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Abstract. The two-dimensional Hubbard model on the square lattice is studied in the presence of lattice

distortions in the adiabatic approximation. The self energy is computed within perturbation theory up

to second order, which provides a way for studying the quasiparticle dispersion. We compute numerically

the second order contribution to the self-energy using a standard Fast Fourier Transform Algorithm for

finite sizes system. The stability of the lattice distortions is investigated and a schematic phase diagram is

drawn. The Fermi surface is analyzed for densities close to half filling, the presence of lattice distortions

changes some spectral properties of the model and gives an anisotropic interacting Fermi surface. The

spectral function is calculated along several lines in momentum space and the renormalized quasiparticle

dispersion is obtained. The behavior of the density of states is shown for different values of the intrasite

repulsion U in the different phases.

PACS. 71.10.Fd Lattice fermion models – 63.20.kd Phonon-electron interaction

1 Introduction

The two dimensional Hubbard model has been usually as-

sociated with magnetism and superconductivity and is a

promising toy model for the electronic degrees of freedom

of high-temperature superconductors. The most interest-

ing properties occur mostly in underdoped samples, with

electron densities close to half filling, where the system is

an antiferromagnetic Mott-insulator. The competition be-

tween the kinetic and Coulomb terms gives rise to strong

electron-electron correlations.

The Peierls instability towards a spatially broken sym-

metry state in one dimensional systems is caused by the

competition between the energy of lattice distortions and

the formation of gap at the Fermi level in the electronic

spectrum. This instability can occur in two dimensions if
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the structure of the Fermi surface has a strong nesting by

a single vector. It is the case of the two-dimensional square

lattice in the tight-binding approximation at half filling.

Elastic Umklapp scattering with momentum transfer

of (π, π)[1] across the Fermi Surface is allowed when it ex-

tends to the Brillouin zone boundary at half filling. In this

case, a small electron-lattice coupling will induce a lattice

dimerization which is related with a periodic modulation

of the bond hopping called in the literature, bond-order

wave (BOW). This motivates the study of the typical pat-

terns for elastic deformations with modes corresponding

to the nesting vector (π, π).

Although a finite frequency for the phonons would be

important to study their influence in the mechanism of

high Tc superconductivity, considering them as adiabatic

could shed light on their influence on the different inho-

mogeneous phases that have been observed, e.g. in the

underdoped region. Besides, their role is expected to be

important for the undoped parent compounds.

Electron phonon coupling can lead to charge inhomo-

geneities, such as stripes, as has been studied in [2] within

a spin-fermion model. However, this happens far from half-

filling and for sufficiently strong diagonal coupling.

On the other hand, the lattice distortions change the

Fermi Surface (FS) shape and the FS deformation due to

the presence of interactions is a central question within

the breakdown of the Fermi liquid theory. [3,4,5,6]

In the strong coupling regime one can find not only a

deformed FS, but may even find a different topology. The

FS of the non interacting Hubbard model is closed around

the origin in the reciprocal space while in the interacting

case it can be a surface closed around the point (π, π). It

is in this regime where the role of the elastic distortions

can take an important place in the high temperature su-

perconductor phases [7]

In this paper we study the stability of lattice distor-

tions in the presence of Coulomb interactions U . The crit-

ical values Uc where the distortions are suppressed are

studied and a schematic phase diagram is drawn. The

spectral properties are analized in the region of param-

eter space where the elastic deformations are favored and

the FS shape is constructed from the renormalized disper-

sion. The FS shape was studied for the Hubbard model in

the last years [8,9,10,11,12,13], but the influence of lattice

distortions has not been taken into account. The Polaron

formation in the Holstein-Hubbard model was investigated

in [14] by means the slave-boson saddle-point approxima-

tion and the t−J model with electron-phonon interaction

was studied recently [15] for small systems. We show that

these distortions have an influence in the FS shape leading

to an anisotropic FS in the δ 6= 0 phase.

2 Second order Perturbation theory.

2.1 The model

We examine the Hubbard model, coupled with a classical

phonon field , which describes spin- 1
2 fermions in a two

dimensional square lattice with nearest-neighbor interac-

tions, in the presence of lattice distortions in the adiabatic

approximation. This model represent a useful toy model to
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describe the physic in the presence of vibrational modes .

The dependence of the hopping amplitudes ti,j is assumed

to be linear in the lattice distortions.

H = −t0
∑

σ

L
∑

i=1

L
∑

j=1

(1 + α(ux
i+1,j − ux

i,j)) c†i,j,σci+1,j,σ

+ (1 + α(uy
i,j+1 − uy

i,j))c
†
i,j,σci,j+1,σ + H.c) (1)

+ U
∑

i,j

ni,j↑ ni,j↓

+
K

2

∑

i,j

((ux
i+1,j − ux

i,j)
2 + (uy

i,j+1 − uy
i,j)

2),

where t0 is the transfer integral between nearest neighbor
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Fig. 1. a) Lattice shape for the modulations corresponding

to pattern (a). b) Fermi surfaces for various densities ρ in the

two-dimensional free fermion case. For densities ρ < 1 the FS

is centered in the Γ -point and for ρ > 1 it is centered in the

Z-point. c) Diagrams which contribute to the self energy up

to second order in U . The wavy lines represent the on site

repulsive interaction and the solid lines the free propagators.

sites in the absence of distortions, ni,j,σ = c†i,j,σci,j,σ is

the number operator for electrons of spin σ at site i, α is

the electron-phonon coupling, K is the elastic constant of

the lattice and U is the on site Hubbard interaction. It is

convenient to work with the dimensionless parameters

δx
i,j = α(ux

i+1,j − ux
i,j) (2)

δy
i,j = α(uy

i,j+1 − uy
i,j) (3)

λ =
α2t0
K

(4)

and in the following we fix the energy scale setting t0 = 1.

We first review briefly the free case (U = 0) and δx,y ≡

0, where:

ε0(k) = −2(coskx + cos ky). (5)

The FS for different densities ρ is shown in Figure 1-b, for

half-filling (ρ = 1) being a diamond centered at the origin

with vertices at ±(0, π) and ±(π, 0).

Let us consider the two possible alternation patterns

consistent with the nesting vector Q = (π, π):

δx
i,j = (−1)i+jδx

0 or δx
i,j = (−1)i+jδx

0

δy
i,j = 0 δy

i,j = (−1)i+jδy
0 , (6)

namely patterns (a) and (b) respectively [16]. The two

dimensional Peierls instability in the pure-hopping case

was studied by Tang and Hirsch [17] founding that at half

filling pattern (a) is favored. Using a Mean Field (MF) ap-

proach we can see that for a wide range of values of U this

pattern survives up to a critical value Uc. First we review

the MF results and later, by using second order perturba-

tion theory we reexamine the stability of the distortions

in the present model.

When one considers a non trivial Hubbard local inter-

action, it is easy to see, using Hartree-Fock [18], that for
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U < Uc distortions (a) are favored at half filling and for

U > Uc the distortions are quickly suppressed.

Treating the local Coulomb repulsion in the MF ap-

proximation,

U
∑

i,j

ni,j,↑ni,j,↓ → U
∑

i,j

(〈ni,j,↑〉ni,j,↓ + 〈ni,j,↓〉ni,j,↑

− 〈ni,j,↑〉〈ni,j,↓〉) (7)

the hamiltonian becomes quadratic and it is straightfor-

wardly diagonalized in reciprocal space.
The expectation value 〈ni,j〉 is assumed uniform, and

the electron density with a given spin can be assumed
as 〈ni,j,σ〉 = 1

2 + σ
2 (−1)i+jm [18], m being the staggered

magnetization. Within this approximations the electronic
spectra for the two patterns (a) and (b) are

ε
(a)

(k)± = ±2t

v

u

u

t

U2m2

4
+ 4(cos kx + cos ky)2 + 4δ2 sin2 kx (8)

ε
(b)(k)± = ±2t

v

u

u

t

U2m2

4
+ 4(cos kx + cos ky)2 + 4δ2(sin kx + sin ky)2

The ground state energies for the two patterns are

E =
2

L2

∑

k

εa(b)(k)− +
U

4
(1 + m2) + r

δ2

2λ
(9)

with r = 1 for pattern (a) and r = 2 for pattern (b).

Minimizing the energy with respect to δ and m for

various values of U and λ we can easily see that pattern

(a) has lower energy than pattern (b) and for a huge range

of U the values of δ∗MF for minimum energy are almost

constant.

For example for λ = 0.5 we have for pattern (a) δ∗MF ≃

0.24 and for pattern (b) δ∗MF ≃ 0.13. The value of the

interaction where the distortions are suppressed is Uc ∼ 2.

In the presence of distortions that follow pattern (a)

the lattice changes as we show in Figure 1-a. The unit

cell is doubled and the Brillouin Zone is reduced to half.

It is straightforward to find the electronic spectra for the
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Fig. 2. Energy calculated for both patterns (a) stars and (b)

squares as a function of δ for U = 0.4, λ = 1/2 and m = 0.

Clearly pattern (a) has lower energy. On the other hand it is

easy to see that the value of δ in the minimum energy is almost

constant in the range of U between 0 and ∼ 2. In the Inset the

difference of energy between the two patterns is shown as a

function of U , this difference falls off to zero at Uc ≈ 2 where

the distortion δ its suppressed.

deformed free case (U = 0). Working in the first Brillouin

zone (BZ) we have two single particle bands

ε̃0(k)± = ±2t

√

(cos kx + cos ky)2 + δ2 sin2 kx.

for pattern (a) and

ε̃0(k)± = ±2t
q

(cos kx + cos ky)2 + δ2(sin2 kx + sin2 ky).

for pattern (b). In the following we will work in the ex-

tended Brillouin zone formed by a square centered in the

point Γ = (0, 0) with vertices in ±Z and ±Z̄ where Z =

(π, π) and Z̄ = (π,−π). The unperturbed dispersion in

the extended BZ is

ε(k) = 2(1 − 2 θ(η(k)))
q

η(k)2 + δ2 sin2 kx (10)

ε(k) = 2(1 − 2 θ(η(k)))
q

η(k)2 + δ2(sin2 kx + sin2 ky) (11)

for patterns (a) and (b) respectively, where we have used

η(k) = cos kx + cos ky and θ is the step function. In order
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to fix the notation we present here other important points

used in this work like X = (π, 0), Y = (0, π) and M =

(π
2 , π

2 ).

2.2 Second order self energy

The contributions to the self energy are given by the dia-

grams shown in Figure. 1-c, these contributions were cal-

culated using ordinary perturbation theory and were cal-

culated slightly away half filling where divergences can

appear. To deviate slightly half-filling are not significant

changes in patterns of deformations in the mean field treat-

ments and previous work showing that there is no appear-

ance of stripes phase for fillings close to one [2].

Since the partners in the scattering processes have op-

posite spins, other possible diagrams with two Coulomb

lines are absent.

The contributions of these diagrams are given by

Σ(1)(k, ω) = −U
ı

(2π)3

∫ ∞

−∞

dω′

∫

BZ

d2k
′G(0)(k′, ω′)

=
U ρ

2
, (12)

where ρ is the electronic density of the system and

Σ(2)(k, ω) =
(U)2

(2π)6

Z

∞

−∞

dω′

Z

∞

−∞

dω′′

Z

BZ

d2k′

Z

BZ

d2k′′
× (13)

× G(0)(k′, ω′)G(0)(k′′, ω′′)G(0)(k + k′
− k′′, ω + ω′

− ω′′) ,

where

G(0)(k, ω) =
1

ω − ξk + ıγk

(14)

with ξk = ε0(k)−µ, γk = γ sign(ξk) and µ is the chemical

potential.

To first order, the contribution of Σ(1) is a real con-

stant (k-independent) that shifts the dispersion relation

M Γ

X Z

−8 80

−0.08

0.08

Fig. 3. Self Energy in M , Γ ,X and Z points at ρ = 0.995,

The solid line correspond to the real part and the dotted one

to the imaginary part of the Self Energy.

and does not contribute to the FS deformation because

it can be absorbed by a shift in the chemical potential

δµ1 = Un/2 to keep the density fixed. The second order

contribution to the self energy

Σ2(k, ω) =
U2

L2

∑

k′,k′′

(

θ(ξk−k’)θ(ξk’−k”)θ(−ξk”)

ω − ξk−k’ − ξk’−k” + ξk”

+
θ(−ξk−k’)θ(−ξk’−k”)θ(ξk”)

ω − ξk−k’ − ξk’−k” + ξk”

)

(15)

is k-dependent producing a renormalized dispersion and

leads to a FS deformation. This term is computed nu-

merically in what follows using a Fast Fourier Transform

(FFT) for finite size systems. The momenta in the Bril-

louin zone are discrete and defined by kx,y = −π+∆k(nx,y−

1) and ∆k = 2π
L

, nx,y = 1, 2, . . . , L

The retarded self energy in space-time representation

is

Σ
(2)
ret(x, t) = FkFω

[

Σ(2)(k, ω + i0+)
]

(16)

=
1

L

∑

k

∫ ∞

−∞

dω

2π
ei(k·x−ωt)Σ(2)(k, ω + i0+)
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Fig. 4. Renormalized dispersion relation corresponding to

δ = 0.24 and U = 1.8 in the Γ → X → Z → Γ line. The

squares correspond to the renormalized dispersion calculated

by means of Eq. (21) and the solid line corresponds to the

free case. We can see that the Coulomb interaction reduces the

bandwidth. In the Z-point some high energy solutions appear.

where the Fourier transform is defined by

Fk [g(k)] (x) =
1

L

∑

k

eik·xg(k) (17)

Fω [g(ω)] (t) =

∫ ∞

−∞

dω

2π
e−iωtg(ω) (18)

and the inverse transformation is denoted by F−1
k

and

F−1
ω respectively

The frequency Fourier transform is straightforward

Σ
(2)
ret(x, t) = − i θ(t)

U2

L2
Fk

2

4

X

k′,k′′

z(k − k’, t)z(k’ − k”, t)w
∗
(k”, t)

+ w(k − k’, t)w(k’ − k”, t)z∗(k”, t)
˜

(19)

where we have used the short-hand notation

z(k, t) = e−iξktθ(−ξk)

w(k, t) = e−iξktθ(ξk).

The transformation in k is the Fourier transform of a con-

volution and can be written as product of the Fourier

transforms

Σ
(2)
ret(x, t) = − i θ(t)

U2

L2

ˆ

z̃2(x, t)w̃∗(x, t) + w̃2(x, t)z̃∗(x, t)
˜

with z̃(x, t) = Fk[z(k, t)] and w̃(x, t) = Fk[w(k, t)]

Clearly z̃(x, t) = 〈cx(t)c†
0
(0)〉 and w̃(x, t) = 〈c†

0
(0)cx(t)〉

and the causal free propagator in space-time is given by

G0(x, t) = −i(θ(t)z̃(x, t) − θ(−t)w̃(x, t))

The functions z̃(x, t) and w̃(x, t) can be calculated for

finite size systems with a standard FFT algorithm. Then,

replacing the result in the equation for Σ
(2)
ret(x, t), we can

obtain the self energy in momentum space by means of

the inverse Fourier transform

Σ(2)(k, ω + i0+) = F−1
k

F−1
ω [Σ

(2)
ret(x, t)].

The real and imaginary parts of the self energy are

shown in Figure 3 for M , Γ , X and Z points at ρ = 0.995.

The shape of the Self Energy is very similar to the one

found for the Hubbard model [19] but some features are

δ-dependent. For example, in Figure 3 the real part of Σ in

the point X has a clear linear behavior in a wide interval

around ω = 0. The range of ω where this occurs is larger

for higher values of δ. The symmetries of the Hubbard

model are preserved. We can see in Figure 3 that if one

changes ω → −ω in the plot for the imaginary part of Σ

at point Γ , the one corresponding to point Z is recovered.

In the plots for the points Γ and Z it can be seen that

ℜe {Σ(k, ω)} = −ℜe {Σ(k + Q,−ω)}, with Q = (π, π).

The interacting Green function [20] can be calculated

up to second order

G(k, ω + i0+) =
1

ω + i0+ − ξk − Σ(k, ω + i0+)
(20)
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and the low energy excitations can be determined from

the equation

G−1(Ω,k) = Ω − ξk −ℜeΣ(k, Ω) = 0. (21)

For each point in the Brillouin zone, the last equa-

tion gives the renormalized dispersion as a function of the

chemical potential

Ξk = Ω. (22)

In Figure 4 we show the renormalized dispersion for

U = 1.8 in the path shown in Figure 1. We can see that

the Coulomb interaction reduces the bandwidth.

For values of the momentum away from the FS, in

particular for high values of U , Eq. (21) can give more

solutions corresponding to higher energy excitations. This

is particularly clear in the points Γ and Z where two new

bands appear for U > 1. This is reminiscent of the Hub-

bard bands. Figure 4 shows the high energy solutions in

the Z-point. We chose to show a result for a high value of

U because the effects of renormalization are more evident

and then the high energy solutions are visible.

2.3 Stability of lattice distortions.

The Ground State energy per site was calculated for sev-

eral values of U and λ

E =
2

(2π)2

∫

d2k Ξk(δ)θ(−Ξk(δ)) + r
δ2

2λ
(23)

where r = 1 for pattern (a) and r = 2 for pattern (b)

Keeping fixed the filling, we can calculate the energy

for various values of δ and λ as a function of U . In this way
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∆=0.3

∆=0.25
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∆=0.24

∆=0.15

∆=0.1

∆=0.05

∆=0

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

Uc

U

E

δ∗

U

δ = 0

Fig. 5. Energy per site vs U for several values of δ correspond-

ing to λ = 0.5 and ρ = 0.995. For Uc ∼ 1.21 there is a crossing

between the curves and for U > Uc the minimum energy cor-

responds to δ = 0. In the inset we show the optimal value δ∗

that minimizes the energy as a function of U . For U > Uc the

distortions are suppressed and for 0 ≤ U < Uc the parameter δ

takes an optimal value δ∗ for most of the values of U and there

is one narrow region near Uc where δ goes quickly to zero.

we can study the stability of the lattice distortions when

increasing the Coulomb interaction U , beyond the Mean

Field approximation. In the following we restricted our-

selves to study pattern (a) . The values of δ that minimize

the total energy depend of λ and when λ → 0, the distor-

tions are suppressed. In our calculations the deformations

are suppressed for values below some λ finite since the

calculations were made for finite size systems (in general

for systems of 120× 120 sites, but the spectral properties

are not severely changed for bigger sizes. ) In Figure 5 we

show the energy as a function of U for λ = 0.5 and sev-

eral values of δ. We can see that for U < Uc the curves

have a minimum for a non trivial value of δ and that for
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Fig. 6. Schematic phase diagram. The curve corresponds to

U = Uc.

U > Uc the minimum energy is reached for δ = 0. The

δ∗-value for minimum energy is plotted as a function of U

in the Inset of Figure 5 where we can see clearly that δ∗

stays almost constant for values of U smaller than Uc and

it tends quickly to zero in a narrow region U ∼ Uc. The

critical value Uc that we found in our approach is lower

than the one found in [18] by means of a MF approach,

but the corresponding values of δ∗ are very similar.

In Figure 6 we show schematically the regions in the

(λ, U) space where δ takes non trivial values, this region is

labelled as δ 6= 0. The curve in Figure 6 shows the values

found for Uc. For each value of λ we have δ = 0 for the

U -values above the critical curve. The two dimensional

Hubbard model with U > 0 at half filling has AFM long

range order, however, to depart slightly from this point we

can not ensure that this order is maintained in the sys-

tem without properly studying the AFM order parameter,

but as the main subject of this work is the study of the

stability of elastic deformations and their influence in the

spectral properties, we labeled this phase simply as δ = 0

or non-elastic phase. In the region below the critical curve,

where the elastic deformations becomes stable, the phase

is labeled by δ 6= 0 or elastic phase. For points close and

below the critical curve there is a small region where the

δ-values rise from 0 to δ∗, as can be seen in the inset of

Figure 5.

For fixed values of the Coulomb interaction the electron-

lattice constant λ governs the phase of the system, and for

this reason it could be interesting to compare the prop-

erties of the system at fixed U for δ = 0 and δ = δ∗.

In the following we show some of the spectral properties

calculated for the model in the elastic phase.

2.4 Spectral properties in the presence of elastic

distortions .

The single-particle spectral function Ak(ω) = − 1
π
ℑmG(k, ω)

is calculated in the second order approximation. In Figure

7 we show the spectral function along the lines Γ → Z,

Y → Z, X → Z and Γ → X for U = 1 in the δ 6= 0

phase. The behavior of the spectral function is seen to

be different from the one found in the region with δ = 0

[19]. The peaks in the spectral function for this case are

broader and asymmetric for k far from the FS, while for

the case with distortions the symmetry is preserved and

the peaks are narrower. In the δ = 0 case at higher ener-

gies the quasiparticle peaks decay very slowly while in the

δ 6= 0 case the peaks decay more quickly. The splitting

in the spectral function seen for δ = 0 is absent in the

δ 6= 0 case. In the presence of distortions we can see the
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Fig. 7. Spectral function for the lines Γ → Z, Y → Z, X → Z

and Γ → X. The line in Fig. (a) is crossing the M point where

there is no spectral peak as a result of the presence of a gap in

the quasiparticle dispersion.

absence of a spectral peak for some points around ω = 0

which shows the existence of a gap at these points in the

renormalized dispersion. There are no possible low-energy

excitations with Ξ ≈ 0 at these points of the BZ.

The density of states was calculated for fixed values of

the chemical potential µ and the Coulomb interaction U .

g(ω) =
1

L

∑

k

Ak(ω) (24)

In Figure 8 the renormalized density of states is shown for

both phases at ρ = 0.995 with U = 0.8, U = 1, U = 1.2

and U = 1.3. The interaction gives a transfer of spectral

weight from low to high energies in both cases.

In the absence of distortions the weight of the logarith-

mic singularity which characterizes the free system is re-

duced. Similar characteristics of g(ε) are obtained for the

infinite-dimensional Hubbard model [21]. Large U values
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Fig. 8. a) Density of states ρ(ω) in the case with δ = 0 for

U = 0.8, U = 1, U = 1.2 and U = 1.3. The interaction gives a

transfer of spectral weight from low to high energies. b) Density

of states ρ(ω) in the presence of elastic distortions for U = 0.8,

U = 1, U = 1.2 and U = 1.3.

give rise to the typical two-peaks situation corresponding

to the infinite U limit.

2.5 Fermi Surface in the presence of distortions

The solutions of ω − ξk − ℜeΣ(k, ω) = 0 determine the

renormalized dispersion Ξk, the points where Ξk = 0 de-

fine the interacting FS. When we analyze the Hubbard

Model without elastic distortions a point with Ξk < 0 is

inside of the Fermi Area and if Ξk > 0 it is outside. In the

present case we need to be careful with this interpretation;

a point with Ξk < 0 can be inside the Fermi Area or at
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Fig. 9. Interacting Fermi Surface for U = 0.8, µ = −0.1 and

δ = 0.24. The red circles mark the zones where the surface

stretches in the kx-direction and the blue arrows the zones

where the surface is contracted in the y-direction.

the FS depending on whether the point coincides with the

gap in the renormalized dispersion relation.

The interacting FS for δ = 0.24 and µ = −0.1 is shown

in Figure 9. The symbols correspond to U = 0.8 and the

solid line to U = 0. We can see that the effect of the in-

teraction leads to an anisotropic surface resembling a ne-

matic phase FS. The points in the interacting FS evolve

so that the point on the kx-axis comes closer to the X

point and the point on the ky-axis moves away from the

Y point when the interaction is increased. We do not see

any change in FS topology. This result is consistent with

earlier works [12] and shows that interactions do not mod-

ify the FS topology within the perturbatively controlled

weak coupling regime.

3 Discussion and Summary

The Hubbard model on the square lattice in the weak

coupling regime in the presence of lattice distortions that

follow Peierls-like patterns was investigated.

Using second order perturbation theory, several spec-

tral properties are calculated and compared with the Hub-

bard model in the absence of lattice distortions. The sta-

bility of the distortions was analyzed as a function of U

and λ finding that the Coulomb interaction suppresses the

lattice distortions for values of Uc smaller than previous

MF results and a schematic phase diagram is presented.

The results show that the Interacting Fermi Surface

is anisotropic in the presence of distortions, even in the

weak coupling regime. The Fermi Surface topology does

not change in any of the two phases. This result is con-

sistent and complementary with earlier results [12] where

the stability of the FS topology in the absence of distor-

tion has been analyzed previously by Metzner et al in the

weak coupling regime . The results presented in this paper

show a similar behavior in the presence of distortions.
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