
Improving the Performance of Web Service Recommenders
Using Semantic Similarity

Juan Manuel Adán-Coello, Carlos Miguel Tobar, Yang Yuming

Faculdade de Engenharia de Computação, Pontifícia Universidade Católica de Campinas (PUC-Campinas)

Campinas, SP, Brasil

{juan,tobar}@puc-campinas.edu.br; lyonbrcn@gmail.com

Abstract: This paper addresses issues related to

recommending Semantic Web Services (SWS) using

collaborative filtering (CF). The focus is on reducing the

problems arising from data sparsity, one of the main

difficulties for CF algorithms. Two CF algorithms are

presented and discussed: a memory-based algorithm, using

the k-NN method, and a model-based algorithm, using the

k-means method. In both algorithms, similarity between

users is computed using the Pearson Correlation

Coefficient (PCC). One of the limitations of using the

PCC in this context is that in those instances where users

have not rated items in common it is not possible to

compute their similarity. In addition, when the number of

common items that were rated is low, the reliability of the

computed similarity degree may also be low. To overcome

these limitations, the presented algorithms compute the

similarity between two users taking into account services

that both users accessed and also semantically similar

services. Likewise, to predict the rating for a not yet

accessed target service, the algorithms consider the ratings

that neighbor users assigned to the target service, as is

normally the case, while also considering the ratings

assigned to services that are semantically similar to the

target service. The experiments described in the paper

show that this approach has a significantly positive impact

on prediction accuracy, particularly when the user-item

matrix is sparse.

Keywords: Collaborative filtering, Recommender

systems, Semantic similarity, Semantic Web Services,

Sparse data.

1. INTRODUCTION

Service-Oriented Computing (SOC) is a new computing

paradigm that uses services as building blocks to

accelerate the development of distributed applications in

heterogeneous computer environments. SOC promises a

world of cooperating services where application

components are combined with little effort into a network

of loosely coupled services for creating flexible and

dynamic business processes that can spread over many

organizations and computing platforms [1]

Among the key challenges for the effective use of

Web services is the discovery of services that meet the

functional and non-functional requirements of its users

and that take into account their preferences [2]. In Web

service discovery systems, three entities can typically be

distinguished: the service requester (a user or a program),

the service provider and the service registry. Entities

seeking services make service requests to the registry. In

the registry, the description of the service requested is

compared with the descriptions of services advertised by

service providers, using a matching algorithm, to identify

whether there are services that meet the request. If the

matching is successful, the registry provides the

description of identified service instances to the requester,

including the necessary details for their invocation.

Architectures for service discovery, usually based on

the WSDL specification [3], have serious limitations

arising from the service description technology and

matching algorithms used. These limitations are due, in

part, to the use of informal descriptions of service

functionality and capability, written in natural language,

usually lacking a common vocabulary for the service

requester and provider. Semantic Web Services (SWS)

and Linked Services are recent approaches that try to

overcome these limitations by combining Web services

technology with elements of the Semantic Web [4][5].

In SWS discovery architectures, advertised services

are described using service annotation ontologies in

addition to WSDL parameters and operation names. These

ontologies define a semantic model for the description of a

Web service from several perspectives, including

functionality, execution flow and invocation details. They

define a set of attributes for service capability description,

the most common being the so-called IOPE (Inputs,

Outputs, Preconditions and Effects). Service annotations,

in accordance with a service annotation ontology, use

concepts contained in domain ontologies instead of non-

standardized words, which are more commonly used in

conventional non-semantic approaches.

Domain ontologies describe the terminology and the

relationships between terms of a specific domain using an

ontology language such as OWL or RDFS [6][7]. Each

ontology language has its own unique expressive power,

but all can model, at the minimum, hierarchies of concepts

and roles of concepts, such as properties, attributes and

relationships. When performing a search, the

characteristics of the desired service, such as inputs and

outputs, are specified by terms that represent ontology

concepts. Matchmaking algorithms based on logical

inference can then seek matches for the request

parameters, taking into account the parameters of the

available services. For each match found, a value that

characterizes the matching degree (similarity) is

computed. Finally, the identified services are returned to

the requester in descending order of matching degree.

Search algorithms for semantic Web services present

good results when the user is able to adequately describe

the desired service. However, this is not always the case,

and a request for a service cannot correspond fully to the

intentions of the requester. For example, there may be a

published service that partially matches the request and

accomplishes the intentions of the requester, or the

opposite scenario could also conceivably occur [8]. As the

number of available services on the Web increase, this

problem worsens. Currently, as pointed out in [9], one of

the most challenging issues in Web service provision is

not the matchmaking process but the selection of good

services for a target user.

JCS&T Vol. 14 No. 2 October 2014

80

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76479424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In addition, as the number of available Web services

grows, there may be a lot of interesting available services

that users are not aware of, and that they therefore will not

take the initiative to request. Additionally, in the context

of mobile and ubiquitous computing, it is unreasonable to

assume that a user is constantly searching for interesting

services available at the user locale. In this context, it is

desirable to have a recommender system capable of

identifying and of proactively recommending potentially

interesting services to the user in the right situation.

A web service recommender can also be very

valuable to proactively deal with failures and to recover to

service workflows that have partially failed and in

dynamic composition scenarios, provided the services

and the recommender can deal with semantic markup [10]

[11].

The recommendation problem can be reduced to an

issue of estimating ratings for items that have not been

used before by a user; items with higher estimated ratings

are as a consequence recommended to the user.

Recommenders are usually implemented using

filtering algorithms classified into three main categories,

depending on how the recommendations are performed:

(1) Content-Based algorithms (CB) filter and recommend

items that are similar to others the user has accessed in the

past; (2) Collaborative Filtering (CF) algorithms filter and

recommend items based on the preferences of other users

with similar tastes and preferences; knowledge-based

(KB) recommenders use knowledge about users and items

to generate a recommendation. It is also frequent to find

hybrid systems that combine methods taken from two or

more of the previous categories of recommenders [12]
[13].

Content-based recommenders have their roots in the

information retrieval field and were successfully

implemented in domains where the items to be

recommended are described through textual information.

These systems are, however, limited by the features that

are explicitly associated with the items. They are also

limited to recommended items that are similar to those

already rated by the user (over specialization). A

particularly difficult task for this type of algorithm is to

deal with new users, because new users have to rate a

sufficient number of items before the system can

understand their preferences and start making useful

recommendations.

CF algorithms do not have some of the

abovementioned shortcomings of content based

algorithms. Since they employ the user's ratings, they can

deal with any kind of content and recommend any type of

item, even items that are dissimilar to those accessed in

the past.

However CF systems have their own challenges,

including coping with sparse data and scaling with

increasing numbers of users and items. Several structural

difficulties related to sparse data may be encountered,

including the cold start problem, the reduced coverage

problem and the neighbor transitivity problem. The cold

start problem occurs when new users or items are inserted

into the system. New items cannot be recommended until

they are rated by some users, and, in turn, new users are

unlikely to receive good recommendations because they

lack a rating history. The reduced coverage problem

occurs when the number of ratings is very small compared

with the number of items in the rating database. In this

situation, the system may be unable to generate

recommendations for such users. The neighbor transitivity

problem occurs when users with similar tastes do not have

rated items in common and thus cannot be identified as

similar.

Knowledge-based recommender systems avoid some

of the drawbacks of content and CF system since their

recommendations do not depend on a base of user ratings.

Their main drawback is the well known knowledge

acquisition bottleneck.

Algorithms for CF, the primary focus of this paper,

can be further classified into two main categories:

memory-based and model-based. Memory-based

algorithms construct a neighborhood of users who have

similar ratings to the target user using directly the

available data. In this circumstance, the ratings of

neighbors are used to predict how a target user will rate an

item he has not yet accessed. Model-based techniques

employ available rating data to learn a model to make

predictions, usually using data mining or a machine

learning algorithm. Then the model is used to make

predictions for target items, instead of using raw rating

data, as is done with memory-based algorithms.

When comparing memory-based and model-based CF

algorithms it is usually accepted that memory-based

algorithms are easy to implement and have higher

prediction accuracy, particularly for dense datasets.

Model-based algorithms are, in turn, more scalable and

less vulnerable to profile injection attacks [12].

In the recent past, recommender systems have been

built for recommending different types of items in diverse

domains, including CD, Web pages, books, news, movies

and courses. However, research on Web service

recommendation is in its preliminary stages and usually

focuses on predicting service QoS (Quality of Service)

parameters [14], which is a very limited way of capturing

user interest [15].

In this paper, we present algorithms for constructing

Web service recommender systems aimed at reducing the

problems arising from sparse data. The proposed approach

combines CF algorithms with logical inference to

determine the semantic similarity between services, and

between users. The rationale behind this approach is that if

two users have not rated a common set of services but

have rated similar services, these ratings can still be an

indication of user similarity and therefore contribute to

reduce the effects of data sparseness.

The remainder of the paper is organized as follows:

section 2 presents memory and model-based CF

algorithms for Semantic Web services recommendation;

section 3 discusses the experimental set up used to

evaluate the algorithms and the results that were obtained;

section 4 presents related work; and, finally, section 5

concludes the paper by pointing out our main results and

directions for future work.

2. CF ALGORITHMS FOR SEMANTIC WEB
SERVICE RECOMMENDATION

In this section, variations of two recommender algorithms

that exploit semantic similarities among web services are

presented. Their performance will be compared in Section

3.

Instances of user feedback
1
 are stored in a user-item

matrix, represented as a set FSUT ××⊆ , where U

1
 In this paper we use the terms ‘feedback’, ‘score’ and ‘rating’ as

synonyms.

JCS&T Vol. 14 No. 2 October 2014

81

= {u1, u2, … , um} is the set off all users, S = {s1, s2, … ,

sn} is the set of all rated services, F = {f1, f2, … , fm} is the

set of instances of feedback related to services in S and

collected from the users in U. Each fu ∈F is an n-

dimensional vector over the space of all instances of user

feedback, i.e, fu=(fu,s1, fu,s2, … , fu,sn) where fu,sj ∈ [0..1]

is the feedback given by user u to service sj. If a service

was not rated its feedback is represented as φ (null).

Although the collaborative filtering algorithms

described in this section are independent of the notation

used to describe service semantics, when they allow for

the measurement of the level of semantic similarity among

two services, a prototype for services described using

OWL-S was implemented for the validation of the

algorithms. OWL-S is an upper ontology that specifies

that a service can be described by at most one service

model, and a grounding must be associated with exactly

one service [16]. OWL-S is a W3C recommendation based

on the W3C standard OWL, an ontology language for the

Semantic Web with formally defined meaning [6].

Computing Service Similarity

In our prototype implementation, the degree of similarity

between OWL-S services is computed using a hybrid

semantic service matching algorithm described in [17] that

takes advantage of both logic-based reasoning and IR

techniques.

If R represents a request for a service and S a service

registered in the service database, the semantic matching

algorithm computes the following matching degrees:

• Exact match (S exactly matches R) - The I/O

(Input/Output) signature of S perfectly matches

request R with respect to the logic-based equivalence

of their formal semantics.

• Plug-in match (S plugs into R) - All input parameter

concepts of S match more specific ones in R. In

addition, S is expected to return more specific output

data.

• Subsumed match (R subsumes S) - This matching

degree is weaker than plug-in matching. The output of

S is more specific than requested by R as before, but

the constraint of immediate output concept

subsumption is relaxed to arbitrary output concept

subsumption.

• Subsumed-by match (R is subsumed by S) - The

output of S is slightly more general than requested

(direct parent output concepts).

• Nearest-neighbor match (S is the nearest neighbor of

R) - It is checked if the degree of text similarity,

SynSim(S,R), between the input and output concepts of

S and R is greater than or equal to a defined syntactic

similarity threshold α. This degree is computed as the

averaged syntactic similarity of the serialized input

and output concepts of S and R, according to a given

similarity metric. A set of concepts is serialized by

means of their expansion through the ontology

implemented and by the conjunctive concatenation of

the results into one unstructured text document,

including only logical operators and primitive

components of the basic vocabulary that is present in

the ontological terminology. In the case of vector-

space-based text similarity measurement, these

documents are represented as weighted keyword

vectors based on a term-weighting scheme.

• Fail (S does not match with R) - None of the above

matching degrees was obtained.

Memory-based Feedback Prediction with K-NN

This recommendation algorithm is based on the

construction of neighborhoods of similar users. The

neighbors’ ratings can then be used to make predictions

for unrated items. A neighborhood is constructed

comparing the similarity of each pair of existing users

using the Pearson Correlation Coefficient (PCC).

Two variants of the algorithm were implemented. In

the first, named PCC, the similarity between two users u

and v, sim(u,v), is computed as shown in Eq. (1), where Suv

= {s | fu,s ≠ φ and fv,s ≠ φ } is the set of services that both

users, u and v, have rated, fu,s ∈ [0..1] is the feedback

given by user u to service s and uf and vf are the

averages of the instances of feedback given by users u and

v, respectively.

sim(u,v)=

∑∑

∑

∈∈

∈

−−

−−

vuv

uv

Sus
vsv

Ss
usu

vsvu
Ss

su

ffff

ffff

2
,

2
,

,,

)()(

))(((1)

In Eq. (1), if users u and v have not rated items in

common it is not possible to compute their similarity.

Also, if the number of common items that were rated is

very low, the computed similarity may be unreliable.

In the second variant of the algorithm, named PCC-

SS (PCC with similar services), it is not required that users

u and v rate the same services to compute their similarity

as it takes into consideration the ratings of similar

services. The similarity between services is computed

using the semantic matching algorithm presented in the

previous subsection.

PCC-SS computes the similarity between two users, u

and v, using Eq. (2). In that equation, t is the service rated

by v that is most similar to s (rated by u), respecting a

minimum threshold of similarity δ. When both users have

rated the same service, s and t represent the same service

(the similarity between s and t is 1).

sim(u,v)=

∑∑

∑

∈∈

∈∈

−−

−−

vu

vu

St
vtv

Ss
usu

vtvu
StSs

su

ffff

ffff

2
,

2
,

,,

)()(

))((
, (2)

The similarity between two users, sim(u,v), computed

using Eq. (1) or Eq. (2), ranges from −1 to 1. A value of 1

implies a line that describes the relationship between

feedback fu,s and fv,s given from users u and v, respectively,

for service s (or a similar service), with all data points

(instances of feedback) lying on the line where fv,s

increases as fu,s increases. A value of −1 implies that all

data points lie on the line where fv,s decreases as fu,s

increases. A value of 0 implies that there is no linear

correlation between the various instances of feedback. In

our implementation only sim(u,v) values higher than 0

were considered relevant.

The feedback a user u would give to a service s that

he has not yet rated can be estimated using the ratings that

neighbor users assigned to that service. Having a

neighborhood V, the feedback user u would give to service

s, fu,s, can be predicted using two variants of the weighted

average of all neighbors’ ratings, as shown in Eq. (3) and

Eq. (4).

JCS&T Vol. 14 No. 2 October 2014

82

∑

−∑
+=

∈

∈

Vv

Vv

v

vusim

ffvusim
ff

vs

usu

),(

))(,(,

, (3)

For the result fu,s in Eq. (3), hereafter named WAAR

(Weighted Average of All Ratings), the neighborhood V is

formed by the k most similar users to u that rated service

s.

∑

−∑
+=

∈

∈

Vssv

Vssv

v

vusim

ffvusim
ff

vt

usu

),(

))(,(,

,
 (4)

For the result fu,s in Eq. (4), hereafter named WAAR-

SS (Weighted Average of All Ratings with Service

Similarity), the neighborhood Vss is formed by the k most

similar users to u that rated service s or a service t that is

semantically similar to s. If V or Vss is empty, respectively

in Eq. (3) or (4), fu,s is made equal to uf .

Model-based Feedback Prediction with K-means

Memory-based filtering algorithms tend to be more

accurate than model-based algorithms, but the latter are

more scalable and less vulnerable to profile injection

attacks [18]. Considering that the number of available

services in the Web is continuously increasing, and that in

the context of Web-based open collaborative

recommenders the likelihood of attacks is not negligible,

model-based recommender algorithms can be good

alternatives to memory-based algorithms, provided that

their accuracy is acceptable

We describe in this section a model-based CF

algorithm for semantic Web services that uses the k-means

clustering method and the concept of semantic service

similarity.

The k-means method is used to partition a set of

points or observations into clusters. If we consider that fu

∈F defines the profile of user u, where fu is the vector of

instances of feedback given by user u for the available

services, the k-means algorithms can be used to cluster

users with similar profiles. Once the clusters are defined,

their centroids can be interpreted as aggregated profiles of

the users in the clusters as done in [19].

The clustering algorithm works as follows. Initially k

points (f vectors) are randomly chosen as the initial cluster

centroids, after which an assignment step and an update

step are repeated until the algorithm converges. In the

assignment step, each point is assigned to the cluster with

the closest centroid. In the update step, cluster centroids

are updated to the mean of the points assigned to the

cluster. The algorithm converges when the centroids no

longer change.

In the assignment step, the distance between a point

and a cluster centroid is computed using the PCC or the

PCC-SS (Eq. 1 and Eq. 2, respectively). Following the

assignment step, the update step computes a new centroid

fc=(fc,s1, fc,s2, … , fc,sn) for each cluster c. The new centroid

vector is the mean of the user profiles assigned to cluster

c. That is, fc,si, for i = 1 to n, is computed by Eq. (5).

∑
∈

=
Cu

siusic f
c

f ,,
1 (5)

When applying Eq. (5), if some fu,si is equal to φ

(meaning that user u has not rated service si,), the average

score of the items rated by u is instead used.

When the algorithm converges, each cluster centroid

is seen as an aggregation of the user profiles in their

respective cluster. User instances of feedback for unrated

services are then estimated using Eq. (3) or Eq. (4), taking

into consideration the neighborhood formed by the k

clusters (represented by their centroids) most similar to the

target user profile (represented by his feedback vector).

3. EXPERIMENTAL EVALUATION

The purpose of this section is to compare the performance

of the algorithms presented on section 2.

The lack of public rating datasets is a major difficulty

when validating recommender systems for Web services.

To circumvent this difficulty, researchers usually adapt

popular datasets constructed to recommend other types of

items. For example, [20] use the Movielens
2
 dataset and

consider that a movie in the dataset represents a Web

service. The evaluation of the algorithms we propose, adds

an additional level of difficulty because we need a dataset

of user ratings for semantic Web services.

In this context, an alternative is to synthesize a dataset

that matches the properties of the target domain and task

[21]. Following this approach we created a synthetic user-

item matrix that can be used to provide some insights into

the behavior of the implemented algorithms and serve as a

proof of concept.

We used services from the OWL-S Service Retrieval

Test Collection - OWLS-TC
3
, version 2.2, a collection of

1004 Web services from several domains, specified

according to the OWL-S ontology.

In the experiments, two groups with 50 users each

were defined. Each user rated 56 services from the

following four categories: cars, cameras, hotels and surf.

Service ratings were set according to a base feedback

defined for each pair (user_group, service_category). Each

feedback was added to a value that varies from -1 to 1

according to the normal distribution.

The main objective of the experiments was to analyze

the behavior of the proposed algorithms considering dense

and sparse data scenarios. These scenarios were simulated

by progressively hiding a number of service ratings from

the algorithms: the 56 service ratings for each user were

progressively reduced in steps of 10 until only 6 ratings

were available for each user. After each removal step, the

values of the removed scores were estimated using the

algorithms previously discussed, with and without taking

into consideration similar services, following which the

average error of the predictions was computed. The

experiments for each removal scenario were repeated 10

times and the results averaged. The time needed to

compute the similarities between services was not taken

into consideration because the computations were

performed before running the experiments.

The prediction performance of the algorithms was

measured using the Mean Absolute Error (MAE) and the

Normalized Mean Absolute Error (NMAE), defined by

Eq. (6) and Eq. (7), respectively.

2
 http://www.grouplens.org/node/73

3
 http://projects.semwebcentral.org/projects/owls-tc

JCS&T Vol. 14 No. 2 October 2014

83

N

fp
MAE

su
susu∑ −

=
,

,,
 (6)

N

f

MAE
NMAE

su
su∑

=

,
,

 (7)

In Eq. (6), pu,s denotes the predicted feedback that

user u will give to service s, fu,s denotes the actual (hidden)

feedback that user u gave to service s, and N is the number

of predicted instances of feedback. Lower values for MAE

and NMAE indicate better prediction quality. A MAE or

NMAE equal to zero corresponds to an ideal scenario,

where all predictions are equal to the actual instances of

feedback.

Evaluating the K-NN Memory-based Feedback

Prediction Algorithm

In the experiments described in this section two services

are considered similar if their matching degree is Exact,

Plug-in, Subsumes, Subsumed-by or Nearest-neighbor

with a threshold α of 0.8.

Two simple estimation schemes, the item-mean and

the user-mean algorithms, were also implemented to be

used as baselines. The item-mean (IMEAN) algorithm

estimates the score for an item (a service) as the mean of

the scores the target item received from all users that rated

it. The user-mean (UMEAN) algorithm estimates the score

for an item as the mean of the scores the target user gave

to the items he rated.

When applying Eq. (3) or Eq. (4) (WAAR and

WAAR-SS), the neighborhood used to estimate a score is

defined by users with a degree of similarity to the target

user that is greater than or equal to 0.8, as computed by

Eq. (1) or Eq. (2) (PCC and PCC-SS). When setting this

similarity threshold, we have to consider that if it is too

low users with low similarity can be considered neighbors,

negatively affecting the accuracy of the algorithm. On the

other hand, if the threshold is very high it is possible that

no neighbors will be found, making it impossible to

predict feedback from the target user-service pair.

As can be observed in Figure 1, the prediction error

when using the PCC and WAAR (without using service

similarity) is significantly lower than when the IMEAN

and UMEAN algorithms are used. In other words,

considering a neighborhood of similar users to predict user

feedback is better than using raw user or item averages.

Figure 2 shows that considering service similarity

increases the prediction performance to an even greater

extent. This happens when service similarity is used only

to compute the PCC-SS (Eq. (2)) for the purpose of

finding a neighborhood, or to estimate scores with

WAAR-SS (Eq. (4)). Using service similarity both to

compute the PCC-SS and the WAAR-SS produces even

more accurate predictions. These results can be explained

as follows. When the PCC is computed without taking into

consideration service similarity, several similar users are

not identified because the PCC equation correlates only

users that rated a common set of services. When service

similarity is taken into account, users who rated similar

services are also taken into consideration, increasing the

neighborhood and, as a consequence, the accuracy of the

algorithm. In addition, using service similarity to predict a

rating (WAAR-SS) contributes to increase the accuracy

because it allows more scores to be considered when

calculating the predictions. This happens because instead

of only considering service scores that the target user and

their similar users rated, scores for similar services are

also included.

Figure 2 also shows that the effects of considering

service similarity are not significant when a small amount

of scores is removed, but are more dramatic when the

amount of removed scores increases, that is, when the

user-item matrix becomes sparser. As shown in figure 2,

when 50 out of 56 scores are removed, the NMAE is equal

to 0.23 if service similarity is considered in both the PCC

and WAAR, while when it is not considered in any of the

methods it rises to 0.41, an increase of 78%.

Evaluating The K-means Model-based Feedback
Prediction Algorithm

Using the same scenarios from the previous section,

experiments were conducted to evaluate the performance

of the prediction approach based on k-means. One of the

important parameters for this algorithm is the number of

clusters, k. If k is too small user profiles with little

similarity are clustered together, reducing the accuracy of

the algorithm; on the other hand, if k is too high the

scalability of the algorithm (one of its main expected

advantages over the k-NN based algorithm) can be

negatively affected. In the experiments presented in this

section k was set to 8, a value chosen after some

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

10 20 30 40 50

Number of ratings removed

N
M

A
E

IMEAN UMEAN K-NN without service similarity

Figure 1. Prediction accuracy of IMEAN, UMEAN and k-NN

without service similarity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

10 20 30 40 50

Number of ratings removed

N
M

A
E

Without service similarity PCC w ith service similarity

WAAR w ith service similarity PCC and WAAR w ith service similarity

Figure 2. Impact of service similarity on the accuracy of the

KNN-based prediction algorithm

JCS&T Vol. 14 No. 2 October 2014

84

preliminary tests demonstrated that it is a good choice for

the data set used.

The neighborhood used to predict a feedback to a

target user is formed by the cluster centroids that have a

degree of similarity to that user (computed using the PCC

and PCC-SS) greater than or equal to 0.8.

As can be observed in figure 3, the k-means

prediction algorithm without service similarity has a

prediction error significantly lower than that which is

obtained when applying the IMEAN and UMEAN

algorithms, except when the number of available scores is

very low (when 50 out of 56 are removed). Under such

circumstances, the small number of available user profiles

prevents the construction of representative user groups,

severely affecting the prediction accuracy of the

algorithm. Under such sparse data conditions, the use of

service similarity accounts for an appreciable increase in

accuracy. As already verified for the k-NN algorithm, the

best results are observed when service similarity

information is used for computing both the PCC and the

WAAR. These results can be explained in the same

manner as done for the k-NN algorithm: when running the

algorithm without service similarity information, several

similar users are not identified as such and are not

clustered together, because only users that rated the same

set of services can be considered similar; when service

similarity is taken into account, it is also possible to

identify similar users among those users that rated similar

services. In addition, when computing the WAAR, the use

of service similarity information contributes to increase

the accuracy because it allows for the consideration of

more scores to calculate a prediction.

Figure 3 shows that when 50 out of 56 scores are

removed, characterizing a situation of scarcity of

evaluations, using service similarity for computing the

PCC and WAAR accounts for a NMAE of 0.32, while

when this information is not used the NMAE rises to 0.89,

an increase of 178%.

Comparing the K-NN and the K-means Prediction

Algorithms

The literature says that memory-based prediction

algorithms, like those based on the k-NN, often have

greater accuracy than model-based algorithms, such as

those based on the k-means, but model-based algorithms

are more scalable because they require less memory and

are faster. Figure 4 confirms the first clause of the

previous sentence. However, it is worth noting that the k-

means algorithm with service similarity is more accurate

than the k-NN one without service similarity.

The lower accuracy of the k-means algorithm with

respect to k-NN can be explained by the fact that the k-

means method uses cluster centroids and not the profiles

of similar users to predict the scores. Profiles are grouped

into clusters based on the similarity of each profile to a

cluster centroid; thus a poorly chosen centroid directly

influences the quality of the cluster. In the implementation

described, the initial eight centroids were chosen randomly

among the available profiles. The particularly bad result

for the k-means algorithm when many scores are removed

and similar services are not considered can be explained

by the difficulty in finding similar users to group together

when data is sparse.

Figure 5 shows the time required by the algorithms to

predict the removed scores when using a notebook with an

Intel® Core™ Duo 1.66 GHz processor and 2 GB of

RAM. Regarding the k-means algorithm, the required time

for score predictions with already created clusters is

shown. Under these conditions, the run time is lower for

the k-means algorithm, particularly when the user-item

matrix is dense. This result was expected because a high

number of profiles are considered in the computation of

the PCC and the WAAR when using the k-NN method,

while only a small number of cluster centroids are used

when applying the k-means method.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 20 30 40 50

Number of ratings removed

N
M

A
E

IMEAN UMEAN

Without service similarity PCC w ith service similarity

WAAR w ith service similarity PCC and WAAR w ith service similarity

Figure 3. Impact of service similarity on the prediction

performance of the k-means algorithm

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 20 30 40 50

Number of ratings removed

N
M

A
E

UMEAN k-nn w ithout service similarity

k-nn w ith service similarity k-means w ithout service similarity
k-means w ith service similarity

Figure 4. Comparing the prediction performance of k-NN

and k-mean salgorithms

0

5

10

15

20

25

30

35

40

10 20 30 40 50

Number of ratings removed

T
im

e
 (

m
s
)

K-NN w ithout service similarity K-means w ithout service similarity

K-NN w ith service similarity K-means w ith service similarity

Figure 5. Run-time of the k-NN and k-means algorithms for

score prediction

JCS&T Vol. 14 No. 2 October 2014

85

The run-time for the k-NN algorithm tends to

increase sharply as the amount of users and services

increases. Under such conditions, the lower accuracy of

the k-means algorithm can be acceptable provided that its

run time is satisfactory. Figures 5 and 6 can be used to

demonstrate this point. Figure 5 shows that the run time

needed to predict the scores is lower for the k-means

algorithm when the users’ profiles are already grouped.

However, as can be seen in Figure 6, the time needed by

the k-means algorithm to cluster the users is very high

when compared to the time needed by the k-NN algorithm

to predict scores. That means that the k-means prediction

algorithm would be suitable when the user-item matrix is

not updated very often, in which case the clustering

procedure can be run off-line or in background.

Besides accuracy and run-time, other criteria could

also be considered when choosing between both

algorithms. In particular, in open environments it is

usually not difficult to perform profile injection attacks

that insert fake users on the user-item matrix in order to

manipulate the recommendations. When that is the case,

model-based algorithms, such as the k-means one, may be

the best choice, since it has been shown that they are more

resistant to this type of attack [18].

4. RELATED WORK

Recent research has focused on CF for Web service

recommendation. For example, [14] developed a

prediction algorithm of QoS values for Web services that

combines user-based and item-based CF methods. The

predicted QoS is used to recommend services to users. In

[22] it is presented a hybrid CF algorithm that clusters

users into regions based on similarities of their physical

locations and historical QoS. The clusters are used to

identify region-sensitive services, and a nearest neighbor

approach predicts the QoS of a candidate Web service for

an active user. The prediction occurs by exploiting

historical QoS information gathered from users of highly

correlated regions. The service with the best predicted

QoS is then recommended to the active user. In [23] it is

also addressed the problem of Qos prediction using a

neighborhood-based collaborative filtering approach for

QoS based service selection.

While the above cited works use QoS parameters as

indicators of user interest, [15] points out that Web service

QoS parameters, such as availability and response time,

are too limited to capture the experience provided to end

users. In our work, we assume that user interest in a

service is represented by explicit or implicit rates provided

by the user.

In [20] it is described a framework for Web service

selection inspired by memory-based CF methods that

considers the dependencies among Web services in

composition processes. The invocation rate of a Web

service carried out by a user in different Web service

compositional processes is used as an indicator of the user

preference for that service. The experimental evaluation of

the framework was performed using the Movielens data

set to simulate Web service compositions. The main focus

of the authors is service selection during a composition

process, when some or all of the services to be composed

are already known.

Using general Web services naming tendencies

coupled with enhanced syntactical methods, the work in

[24] aggregates services by their messages and proactively

suggests candidate services to users.

Service similarity to predict user feedback is

examined in [25], although in a different context from

ours. The authors propose a method for service discovery

that combines multiple matching criteria with user

feedback, based on the assumption that users rate how

appropriate retrieved services are according to the results

of their requests. Considering a given pair with one

request R and one service S, when no ratings exist in the

database, the method takes into account not only the

ratings assigned to the current service requests R, but also

ratings assigned to requests similar to R. Differently from

our work, and from CF methods in general, all available

user ratings are considered equally important,

independently of user similarity. The predicted feedback

value (score) is computed as the average of all user ratings

for the corresponding service.

In contrast to our work, none of the above surveyed

articles use semantic similarity of services as a strategy to

increase accuracy under sparse data conditions.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented algorithms for the construction

of semantic Web service recommenders using CF. The

focus of our work was to use semantic markup for Web

services to increase the accuracy of the recommendations

based on CF algorithms when the user-item matrix is

sparse. We implemented and evaluated two algorithms for

recommendation: a memory-based algorithm using the k-

NN method, and a model-based algorithm using the k-

means method. In both algorithms, the similarity between

users is computed by the Pearson Correlation Coefficient

(PCC).

Usually, when the PCC method is employed in user-

user CF algorithms, the similarity between two users is

computed utilizing the ratings given by the users to items

(services) rated in common. If the users have not rated

items in common it is not possible to compute their

similarity. In addition, when the number of common rated

items is low, the reliability of the computed similarity

degree may also be low.

In our algorithms, instead of only using the ratings of

common services, the ratings of services that are

semantically similar to those services rated by the users

are also taken into consideration. Likewise, when

predicting the rating a target user will give to a target item

he has not yet accessed, the algorithms consider the ratings

0

200

400

600

800

1000

1200

1400

10 20 30 40 50

Number of ratings removed

T
im

e
 (

m
s
)

k-means w ithout service similarity k-means w ith service similarity

Figure 6. Computation time needed to construct the clusters

in the k-means algorithm

JCS&T Vol. 14 No. 2 October 2014

86

given to the target item by neighbor users (or groups, in

the case of the k-means algorithm), as is customary, while

also considering the ratings given by neighbors to items

that are semantically similar to the target item.

The experimental evaluation described shows that

considering similar services when computing user

similarity and predicting user ratings has a significant

impact on the accuracy of the implemented algorithms,

particularly when the user-item matrix is sparse. As

expected, the memory-based algorithm using k-NN was

more accurate than the model-based algorithm based on k-

means, but the k-means algorithm is more scalable when

the dynamics of the application domain permits the

clustering process to be run in background. It is also

interesting to point out that when the k-means algorithm

considers similar services it has higher prediction accuracy

than the k-NN based algorithm when the latter does not

takes service similarity into account.

As a final remark it is worth noting that recommender

systems usually present their recommendations in

decreasing order of predicted user interest, and that users

frequently consider only the top n rated items. In [26] it is

observed that CF algorithms based on the k-NN method

make some obscure or inaccurate recommendations at the

top positions when implemented using the PCC to find

neighborhoods. Usually that behavior is not evident

because the algorithms are commonly rated using the

MAE (as was done in our work). This metric favors

algorithms that have a low average error rate over a set of

predictions, but that do not necessarily place the n best

recommendations at the top of the list. This performance

limitation has two primary sources: (1) target users with

few neighbors who have rated an item and (2) target items

rated by neighbors with low correlation to the target user.

The PCC addresses the second problem giving more

influence to neighbors with higher similarity. But this

strategy does not account for cases where all the neighbors

have low correlation with the target user. Although we

have not analyzed the quality of the top n

recommendations, we can notice that the two mentioned

sources of poor performance are related to data sparsity.

And as such, our algorithms contribute to alleviate both

sources of low performance: (1) by enlarging the

neighborhood through considering not only users who

have rated the same service, but also users who have rated

similar services; and (2) by setting a threshold to the

minimum similarity between two users that must be

observed to permit the placement of users in the same

neighborhood.

References

[1] Papazoglou, M. P., and Georgakopoulos, D. (2003). Service-Oriented

Computing. Communications of the ACM, 46(10), 25–28.

[2] Pan, Y., Tang, Y., & Li, S. (2011). Web Services Discovery in a Pay-

As-You-Go Fashion. Journal of Universal Computer Science, 17(14),

2029–2047.

[3] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001).

Web Services Description Language (WSDL) 1.1, 2001. At http://www.

w3. org/TR/2001/NOTE-wsdl-20010315. Retrieved from

http://www.w3.org/TR/ 2001/NOTE-wsdl-20010315

[4] McIlraith, S. A., Son, T. C., and Zeng, H. (2005). Semantic web

services. Intelligent Systems, IEEE, 16(2), 46–53.

[5] Pedrinaci, C., and Domingue, J. (2010). Toward the Next Wave of

Services: Linked Services for the Web of Data. Journal of Universal

Computer Science, 16(13), 1694–1719.

[6] W3C OWL Working Group. (2012). OWL 2 Web Ontology Language

Document Overview (Second Edition). http://www.w3.org/TR/owl2-

overview/

[7] Brickley, D., and Guha, R. V. (2006). RDF Vocabulary Description

Language 1.0: RDF Schema, 2004. Retrieved from http://www. w3.

org/TR/rdf-schema

[8] Tsetsos, V., Anagnostopoulos, C., and Hadjiefthymiades, S. (2006). On

the Evaluation of Semantic Web Service Matchmaking Systems. Web

Services, 2006. ECOWS’06. 4th European Conference on, 255–264.

[9] Sreenath, R. M., and Singh, M. P. (2004). Agent-based service

selection. Web Semantics: Science, Services and Agents on the World

Wide Web, 1(3), 261–279.

[10] Stein, S., Payne, T. R., & Jennings, N. R. (2009). Flexible

provisioning of web service workflows. ACM Transactions on Internet

Technology (TOIT), 9(1), 2

[11] Tizzo, N. P., Adán-Coello, J. M., & Cardozo, E. (2011). Automatic

composition of semantic web services using A-Teams with genetic

agents. In Evolutionary Computation (CEC), 2011 IEEE Congress on

(pp. 370–377).

 [12] Su, X., and Khoshgoftaar, T. M. (2009). A Survey of Collaborative

Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19.

[13] Burke, R. (2000). Knowledge-based recommender systems.

Encyclopedia of Library and Information Systems, 69, 175–186.

[14] Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2011). QoS-aware Web

service recommendation by collaborative filtering. Services Computing,

IEEE Transactions On, 4(2), 140–152.

[15] Van Moorsel, A. (2001). Metrics for the Internet Age: Quality of

Experience and Quality of Business. Fifth International Workshop on

Performability Modeling of Computer and Communication Systems,

Arbeitsberichte des Instituts f\ür Informatik, Universit\ät Erlangen-

N\ürnberg, Germany (Vol. 34, pp. 26–31).

[16] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., Narayanan, S., et al. (2004). OWL-S: Semantic Markup

for Web Services. Retrieved from

http://www.w3.org/Submission/OWL-S

[17] Klusch, M., Fries, B., and Sycara, K. (2009). OWLS-MX: A Hybrid

Semantic Web Service Matchmaker for OWL-S Services. Web

Semantics: Science, Services and Agents on the World Wide Web, 7(2),

121–133. doi:10.1016/j.websem.2008.10.001

[18] Mobasher, B., Burke, R., and Sandvig, J. J. (2006). Model-Based

Collaborative Filtering as a Defense Against Profile Injection Attacks.

Proceedings of the National Conference on Artificial Intelligence (Vol.

21, p. 1388).

[19] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2002). Discovery

and Evaluation of Aggregate Usage Profiles for Web Personalization.

Data Mining and Knowledge Discovery, 6(1), 61–82.

[20] Rong, W., Liu, K., and Liang, L. (2009). Personalized Web Service

Ranking via User Group Combining Association Rule. Proceedings of

the 2009 IEEE International Conference on Web Services-Volume 00

(pp. 445–452).

[21] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004).

Evaluating collaborative filtering recommender systems. ACM

Transactions on Information Systems (TOIS), 22(1), 5–53.

[22] Chen, X., Liu, X., Huang, Z., and Sun, H. (2010). RegionKNN: A

Scalable Hybrid Collaborative Filtering Algorithm for Personalized

Web Service Recommendation. 2010 IEEE International Conference on

Web Services (pp. 9–16). Presented at the 2010 IEEE International

Conference on Web Services (ICWS), Miami, FL, USA.

doi:10.1109/ICWS.2010.27

[23] Wu, J., Chen, L., Feng, Y., Zheng, Z., Zhou, M. C., & Wu, Z. (2013).

Predicting quality of service for selection by neighborhood-based

collaborative filtering. Systems, Man, and Cybernetics: Systems, IEEE

Transactions On, 43(2), 428–439.

[24] Blake, M. B., & Nowlan, M. F. (2007). A web service recommender

system using enhanced syntactical matching. In Web Services, 2007.

ICWS 2007. IEEE International Conference on (pp. 575–582).

[25] Averbakh, A., Krause, D., & Skoutas, D. (2009). Exploiting User

Feedback to Improve Semantic Web Service Discovery. Presented at the

8th International Semantic Web Conference (ISWC 2009).

[26] McLaughlin, M. R., and Herlocker, J. L. (2004). A collaborative

filtering algorithm and evaluation metric that accurately model the user

experience. Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval (pp.

329–336).

JCS&T Vol. 14 No. 2 October 2014

87

	Text2: Received: March 2014. Accepted: May 2014.

