zero.

– the sum of all the elements is equal to 1.

We will use the notation π(x) for talk about the Probability Distribution
over the random variable X = {x1, .., xn}.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 48

Channel
A channel is a Probability Distribution Matrix which satisfies that:

– all the elements are greater than or equal to zero.
– the sum of all the elements of each row is equal to 1.

We will use the notation C[x, y]for talk about the Joint Probability Distri-
bution over the random variable formed like X.Y (i.eC[x, y] = P (y|x) where
X = {x1, .., xn} and Y = {y1, .., ym}).

Entropy
The notion of entropy should be chosen according to the model of attacker, and to
the way we estimate the success of the attack. Normally, the entropy of a random
variable represents its uncertainty, hence the vulnerability is anti-monotonic on
the entropy.

There exists two notions of entropy: prior entropy and conditional entropy.

Vulnerability
Vulnerability is a measure of how easy is for an attacker to discover the secret.
The concept of vulnerability is the opposite of uncertainty.

There exists two notions of vulnerability:

– prior vulnerability
We will use the notation V (π) to refer to the vulnerability.

– conditional vulnerability
We will use the notation V (π,C) to refer to the conditional vulnerability.

Leakage
Leakage is a measure of how much information can the attacker know about the
secrets with a specific probability distribution of the secrets and channel matrix.

The notion of leakage can be expressed as the difference between the initial
uncertainty about the secret and the remaining uncertainty:

information leakage = L(π,C) = initial uncertainty - remaining uncertainty.

Capacity
The notion of channel capacity or maximum leakage ML(π,C) is the maximum
amount of information that can be known by the attacker in the worse case with
a specific channel matrix. i.e. over all the possible probability distributions.

2.1 Shannon Entropy Leakage

The (Shannon) entropy of X is defined as H(X) = −
∑
X π(x) log π(x).

The entropy measures the uncertainty of X. It takes its minimum value
H(X) = 0 when π(x) is a point mass (also called delta of Dirac). The maximum
value H(X) = log |X | is obtained when π(x) is the uniform distribution. Usually
the base of the logarithm is set to be 2 and the entropy is measured in bits.
Roughly speaking, m bits of entropy means that we have 2m values to choose
from, assuming a uniform distribution.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 49

The conditional entropy of X given Y is defined as

H(X | Y) =
∑
Y π(y) H(X | Y = y)

where

H(X | Y = y) = −
∑
X
C[x, y] log C[x, y]

The famous Channel Coding Theorem by Shannon relates the capacity of
the channel to its maximum transmission rate. In brief, the channel capacity is
a tight upper bound for the maximum rate by which information can be reliably
transmitted using the channel. Given an acceptable probability of error ξ, there
is a natural number n and a coding for which n uses of the channel will result in
messages being transmitted with at most the acceptable probability of error ξ.

The algorithm used to calculate the capacity of the channel on the Shannon
Approach is called Blahut-Arimoto algorithm. It was presented in [Ip99,Bla72,Ari72].
Lightly, the authors have reformulated the problem as a convex optimization
problem after proving that Shannon Entropy is a concave function.

Meaning in security: To explain what H(X) represents from the security point of
view, consider a partition {Xi}i∈I of X . The adversary is allowed to ask questions
of the form does X ∈ Xi? according to some strategy. Let n(x) be the number
of questions that are needed to determine the value of x, when X = x. Then
H(X) represents the lower bound to the expected value of n(·), with respect to
all possible partitions and strategies of the adversary [Pli00,KB07].

2.2 Min-Entropy Leakage

In [R6́1], Rényi introduced a one-parameter family of entropy measures, intended
as a generalization of Shannon entropy.

Various researchers, including Cachin [Cac97], have considered the following
definition:

HCachin
α (X | Y) =

∑
y∈Y

π(y) Hα(X | Y = y)

which, as α→∞, becomes

HCachin
∞ (X | Y) = −

∑
y∈Y

π(y) log max
x∈X

C[x, y] (2)

An alternative proposal for H∞(· | ·) came from Smith [Smi09]2:

HSmith
∞ (X | Y) = − log

∑
y∈Y maxx∈X C[x, y] (3)

2 The same formulation had been already used by Dodis et al. in [DORS04], and Smith
proposed it independently. Since it is Smith’s work on the subject that motivates
the approach used in this thesis, we opt to refer to this formulation as Smith’s.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 50

Meaning in security: The min-entropy can be related to a model of adversary
who is allowed to ask exactly one question, which must be of the form is X =
x? (one-try attacks). More precisely, the min-entropy H∞(X) represents the
probability of success for this kind of attack and with the best strategy, which
consists, of course, in choosing the x with the maximum probability.

As for H∞(X | Y) and I∞(X;Y), the most interesting versions in terms of
security seem to be those of Smith. In fact, in this thesis we adopt his approach
to information leakage, and we will, from now on, use the following notation:

– H∞(X | Y) stands for HSmith
∞ (X | Y) and is referred to as conditional

min-entropy ;
– I∞(X;Y) stands for ISmith∞ (X;Y) and is referred to as min-entropy leakage.

In fact, the conditional min-entropy H∞(X | Y) represents the log of the
inverse of the (expected value of the) probability that the same kind of adversary
succeeds in guessing the value of X a posteriori, i.e. after observing the result of
Y . The complement of this probability is also known as probability of error or
Bayes risk. Since in general Y and X are correlated, observing Y increases the
probability of success. In fact, we can prove formally that H∞(X | Y) ≤ H∞(X),
with equality if X and Y are independent. The min-entropy leakage I∞(X;Y)
corresponds to the ratio between the probabilities of success a priori and a
posteriori, which is a natural notion of leakage. Here I∞(X;Y) is in the format
of 1, but the difference becomes a ratio due to the presence of the logarithms.
Note that I∞(X;Y) ≥ 0, which seems desirable for a good notion of leakage. It
has been proven in [BCP09] that ML∞ is obtained at the uniform distribution,
and that it is equal to the sum of the maxima of each column in the channel
matrix, i.e. ML∞ =

∑
y∈Y maxx∈X C[x, y].

2.3 G-Leakage

In a more recent approach, g-leakage [ACPS12], the benefit that an adversary
derives from a certain guess about a secret is specified using a gain function
g. Gain functions allow a wide variety of operational scenarios to be modelled,
including those where the adversary benefits from guessing a value close to the
secret, guessing a part of the secret, guessing a property of the secret, or guessing
the secret within some number of tries.

They now adapt the definition of vulnerability to take account of the gain
function:

Given gain function g and prior π, the prior g-vulnerability is

Vg(π) = max
w∈W

∑
x∈X

π[x]g(w, x).

The idea is that adversary should make a guess w that maximizes the ex-
pected gain; They therefore take the weighted average of g(w, x), for every pos-
sible value x of X.3

3 They remark that our assumption that gain values are between 0 and 1 is unim-
portant. Allowing g to return a value in [0, a], for some constant a, just scales all
g-vulnerabilities by a factor of a and therefore has no effect on g-leakage.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 51

Given gain function g, prior π, and channel C, the posterior g-vulnerability
is

Vg(π,C)
=
∑
y∈Y maxw∈W

∑
x∈X π[x]C[x, y]g(w, x)

=
∑
y∈Y maxw∈W

∑
x∈X p(x, y)g(w, x)

=
∑
y∈Y p(y)Vg(pX|y)

The authors have defined g-entropy, g-leakage, and g-capacity : Hg(π) =
− log Vg(π)
Hg(π,C) = − log Vg(π,C)

Lg(π,C) = Hg(π)−Hg(π,C) = log
Vg(π,C)
Vg(π)

MLg(C) = supπ Lg(π,C)

Gain Functions A Gain Function is a Matrix which will be used for modelling
the benefits of the attacker. So, the rows of the matrix will be elements of a set
W = {w1, .., wm} which are the possible guesses. And the columns of this matrix
are elements of X = {x1, .., xn}. i.e. elements of the inputs set.

We will use the notation g[w, x] to talk about the benefit of guess w when
the secret is x.

2.4 Guessing Entropy Leakage

The notion of guessing entropy was introduced by Massey in [Mas94]. Let us
assume, for simplicity, that the elements of X are ordered by decreasing prob-
abilities, i.e. if 1 ≤ i < j ≤ n then p(xi) ≥ p(xj). Then the guessing entropy is
defined as follows: HG(X) =

∑
1≤i≤|X| i π(xi)

Massey did not define the notion of conditional guessing entropy. In some
works, like [Cac97,KB07], it is defined analogously to 2.1: HG(X | Y) =∑
y∈Y

π(y) HG(X | Y = y)

Meaning in security: Guessing entropy represents an adversary who is allowed
to ask repeatedly questions of the form is X = x?. More precisely, HG(X)
represents the expected number of questions that the adversary needs to ask
to determine the value of X, assuming that he follows the best strategy, which
consists, of course, in choosing the x’s in order of decreasing probability.

HG(X | Y) represents the expected number of questions a posteriori, i.e. after
observing the value of Y and reordering the queries according to the updated
probabilities (i.e. the queries will be chosen in order of decreasing a posteriori
probabilities).

2.5 Differential Privacy

In the area of statistical databases, one of the most prominent approaches for
protecting an individuals privacy when releasing aggregate information is that
of Differential Privacy [Dwo06]. This notion ensures that changes to a single

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 52

individuals value have negligible effect on the querys outcome. This notion is
closely related to information flow [AACP11,BK11] since differentially private
mechanisms can be seen as information theoretic channels, and bounds can be
obtained for the information leakage of those channels.

The notion of differential privacy, due to Dwork [Dwo06,DL09,Dwo10,Dwo11],
is a proposal to control the risk of violating privacy for both kinds of threats
described above (value and participation). The idea is to say that a randomized
function K satisfies ε-differential privacy (for some ε > 0) if the ratio between
the probabilities that two adjacent databases give a certain answer is bound by
eε, where by adjacent we mean that the databases differ in only one individual
(either for the value of an individual or for the presence/absence of an individ-
ual). The notion of differential privacy was developed to be independent of the
side (or auxiliary) information the user can have about the database, and how
it can affect his knowledge about the database before posing the query. This in-
formation can come from external sources (e.g. newspapers, common knowledge,
etc), but does not affect the guarantees assured by differential privacy.

3 Developing a library for QIF study

3.1 Goal

The LIBQIF library was conceived as a C++ toolkit, due to the portability and
high support of the C++ community. Also, we needed an efficient language for
calculating the QIF measures.

LIBQIF aims to provide a simple interface for hiding the implementation
features and allowing the users to create QIF examples, to calculate automat-
ically measures, and to plot functions, among others. Without the necessity of
knowing how to use plotters, how to implement matrix and vectors in C++, how
to represent graphs, or how to implement the known algorithms.

A primary use of the library is to compute QIF measures as well as to generate
plots, useful for understanding their behavior. This library aims to cover the QIF
approaches like Shannon Entropy Leakage, Min-Entropy Leakage, G-Leakage
and Guessing Entropy Leakage. Moreover, the library will allow to compute
optimal differentially private mechanisms, compare the utility of known mech-
anisms, compare the leakage of channels, compute gain functions that separate
channels, and various other functionalities related to QIF.

This work had the goal of extending the G-Leakage theory with an efficient
algorithm for calculate the G-Capacity, i.e. the capacity of the channel under
the G-Leakage theory. In Section 4 we discuss the difficulties that we have en-
countered in the attempt to achieve this goal.

3.2 Implementation features

This section gives an explanation about the library implementation features.
In QIF, the learning examples are 3x3 matrices approximately, but, when the

researcher talks about databases, or maybe more realistic QIF cases, the number

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 53

is bigger. So, one important feature is that LIBQIF should be fast. And this is
why C++ was chosen as programming language. And also, because C++ is very
contributed and supported by free software libraries.

LIBQIF implements Channel matrix, Gain function and probabilistic dis-
tribution vector using the implementation of matrices and vectors from the
Armadillo library (more specifically the classes mat and vec). Armadillo is an
optimized library for using matrices and vectors.

LIBQIF, is well documented using Doxygen. Doxygen is the tool used to
automatically document the project from the sources. The LIBQIF documen-
tation can be founded in html/index.html.

LIBQIF implements graphs by a simple class because advanced graphs are
not necessary. So the class Graph is a simple adjacency matrix.

For some algorithms is necessary be able to solve linear programming
problems. This is why there exist a class called LinearProgram, which defines
two functions that are the interface of how to write this problems and translate
them for solving them using a library called GLPK.

For the testing of LIBQIF, a library named GTEST was utilized for unit
testing.

Looking for plotter engines, there are some ones like Scilab (free software),
Matlab, Maple or GNUPlot. The class that implements the interaction with this
plotter engines is EntropyModel. And it was designed for supporting all of them
but just Scilab engine is implemented at the first version of LIBQIF. The reason
because of choosing Scilab was that it is relatively easy with the scilab-call API
and it is free software like LIBQIF.

One interesting feature that is not immediately observable is the fact that
LIBQIF is working with the generic arithmetic precision of the computer,
and sometimes this precision can change the results on numeric/statistical cal-
culus. One interesting extension of LIBQIF would be that LIBQIF could work
with precise arithmetic.

On Appendix A there is a summary of the QIF theories implemented on the
LIBQIF library.

4 G-Leakage: A case study

The second part of this work consists on extending the G-Leakage theory with
a method for computing the capacity of the channel (g-capacity). 4

The G-Leakage theory was explained like a generalization of the particular
min-entropy case. Unfortunately, the generalization has not the same properties.

A property of min-capacity that makes it easy to compute is that it is always
realized on a uniform prior. Alvim, Chatzikokolakis, Palamidessi and Smith have
found in [ACPS12], however, that this does not hold for g-capacity.

4 Remind that the capacity of the channel is the maximum leakage over all the priors.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 54

Lets remind their example:

y1 y2
x1 0.6 0.4
x2 0 1
x3 0 1

(4)

Now suppose we use the following metric-induced gain function gd:

gd x1 x2 x3
x1 1 0 0
x2 0 1 0.98
x3 0 0.98 1

Consider 0 leakage channel C4 above and its gain function gd. Under a uni-
form prior π, we compute that Vgd(π) = 0.66, pY = (0.2, 0.8), Vgd(pX|y1) = 1,
Vgd(pX|y2) = 0.825, and Vgd(π,C4) = 0.86, giving Lgd(π,C4) = 0.3819.

Now if we consider the prior π′ = (0.5, 0.5, 0), we find that Vgd(π′) = 0.5,
pY = (0.3, 0.7), Vgd(pX|y1) = 1, Vgd(pX|y2) = 5

7 , and Vgd(π′, C4) = 0.8, which
gives Lgd(π′, C4) = log 1.6 ≈ 0.6781. Hence the gd-capacity of 0 leakage channel
is not realized on a uniform distribution.

Notice here that log 1.6 is also 0 leakage channel’s min-capacity. Hence, by
the “Miracle” Theorem 5, It is known that log 1.6 must in fact be its gd-capacity,
realized on π′. But, so far, the authors have not found a general technique for
calculating g-capacity; this is the motivation of the second part of this paper.

We have utilized the LIBQIF library to try to develop a formal method to
compute the channel capacity on the G-Leakage theory.

As we have seen in the Section 2.1, on Shannon Entropy Leakage theory, the
channel capacity is calculated by an algorithm called Blahut-Arimoto Algorithm.
It consists on converting the problem to a convex optimization problem. But,
before we can apply the same idea, we will need prove that G-Leakage is a
concave function.

In the LIBQIF code Appendix D, we have started looking for properties that
allow us to see if G-Leakage satisfies what we need.

In the code, we have remarked a particular case that gave us the first obser-
vation.

4.1 A first observation on G-Leakage

The G-Leakage theory is a generalization of Min-Entropy Leakage. The authors
showed examples where the uniform prior (that in Min-Entropy Leakage gives
the maximum Leakage) is not the probability distribution that maximizes the
G-Leakage.

One first thing that should be interesting to know is if the probability distri-

bution that minimizes V (π) is the same one that maximizes log V (C,π)
V (π) .

5 For any channel C and gain function g, MLg(C) ≤ ML(C).

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 55

And this is not true. The following is an example of this.

G:

G x1 x2 x3
x1 1 0.5 0
x2 0.5 1 0.5
x3 0 0.5 1

C:

y1 y2
x1 0.3 0.7
x2 0.7 0.3
x3 0.3 0.7

Fig. 1. Example on G-Leakage.
a

a In the graphic, the log is not applied. This way, the results are easier to read. With
the log nothing change because the log is a monotonic function.

Here, vectors (0,0.5,0.5) or (0.5,0.5,0) give the maximum leakage 0.125. The
prior vulnerability with (0,0.5,0.5) is 0.75.

The minimum prior vulnerability of 0.5 is achieved with the vector (0.5,0,0.5).
Remark: So, the probability distribution that minimizes V (π) is not the

same one that maximizes log V (C,π)
V (π) . This means that on G-Leakage there are

not good properties like on Min-Entropy to simplify the formula. 6

4.2 On a method to calculate the G-Capacity

To find an iterative algorithm to calculate G-Capacity (like the one used for
Shannon Entropy that uses convex optimization problems) we must prove
that G-Leakage is a concave function or maybe a quasi-concave function.

concave function:

Lg(λ ∗ π + (1− λ) ∗ π′, C) ≥ λ ∗ Lg(π,C) + (1− λ) ∗ Lg(π′, C)

quasi-concave function:

6 We have used the LIBQIF code at Appendix D for computing this measures and
generating the plots.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 56

Lg(λ ∗ π + (1− λ) ∗ π′, C) ≥ min(Lg(π,C), Lg(π
′, C))

Again, G-Leakage does not satisfy this definitions. The example 1 is not a
quasi-concave function. So, it is not a concave function either.

Here,vectors (0,0.5,0.5) or (0.5,0.5,0) give the maximum leakage 0.125. With
λ = 0.5 the new vector is (0.25,0.5,0.25) and the leakage with this probability
distribution is 0. So, this G-Function example does not satisfy the quasi-
concave property.

Moreover, we can prove that the special case of Gid Min-Entropy is not
quasi-concave.

G:

Gid x1 x2 x3
x1 1 0 0
x2 0 1 0
x3 0 0 1

C:

y1 y2
x1 0.3 0.7
x2 0.7 0.3
x3 0.3 0.7

In Example 2, vectors (1/3,1/3,1/3), (0,0.5,0.5) or (0.5,0.5,0) gives the maxi-
mum leakage 0.336. With λ = 0.5 one possible new vector is (0.25,0.5,0.25), and
the leakage with this probability distribution is 0.048.

Remark: So, this G-Function example does not satisfy the quasy-concavity
property. 7

Fig. 2. Example looking for the G-Capacity.
a

a In the graphic, the log is not applied.This way, the results are easier to read. With
the log nothing change because the log is a monotonic function.

Remark: It is possible to show that, by adding columns to the channel
matrix C, the Gid can have a local maxima. So, it is not possible to use this kind
of algorithms either.

7 We have used the LIBQIF code at Appendix E for computing this measures and
generating the plots.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 57

Finally: We could not find the way to optimize the leakage under the G-
Leakage theory. Then, G-Capacity remains an area for future study.

5 Conclusions and future work

The end result of developing LIBQIF is a C++ toolkit library that simplifies to
researchers the process of plotting and calculating QIF measures without using
mathematical programs like Matlab, Scilab, etc. And just with a basic user level
of the C++ language. The LIBQIF syntax is really near to the QIF research
concepts.

The LIBQIF library can be downloaded from the repository:

https : //github.com/fmartinelli/libqif/tree/master/bin

For developers that want to contribute with the project can get up the sources
from:

https : //github.com/fmartinelli/libqif

The documentation of the library can be found with the libqif.tar.gz inside
the directory docs. More specifically in the file index.html.

LIBQIF library supports the theory of Shannon Entropy, Min-Entropy Leak-
age, Guessing Entropy, G-Leakage and Differential Privacy.

This library is free software; So, the users can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License.

We have showed examples of how to use the LIBQIF library, and more inter-
estingly, we have utilized the library for researching on the G-Leakage theory.

Unfortunately, the attempts to find a method to calculate the g-capacity
failed. But, we have found interesting optimization features over min-entropy
and g-leakage.

Some ones of these discoveries are that min-entropy is not quasi-concave (con-
sequently it is not concave). So, it can not be written like a convex optimization
problem to use an iterative algorithm similarly to Shannon entropy.

G-Leakage is a generalization of min-entropy, so, g-leakage can not be written
like a convex optimization problem either.

As future way to follow in researching on a method to calculate the g-capacity
maybe it is possible try to use non-convex problem solving algorithms.

LIBQIF has helped us to find easily counterexamples. But, it has some lim-
itations for the moment. There is just one plotter engine (SciLab) implemented
at the first version.

Future work on LIBQIF will be extend the implementation of plotter engines
allowing to the users to choose between SciLab, Maple, GNU-Plot and MATLAB.

Another interesting extension of LIBQIF would be that LIBQIF could work
with precise arithmetic. It is not immediately observable the fact that LIBQIF
is working with the generic arithmetic precision of the computer, and sometimes
this precision can change the results on numeric/statistical calculus.

LIBQIF will support precise arithmetic as well in the future.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 58

References

[AACP11] Mário Alvim, S., Miguel Andres, E., Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. On the relation between Differential Privacy and
Quantitative Information Flow. In Jiri Sgall Luca Aceto, Monika Hen-
zinger, editor, 38th International Colloquium on Automata, Languages and
Programming - ICALP 2011, volume 6756 of Lecture Notes in Computer
Science, pages 60–76, Zurich, Switzerland, 2011. Springer.

[ACPS12] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Geoffrey Smith. Measuring information leakage using generalized gain func-
tions. In Proceedings of the 25th IEEE Computer Security Foundations
Symposium (CSF), pages 265–279, 2012.

[Ari72] Suguru Arimoto. An algorithm for computing the capacity of arbitrary
discrete memoryless channels. IEEE Transactions on Information Theory,
18(1):14–20, 1972.

[BCP09] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
Quantitative notions of leakage for one-try attacks. In Proceedings of the
25th Conf. on Mathematical Foundations of Programming Semantics, vol-
ume 249 of Electronic Notes in Theoretical Computer Science, pages 75–91.
Elsevier B.V., 2009.

[BK11] Gilles Barthe and Boris Köpf. Information-theoretic bounds for differen-
tially private mechanisms. In CSF, pages 191–204, 2011.

[Bla72] Richard E. Blahut. Computation of channel capacity and rate-distortion
functions. IEEE Transactions on Information Theory, 18(4):460–473, 1972.

[Cac97] Christian Cachin. Entropy Measures and Unconditional Security in Cryp-
tography. PhD thesis, ETH Zürich, 1997. Reprint as vol. 1 of ETH Series
in Information Security and Cryptography, ISBN 3-89649-185-7, Hartung-
Gorre Verlag, Konstanz, 1997.

[CHM05] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative infor-
mation flow, relations and polymorphic types. J. of Logic and Computation,
18(2):181–199, 2005.

[CPP08a] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panan-
gaden. Anonymity protocols as noisy channels. Inf. and Comp., 206(2–
4):378–401, 2008.

[CPP08b] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panan-
gaden. On the Bayes risk in information-hiding protocols. Journal of
Computer Security, 16(5):531–571, 2008.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., second edition, 2006.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In
Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 371–380. ACM,
2009.

[DORS04] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. technical report 2003/235, cryptology eprint archive,
http://eprint.iacr.org, 2006. previous version appeared at eurocrypt 2004.
In 34 [DRS07] [DS05] [EHMS00] [FJ01] Yevgeniy Dodis, Leonid Reyzin,
and Adam, pages 79–100. Springer-Verlag, 2004.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 59

[Dwo06] Cynthia Dwork. Differential privacy. In Automata, Languages and Pro-
gramming, 33rd Int. Colloquium, ICALP 2006, Venice, Italy, July 10-14,
2006, Proc., Part II, volume 4052 of LNCS, pages 1–12. Springer, 2006.

[Dwo10] Cynthia Dwork. Differential privacy in new settings. In Proc. of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010, pages 174–183. SIAM, 2010.

[Dwo11] Cynthia Dwork. A firm foundation for private data analysis. Communica-
tions of the ACM, 54(1):86–96, 2011.

[Ip99] Lawrence Ip. The blahut-arimoto algorithm for the calculation of the capac-
ity of a discrete memoryless channel. Technical report, Technical Report,
Berkeley Uni, 1999.

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for adap-
tive side-channel attacks. In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, Proceedings of the 2007 ACM Conference
on Computer and Communications Security (CCS 2007), pages 286–296.
ACM, 2007.

[Mal07] Pasquale Malacaria. Assessing security threats of looping constructs. In
Martin Hofmann and Matthias Felleisen, editors, Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, Nice, France, January 17-19, 2007, pages 225–235.
ACM, 2007.

[Mas94] Massey. Guessing and entropy. In Proceedings of the IEEE International
Symposium on Information Theory, page 204. IEEE, 1994.

[MC08] Pasquale Malacaria and Han Chen. Lagrange multipliers and maximum
information leakage in different observational models. In Úlfar Erlingsson
and Marco Pistoia, editor, Proceedings of the 2008 Workshop on Program-
ming Languages and Analysis for Security (PLAS 2008), pages 135–146,
Tucson, AZ, USA, June 2008. ACM.

[MNCM03] Ira S. Moskowitz, Richard E. Newman, Daniel P. Crepeau, and Allen R.
Miller. Covert channels and anonymizing networks. In Workshop on Pri-
vacy in the Electronic Society 2003, pages 79–88, 2003.

[MNS03] Ira S. Moskowitz, Richard E. Newman, and Paul F. Syverson. Quasi-
anonymous channels. In Proc. of CNIS, pages 126–131. IASTED, 2003.

[Pli00] Pliam. On the incomparability of entropy and marginal guesswork in brute-
force attacks. In Proceedings of INDOCRYPT: International Conference in
Cryptology in India, number 1977 in Lecture Notes in Computer Science,
pages 67–79. Springer-Verlag, 2000.

[R6́1] Alfréd Rényi. On Measures of Entropy and Information. In Proceedings of
the 4th Berkeley Symposium on Mathematics, Statistics, and Probability,
pages 547–561, 1961.

[Smi09] Geoffrey Smith. On the foundations of quantitative information flow. In
Luca de Alfaro, editor, Proceedings of the 12th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS
2009), volume 5504 of LNCS, pages 288–302, York, UK, 2009. Springer.

[ZB05] Ye Zhu and Riccardo Bettati. Anonymity vs. information leakage in
anonymity systems. In Proc. of ICDCS, pages 514–524. IEEE Computer
Society, 2005.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 60

A Summary of QIF Theories

Shannon Entropy Leakage

1. Entropy: H(π) = −
∑
X
π(x) log π(x)

2. Conditional Entropy: H(π,C) = −
∑
X
π(x) (

∑
Y
C[x, y] log C[x, y])

3. Capacity: ML(C) = max
π
L(π,C) to compute this measure we use the Blahut-

Arimoto Algorithm:
The BA algorithm consists of alternately finding the optimal φ for a given
π and the the optimal π for a given φ. Steps:

(a) π1 = initial probability vector. And then iterate steps 3b and 3c t times.

(b) Maximize J(πt, C, φ) with respect to φ. So, φtj = C[x,y]πt(x)∑
k∈X

C[k,y]πt(k)
.

(c) Maximize J(π,C, φt) with respect to π. And this implies that, πt+1(x) =
rt(x)∑

k∈X

rt(k)
. Where rt(x) = exp

∑
Y

C[x, y] log φt(x, y)

Min-Entropy Leakage

4. Vulnerability: V (π) = max
X

π(x)

5. Conditional Vulnerability: V (π,C) =
∑
Y

max
X

π[x]C[x, y]

6. Entropy: H(π) = − log V (π)
7. Conditional Entropy: H(π,C) = − log V (π,C)

8. Capacity: ML(C) = log
∑
Y

max
X

C[x, y]

and it is realized on a uniform prior π.

G-Leakage

9. Vulnerability: V (π) = max
W

∑
X
π[x] g(w, x)

10. Conditional Vulnerability: V (π,C) =
∑
Y

max
W

∑
X
π(x)C[x, y] g(w, x)

11. Entropy: H(π) = − log V (π)
12. Conditional Entropy: H(π,C) = − log V (π,C)

Guessing Entropy Leakage

13. Entropy: H(π) = G(sort(π))

where: G(v) =
∑

x∈[1..|v|]

x ∗ v(x)

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 61

14. Conditional Entropy: H(π,C) =
∑
Y

G(sort(vy))

where vy is a vector depending of y: vy = [π(1)∗C[1, y], ..., π(|X|)∗C[|X|, y]]

Differential Privacy

15. Algorithm: is differential private(Channel C,Graph G)

for each (x, x’) in edges(G):

for each y in Y:

if C[x,y] > e^epsilon * C[x’,y]:

return false

return true

B The LIBQIF License

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 62

C Gain Function Examples

C.1 Identity Gain Function

A special gain function case is the identity which satisfies that

g[w, x] =

{
1 if w == x
0 otherwise

Per example the following is an identity gain function with size 3.

g:

gid x1 x2 x3
w1 1 0 0
w2 0 1 0
w3 0 0 1

The gid (identity gain function) is the special case of G-Leakage = Min-
Entropy Leakage.

C.2 k-tries Gain Function

Per example the following is an k-tries gain function with size 3.

g:

g2−tries x1 x2 x3
w1 = {x1, x2} 1 1 0
w2 = {x1, x3} 1 0 1
w3 = {x2, x3} 0 1 1

C.3 Gain Function from metrics

Exploring other gain functions, one quite natural kind of structure that X may
exhibit is a notion of distance between secrets. That is, there may be a metric d
on X , which is a function

d : X ×X → [0,∞)

Given a metric d, we can first form a normalized metric d̄ by dividing all
distances by the maximum value of d, and then we can define a gain function gd
by

gd(w, x) = 1− d̄(w, x).

Per example the following is an distance gain function with size 3.

g:

gd x1 x2 x3
w1 1 0.5 0
w2 0.5 1 0.5
w3 0 0.5 1

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 63

where

d(w, x) =

0 if w == x
0.5 if w == x± 1
1 otherwise

D LIBQIF Case Study Code

#include <iostream>

#include <string>

#include "GLeakage.h"

int main()

{

std::cout << "Using LIBQIF Library looking for properties" << std::endl;

std::string rand = "0.3 0.7; 0.7 0.3; 0.3 0.7";

std::string balanced = "0.25 0.5 0.25; 0 1 0; 0.5 0 0.5";

std::string metrics = "1 0.5 0; 0.5 1 0.5; 0 0.5 1"

std::string id = "1 0 0; 0 1 0; 0 0 1";

std::string k_tries = "1 1 0; 1 0 1; 0 1 1";

Channel C_rand= Channel(rand);

Channel C_balanced= Channel(balanced);

Channel C_id= Channel(id);

Gain g_id=Gain(id);

Gain g_metrics=Gain(metrics);

Gain g_k_tries=Gain(k_tries);

//GLeakage

GLeakage gl1= GLeakage(C_rand,g_id);

GLeakage gl2= GLeakage(C_balanced,g_id);

GLeakage gl3= GLeakage(C_id,g_id);

GLeakage gl4= GLeakage(C_rand,g_metrics);

GLeakage gl5= GLeakage(C_balanced,g_metrics);

GLeakage gl6= GLeakage(C_id,g_metrics);

GLeakage gl7= GLeakage(C_rand,g_k_tries);

GLeakage gl8= GLeakage(C_balanced,g_k_tries);

GLeakage gl9= GLeakage(C_id,g_k_tries);

//ploting

gl1.plot3d_leakage();

gl2.plot3d_leakage();

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 64

gl3.plot3d_leakage();

gl4.plot3d_leakage(); //<-----

gl5.plot3d_leakage();

gl6.plot3d_leakage();

gl7.plot3d_leakage();

gl8.plot3d_leakage();

gl9.plot3d_leakage();

}

plotting example code.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 65

E LIBQIF Case Study Code

#include <iostream>

#include <string>

#include "GLeakage.h"

int main()

{

std::cout << "Using LIBQIF Library Example" << std::endl;

std::string channel_elements = "0.3 0.7; 0.7 0.3; 0.3 0.7";

Channel C= Channel(channel_elements);

std::string function_elements = "1 0 0; 0 1 0; 0 0 1";

Gain g=Gain(function_elements);

//Creating the probability distribution vectors

std::string vector1_elements = "0.3333 0.3333 0.3334";

std::string vector2_elements = "0 0.5 0.5";

std::string vector3_elements = "0.5 0.5 0";

std::string vector4_elements = "0.25 0.5 0.25";

Prob p1= Prob(vector1_elements);

Prob p2= Prob(vector2_elements);

Prob p3= Prob(vector3_elements);

Prob p4= Prob(vector4_elements);

//GLeakage

GLeakage gl= GLeakage(C,g);

//calculating measures

double Lg1=gl.leakage(p1);

double Lg2=gl.leakage(p2);

double Lg3=gl.leakage(p3);

double Lg4=gl.leakage(p4);

std::cout << "Lg p1" << Lg1 << std::endl;

std::cout << "Lg p2" << Lg2 << std::endl;

std::cout << "Lg p3" << Lg3 << std::endl;

std::cout << "Lg p4" << Lg4 << std::endl;

}

Example 2 code.

17º Concurso de Trabajos Estudiantiles, EST 2014

43 JAIIO - EST 2014 - ISSN: 1850-2946 - Página 66

