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Abstract: This paper addresses issues related to 

recommending Semantic Web Services (SWS) using 

collaborative filtering (CF). The focus is on reducing the 

problems arising from data sparsity, one of the main 

difficulties for CF algorithms. Two CF algorithms are 

presented and discussed: a memory-based algorithm, using 

the k-NN method, and a model-based algorithm, using the 

k-means method. In both algorithms, similarity between 

users is computed using the Pearson Correlation 

Coefficient (PCC). One of the limitations of using the 

PCC in this context is that in those instances where users 

have not rated items in common it is not possible to 

compute their similarity. In addition, when the number of 

common items that were rated is low, the reliability of the 

computed similarity degree may also be low. To overcome 

these limitations, the presented algorithms compute the 

similarity between two users taking into account services 

that both users accessed and also semantically similar 

services. Likewise, to predict the rating for a not yet 

accessed target service, the algorithms consider the ratings 

that neighbor users assigned to the target service, as is 

normally the case, while also considering the ratings 

assigned to services that are semantically similar to the 

target service. The experiments described in the paper 

show that this approach has a significantly positive impact 

on prediction accuracy, particularly when the user-item 

matrix is sparse. 

Keywords: Collaborative filtering, Recommender 

systems, Semantic similarity, Semantic Web Services, 

Sparse data. 

1. INTRODUCTION 

Service-Oriented Computing (SOC) is a new computing 

paradigm that uses services as building blocks to 

accelerate the development of distributed applications in 

heterogeneous computer environments. SOC promises a 

world of cooperating services where application 

components are combined with little effort into a network 

of loosely coupled services for creating flexible and 

dynamic business processes that can spread over many 

organizations and computing platforms [1]  

Among the key challenges for the effective use of 

Web services is the discovery of services that meet the 

functional and non-functional requirements of its users 

and that take into account their preferences [2]. In Web 

service discovery systems, three entities can typically be 

distinguished: the service requester (a user or a program), 

the service provider and the service registry. Entities 

seeking services make service requests to the registry. In 

the registry, the description of the service requested is 

compared with the descriptions of services advertised by 

service providers, using a matching algorithm, to identify 

whether there are services that meet the request. If the 

matching is successful, the registry provides the 

description of identified service instances to the requester, 

including the necessary details for their invocation. 

Architectures for service discovery, usually based on 

the WSDL specification [3], have serious limitations 

arising from the service description technology and 

matching algorithms used. These limitations are due, in 

part, to the use of informal descriptions of service 

functionality and capability, written in natural language, 

usually lacking a common vocabulary for the service 

requester and provider. Semantic Web Services (SWS) 

and Linked Services are recent approaches that try to 

overcome these limitations by combining Web services 

technology with elements of the Semantic Web [4][5]. 

In SWS discovery architectures, advertised services 

are described using service annotation ontologies in 

addition to WSDL parameters and operation names. These 

ontologies define a semantic model for the description of a 

Web service from several perspectives, including 

functionality, execution flow and invocation details. They 

define a set of attributes for service capability description, 

the most common being the so-called IOPE (Inputs, 

Outputs, Preconditions and Effects). Service annotations, 

in accordance with a service annotation ontology, use 

concepts contained in domain ontologies instead of non-

standardized words, which are more commonly used in 

conventional non-semantic approaches.  

Domain ontologies describe the terminology and the 

relationships between terms of a specific domain using an 

ontology language such as OWL or RDFS [6][7]. Each 

ontology language has its own unique expressive power, 

but all can model, at the minimum, hierarchies of concepts 

and roles of concepts, such as properties, attributes and 

relationships. When performing a search, the 

characteristics of the desired service, such as inputs and 

outputs, are specified by terms that represent ontology 

concepts. Matchmaking algorithms based on logical 

inference can then seek matches for the request 

parameters, taking into account the parameters of the 

available services. For each match found, a value that 

characterizes the matching degree (similarity) is 

computed. Finally, the identified services are returned to 

the requester in descending order of matching degree. 

Search algorithms for semantic Web services present 

good results when the user is able to adequately describe 

the desired service. However, this is not always the case, 

and a request for a service cannot correspond fully to the 

intentions of the requester. For example, there may be a 

published service that partially matches the request and 

accomplishes the intentions of the requester, or the 

opposite scenario could also conceivably occur [8]. As the 

number of available services on the Web increase, this 

problem worsens. Currently, as pointed out in [9], one of 

the most challenging issues in Web service provision is 

not the matchmaking process but the selection of good 

services for a target user. 
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In addition, as the number of available Web services 

grows, there may be a lot of interesting available services 

that users are not aware of, and that they therefore will not 

take the initiative to request. Additionally, in the context 

of mobile and ubiquitous computing, it is unreasonable to 

assume that a user is constantly searching for interesting 

services available at the user locale. In this context, it is 

desirable to have a recommender system capable of 

identifying and of proactively recommending potentially 

interesting services to the user in the right situation. 

A web service recommender can also be very 

valuable to proactively deal with failures and to recover to 

service workflows that have partially failed and in 

dynamic  composition  scenarios, provided the services 

and the recommender can deal with semantic markup [10] 

[11].  

The recommendation problem can be reduced to an 

issue of estimating ratings for items that have not been 

used before by a user; items with higher estimated ratings 

are as a consequence recommended to the user.  

Recommenders are usually implemented using 

filtering algorithms classified into three main categories, 

depending on how the recommendations are performed: 

(1) Content-Based algorithms (CB) filter and recommend 

items that are similar to others the user has accessed in the 

past;  (2) Collaborative Filtering (CF) algorithms filter and 

recommend items based on the preferences of other users 

with similar tastes and preferences; knowledge-based 

(KB) recommenders use knowledge about users and items 

to generate a recommendation. It is also frequent to find 

hybrid systems that combine methods taken from two or 

more of the previous categories of recommenders [12] 
[13]. 

Content-based recommenders have their roots in the 

information retrieval field and were successfully 

implemented in domains where the items to be 

recommended are described through textual information. 

These systems are, however, limited by the features that 

are explicitly associated with the items. They are also 

limited to recommended items that are similar to those 

already rated by the user (over specialization). A 

particularly difficult task for this type of algorithm is to 

deal with new users, because new users have to rate a 

sufficient number of items before the system can 

understand their preferences and start making useful 

recommendations. 

CF algorithms do not have some of the 

abovementioned shortcomings of content based 

algorithms. Since they employ the user's ratings, they can 

deal with any kind of content and recommend any type of 

item, even items that are dissimilar to those accessed in 

the past.  

However CF systems have their own challenges, 

including coping with sparse data and scaling with 

increasing numbers of users and items. Several structural 

difficulties related to sparse data may be encountered, 

including the cold start problem, the reduced coverage 

problem and the neighbor transitivity problem. The cold 

start problem occurs when new users or items are inserted 

into the system. New items cannot be recommended until 

they are rated by some users, and, in turn, new users are 

unlikely to receive good recommendations because they 

lack a rating history.  The reduced coverage problem 

occurs when the number of ratings is very small compared 

with the number of items in the rating database. In this 

situation, the system may be unable to generate 

recommendations for such users.  The neighbor transitivity 

problem occurs when users with similar tastes do not have 

rated items in common and thus cannot be identified as 

similar.  

Knowledge-based recommender systems avoid some 

of the drawbacks of content and CF system since their 

recommendations do not depend on a base of user ratings. 

Their main drawback is the well known knowledge 

acquisition bottleneck. 

Algorithms for CF, the primary focus of this paper, 

can be further classified into two main categories: 

memory-based and model-based. Memory-based 

algorithms construct a neighborhood of users who have 

similar ratings to the target user using directly the 

available data. In this circumstance, the ratings of 

neighbors are used to predict how a target user will rate an 

item he has not yet accessed. Model-based techniques 

employ available rating data to learn a model to make 

predictions, usually using data mining or a machine 

learning algorithm. Then the model is used to make 

predictions for target items, instead of using raw rating 

data, as is done with memory-based algorithms. 

When comparing memory-based and model-based CF 

algorithms it is usually accepted that memory-based 

algorithms are easy to implement and have higher 

prediction accuracy, particularly for dense datasets. 

Model-based algorithms are, in turn, more scalable and 

less vulnerable to profile injection attacks [12].  

In the recent past, recommender systems have been 

built for recommending different types of items in diverse 

domains, including CD, Web pages, books, news, movies 

and courses. However, research on Web service 

recommendation is in its preliminary stages and usually 

focuses on predicting service QoS (Quality of Service) 

parameters [14], which is a very limited way of capturing 

user interest [15].  

In this paper, we present algorithms for constructing 

Web service recommender systems aimed at reducing the 

problems arising from sparse data. The proposed approach 

combines CF algorithms with logical inference to 

determine the semantic similarity between services, and 

between users. The rationale behind this approach is that if 

two users have not rated a common set of services but 

have rated similar services, these ratings can still be an 

indication of user similarity and therefore contribute to 

reduce the effects of data sparseness.  

The remainder of the paper is organized as follows: 

section 2 presents memory and model-based CF 

algorithms for Semantic Web services recommendation; 

section 3 discusses the experimental set up used to 

evaluate the algorithms and the results that were obtained; 

section 4 presents related work; and, finally, section 5 

concludes the paper by pointing out our main results and 

directions for future work. 

2. CF ALGORITHMS FOR SEMANTIC WEB 
SERVICE RECOMMENDATION 

In this section, variations of two recommender algorithms 

that exploit semantic similarities among web services are 

presented. Their performance will be compared in Section 

3. 

Instances of user feedback
1
 are stored in a user-item 

matrix, represented as a set FSUT ××⊆ , where U 

                                                           
1
 In this paper we use the terms ‘feedback’, ‘score’ and ‘rating’ as 

synonyms. 
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=  {u1,  u2, … , um} is the set off all users, S =  {s1,  s2, … , 

sn} is the set of all rated services, F =  {f1, f2, … , fm} is the 

set of instances of feedback related to services in S and 

collected from the users in U. Each  fu ∈F is an n-

dimensional vector over the space of all instances of user 

feedback, i.e,  fu=( fu,s1, fu,s2, … , fu,sn) where fu,sj ∈  [0..1] 

is the feedback  given by user u to service sj. If a service 

was not rated its feedback is represented as φ  (null).  

Although the collaborative filtering algorithms 

described in this section are independent of the notation 

used to describe service semantics, when they allow for 

the measurement of the level of semantic similarity among 

two services, a prototype for services described using 

OWL-S was implemented for the validation of the 

algorithms. OWL-S is an upper ontology that specifies 

that a service can be described by at most one service 

model, and a grounding must be associated with exactly 

one service [16]. OWL-S is a W3C recommendation based 

on the W3C standard OWL, an ontology language for the 

Semantic Web with formally defined meaning [6].  

Computing Service Similarity 

In our prototype implementation, the degree of similarity 

between OWL-S services is computed using a hybrid 

semantic service matching algorithm described in [17] that 

takes advantage of both logic-based reasoning and IR 

techniques. 

If R represents a request for a service and S a service 

registered in the service database, the semantic matching 

algorithm computes the following matching degrees:  

• Exact match (S exactly matches R) - The I/O 

(Input/Output) signature of S perfectly matches 

request R with respect to the logic-based equivalence 

of their formal semantics. 

• Plug-in match (S plugs into R) - All input parameter 

concepts of S match more specific ones in R. In 

addition, S is expected to return more specific output 

data. 

• Subsumed match (R subsumes S) - This matching 

degree is weaker than plug-in matching. The output of 

S is more specific than requested by R as before, but 

the constraint of immediate output concept 

subsumption is relaxed to arbitrary output concept 

subsumption. 

• Subsumed-by match (R is subsumed by S) - The 

output of S is slightly more general than requested 

(direct parent output concepts). 

• Nearest-neighbor match (S is the nearest neighbor of 

R) - It is checked if the degree of text similarity, 

SynSim(S,R), between the input and output concepts of 

S and R is greater than or equal to a defined syntactic 

similarity threshold α.  This degree is computed as the 

averaged syntactic similarity of the serialized input 

and output concepts of S and R, according to a given 

similarity metric. A set of concepts is serialized by 

means of their expansion through the ontology 

implemented and by the conjunctive concatenation of 

the results into one unstructured text document, 

including only logical operators and primitive 

components of the basic vocabulary that is present in 

the ontological terminology. In the case of vector-

space-based text similarity measurement, these 

documents are represented as weighted keyword 

vectors based on a term-weighting scheme. 

• Fail (S does not match with R) - None of the above 

matching degrees was obtained. 

Memory-based Feedback Prediction with K-NN 

This recommendation algorithm is based on the 

construction of neighborhoods of similar users. The 

neighbors’ ratings can then be used to make predictions 

for unrated items. A neighborhood is constructed 

comparing the similarity of each pair of existing users 

using the Pearson Correlation Coefficient (PCC).  

Two variants of the algorithm were implemented. In 

the first, named PCC, the similarity between two users u 

and v, sim(u,v), is computed as shown in Eq. (1), where Suv 

= {s | fu,s ≠ φ  and fv,s ≠ φ  } is the set of services that both 

users, u and v, have rated, fu,s ∈  [0..1] is the feedback 

given by user u to service s and uf  and vf  are the 

averages of the instances of feedback given by users u and 

v, respectively.  

 

sim(u,v)= 

∑∑

∑
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−−

vuv

uv

Sus
vsv

Ss
usu

vsvu
Ss

su

ffff

ffff

2
,

2
,

,,

)()(

))((       (1) 

 

In Eq. (1), if users u and v have not rated items in 

common it is not possible to compute their similarity. 

Also, if the number of common items that were rated is 

very low, the computed similarity may be unreliable. 

In the second variant of the algorithm, named PCC-

SS (PCC with similar services), it is not required that users 

u and v rate the same services to compute their similarity 

as it takes into consideration the ratings of similar 

services. The similarity between services is computed 

using the semantic matching algorithm presented in the 

previous subsection.  

PCC-SS computes the similarity between two users, u 

and v, using Eq. (2). In that equation, t is the service rated 

by v that is most similar to s (rated by u), respecting a 

minimum threshold of similarity δ. When both users have 

rated the same service, s and t represent the same service 

(the similarity between s and t is 1). 
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The similarity between two users, sim(u,v), computed 

using Eq. (1) or Eq. (2), ranges from −1 to 1. A value of 1 

implies a line that describes the relationship between 

feedback fu,s and fv,s given from users u and v, respectively, 

for service s (or a similar service), with all data points 

(instances of feedback) lying on the line where fv,s 

increases as fu,s increases. A value of −1 implies that all 

data points lie on the line where fv,s decreases as fu,s 

increases. A value of 0 implies that there is no linear 

correlation between the various instances of feedback. In 

our implementation only sim(u,v) values higher than 0 

were considered relevant.  

The feedback a user u would give to a service s that 

he has not yet rated can be estimated using the ratings that 

neighbor users assigned to that service. Having a 

neighborhood V, the feedback user u would give to service 

s, fu,s, can be predicted using two variants of the weighted 

average of all neighbors’ ratings, as shown in Eq. (3) and 

Eq. (4).  
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For the result fu,s in Eq. (3), hereafter named WAAR 

(Weighted Average of All Ratings), the neighborhood V is 

formed by the k most similar users to u that rated service  

s.   
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For the result fu,s in Eq. (4), hereafter named WAAR-

SS (Weighted Average of All Ratings with Service 

Similarity), the neighborhood Vss is formed by the k most 

similar users to u that rated service  s or a service t that is 

semantically similar to s. If V or Vss is empty, respectively 

in Eq. (3) or (4),  fu,s is made equal to uf . 

Model-based Feedback Prediction with K-means 

Memory-based filtering algorithms tend to be more 

accurate than model-based algorithms, but the latter are 

more scalable and less vulnerable to profile injection 

attacks [18]. Considering that the number of available 

services in the Web is continuously increasing, and that in 

the context of Web-based open collaborative 

recommenders the likelihood of attacks is not negligible, 

model-based recommender algorithms can be good 

alternatives to memory-based algorithms, provided that 

their accuracy is acceptable 

We describe in this section a model-based CF 

algorithm for semantic Web services that uses the k-means 

clustering method and the concept of semantic service 

similarity. 

The k-means method is used to partition a set of 

points or observations into clusters. If we consider that fu 

∈F defines the profile of user u, where fu is the vector of 

instances of feedback given by user u for the available 

services, the k-means algorithms can be used to cluster 

users with similar profiles. Once the clusters are defined, 

their centroids can be interpreted as aggregated profiles of 

the users in the clusters as done in [19]. 

The clustering algorithm works as follows. Initially k 

points (f vectors) are randomly chosen as the initial cluster 

centroids, after which an assignment step and an update 

step are repeated until the algorithm converges. In the 

assignment step, each point is assigned to the cluster with 

the closest centroid. In the update step, cluster centroids 

are updated to the mean of the points assigned to the 

cluster. The algorithm converges when the centroids no 

longer change. 

In the assignment step, the distance between a point 

and a cluster centroid is computed using the PCC or the 

PCC-SS (Eq. 1 and Eq. 2, respectively). Following the 

assignment step, the update step computes a new centroid 

fc=( fc,s1, fc,s2, … , fc,sn) for each cluster c. The new centroid 

vector is the mean of the user profiles assigned to cluster 

c. That is, fc,si, for i = 1 to n,  is computed by Eq. (5). 

 

∑
∈

=
Cu

siusic f
c

f ,,
1                             (5) 

 

When applying Eq. (5), if some fu,si is equal to φ  

(meaning that user u has not rated service si,), the average 

score of the items rated by u is instead used. 

When the algorithm converges, each cluster centroid 

is seen as an aggregation of the user profiles in their 

respective cluster. User instances of feedback for unrated 

services are then estimated using Eq. (3) or Eq. (4), taking 

into consideration the neighborhood formed by the k 

clusters (represented by their centroids) most similar to the 

target user profile (represented by his feedback vector). 

3. EXPERIMENTAL EVALUATION  

The purpose of this section is to compare the performance 

of the algorithms presented on section 2. 

The lack of public rating datasets is a major difficulty 

when validating recommender systems for Web services. 

To circumvent this difficulty, researchers usually adapt 

popular datasets constructed to recommend other types of 

items. For example, [20] use the Movielens
2
 dataset and 

consider that a movie in the dataset represents a Web 

service. The evaluation of the algorithms we propose, adds 

an additional level of difficulty because we need a dataset 

of user ratings for semantic Web services. 

In this context, an alternative is to synthesize a dataset 

that matches the properties of the target domain and task 

[21]. Following this approach we created a synthetic user-

item matrix that can be used to provide some insights into 

the behavior of the implemented algorithms and serve as a 

proof of concept.  

We used services from the OWL-S Service Retrieval 

Test Collection - OWLS-TC
3
, version 2.2, a collection of 

1004 Web services from several domains, specified 

according to the OWL-S ontology.  

In the experiments, two groups with 50 users each 

were defined. Each user rated 56 services from the 

following four categories: cars, cameras, hotels and surf. 

Service ratings were set according to a base feedback 

defined for each pair (user_group, service_category). Each 

feedback was added to a value that varies from -1 to 1 

according to the normal distribution. 

The main objective of the experiments was to analyze 

the behavior of the proposed algorithms considering dense 

and sparse data scenarios. These scenarios were simulated 

by progressively hiding a number of service ratings from 

the algorithms: the 56 service ratings for each user were 

progressively reduced in steps of 10 until only 6 ratings 

were available for each user. After each removal step, the 

values of the removed scores were estimated using the 

algorithms previously discussed, with and without taking 

into consideration similar services, following which the 

average error of the predictions was computed.  The 

experiments for each removal scenario were repeated 10 

times and the results averaged. The time needed to 

compute the similarities between services was not taken 

into consideration because the computations were 

performed before running the experiments. 

The prediction performance of the algorithms was 

measured using the Mean Absolute Error (MAE) and the 

Normalized Mean Absolute Error (NMAE), defined by 

Eq. (6) and Eq. (7), respectively. 

 

                                                           
2
 http://www.grouplens.org/node/73 

3
 http://projects.semwebcentral.org/projects/owls-tc 
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In Eq.  (6), pu,s denotes the predicted feedback that 

user u will give to service s, fu,s denotes the actual (hidden) 

feedback that user u gave to service s, and N is the number 

of predicted instances of feedback. Lower values for MAE 

and NMAE indicate better prediction quality. A MAE or 

NMAE equal to zero corresponds to an ideal scenario, 

where all predictions are equal to the actual instances of 

feedback. 

Evaluating the K-NN Memory-based Feedback 

Prediction Algorithm 

In the experiments described in this section two services 

are considered similar if their matching degree is Exact, 

Plug-in, Subsumes, Subsumed-by or Nearest-neighbor 

with a threshold α of 0.8. 

Two simple estimation schemes, the item-mean and 

the user-mean algorithms, were also implemented to be 

used as baselines. The item-mean (IMEAN) algorithm 

estimates the score for an item (a service) as the mean of 

the scores the target item received from all users that rated 

it. The user-mean (UMEAN) algorithm estimates the score 

for an item as the mean of the scores the target user gave 

to the items he rated.  

When applying Eq. (3) or Eq. (4) (WAAR and 

WAAR-SS), the neighborhood used to estimate a score is 

defined by users with a degree of similarity to the target 

user that is greater than or equal to 0.8, as computed by 

Eq.  (1) or Eq. (2) (PCC and PCC-SS). When setting this 

similarity threshold, we have to consider that if it is too 

low users with low similarity can be considered neighbors, 

negatively affecting the accuracy of the algorithm. On the 

other hand, if the threshold is very high it is possible that 

no neighbors will be found, making it impossible to 

predict feedback from the target user-service pair. 

As can be observed in Figure 1, the prediction error 

when using the PCC and WAAR (without using service 

similarity) is significantly lower than when the IMEAN 

and UMEAN algorithms are used. In other words, 

considering a neighborhood of similar users to predict user 

feedback is better than using raw user or item averages. 

Figure 2 shows that considering service similarity 

increases the prediction performance to an even greater 

extent. This happens when service similarity is used only 

to compute the PCC-SS (Eq. (2)) for the purpose of 

finding a neighborhood, or to estimate scores with 

WAAR-SS (Eq. (4)). Using service similarity both to 

compute the PCC-SS and the WAAR-SS produces even 

more accurate predictions. These results can be explained 

as follows. When the PCC is computed without taking into 

consideration service similarity, several similar users are 

not identified because the PCC equation correlates only 

users that rated a common set of services. When service 

similarity is taken into account, users who rated similar 

services are also taken into consideration, increasing the 

neighborhood and, as a consequence, the accuracy of the 

algorithm. In addition, using service similarity to predict a 

rating (WAAR-SS) contributes to increase the accuracy 

because it allows more scores to be considered when 

calculating the predictions. This happens because instead 

of only considering service scores that the target user and 

their similar users rated, scores for similar services are 

also included. 

Figure 2 also shows that the effects of considering 

service similarity are not significant when a small amount 

of scores is removed, but are more dramatic when the 

amount of removed scores increases, that is, when the 

user-item matrix becomes sparser. As shown in figure 2, 

when 50 out of 56 scores are removed, the NMAE is equal 

to 0.23 if service similarity is considered in both the PCC 

and WAAR, while when it is not considered in any of the 

methods it rises to 0.41, an increase of 78%. 

 

Evaluating The K-means Model-based Feedback 
Prediction Algorithm 

Using the same scenarios from the previous section, 

experiments were conducted to evaluate the performance 

of the prediction approach based on k-means. One of the 

important parameters for this algorithm is the number of 

clusters, k. If k is too small user profiles with little 

similarity are clustered together, reducing the accuracy of 

the algorithm; on the other hand, if k is too high the 

scalability of the algorithm (one of its main expected 

advantages over the k-NN based algorithm) can be 

negatively affected. In the experiments presented in this 

section k was set to 8, a value chosen after some 
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Figure 1. Prediction accuracy of IMEAN, UMEAN and k-NN 

without service similarity 
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Figure 2. Impact of service similarity on the accuracy of the 

KNN-based prediction algorithm 
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preliminary tests demonstrated that it is a good choice for 

the data set used. 

The neighborhood used to predict a feedback to a 

target user is formed by the cluster centroids that have a 

degree of similarity to that user (computed using the PCC 

and PCC-SS) greater than or equal to 0.8. 

As can be observed in figure 3, the k-means 

prediction algorithm without service similarity has a 

prediction error significantly lower than that which is 

obtained when applying the IMEAN and UMEAN 

algorithms, except when the number of available scores is 

very low (when 50 out of 56 are removed). Under such 

circumstances, the small number of available user profiles 

prevents the construction of representative user groups, 

severely affecting the prediction accuracy of the 

algorithm. Under such sparse data conditions, the use of 

service similarity accounts for an appreciable increase in 

accuracy. As already verified for the k-NN algorithm, the 

best results are observed when service similarity 

information is used for computing both the PCC and the 

WAAR. These results can be explained in the same 

manner as done for the k-NN algorithm: when running the 

algorithm without service similarity information, several 

similar users are not identified as such and are not 

clustered together, because only users that rated the same 

set of services can be considered similar; when service 

similarity is taken into account, it is also possible to 

identify similar users among those users that rated similar 

services. In addition, when computing the WAAR, the use 

of service similarity information contributes to increase 

the accuracy because it allows for the consideration of 

more scores to calculate a prediction.  

Figure 3 shows that when 50 out of 56 scores are 

removed, characterizing a situation of scarcity of 

evaluations, using service similarity for computing the 

PCC and WAAR accounts for a NMAE of 0.32, while 

when this information is not used the NMAE rises to 0.89, 

an increase of 178%. 

 

Comparing the K-NN and the K-means Prediction 

Algorithms 

The literature says that memory-based prediction 

algorithms, like those based on the k-NN, often have 

greater accuracy than model-based algorithms, such as 

those based on the k-means, but model-based algorithms 

are more scalable because they require less memory and 

are faster. Figure 4 confirms the first clause of the 

previous sentence. However, it is worth noting that the k-

means algorithm with service similarity is more accurate 

than the k-NN one without service similarity.  

The lower accuracy of the k-means algorithm with 

respect to k-NN can be explained by the fact that the k-

means method uses cluster centroids and not the profiles 

of similar users to predict the scores. Profiles are grouped 

into clusters based on the similarity of each profile to a 

cluster centroid; thus a poorly chosen centroid directly 

influences the quality of the cluster. In the implementation 

described, the initial eight centroids were chosen randomly 

among the available profiles. The particularly bad result 

for the k-means algorithm when many scores are removed 

and similar services are not considered can be explained 

by the difficulty in finding similar users to group together 

when data is sparse. 

Figure 5 shows the time required by the algorithms to 

predict the removed scores when using a notebook with an 

Intel® Core™ Duo 1.66 GHz processor and 2 GB of 

RAM. Regarding the k-means algorithm, the required time 

for score predictions with already created clusters is 

shown. Under these conditions, the run time is lower for 

the k-means algorithm, particularly when the user-item 

matrix is dense. This result was expected because a high 

number of profiles are considered in the computation of 

the PCC and the WAAR when using the k-NN method, 

while only a small number of cluster centroids are used 

when applying the k-means method. 
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Figure 3. Impact of service similarity on the prediction 

performance of the k-means algorithm 
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Figure 4. Comparing the prediction performance of k-NN 

and k-mean salgorithms 
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Figure 5. Run-time of the k-NN and k-means algorithms for 

score prediction 
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The run-time for the k-NN algorithm tends to 

increase sharply as the amount of users and services 

increases. Under such conditions, the lower accuracy of 

the k-means algorithm can be acceptable provided that its 

run time is satisfactory. Figures 5 and 6 can be used to 

demonstrate this point. Figure 5 shows that the run time 

needed to predict the scores is lower for the k-means 

algorithm when the users’ profiles are already grouped. 

However, as can be seen in Figure 6, the time needed by 

the k-means algorithm to cluster the users is very high 

when compared to the time needed by the k-NN algorithm 

to predict scores.  That means that the k-means prediction 

algorithm would be suitable when the user-item matrix is 

not updated very often, in which case the clustering 

procedure can be run off-line or in background. 

Besides accuracy and run-time, other criteria could 

also be considered when choosing between both 

algorithms. In particular, in open environments it is 

usually not difficult to perform profile injection attacks 

that insert fake users on the user-item matrix in order to 

manipulate the recommendations. When that is the case, 

model-based algorithms, such as the k-means one, may be 

the best choice, since it has been shown that they are more 

resistant to this type of attack [18]. 

4. RELATED WORK 

Recent research has focused on CF for Web service 

recommendation. For example, [14] developed a 

prediction algorithm of QoS values for Web services that 

combines user-based and item-based CF methods. The 

predicted QoS is used to recommend services to users. In 

[22] it is presented a hybrid CF algorithm that clusters 

users into regions based on similarities of their physical 

locations and historical QoS. The clusters are used to 

identify region-sensitive services, and a nearest neighbor 

approach predicts the QoS of a candidate Web service for 

an active user. The prediction occurs by exploiting 

historical QoS information gathered from users of highly 

correlated regions. The service with the best predicted 

QoS is then recommended to the active user. In [23] it is 

also addressed the problem of Qos prediction using a 

neighborhood-based collaborative filtering approach for 

QoS based service selection.  

While the above cited works use QoS parameters as 

indicators of user interest, [15] points out that Web service 

QoS parameters, such as availability and response time, 

are too limited to capture the experience provided to end 

users. In our work, we assume that user interest in a 

service is represented by explicit or implicit rates provided 

by the user.  

In [20] it is described a framework for Web service 

selection inspired by memory-based CF methods that 

considers the dependencies among Web services in 

composition processes. The invocation rate of a Web 

service carried out by a user in different Web service 

compositional processes is used as an indicator of the user 

preference for that service. The experimental evaluation of 

the framework was performed using the Movielens data 

set to simulate Web service compositions. The main focus 

of the authors is service selection during a composition 

process, when some or all of the services to be composed 

are already known.  

Using general Web services naming tendencies 

coupled with enhanced syntactical methods, the work in 

[24] aggregates services by their messages and proactively 

suggests candidate services to users.  

Service similarity to predict user feedback is 

examined in [25], although in a different context from 

ours. The authors propose a method for service discovery 

that combines multiple matching criteria with user 

feedback, based on the assumption that users rate how 

appropriate retrieved services are according to the results 

of their requests. Considering a given pair with one 

request R and one service S, when no ratings exist in the 

database, the method takes into account not only the 

ratings assigned to the current service requests R, but also 

ratings assigned to requests similar to R. Differently from 

our work, and from CF methods in general, all available 

user ratings are considered equally important, 

independently of user similarity. The predicted feedback 

value (score) is computed as the average of all user ratings 

for the corresponding service.  

In contrast to our work, none of the above surveyed 

articles use semantic similarity of services as a strategy to 

increase accuracy under sparse data conditions.  

5. CONCLUSIONS AND FUTURE WORK 

In this paper we presented algorithms for the construction 

of semantic Web service recommenders using CF. The 

focus of our work was to use semantic markup for Web 

services to increase the accuracy of the recommendations 

based on CF algorithms when the user-item matrix is 

sparse. We implemented and evaluated two algorithms for 

recommendation: a memory-based algorithm using the k-

NN method, and a model-based algorithm using the k-

means method. In both algorithms, the similarity between 

users is computed by the Pearson Correlation Coefficient 

(PCC). 

Usually, when the PCC method is employed in user-

user CF algorithms, the similarity between two users is 

computed utilizing the ratings given by the users to items 

(services) rated in common. If the users have not rated 

items in common it is not possible to compute their 

similarity. In addition, when the number of common rated 

items is low, the reliability of the computed similarity 

degree may also be low. 

In our algorithms, instead of only using the ratings of 

common services, the ratings of services that are 

semantically similar to those services rated by the users 

are also taken into consideration. Likewise, when 

predicting the rating a target user will give to a target item 

he has not yet accessed, the algorithms consider the ratings 
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Figure 6. Computation time needed to construct the clusters 

in the k-means algorithm 
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given to the target item by neighbor users (or groups, in 

the case of the k-means algorithm), as is customary, while 

also considering the ratings given by neighbors to items 

that are semantically similar to the target item.  

The experimental evaluation described shows that 

considering similar services when computing user 

similarity and predicting user ratings has a significant 

impact on the accuracy of the implemented algorithms, 

particularly when the user-item matrix is sparse. As 

expected, the memory-based algorithm using k-NN was 

more accurate than the model-based algorithm based on k-

means, but the k-means algorithm is more scalable when 

the dynamics of the application domain permits the 

clustering process to be run in background. It is also 

interesting to point out that when the k-means algorithm 

considers similar services it has higher prediction accuracy 

than the k-NN based algorithm when the latter does not 

takes service similarity into account. 

As a final remark it is worth noting that recommender 

systems usually present their recommendations in 

decreasing order of predicted user interest, and that users 

frequently consider only the top n rated items. In [26] it is 

observed that CF algorithms based on the k-NN method 

make some obscure or inaccurate recommendations at the 

top positions when implemented using the PCC to find 

neighborhoods. Usually that behavior is not evident 

because the algorithms are commonly rated using the 

MAE (as was done in our work). This metric favors 

algorithms that have a low average error rate over a set of 

predictions, but that do not necessarily place the n best 

recommendations at the top of the list. This performance 

limitation has two primary sources: (1) target users with 

few neighbors who have rated an item and (2) target items 

rated by neighbors with low correlation to the target user. 

The PCC addresses the second problem giving more 

influence to neighbors with higher similarity. But this 

strategy does not account for cases where all the neighbors 

have low correlation with the target user. Although we 

have not analyzed the quality of the top n 

recommendations, we can notice that the two mentioned 

sources of poor performance are related to data sparsity. 

And as such, our algorithms contribute to alleviate both 

sources of low performance: (1) by enlarging the 

neighborhood through considering not only users who 

have rated the same service, but also users who have rated 

similar services; and (2) by setting a threshold to the 

minimum similarity between two users that must be 

observed to permit the placement of users in the same 

neighborhood.  
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