
Flow controlled by bottom friction
(Part 1)

Alma Mater Studiorum Università di Bologna
Laurea Magistrale in Fisica del Sistema Terra

Corso: Oceanografia Costiera
Marco.Zavatarelli@unibo.it



G.T Csanady: Circulation in 
the coastal ocean. 
Chapter 6. Flow controlled by bottom friction 
Sections 6.1, 6.2

Main references



Problems with bottom friction neglected

Revisiting the wind setup over variable depth (long shore wind case with no rotation).
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Topographic gyres

Downwind longshore transport  progressively 
Decreasing to zero from the coast to the point 
of the section with depth corresponding to
average depth. Beyond that point current

Reverses (upwind). Transport grows with time



Problems with bottom friction neglected

Revisiting the wind setup over variable depth (long shore wind case with rotation)
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At x << Rs along shore transport is maximum.

and U=0

Also in this case:
long shore transport decrease moving away 

from the coast.

Longshore transport grows infinitely with time

NB: remember also  that at x=0 there is a singularity
(along shore transport becomes infinite)

HOWEVER…………………………………….
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Problems with bottom friction neglected

Observations at two sections in Lake Ontario 

Wind stress



Problems with bottom friction neglected

Observations at two sections in Lake Ontario 

Site of section
average depth

Disagreement with theory:
At the coast Transport is 0
And grows leaving the coast
Theory predicts opposite 
Behaviour.

Agreement with theory:
At a certain distance from 
Coast transport starts to decrease
To reach 0 at approx. the site of 
Section average depth.
(as predicted by theory).



Long shore wind, Variable depth
and bottom friction

The general setup is the same seen previously, but 
The Transport equations to be considered now are:

x≥0.
Depth distribution function of x onlyàno gradients along y exists.
Only alongshore wind
Discussion initially limited to a nearshore region where the the coastal constraints hold to a 
satisfactory approximation: U=0.
Bottom stress along y defined as (justified later);
Cda: drag coeff.
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Long shore wind, Variable depth
and bottom friction

The equation

Becomes:

And its solution is  

Where the x-dependence is entirely contained in the variable depth H(x)
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Long shore wind, Variable depth
and bottom friction

For a given depth and for  t<<tf , with tf (a frictional adjustment time scale)
given by:

(t<<tf )

We obtain the inertial response result seen previously:
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Long shore wind, Variable depth
and bottom friction

for  t>>tf :

(t>>tf )

The transport reach a constant value (in time) and is defined by a depth averaged velocity:
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Long shore wind, Variable depth
and bottom friction

(t>>tf )
given by:

Recalling  the definition of the bottom stress:

or also, since                      (see also  lecture about BBL): 

Constant along shore transport is achieved when wind and bottom stress balance each other.
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Long shore wind, Variable depth
and bottom friction

M                                                                                           (t<<tf )

(t>>tf )
given by:

Given a                           , corresponding to a                                , H=100m, 

One finds  tf slightly over 30 hrs

tf is obviously directly prportional to H and inversely to  the friction velocity         and to 
The larger the wind stress (al so          increase) the shorter tf .
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Long shore wind, Variable depth
and bottom friction

Equation 

can be written in function of the  Ekman depth DE:

Upon substitution:

Since cda=O(10-3) the “typical tf is:

For large  H/DE, ftf is also large, so often the frictional adjustments are confined to depths of 
order DE, given that wind (storm) events have a time scale of few f-1
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Long shore wind, Variable depth
and bottom friction

The theory depicted above applies to the example above for the coastal domain embedded 
between the coast and the depth of 30 m.  Infact the wind event generating the pattern was 
active for about 16 hrs

With                                                            the relation                                           in fact yields
H≅30 m
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Long shore wind, Variable depth
and bottom friction (local problem)

The local problem
In absence of a longshore pressure gradient the equation system for 
The local problem is:

As usual the local solution is broken into two components

(u,v)=(u1,v1)+(u2,v2)

With   u1=u1(z), v1=v1(z) being the pressure induced field and u2=u2(z,t), v2=v2(z,t) being 
the frictional component  
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Loking for a non-oscillatory  solutions the equation system becomes:

PRESSURE INDUCED           FRICTIONALLY INDUCED

The top and bottom boundary condition for the frictional velocity (u2 and v2) are:
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Long shore wind, Variable depth
and bottom friction (local problem)



The bottom stress is given by a drag law (see previous lecture on the BBL):

Where:

Is the total velocity magnitude .

Now the system can be solved.
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Long shore wind, Variable depth
and bottom friction (local problem)



The equations for the frictionally induced velociy field 

with the above boundary conditions yield:

Recall that:

And that for the longshore wind case U=0.Then the equations for the pressure induced  
velocity components:

upon substitution 
become:
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Long shore wind, Variable depth
and bottom friction (local problem)
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The set of equations above is discussed for some limit cases.
Shallow water limit.
It is assumed that 

H<<DE
Under such condition the shear stress changes (from surface to bottom) by an order H/DE
quantity. Therefore it can be assumed
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Long shore wind, Variable depth
and bottom friction (local problem)
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Shallow water limit.

Under such assumptions the equations

indicate: 
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Long shore wind, Variable depth
and bottom friction (local problem)
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A flow without significant
Rotational effect

With bottom stress equalling
the wind stress



Shallow water limit.

The two thin highly sheared layers developing at the surface and at the bottom are the wall 
layers (see previous lecture on the BBL and or Pinardi notes on the atmospheric boundary 
layer) within which the length scale of eddies varies rapidly in direct proportion with the distance 
From the surface or bottom.
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Long shore wind, Variable depth
and bottom friction (local problem)

A flow



Shallow water limit.

Between the two “wall Layers” there is the “turbulent” (outer) layer with:
• eddies length scales constant and approximately proportional to H
• eddy velocity proportional to the friction velocity         
• constant eddy viscosity.
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Long shore wind, Variable depth
and bottom friction (local problem)
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Shallow water limit.

In the turbulent layer, the eddy Reynolds number:

(h=mixed layer depth)
And the shear is 

If the turbulent layer is (for instance) 80% of the total depth then the difference in velocity at the 
two extreme of the turbulent layer is about 13
The average Velocity V/H coincide with the velocity at mid-depth.
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Long shore wind, Variable depth
and bottom friction (local problem)
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Shallow water limit.

Extrapolating the constant velocity gradient                          to the bottom it is
Found:

Applying the bottom drag law we find:

Or also:
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Long shore wind, Variable depth
and bottom friction (local problem)

dv2
dz

=16 u*
2

H

vB =
V
H
−8u*

2

V
H
−8u*

2 = u*
2 cd

τ B
y

ρ0
= u*

* =
V H( )2

8+ cd
−1 2( )

2
cd=drag coefficient referred to the extrapolated velocity



Shallow water limit.

The above is equivalent to the bottom stress definition adopted to solve the global problem: 

Where:
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Long shore wind, Variable depth
and bottom friction (local problem)
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Deep water limit.
The condition is now 

H>>DE

Then there are two Ekman layers (surface and bottom with their own wall layer)
And an interior region which is frictionless.

The velocity distribution in the Bottom Ekman layer
has the following characteristics:

- across the wall layer velocity increase in magnitude
from zero with increasing distance from bottom, but
It maintains  the same direction of the Bottom stress
(deviated by some angle ϕ to the LEFT of the wind stress 
direction.

- in the turbulent layer velocity increase further and rotate forming 
an

Ekman spiral rotating (in the northern emisphere) to the right/left
of the bottom/wind stress 
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Deep water limit. H>>DE y

x

τ(y)

Long shore wind, Variable depth
and bottom friction (local problem)

velocity above the 
Wall layer

Geostrophic velocity in the 
Frictionless region.
Also wind stress direction
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Deep water limit. H>>DE
The velocity increase from bottom upward is

Given the empirical value for DE=0.1u*f-1 one gets:

for the increment of both velocity components
across the turbulent Ekman layer.

the magnitude of the extrapolated bottom velocity is

distribution in the Bottom Ekman layer
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Long shore wind, Variable depth
and bottom friction (local problem)
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Deep water limit. H>>DE
Velocities above the Ekman layer are the pressure field induced velocities
u1 and v1. That can be computed geometrically

Physically the cross shore main balance is between
coriolis Force and cross shore pressure gradient,
with the cross shore bottom stress playing a minor
role, so that equation

can be simplified to

with this approximation the bottom stress may be described by

again as the bottom stress used to solve 
the global problem                        
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Long shore wind, Variable depth
and bottom friction (local problem)
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