
VENUS meets SEMAT– How do they compare?

Kurt Geihs, Christoph Evers, and Stefan Niemczyk

EECS Department

University of Kassel

Wilhelmshoeher Allee 73

D-34121 Kassel, Germany

[geihs|evers|niemczyk]@uni-kassel.de

Abstract SEMAT (Software Engineering Methods And Theory) is an initiative

to define a generic foundation for software engineering as a rigorous discipline.

The so-called SEMAT kernel provides a thinking framework for software engi-

neers that is not constrained to certain methods and processes but aims to en-

compass all kinds of proven principles and best practices. Our own interdisci-

plinary VENUS development method is designed to achieve similar generality

and compatibility objectives, although the chosen application domain in

VENUS has a much narrower scope. In this paper we compare the VENUS de-

velopment method with SEMAT. The main contributions are positioning the

VENUS development concepts within the SEMAT conceptual framework, and

investigating whether SEMAT is an appropriate framework for dealing with in-

herently interdisciplinary development processes. In the end we present sugges-

tions for the improvement of both approaches.

Keywords: Software Engineering, SEMAT Kernel, Software Development

Method, Socially Aware Computing

1 Introduction

Ubiquitous Computing (UC) interweaves information and communications technolo-

gies with our daily living environment. It is a salient characteristic of UC applications

that such applications collect, store, process, and communicate personal information

about the user’s context – often transparently and imperceptibly for the user – in order

to realize an adaptive application behavior. This can lead to conflicts regarding the

social embedding of the technology. Some examples: The inherent lack of transparen-

cy in automated activities can lead to a reduced level of trust with the user; liability

issues in self-adaptive activities may be problematic from a legal perspective; usabil-

ity concerns in UC applications require new user interface designs that do not over-

strain the user. It has been one of the fundamental claims of project VENUS that self-

adaptive UC applications will only have real impact and find widespread acceptance

if these socio-technical concerns are taken seriously and appropriate interdisciplinary

design methodologies are available that support the development of socially aware

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76479242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

software systems. This requirement is also expressed in other recent publications,

such as [16, 14].

The VENUS project has developed a discipline-overarching method for the design

and evaluation of socially aware self-adaptive UC applications. One of the design

goals was to maintain compatibility with existing software and discipline-specific

design methods. In the past there have been several attempts to specifically represent

socio-technical aspects of business processes and organizational structures in software

development methodologies [2]. Moreover, frameworks were presented that particu-

larly focus on the systematic treatment of non-functional requirements in software

engineering processes (e.g. [4, 15, 19]). However, to the best of our knowledge, none

of those approaches takes into account the specific requirements of context-aware

self-adaptive UC applications that collect and process vast amounts of sensitive user

data.

SEMAT (Software Engineering Methods And Theory) is an initiative to define a

generic foundation for software engineering as a rigorous discipline [12]. The de-

clared objective for the so-called SEMAT kernel is to provide a thinking framework

for software engineers that is not constrained to certain methods and processes but

aims to encompass all kinds of proven principles and best practices. The SEMAT

initiative was founded in 2009 by Jacobson, Meyer, and Soley, all three international-

ly renowned software engineers. Very rapidly the initiative has received widespread

attention and support within the software engineering community. A strong indicator

for this trend is the large number of signed-up supporters and the various workshops

on SEMAT issues at major conferences.1 Over the years SEMAT has produced,

among many other documents, a comprehensive specification as a submission in re-

sponse to the OMG Request for Proposal on a “Foundation for the Agile Creation and

Enactment of Software Engineering Methods” [8].

“How do VENUS and SEMAT compare?” is an obvious and very relevant ques-

tion to ask here. In order to shed light on both new methodological endeavors, in this

paper we will discuss whether and how the methodological approach of VENUS with

its explicit focus on socially aware software development can be placed in the concep-

tual frame of SEMAT which aims at genericity and compatibility. We would like to

explore whether the intrinsically interdisciplinary approach of VENUS can be

mapped to the currently available SEMAT concepts, and whether the SEMAT

framework provides inspirations to improve the VENUS approach and its presenta-

tion to the software engineering community. Hence, the main contributions of this

paper are (1) positioning the VENUS development concepts within the SEMAT con-

ceptual framework in order to facilitate the comprehension of the VENUS approach,

to foster its take-up, and to derive improvement suggestions as feedback to the

VENUS researchers, and (2) investigating whether SEMAT is an appropriate frame-

work for dealing with inherently interdisciplinary development processes in order to

provide feedback to the SEMAT developers.

The remainder of this paper is structured as follows: Section 2 presents an over-

view of the SEMAT specifications. Section 3 briefly reviews the principal constitu-

1 See www.semat.org for details.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 136

http://www.semat.org/

ents of the VENUS development method, as far as they are needed for the following

discussions. In Section 4 we will position and compare VENUS in respect to SEMAT.

Section 5 summarizes our conclusions and formulates open questions for future re-

search.

2 SEMAT

In the following we present a short overview of the main concepts of SEMAT. It is

based on the three documents [8, 12, 13]. Text quotations taken from these documents

are written in italics. Here we focus on a brief summary of the key technical contents

of the SEMAT initiative. More details can be found in the cited literature.

One of the key motivations for the SEMAT activity is the observation that today

there is a large number of software engineering methods without a clear understand-

ing how they can be compared and combined and what the consequences of preferring

one over the other are. There is a lack of a widely accepted common ground for soft-

ware engineering practices, i.e. a conceptual basis that not only satisfies the interests

of theoreticians but also provides a guideline for improving the performance of real-

life software development projects.

SEMAT has two – largely independent – main objectives: (i) to come up with an

extensible and practical kernel of essential elements that are applicable to all software

development efforts, and (ii) to define a solid theoretical foundation. While work on

the more pragmatic first objective has made significant progress, work on the second

objective is in a much less mature state: No common theoretical foundation has been

agreed upon so far.

The SEMAT kernel is meant to be agnostic to any particular software engineering

method and practice. In particular, among other contributions it provides a common

ground for the discussion, improvement, comparison, and sharing of software engi-

neering methods and practices as well as a framework for teams to assemble and

continuously improve their way of working by the composition of separately defined,

and sourced, practices [12]. These aspects of the SEMAT kernel are of particular

interest from the viewpoint of the VENUS developments and will be further investi-

gated in Section 4.
The kernel is organized into three areas of concern, i.e. Customer, Solution, and

Endeavor. The customer concerns area contains everything to do with the actual use
and exploitation of the software system to be produced. The solution area of concern

contains everything to do with the specification and development of the software sys-

tem. The endeavor area of concerns contains everything to do with the team, and the

way they approach their work [8]. Fig. 1 illustrates the three areas of concern and sets

the context for the following two figures.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 137

Fig. 1. SEMAT areas of concern

Within these areas of concerns the kernel distinguishes things to work with, called

alphas, and things to do, called activity spaces [8]. An alpha is defined as an essential

element of the software engineering endeavor that is relevant to an assessment of the

progress and health of the endeavor. Alpha is an acronym for ‘Abstract-Level Pro-

gress Health Attribute’ [8]. The alphas represent things that a team will manage,

produce, and use in the process of developing, maintaining and supporting good

software [8]. Fig. 2 and Fig. 3 illustrate the two groups of “things”. Fig. 2 shows the

things to do for all software development projects. Fig. 3 shows the things to work

with during software development (i.e. alphas) and how they relate to each other. The

differently colored boxes represent the three areas of concern, i.e. Customer, Solution,

and Endeavor (from top to bottom), as shown in Fig. 1. Kernel elements have specific

states that represent their progress and health in the course of a development project.

It is important to understand that the kernel views software development not as a line-

ar process but as a network of collaborating elements [12]. This latter statement ap-

pears to be consistent with the VENUS methodology approach. We will come back to

this issue in Section 4.

As one of the main objectives of SEMAT is the practicality of its concepts, the

term “practice” and “method” play an important role in the framework [8]: A practice

provides a systematic and verifiable way of addressing a particular aspect of the work

at hand. Further, practices are presented as distinct, separate, modular units, which a

[development] team can choose to use or not to use. Practices are described using the

kernel elements. A method is defined as a composition of practices forming a […]

description of how an endeavor is performed. The authors of SEMAT emphasize that

there are many practices around and that a development team is free to choose and

compose the practices that best match its project [12]: The kernel allows you to add

practices […] to build the methods you need.

Customer

Solution

Endeavor

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 138

Fig. 2. SEMAT Things to do [12]

Fig. 3. SEMAT Things to work with (called Alphas) [12]

explore
possibilities

involve the
stakeholders

ensure stakeholder
satisfaction

use the
system

understand
the requirem.

shape
the system

implement
the system

test
the system

deploy
the system

operate
the system

prepare to
do the work

coordinate
activity

support
the team

track
progress

stop the
work

team

stakeholders

work

opportunity

requirements

way of
working

software
system

provide

fulfills

performs and
plans

fo
cu

se
s

sc
o

p
e

s
&

co

n
st

ra
in

ts

u
se

 a
n

d

co
n

su
m

e
p

ro
d

u
ce

s

su
p

p
o

rt

se
t

u
p

 t
o

 a
d

d
re

ss

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 139

3 VENUS

For a detailed presentation of the VENUS development method the reader is referred

to [7, 10]. Here we summarize only the key concepts, as far as they are needed to

understand the following discussion, i.e. in order to make this paper self-contained.

The VENUS development method is based on an iterative development model that

covers the well-known software engineering lifecycle, i.e. analysis, design, and evalu-

ation. More precisely, analysis is divided into demand analysis and requirements

management, while design comprises conceptual design as well as software design

and implementation. In the final evaluation phase we test and evaluate the produced

software by means of user studies and simulation experiments. In addition, interdisci-

plinary evaluation of intermediary results takes place in all phases of the development

process. This can trigger additional iterations in the development phases.

Fig. 4 illustrates the development phases and the iterative character of the method-

ology. It emphasizes that interdisciplinary development in project VENUS has fo-

cused on social awareness in respect to legal compatibility, usability, and trust.

Fig. 4. Overview of the VENUS development approach [9]

Analysis of Needs: The first activity in the development of a UC application is the

profound analysis of the problem by developing specific application scenarios. These

provide a common understanding about the required application functionality and

usage context. Application objectives are derived in workshops that involve experts

and users and narrowed down to application scenarios and usage requirements. Fur-

thermore, this activity may also involve the derivation of requirements related to ap-

propriate business models and legal constraints.

The derived scenarios are validated by potential users of the applications. The ob-

jective of this validation activity is to discover as early as possible misunderstandings

Validation

Analysis

of Needs
Software Design/

Implementation

Conceptual

Design

Requirements

Management

Trust-

worthiness
Usability

Legal

compatibility

In-Situ

Evaluation

Functionality

& Quality

Iteration Control

Prototype/

Product

Design

Concept

Requirements

Document

Application

Scenario

Problem/

Ideas

R
e
co

m
m

e
n

d
a
ti

o
n

s

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 140

about the functionality, usage, and socio-technical embedding of the application under

development.

Requirements management: This activity needs to solve two important problems

raised by the interdisciplinary design of application software: First, we need to derive

coherent requirements from the different sets of heterogeneous disciplinary require-

ments. Second, abstract socio-technical normative requirements and constraints need

to be transformed into concrete technical requirements that are taken up in the design

of the software.

Coherent requirements across disciplines can only be achieved if there is a com-

mon understanding of discipline-specific languages and terminology. This is a pre-

requisite for discussing the harmonization of requirements and resolution of conflict-

ing requirements, e.g. by defining priorities or agreeing on compromises.

In order to derive concrete technical requirements from normative legal or ethical

concepts we apply a stepwise refinement process which is based on a method called

KORA [11, 20]. KORA was developed initially to translate legal requirements into

technical ones when designing technology. In project VENUS this method was

adapted and extended to include the transformation of abstract normative concepts

from the fields of usability and trust management. At the end of the requirements

management activities one has a set of coherent socio-technical design requirements

expressed in the language of software engineers [10].

Conceptual design: The derived requirements from the previous step are the start-

ing point to produce a conceptual design of the application. This is done in five steps

that may be executed iteratively whereby each step can lead to feedback and a return

to earlier development activities.

In step 1 use cases will be specified [18]. These serve as input for the development

team to check that all requirements are taken into account correctly. Step 2 involves

the identification of functional elements and data structures of the application. The

next step is to show how these elements will be reflected in the specified use cases.

Flowcharts and sitemaps [5] may help to visualize the sequence of user interactions

and the relevant functions and data items. All discipline experts contribute to the vali-

dation of the results of this activity. The fourth step comprises the development of a

preliminary graphical user interface design which is used to check whether and how

socio-technical requirements have found their way into the interactions between ap-

plication and user. Finally, step 5 includes the specification of the software compo-

nents of the application, their interfaces and data structures, e.g. using a language such

as the Unified Modeling Language (UML) [17].

Software design / implementation: The resulting specification, which reflects all

socio-technical requirements, is passed on to the software engineers who will take it

as a starting point for the software design and implementation phase. Besides conven-

tional software engineering techniques model-driven as well as agile approaches can

be applied here. A model-driven approach has the advantage that intermediary models

capture already the more or less complete application functionality and properties.

Thus, these intermediary results may be fed into tools that may test the abstract design

for certain desired properties, such as correctness conditions or performance proper-

ties. However, the model-driven approach requires sound skills in suitable modeling

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 141

languages which may be an obstacle if you are not a software engineer. An agile ap-

proach has the advantage that partial prototypes are built that can be studied and dis-

cussed by users without requiring a deep knowledge of software modeling techniques.

However, the effects of concepts that overarch the whole application might not be

visible in early, partial prototypes.

In-Situ Evaluation: Evaluations are performed in all phases of the software de-

velopment process to test the functional correctness of the software and the social

awareness criteria. This includes evaluation activities aiming at the user scenarios

after requirement analysis and user interface prototypes after conceptual design, as

well as functional and integration tests after software design and implementation.

In the final phase of the proposed software development process the produced im-

plementation is evaluated in situated use by real users [3, 5]. The objective is to check

in a realistic usage environment whether the developed application satisfies the stated

expectations and requirements. Simulation studies may be performed, e.g. in a labora-

tory, in order to simulate real life situations and evaluate aspects such as usability,

performance, and robustness.

We claim that although project VENUS specifically targets UC application scenar-

ios, the developed methodology – aiming at a systematic social embedding of tech-

nology in order to assure user acceptance – can be applied to other application scenar-

ios as well where social awareness plays an important role. Admittedly, this claim

needs further confirmation by other project work.

4 VENUS and SEMAT

In this section we apply the SEMAT conceptual framework to the VENUS develop-

ment method. Our objective is to highlight the particularities of VENUS and by doing

so to evaluate the generic approach of SEMAT.

As a running example we use an application called Meet-U [6, 7] that is one of

three joint demonstrators in the VENUS project. Meet-U was developed in two ver-

sions, i.e. the first one without and the second one with the VENUS development

method. Thus, version 2 was influenced explicitly by social awareness concerns.

Meet-U is a mobile application that maintains a social network for a group of us-

ers. It supports the user in planning and performing joint recreational activities with

friends. Based on user preferences appropriate activities are suggested, dates are ne-

gotiated and coordinated, navigation to events is provided, and useful services in the

environment of the user are dynamically discovered and bound to the application. All

of this happens in the application in a self-adaptive and context-aware manner de-

pending on e.g. user location, device status, and availability of friends. Fig. 5 gives an

impression of the user interface of Meet-U.

The adaptation manager in Meet-U uses context information obtained via the built-

in smartphone sensors and other information sources (e.g. contacts and calendar) in

order to reason about appropriate application adaptations and service bindings. This

happens automatically and transparently without user interaction or notification. Thus,

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 142

dynamic ad-hoc service access and the transfer of user data to services may imply a

legal problem if services misuse personal data. To avoid such unintended leakage of

personal data, i.e. to support the general legal obligation of information self-

determination, users should have means to find out about and control the information

that the adaptive application exchanges with a service. This requirement and many

other similar sociotechnical requirements were not available in Meet-U Version 1, but

designed into Version 2 using the VENUS development method.

Fig. 5. Two screenshots of Meet-U

In the following discussions the term “VENUS” – unless explicitly denoted other-

wise – refers to the interdisciplinary software development method of VENUS. Fur-

thermore, we use italics when we refer to the SEMAT terminology.

4.1 Areas of Concern

Looking at Fig. 1 which displays the SEMAT areas of concern, VENUS addresses

these areas too, but with different intensity. Moreover, it seems that “social aware-

ness” or “social embedding” might as well represent a separate area of concern that

has a cross-cutting nature and does not have suitable representations in the SEMAT

“Things to work with” and “Things to do”. Let us explore this thought by using the

development of Meet-U as a test case.

Clearly, Meet-U is concerned with a solution that tries to grasp a specific oppor-

tunity, i.e. a software system for social networking on mobile devices that is built

according to a large set of functional and non-functional requirements. As Meet-U is a

research demonstrator, the stakeholders on the customer side are less influential dur-

ing the development, i.e. their major role is evaluation of the intermediate software

designs and the completed software system. A team of disciplinary experts derives the

requirements for the Meet-U design that is transformed into a conceptual model and

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 143

then into an implementation by the software engineers in the team. The VENUS

methodological approach combines different disciplinary practices into a multi-

disciplinary way of working.

As can be seen from these explanations, the SEMAT alphas appear rather naturally

when describing the VENUS approach to developing Meet-U. The state of these al-

phas are implicitly advanced, monitored, and evaluated during the VENUS develop-

ment activities. In a commercial setting (and even in a research project with given

deadlines), certainly it would have been beneficial to monitor and control the progress

of the alphas more systematically, as described by SEMAT. Hence, we propose that

the specification of the VENUS approach should refer explicitly to the appropriate

alphas.

Let us look at the customer area of concern. Since Meet-U is a research-oriented

software prototype that specifically aims at experimenting with support for social

awareness, the focus of the work (on Meet-U) is not so much on identifying opportu-

nities and satisfying stakeholders’ expectations, i.e. in Meet-U there is so far no em-

phasis on business-oriented customer concerns. Naturally this would change if we

would aim at developing Meet-U into a commercial product.

As we understand the SEMAT kernel, there is one shortcoming with the Things to

work with in the solution area of concern: Modern software engineering always tries

to (re)use existing software components, modules, library functions, data structures,

design patterns etc. For example, in Meet-U we rely on existing trust-enhancement

components and we have identified candidates for interdisciplinary design patterns

that show how to address and satisfy specific legality requirements in the software

development process, e.g. the basic right for informational self-determination. (Chap-

ter 16 of [7] discusses selected interdisciplinary design patterns for UC.) From our

point of view it would be advisable to include in the SEMAT kernel one or more al-

phas appropriately representing “the identification and integration of existing solu-

tions”, e.g. legacy applications, standard components, design patterns, and more.

SEMAT has three areas of concern for software development, i.e. customer, solu-

tion, and endeavor. In VENUS we emphasize the importance of the social embedding

of UC solutions: Not only the customers themselves pose requirements and demand

certain features, but also the societal environment typically postulates and adheres to

abstract ethical or legal norms that – at the end of the day – translate into concrete

technical requirements for the software solution. (Remember the remarks made above

on information self-determination.) In the proposed SEMAT kernel there is no area of

representation for these concerns except for the customer area of concern. This is

insufficient to model the origin of social awareness requirements that may not at all

be conforming to the customer’s demands. We claim that “social embedding” is an

area of concern on its own that cannot be neglected – at least for certain types of ap-

plication domains.

What would be the things to do and the alphas in this new area of concern? Con-

cerning the things to do, we need to look at how VENUS manages the sociotechnical

concerns during the development process (cf. Section 3). Thus, the abstract norms and

constraints relevant for the application have to be identified, stepwise translated into

concrete technical requirements, and evaluated throughout the whole development

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 144

activities. To find applicable interdisciplinary patterns and reusable solutions would

also belong to the things to do in the area of concern called social embedding.

Concerning the required additional alphas, at least an alpha would be needed rep-

resenting the “adoption of sociotechnical norms and standards” that determines the

social awareness context for the application. Another alpha in this area should repre-

sent the “application of non-technical benchmarks, conformance tests, evaluation

criteria, and the like” that are valid and binding independent of any concrete applica-

tion scenario. For example, such an alpha should be used to monitor and control the

degree of conformance to specified usability standards or general legal obligations, as

they were addressed in version 2 of the Meet-U application.

4.2 Practices in VENUS

SEMAT defines a method as a composition of practices, and a practice provides a

systematic and verifiable way of addressing a particular aspect of the work at hand

[8]. This is very much in line with the viewpoint of the VENUS development method.

VENUS does not prescribe the use of specific practices in order to design, implement,

and evaluate socially aware applications. Actually, VENUS is an example for the

flexible composition of different practices.

Experiences with the development of three different VENUS demonstrators (called

Meet-U, Connect-U, and Support-U [7]) reflect this flexibility. For example, while

KORA (cf. Section 3) was used in all demonstrators to elicit concrete technical re-

quirements from abstract normative regulations, different practices were used for the

software design and implementation activities, e.g. agile techniques and more conven-

tional development approaches. Clearly, the developers of the UC demonstrators

might as well have used the VENUS development method in combination with mod-

el-driven design and implementation techniques within the frame of VENUS.

Obviously, the three social awareness dimensions of VENUS, i.e. usability, legal

compatibility, and trust, do not at all cover the whole spectrum of social awareness

concerns. The inclusion of other disciplines, such as sociology or ecology, would

certainly bring in additional, domain-specific practices into the software development

process. Most of them would primarily be applied during the requirement analysis and

management, but could also have direct influence on the conceptual design of the

application.

Thus, SEMAT provides a clarifying guideline by viewing practices as distinct,

separate, modular units that a team can choose to use or not to use [8]. The choice of

practices defines the way of working of the development team. It would be a very

helpful exercise for VENUS to collect and describe all practices that have been con-

sidered in the multi-disciplinary software development efforts. This has not been done

in a stringent way so far. It is to be expected that building such a repository of prac-

tices would yield insights in frequently used elements and thus lead to the definition

of interdisciplinary and reusable abstract solution approaches for typical problems in

the design of socially aware application software, ideally supported by a set of re-

usable general interdisciplinary design patterns. Such a set of interdisciplinary design

patterns for UC applications is described in a forthcoming technical report [1].

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 145

5 Conclusions

VENUS has aimed at methodological support for the development of socially aware

ubiquitous computing applications. It is built on the collaboration of disciplinary ex-

perts and leads to a systematic integration of non-functional requirements into the

software development process. VENUS is agnostic to particular styles and methods

used during software development.

The SEMAT initiative has taken a fresh look at software engineering methods. It

has defined a kernel of elements that help to structure the way of working of software

development teams in order to ultimately improve the way software is developed.

While SEMAT is a generic and extensible framework for all kinds of application

domains, VENUS focuses on context-aware, adaptive ubiquitous computing applica-

tions on mobile devices and their embedding into the social environment.

As we have discussed in this paper, the SEMAT philosophy of being agnostic to

any concrete software engineering practices and methods matches well with the

VENUS approach. We have argued that VENUS should think about building a collec-

tion of practices that can be used for the development of socially aware applications.

This collection should be underpinned by a set of re-usable interdisciplinary design

patterns. Furthermore, SEMAT’s emphasis on defining states for the different alphas

and monitoring these states during the development process in order to gain a more

precise picture of the current status of a development project could be an inspiration

for VENUS to pay more attention to monitoring and steering the actual development

process in addition to combining disciplinary practices into a methodology frame-

work.

On the other hand, the SEMAT kernel does not have means to represent explicitly

the social embedding of software systems, i.e. to introduce into the development pro-

cess the abstract norms, obligations and rules of our society that often influence sub-

stantially the design and usage of software systems and thus determine the user ac-

ceptance to a very large degree. Clearly, it is an open and debatable question whether

such concerns should be optional add-ons to the SEMAT kernel (extensions are ex-

plicitly foreseen in the SEMAT approach) or should be a first-level ingredient of the

(so-called) essence of software engineering, as defined by SEMAT. From the perspec-

tive of VENUS we would argue for the latter.

Acknowledgement: We thank all members of the interdisciplinary Research Center for Infor-

mation System Design (ITeG) at Kassel University for their contributions to VENUS, and Hesse’s

State Ministry of Higher Education, Research, and the Arts for funding the VENUS project as part of

the LOEWE excellence program.

References

1. Baraki, H., Geihs, K., Hoffmann, A., Voigtmann, Ch., Kniewel, R., Macek, B.-E., Zirfas,
J.: Towards Interdisciplinary Design Patterns for Ubiquitous Computing Applications,
Technical Report, Kassel University Press, 2014 (to appear)

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 146

2. Baxter, G., Sommerville, I.: Socio-technical systems: From design methods to systems
engineering, Interacting with Computers, 23(1), 4-17, 2010.

3. Behrenbruch, K., Kniewel, R., Hoberg, S., Schmidt, L.: Evaluationsmethoden im Kontext

iterativer Gestaltungsmodelle für adaptive und auf Kooperation ausgerichtete Anwendun-
gen. In: Mensch & Computer 2010: Workshop „Evaluation Adaptiver Systeme (EASYS)",
Duisburg, 2010.

4. Bertagnolli S., Lisboa, M.: The FRIDA model. In Analysis of Aspect-Oriented Software
(ECOOP 2003), July 2003.

5. Brown, D.M.: Communicating Design: Developing Web Site Documentation for Design
and Planning, New Riders Press; 2 edition, 2010, ISBN: 0-3217-1246-3

6. Comes, D., Evers, C., Geihs, K., Hoffmann, A., Kniewel, R., Leimeister, J., Niemczyk, S.,

Roßnagel, A., Schmidt, L., Schulz, T., Söllner, M., and Witsch, A.: Designing Socio-
technical Applications for Ubiquitous Computing - Results from a Multidisciplinary Case
Study, Proc. Distributed Applications and Interoperable Systems (DAIS 2012), Springer
(2012), 194-201.

7. David, K. Geihs, K. Leimeister, J. M. Roßnagel, A. Schmidt, L. Stumme, G. Wacker, A.
(Editors): Socio-technical Design of Ubiquitous Computing Systems, Springer, Heidel-
berg, 2014 (to appear)

8. Fujitsu, Ivar Jacobson Int., Model Driven Solutions, SOFTEAM, UNAM: Essence – Ker-
nel and Language for Software Engineering Methods, Revised Submission, 2012,

http://semat.org/wp-content/uploads/2012/02/2012-11-01.pdf
9. Geihs, K., Leimeister, J.-M., Roßnagel, A., Schmidt, L.: On Socio-technical Enablers for

Ubiquitous Computing Applications, 3rd Workshop on Enablers for Ubiquitous Compu-
ting and Smart Services (EUCASS 2012), at 2012 IEEE/IPSJ 12th Int. Symp. on Applica-
tions and the Internet (SAINT), July 2012

10. Geihs, K.; Niemczyk, S.; Roßnagel, A., Witsch, A.: On the socially aware development of
self-adaptive ubiquitous computing applications. it-it 56, 1, p. 33-41, Oldenbourg, 2014

11. Hammer, V., Pordesch, U., Roßnagel, A.: Betriebliche Telefon- und ISDN-Anlagen

rechtsgemäß gestaltet, Springer (Edition SEL-Stiftung), Berlin/Heidelberg, 1993.
12. Jacobson, I., Ng, P.-W., McMahon, P.E., Spence, I., Lidman, S.: The Essence of Software

Engineering: The SEMAT Kernel, Communications of the ACM, Vol. 55, No. 12, De-
cember 2012.

13. Jacobson, I.: The Essence (Presentation Slides), http://semat.org/wp-
content/uploads/2012/06/The-Essence-2012-05-30.pdf

14. Lukowicz, P. Pentland, A. Ferscha, A.: From Context Awareness to Socially Aware Com-
puting, IEEE Pervasive Computing, vol. 11, no. 1, pp. 32–41, 2012.

15. Mouratidis, H. Giorgini, P. Manson G.: Integrating Security and Systems Engineering:
Towards the Modelling of Secure Information Systems. Proc. 15th Int. Conf. on Advanced
Information Systems Engineering, CAiSE ‘03, Springer LNCS, vol. 2681, pp. 63-78, 2003.

16. Narayanan, A., Vallor, S.: Why Software Engineering Courses Should Include Ethics
Coverage, Communications of the ACM, Vol. 57 No. 3, Pages 23-25, 2014.

17. Object Management Group: OMG Unified Modeling Language (OMG UML), Infrastruc-
ture, v2.1.2., Technical Report, November 2007.

18. Pohl, K.: Requirements Engineering, Heidelberg: dPunkt Verlag GmbH, 2008, ISBN: 3-

8986-4550-9.
19. Prado Leite, J.C.S., Yu, Y., Liu, L., Yu, E.S.K.: Mylopoulos, J., Quality-Based Software

Reuse. Proc. 17th International Conference on Advanced Information Systems Engineer-
ing CAiSE ‘05, Springer LNCS, vol. 3520, pp. 535–550, 2005.

20. Roßnagel, A.: Rechtswissenschaftliche Technikfolgenforschung – Umrisse einer For-
schungsdisziplin, Baden-Baden: Nomos, 1993.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 147

http://semat.org/wp-content/uploads/2012/02/2012-11-01.pdf
http://semat.org/wp-content/uploads/2012/06/The-Essence-2012-05-30.pdf
http://semat.org/wp-content/uploads/2012/06/The-Essence-2012-05-30.pdf

