
Empirical Bayes Estimation of Software Failures

Néstor Ruben Barraza ?

Universidad Nacional de Tres de Febrero
nbarraza@untref.edu.ar

Abstract. The empirical Bayes estimator is applied to software failures
production. The time between failures data registered up to a given time,
are used in order to estimate the probability of failure appearance dur-
ing the next interval time. This method is similar to the estimation of
n-grams in natural language processing. A modified expression to the
estimator usually used in language and speech processing is introduced
in order to follow the failures production curve. Results of simulations
comparing well with experimental data are also shown.

Keywords: Software reliability, empirical Bayes, growth model

1 Introduction

The empirical Bayes estimator is obtained from the Bayes rule applied to the
conditional expectation of the unknown parameter given the samples. The condi-
tional expectation minimizes the mean square error function as it is well known.
Several applications can be found in different areas of Engineering, specially in
Speech recognition and word processing, [10], [13], as well as in Reliability, [7],
[8]. Many simple forms of this estimator were proposed decades ago. One of them
was the Good-Turing estimator introduced as an alternative to the maximum
likelihood estimator in order to avoid assigning zero probability to samples that
never occurred, [6]. Improvements on the Good-Turing estimator were proposed
in the literature of speech processing, [4]. A general form of the empirical Bayes
estimator using mixed distributions was proposed in a previous work [2]. The
interest in speech or word processing is to estimate the probability of the ap-
pearance of a n-gram given it has appeared r times. We proposed to apply this
concept in software reliability considering software failures instead of n-grams.
By time discretization, we can ask about the probability of a software failure
arrival during the next interval time, conditioned to r failures has occurred in
the past. It is well known that a nonlinearity is expected in this probability since
the probability of failure decreases as testing time progresses. In order to follow
this behavior, several software reliability models were proposed in the literature,
the so called software reliability growth models. Non homogeneous Poisson and
Compound Poisson models were proposed decades ago as software reliability
growth models.

? The author is also with the School of Engineering. University of Buenos Aires.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76479197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The mentioned alternatives introduced in the Empirical Bayes estimator used
in word processing have a linear dependence on r. Since a nonlinearity depen-
dence on r is required for software failures in order to follow the software failure
cumulative curve, we used the modified expression introduced in [2].

The main motivation of this work is to take advantage of the nonlinearity
property of the modified expression of the Empirical Bayes estimator, in order
to predict the probability of failure in the next interval time, provided this
probability decreases. Modeling this way the reliability growth. This prediction
is based on previously reported data of failures of the same project. We will show
that having just few reports of failures is enough to perform a good prediction
of future failures during the whole phase either testing or operations. This is the
main advantage of the proposed method.

This paper is organized as follows: The empirical Bayes estimator as it is
usually used to predict the probability of the occurrence of an n-gram is presented
in section (2), the modified expression of the Empirical Bayes estimator with a
nonlinearity characteristic is shown in section (3), the theoretical foundations
that supports our main motivation are presented in section (4), a simulation
of the proposed model and a comparison with experimental data is shown in
section (5), conclusions are presented in section (6).

2 The Empirical Bayes estimator

The empirical Bayes estimator θ̂ of the probability θ of the occurrence of a single
event after r outcomes in n experiments were obtained can be defined as:

θ̂ = E[p|r, n] . (1)

There are well known forms of (1) like the Good-Turing estimate:

θ̂ =
r + 1

n

Nr
Nr+1

(2)

where Nr and Nr+1 are the number of events that occurred r and r + 1 times,
or the Laplace law of succession:

θ̂ =
r + 1

n+ 2
. (3)

Other simple expressions have been proposed for applications in word pro-
cessing were calculus must be performed rapidly. Some of these proposals are
the Knesser Ney discount estimates [11]:

θ̂ = (1− k)
r + b

n
Linear discount

=
r − b
n

Absolute discount

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 12



and the generalized law of successions [12]:

θ̂ =
r + b

n+ s b
(4)

where k, b and s are constants. All of these forms of the estimates depend
linearly on r, in order to get other dependencies on r, a generalized expression
is introduced in the next section.

3 A modified expression of the Empirical Bayes estimator
using mixed distributions

A general expression of the Empirical Bayes estimator can be introduced from
a mixed Poisson distribution:

P (r/λ) =
λr

r!
exp−λ . (5)

Since we are interested in a binary probability, i.e. a probability of success
or fault, then, the approximation of the binomial by the Poisson

θ̂ =
λ̂

n
(6)

valid for large values of n must be taken into account. Being S(λ) the probability
density function of λ and applying the Bayes rule, the λ estimate results, (see
[2] for details):

θ̂ =
1

n

∫
λλ

r

r! exp−λ dS(λ)∫
λr

r! exp−λ dS(λ)
. (7)

Despite the last approximation is valid for large values of n and small values
of r, the previous expression can be considered as a general definition of the
estimator. The last equation can be written as:

θ̂ =
r + 1

n

P (r + 1)

P (r)
. (8)

From (8), the introduction of the smoothing nonlinear factor P (r+1)
P (r) must be

noted. The effect and necessity of the smoothing factor in software reliability is
analyzed in the next section.

4 Software failures prediction using the Empirical Bayes
Estimator

The cumulative number of software failures collected during the testing phase of
a software product has several characteristics. We expect an increasing number

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 13



5,000,000 10,000,000 15,000,000

10

20

30

secs

Number of failures

Fig. 1. Typical cumulative number of failures curve.

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

secs

N
u
m
b
er

of
fa
il
u
re
s

Fig. 2. Cumulative number of failures curve with an inflexion point.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 14



of failures per time unit at first, and a low rate of failures at the end, after
some corrections are introduced. A typical software failures cumulative forms
revealing the reliability growth taken from [9] are shown in Fig. 1 and Fig. 2.

The curve shown in Fig. 2 presents an inflexion point due perhaps to new
code addition. Software reliability models based on the non homogeneous Poisson
process were proposed in the 1970s, see a revision in [1]. There were also proposed
other models like that based on a Compound Poisson distribution, see [3] for a
summary. All of these models try to follow the cumulative number of failures
curve by estimating the number of remaining failures from the number of failures
previously reported. A different approach is proposed in this work, instead of
predicting the total number of remaining failures or the time to next failure, we
propose to estimate the probability of a failure arrival during the next interval
time.

In order to apply the Empirical Bayes estimator to software failures, we pro-
pose to estimate the probability of a failure arrival during the next interval time
given r failures have appeared before. In this approach, no more than one fail-
ure per interval time is allowed. Since time are usually recorded in seconds, this
requirement is accomplished. The smoothing factor introduced in (8) plays an
important role in software failures since we can model the cumulative number of
failures curve having P (r+1) > P (r) at first and P (r+1) < P (r) at the end. This
behavior can be achieved by choosing properly the mixing probability density
function S(λ). A similar approaches were presented in [7] and [8], where the em-
pirical Bayes is applied to estimate the mean time to failure modeled by a mixed
exponential distribution. The main difference between those approaches and our
proposal is given by the expression (6), i.e., we propose to estimate the binary
probability of failure occurrences. According to the Empirical Bayes estimation
assumptions, failures, like n-grams in speech processing or time between failures
in [7] and [8], are considered to be statistically independent. Two simulations of
the cumulative number of failures are presented in the next section.

5 Simulation

In order to test the goodness of fit of the proposed model we present two simula-
tions based on real data for comparison. Failures data based on execution time
were collected by Prof. John D. Musa from several projects, they are available
in [9]. Despite these data were registered decades ago when the interest in Soft-
ware Reliability began, they are still relevant in order to see the software failures
behavior and test models since they show the main characteristic in software re-
liability, i.e. the reliability growth. Because of this, these datasets are still used in
recent publications. New software failures data collections and adaptation of the
SR models to modern software development methodologies are needed in order
to improve software quality metrics, see for example the analysis presented in
[5].

Instead of performing a progressive test and estimation as time progresses,
in this first approach of our proposal we proceed to simulate failures production

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 15



from a starting point obtained experimentally. Thus, taking the arrival time of
the first two failures from the corresponding data set, we estimate the probability
θ of failure arrival during the next interval time. From eq. (8) we get for the
starting point:

θ̂0 =
r0 + 1

n0

P (r0 + 1)

P (r0)
, (9)

where r0 = 2 and n0 is the time up to the first two failures arrival. From this
starting point, the simulation progresses generating a failure with probability
θ in the next interval time, if a failure is produced, the value of r is increased
by one, else, keeps its value. Whatever the result of the failure generation is,
the value of n is always increased by a new interval time. A pseudo code of the
simulation procedure is shown next.

Simulation procedure

SET the initial count of seconds and failures

SET r equal to the initial number of failures

FOR each second n in the total time interval

SET p = (r + 1)/n P(r+1)/P(r)

GENERATE a failure with probability p

IF a failure arrived THEN

INCREMENT r

ENDIF

STORE number of arrived failures r and seconds

ENDFOR

(Failure generation code)

As the mixing distribution, the Generalized Inverse Gaussian probability
function used in insurance and queuing models, given by:

S(λ) =
µ−α λα−1 exp−(λ2 + µ2)/2βλ

2Kα(µ β−1)
, (10)

was arbitrarily chosen. Where µ, α and β are parameters, and Kα is the Modified
Bessel Function of the third Kind, see [14].

Results of simulations are shown in fig. (5) and (6) for projects 14C and SS1A
from the mentioned dataset. Both data were taken during the operations phase.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 16



Data 14C corresponds to a real time system of hundred of thousands of instruc-
tions. Data SS1A corresponds to an operating systems of hundred of thousands
of instructions. We have chosen these data since they show the software relia-
bility growth characteristic and the 14C project shows also an inflexion point.
Software reliability growth with an inflexion point is usually modeled with the
S-shaped stochastic model. The parameters of the Inverse Gaussian mixing dis-
tribution were also arbitrarily chosen as those which fit better the actual data.
Parameter values and the resultant form of the mixing distribution are shown
in Fig. 3) and Fig. 4).

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

r

P
Hr

L

Fig. 3. Generalized Inverse Gaussian for the SS1A project, β = 1, µ = 20, α = 1.

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

r

P
Hr

L

Fig. 4. Generalized Inverse Gaussian for the SS1A project, β = 0.5, µ = 25, α = 1.

From Fig. 5 we can see that the real data curve has an inflexion point at
secs 5000000. It is seen that the simulated curve follows the real data up to the
inflexion point, then, separates a little and adjusts better at the end.

From Fig. 6 it is seen that the curve fits well the real data all the time and
follows the curvature.

Since the only estimation point is that at the first two failures, we can con-
clude that failures production can be modeled well enough by this procedure.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 17



5,000,000 10,000,000 15,000,000

10

20

30

40

secs

Number of failures

Actual data
Simulation

Fig. 5. Actual and simulated cumulative failures curve for the 14C project.

5,000,000 10,000,000 15,000,000

20

40

60

80

100

120

secs

Number of failures

Actual data
Simulation

Fig. 6. Actual and simulated cumulative failures curve for the SS1A project.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 18



It could indicate that data at the start of the project together with the mean
value of the mixing distribution S(λ) in (7) have a lot of information in order to
predict the future behavior. All simulations have been performed using Math-
ematica v.8. Despite of the complex form of the Inverse Gaussian distribution,
the simulation gives results in few seconds. Then, we can expect that for any
mixing distribution this procedure run fast enough.

6 Conclusion

A new method in order to estimate software failures production has been pro-
posed. This method is based on The Empirical Bayes estimator usually used in
other areas of Engineering. A specially smoothing nonlinear factor was intro-
duced in the estimate. This factor is based on a mixed Poisson distribution. A
simulation of the cumulative failures curve using a Poisson mixed by a General-
ized Inverse Gaussian probability density function has been performed with good
agreement with reported data. Some criteria of choosing the mixing distribution
and methods to estimate its parameters will be reported in a future work.

Acknowledgments. The author wants to thank Universidad Nacional de Tres
de Febrero for support. The author would also like to thank the anonymous
reviewers for their valuable comments that helped to improve this paper.

References

1. Almering, V., van Genuchten, M., Cloudt, G., Sonnemans, P.J.: Using software
reliability growth models in practice. IEEE Software 24(6), 82–88 (2007)

2. Barraza, N.R.: The empirical bayes estimator and mixed distributions. AIP Con-
ference Proceedings 1073(1) (2008)

3. Barraza, N.R.: Parameter estimation for the compound poisson software reliability
model. International Journal of Software Engineering and its Applications 7(1),
137–148 (2013)

4. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Joshi, A., Palmer, M. (eds.) Proceedings of the Thirty-Fourth Annual
Meeting of the Association for Computational Linguistics. pp. 310–318. Morgan
Kaufmann Publishers, San Francisco (1996)

5. Far, B.: Software reliability engineering for agile software development. In: Electri-
cal and Computer Engineering, 2007. CCECE 2007. Canadian Conference on. pp.
694–697 (April 2007)

6. Good, I.J.: The population frequencies of species and the estimation of
population parameters. Biometrika 40(3-4), 237–264 (1953), http://biomet.

oxfordjournals.org/content/40/3-4/237.abstract

7. Lynn, K., Tae, Y.Y.: Bayesian computation for nonhomogeneous poisson processes
in software reliability. Journal of The American Statistical Association 91(434),
763–773 (1996)

8. Mazzuchi, T.A., R., S.: A Bayes Empirical-Bayes Model for Software Reliability.
IEEE Trans. on Reliability 37, 248–254 (Jun 1988)

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 19



9. Musa, J.D.: Cyber security & information systems. information analysis center.
https://sw.thecsiac.com/databases/sled/swrel.php (1970)

10. Nadas, A.: On Turing’s formula for word probabilities. IEEE Trans. Acoust. Speech
and Signal Processing 33, 1414–1416 (Dec 1985)

11. Ney, H., Essen, U., Kneser, R.: On the estimation of ’small’ probabilities by leaving-
one-out. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1202–1212 (1995)

12. Ristad, E.S.: A natural law of succession. Tech. Rep. TR-495-95, Princeton Uni-
versity (1995)

13. Vaithyanathan, S., Mao, J., Dom, B.: Hierarchical bayes for text classification. In:
PRICAI Workshop on Text and Web Mining. pp. 36–43 (2000)

14. Willmot, G.: Mixed Compound Poisson Distributions. Astin Bulletin 16, 59–79
(1986)

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 20




