
OPTIMIZING AND APPROXIMATING
EIGENVECTORS IN MAX-ALGEBRA

By

KIN PO TAM

A thesis submitted to
The University of Birmingham

for the Degree of
DOCTOR OF PHILOSOPHY (PHD)

School of Mathematics
The University of Birmingham
March, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/76462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

This thesis is a reflection of my research in max-algebra. The idea of max-algebra is replac-

ing the conventional pairs of operations (+,×) by (max,+).

It has been known for some time that max-algebraic linear systems and eigenvalue-

eigenvector problem can be used to describe industrial processes in which a number of pro-

cessors work interactively and possibly in stages. Solutions to such max-algebraic linear

system typically correspond to start time vectors which guarantee that the processes meet

given deadlines or will work in a steady regime.

The aim of this thesis is to study such problems subjected to additional requirements or

constraints. These include minimization and maximization of the time span of completion

times or starting times. We will also consider the case of minimization and maximization of

the time span when some completion times or starting times are prescribed.

The problem of integrality is also studied in this thesis. This is finding completion times

or starting times which consists of integer values only. Finally we consider max-algebraic

permuted linear systems where we permute a given vector and decide if the permuted vector

is a satisfactory completion time or starting time.

For some of these problems, we developed exact and efficient methods. Some of them

turn out to be hard. For these we have proposed and tested a number of heuristics.

i

Contents

1 Introduction 1

1.1 Aims and Scopes of the Thesis . 1

1.2 Literature Review . 2

1.3 Motivation of the Problem . 6

1.4 Overview of Chapters . 8

2 Introducing Max-Plus Algebra System 11

2.1 Introduction . 11

2.2 Basic Concepts and Definitions . 11

2.2.1 Algebraic Properties of Max-Algebra 13

2.3 Max-Algebraic Linear System . 18

2.3.1 System of Linear Equations . 18

2.3.2 System of Linear Inequalities . 24

2.3.3 Image Set . 24

2.3.4 Strongly Regular Matrices and Simple Image Set 26

2.4 Summary . 29

3 Max-algebraic Eigenvalues and Eigenvectors 31

3.1 Introduction . 31

3.2 The Steady State Problem . 32

ii

3.3 Basic Principles . 34

3.4 Principle Eigenvalue . 38

3.5 Finding All Eigenvalues . 46

3.6 Finding All Eigenvectors . 50

3.7 Formulation of the Problem . 52

3.8 Summary . 56

4 Optimizing Range Norm of the Image Set 58

4.1 Introduction . 58

4.2 Minimizing the Range Norm . 59

4.2.1 The Case when the Image Vector is Finite 61

4.2.2 The Case when the Image Vector is Not Finite 64

4.3 Maximizing the Range Norm . 71

4.3.1 The Case when the Matrix is Finite 72

4.3.2 The Case when the Matrix is Non-Finite 74

4.4 Summary . 75

5 Optimizing Range Norm of the Image Set With Prescribed Components 76

5.1 Introduction . 76

5.2 Minimizing the Range Norm . 77

5.2.1 The Case when Only One Machine is Prescribed 78

5.2.2 The Case when All but One Machine are Prescribed 79

5.2.3 The General Case . 85

5.2.4 Correctness of the Algorithm . 90

5.3 Maximizing the Range Norm . 96

5.3.1 The Case when Only One Machine is Prescribed 96

5.3.2 The Case when All but One Machine are Prescribed 97

iii

5.3.3 The General Case . 99

5.4 Summary . 102

6 Integer Linear Systems 103

6.1 Introduction . 103

6.2 The Case of One Column Matrix . 106

6.3 The Case of Two Columns Matrix . 107

6.4 Strongly Regular Matrix . 118

6.4.1 Basic Principle . 119

6.4.2 Integer Simple Image Set . 126

6.4.3 Integer Image Set . 135

6.5 The General Case . 145

6.6 Summary . 150

7 On Permuted Linear Systems 151

7.1 Introduction . 151

7.2 Deciding whether a Permuted Vector is in the Image Set 153

7.2.1 The Case of Two Columns Matrix 153

7.2.2 Computational Complexity of Algorithm 6 156

7.2.3 The case when n = 3 . 157

7.2.4 Computational Complexity of Algorithm 7 158

7.2.5 The case when n > 3 . 159

7.3 Finding the Permuted Vector Closest to the Image Set 160

7.3.1 The One Column Problem . 161

7.3.2 The Two Columns Problem . 164

7.4 Summary . 176

iv

8 Heuristics for the Permuted Linear Systems Problem 177

8.1 Introduction . 177

8.2 The Steepest Descent Method . 178

8.2.1 Full Local Search . 179

8.2.2 Semi-full Local Search . 184

8.3 The Column Maxima Method . 189

8.3.1 Formulation of the Algorithm . 191

8.4 Test Results for the Three Methods . 197

8.5 Simulated Annealing . 211

8.5.1 Simulated Annealing Full Local Search 212

8.5.2 Simulated Annealing Semi-Full Local Search 213

8.6 Test Results for Simulated Annealing . 215

8.7 Summary . 225

9 Conclusion and Future Research 226

9.1 Summary . 226

9.2 Possible Future Research . 229

A On some properties of the image set of a max-linear mapping 231

List of References 244

v

List of Tables

2.1 Basic Algebraic Properties . 13

2.2 Properties for operations over matrices and vectors 14

7.1 The results obtained when the value for x2 increase continuously. 170

7.2 Summary on the results obtained. 170

7.3 The slacks obtained from all the possible solution. 172

8.1 The First Iteration of the Full Local Search. 182

8.2 The Second Iteration of the Full Local Search. 183

8.3 The Third iteration of the Full Local Search. 183

8.4 The Second Iteration of the Full Local Search when a different vector is chosen.184

8.5 The First Iteration of the Semi-full Local Search. 186

8.6 The Second Iteration of the Semi-full Local Search. 186

8.7 The Third Iteration of the Semi-full Local Search. 187

8.8 The Second Iteration of the Semi-full Local Search when a different vector

is chosen. 187

8.9 Results obtained using Full Local Search Method for 20 matrices with dif-

ferent dimensions. 200

8.10 Results obtained using Semi-full Local Search Method for 20 matrices with

different dimensions. 203

vi

8.11 Results obtained using The Column Maxima Method for 20 matrices with

different dimensions. 206

8.12 Comparison of the results obtained from the three methods. 209

8.13 Results obtained using Simulated Annealing Full Local Search Method for

20 matrices with different dimensions. 218

8.14 Results obtained using Simulated Annealing Semi-full Local Search Method

for 20 matrices with different dimensions. 221

8.15 Comparison of the results obtained from the two simulated annealing methods.224

vii

List of Figures

3.1 Example 3.3.1 . 36

3.2 Condensation digraph for matrix (3.6) . 49

3.3 Condensation digraph . 50

3.4 Condensation digraph for matrix (3.7) . 56

viii

Chapter 1

Introduction

1.1 Aims and Scopes of the Thesis

In this thesis we will introduce the concepts of max-plus algebra and the results of my re-

search in this topic will be presented.

The idea of max-algebra is replacing the conventional pairs of operations (+,×) by

(max,+). It has been known for some time that max-algebraic linear systems and eigenvalue-

eigenvector problem can be used to describe industrial processes in which a number of pro-

cessors work interactively and possibly in stages. Solutions to such max-algebraic linear

system typically correspond to start time vectors which guarantee that the processes meet

given deadlines or will work in a steady regime.

The aim of this thesis is to study such problems subjected to additional requirements or

constraints. We will start by introducing the basic notation and results regarding max-plus al-

gebra, max-algebraic linear system and eigenvalue-eigenvector problem. Using these results,

we can study the problem of minimization and maximization of the time span of completion

times or starting times. We will also study the case of minimization and maximization of the

time span when some completion times or starting times are prescribed. We will show that

1

the above problems can be solvable by exact and efficient method.

Next we will present results on integer max-algebraic linear system where we investigate

if integer completion times or starting times exists. We will show that for some special cases,

this problem can be solved efficiently by checking necessary and sufficient conditions. An

algorithm is also developed which provides a benchmark for solving the general case.

Finally we will study the max-algebraic permuted linear system problem. This is to find

if there exists a permutation on a given completion times or starting times vector such that it

is a solution to the max-algebraic linear systems or eigenvalue-eigenvector problem. It turns

out this problem is NP-complete but we will develop efficient algorithms for solving the case

when the problem is small. We will also propose and test a number of heuristics for solving

this problem.

1.2 Literature Review

In this section we will discuss the historical background of max-plus algebra and some of

the works that were done on this topic.

The idea of max-plus algebra was first seen in the 1950s or even at an earlier period. But

this topic was not given too much attention at the time and the theories started to develop

by the 1960s. Works were developed by the Operations Research community including

Cuninghame-Green [31], Romanovski [56] and Vorobyov [63]. One of the first detailed

publications on max-plus algebra was the ‘Minimax algebra’ by Cuninghame-Green [29].

An updated version of this book was later published in 1995 [30].

In the first publications, max-algebraic linear systems were investigated [29], [31], [63].

These include the systems of the forms A ⊗ x = b, A ⊗ x = x ⊕ b and A ⊗ x = x where

⊕ = max and ⊗ = +. Cuninghame-Green first published a column maxima method which

solves the problem A⊗x = b for a given A and b in his 1960 paper [31]. This result has also

2

been found independently by Zimmermann [66]. Cuninghame-Green [29] later published

another method for solving this problem by using residuation [11]. This method required to

first consider the inequality A⊗ x ≤ b and obtain the maximal solution from this inequality.

It was proved that this maximal solution can be obtained by finding

x̄j = min
i

(−aij + bi)

and the system A ⊗ x = b has a solution if and only if A ⊗ x̄ = b. Akian, Gaubert and

Kolokoltsov [2] have extended the set covering theorem to infinite dimension. Also Gaubert

[37] proposed a method for solving the one-sided system x = A ⊗ x ⊕ b by using rational

calculus.

During the period of the 1970s and 1980s a lot of new technologies were developed

especially in manufacturing. With more complex systems being built, the synchronization

of discrete event (dynamic) systems (DES or DEDS) which include machine scheduling,

queueing and network process etc, became more important. Publications including [29] and

[67] give a detail interpretation on this field. ‘Synchronization and Linearity’ by Baccelli,

Cohen, Olsder, Quadrat [6] provide a detail account on deterministic system theory and

stochastic DES. It was shown that the synchronization problems can be formulated as the

max-algebraic eigenvalue-eigenvector problem [6], [29].

The eigenvalue-eigenvector problem is to find an eigenvalue λ and an eigenvector x such

that A⊗x = λ⊗x for a given matrix A. It was shown that in machine scheduling, if we use

an eigenvector as the starting times for the machines then the system will reach what we call

a steady state where each machine will have the same cycle duration λ. Cuninghame-Green

[29] shows that the max-algebraic eigenvalue-eigenvector problem is related to the longest

distances problem by converting A into a directed graph DA. He shows that for any matrix

3

A, its maximum cycle mean of the directed graph DA, namely λ(A) where

λ(A) = max
σ

w(σ)

l(σ)
(1.1)

plays an important role in solving the max-algebraic eigenvalue-eigenvector problem. In

(1.1), σ represents any cyle in A, w(σ) is the weight of the cycle and l(σ) is the length of the

cycle. He proved that the greatest eigenvalue called the principal eigenvalue is equal to the

maximum cycle mean. It was also shown in [29] that if a matrix A is irreducible then λ(A)

is the unique eigenvalue and A has only finite eigenvectors.

Various algorithms were developed for finding the eigenvalue of an irreducible matrix.

Karp’s algorithm [44] has remained one of the fastest and most commonly used algorithms

for finding the maximum cycle mean with computational complexity O(mn) where m is

the number of edges in the associated directed graph. Dasdan and Gupta provide a fast al-

gorithm for finding maximum and minimum cycle mean but no computational complexity

was given [26]. Elsner and van den Driessche [34] developed a power algorithm of com-

putational complexity O(n4) and this was later modified based on Karp’s algorithm in [35].

Cuninghame-Green developed an algorithm by conversion to linear programming for irre-

ducible matrices in [29].

General max-algebraic two-sided linear systems have been investigated extensively, re-

sults can be found in [22], [32], [33] and [64]. A general solution method was presented by

Walkup and Borriello [64]. This method uses for its basic solution component, the max-plus

closure operation and solves a series of subsystems with decreasing maximum solution.

An elimination method for solving A ⊗ x = B ⊗ x was presented by Butkovič and

Hegedus [22]. It was also shown that the solution set is generated by a finite number of

vectors.

Cuninghame-Green and Zimmermann [33] developed a general iterative approach which

4

assumes that finite upper and lower bounds for all variables be given. The iterative method

makes it possible to find an approximation of the maximum solution to the given system,

which satisfies the given lower and upper bounds or to find out that no such solution exists.

A pseudo-polynomial algorithm called Alternating method for solving A ⊗ x = B ⊗ y

was presented by Cuninghame-Green and Butkovič in [32]. The algorithm converges to a

finite solution from any finite starting point whenever a finite solution exists or finds out that

no solution exists. Sergeev [58] extended the Alternating method to the generalized systems

A1 ⊗ x1 = ... = Ak ⊗ xk.

It was also shown that if all the input entries are real, the Alternating method finds a finite

solution in a finite number of steps or decides that no solution exists for the given problem.

Butkovič [14] has shown that there is strong relation between max-algebra and combi-

natorics. Comprehensive results regarding strongly regularity and the relation between the

image set, simple image set and the eigenspace can also be found in [14].

Probabilistic max-plus algebra which is motivated by dynamic programming and large

deviations have been developed by Akian, Quadrat and Viot in [4], by Del Moral and Salut

[51], [52].

Butkovič [16] has investigated the permuted max-algebraic eigenvector problem. This is

to find out if it is possible to permute the components of a given vector x so that it becomes

an eigenvector of A ∈ Rn×n. It was shown that this problem is NP-complete by using a

polynomial transformation from BANDWIDTH in [36]. In [16] it was shown that for any

given matrix A ∈ Rm×n and vector b ∈ Rm the permuted linear system problem is also

NP-complete. That is to find if there exists a permutation π such that after applying the

permutation to b then b(π) is an image of A, i.e. if A⊗ x = b(π) has a solution.

The theories of max-plus algebra have also been applied to many different areas, this

5

includes combinatorial optimization [14], functional Galois connection [2], agriculture [5],

biological sequences [25] and a railway system [43].

1.3 Motivation of the Problem

From the previous section we can see that max-plus algebra has been applied in many differ-

ent areas. One of the problems attracting interests has been the machine scheduling problem.

We will illustrate this problem by considering the following example.

Example 1.3.1. [29] Consider a manufacturer that has n machines, M1, ...,Mn, working

interactively and in stages. A machine cannot start a new stage before it receives the compo-

nents (parts) produced by other machines at the previous stage.

Suppose that Mj will require aij units of time to produce component Pi which is neces-

sary for machine Mi in the next stage for i, j = 1, ..., n and that each machine can produce

all components simultaneously. The entry aij = −∞ if Mi does not need a component from

Mj . We will assume that the manufacturer would want each machine to start a new stage

again as soon as it finishes its process so that they can produce as many components as pos-

sible. The system of machines working interactively in this way is called a multi-machine

interactive production system.

The manufacturer may want to find the time they should start/switch on each machine

over a period of time, i.e the starting time of each machine at the first stage. Therefore the

manufacturers may wish to model this situation mathematically so that the starting times of

each machine can be decided according to their preferences.

We will denote by xj(1) the starting time of machineMj for j = 1, ..., nwhen it is started

for the first time. Similarly we will denote xj(k) to be the starting time of machine Mj when

6

it is started kth time. We will also denote

x(k) = (x1(k), x2(k), ..., xn(k))

to be the vector of starting times of the individual machines at the kth stage. Therefore the

2nd starting time for machine Mi will be

xi(2) = max{ai1 + x1(1), ..., ain + xn(1)}.

Similarly the k + 1th starting time for machine Mi will be

xi(k + 1) = max{ai1 + x1(k), ..., ain + xn(k)}. (1.2)

In order to decide the starting times for each machine, the manufacturers may wish to for-

mulate this problem in what we call a max-plus algebra linear system. Namely, if we denote

⊕ = max, ⊗ = + then (1.2) becomes

x(k + 1) = A⊗ x(k). (1.3)

Since every machine is likely to perform the same task repeatedly over a period of time,

at each stage a machine will start and finish the process and wait until the next starting time.

One of the criteria the manufacturers may want to meet when choosing the starting times is

that the starting times between two consecutive stages differ by the same constant for every

machine. This can be modelled as a max-plus algebra eigenvalue-eigenvector problem. That

is x(k + 1) = λ⊗ x(k) or by (1.3) equivalently

A⊗ x(k) = λ⊗ x(k).

7

Hence if we choose a max-algebraic eigenvector as the vector of starting times for their

machines then the system will immediately reach a steady state which means that all of

their machines will have the same cycle duration. However this requirement usually does

not determine the starting times vector uniquely because the eigenspace may have many

independent eigenvectors. In real-life systems there is a choice of eigenvectors and it may be

desirable to set up some other criteria on deciding which one of those eigenvectors is more

suitable for the manufacturers to use as the vector of starting times for their machines.

1.4 Overview of Chapters

The main aim of this research is to consider some of the criteria which may be set by the

manufacturer. Then we will develop methods for finding eigenvectors which satisfied these

criteria. We will divide our results into different chapters and a brief overview of each chap-

ter are as follows:

Chapter 2: Introducing Max-Plus Algebra System

In this chapter we will provide the terminology, notations and basic definitions of max-

algebra. We will also present some of the theories on linear systems and using them to

define the notions of the image set and the simple image set which will play a significant role

in this thesis.

Chapter 3: Max-algebraic Eigenvalues and Eigenvectors

In this chapter, we will present definitions and some of the well known results on the max-

algebraic eigenvalue-eigenvector problem. We will first discuss the concept of a steady state

and how it is related to the max-algebraic eigenproblem. Then we will show that graph the-

ory and the max-algebraic eigenproblem are very much related. Using this relation, we will

present a solution method for finding all eigenvalues and eigenvectors for any square matri-

ces A. We will also show that for each eigenvalue, we can obtain the set of eigenvectors by

8

considering the image set of a matrix generated from A. Therefore we will transform the

problem of optimizing eigenvectors into optimizing the image set of a matrix.

Chapter 4: Optimizing Range Norm of the Image Set

In this chapter, we will consider the problem of minimizing and maximizing range norm

of an image set of a matrix. We will first consider the minimization problem and we will

investigate the case when the image set is finite and the case when the image set may not be

finite. Then we will move on to the maximization problem and obtain a solution method for

this case.

Chapter 5: Optimizing Range Norm of the Image Set With Prescribed Components

This chapter will be an extension of Chapter 4. We will investigate a similar problem as in

Chapter 4 but in this case, we include an additional constraint to the problem. This additional

constraint will be part of the image vector is prescribed and therefore fixed. We will develop

a solution method for finding the non-prescribed components such that the resulting image

vector have its range norm minimized or maximized.

Chapter 6: Integer Linear System

In this chapter, we will investigate the case of integer linear system problem. We will first

consider the case when the matrix only consists of one and two columns and find the con-

ditions for an integer image set not to be non-empty. We will then move on to the case of

strongly regular matrices and we will do the same as for the case of one and two columns

matrices. Finally we will investigate the general case.

Chapter 7: On Permuted Linear Systems

In this chapter, we will investigate the permuted linear system problem which is NP-complete.

We will develop algorithms to decide if a permuted vector is in the image ofA for the case of

n = 2, n = 3 and n > 3. We will also for the case n = 1 and n = 2, develop algorithms to

find out if we can find a permuted vector such that the distance from this vector to the image

set is minimized where this distance is measured by using the Chebyshev norm.

9

Chapter 8: Heuristics for the Permuted Linear Systems Problem

Finally in this chapter, we will develop heuristic methods to obtain an approximation of the

solution to the permuted linear systems problem. We will compare the running time and

results by testing all the heuristics methods we develop in this chapter.

Note that the results in Chapters 2 and 3 have been intensively studied before. These

results can be found in [2], [14], [29], [30], [31], [63] and [66]. The results in Chapter 4, 5,

6, 7 and 8 are all original. Also note that the results in Chapter 4 and 7 have been published

and they can be found in [23]. Finally results in Chapter 5 and 6 are new and have been

obtained after the submission of MPhil(Qual) [62].

10

Chapter 2

Introducing Max-Plus Algebra System

2.1 Introduction

Let us start by introducing the concept of max-plus algebra. In this chapter we will define

the basic concepts and definitions of max-plus algebra for scalars, then we will show how

they can be extended to matrices and vectors.

In max-plus algebra we use the operation ‘max’ which stands for maximum and the

operation ‘+’ which stands for addition, to replace the binary operations of addition and

multiplication in conventional linear algebra, respectively.

We will use the operators ⊕ and ⊗ (circle over the conventional + and ×) to represent

that we are considering the max-plus algebraic system rather than the conventional linear

algebraic system.

2.2 Basic Concepts and Definitions

Definition 2.2.1. Max-plus algebra is the linear algebra over the semiringR (orRmax) where

R = R ∪ {−∞}, equipped with the operations of addition ‘⊕ = max’ and multiplication

‘⊗ = +’. The identity element for addition (zero) is −∞ and the identity element for

11

multiplication (unit) is 0.

Definition 2.2.2. Min-plus algebra (or tropical algebra) is linear algebra over the semiring

Rmin where Rmin = R ∪ {+∞}, equipped with the operations of addition ‘⊕′ = min’ and

multiplication ‘⊗′ = +’. The identity element for addition (zero) is +∞ and the identity

element for multiplication (unit) is 0.

The completed max-plus semiring Rmax is the set R = R ∪ {±∞}, equipped with the

operations of addition ‘⊕ = max’ and multiplication ‘⊗ = +’. We have −∞ is the zero

element in max-plus algebra, therefore we will have that

+∞⊗′ −∞ = −∞ = −∞⊗′ +∞.

The completed min-plus semiring Rmin is defined in the dual way. Note that this means

it is the set R = R ∪ {±∞}, equipped with the operations of addition ‘⊕′ = min’ and

multiplication ‘⊗′ = +’. We have +∞ is the zero element in min-plus algebra in which we

will have that

+∞⊗−∞ = +∞ = −∞⊗+∞.

Formally, let a, b ∈ R then

a⊕ b = max(a, b),

a⊗ b = a+ b,

a⊕′ b = min(a, b),

a⊗′ b = a+ b.

Note that the element +∞ only appears when using certain techniques, i.e. dual operations

and conjugation. In this thesis we will only develop theory of max-plus algebra over R and

we do not attempt to develop a concise max-plus algebraic theory over R.

12

For simplicity we will use the word max-algebra to represent max-plus algebra for the

rest of this thesis. For convenience we will define the symbol ε to stand for −∞ and we will

also denote by the same symbol any vector or matrix whose every component is −∞.

2.2.1 Algebraic Properties of Max-Algebra

Using the definition of the operators ⊕ and ⊗, ∀a, b, c ∈ R the following basic algebraic

properties of max-algebra can be easily deduced.

a⊕ b = max(a, b) a⊗ b = a+ b

a⊕ b = b⊕ a a⊗ b = b⊗ a
a⊕ (b⊕ c) = (a⊕ b)⊕ c a⊗ (b⊗ c) = (a⊗ b)⊗ c

a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c
a⊕ ε = a = ε⊕ a a⊗ 0 = a = 0⊗ a

a⊗ ε = ε = ε⊗ a
(∀a ∈ R) (∃a−1)a⊗ a−1 = 0

Table 2.1: Basic Algebraic Properties

Using the definition of ⊕ and ⊗ again, ∀a, b, c ∈ R the following properties for inequal-

ities in max-algebra can also be easily deduced.

a ≤ b =⇒ a⊕ c ≤ b⊕ c,

a ≤ b⇐⇒ a⊗ c ≤ b⊗ c, c ∈ R,

a ≤ b⇐⇒ a⊕ b = b.

For addition and multiplication of matrices and vectors in max-algebra, the operators ⊕ and

⊗ can be applied similarly as in the conventional linear algebra. They are used as follows:

13

For real matrices A = (aij), B = (bij) of compatible sizes, α ∈ R:

A⊕B = (aij ⊕ bij),

A⊗B = (
⊕∑
k

aik ⊗ bkj),

α⊗ A = (α⊗ aij).

Example 2.2.1.

 2 4

−1 5

⊕
 −1 7

0 4

 =

 2 7

0 5

 .

Example 2.2.2.

 2 3

−1 4

⊗
 5

2

 =

 7

6

 .

Example 2.2.3.

3⊗

 7 −3

2 1

 =

 10 0

5 4

 .

Using the definition of the operators ⊕ and ⊗ for matrices and vectors, then ∀A,B,C ∈

Rm×n of compatible sizes we can obtain the following properties for operations over matrices

and vectors in max-algebra.

A⊕B = B ⊕ A
A⊕ (B ⊕ C) = (A⊕B)⊕ C A⊗ (B ⊗ C) = (A⊗B)⊗ C
A⊗ (B ⊕ C) = A⊗B ⊕ A⊗ C (A⊕B)⊗ C = A⊗ C ⊕B ⊗ C

Table 2.2: Properties for operations over matrices and vectors

14

It immediately follows that for all matrices A,B,C, vectors x, y of compatible sizes and

α, β ∈ R, then

A⊗ (α⊗B) = α⊗ (A⊗B),

α⊗ (A⊕B) = α⊗ A⊕ α⊗B,

xT ⊗ α⊗ y = α⊗ (xT ⊗ y),

(α⊕ β)⊗ A = α⊗ A⊕ β ⊗ A,

A ≤ B =⇒ A⊕ C ≤ B ⊕ C,

A ≤ B =⇒ A⊗ C ≤ B ⊗ C,

x ≤ y =⇒ A⊗ x ≤ A⊗ y,

A ≤ B ⇐⇒ A⊕B = B.

(2.1)

Also if A is a square matrix, then the iterated products

A⊗ A⊗ ...⊗ A

in which the matrix A is multiplied by k times will be denoted by Ak.

Definition 2.2.3. Let a, b, c, ... be real numbers then the matrix:

diag(a, b, c, . . .) =

a

b ε

c

ε
. . .

. . .

is called a diagonal matrix.

For any given vector d = (d1, d2, ..., dn), diag(d1, d2, ..., dn) will be denoted by diag(d).

15

Max-algebra identity matrix is a diagonal matrix with all diagonal entries equal to zero.

Therefore using the definition of the diagonal matrices, we can obtain the following defini-

tion.

Definition 2.2.4. Let I = diag(0, ..., 0) then in max-algebra the matrix I is called the identity

matrix.

By the definition of the identity matrix, it immediately implies that I ⊗ A = A = A⊗ I

for any matrices A and I of compatible sizes. By definition A0 = I for any square matrix.

Definition 2.2.5. Let a, b ∈ R, then b is called inverse of a if

a⊗ b = 0 = b⊗ a

and we will denote b = a−1.

Similarly the concept of an inverse can be applied into matrices.

Definition 2.2.6. Let A ∈ Rn×n, then A is called invertible if there exists B ∈ Rn×n s.t.

A⊗B = I = B ⊗ A.

It has been proved in [29] that if the matrix B exists, it is unique and we will denote

B = A−1.

Any matrix which can be obtained from the identity (diagonal) matrix by permuting the

rows and/or columns is called a permutation matrix (generalized permutation matrix) [14].

The position of generalized permutation matrices is slightly more special in max-algebra

than in conventional linear algebra as they are the only matrices having an inverse:

Theorem 2.2.1. [29] Let A ∈ Rn×n, then a matrix B ∈ Rn×n such that

A⊗B = I = B ⊗ A

16

exists if and only if A is a generalized permutation matrix.

Example 2.2.4. Let

A =

ε 2 ε

ε ε −4

1 ε ε

 and B =

ε ε −1

−2 ε ε

ε 4 ε

 .

Then

A⊗B =

ε 2 ε

ε ε −4

1 ε ε

⊗

ε ε −1

−2 ε ε

ε 4 ε

 =

0 ε ε

ε 0 ε

ε ε 0

 = I

and

B ⊗ A =

ε ε −1

−2 ε ε

ε 4 ε

⊗

ε 2 ε

ε ε −4

1 ε ε

 =

0 ε ε

ε 0 ε

ε ε 0

 = I.

Therefore B is an inverse of A.

Given α ∈ R, then the conjugate of α is α∗ = α−1. This is equivalent to −α in con-

ventional notation. Similarly we have (−∞)∗ = +∞ and (+∞)∗ = −∞. Given a matrix

A = (aij) ∈ R
m×n

, the transpose of A is denoted by AT = (aji). Using this, we can obtain

the following definition for the conjugate of a matrix.

Definition 2.2.7. Let A = (aij) ∈ R
m×n

, then the conjugate of the matrix A is A∗ = (a∗ji).

This is obtained by the negation and transposition of the matrix A, i.e. A∗ = −AT in

conventional notation.

For simplicity, we will denote the columns (rows) of A = (aij) ∈ R
m×n

by A1, ..., An

(a1, ..., am). Also, we will call a matrix or a vector finite if none of its entries is −∞ or +∞.

17

Furthermore, we will mostly work with the matrices which have at least one finite entry

on each row or/and column. We will define these matrices by the following definition.

Definition 2.2.8. [29] Let A ∈ R
m×n

be a matrix which has at least one finite entry on each

row (column) then A is called row R-astic (column R-astic). A is called doubly R-astic if it

is both row and column R-astic.

2.3 Max-Algebraic Linear System

In this section we will consider the max-algebraic linear systems of equations and inequali-

ties, namely the system A⊗ x = b and A⊗ x ≤ b. For simplicity we will use the following

notation

M = {1, ...,m}, N = {1, ..., n},

where m and n are given positive integers.

2.3.1 System of Linear Equations

Let us first consider the system of linear equations in max-algebra. GivenA = (aij) ∈ R
m×n

and b = (b1, ..., bm) ∈ Rm, then the system

A⊗ x = b (2.2)

is called the one sided max-algebraic linear system or max-linear system. Using conventional

notation, the above system can be written as follows:

max
j=1,...,n

(aij + xj) = bi, i ∈M.

18

Now if we subtract the value of bi for all i from both sides of the equation then we will have

max
j=1,...,n

(aij − bi + xj) = 0, i ∈M.

If we let the matrix Ā = (āij) = (aij − bi), then we will obtain a new system where the

right-hand side of the system is equal to 0, i.e.

Ā⊗ x = 0.

Now we will say that the system is normalized and this process is called normalization. Note

that if we let

B = diag(−b1,−b2, ...,−bm) =

−b1

−b2 ε

ε
. . .

−bm

,

then

B ⊗ A⊗ x = Ā⊗ x = 0.

Therefore we can see that normalization is equivalent to the multiplication of the system by

the matrix B from the left and we can obtain the matrix Ā = B ⊗ A.

19

Example 2.3.1. Suppose we have the following system

7 −3 2

2 1 4

6 3 9

4 2 8

⊗

x1

x2

x3

 =

−1

3

7

9

.

Then

B =

1 ε ε ε

ε −3 ε ε

ε ε −7 ε

ε ε ε −9

and

Ā =

1 ε ε ε

ε −3 ε ε

ε ε −7 ε

ε ε ε −9

⊗

7 −3 2

2 1 4

6 3 9

4 2 8

=

8 −2 3

−1 −2 1

−1 −4 2

−5 −7 −1

.

Therefore after normalization we will have

8 −2 3

−1 −2 1

−1 −4 2

−5 −7 −1

⊗

x1

x2

x3

 =

0

0

0

0

.

Now if we consider the above example we can see that after normalization we will have

20

the following four equations:

max(8 + x1, −2 + x2, 3 + x3) = 0,

max(−1 + x1, −2 + x2, 1 + x3) = 0,

max(−1 + x1, −4 + x2, 2 + x3) = 0,

max(−5 + x1, −7 + x2, −1 + x3) = 0.

Now let us consider the first equation. If (x1, x2, x3) is a solution to the problem, then we

know that

8 + x1 ≤ 0,−2 + x2 ≤ 0, 3 + x3 ≤ 0

or

x1 ≤ −8, x2 ≤ 2, x3 ≤ −3.

We also know that at least one of these inequalities must be satisfy will equality. Now if we

only consider x1 then from the four equations, we will have obtained that

x1 ≤ −8, x1 ≤ 1, x1 ≤ 1, x1 ≤ 5.

Therefore x1 ≤ min(−8, 1, 1, 5) = −max(8,−1,−1,−5) = x̄1 where −x̄1 is the column

maximum of the first column.

Similarly for x2 and x3 we can obtain x̄2 and x̄3 which are the column maxima for

the second and third column respectively. From above we know that at least one of the

inequalities must be satisfied with equality for each equation. It implies that if (x1, x2, x3) is

a solution to the problem, then there exists at least one column maximum in each row of the

normalized matrix. This has been observed in [2], [14], [31], [63], [66].

Suppose we have the system A⊗ x = b where A = (aij) ∈ R
m×n

and b = (b1, ..., bm) ∈

21

Rm are given, then we denote

S(A, b) = {x ∈ Rn | A⊗ x = b},

Mj(A, b) = {k ∈M | (akj − bk) = max
i=1,...,m

(aij − bi)}, ∀j ∈ N,

x̄j = − max
i=1,...,m

(aij − bi), ∀j ∈ N.

Let us first consider the case when b = ε. This immediately implies that

S(A, b) = {x ∈ Rn | xj = ε if Aj 6= ε, j ∈ N}.

Therefore if we have A = ε, then S(A, b) = Rn. Now if we consider the case when A = ε

and b 6= ε, then we can deduce that S(A, b) = ∅. Therefore we will assume that A 6= ε and

b 6= ε.

Now let us suppose that bk = ε for some k ∈ M , then for any x ∈ S(A, b) we have

xj = ε if akj 6= ε, j ∈ N . This means that the kth equation of the system can be removed.

As a result we can set xj = ε for every column Aj where akj 6= ε (if any) and these columns

can be removed from the system. Therefore we can assume without loss of generality, that b

is finite.

Furthermore, if b is finite and A contains an ε row, then it immediately follows that

S(A, b) = ∅. Similarly, if A contains an ε column, i.e. Aj = ε for some j ∈ N , then we can

set xj to be any value in a solution x. Therefore without loss of generality, we can suppose

that A is doubly R-astic.

Theorem 2.3.1. [66] Let A ∈ Rm×n be doubly R-astic and b ∈ Rm. Then x ∈ S(A, b) if

22

and only if

i) x ≤ x̄ and

ii)
⋃
j∈Nx

Mj(A, b) = M where Nx = {j ∈ N | xj = x̄j}.

It follows immediately that the system (2.2) has a solution if and only if x̄ is a solution

to the system and x̄ is called the principal solution of the system [29]. More precisely the

following two corollaries are observed in [14]:

Corollary 2.3.1. [14] Let A ∈ Rm×n be doubly R-astic and b ∈ Rm. Then the following

three statements are equivalent:

i) S(A, b) 6= ∅,

ii) x̄ ∈ S(A, b),

iii)
⋃
j∈N

Mj(A, b) = M.

Corollary 2.3.2. [14] Let A ∈ Rm×n be doubly R-astic and b ∈ Rm. Then S(A, b) = {x̄} if

and only if

i)
⋃
j∈N

Mj(A, b) = M and

ii)
⋃
j∈N ′

Mj(A, b) 6= M for any N ′ ⊆ N,N ′ 6= N.

Note that Corollary 2.3.1 provides the conditions for the solvability of the systemA⊗x =

b and Corollary 2.3.2 provides the conditions for the existence of a unique solution in the

system A⊗ x = b.

From the above two corollaries, we can see that solvability and unique solvability of the

system A ⊗ x = b are equivalent to the set covering and minimal set covering respectively

23

[14].

2.3.2 System of Linear Inequalities

Now we will consider the system of inequalities. Given A = (aij) ∈ Rm×n and b =

(b1, ..., bm) ∈ Rm, then the system

A⊗ x ≤ b (2.3)

is called one-sided max-linear system of inequalities or just max-linear system of inequalities.

The system of linear inequalities (2.3) have been investigated in the past [29], [66]. It turns

out that the system will always have a solution and it can be easily solved. A solution set can

be found by considering the following theorem.

Theorem 2.3.2. [28][66] Suppose A ∈ R
m×n

, b ∈ R
m

and x ∈ R
n
, then

A⊗ x ≤ b if and only if x ≤ A∗ ⊗′ b.

It follows from the definition of the principal solution that x̄ = A∗ ⊗′ b if A is doubly

R-astic and b is finite. Therefore we will extend this definition and call A∗ ⊗′ b to be the

principal solution to the system (2.2) and (2.3) for any A ∈ Rm×n and b ∈ Rm.

From the above theorem, it immediately follows that the principal solution is the greatest

solution to the system A⊗ x ≤ b.

2.3.3 Image Set

Now let us continue on looking at the max-linear system of equations, namely (2.2). Given

A ∈ Rm×n, then b ∈ Rm is called an image of A if there exists x ∈ Rn such that

A⊗ x = b.

24

We will call the set of all images of A to be the image set of A and it is defined by the

following definition.

Definition 2.3.1. Let A ∈ Rm×n then Im(A) = {A⊗ x | x ∈ Rn} is the image set of A.

Using the definitions and results we have discussed in the previous sections, we obtain

the following trivial proposition.

Proposition 2.3.1. Given A ∈ Rm×n and b ∈ Rm, then

b ∈ Im(A) if and only if S(A, b) 6= ∅.

Using the above statement, we can find out if a vector is an image of any matrix. From

Corollary 2.3.1, we have obtained a combinatorial method to solve the system of linear

equations and hence checking if a vector is an image of a matrix. By using Theorem 2.3.2,

we can produce an algebraic method for forming this check .

Corollary 2.3.3. Let A ∈ Rm×n and b ∈ Rm then

b ∈ Im(A) if and only if A⊗ (A∗ ⊗′ b) = b.

Proof. ” ⇒ ” Let b ∈ Im(A), then ∃x s.t. A ⊗ x = b. By Theorem 2.2.1, we have

x ≤ A∗ ⊗′ b. After we have multiply (from the left) both sides of the inequalities by A, we

will get

b = A⊗ x ≤ A⊗ (A∗ ⊗′ b) ≤ b

and hence A⊗ (A∗ ⊗′ b) = b. ”⇐ ” Let x = (A∗ ⊗′ b), then by the definition of the image

set, b ∈ Im(A).

Definition 2.3.2. Let S ⊆ Rn, if ∀x, y ∈ S and ∀α ∈ R,

α⊗ x ∈ S and x⊕ y ∈ S,

25

then S is called a max-algebraic subspace or briefly, a subspace of Rn.

Note that from (2.1), it follows that for any x, y ∈ Rn, α, β ∈ R,

A⊗ (α⊗ x⊕ β ⊗ y) = α⊗ A⊗ x⊕ β ⊗ A⊗ y

and hence we can obtain the following proposition:

Proposition 2.3.2. Let A ∈ Rm×n, α, β ∈ R and u, v ∈ Im(A), then

α⊗ u⊕ β ⊗ v ∈ Im(A).

By the above proposition, we can deduce that Im(A) is a subspace.

2.3.4 Strongly Regular Matrices and Simple Image Set

Now we shall look at a special kind of matrix in max-algebra. Let us first consider the

following vectors A1, A2, ..., An ∈ R
m

, then the vectors are said to be linearly dependent

[15] if one of these vectors can be expressed as a linear combination of the others, i.e. ∃k ∈

N , x1, ..., xk−1, xk+1, ..., xn ∈ R such that

Ak =
∑

i∈N−{k}

⊕
xi ⊗ Ai.

The vectors are said to be linearly independent [15] if they are not linearly dependent.

Furthermore, we say that these vectors are strongly linearly independent if there exists some

b ∈ Rm s.t. it can be uniquely expressed as a linear combination of A1, A2, ..., An, i.e. the

system ∑
j∈N

⊕
Aj ⊗ xj = b

26

has a unique solution. Also, ifm = n, then the matrixA = (A1, A2, ..., An) is called strongly

regular [15]. It was proved in [29] that strongly linearly independent vectors are also linearly

independent.

Definition 2.3.3. [14] Let A ∈ Rm×n then

SA = {b ∈ Rm | A⊗ x = b has a unique solution}

is called the simple image set of A.

In other words, the simple image set of A is the set of vectors b for which the system

(2.2) has a unique solution.

By the definition of the simple image set, it is immediate that the simple image set is a

subset of the image set, i.e. SA ⊆ Im(A). Also by the definition of strongly regular matrix

and the simple image set, we see that SA 6= ∅ if and only ifA has strongly linear independent

columns.

Due to the fact that regularity and linearly independence are closely related to the number

of solutions of the linear systems (2.2), we will now look at the following results.

Theorem 2.3.3. [15] Let A ∈ Rm×n be doubly R-astic and b ∈ Rm, then |S(A, b)| ∈

{0, 1,∞}.

From the above theorem, we know that the number of solutions to the linear system can

only be 0, 1 and∞ and this is the same as the conventional case. Now let us suppose that

A ∈ Rm×n, then we will denote

T (A) = {|S(A, b)| | b ∈ Rm}.

Theorem 2.3.4. [15] Let A ∈ Rm×n be doubly R-astic, then T (A) is either {0,∞} or

{0, 1,∞}.

27

We can see that A has strongly linearly independent columns if and only if 1 ∈ T (A).

Next we will show a method on how to check the strongly regularity of a matrix. Suppose

that A ∈ Rn×n is a strongly regular matrix, then by Corollary 2.3.2 there exists b ∈ Rn such

that the union of the sets

M1(A, b),M2(A, b), ...,Mn(A, b), (2.4)

form a minimal set covering of N . It is not difficult to prove that this can only happen if and

only if the sets (2.4) are one-element and pairwise disjoint. That is, for some permutation π

of the set N , we have

Mπ(j)(A, b) = {j}, ∀j ∈ N,

i.e.

aj,π(j) ⊗ b−1
j > ai,π(j) ⊗ b−1

i , ∀i, j ∈ N and i 6= j. (2.5)

This is the same as finding if we can multiply constants (or add in the conventional case) to

every row of A in a way that there is only one column maximum in every row. Now if we

multiply (2.5) over all j ∈ N , we then have for every σ ∈ Pn − {π}

∏
j∈N

⊗
aj,π(j) >

∏
j∈N

⊗
aj,σ(j). (2.6)

We will denote

maper(A) =
∑
σ∈Pn

⊕∏
j∈N

⊗
aj,σ(j)

or in conventional notational

maper(A) = max
σ∈Pn

∑
j∈N

aj,σ(j).

It is called the max-algebraic permanent of A and we can see from (2.6) that for a strongly

28

regular matrix, the max-algebraic permanent is uniquely determined by a permutation from

Pn.

Looking back at the definition of the max-algebraic permanent in conventional notational,

we can see that finding maper(A) is the same as solving the linear assignment problem. There

are a number of efficient solution methods for finding an optimal solution, one of the best

known is the Hungarian method of computational complexity O(n3). We will denote the set

of all optimal permutations by ap(A), that is

ap(A) = {π ∈ Pn | maper(A) =
∑
j∈N

aj,π(j)}.

If |ap(A)| = 1, then we will say A has strong permanent; it immediately follows that if A is

strongly regular, then A has a strong permanent. The converse is also true for real matrices

and hence the following result.

Theorem 2.3.5. [15] LetA ∈ Rm×n be doublyR-astic, thenA is strongly regular if and only

A has strong permanent.

Note that we can check if A has strong permanent in O(n3) time (see [15]).

We have now introduced the basic definitions and concepts of a simple image set and

strongly regular matrices. It turns out that the simple image sets are closely related to the

max-algebraic eigenvalue-eigenvector problem and this can be seen in [15].

2.4 Summary

In this chapter we have introduced the basic concepts of max-algebra and we have defined

its basic properties over matrices and vectors. We have presented some well known results

regarding the max-linear system of equations and system of inequalities; we have shown how

solution of these systems can be found. We have also introduced the concepts of image set

29

and simple image set of a matrix and we have showed the necessary and sufficient condition

for a matrix to be strongly regular.

30

Chapter 3

Max-algebraic Eigenvalues and

Eigenvectors

3.1 Introduction

In the previous chapter, we have introduced the basic concepts of max-algebra. In this chap-

ter, we will introduce one of the most significant topic and some of its key results in max-

algebra. We will start by considering the following problem.

Problem 1. Given A = (aij) ∈ R
n×n

, find x ∈ Rn, x 6= ε and λ ∈ R s.t.

A⊗ x = λ⊗ x.

If we replace the max-algebraic operations with the conventional operations, we know

that λ is an eigenvalue and x is an eigenvector of A. Therefore, for the above max-algebraic

problem, we will call λ to be a max-algebraic eigenvalue and x to be a max-algebraic eigen-

vector of A. In general, we will call Problem 1 max-algebraic eigenvalue-eigenvector prob-

lem or max-algebraic eigenproblem.

31

Finding eigenvalues and eigenvectors in conventional linear algebra is a well known

problem and different methods are developed to solve this problem. For max-algebraic

eigenproblem, it had been proved that the problem can be solved efficiently and full so-

lution method in the case of irreducible matrices has been presented in [29], [41] and [63]. A

general spectral theorem for reducible matrices can be found in [8] and [38]. In this chapter,

we will discuss a solution method for finding eigenvalues and eigenvectors.

Since we are only investigating max-algebra problem in this thesis, then for simplicity we

will omit the word “max-algebraic” in all the notation we defined above. Therefore unless

stated otherwise, for the rest of this thesis when we use the words eigenvalue, eigenvector

and eigenproblem, it immediately implies that we are considering max-algebraic eigenvalue,

max-algebraic eigenvector and max-algebraic eigenproblem.

3.2 The Steady State Problem

Let us consider the production system from Example 1.3.1 in Chapter 1 again. Suppose

that we have the machines are now working interactively and in stages. In each stage, all

machines produce components necessary for the next next stage of some or all other ma-

chines simultaneously. We will assume that the manufacturers would want each machine to

start a new stage again as soon as possible so that they can produce as many components as

possible.

The manufacturers will want to find the times they should start each machine over a

period of time, i.e the starting time of each machine at the first stage. We will denote xi(k)

to be the starting time of machine Mi, i = 1, ..., n, when it is started for the kth time and we

will also denote aij to be the unit of time for machine Mj to produce components necessary

32

for machine Mi. Therefore the second starting time for machine Mi, i = 1, ..., n, will be

xi(2) = max(ai1 + x1(1), ..., ain + xn(1)).

Similarly the starting time for machine Mi when it is started the k + 1th time will be

xi(k + 1) = max(ai1 + x1(k), ..., ain + xn(k)). (3.1)

If we model the above in max-algebraic notation, we can see that it describes a max-linear

system and (3.1) becomes

x(k + 1) = A⊗ x(k). (3.2)

Since every machine is likely to perform the same task repeatedly over a period of time; at

each stage a machine will start and finish the process and wait until all components for the

next stage are ready. One of the criteria the manufacturers may want to meet when choosing

the starting times is that the starting times between two consecutive stages differ by the same

constant for every machine. That is for some λ, we have for all k ∈ N

x(k + 1) = λ⊗ x(k). (3.3)

Then (3.2) and (3.3) immediately imply that

A⊗ x(k) = λ⊗ x(k). (3.4)

We will say that the production system reaches a steady state if we can find a x(k) such that

(3.4) holds.

If we choose the first starting time vector, i.e. x(1), to be an eigenvector ofA correspond-

33

ing to an eigenvalue λ, we will then have

x(2) = A⊗ x(1) = λ⊗ x(1),

x(3) = A⊗ x(2) = A⊗ λ⊗ x(1),

= λ⊗ A⊗ x(1),

= λ⊗ x(2),

...

x(k) = A⊗ x(k − 1) = A⊗ λ⊗ x(k − 2),

= λ⊗ A⊗ x(k − 2),

= λ⊗ x(k − 1).

Therefore the production system has reached a steady state immediately if and only if there

exists λ and x such that x is a solution to

A⊗ x = λ⊗ x.

It immediately follows that solving the steady state problem is equivalent to solving the

eigenproblem.

3.3 Basic Principles

Before we can present a solution method for solving the eigenproblem, we will need to define

some of the necessary notations and definitions for this problem. It turns out that the results

for eigenproblem are closely related to graph theory. Therefore we will start by considering

some of the definitions in graph theory. First we will define the concept of a directed graph.

Definition 3.3.1. Suppose that we have the sets V , E, where V 6= ∅ is a finite set of elements

(the set of nodes) and E ⊆ V × V where E contains a set of ordered pairs of nodes (the set

34

of edges or arcs), then D = (V,E) is called a directed graph or a digraph.

Using the definition of a directed graph, we can obtain the definition of a weighted di-

rected graph.

Definition 3.3.2. Let D = (V,E,w) where (V,E) is a digraph and w : E → R, then D is

called a weighted directed graph or a weighted digraph.

Next we will consider the concepts of path, cycle and elementary cycle in a digraph.

Definition 3.3.3. Suppose that D = (V,E) is a digraph, then π = (v1, ..., vp+1) is called a

path if (v1, ..., vp+1) is a sequence of nodes, i.e.

vi ∈ V, ∀i = 1, ..., p+ 1 and

(vi, vi+1) ∈ E ∀i = 1, ...p.

We will say the path π has length p and we will call v1 the starting node and vp+1 the endnode

of π.

Definition 3.3.4. Suppose that D = (V,E,w) is a weighted digraph and π = (v1, ..., vp+1)

is a path from v1 to vp+1, then the weight for the path π is equal to

w(v1, v2) + w(v2, v3) + ...+ w(vp, vp+1).

Definition 3.3.5. Suppose that D = (V,E) is a digraph, then σ = (v1, ..., vp+1) is called a

cycle if σ is a path and v1 = vp+1. The length of the cycle is said to have length p.

Definition 3.3.6. Suppose that D = (V,E) is a digraph, then σ = (v1, ..., vp+1) is called an

elementary cycle if σ is a cycle and vi 6= vj for all i, j = 1, ..., p and i 6= j.

Example 3.3.1. (a, d, e) is not a path.

(a, b, c, d, b, e) is a path but not a cycle.

35

6HH
HHHHj��

��
��*

HH
H

HH
HY����

��� ?

a

e

b

c

d

Figure 3.1: Example 3.3.1

(a, b, c, d, b, e, a) is a cycle but not elementary.

(b, c, d, b) is an elementary cycle.

Next we will need to define the notion of strong connectivity in a directed graph.

Definition 3.3.7. Suppose that D = (V,E) is a digraph and u, v ∈ V , then v is said to be

reachable from u if there exists a path in D from u to v. We will denote this by u→ v.

Definition 3.3.8. Suppose thatD = (V,E) is a digraph, thenD is called a strongly connected

graph if u is reachable from v for all u, v ∈ V .

We can also for every matrix A, obtain a weighted directed graph associated with A. It

is defined by the following:

Definition 3.3.9. Suppose that A = (aij) ∈ R
n×n

, then the associated weighted digraph of

A is

DA = (N,E = {(i, j) | aij > ε}, w)

where w(i, j) = aij for all (i, j) ∈ E.

Using the above definitions, we can now define irreducible and reducible matrices.

Definition 3.3.10. Suppose that A = (aij) ∈ R
n×n

and DA is the associated weighted

digraph of A, then A is called irreducible if DA is strongly connected. A is called reducible

otherwise.

Note that A is irreducible if n = 1.

Also we will define the notion of metric matrices.

36

Definition 3.3.11. Suppose thatA = (aij) ∈ R
n×n

, then we will define the following infinite

series

Γ(A) = A⊕ A2 ⊕

If these series converge to matrices that do not contain +∞, then we will call Γ(A) the metric

matrix and sometimes it is also called the weak transitive closure of A.

Note that if we let DA be the associated weighted digraph of A and the matrix A2 =

A⊗ A, we can see that for each element in A2 we have

∑
k=1,...,n

⊕
aik ⊗ akj = max(aik + akj).

This is equivalent to the weight of the heaviest i − j paths of length 2 in DA and similarly

for the elements of Ak, k = 1, 2, Therefore the matrix Γ(A) represents the weights of the

heaviest paths of any length for all pairs of nodes in DA.

Definition 3.3.12. Suppose that A ∈ Rn×n and DA is the associated weighted digraph of A.

Let σ be a cycle in DA, then

µ(σ,A) =
w(σ,A)

l(σ)

where w(σ) is the weight of the cycle and l(σ) is the length of the cycle. We will call µ(σ,A)

the cycle mean of cycle σ with respect to matrix A. We will also let

λ(A) = max
σ

µ(σ,A)

and we will call λ(A) the maximum cycle mean of A. Since max ∅ = ε, it immediately

follows from the definition that DA is acyclic if and only if λ(A) = ε.

Note that a lot of different algorithms are developed for finding maximum cycle mean.

One of the fastest and most commonly used algorithm is Karp’s algorithm [44] with compu-

37

tational complexity O(mn) where m is the number of arcs in DA.

Theorem 3.3.1. [30] Suppose A ∈ Rn×n and λ(A) > ε, then ∀α ∈ R,

λ(α⊗ A) = α⊗ λ(A).

It is not difficult to prove that the associated weighted digraph of any irreducible matrix

contains at least one cycle, therefore the maximum cycle mean for any irreducible matrix is

finite. Now we will need to consider some of the properties of matrices when their maximum

cycle mean is equal to 0.

Definition 3.3.13. Suppose that A ∈ Rn×n, then A is called definite if λ(A) = 0.

Note that by using Proposition 3.3.1, we can see that for any irreducible matrix, we can

always generate the matrix Aλ = λ(A)−1 ⊗ A such that Aλ is definite. For simplicity, we

will denote Aλ = λ(A)−1 ⊗ A from this point forward.

Theorem 3.3.2. [29] Suppose that A ∈ Rn×n is definite, then

Γ(A) = A⊕ A(2) ⊕ ...⊕ A(n).

3.4 Principle Eigenvalue

Now we will discuss a solution method on finding all eigenvalues for any matrix. Throughout

this chapter and the rest of this thesis, we will use the following notation:

38

Definition 3.4.1. Let A ∈ Rn×n and λ ∈ R. Let us define

V (A, λ) = {x ∈ Rn | A⊗ x = λ⊗ x},

Λ(A) = {λ ∈ R | V (A, λ) 6= {ε}},

V (A) =
⋃

λ∈Λ(A)

V (A, λ),

V +(A, λ) = V (A, λ) ∩ Rn,

V +(A) = V (A) ∩ Rn.

In other words, V (A, λ) represents ε and the set of eigenvectors of A corresponding to

the value λ, Λ(A) represents the set of all possible eigenvalues of A and V (A) represents

the set of all eigenvectors of A and ε. Also we have V +(A, λ) represents the set of finite

eigenvectors of A corresponding to the value λ and V +(A) represents the set of all finite

eigenvectors of A.

We will first present some of the basic properties of eigenvalues and eigenvectors.

Proposition 3.4.1. Let A, B ∈ R, α ∈ R, λ, µ ∈ R and x, y ∈ Rn. Then

1. V (α⊗ A) = V (A).

2. Λ(α⊗ A) = α⊗ Λ(A).

3. V (A, λ) ∩ V (B, µ) ⊆ V (A⊗B, λ⊗ µ).

4. V (A, λ) ∩ V (B, µ) ⊆ V (A⊕B, λ⊕ µ).

Proof. If A⊗ x = λ⊗ x then it immediately follows that (α⊗A)⊗ x = (α⊗ λ)⊗ x. This

39

proves 1 and 2. Let us suppose that A⊗ x = λ⊗ x and B ⊗ x = µ⊗ x, then

(A⊗B)⊗ x = A⊗ (B ⊗ x),

= A⊗ µ⊗ x,

= µ⊗ A⊗ x,

= µ⊗ λ⊗ x

which proves 3. Also we know that

(A⊗B)⊗ x = A⊗ x⊕B ⊗ x,

= λ⊗ x⊕ µ⊗ x,

= (λ⊕ µ)⊗ x,

which proves 4.

It turns out that the concept of maximum cycle mean have a significant property when

considering the eigenproblem. From the following part of this section, we will show how

the maximum cycle mean of a matrix have played an important role when solving the eigen-

problem.

Definition 3.4.2. Suppose that A ∈ Rn×n, then we will denote

E(A) = {i ∈ N | ∃σ = (i = i1, i2, ..., ik, i1) in DA s.t. µ(σ,A) = λ(A)}.

The elements of E(A) are called eigen-nodes or critical nodes of A. A cycle σ is called

a critical cycle if µ(σ,A) = λ(A).

By using the set of nodes N ; the union of the sets of arcs of all critical cycles, we can

generate a digraph C(A) and we will call C(A) the critical digraph of A.

Lemma 3.4.1. [6][20] Let A ∈ Rn×n and C(A) be the critical digraph of A, then all cycles

40

in C(A) are critical cycles.

We will say that two nodes i and j in C(A) are equivalent if i and j belong to the same

critical cycle of A. We will denote this relation by the notation i ∼ j. Note that it is not

difficult to prove that ∼ constitutes an equivalence relation in E(A).

Lemma 3.4.2. [29] Let A ∈ Rn×n. If λ(A) = ε, then Λ(A) = {ε} and the eigenvectors of A

are exactly the vectors (x1, ..., xn)T ∈ Rn such that xj = ε whenever the j th column of A is

not equal to ε, j ∈ N .

The above lemma solves the case when λ(A) = ε, therefore we will usually assume that

λ(A) > ε.

Theorem 3.4.3. [3][29] Suppose A ∈ Rn×n then λ(A) is an eigenvalue for the matrix A.

Furthermore if λ(A) > ε, then up to n eigenvectors corresponding to λ(A) can be found

among the columns of Γ(Aλ). More precisely every column of Γ(Aλ) with zero diagonal

entry is an eigenvector of A with corresponding eigenvalue λ(A) and we obtain a basis of

V (A, λ(A)) by taking exactly one gk for each equivalence class in (E(A),∼).

Example 3.4.1. Consider the matrix

A =

3 8 0 3 1 7

4 2 1 3 2 5

2 3 0 1 4 2

2 1 3 6 5 1

3 0 1 2 3 5

0 1 1 8 2 3

.

Using Karp’s algorithm, we can deduce that the maximum cycle mean is 6 and it is attained

41

by three critical cycles; (1, 2, 1), (4, 4) and (4, 5, 6, 4). Therefore λ(A) = 6 and we have

Γ(Aλ) =

0 2 0 3 2 1

−2 0 −2 1 0 −1

−4 −2 −4 −1 −2 −3

−4 −2 −3 0 −1 −2

−3 −1 −2 1 0 −1

−2 0 −1 2 1 0

.

We can see that the critical digraph C(A) has two strongly connected components; one with

the node set {1, 2} and the other one with the node set {4, 5, 6}. Therefore there are two

equivalence classes in (E(A),∼), hence the first and second column of Γ(Aλ) are multi-

ples of each other and similarly for the fourth, fifth and sixth columns. For the basis of

V (A, λ(A)) we may take the first and fourth column.

Example 3.4.2. Consider the matrix

A =

0 3 ε ε

5 1 ε ε

ε 3 0 ε

2 1 ε 4

.

Then λ(A) = 4, E(A) = {1, 2, 4} and

Γ(Aλ) =

0 −1 ε ε

1 0 ε ε

0 −1 −4 ε

−2 −3 ε 0

.

42

Therefore the basis of V (A, λ(A)) is {(0, 1, 0,−2)T , (ε, ε, ε, 0)T}.

From Theorem 3.4.3, we can see that λ(A) is of a special significance as an eigenvalue; it

is an eigenvalue for every matrix. It will follow from the Spectral Theorem (Theorem 3.5.4)

that λ(A) is the greatest eigenvalue. We will therefore call λ(A) the principal eigenvalue of

A and the subspace V (A, λ(A)) will be called the principal eigenspace of A.

Now we will show that λ(A) is the only eigenvalue whose corresponding eigenvectors

may be finite.

Theorem 3.4.4. [29] Suppose A ∈ Rn×n, A 6= ε and V +(A) 6= ∅, then λ(A) > ε and

A⊗ x = λ(A)⊗ x, ∀x ∈ V +(A).

Note that if A = ε then every finite vector of a suitable dimension is an eigenvector of A

and all correspond to the eigenvalue λ(A) = ε.

Next we will present one classical result in max-algebra.

Theorem 3.4.5. [29] Suppose A ∈ Rn×n and A 6= ε, then the following hold:

1. V +(A) 6= ∅ ⇐⇒ λ(A) > ε and in DA, ∀j ∈ N ,

∃i ∈ E(A) such that j → i.

2. If, moreover, V +(A) 6= ∅ then

V +(A) = {
∑

j∈E(A)

⊕
αj ⊗ gj; αj ∈ R}

where g1, ..., gn are the columns of Γ(Aλ).

The above theorem shows us the necessary and sufficient conditions for the existence of

finite eigenvectors. It also shows us how to generate the set of finite eigenvectors. Using

43

Theorem 3.4.5 and the following result, we are able to device a slightly more efficient way

on generating the set of finite eigenvectors.

Theorem 3.4.6. [29] Suppose A ∈ Rn×n is definite, λ(A) > ε, Γ(A) = (gij) and g1, ..., gn

are the columns of Γ(A). Then

• i ∈ E(A)⇐⇒ gii = 0.

• If i, j ∈ E(A) then gi = α⊗ gj for some α ∈ R if and only if i ∼ j.

Corollary 3.4.1. Suppose A ∈ Rn×n. If λ(A) > ε, g1, ..., gn are the columns of Γ(Aλ) and

V +(A) 6= ∅, then

V +(A) = {
∑

j∈E∗(A)

⊕
αj ⊗ gj; αj ∈ R}

where E∗(A) is any maximal set of non-equivalent critical nodes of A. The size of E∗(A)

is equal to the number of non-trivial strongly connected components of the critical digraph

C(A).

Using the results we obtained above, we can now deduce the following classical complete

solution of the eigenproblem for irreducible matrices.

Theorem 3.4.7. [29] Every irreducible matrix A ∈ Rn×n, (n > 1) has a unique eigenvalue

equal to λ(A) and

V (A)− {ε} = V +(A) = {
∑

j∈E∗(A)

⊕
αj ⊗ gj; αj ∈ R}

where g1, ..., gn are the columns of Γ(Aλ) and E∗(A) is any maximal set of non-equivalent

critical nodes of A.

Note that the 1× 1 matrix A = (ε) is irreducible and V (A) = V +(A) = R.

44

If n > 1, by the definition of irreducible matrices, we know that ∀i, j ∈ N , i → j and

therefore the weight of the heaviest i − j path of any length is not equal to ε. Hence Γ(Aλ)

for an irreducible matrix (n > 1) A is finite.

We should also note that for an irreducible matrix A

V (A) = V +(A) ∪ {ε} = {Γ(Aλ)⊗ z; z ∈ Rn, zj = ε,∀j /∈ E(A)}.

The fact that λ(A) is the unique eigenvalue of an irreducible matrix A was proved in [27]

and then independently in [63] for finite matrices.

Example 3.4.3. Consider the irreducible matrix

A =

0 3 0 1

5 1 ε ε

ε 3 0 ε

2 1 ε 4

.

Then λ(A) = 4, E(A) = {1, 2, 4} and

Γ(Aλ) =

0 −1 −4 −3

1 0 −3 −2

0 −1 −4 −3

−2 −3 −6 0

.

Hence the basis of the principal eigenspace is {(0, 1, 0,−2)T , (−3,−2,−3, 0)T}.

45

3.5 Finding All Eigenvalues

Before we produce a method for finding all eigenvalues of a matrix, we need to introduce

some notation that will be useful.

Definition 3.5.1. If 1 ≤ i1 < i2 < ... < ik ≤ n, K = {i1, ..., ik} ⊆ N , then A[K] denotes

the principal submatrix
ai1i1 ... ai1ik

...

aiki1 ... aikik

of the matrix A = (aij) and x[K] denotes the subvector (xi1 , ..., xik)

T of the vector x =

(x1, ..., xn)T ∈ Rn. Furthermore, if D = (N,E) is a digraph and K ⊆ N then D[K]

denotes the induced subgraph of D; that is

D[K] = (K,E ∩ (K ×K)).

It is not difficult to see that DA[K] = D[K].

Definition 3.5.2. Suppose A,B ∈ Rn×n, then the symbol A ∼ B means that A can be

obtained from B by a simultaneous permutation of rows and columns.

We can see that if A ∼ B, then the induced digraph DA can be obtained from DB by

a renumbering of the nodes. Hence if A ∼ B then A is irreducible if and only if B is

irreducible.

Lemma 3.5.1. [21] If A ∼ B then Λ(A) = Λ(B) and there is a bijection between V (A) and

V (B).

The following lemma gives a clear signal that also in max-algebra the Frobenius normal

form will be useful for describing all eigenvalues.

46

Lemma 3.5.2. [21] Suppose A ∈ Rn×n, λ ∈ Λ(A) and x ∈ V (A, λ). If x /∈ V +(A, λ), then

n > 1,

A ∼

 A(11) ε

A(21) A(22)

 ,

λ = λ(A(22)) and hence A is reducible.

Proposition 3.5.1. [21] Let A ∈ Rn×n, then V (A) = V +(A) if and only if A is irreducible.

Every matrix A = (aij) ∈ R
n×n

can be transformed in linear time by simultaneous

permutations of the rows and columns to a Frobenius normal form (FNF) [57], i.e.

A11 ε ... ε

A21 A22 ... ε

...

Ar1 Ar2 ... Arr

(3.5)

where A11, ..., Arr are irreducible square submatrices of A.

If A is in an FNF then we will denote the sets N1, ..., Nr to be the corresponding par-

tition of the node set N of DA. We will call these sets classes (of A). Since all square

submatrix A11, ..., Arr are irreducible, it follows that each of the induced subgraph DA[Ni],

(i = 1, ..., r) is strongly connected and a path from Ni to Nj in DA exists only if i→ j. We

will also say for simplicity that λ(Ajj) is the eigenvalue of the class Nj .

Definition 3.5.3. Let A be in an FNF, then the condensation digraph is the digraph

CA = ({N1, ..., Nr}, {(Ni, Nj) | ∃k ∈ Ni, ∃l ∈ Nj s.t. akl > ε}).

We will denote the symbol Ni → Nj if there is a directed path from a node in Ni to a

node in Nj in DA. Therefore if Ni → Nj , there exists a directed path from each node in Ni

to each node in Nj . Equivalently, there is a directed path from Ni to Nj in CA.

47

If there are neither outgoing nor incoming arcs from or to an induced subgraph

CA[{Ni1 , ..., Nis}], (1 ≤ i1 < ... < is ≤ r)

and no proper subdigraph has this property then the submatrix

Ai1i1 ε ... ε

Ai2i1 Ai2i2 ... ε

...

Aisi1 Aisi2 ... Aisis

is called an isolated superblock or just superblock. The induced subdigraph of CA corre-

sponding to an isolated superblock is a directed tree (although the underlying undirected

graph is not necessarily acyclic). CA is the union of a number of such directed trees. The

nodes of CA with no incoming arcs are called the initial classes, those with no outgoing

arcs are called the final classes. Note that the directed tree corresponding to an isolated

superblock may have several initial and final classes.

For instance the condensation digraph for the matrix

A11 ε ε ε ε ε

∗ A22 ε ε ε ε

ε ∗ A33 ε ε ε

∗ ∗ ε A44 ε ε

ε ε ε ε A55 ε

ε ε ε ε ∗ A66

(3.6)

can be seen in Figure 3.2 (note that here and elsewhere the symbols ∗ indicate submatri-

ces different from ε). It consists of six classes and two superblocks; {N1, N2, N3, N4} and

48

{N5, N6}. The classes N3, N4 and N6 are initial and N1 and N5 are final classes.

��
��
��
��

��
��
��
��

��
��

��
��

A11 A44 A55

A66A33A22

Figure 3.2: Condensation digraph for matrix (3.6)

Lemma 3.5.3. [21] If x ∈ V (A), Ni → Nj and x[Nj] 6= ε then x[Ni] is finite. In particular,

x[Nj] is finite.

The following key result has appeared in the thesis [38] and [7]. The latter work refers

to the report [8] for a proof.

Theorem 3.5.4. [38](Spectral Theorem) Let A ∈ Rn×n be in the FNF. Then

Λ(A) = {λ(Ajj) | λ(Ajj) = max
Ni→Nj

λ(Aii)}.

Note that significant correlation exists between the max-algebraic spectral theory and that

for non-negative matrices in linear algebra [9],[57], [61]. For instance the Frobenius normal

form and accessibility between classes are essentially the same. The maximum cycle mean

corresponds to the Perron root for irreducible (nonnegative) matrices and finite eigenvectors

in max-algebra correspond to positive eigenvectors in the non-negative spectral theory.

Definition 3.5.4. Let A ∈ Rn×n be in the FNF. If

λ(Ajj) = max
Ni→Nj

λ(Aii)

then Ajj (and also Nj or just j) will be called spectral.

49

Thus λ(Ajj) ∈ Λ(A) if j is spectral but not necessarily the other way round. The follow-

ing corollaries of the spectral theorem are readily proved.

Corollary 3.5.1. [21] All initial classes of CA are spectral.

Corollary 3.5.2. [21] 1 ≤ |Λ(A)| ≤ n for every A ∈ Rn×n.

Corollary 3.5.3. [21] V (A) = V (A, λ(A)) if and only if all initial classes have the same

eigenvalue λ(A).

Example 3.5.1. Let us consider the condensation digraph in Figure 3.3. It contains 10 classes

including two initial classes and four final classes. The integers indicate the eigenvalues of

the corresponding classes. The number in bold indicate the corresponding class is spectral,

the others are not.

��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�
�

B
B
B
B
B
B
B
B
B

�
�

�
��

5 9

10

8

4

9

137

11

12

Figure 3.3: Condensation digraph

3.6 Finding All Eigenvectors

Note that the unique eigenvalue of every class; that is of a diagonal block of an FNF, can

be found in O(n3) time by applying Karp’s algorithm to each block. The condition for

50

identifying all spectral submatrices in an FNF provided in Theorem 3.5.4 enables us to find

them in O(r2) ≤ O(n2) time by applying standard reachability algorithms to CA.

Definition 3.6.1. Let A ∈ Rn×n be in the FNF, N1, ..., Nr be the classes of A and R =

{1, ..., r}. Suppose that λ ∈ Λ(A) and λ > ε, then we will denote

I(λ) = {i ∈ R | λ(Ni) = λ, Ni spectral}

and

E(λ) =
⋃
i∈I(λ)

E(Aii) = {j ∈ N | gjj = 0, j ∈
⋃
i∈I(λ)

Ni}.

where Γ(λ−1 ⊗ A) = (gij).

Note that Γ(λ−1 ⊗ A) may now include entries equal to +∞.

Definition 3.6.2. Let i, j ∈ E(λ), then the nodes i and j are called λ-equivalent if i and j

belong to the same cycle of cycle mean λ. We will denote this by i ∼λ j.

Theorem 3.6.1. [21] Suppose A ∈ Rn×n and λ ∈ Λ(A), λ > ε. Then gj ∈ R
n

for all

j ∈ E(λ) and a basis of V (A, λ) can be obtained by taking one gj for each ∼λ equivalence

class.

Corollary 3.6.1. [21] A basis of V (A, λ) for λ ∈ Λ(A) can be found usingO(n3) operations

and we have

V (A, λ) = {Γ(λ−1 ⊗ A)⊗ z | z ∈ Rn, zj = ε for all j /∈ E(λ)}.

Theorem 3.6.2. [21] V +(A) 6= ∅ if and only if λ(A) is the eigenvalue of all final classes.

Corollary 3.6.2. [21] V +(A) 6= ∅ if and only if a final class has eigenvalue less than λ(A).

51

Note that a final class with eigenvalue less than λ(A) may not be spectral and so Λ(A) =

{λ(A)} is possible even if V +(A) = ∅. For instance in the case of

A =

1 ε ε

ε 0 ε

0 0 1

 .

We have λ(A) = 1, but V +(A) = ∅.

3.7 Formulation of the Problem

Using the results we have discussed previously, we are able to describe the set of eigenvector

for each corresponding eigenvalue as an image set of a matrix by the following proposition.

Proposition 3.7.1. Suppose that A ∈ Rn×n be in the FNF and N1, ..., Nr be the classes of

A, R = {1, ..., r}. Let K = {1, ..., k} and Λ(A) = {λi | i ∈ K}, then k ≤ r and we can

obtain matrices Γ(1), ...,Γ(k) such that ∀i ∈ K,

Im(Γ(i)) = V (A, λi).

Proof. Since the number of eigenvalues cannot exceed the number of classes, it immediately

follows that k ≤ r. Let λi ∈ Λ(A) then by Corollary 3.6.1

V (A, λi) = {Γ(λ−1
i ⊗ A)⊗ z | z ∈ Rn, zj = ε for all j /∈ E(λi)}.

Suppose that E(λi) = {e1, ..., el}, then if we let Γ(i) = (gij) and g1, ..., gl be the columns of

Γ(i) where gi is equal to the ethi column of Γ(λ−1
i ⊗ A) then we have

Im(Γ(i)) = V (A, λi).

52

Example 3.7.1. Consider the following matrix

A =

3 ε ε ε ε ε ε ε

ε −1 0 ε ε ε ε ε

1 2 2 ε ε ε ε ε

ε 2 ε 2 1 ε ε ε

ε ε ε 0 2 ε ε ε

ε 1 ε ε ε 1 4 2

3 ε ε ε ε 2 2 1

ε ε ε ε ε 0 −1 3

. (3.7)

Since A is in the FNF, then we can see that

A11 = (3), A22 =

 −1 0

2 2

A33 =

 2 1

0 2

 , A44 =

1 4 2

2 2 1

0 −1 3

with λ(A11) = 3, λ(A22) = 2, λ(A33) = 2 and λ(A44) = 3.

Since N3 and N4 are initial blocks, then it immediately implies that they are spectral. We

can also see that N1 is spectral since

λ(A11) = max
i=1,...,4

λ(Aii).

N2 is not a spectral block because N2 is reachable from N4 and λ(A44) > λ(A22). Therefore

we have Λ(A) = {2, 3}. Let us denote λ1 = 2 and λ2 = 3.

53

First we will consider when λ = λ1. We will have I(λ1) = {3} and E(λ1) = {4, 5}. Next

we will calculate Γ(λ−1
1 ⊗ A) and we will obtain the following matrix:

8 ε ε ε ε ε ε ε

3 −2 −2 ε ε ε ε ε

6 0 0 ε ε ε ε ε

2 0 −2 0 −1 ε ε ε

−1 −2 −4 −2 0 ε ε ε

9 5 3 ε ε 8 8 7

8 5 1 ε ε 6 8 6

6 3 0 ε ε 5 6 8

From the matrix Γ(λ−1
1 ⊗ A), we can obtain Γ(1) = (g

(1)
1 , g

(1)
2) where g(1)

1 equals to the 4th

column and g(1)
2 equals to the 5th column of Γ(λ−1

1 ⊗ A). Therefore

Γ(1) =

ε ε

ε ε

ε ε

0 −1

−2 0

ε ε

ε ε

ε ε

.

Next we will consider the case when λ = λ2. We will have I(λ2) = {1, 4} and E(λ2) =

54

{1, 6, 7, 8}. Again we will calculate Γ(λ−1
2 ⊗ A) and we will obtain the following matrix:

0 ε ε ε ε ε ε ε

−5 −4 −3 ε ε ε ε ε

−2 −1 −1 ε ε ε ε ε

−6 −1 −4 −1 −2 ε ε ε

−9 −4 −7 −3 −1 ε ε ε

1 −2 −5 ε ε 0 1 −1

0 −3 −6 ε ε −1 0 −2

−2 −5 −8 ε ε −3 −2 0

Using the above matrix, we can obtain

Γ(2) =

0 ε ε

−5 ε ε

−2 ε ε

−6 ε ε

−9 ε ε

1 0 −1

0 −1 −2

−2 −3 0

Using Proposition 3.7.1, the problem of finding eigenvectors with specified properties

have been converted to the problem of finding an image of the mapping

x −→ Γ(i) ⊗ x, i = 1, 2, ...,

55

6

�

�

��	

N4

λ(A44) = 3

N3

λ(A33) = 2

N2

λ(A22) = 2

N1

λ(A11) = 3
��

@@

�� @@

��

@@

Figure 3.4: Condensation digraph for matrix (3.7)

i.e. the image set of Γ(i), with such properties.

Using the result we obtained we above, we will for the rest of this thesis, assume that

the matrices Γ(i), i = 1, 2, ... are already found. Using these matrices, we will investigate

and develop methods for finding eigenvectors for each eigenvalue that may be required by

a manufacturer. For simplicity, we will also rename the matrix Γ(i) to A from this point

forward.

3.8 Summary

In this chapter, we have discussed the steady state problem and how it is related to the max-

algebraic eigenproblem. We have seen that this problem is closely related to graph theory.

By using this relation, we have presented a solution method for finding all eigenvalues for a

matrix.

We have seen that the maximum cycle mean of a matrix plays an important role on

solving the eigenproblem. In fact, we now know that the maximum cycle will always be an

56

eigenvalue of any square matrix and it is called the principal eigenvalue. We have shown that

the maximum cycle mean is the only eigenvalue such that the corresponding eigenvectors

may be finite.

Then we have presented results on finding all the eigenvalues for any square matrices.

Using this result, we have seen that we can have at most n distinct eigenvalues where n is

the size of the matrix. We have also presented results on finding the set of eigenvectors for

each eigenvalue. By this, we can generate a maximum of n rectangular matrices; one for

each eigenvalue, such that the set of eigenvectors can be obtained by considering the image

set of these matrices. Hence the problem of optimizing eigenvectors has been transformed

into optimizing the image set of a matrix.

57

Chapter 4

Optimizing Range Norm of the Image Set

4.1 Introduction

From Chapter 3, we have transformed the eigenproblem into a linear system problem. Hence-

forth the aim of this thesis is for a given A ∈ Rm×n, find b ∈ Rm such that b ∈ Im(A) and b

has one of the following property:

1. The difference between the largest and the smallest element in b is minimized/maximized.

2. The difference between the largest and the smallest element in b is minimized/maximized

with the condition that some elements in b are already determined.

3. All elements in b are integer, i.e. b is an integer vector.

4. The vector b can be permuted into a specified structure given by the manufacturer.

In this and the following chapter we will investigate the range norm of vectors which are in

the image set of any given matrices. The range norm of an vector is the difference between

the largest element and the smallest element in the vector.

In real-life situations, there are a lot of different criteria for manufacturers to decide a

starting time for their machines. One of them may be to choose the starting time as an

58

eigenvector; so the system will achieve steady state immediately.

Typically it is always the case that there will be more than one independent eigenvector

for the manufacturers to choose from. Therefore they may wish to distinguish the one which

will suit best to their individual situations inside their factories/plants. So an additional

criterion may be required.

One of these additional criteria may be to consider the difference between the earliest

and the latest starting time of their machines in the starting time vector. We will denote this

difference to be the range norm of the starting time vector.

Note that the results in this chapter are not only restricted on optimizing the range norm

of eigenvectors; this is merely a special case for these results. In general, optimization of the

range norm in an image set of a max-linear system can be thought of optimizing the range

norm of the finishing/completion time of a manufacturing process. We shall also note that

similar problems were studied in the past; they can be found in [29] and [18] and range norm

was called the range seminorm.

4.2 Minimizing the Range Norm

When optimizing the starting time, the manufacturers may want all their machines to start at

the same time or at least as close as possible. One of the reason for this preference would be

that the manufacturers may want to keep track on which stage are the machines working in.

This can be easily done when all machines are started at the same time. There may also be

a time factor involved with the products after every cycle; the finished products/components

may need to ship out at the same time or all the raw materials arrived at the same time and

the quality of the materials may deteriorate over time.

Let us start by introducing some definitions and basic results.

59

Definition 4.2.1. Let x ∈ Rm, then we will denote the function

δ(x) =
∑
i∈M

⊕
xi −

∑
i∈M

⊕′
xi

and call it the range norm of x, i.e. range norm = largest value in x - smallest value in x.

Now using the above definition, the problem of minimizing the range norm in an image

set can be formulated as below.

Problem 2. Given a matrix A ∈ Rm×n, solve

δ(b)→ min

subject to b ∈ Im(A).

There may be an instance such that the image set of A contains no finite vectors; this is

most likely the case when we consider the fundamental eigenvectors of a reducible matrix.

Therefore we will introduce the following modified definition.

Definition 4.2.2. Let x ∈ Rm then the function

δ̃(x) =
∑
i∈M
xi 6=ε

⊕
xi −

∑
i∈M
xi 6=ε

⊕′
xi

is the range norm of x after only considering the finite components. Furthermore, if x = ε,

then δ(x) = ε by definition.

It can been seen that if x is finite, then δ̃(x) = δ(x). Now using the above definition, we

can modified Problem 2 as following:

Problem 3. Given a matrix A ∈ Rm×n, solve

δ̃(b)→ min

subject to b ∈ Im(A).

60

The first problem corresponds to the case when only finite images of A are considered

and the second problem corresponds to the case when the images of A are not necessarily

finite.

Note that for the the second problem, we have not included the case when b = ε to be a

solution to Problem 3; this is because A⊗ ε = ε for any matrix A and δ(ε) = ε by definition,

therefore it will always be a solution of Problem 3 and hence it will not make much sense to

include b = ε to be a solution.

4.2.1 The Case when the Image Vector is Finite

We will start by investigating the case when only finite images of A are considered, i.e.

Problem 2. In Chapter 2, we have discussed max-linear systems and we know that if the

image vector is finite, it is sufficient to consider only the case when the matrix is doubly

R-astic. Before we can develop a solution method to solve Problem 2, we will need the

following lemmas.

Lemma 4.2.1. [29] Suppose that A ∈ Rm×n, A 6= ε and b = A⊗ (A∗ ⊗′ 0) then

i) b ≤ 0 and

ii) bi = 0 for some i ∈M.

Lemma 4.2.2. [29] Let x, y ∈ Rm and α ∈ R, then

i) δ(x⊕ y) ≤ δ(x)⊕ δ(y) and

ii) δ(x) = δ(α⊗ x).

Using the above lemmas, we will obtain the following proposition which will present us

a solution for Problem 2.

61

Proposition 4.2.1. Let A ∈ Rm×n be doubly R-astic and vα ∈ Rm be a vector whose every

component is equal to a constant α ∈ R, then A⊗ (A∗ ⊗′ vα) is a solution to Problem 2.

Proof. Let x̄ = A∗ ⊗′ 0 and b̄ = A⊗ x̄. Suppose that there exists a vector y ∈ Im(A) such

that δ(y) < δ(b̄). By Lemma 4.2.1, the maximum value of b̄ is equal to 0 and without loss of

generality we can assume the maximum value of y is also equal to 0.

Let b̄i be a minimum component of b̄. Since δ(y) < δ(b̄) and the maximum value of b̄ and y

are equal to 0, we have

0− b̄i > 0− min
j=1,...,m

yj ≥ 0− yi,

yi > b̄i.

(4.1)

Since y ∈ Im(A), therefore ∃v ∈ Rn such that y = A⊗ v. We will choose k ∈ N such that

yi = max
j=1,...,n

(aij + vj) = aik + vk. (4.2)

Now, we can see that

b̄i = max
j=1,...,n

(aij + x̄j) ≥ aik + x̄k. (4.3)

Therefore, using (4.1), (4.2) and (4.3), we will get

aik + vk > aik + x̄k.

It implies that vk > x̄k. Note that

x̄k = min
i=1,...,m

(−aik + 0) = −alk,

62

for some l ∈M , then the inequality vk > x̄k will become

vk > −alk,

vk + alk > 0.

But this implies that yl > 0 and it is a contradiction to the assumption that the maximum

value of y is equal to 0. Therefore b̄ is a solution to Problem 2.

By Proposition 2.3.2, we can multiply the vector b̄ by α ∈ R such that c ⊗ b̄ ∈ Im(A). By

Lemma 4.2.2, we know that δ(b̄) = δ(c ⊗ b̄). Therefore by using the properties in (2.1), we

will get

b̂ = A⊗ (A∗ ⊗′ vα)

= A⊗ (A∗ ⊗′ (0⊗ α))

= (A⊗ (A∗ ⊗′ 0))⊗ α

= b̄⊗ α

= α⊗ b̄

will also be a solution to Problem 2.

Example 4.2.1. Given a matrix A =

6 2 3

ε 5 6

7 ε ε

10 11 ε

. Find a vector b̄ such that it is a

solution to Problem 2.

Since A is doubly R-astic, then by Proposition 4.2.1 a solution to Problem 2 is b̄ = A ⊗

63

(A∗ ⊗′ 0).

x̄ = A∗ ⊗′ 0 =

−6 +∞ −7 −10

−2 −5 +∞ −11

−3 −6 +∞ +∞

⊗′ 0

=

−10

−11

−6

b̄ = A⊗ x̄ =

6 2 3

ε 5 6

7 ε ε

10 11 ε

⊗

−10

−11

−6

=

−3

0

−3

0

We can see that δ(b̄) = 3 and it immediately implies that δ(b) ≥ 3, ∀b ∈ Im(A).

4.2.2 The Case when the Image Vector is Not Finite

Next we will investigate the case when the image vector may not be finite, therefore we will

now starting to investigate Problem 3. As we have mentioned before, there are cases that

eigenvectors of a matrix may not be finite. Using Theorem 3.6.2, we know that the set of

finite eigenvectors is not empty if and only if the eigenvalues of all final classes are equal to

the maximum cycle mean of the whole matrix. Therefore we will need to consider the case

when some of the entries in the image vector is not finite.

64

We should also note that for some doubly R-astic matrix, its image set will not only

consists of finite vectors; there are image vectors which can contain ε entries. Let us start by

considering the following example.

Example 4.2.2. Suppose A =

4 6 7

ε 2 ε

5 2 6

. Find a vector b̄ such that it is a solution to

Problem 3.

Since A is doubly R-astic, we can use Proposition 4.2.1 and we know that A⊗ (A∗ ⊗′ 0) is

a solution to Problem 2, i.e.

x̄ = A∗ ⊗′ 0 =

−4 ∞ −5

−6 −2 −2

−7 ∞ −6

⊗′ 0

=

−5

−6

−7

b̄ = A⊗ x̄ =

4 6 7

ε 2 ε

5 2 6

⊗

−5

−6

−7

=

0

−4

0

Therefore δ̃(b̄) = δ(b̄) = 0 − (−4) = 4. But if we let x = (−5, ε,−7)T ; it means we can

65

ignore the second column of A, then

b̂ = A⊗ x =

4 6 7

ε 2 ε

5 2 6

⊗

−5

ε

−7

=

0

ε

0

and we will get δ̃(b̂) = 0 and it is a solution to Problem 3.

The above example shows that the solution found by Proposition 4.2.1 which solve Prob-

lem 2 may not necessarily solve Problem 3.

Note that in order to obtain a solution of Problem 3 in the above example, we have set

x2 = ε and this is equivalent to removing the second column of matrix A and consider the

image set of the new matrix. By doing this, the matrix will not be doubly R-astic anymore.

But using the argument we have discussed in section 2.3, we can remove the row in which it

is equal to ε. Therefore this is equivalent to solving Problem 2 but with a reduced matrix.

In order to find a solution for Problem 3, we will need the following proposition.

Proposition 4.2.2. Let A ∈ Rm×n, A 6= ε, and vα ∈ Rm be a vector whose every component

is equal to a constant α. If x ∈ Rn such that b̄ = A ⊗ x is a solution to Problem 3 then

∀j ∈ N , either

i) xj = ε or

ii) xj = (A∗ ⊗′ vα)j.

Proof. Suppose that A is not column R-astic, i.e. ∃j ∈ N such that Aj = ε, it implies that

we can choose any value for xj as a solution to Problem 3 and therefore we can choose either

66

i) and ii) for xj . Therefore, without loss of generality, we can assume A is column R-astic.

Now, we will let b̄ be a solution to Problem 3 and the set E = {i ∈M | b̄i = ε}.

Let us first consider the non-finite components of b̄, we know that ∀i ∈ E,

ε = b̄i = max
j=1,...,n

(aij + xj).

It immediately follows that ∀i ∈ E, if aij 6= ε then xj = ε. We will let the set

F = {j ∈ N | ∃i ∈ E such that aij 6= ε}

and we can see that xj = ε, ∀j ∈ F . It remains to find the value of xj when j /∈ F .

Now let us consider the finite components of b̄. Suppose that i /∈ E, it implies that

b̄i = max
j=1,...,n

(aij + xj) > ε

and hence ∃j ∈ N such that aij 6= ε.

Also, A is column R-astic, therefore ∀j /∈ F , ∃i /∈ E such that aij 6= ε. Now we shall

consider the sub-matrix which is formed by deleting rows and columns of A with the indices

E and F respectively. By the above two arguments, we can see that this sub-matrix is

doublyR-astic. Now we have transformed Problem 3 to Problem 2 but with a smaller matrix.

Therefore, if we use Proposition 4.2.1 we know that ∀j /∈ F ,

xj = min
i/∈E

(−aij + α) = −max
i/∈E

(aij − α).

67

Since ∀j /∈ F , aij = ε, ∀i ∈ E, it immediately follows that

xj = −max
i/∈E

(aij − α),

= −max
i∈M

(aij − α),

= min
i∈M

(−aij + α),

= (A∗ ⊗′ vα)j.

By the above proposition, we know that if x is a solution to Problem 3, there are only two

values x can take for each component. Using this property, we can formulate an algorithm

which finds a solution to Problem 3.

Suppose that A ∈ Rm×n and x(k) ∈ Rn, ∀k ∈ N. First we will assume that for all

components in x(0), we have x(0)
j = (A∗ ⊗′ vα)j . Without loss of generality, we can assume

that α = 0, then we can let x(0) = A∗ ⊗′ 0 and b(0) = A⊗ x(0) be our initial solution.

Let b(0)
p be the minimum finite component of b(0). By Lemma 4.2.1, we know that

max
i=1,...,m

b
(0)
i = 0

and therefore δ̃(b(0)) = −b(0)
p . If b(0)

p = 0, it implies that δ̃(b(0)) = 0 and it immediately

follows that it is a solution to Problem 3. Let us suppose that b(0)
p 6= 0, we know that

b(0)
p = max

j=1,...,n
(apj ⊗ xj) where xj = − max

i=1,...,m
aij.

The next step will be to find which component of x(0) should be changed to ε in order to

obtain a better solution. Note that when we let xj = ε for some j ∈ N in system (2.2), it is

equivalent as disregarding/deleting the jth column of A.

68

Another thing we need to be aware of is that b(0) may be a solution to Problem 3, but we do

not know if this is the case at the moment. Therefore we will need to check for other possible

solution and compare each of them.

Our aim now is to find some j ∈ N such that if we will set x(0)
j = ε, the value of b(0)

p is

increased so we may obtain a better range norm or b(0)
p = ε so this value is not considered.

Let us look at the following matrix:

A =

a11 a12 . . . a1r . . . a1n

.

ap1 ap2 . . . apr . . . apn

.

am1 am2 . . . amr . . . amn

.

If we delete a column from A, i.e. column r, then

b(1)
p = max

j=1,...,n

j 6=r

(apj ⊗ xj)

≤ b(0)
p .

From the inequality above, we can see that we cannot increase the value of b(0)
k by deleting

columns of A. Therefore we need to find a new vector, namely x(1), such that b(1)
p = (A ⊗

x(1))p is equal to ε.

In order for b(1)
p to be equal to ε, i.e.

ap1 ⊗ x(1)
1 ⊕ ap2 ⊗ x

(1)
2 ⊕ ...⊕ apn ⊗ x(1)

n = ε,

69

we will let

x
(1)
j =

 ε if apj ∈ R,

x
(0)
j otherwise.

If apj ∈ R, ∀j ∈ N , then we will need to set x(1) = ε so b(1)
p = ε. But then, we know that

b(1) = ε and we have disregarded this to be a solution for Problem 3 in the formulation of

this problem. Therefore, we can conclude that we cannot obtain a better solution than b(0)

and hence, b(0) is a solution to Problem 3.

Note that b(1) may or may not be a better solution than b(0); even in the case when b(1) is a

better solution than b(0), we cannot tell if it is a solution to Problem 3. We have to repeat the

above process and obtain b(2), b(3), etc until we either found a l ∈ N such that δ̃(b(l)) = 0 or

x(l) = ε. In both cases, we will stop and in the first case, it immediately follows that b(l) is

a solution to Problem 3. In the second case, we have obtained all possible candidates for a

solution to Problem 3, then if we find b̄ such that

δ̃(b̄) = min
i=1,...,l−1

(δ̃(b(i))),

b̄ will be a solution to our problem.

We should also note that l ≤ n, this is because the number of components equal to ε in x is

increased by at least one after each iteration. Therefore the vector x must be equal to ε after

n iterations and hence we will only need to find at most n vectors.

Now we can generate the following algorithm to perform the steps we discussed above.

Algorithm 1.

Input: A ∈ Rm×n

Output: b̄ ∈ Rm, a solution to Problem 3

Set x(0) := A∗ ⊗′ 0, b(0) := A⊗ x(0) and b̄ := b(0).

For k = 1 to n− 1 do

70

Begin

If δ̃(b(k)) = 0, then b̄ is optimal. Stop.

Find p such that

b(k)
p = min

i=1,...,m
b

(k)
i > ε.

For j = 1 to n do

If apj ∈ R, set x(k+1)
j := ε, else set x(k+1)

j := x
(k)
j .

If x(k+1) = ε, b̄ is optimal. Stop.

Set b(k+1) := A⊗ x(k+1).

If δ̃(b(k+1)) < δ̃(b(k)), set b̄ := b(k+1).

End

4.3 Maximizing the Range Norm

In the previous section, we have investigated the problem of minimizing the range norm of

an image vector; now we will move on to the case when we want to maximize the range

norm. In some real-life systems, the manufacturers will not prefer to start all their machines

simultaneously but rather to be as spread out as possible.

One of the reason of this being the case is because the machines in manufacturing are likely

to require a huge amount of powers in order for them to work efficiently; if all the machines

starts simultaneously, this will create a huge power surge and the power circuit may not be

able to handle it, this will cause the circuit to break and in the worst case scenario, a fire or

even an explosion may occur.

This provides the motivation to investigate the case when we are maximizing the range norm

of an image set. This can be formulated as the following problem.

71

Problem 4. Given a matrix A ∈ Rm×n, solve

δ(b)→ max

subject to b ∈ Im(A).

4.3.1 The Case when the Matrix is Finite

We will use a similar approach as in the previous section, first we will consider the case when

the matrix A is finite.

Proposition 4.3.1. Let A ∈ Rm×n, then ∀b ∈ Im(A)

δ(b) ≤ max
j=1,...,n

δ(Aj)

= max
j=1,...,n

(max
i=1,...,m

aij − min
i=1,...,m

aij)

(4.4)

Proof. Let b ∈ Im(A), br be the maximum value of b and bl be the minimum value of b.

Suppose that

δ(b) > max
j=1,...,n

δ(Aj),

then it implies that ∀j ∈ N ,

br − bl > max
i=1,...,m

aij − min
i=1,...,m

aij

≥ arj − alj.

Hence we have ∀j ∈ N ,

alj − bl > arj − br (4.5)

and this implies r /∈ Mj(A, b), ∀j ∈ N . But b ∈ Im(A) and by Corollary 2.3.1 and

72

Proposition 2.3.1, we know that

⋃
j∈N

Mj(A, b) = M

and this is a contradiction. Therefore

δ(b) ≤ max
j=1,...,n

δ(Aj).

Since the range norm of the image vector is bounded by (4.4), therefore if there exists

b ∈ Im(A) such that

δ(b) = max
j=1,...,n

δ(Aj),

b will be a solution to Problem 4. Note that ∀j ∈ N , ∃x ∈ R such that Aj = A ⊗ x and

therefore Aj ∈ Im(A), ∀j ∈ N . Hence for any finite matrices, we can find a k ∈ N such

that

δ(Ak) = max
j=1,...,n

δ(Aj)

and Ak will be a solution to Problem 4.

Example 4.3.1. Given A =

4 3 8

3 2 −1

5 2 6

−1 3 0

. Find a vector b̄ such that it is a solution to

Problem 4.

Since A is a finite matrix, by Proposition 4.3.1 we know that

δ(b̄) = δ(Ak) = max
j=1,...,n

δ(Aj)

73

and therefore

max
j=1,2,3

δ(Aj) = max(5− (−1), 3− 2, 8− (−1)) = 9 = δ(A3).

Let x = (ε, ε, 0)T , then A⊗ x = A3 will be a solution to Problem 4.

4.3.2 The Case when the Matrix is Non-Finite

Finally we will consider the case when we are maximizing the range norm from the image

set of a non-finite matrix.

Proposition 4.3.2. Let A ∈ Rm×n be doubly R-astic and non-finite, i.e. ∃i ∈ M , j ∈ N

such that aij = ε, then Problem 4 is unbounded.

Proof. Let A ∈ Rm×n be doubly R-astic and ∃r ∈M , s ∈ N such that ars = ε. Let x ∈ Rn

such that

xj =

 α if j = s,

0 otherwise.

where α ∈ R is an arbitrary constant. Let b = A ⊗ x, then it immediately follows that

∀i ∈M ,

bi = (A⊗ x)i = max(max
j 6=s

(aij), α + ais).

Since ars = ε and α + ars = ε, ∀α ∈ R, we then have

br = max(max
j 6=s

(arj), α + ars) = max
j 6=s

(arj).

Since A is row R-astic, then ∃k ∈ N such that ark ∈ R and we have

br = max
j 6=s

(arj) = ark.

74

Similarly A is column R-astic, then ∃l ∈ M , l 6= r such that als ∈ R. If we choose a

sufficiently large α, we then have

bl = max(max
j 6=s

(alj), α + als) = α + als.

Since

δ(b) ≥ bl − br = α + als − ark

and α can be arbitrarily large, we have bl−br is unbounded and hence δ(b) is unbounded.

4.4 Summary

In this chapter, we have investigated on minimization and maximization range norm of vec-

tors from the image set of a matrix. We have developed an exact solution method on solving

the case of minimizing range norm when the image of a matrix is finite. We have also pro-

vided an algorithm for the case when we do not restrict the image to be a finite vector. We

have also shown that for finite matrices, we can solve the maximization case by considering

each column of the matrix and finding the column which has the maximum range norm. And

for the case of non-finite matrices, we have proved that the maximization case is unbounded.

75

Chapter 5

Optimizing Range Norm of the Image Set

With Prescribed Components

5.1 Introduction

In the previous chapter, we have investigated the problem of minimization and maximization

of the range norm over an image set. In this chapter we will continue to investigate this

problem but with additional constraint.

In some cases, the manufacturers will have a preference on the starting times for some

of their machines. Therefore the vector of starting times for the corresponding components

is prescribed. We will suppose that these prescribed starting times are feasible, i.e. they

are components of some eigenvectors, then the manufacturers will want to find the starting

times for the remaining machines so the vector of starting times for all the machines will be

an eigenvector.

On top of that the manufacturers may have some other criteria on the structures of the

starting times. One of these criteria could be to choose a starting times for the other machines

such that the range norm of all starting times is minimized or maximized. This is due to the

76

reasons we have discussed in the previous chapter. We will first investigate the problem of

minimization, then we will show that the method we developed for the minimization can be

modified to solve the maximization case.

5.2 Minimizing the Range Norm

We shall first consider the case of minimization. Let us consider a matrix A ∈ Rm×n, if we

permute the row and column indexes simultaneously, this is equivalent to renumbering the

machines in the system and therefore the overall structure is not affected. If we suppose that

the number of prescribed components to be p, then we can assume without loss of generality,

that the machines with predetermined starting times are Machine 1 to Machine p and we will

let P = {1, ..., p}. For simplicity we will separate the matrix A into two matrices and they

are defined as follow.

Definition 5.2.1. Let A ∈ Rm×n, and 1 ≤ p ≤ m − 1. We will denote Ap to be the matrix

that consists of the first p row(s) of A and Āp to be the matrix generated by deleting the first

p row(s) of A.

We could see that the matrix Ap consists of the upper part of A whereas Āp consists of

the lower part of A. We will assume without loss of generality, the following:

• The vector of prescribed components is finite and it is an image of the upper matrix,

namely Ap, i.e. c ∈ Im(Ap) ∩ Rp.

• The undetermined starting time is also finite.

Then the above problem can be formulated as below:

Problem 5. Given A ∈ Rm×n and c ∈ Im(Ap) ∩ Rp, 1 ≤ p ≤ m − 1, find d ∈ Rm−p such

77

that
δ(b)→ min

subject to b ∈ Im(A)

bT = (cT , dT).

Note that if p = 0, then the problem will be the same as Problem 2 in Chapter 4. Similarly

if the starting times for all the machines are prescribed, i.e. p = m, then there is nothing to

be determined, therefore we can assume without loss of generality, that 1 ≤ p ≤ m− 1.

We shall also note that both c and d are finite and therefore b is finite, henceforth only

finite images of A are considered and by the same argument as in the previous chapters, we

only need to consider the case when A is doubly R-astic.

We will for simplicity, in the rest of this chapter, call d ∈ Rm−p to be a feasible solution

to Problem 5 if the vector b ∈ Im(A) where bT = (cT , dT). We will also call d ∈ Rm−p to

be an optimal solution if d solves Problem 5.

5.2.1 The Case when Only One Machine is Prescribed

Before we investigate the problem for all cases of p, we would like to consider the two

special cases for this problem; when p = 1 and p = m − 1. Let us consider the following

proposition.

Proposition 5.2.1. Let A ∈ Rm×n be doubly R-astic and c ∈ Im(Ap)∩Rp, 1 ≤ p ≤ m− 1.

Suppose that b̄ ∈ Rm is an optimal solution to Problem 2 for A and d ∈ Rm−p is an optimal

solution to Problem 5 for A and c, then δ(b̄) ≤ δ(b) where bT = (cT , dT).

Proof. Since b ∈ Im(A) and b̄ has the minimum range norm over the images of A, then it

immediately follows that δ(b̄) ≤ δ(b).

Proposition 5.2.1 provides a lower bound for the range norm of the vector obtained from

an optimal solution of Problem 5. Using this result, we can immediately solve the case when

78

p = 1. Suppose that only the starting time of one machine is prescribed, then by Proposition

4.2.1 and Proposition 5.2.1, we will obtain the following result.

Proposition 5.2.2. Let A ∈ Rm×n be doubly R-astic and c = (c1) ∈ R be the vector of

prescribed component. Suppose that b = A⊗ (A∗ ⊗′ 0) and d = (c1 ⊗ b−1
1)⊗ b where b1 is

the first component of b. Then the vector (d2, ..., dm)T is an optimal solution to Problem 5.

Proof. Since d1 = (c1⊗ b−1
1)⊗ b1 = c1, then (d2, ..., dm)T is a feasible solution for Problem

5. We also know that b is an optimal solution to Problem 2 by Proposition 4.2.1, therefore we

can see that any multiple of b is also an optimal solution to Problem 2, i.e. δ(b) = δ(d). By

Proposition 5.2.1 we have obtained the lower bound for Problem 5 and since d is a feasible

solution to this problem, it immediately follows that (d2, ..., dm)T is an optimal solution to

Problem 5.

The above proposition provides us an optimal solution to Problem 5 when p = 1 and it

is not difficult to see that for the case when p = 1, we can always obtain an optimal solution

to Problem 5 by finding an optimal solution to Problem 2.

5.2.2 The Case when All but One Machine are Prescribed

Now we will consider the next special case; when p = m − 1. This is the case when all

but one of the starting time are prescribed and the method is less straight forward than the

previous case.

First we will need to obtain a feasible solution for d. Let A ∈ Rm×n be a given doubly

R-astic matrix and c ∈ Im(Ap) ∩Rp be the vector of prescribed components, then ∃x̄ ∈ Rn

where x̄ = (Am−1)∗ ⊗′ c such that

c = Am−1 ⊗ x̄.

79

Using the vector x̄, we can obtain

d̄ = Ām−1 ⊗ x̄.

We can see that d̄ is a feasible solution for Problem 5 from the following equation.

A⊗ x̄ =

 Am−1

Ām−1

⊗ x̄ =

 Am−1 ⊗ x̄

Ām−1 ⊗ x̄

 =

 c

d̄

 = b.

Suppose that L and U represent the minimum and the maximum value of c respectively, i.e.

L = min
i=1,...,m−1

ci,

U = max
i=1,...,m−1

ci.

We know that d̄ consists of only one element, therefore there are only three cases to consider:

1) L ≤ d̄ ≤ U, i.e. δ(b) = δ(c) = U − L

2) d̄ < L, i.e. δ(b) = U − d̄

3) U < d̄, i.e. δ(b) = d̄− L

In the first case, we see that we cannot improve the range norm by replacing the value of

d̄ with any larger or smaller value, therefore d̄ is an optimal solution of Problem 5. Next we

will consider the second case.

Proposition 5.2.3. Let A ∈ Rm×n be doubly R-astic, c ∈ Im(Ap)∩Rp and d̃ be an optimal

solution to Problem 5. Suppose that x̄ = (Ap)∗ ⊗′ c and d̄ = Āp ⊗ x̄, then d̃ ≤ d̄.

Proof. Let x ∈ Rn be any solution to the linear system Ap ⊗ x = c. Since x̄ = (Ap)∗ ⊗′ c is

80

the principal solution to the system Ap ⊗ x = c, therefore by Theorem 2.3.1, we know that

x ≤ x̄. (5.1)

Let d̃ be an optimal solution to Problem 5, then ∃x̃ ∈ Rn such that d̃ = Āp⊗x̃ andAp⊗x̃ = c.

But by (5.1), we know that x̃ ≤ x̄ and therefore

d̃ = Āp ⊗ x̃ ≤ Āp ⊗ x̄ = d̄.

From the above proposition we have found the upper bound for d and it is d̄. If we look

back at the second case, we can see that we cannot improve the range norm by replacing d̄

with any smaller value, therefore we can deduce that d̄ is an optimal solution to Problem 5

for this case.

Finally we will consider the case when U < d̄. For this situation, our goal is to find out a

smaller value to replace d̄, ideally so that this value is between L and U . This can be quickly

checked by letting d(1) = U and find out if the vector

 c

U

 is an image of A. If this is the

case, then d(1) = U is an optimal solution to Problem 5.

Suppose that this is not the case, i.e. U < d(k), k = 1, 2, ..., then we would want to find

out what is the smallest value we can replace d̄ without affecting feasibility and this value

will be then our optimal solution to Problem 5. Let us consider the value d̄, we know that d̄

is found by the following:

d̄ = Ām−1 ⊗ x̄

= (am1 ⊗ x̄1)⊕ (am2 ⊗ x̄2)⊕ ...⊕ (amn ⊗ x̄n)

= max
j=1,...,n

(amj + x̄j).

81

In order to find another feasible solution, namely d(1) such that d(1) < d̄, we will need to

decrease some or all of the values in x̄. Suppose that

K = {k ∈ N | amk + x̄k = max
j=1,...,n

(amj + x̄j) = d̄},

then we will choose a new x which will be called x(1) as the following,

x
(1)
j =

 x̄j − τ (1) if j ∈ K,

x̄j otherwise

where τ (1) > 0 and we will let

d(1) = max
j=1,...,n

(amj + x
(1)
j).

Now we will need to check whether d(1) is a feasible solution to the problem. Let us consider

the following linear system, Ap ⊗ x = b, we will let

Pj = {q ∈ P | (aqj − cq) = max
i=1,...,p

(aij − ci)} ∀j ∈ N.

From Theorem 2.3.1 we know that x is a solution to the system if and only if

i) x ≤ x̄ and

ii)
⋃
j∈Nz

Pj = P where Nz = {j ∈ N | xj = x̄j}.

Using this we can find out whether x(1) is a solution to the system by checking if i) and ii)

are satisfied. We know that i) is automatically satisfied by the choice of x(1). We also know

82

that x(1)
j = x̄j if j /∈ K, therefore we can check if ii) is satisfied by finding whether

⋃
j /∈K

Pj = P

is true.

If ii) is not satisfied, it means that d(1) is not a feasible solution and we cannot reduce the

value of d̄. On the other hand, if ii) is satisfied, it means that ∀j ∈ K, the values for x(1)
j can

be decreased arbitrarily without affecting feasibility, i.e. we can take τ (1) to be any arbitrary

positive value. We will want to take the smallest possible value for d(1), therefore we will

need to choose a value for τ (1) such that

max
j=1,...,n

(amj + x
(1)
j)

is minimized. Hence we will need ∀k ∈ K,

max
j=1,...,n

j /∈K

(amj + x
(1)
j) ≥ amk + x

(1)
k ,

max
j=1,...,n

j /∈K

(amj + x̄j) ≥ amk + x̄k − τ (1),

i.e.

τ (1) ≥ (amk + x̄k)− max
j=1,...,n

j /∈K

(amj + x̄j) > 0. (5.2)

Since the value of d(1) is minimized when we take any value for τ (1) satisfying the inequality

(5.2), therefore for simplicity we will choose the smallest possible value for τ (1), i.e. we will

let

τ (1) = (amk + x̄k)− max
j=1,...,n

j /∈K

(amj + x̄j). (5.3)

83

Note that if we let W = {amj + x̄j | j = 1, ..., n}, then τ (1) is the difference between the

largest value and the second largest value in W . It may be possible that the second largest

value in W is equal to ε, i.e.

max
j=1,...,n

j /∈K

(amj + x̄j) = ε.

This implies that we can set d(1) to be arbitrarily small without affecting feasibility and

hence we can set d(1) = U to be our optimal solution. But this contradicts our assumption

that d(1) = U is not a feasible solution earlier on, therefore we know that this cannot be the

case here.

By finding τ (1), we have obtained the minimum value for d(1). The next step will be to

find out if we can replace d(1) with an even smaller value and therefore we will repeat the

process again and use x(1) to find x(2), τ (2) and d(2), etc. We will stop when we cannot obtain

a better feasible solution for d and this will be an optimal solution for Problem 5.

There are several points we should be aware for this method. The first is when we are

checking the feasibility of d(r), ∀r ∈ N, we can see that i) is automatically satisfied again

because of the choice of x(r). Therefore in each step, we only need to check that if ii) is

satisfied.

Secondly, note that the feasibility can also be checked by calculating Ap ⊗ x(r) and find

out if it is equals to c. This will require O(pn2) operations. But when we are using our

method of checking feasibility, the same sets P1, ..., Pn are used repeatedly so they are only

needed to be calculated once. Also finding the union of these sets and checking if it is equal

to P only requiresO(pn) operations. Therefore this method is more efficient than calculating

Ap ⊗ x(r) every time we obtained a new x(r).

Finally we know that due to the choice of τ (1) (5.3), the number of elements in the set K

84

will increase by at least one from the previous step. We also know that if K = N then

⋃
j /∈K

Pj = ∅ 6= P.

This means that d(n) is infeasible. Therefore the maximum number of steps required will be

less than or equal to n.

After considering the case when p = m − 1, we have developed a method for solving

this case. In fact, it is possible to modify this method to solve the general case, which we

will investigate below.

5.2.3 The General Case

Now we will start to consider the general case for p. We will modify the method we de-

veloped for the case when p = m − 1 so that it will generate a vector for the case when

2 ≤ p ≤ m − 1. And we will show that the vector generated by this method is an optimal

solution to Problem 5.

Suppose that A ∈ Rm×n be a given matrix and c ∈ Im(Ap)∩Rp, 1 ≤ p ≤ m− 1, be the

vector of prescribed components. We will do the same as before, we will find x̄ = (Ap)∗⊗′ c

and calculate d̄ = Āp ⊗ x̄. We will also find the sets P1, ..., Pn such that ∀j ∈ N ,

Pj = {q ∈ P | (aqj − qk) = max
i=1,...,p

(aij − ci)}.

Similarly as before, we will let U be the maximum value of c, i.e.

U = max
i=1,...,p

ci,

85

and d̄max represents the maximum value of d̄, i.e.

d̄max = max
i=1,...,m−p

d̄i.

If d̄max > U then the range norm may be improved by replacing the corresponding entries

in d̄ with a smaller value. Therefore we will let

R = {r ∈ {1, ...,m− p} | d̄r = d̄max}

and in addition, we will let

K = {k ∈ N | ∃r ∈ R, d̄r = max
j=1,...,n

(ar+p,j + x̄j) = ar+p,k + x̄k}.

We will also set a new x which will be called x(1) such that

x
(1)
j =

 x̄j − τ (1) if j ∈ K

x̄j otherwise

where τ (1) > 0.

The next step will be checking the feasibility of the new value. We will check the feasi-

bility by the same method as before. If

⋃
j /∈K

Pj = P

is false, then the new value is not feasible and d̄ will be our optimal solution to Problem 5.

Otherwise it is feasible and we will need to determine a value for τ (1).

Our objective here is to find a minimum value for τ (1) such that we cannot improve

the range norm of the resulting vector by taking any value of τ (1) larger than this lower

86

bound. Since we need to consider all entries in the new d, therefore this process will be less

straightforward than the case when p = m− 1.

First let us consider how we obtain the new d. We will let d(1) = Āp ⊗ x(1), then ∀i ∈

{1, ...,m− p}

d
(1)
i = max

j=1,...,n
(ai+p,j + x

(1)
j)

= max (max
j=1,...,n

j /∈K

(ai+p,j + x
(1)
j),max

k∈K
(ai+p,k + x

(1)
k))

= max (max
j=1,...,n

j /∈K

(ai+p,j + x̄j),max
k∈K

(ai+p,k + x̄k − τ (1))).

(5.4)

We also know that ∀r ∈ R,

d(1)
r ≥ max

k∈K
(ar+p,k + x̄k − τ (1))

≥ d̄max − τ (1).

(5.5)

Let d(1)
s be one of the maximum values of d(1), from (5.4) we can see that this value is

minimized when τ (1) is large enough so that

max
j=1,...,n

j /∈K

(as+p,j + x̄j)) ≥ max
k∈K

(as+p,k + x̄k − τ (1)).

Therefore

d(1)
s = max

j=1,...,n

j /∈K

(as+p,j + x̄j). (5.6)

87

Now using (5.5) and (5.6), we know that for sufficiently large τ (1), we have

d̄max − τ (1) ≤ d(1)
r , ∀r ∈ R,

≤ max
i=1,...,m−p

d
(1)
i ,

= max
i=1,...,m−p

(max
j=1,...,n

j /∈K

(ai+p,j + x̄j)).

Hence

τ (1) ≥ d̄max − max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x̄j)) > 0.

We will again choose the smallest possible value as our τ (1), i.e. we will let

τ (1) = d̄max − max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x̄j)). (5.7)

Now if we look at (5.7) and let p = m − 1, then we can see that (5.7) coincides with (5.3).

We can also see that it may be possible that

max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x̄j)) = ε

and it immediately implies that we can set the maximum value of d(1) arbitrarily small.

Therefore we can set τ (1) = d̄max − U and the resulting d(1) will be an optimal solution to

Problem 5.

It may also be the case that the maximum value of d(1) is smaller or equal to U . If this is

the case, we will let

η = U − max
i=1,...,m−p

d
(1)
i

and the vector η ⊗ d(1) will be our optimal solution to Problem 5. Otherwise we will repeat

the process again and replace x̄ and d̄ with x(1) and d(1) respectively and find x(2), d(2) and

88

τ (2), etc.

Algorithm 2.
Input: A ∈ Rm×n and c ∈ Rp, 2 ≤ p ≤ m− 1
Output: d̂ ∈ Rm−p, an optimal solution to Problem 5.

Set x(0) := (Ap)∗ ⊗′ c, d(0) := Āp ⊗ x(0),

d(0)
max := max

i=1,...,m−p
d

(0)
i

and
U := max

i=1,...,p
ci.

If d(0)
max ≤ U
d(0) cannot be improved and therefore d̂ := d(0). Stop.

For all j ∈ N , find

Pj = {q ∈ P | (aqj − qk) = max
i=1,...,p

(aij − ci)}.

Set u := 0.
While d(u)

max > U do
Begin

Find
R = {r ∈ {1, ...,m− p} | d(u)

r = d(u)
max}

and
K = {k ∈ N | ∃r ∈ R, d̄r = max

j=1,...,n
(ar+p,j + x̄j) = ar+p,k + x̄k}.

If ⋃
j /∈K

Pj = P

Set x(u+1) by the following:

x
(u+1)
j :=

{
x

(u)
j − τ (u+1) if j ∈ K,
x

(u)
j otherwise

where
τ (u+1) := d(u)

max − max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x
(u)
j)).

89

If τ (u+1) = +∞, then we will set τ (u+1) := d
(u)
max − U .

Set d(u+1) := Āp ⊗ x(u+1) and

d(u+1)
max := max

i=1,...,m−p
d

(u+1)
i .

If d(u+1)
max ≤ U
Set η := U − d(u+1)

max and d(u+1) := η ⊗ d(u+1).
Then d̂ := d(u+1) will be our optimal solution. Stop.

Else
Set u := u+ 1.

Else
d(u) cannot be improved anymore and therefore d̂ := d(u). Stop.

End

5.2.4 Correctness of the Algorithm

Now we need to show that Algorithm 2 produce an optimal solution to Problem 5. First let

us consider the following proposition.

Proposition 5.2.4. Let A ∈ Rm×n be doubly R-astic and c ∈ Rp be the vector of prescribed

components. Suppose that d(1), d(2), ..., d(l) be all the d vectors produced by Algorithm 2,

then

δ

 c

d(1)

 ≥ δ

 c

d(2)

 ≥ ... ≥ δ

 c

d(l)

 .

Proof. Suppose that L and U represent the minimum and the maximum value of b respec-

tively, i.e.

L = min
i=1,...,p

ci,

U = max
i=1,...,p

ci.

and ∀u ∈ {1, ..., l}, d(u)
min and d(u)

max represent the minimum and the maximum value of d(u)

90

respectively, i.e.

d
(u)
min = min

i=1,...,m−p
d

(u)
i ,

d(u)
max = max

i=1,...,m−p
d

(u)
i .

From Algorithm 2, we know that ∀u, d(u)
max ≥ U . Therefore if we consider the uth and the

u+ 1th term, then we will have

δ(b(u)) = δ

 c

d(u)

 = d
(u)
max −min(L, d

(u)
min),

δ(b(u+1)) = δ

 c

d(u+1)

 = d
(u+1)
max −min(L, d

(u+1)
min).

(5.8)

Now we will compare the differences between the two range norms and there are four cases

to consider.

Case (1)

δ(b(u)) = d(u)
max − L and δ(b(u+1)) = d(u+1)

max − L.

From (5.7) we know that τ (u+1) = d
(u)
max − d(u+1)

max > 0. Hence d(u)
max > d

(u+1)
max and therefore

δ(b(u)) > δ(b(u+1)) as required.

Case (2)

δ(b(u)) = d(u)
max − d

(u)
min and δ(b(u+1)) = d(u+1)

max − L.

By the definition of x(u+1), we know that

x(u) ≥ x(u+1) =⇒ Āp ⊗ x(u) ≥ Āp ⊗ x(u+1),

=⇒ d(u) ≥ d(u+1),

=⇒ d
(u)
min ≥ d

(u+1)
min .

91

Therefore d(u+1)
min ≥ L ≥ d

(u)
min ≥ d

(u+1)
min and hence they are equal. This implies that Case (2)

is equivalent to Case (1).

Case (3)

δ(b(u)) = d(u)
max − L and δ(b(u+1)) = d(u+1)

max − d
(u+1)
min .

Using the definition of x(u+1) again, we know that

τ (u+1) ⊗ x(u+1) ≥ x(u) =⇒ Āp ⊗ (τ (u+1) ⊗ x(u+1)) ≥ Āp ⊗ x(u),

=⇒ τ (u+1) ⊗ (Āp ⊗ x(u+1)) ≥ d(u),

=⇒ τ (u+1) ⊗ d(u+1) ≥ d(u),

=⇒ τ (u+1) + d
(u+1)
min ≥ d

(u)
min,

=⇒ d
(u)
max − d(u+1)

max + d
(u+1)
min ≥ d

(u)
min, by (5.7)

=⇒ d
(u)
max − d(u)

min ≥ d
(u+1)
max − d(u+1)

min .

(5.9)

Since L ≤ d
(u)
min, therefore

δ(b(u)) = d(u)
max − L,

≥ d(u)
max − d

(u)
min,

≥ d(u+1)
max − d

(u+1)
min by (5.9),

= δ(b(u+1))

as required.

Case (4)

∆(x(u)) = d(u)
max − d

(u)
min and ∆(x(u+1)) = d(u+1)

max − d
(u+1)
min .

It immediately follows from (5.9) that δ(b(u)) ≥ δ(b(u+1)).

Corollary 5.2.1. Let A ∈ Rm×n be doubly R-astic and c ∈ Rp be the vector of prescribed

components. Suppose that d(u) ≥ g ≥ d(u+1) where d(u) and d(u+1) are the d vectors obtained

92

from the u and u+ 1 steps of Algorithm 2, then

δ

 c

d(u)

 ≥ δ

 c

g

 ≥ δ

 c

d(u+1)

 .

Proof. It immediately follows from Proposition 5.2.4.

Proposition 5.2.5. Let A ∈ Rm×n be doubly R-astic and c ∈ Rp be the vector of prescribed

components. Suppose that d̂ be the vector obtained from Algorithm 2 and d̃ be an optimal

solution to Problem 5, then

δ

 c

d̃

 = δ

 c

d̂

 .

Proof. By Proposition 5.2.4, we know that δ

 c

d̂

 gives the best range norm from all the

other vectors produced in the algorithm. Therefore it is the best possible feasible solution

produced from Algorithm 2.

Now suppose that d̃ is an optimal solution to Problem 5 and let d̃min and d̃max be the

minimum and maximum value of d̃ respectively. We will also let d̂min and d̂max be the

minimum and maximum value of d̂. There are four cases to consider:

Case (1)

d̂max = U and d̂min ≥ L.

In this case, there is nothing to prove since we cannot improve the vector anymore. Therefore

d̂ is an optimal solution to Problem 5.

Case (2)

d̂max = U and d̂min < L.

93

Suppose there exists d̃ such that d̃min > d̂min and we will let α = d̃min − d̂min > 0. Then

d̃l = max
j=1,...,n

(al+p,j + x̃j) ≥ d̃min

= max
j=1,...,n

(ai+p,j + x̃j)

= d̂min + α

= max
j=1,...,n

(al+p,j + x̂j) + α.

Let us denote Q = {q ∈ N | al+p,q + x̂q = d̂min} and K = {k ∈ N | ar+p,k + x̂k = d̂max}.

Then we will have x̃q ≥ x̂q + α, ∀c ∈ C. Since x̃ ≤ x̄ and x̂j = x̄j , ∀j /∈ K, therefore we

have C ⊆ K.

Since Q ⊆ K, this implies that ∀q ∈ Q such that

d̂max = ar+p,q + x̂q ≤ ar+p,c + x̃c − α

≤ max
j=1,...,n

(ar+p,j + x̃j)− α

≤ d̃max − α.

If L ≥ d̃min, then

δ

 c

d̃

 = d̃max − d̃min

≥ d̂max + α− d̃min

= d̂max + α− d̂min − α

= d̂max − d̂min

= U − d̂min

= δ

 c

d̂

 .

(5.10)

94

Since d̃ is an optimal solution to Problem 5, this implies that both sides must be equal and

hence d̂ is also an optimal solution. On the other hand, suppose that L < d̃min, then

δ

 c

d̃

 = d̃max − L

≥ d̂max + α− L

> d̂max + α− d̂min

> d̂max − d̂min

= U − d̂min

= δ

 c

d̂

(5.11)

which is a contradiction.

Case (3)

d̂max > U and d̂min ≥ L.

Suppose that d̃max < d̂max then ∀k ∈ K,

d̂max = al+p,k + x̂k > d̃max

≥ d̃l

= max
j=1,...,n

(al+p,j + x̃j)

which implies x̂k > x̃k. But by Algorithm 2, we know that x̃ is not feasible which is a

contradiction. Therefore d̂ is an optimal solution to Problem 5.

Case (4)

d̂max > U and d̂min < L.

If there exists d̃max < d̂max, then immediately by case (3), we know that it is not possible.

95

Therefore d̃max ≥ d̂max and d̃min > d̂min. But this is the same as case (2) and therefore we

can conclude that d̂ is an optimal solution to Problem 5.

By the above proposition, we have shown that Algorithm 2 provides us an optimal solu-

tion to Problem 5.

5.3 Maximizing the Range Norm

Now we will consider on maximizing the range norm with some components prescribed. We

will use the same assumption as before and as a reminder they are:

• The vector of prescribed components is finite and it is an image of the upper matrix,

namely Ap, i.e. c ∈ Im(Ap) ∩ Rp.

• The undetermined starting time is also finite.

But this time the objective function will be maximized. Then the problem can be formulated

as follows:

Problem 6. Given A ∈ Rm×n and c ∈ Im(Ap) ∩ Rp, 0 ≤ p ≤ m, find d ∈ Rm−p such that

δ(b)→ max

subject to b ∈ Im(A)

bT = (cT , dT).

5.3.1 The Case when Only One Machine is Prescribed

We will again consider the case when only one machine is prescribed first, that is p = 1. We

will show that in this special case, Problem 6 can be considered the same as its counterpart

part in Chapter 4, i.e. Problem 4. This can be seem by the following propositions.

96

Proposition 5.3.1. Let A ∈ Rm×n and c = (c1) ∈ R be the prescribed component. Suppose

that b ∈ Im(A) such that b is an optimal solution to Problem 4 and d = (c1⊗ b−1
1)⊗ b where

b1 is the first component of b, then the vector (d2, ..., dm)T is an optimal solution to Problem

6.

Proof. Since d1 = (c1⊗ b−1
1)⊗ b1 = c1, then (d2, ..., dm)T is a feasible solution for Problem

6. We know that b is an optimal solution to Problem 4, therefore any multiple of b is also

an optimal solution to Problem 4, i.e. δ(b) = δ(d). Since d ∈ Im(A) and it has the

maximum range norm, it immediately follows that (d2, ..., dm)T is an optimal solution to

Problem 6.

Proposition 5.3.2. Let A ∈ Rm×n be doubly R-astic and non-finite, i.e. ∃i ∈ M , j ∈ N

such that aij = ε. Suppose that c = (c1) ∈ R is the vector of prescribed component, then

Problem 6 is unbounded.

Proof. It immediately follows from Proposition 4.3.2.

5.3.2 The Case when All but One Machine are Prescribed

Next we will consider the case when p = m− 1, i.e. the case when all but one of the starting

time are prescribed. We will investigate this case by using method similar to that for the

minimization problem.

Let A ∈ Rm×n be a given doubly R-astic matrix and c ∈ Im(Ap) ∩ Rp be the vector of

prescribed components, then ∃x̄ ∈ Rn where x̄ = (Am−1)∗ ⊗′ c such that

c = Am−1 ⊗ x̄.

Using the vector x̄, we will obtain

d̄ = Ām−1 ⊗ x̄.

97

We shall let L and U be the minimum and the maximum value of c respectively, i.e.

L = min
i=1,...,m−1

ci,

U = max
i=1,...,m−1

ci.

We will again have three cases to consider:

1) L ≤ d̄ ≤ U, i.e. δ(b) = δ(c) = U − L

2) d̄ < L, i.e. δ(b) = U − d̄

3) U < d̄, i.e. δ(b) = d̄− L.

Before we consider each case individually, let us consider the following proposition:

Proposition 5.3.3. Let A ∈ Rm×n be doubly R-astic, c ∈ Im(Ap)∩Rp and d̃ be an optimal

solution to Problem 6. Suppose that x̄ = (Ap)∗ ⊗′ c and d̄ = Āp ⊗ x̄, then d̃ ≤ d̄.

Proof. Since the proof in Proposition 5.2.3 does not require us to consider the range norm

of d̃, the proof of Proposition 5.3.3 immediately follows from the proof of Proposition 5.2.3.

From Proposition 5.3.3, we have again found an upper bound of d for Problem 5 and it

is also d̄. Therefore we can only decrease the value for d̄ in order to improve the range norm

of the resulting vector.

Let us look back at the three cases; for the first case, we can see that the range norm can

only be improved when the value of d̄ is replaced with a smaller value such that it is smaller

than L. In fact, in order to obtain an optimal solution for Problem 6, we will need to find a

new d such that it is as small as possible. We can also see that this also applies to the second

case.

Now we will look at the third case, this case is a bit more complicated than the other

cases. This is because when we decrease the value of d̄, we will actually obtain a worse

98

range norm than before. But it may happen that we obtain a small enough value such that the

range norm of the resulting vector is smaller than the range norm we started with. Therefore

we will need to take this into account.

In order to find the smallest value we can replace d̄, we will use the method similar as

for the minimization problem and find d(1), d(2), etc. Again, we will stop when we obtain a

feasible solution d(l), l ∈ N such that d(l+1) is not a feasible solution anymore. But then we

will need to compare with our first feasible solution since d(l+1) may not be a better feasible

solution and the value which is the best range norm out of the two will be our optimal solution

to Problem 6.

We also need to note that it may be possible that we find a τ (q) such that it is equal to

+∞, then it immediately implies that we can set d(q) to be arbitrarily small and therefore the

optimal solution to Problem 6 is unbounded.

5.3.3 The General Case

Using the observations we have seen above, we can see that the maximization problem can

be solved using the same method as the minimization problem. Therefore we are going to

modify Algorithm 2 in order to solve Problem 6 for the general case, i.e. 2 ≤ p ≤ m− 1.

Let us suppose that A ∈ Rm×n be a given doubly R-astic matrix and c ∈ Im(Ap) ∩ Rp

be the vector of prescribed components, then ∃x̄ ∈ Rn where x̄ = (Ap)∗ ⊗′ c such that

Ap ⊗ x̄ = c.

We will let d̄ = Āp ⊗ x̄ and ∀j ∈ N ,

Pj = {q ∈ P | (aqj − cq) = max
i=1,...,p

(aij − ci)}.

99

We will also let d̄min be the minimum value of d̄, i.e.

d̄min = min
i=1,...,m−p

d̄i.

The range norm may be improved by replacing the corresponding entries in d̄ with a smaller

value. Therefore we will let

R = {r ∈ {1, ...,m− p} | d̄r = d̄min}

and

K = {k ∈ N | ∃r ∈ R, d̄r = max
j=1,...,n

(ar+p,j + x̄j) = ar+p,k + x̄k}.

We will also set a new x which will be called x(1) such that

x
(1)
j =

 x̄j − τ (1) if j ∈ K

x̄j otherwise

where τ (1) > 0.

The next step will be checking the feasibility of the new value. If

⋃
j /∈K

Pj = P.

is false, then the new value is not feasible and d̄ will be our optimal solution to Problem 6.

Otherwise it is feasible and we will need to determine a value for τ (1). By using the same

method as the minimization problem, we can find τ (1) by (5.7), i.e.

τ (1) = d̄max − max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x̄j)).

100

If τ (1) is equal to +∞, i.e.

max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x̄j)) = ε,

then it immediately follows that the optimal solution is unbounded.

If this is not the case, then we will repeat the process again and replace x̄ and d̄ with x(1) and

d(1) respectively and find x(2), d(2) and τ (2), etc. We will stop after we cannot find another

feasible solution and finally we will compare the range norm from the vector resulting from

the last vector and initial vector d̄.

Algorithm 3.
Input: A ∈ Rm×n and c ∈ Rp, 2 ≤ p ≤ m− 1
Output: d̂ ∈ Rm−p, an optimal solution to Problem 6 or the optimal solution to Problem 6
is unbounded.

Set x(0) := (Ap)∗ ⊗′ c, d(0) := Āp ⊗ x(0),

d
(0)
min := min

i=1,...,m−p
d

(0)
i

For all j ∈ N , find

Pj = {q ∈ P | (aqj − cq) = max
i=1,...,p

(aij − ci)}.

For u = 0 to n do
Begin

Find
R = {r ∈ {1, ...,m− p} | d(u)

r = d
(u)
min}

and
K = {k ∈ N | ∃r ∈ R, d̄r = max

j=1,...,n
(ar+p,j + x̄j) = ar+p,k + x̄k}.

If ⋃
j /∈K

Pj = P

101

Set x(u+1) by the following:

x
(u+1)
j :=

{
x

(u)
j − τ (u+1) if j ∈ K,
x

(u)
j otherwise

where
τ (u+1) := d(u)

max − max
i=p+1,...,m

(max
j=1,...,n

j /∈K

(aij + x
(u)
j)).

If τ (u+1) = +∞, then the optimal solution is unbounded. Stop.
Set d(u+1) := Āp ⊗ x(u+1) and

d(u+1)
max := max

i=1,...,m−p
d

(u+1)
i .

Else

if δ
(

c
d(u)

)
= max(δ

(
c
d̄

)
, δ

(
c
d(u)

)
), then d̂ := d(u). Stop.

Else d̂ := d̄. Stop.
End

5.4 Summary

In this chapter, we have investigated the case of minimizing and maximizing range norm

of an image set when some of the components of the vector are given and fixed. We have

shown that for the case when only one component is prescribed, the minimization and the

maximization problem is very similar to the counterpart in Chapter 4. We have also shown

that the method for solving the general case of the minimization problem can be modified

to solve the maximization case and we have developed algorithms to solve the minimization

and maximization problems.

102

Chapter 6

Integer Linear Systems

6.1 Introduction

In real-life situation, the manufacturers may prefer to have the completion times for their

products in terms of hours or minutes, i.e. integer completion time vector. One of the

reason of being this is because they may find it easier to keep track of the system this way.

But unfortunately the production times for each component in different machines do not

necessary last in term of the same units the manufacturers desired, i.e. non-integer production

matrix.

Similarly, if we are considering the steady state problem, the fundamental eigenvectors

of a production system do not necessarily consist of integer values. But the manufacturers

may wish to choose the starting times for their machines as an integer eigenvector due to a

similar reason we discussed above. Our goal is to find out if such vectors exist and whether

can we find all such vectors.

When we model this question in terms of max-algebra, the problem of finding an inte-

ger image vector b from a non-integer production matrix A is called integer linear system

problem and it can be defined as follows:

103

Problem 7. Given A ∈ Rm×n, find b ∈ Zm such that

A⊗ x = b where x ∈ Rn.

This is equivalent to the task of deciding whether if there exists a vector b ∈ Zm such that

b ∈ Im(A).

Since we are only looking for images of a matrix which only consists of integer compo-

nents, by the argument in Chapter 2 we can assume thatA is doublyR-astic for the rest of this

chapter. Before we investigate this problem in detail, we will need to define the following

notations and definitions.

Definition 6.1.1. If A ∈ Rm×n then IIm(A) = Im(A) ∩ Zm, i.e. the set of integral images

of A.

Definition 6.1.2. Let α ∈ R, we will denote f(α) = α− bαc, i.e. f(α) is the fractional part

of α.

For completeness, we will denote f(ε) = ε and dεe = ε = bεc.

Definition 6.1.3. Let A ∈ Rm×n, we will denote ∀j ∈ N , ∀r ∈M ,

Ij(A, r) = {i ∈M | f(aij) = f(arj)}.

Definition 6.1.4. Let A ∈ Rm×n, we will define the relation ∼j such that ∀j ∈ N ,

apj ∼j aqj if p ∈ Ij(A, q).

104

Now we can see that ∀j ∈ N and ∀p, q, s ∈M

1) apj ∼j apj,

2) apj ∼j aqj ⇒ aqj ∼ apj and

3) apj ∼j aqj, aqj ∼j asj ⇒ apj ∼j asj.

Therefore ∼j defines an equivalence relation and Ij(A, r) are the equivalence classes.

We will also need the following definition for max-algebraic linear system which were

presented in Chapter 2. Suppose we have the system A ⊗ x = b where A = (aij) ∈ R
m×n

and b = (b1, ..., bm) ∈ Rm are given, then we denote

S(A, b) = {x ∈ Rn | A⊗ x = b},

Mj(A, b) = {k ∈M | (akj − bk) = max
i=1,...,m

(aij − bi)}, ∀j ∈ N,

x̄j = − max
i=1,...,m

(aij − bi), ∀j ∈ N.

In order to find out if integral images exist for any matrix A, we will first need to determine

some necessary conditions.

Proposition 6.1.1. Let A ∈ Rm×n be doubly R-astic and b ∈ IIm(A), then ∀j ∈ N ,

∃rj ∈M such that

Mj(A, b) ⊆ Ij(A, rj).

Proof. Let A ∈ Rm×n be doubly R-astic and b ∈ IIm(A). Suppose that j ∈ N and

k ∈Mj(A, b), then ∀i ∈Mj(A, b)

akj − bk = aij − bi,

f(akj − bk) = f(aij − bi),

(akj − bk)− b(akj − bk)c = (aij − bi)− b(aij − bi)c.

105

Since b ∈ IIm(A), we know that bl ∈ Z, ∀l and it implies

b(alj − bl)c = baljc − bl.

Therefore we have

(akj − bk)− (bakjc − bk) = (aij − bi)− (baijc − bi),

akj − bakjc = aij − baijc,

f(akj) = f(aij)

and hence ∀i ∈Mj(A, b), i ∈ Ij(A, k).

Corollary 6.1.1. Let A ∈ Rm×n be doubly R-astic and b ∈ IIm(A). Suppose that J ⊆ N

such that ⋃
j∈J

Mj(A, b) = M

then ∀j ∈ J , ∃rj ∈M such that

⋃
j∈J

Ij(A, rj) = M.

Proof. It immediately follows from Proposition 6.1.1.

6.2 The Case of One Column Matrix

Now we will investigate the integer linear system problem. We will start by considering the

easier cases and we will move on to the general cases in the latter part of this chapter. First,

we will consider the case when the matrix A has only one column, i.e. n = 1.

Using Corollary 6.1.1, we can obtain the following proposition which identifies the exis-

tence of an integer image for any one column matrix.

106

Proposition 6.2.1. Let A ∈ Rm×1
and A 6= ε, IIm(A) 6= ∅ if and only if ∃r ∈ M such that

I1(A, r) = M , i.e. all entries in column one have the same fractional part.

Proof. ”⇒” immediately follows from Corollary 6.1.1. Now let us suppose that ∃r ∈ M

such that I1(A, r) = M . It implies that every element in A must have the same fractional

part.

Now if we choose a x = (x1) such that f(ai1 + x1) = 0, ∀i ∈ M , then we can see that

A⊗ x ∈ Zm.

Hence Proposition 6.2.1 provides a necessary and sufficient condition for the case when

n = 1. We can also use a similar idea to solve a special case for A ∈ Rm×n.

Proposition 6.2.2. Let A ∈ Rm×n be doubly R-astic, if ∃k ∈ N , ∃r ∈ M such that

Ik(A, r) = M then IIm(A) 6= ∅.

Proof. Suppose that ∃k ∈ N , ∃r ∈ M such that Ik(A, r) = M . We can find a x ∈ Rn by

setting xk ∈ R such that f(aik + xk) = 0, ∀i ∈ M and xj = ε, ∀j 6= k. By doing this, we

will obtain the vector b = A⊗ x and b ∈ Zm.

Proposition 6.2.2 gives a sufficient condition for IIm(A) 6= ∅ for the general case. The

next step will be to consider what happens if this condition is not met. The aim is to find

a both necessary and sufficient for the general case. Therefore we will suppose that the

condition of Proposition 6.2.1 is not satisfied for the rest of this chapter.

6.3 The Case of Two Columns Matrix

Next we will consider the case when the matrix only consists of two columns, i.e. n = 2.

Now the integer linear system problem is less straight forward than the one column case.

First let us consider the following proposition.

107

Proposition 6.3.1. [23][62] Let A ∈ Rm×2
be doubly R-astic, m > 1, then there exist

s, t ∈ M , s 6= t such that s ∈ M1(A, b), t ∈ M2(A, b) for any b ∈ Im(A). Furthermore, s

and t are the indices such that

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2).

Proof. Let b ∈ Im(A), then ∀i ∈M we have either i ∈M1(A, b) or i ∈M2(A, b). Suppose

that s /∈M1(A, b) then ∃r ∈M such that

ar1 − br > as1 − bs. (6.1)

At the same time, we know that b ∈ Im(A) and therefore s ∈M2(A, b) and ∀i ∈M ,

as2 − bs ≥ ai2 − bi

and hence

as2 − bs ≥ ar2 − br. (6.2)

By adding (6.1) and (6.1), we get

ar1 − br + as2 − bs > as1 − bs + ar2 − br,

ar1 + as2 > as1 + ar2,

ar1 − ar2 > as1 − as2

which is a contradiction with the choice of s. Hence r ∈ M1(A, b). It is proved similarly

that s ∈M2(A, b).

By the above proposition, we know that ∀b ∈ Im(A), s ∈ M1 and t ∈ M2. Let us

108

suppose that s = t, then it immediately implies

max
i=1,...,m

(ai1 − ai2) = min
i=1,...,m

(ai1 − ai2).

But this can only happen when (ai2 − ai1) = α, ∀i ∈ M where α ∈ R. This means that the

second column of A is a multiple of the first column of A and this is equivalent to the case

when n = 1. Therefore without loss of generality, we can assume s 6= t for the rest of this

section.

Now using Proposition 6.3.1, we can obtain the following:

Proposition 6.3.2. Let A ∈ Rm×2
be doubly R-astic and

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2),

then IIm(A) 6= ∅ if and only if ∃M1, M2 such that

1) M1

⋃
M2 = M and

2) ∃β ∈ Z such that

b(at2 − as1) + min
i∈M1

(ai1 − ai2)c ≥ β ≥ d(at2 − as1) + max
i∈M2

(ai1 − ai2)e.

Furthermore, we can generate all vectors in IIm(A) by taking all values of β satisfying 2)

and replace it in the following:

br = µ+ ar1 − as1,

bq = µ+ aq2 − at2 + β,

∀r ∈M1, q ∈M2 and µ ∈ Z.

109

Proof. ”⇒ ” Suppose that b = (b1, b2, ..., bm)T ∈ IIm(A) then by Corollary 2.3.1, we have

M1(A, b)
⋃
M2(A, b) = M .

Since we can permute any rows in the matrix, i.e. renumbering the rows and the problem

will not be changed. Therefore without loss of generality, we can assume s = 1 and t = 2.

Also any integer multiple of b will still be an integer image of A, therefore we will multiply

b by b−1
1 and ∀i ∈M , we can relabel bi ⊗ b−1

1 = bi and hence we will have b1 = 0.

By Proposition 6.3.1, we have 1 ∈M1(A, b) and therefore

a11 − b1 = a11 = max
i=1,...,m

(ai1 − bi),

= ar1 − br, ∀r ∈M1(A, b),

br = ar1 − a11, ∀r ∈M1(A, b)

(6.3)

and

a11 ≥ aq1 − bq ∀q ∈M2(A, b). (6.4)

Similarly, we have 2 ∈M2(A, b) and therefore we have

a22 − b2 = max
i=1,...,m

(ai2 − bi),

= aq2 − bq, ∀q ∈M2(A, b),

bq = aq2 − a22 + b2, ∀q ∈M2(A, b)

(6.5)

and

a22 − b2 ≥ ar2 − br, ∀r ∈M1(A, b). (6.6)

110

From (6.3) and (6.6) we have ∀r ∈M1(A, b),

a22 − b2 ≥ ar2 − (ar1 − a11),

(a22 − a11) + (ar1 − ar2) ≥ b2,

(a22 − a11) + min
i∈M1(A,b)

(ai1 − ai2) ≥ b2.

(6.7)

Note that b ∈ IIm(A), therefore b2 ∈ Z. So we can take the largest integer value less than

the value on the LHS and we will have

b(a22 − a11) + min
i∈M1(A,b)

(ai1 − ai2)c ≥ b2. (6.8)

Now if we consider (6.4) and (6.5), we have ∀q ∈M2(A, b),

a11 > aq1 − (aq2 − a22 + b2),

b2 > (aq1 − aq2) + (a22 − a11),

b2 > (a22 − a11) + max
i∈M2(A,b)

(ai1 − ai2).

(6.9)

By a similar argument as before, we can take the smallest integer value greater than the value

on the RHS and we will have

b2 ≥ d(a22 − a11) + max
i∈M2(A,b)

(ai1 − ai2)e. (6.10)

Combining the two inequalities (6.8) and (6.10), then we have found the following bounds

for b2:

b(a22 − a11) + min
i∈M1(A,b)

(ai1 − ai2)c ≥ b2 ≥ d(a22 − a11) + max
i∈M2(A,b)

(ai1 − ai2)e. (6.11)

” ⇐ ” Suppose that we have found the sets M1 and M2 such that M1

⋃
M2 = M and

111

there exists an integer value β which satisfies (6.11). Then we will let x1 = −a11 and

x2 = −(a22 − β) and therefore we have

bi = max{(ai1 − a11), (ai2 − a22 + β)}.

Let i ∈M1 and suppose that ai2 − a22 + β > ai1 − a11, then we have

ai2 − a22 + β > ai1 − a11,

β > (a22 − a11) + (ai1 − ai2).

But this contradicts (6.11) and therefore

ai2 − a22 + β ≤ ai1 − a11.

Hence ∀i ∈M1,

bi = ai1 − a11.

Since 1 ∈M1 ⊆ I1(A, i), we have ∀i ∈M1,

f(ai1)− f(a11) = 0

and hence bi ∈ Z.

Using a similarly argument, we can conclude that

bj = aj2 − a22 + β

and ∀j ∈M2,

f(aj2)− f(a22) = 0.

112

Since β ∈ Z, we have bj ∈ Z and therefore b ∈ IIm(A) and any multiple of b is also in

IIm(A). Hence IIm(A) 6= ∅.

The above proposition provides a necessary and sufficient condition for the existence of

a solution in the case when n = 2. But the difficult part is to find the sets M1 and M2 such

that (6.11) is satisfied.

By Corollary 6.1.1, we know that if b ∈ IIm(A) exists then ∀j ∈ J ⊆ N , ∃rj ∈M such

that ⋃
j∈J

Ij(A, rj) = M.

Hence we know there exist r1, r2 ∈ M such that I1(A, r1) ∪ I2(A, r2) = M for the case

when n = 2. The next step will be to find r1 and r2.

Now using Proposition 6.3.1 and 6.1.1, we have ∀b ∈ IIm(A),

s ∈ M1(A, b) ⊆ I1(A, r1)

⇒ s ∈ I1(A, r1) = I1(A, s) since they are equivalent classes.

Similarly, we also have t ∈ I2(A, t) and therefore ∀b ∈ IIm(A) we have

I1(A, s) ∪ I2(A, t) = M. (6.12)

Using the above result and Proposition 6.3.2, we can produce the following sufficient condi-

tion.

Proposition 6.3.3. Let A ∈ Rm×2
be doubly R-astic and

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2),

113

then IIm(A) 6= ∅ if

1) I1(A, s) ∪ I2(A, t) = M and

2) ∃β ∈ Z such that

b(at2 − as1) + min
i∈I1(A,s)

(ai1 − ai2)c ≥ β ≥ d(at2 − as1) + max
i∈I2(A,t)

(ai1 − ai2)e.

Proof. It immediately follows from Corollary 6.1.1 and Proposition 6.3.2.

Note that the intersection of the two sets I1(A, s) and I2(A, t) may not be empty. The

conditions stated above assume that

I1(A, s) ∩ I2(A, t) ⊆M1(A, b)

and

I1(A, s) ∩ I2(A, t) ⊆M2(A, b)

which may not happen in general. Therefore the condition above is only a sufficient but not

necessary condition for the existence of integer image.

Using this observation, we will generate the following propositions.

Proposition 6.3.4. Let A ∈ Rm×2
be doubly R-astic and

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2).

Let

Î1(A, s) = I1(A, s)− I2(A, t) and Î2(A, t) = I2(A, t)− I1(A, s),

114

then ∀b ∈ IIm(A),

Î1(A, s) ⊆M1(A, b) and Î2(A, t) ⊆M2(A, b).

In addition, if

I1(A, s) ∩ I2(A, t) = ∅

then I1(A, s) = M1(A, b) and I2(A, t) = M2(A, b).

Proof. Without loss of generality, we can assume that s = 1 and t = 2. Let i ∈ Î1(A, 1)

then i /∈ I2(A, 2). By Proposition 6.1.1, this implies that ∀b ∈ IIm(A), i /∈M2(A, b).

Therefore i ∈ M1(A, b) and we have Î1(A, 1) ⊆ M1(A, b). By the same argument we

will obtain the conclusion that Î2(A, 2) ⊆M2(A, b).

Now Suppose that

I1(A, 1) ∩ I2(A, 2) = ∅,

then

M1(A, b) ⊆ I1(A, 1) = Î1(A, 1) ⊆M1(A, b).

Hence ∀b ∈ IIm(A), I1(A, 1) = M1(A, b) and similarly we have I2(A, 2) = M2(A, b).

Now if we use Proposition 6.3.2 with the above result, we will obtain the following

proposition.

Proposition 6.3.5. Let A ∈ Rm×2
,

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2).

115

Suppose that I1(A, s) ∩ I2(A, t) = ∅, then IIm(A) 6= ∅ if and only if

1) I1(A, s) ∪ I2(A, t) = M and

2) ∃β ∈ Z such that

b(at2 − as1) + min
i∈I1(A,s)

(ai1 − ai2)c ≥ β ≥ d(at2 − as1) + max
i∈I2(A,t)

(ai1 − ai2)e.

Furthermore, we can generate all vectors in IIm(A) by taking all values of β satisfying 2)

and replace it in the following:

br = µ+ ar1 − as1

bq = µ+ aq2 − at2 + β

∀r ∈ I1(A, s), q ∈ I2(A, t) and µ ∈ Z.

Proof. It immediately follows from Proposition 6.3.2 and 6.3.4.

Example 6.3.1. Let A be the following matrix:

0.5 −5.7

6.2 −2.8

1 3.3

3.5 −3.7

9.2 −1.4

−2.4 −1.7

116

Then
a11 − a12 = 0.5 − (−5.7) = 6.2

a21 − a22 = 6.2 − (−2.8) = 9

a31 − a32 = 1 − 3.3 = −2.3

a41 − a42 = 3.5 − (−3.7) = 7.2

a51 − a52 = 9.2 − (−1.4) = 10.6

a61 − a62 = −2.4 − (−1.7) = −0.7

and hence

max
i=1,...,m

(ai1 − ai2) = a51 − a52

min
i=1,...,m

(ai1 − ai2) = a31 − a32.

Therefore s = 5 and t = 3. Next we need to find I1(A, 5) and I2(A, 3) and we can see that

I1(A, 5) = {2, 5} and I2(A, 3) = {1, 3, 4, 6}. The two sets are disjoint and therefore we can

apply Proposition 6.3.5.

The upper limit for β is

b(at2 − as1) + min
i∈I1(A,s)

(ai1 − ai2)c = b(a32 − a51) + min
i∈I1(A,5)

(ai1 − ai2)c

= b(3.3− 9.2) + min(6.2− (−2.8), 9.2− (−1.4))c

= b−5.9 + 9c

= b3.1c

= 3.

117

And the lower limit is

d(at2 − as1) + max
i∈I2(A,t)

(ai1 − ai2)e = d(a32 − a51) + max
i∈I2(A,5)

(ai1 − ai2)e

= d−5.9 + max(6.2,−2.3, 7.2,−0.7)e

= d−5.9 + 7.2e

= d1.3e

= 2.

Hence an integer value for β exists, i.e. β = 2, 3 and therefore IIm(A) 6= ∅. In particular

the following vectors:

−7

−3

2

−5

0

−3

and

−6

−3

3

−4

0

−2

and their integer multiples are the integer images of A.

6.4 Strongly Regular Matrix

In this section, we will investigate the case of strongly regular matrix. The definition of

strongly regular matrix can be found in Chapter 2 and comprehensive results regarding this

topic can be found in [14]. Also in [14], we can see that there is a relation between the

simple image set and the eigenproblem. It turns out that the existence of integer image set

and integer simple image set is also related to the eigenproblem which can be seen in the

following section.

118

6.4.1 Basic Principle

Let us consider the case when a n× n matrix is given. Our aim is to find out the conditions

which the matrices have to satisfy in order to have integral images. First let us consider the

following proposition.

Proposition 6.4.1. Let A ∈ Rn×n be doubly R-astic and ∀j ∈ N , |Ij(A, r)| = 1, ∀r ∈ N .

If IIm(A) 6= ∅ then A is a strongly regular matrix.

Proof. By Proposition 6.1.1, we know that ∀b ∈ IIm(A), ∃rj ∈ M such that Mj(A, b) ⊆

Ij(A, rj), ∀j ∈ N . Since |Ij(A, r)| = 1, ∀r, therefore we have

Mj(A, b) = Ij(A, rj) = {rj}, ∀j ∈ N.

From Corollary 2.3.1, we know that

⋃
j∈N

Mj(A, b) = M = N.

Since for any N ′ ⊆ N, N ′ 6= N

|
⋃
j∈N ′

Mj(A, b)| < n = |N |

and therefore we also know that for any N ′ ⊆ N, N ′ 6= N

⋃
j∈N ′

Mj(A, b) 6= N.

Hence by Corollary 2.3.2, the system A⊗ x = b has a unique solution. Since m = n, A is a

strongly regular matrix.

119

Corollary 6.4.1. Let A ∈ Rm×n be doubly R-astic, m ≤ n and ∀j ∈ N , |Ij(A, r)| = 1,

∀r ∈M . If IIm(A) 6= ∅, then A contains a strongly regular m×m sub-matrix.

Proof. Let b ∈ IIm(A) and by the same argument as before, we have

Mj(A, b) = Ij(A, rj) = {rj}, ∀j ∈ N.

Since |Mj(A, b)| = 1, ∀j, then we can construct N ′ ⊆ N by the following procedure:

Let M ′ := N ′ := ∅.

for j = 1 to n do

begin

if Mj(A, b) ⊆M ′

Set N ′ := N ′ ∪ {j}.

Set M ′ := M ′ ∪Mj(A, b)

end.

Then M ′ will be a minimum set covering of M and we can see that |N ′| = |M ′| = m. Now

for each element in N ′, i.e. j ∈ N , we will take the corresponding column from A, i.e. Aj

and form a new matrix Ā. Then Ā is a square sub-matrix of A and since

⋃
j∈N ′

Mj(A, b) =
⋃
j∈M

Mj(Ā, b) = M,

we have b ∈ IIm(Ā) and hence IIm(Ā) 6= ∅. Then it immediately follows from Proposition

6.4.1 that Ā is strongly regular.

Definition 6.4.1. Let A ∈ Rm×n be doubly R-astic, then A will be called typical if ∀j ∈ N ,

|Ij(A, r)| = 1, ∀r ∈M , i.e. no two entries in A have the same fractional part.

120

Corollary 6.4.2. If A is typical, then IIm(A) ⊆ SA where SA is the simple image set of A.

Hence a typical matrix A is strongly regular if it has an integer image.

Proof. It immediately follows from Proposition 6.4.1.

Note that the inclusion SA ⊆ IIm(A) is not true in general. This can be seen by the

following example.

Example 6.4.1. Let

A =

0 0.61 −1.5

−1.62 0.1 −2.2

−1.16 −1.34 0.3

 ,

we can see that no two entries in A have the same fractional part and therefore A is typical.

We can also see that the identity is the unique optimal permutation for A and hence A is

strongly regular.

Let b = (0,−0.6, 1.5)T , then

aij − bi =

0 − 0 0.61 − 0 −1.5 − 0

−1.62 − (−0.6) 0.1 − (−0.6) −2.2 − (−0.6)

−1.16 − 1.5 −1.34 − 1.5 0.3 − 1.5

=

0 0.61 −1.5

−1.02 0.7 −1.6

−2.66 −2.84 −1.2

 .

We can see that the diagonal entries are strictly greater than all other entries in the same

column. Therefore b ∈ SA. Since b is not an integer vector, therefore SA * IIm(A).

We will also see from the following example, that if A is not typical and it has integer

image, then it does not imply that A is strongly regular.

121

Example 6.4.2. Let

A =

0 2 −2.3

−1 1 −1.4

0.6 −1.2 0.3

 ,

we can see that the entries a11 and a12 are both integers, therefore A is not a typical matrix.

It is not difficult to see that there are two optimal permutations for A, i.e. the identity and the

permutation (1 2)(3). Therefore A is not strongly regular.

Let x = (0,−2,−0.3)T , then

A⊗ x =

0 2 −2.3

−1 1 −1.4

0.6 −1.2 0.3

⊗

0

−2

−0.3

=

0

−1

0

 .

Therefore b ∈ IIm(A) and hence IIm(A) 6= ∅.

Also it turns out that for every strongly regular matrix, it immediately follows that it is

doubly R-astic. This property can be seen by the following lemma.

Lemma 6.4.1. Let A ∈ Rn×n be strongly regular, then A is also doubly R-astic.

Proof. Let A be strongly regular, then ∃b ∈ Rm such that the system A⊗x = b has a unique

solution. Suppose that A is not row R-astic, then ∃r ∈ M such that ∀j ∈ N , arj = ε. But it

immediately implies that the system has no solution and it is a contradiction.

Suppose that A is not column R-astic, then ∃s ∈ N such that ∀i ∈M , ais = ε. Then we can

set xs to be any value in a solution x and it contradicts the fact that the system has a unique

solution. Therefore A is doubly R-astic.

122

By the next proposition (Proposition 6.4.2), we will show that for any square matrices, if

we subtract from each column of the matrix by any constants the image set will remain the

same.

Proposition 6.4.2. Let A = (aij) ∈ R
n×n

be doubly R-astic, k ∈ Rn and Â = (âij) where

âij = aij + kj , ∀i, j ∈ N . Then Im(A) = Im(Â).

Proof. Suppose b ∈ Im(A) then ∃x ∈ Rn such that

A⊗ x = b

⇐⇒ max
j=1,...,n

(aij + xj) = bi, ∀i ∈ N

⇐⇒ max
j=1,...,n

(aij − kj + kj + xj) = bi, ∀i ∈ N

⇐⇒ max
j=1,...,n

(âij + yj) = bi, ∀i ∈ N where yj = kj + xj

⇐⇒Â⊗ y = b.

Therefore b ∈ Im(Â) and hence Im(A) = Im(Â).

Similarly we will show (by Proposition 6.4.3) that for any strongly regular matrices, if

we subtract the columns by any constants, the simple image set of the matrix will remain

unchanged.

Proposition 6.4.3. Let A = (aij) ∈ R
n×n

be strongly regular and π ∈ ap(A). Suppose that

k ∈ Rn and Â = (âij) where âij = aij − kj , ∀i, j ∈ N . Then SA = SÂ.

Proof. Suppose b ∈ SA then ∀j ∈ N ,

aj,π(j) − bj > ai,π(j) − bi, ∀i ∈ N,

⇐⇒ aj,π(j) − kπ(j) − bj > ai,π(j) − kπ(j) − bi, ∀i ∈ N,

⇐⇒ âj,π(j) − bj > âi,π(j) − bi, ∀i ∈ N.

123

Therefore b ∈ SÂ and hence SA = SÂ.

Proposition 6.4.4. Let A ∈ Rn×n be doubly R-astic and P ∈ Rn×n be a generalized per-

mutation matrix. Then Im(A ⊗ P) = Im(A). Furthermore if A is strongly regular, then

S(A⊗P) = SA.

Proof. Suppose b ∈ Im(A) then ∃x ∈ Rn such that A⊗x = b. By Theorem 2.2.1, we know

that the inverse of P exists. If we let y = P−1 ⊗ x, then

A⊗ x = b =⇒ A⊗ P ⊗ y = b.

Therefore b ∈ Im(A⊗ P). Similarly if b ∈ Im(A⊗ P), then ∃x ∈ Rn such that

(A⊗ P)⊗ x = b =⇒ A⊗ y = b

where y = P ⊗ x and hence Im(A) = Im(A⊗ P).

If A is strongly regular, then ∀b ∈ SA, ∃!x ∈ Rn such that A⊗ x = b. Therefore

The system A⊗ x = b has a unique solution

=⇒The system A⊗ P ⊗ y = b has a unique solution.

Therefore b ∈ S(A⊗P). If b ∈ S(A⊗P), then ∃!x ∈ Rn such that

The system (A⊗ P)⊗ x = b has a unique solution.

=⇒The system A⊗ y = b has a unique solution

where y = P ⊗ x and hence S(A⊗P) = SA.

Since A is multiplied by P from the right, it implies that the columns of A are permuted

during this multiplication. Therefore by Proposition 6.4.4, we can without loss of generality,

124

permute the columns of the matrix with any permutation π and the (simple) image set of the

resulting matrix will not be affected.

Definition 6.4.2. LetA ∈ Rn×n, thenAwill be called strongly definite if ∀i ∈ N , aii = 0 and

id ∈ ap(A), i.e. all the diagonal entries are zero and the identity is an optimal permutation

of A.

Note that for any strongly definite matrix A, its maximum cycle mean must be equal to

0. This can be seen by the following proposition.

Proposition 6.4.5. Let A ∈ Rn×n be strongly definite, then Λ(A) = {0}. Furthermore

V (A) = Im(Γ(A)) and

V +(A) = {Γ(A)⊗ x | x ∈ Rn}.

Proof. Since the identity is an optimal permutation of A by definition, this immediately

implies that the matrix contains no positive cycle. Hence fore, the maximum cycle mean

must be equal to 0.

Using the fact that for all strongly regular matrices, aii = 0, ∀i ∈ N this immediately

implies that all superblocks in A have eigenvalue 0 and therefore λ(A) is the only eigenvalue

of A.

It also implies that all nodes in A are critical and by Corollary 3.6.1 and Proposition

3.7.1, we have V (A) = Im(Γ(A)). And using Theorem 3.4.5, it immediately implies that

V +(A) = {Γ(A)⊗ x | x ∈ Rn}.

Using Proposition 6.4.2, 6.4.3 and 6.4.4, we can generate a subroutine which converts

any doubly R-astic matrix into a strongly definite matrix and the original problem is not

affected.

125

First the subroutine will need to find an optimal permutation for A, namely π and this

can be found by using the Hungarian method.

The next step will be to permute the columns of the matrix so that the identity becomes

an optimal permutation. This can be done by using the permutation π which we obtained

earlier and apply this permutation to the matrix A and obtain a new matrix A′, i.e. we let

∀j ∈ N , a′i,π(j) := aij , ∀i ∈M .

Finally we will subtract from every column of the matrix by a constant such that the

diagonal entry becomes zero, i.e. we let ∀j ∈ N , a′ij := a′ij − a′jj , ∀i ∈M . Then we can see

that ∀i ∈ N , a′ii = 0 and id ∈ ap(A′) and hence A′ is strongly definite.

Note that it is possible that we can permute the columns and subtract from each column

a constant at the same time and for simplicity, this will be done in the following subroutine.

Subroutine 1.

Input: A doubly R-astic matrix A ∈ Rm×n.

Output: A strongly definite matrix A′ ∈ Rm×n.

Let π be an optimal permutation of A found by the Hungarian method.

for j = 1 to n do

begin

for all i ∈M , set a′i,π(j) := aij − aπ(j),j .

end

Therefore without loss of generality, we can consider strongly definite matrices only.

6.4.2 Integer Simple Image Set

We will first investigate the integer simple image set of a strongly regular matrix. We will

start by defining the integer simple image set.

Definition 6.4.3. If A ∈ Rn×n is strongly regular, then ISA = {b ∈ Zm | b ∈ SA}, i.e. the

126

set of integer vectors in the simple image set of A.

The next step will be to find conditions which a strongly regular matrix has to satisfy

such that an integer image exists.

Proposition 6.4.6. Let A ∈ Rn×n be strongly regular, strongly definite and C = (daije). If

ISA 6= ∅ then ∀σ ∈ Pn, ∑
j∈N

cj,σ(j) ≤ −|Iσ| (6.13)

where Iσ = {j = σ(i) ∈ N | σ(i) 6= i and ai,σ(i) ∈ Z}.

Proof. Let b = (b1, ..., bn) ∈ ISA, then we know

aij − bi < ajj − bj, ∀i 6= j

aij − bi + bj < 0, ∀i 6= j.
(6.14)

If aij ∈ Z, then

aij − bi + bj ≤ −1, ∀aij ∈ Z, i 6= j

since b ∈ Zn. Hence (6.14) becomes

cij − bi + bj < 0, ∀aij /∈ Z

cij − bi + bj ≤ −1, ∀aij ∈ Z, i 6= j
(6.15)

Let σ be any permutation, then we have ∀i ∈ N , ∃j ∈ N such that σ(i) = j. Now summing

over all i in (6.15), we have ∑
i∈N

ci,σ(i) ≤ −|Iσ|.

The above proposition gives us a necessary condition for the existence of an integer

image in the case of a strongly regular matrix. Unfortunately it is not practical to check for

127

every permutation and find out if this condition is satisfied. Therefore we will modify the

above condition with the help of the following definition.

Definition 6.4.4. Let A ∈ Rn×n be strongly definite. Then define C̃ to be the following

matrix:

C̃ = (c̃ij) =

 daije+ 1 if i ∈ Ij(A, j), i 6= j

daije otherwise.

This is the same as taking the upper integer value for all entries in A but we will increase the

values of all the off-diagonal entries by one if they are already integer.

We can see that the matrix C̃ is similar to the C matrix which was defined in Proposition

6.4.6.

Corollary 6.4.3. Let A ∈ Rn×n be strongly regular and strongly definite. If ISA 6= ∅ then

C̃ is definite.

Proof. By Proposition 6.4.6, we know that if ISA 6= ∅ then ∀σ ∈ Pn,

∑
i∈N

ci,σ(i) ≤ −|Iσ|,

where C = (daije). Since ∀σ ∈ Pn

∑
i∈N

ci,σ(i) + |Iσ| ≤ 0,

then we can deduce that ∑
i∈N

c̃i,σ(i) ≤ 0.

We also know that c̃ii = cii = 0, ∀i, hence C̃ is a definite matrix.

Corollary 6.4.3 gives us another necessary condition which can be tested more efficiently.

The next question will be to find out if this necessary condition is also sufficient. To answer

128

this question, we define the integer eigenspace of a matrix.

Definition 6.4.5. Let A ∈ Rn×n, then IV (A) = {b ∈ Zm | b ∈ V (A)}, i.e. the set of integer

eigenvectors of A.

For simplicity, we will also define the set Z = Z∪{ε}. Now we will look at the following

proposition.

Proposition 6.4.7. Let A ∈ Zm×n be doubly R-astic, then IIm(A) 6= ∅ and furthermore,

IIm(A) = {A⊗ x | x ∈ Zn}.

Proof. Let x be the zero vector, i.e. x = (0, ..., 0)T , then ∀i ∈M ,

bi = max
j=1,...,n

(aij + 0) > ε

since A is doubly R-astic. Also A ∈ Zm×n and therefore ∀i ∈M , bi ∈ Z. Hence IIm(A) 6=

∅.

Let x ∈ Zn and b = A ⊗ x. Then it immediately follows that b ∈ IIm(A) and hence

{A⊗ x | x ∈ Zn} ⊆ IIm(A).

Let b ∈ IIm(A) and x̄ = A∗ ⊗′ b, then ∀j ∈ N

x̄j = min
i=1,...,m

(a∗ji + bi)

x̄j = min
i=1,...,m

(−aij + bi)

Since aij, bi ∈ Z, ∀i ∈ M and A is doubly R-astic, it implies that x̄j ∈ Z, ∀j ∈ N . Using

Corollary 2.3.3, we have that A⊗ x̄ = b and therefore IIm(A) ⊆ {A⊗ x | x ∈ Zn}. Hence

IIm(A) = {A⊗ x | x ∈ Zn}.

Proposition 6.4.8. Let A ∈ Zn×n, then

IV (A) 6= ∅ ⇐⇒ λ(A) ∈ Z.

129

Proof. Since A ∈ Zn×n, then it immediately implies that A is irreducible and Λ(A) =

{λ(A)}. If IV (A) 6= ∅, then ∃x ∈ Zn such that A⊗ x = λ(A)⊗ x. Since both A and x are

integer, it immediately implies that λ(A) ∈ Z.

Suppose that λ(A) ∈ Z, then Γ(λ(A)−1 ⊗ A) ∈ Zn×n and therefore all fundamental

eigenvectors are integer. Hence IV (A) 6= ∅.

Corollary 6.4.4. Let A ∈ Rn×n be strongly definite. Suppose that Γ(A) ∈ Zn×n, then

IV (A) 6= ∅ and furthermore, IV (A) = {Γ(A)⊗ x | x ∈ Zn}.

Proof. It immediately follows from Proposition 6.4.5 and Proposition 6.4.7.

Proposition 6.4.9. Suppose that A ∈ Rn×n is strongly definite, then Γ(A) is doubly R-astic.

Proof. By the definition of strongly definite matrices, we know that ∀i ∈ N , aii = 0 and

λ(A) = 0. Therefore by the definition of metric matrices, we know that

Γ(A) = A⊕ A2 ⊕ ...⊕ An

and hence ∀i ∈ N ,

(Γ(A))ii = aii ⊕ a2
ii ⊕ ...⊕ anii = 0.

It implies that Γ(A) contains no ε rows or columns and therefore it is doubly R-astic.

Proposition 6.4.10. Let A ∈ Rn×n be strongly definite. If C̃ is definite, then C̃ is also

strongly definite. Similarly if C is definite, then C is also strongly definite.

Proof. It immediately follows from the definition of C̃, C and strongly definite matrices.

Using the above results, we will obtain the following two important corollaries.

Corollary 6.4.5. Let A ∈ Rn×n be strongly definite, if C̃ is definite, then IV (C̃) 6= ∅, i.e. it

has integer eigenvectors.

130

Proof. By Proposition 6.4.10, we know that C̃ is strongly definite. Then by Proposition

6.4.9, we also know that Γ(C̃) is doubly R-astic and it immediately follows from Corollary

6.4.4 that IV (C̃) 6= ∅.

Corollary 6.4.6. Let A ∈ Rn×n be strongly definite. If C is definite, then IV (C) 6= ∅, i.e. it

has integer eigenvectors.

Proof. It immediately follows Corollary 6.4.4, Proposition 6.4.9 and 6.4.10.

Using the results above, we can obtain and prove the following proposition.

Proposition 6.4.11. Let A ∈ Rn×n be strongly regular and strongly definite. If C̃ is definite

then IV (C̃) ⊆ ISA and hence ISA 6= ∅.

Proof. By Corollary 6.4.5, we know that IV (C̃) 6= ∅. Let b ∈ IV (C̃), then we have

C̃ ⊗ b = b

max
j=1,...,n

(c̃ij + bj) = bi, ∀i ∈ N

c̃ij + bj ≤ bi, ∀i, j ∈ N

(6.16)

If i /∈ Ij(A, j), then f(aij) 6= f(ajj) and hence

c̃ij = daije > aij, ∀i /∈ Ij(A, j). (6.17)

Suppose that i ∈ Ij(A, j)− {j}, then

c̃ij = daije+ 1 > daije = aij. (6.18)

By (6.17) and (6.18), we will have

c̃ij > aij, ∀i 6= j. (6.19)

131

Using (6.16) and (6.19), we have ∀j ∈ N ,

aij + bj < bi, ∀i 6= j

aij − bi < −bj, ∀i 6= j.

This implies that b ∈ ISA and hence IV (C̃) ⊆ ISA. Since IV (C̃) 6= ∅, then ISA 6= ∅.

From Proposition 6.4.11, we have found that IV (C̃) is a subset of ISA. And we have

also shown that ISA is not empty, therefore the definiteness of C̃ is a sufficient condition for

the existence of an integer image. Next we will show that ISA = IV (C̃).

Proposition 6.4.12. Let A ∈ Rn×n be strongly regular and strongly definite. If C̃ is definite

then ISA ⊆ IV (C̃).

Proof. Suppose that b ∈ ISA, then by (6.15) we have

cij − bi + bj ≤ 0, ∀aij /∈ Z

cij − bi + bj ≤ −1, ∀aij ∈ Z, i 6= j

where cij = daije, ∀i, j. Hence

cij + bj ≤ bi, ∀aij /∈ Z

cij + 1 + bj ≤ bi, ∀aij ∈ Z, i 6= j.

These imply

c̃ij + bj ≤ bi ∀i, j ∈ N

max
j=1,...,n

(c̃ij + bj) = bi ∀i ∈ N

C̃ ⊗ b = b.

Since C̃ is definite, this implies that b ∈ IV (C̃). Therefore ISA ⊆ IV (C̃).

132

Corollary 6.4.7. LetA ∈ Rn×n be strongly regular and strongly definite. Then the following

are equivalent:

1. IV (C̃) = ISA and ISA 6= ∅.

2. C̃ is definite.

Proof. It immediately follows from Corollary 6.4.3, Proposition 6.4.11 and 6.4.12.

Example 6.4.3. Let

A =

0 0.4 −1.5 −2

−1.5 0 −2 −3

−1.5 −1 0 −2.5

−2 −1 −2.1 0

,

then identity is the unique optimal permutation for A and hence A is strongly regular. Now

we have

C̃ =

0 1 −1 −1

−1 0 −1 −2

−1 0 0 −2

−1 0 −2 0

.

We can see that C̃ contains only one positive entry, namely c̃12, and all cycles containing

this entry have non-positive weight. There are no positive cycles and all diagonal entries are

zeros. Therefore we can deduce that C̃ is strongly definite. Using this, we can obtain the

metric matrix of C̃ which is

C̃ ⊕ C̃2 ⊕ C̃3 =

0 1 0 −1

−1 0 −1 −2

−1 0 0 −2

−1 0 −1 0

,

133

We can see that all four columns of the metric matrix are the fundamental eigenvectors

of C̃ since the diagonal entries of each column are equal to zero. We can also see that the

first two columns are equivalent as they are a multiple of each other. Then the non-equivalent

fundamental eigenvectors of C̃ are

0

−1

−1

−1

,

0

−1

0

−1

and

−1

−2

−2

0

.

If we take any linear combination of the three eigenvectors, then b ∈ ISA. For example, let

b = (0⊗

0

−1

−1

−1

)⊕ (1⊗

0

−1

0

−1

)⊕ (2⊗

−1

−2

−2

0

) =

1

0

1

2

,

hence set x = (1, 0, 1, 2)T . Then b ∈ ISA. This fact can be checked by considering the

following matrix

aij − bi =

0− 1 0.4− 1 −1.5− 1 −2− 1

−1.5− 0 0− 0 −2− 0 −3− 0

−1.5− 1 −1− 1 0− 1 −2.5− 1

−2− 2 −1− 2 −2.1− 2 0− 2

=

−1 −0.6 −2.5 −3

−1.5 0 −2 −3

−2.5 −2 −1 −3.5

−4 −3 −4.1 −2

134

We can immediately see that the diagonal entries are strictly greater than all other entries in

the same column. Therefore b is an element of the integer simple image set.

Corollary 6.4.7 gives us a necessary and sufficient condition for an integer simple image

set to be non-empty for strongly regular and strongly definite matrices. It also tells us that

the integer simple image set is exactly the set of integer eigenvectors of the matrix C̃ which

arises from A. Since the simple image set of any strongly regular matrices is a subset of

their integer image set, the next natural step will be to investigate the relationship between

the integer simple image set and integer image set.

6.4.3 Integer Image Set

Now we will investigate the integer image set of a strongly regular matrix. The simple image

set of a matrix is a subset of its image set. Therefore by using previous results, we can

immediately obtain a sufficient condition for integer image set to be non-empty.

Corollary 6.4.8. Let A ∈ Rn×n be strongly regular and strongly definite. If C̃ is definite

then IV (C̃) ⊆ IIm(A) 6= ∅.

Proof. It immediately follows from Proposition 6.4.11.

The result above can be generalized by relaxing some of the initial assumptions.

Proposition 6.4.13. Let A ∈ Rn×n be strongly definite and C = (daije). If C is definite,

then IV (C) ⊆ IIm(A) 6= ∅.

Proof. Since C is a definite and integer matrix, by Corollary 6.4.6 we know that IV (C) 6= ∅.

Let b ∈ IV (C), then we have

C ⊗ b = b

max
j=1,...,n

(cij + bj) = bi, ∀i ∈ N

cij + bj ≤ bi, ∀i, j ∈ N.

(6.20)

135

Since

cij ≥ aij, ∀i, j, (6.21)

using (6.20) and (6.21), we have ∀j ∈ N ,

aij + bj ≤ bi, ∀i

aij − bi ≤ ajj − bj, ∀i
(6.22)

since ajj = 0 for all j. This implies that j ∈Mj(A, b), ∀j and hence

⋃
j∈N

Mj(A, b) = N.

Therefore b ∈ IIm(A) and hence IV (C) ⊆ IIm(A) 6= ∅.

The above proposition gives us a sufficient condition for any matrix to have an integer

image. The next step is to decide if this sufficient condition is also a necessary condition for

the existence of an integer image. Unfortunately this is not the case in general; this can be

seen by the following two examples.

Example 6.4.4. Let

A =

0 −2 −1

0 0 0.1

−1.1 −0.1 0

 ,

then identity is an optimal permutation for A. Note that a23 + a32 = 0 and therefore identity

is not the unique permutation and hence A is not strongly regular. Now we have

C =

0 −2 −1

0 0 1

−1 0 0

136

which is not definite.

Let x = (0,−0.9,−1)T , then A⊗ x will be

0 −2 −1

0 0 0.1

−1.1 −0.1 0

⊗

0

−0.9

−1

 =

0

0

−1

and thus shows that a strongly definite matrix may have an integer image even if C is not

definite.

Example 6.4.5. Let

A =

0 1.4 −1.5 −2

−1.5 0 −2 −3

−1.5 −1 0 −2.5

−2 −1 −2.1 0

,

then identity is the unique optimal permutation for A and hence A is strongly regular and

strongly definite. Now we have

C̃ =

0 2 −1 −1

−1 0 −1 −2

−1 0 0 −2

−1 0 −2 0

, C =

0 2 −1 −2

−1 0 −2 −3

−1 −1 0 −2

−2 −1 −2 0

and λ(C̃) = λ(C) = 1

2
(a12 + a21) = 1

2
. Therefore both C̃ and C are not definite.

137

Let x = (0,−1.4,−1, 0)T , then A⊗ x will be

0 1.4 −1.5 −2

−1.5 0 −2 −3

−1.5 −1 0 −2.5

−2 −1 −2.1 0

⊗

0

−1.4

1

0

=

0

−1

1

0

and therefore IIm(A) 6= ∅. This shows that a strongly regular matrix may have an integer

image even if C̃ or C is not definite.

From the two examples above, we know that the definitiveness of the matrix C is not a

necessary condition for integer image set to be non-empty for a matrix in general.

Now let us look at Proposition 6.4.1 again, we have seen that there is a close relationship

between the integer simple image set and integer image set of any typical matrices. Now

we would like to find out if there exists any other special cases of strongly regular matrices

which share the same property as typical matrices.

Proposition 6.4.14. Let A ∈ Rn×n be strongly regular and strongly definite. If ∀j ∈ N ,

|Ij(A, j)| = 1, i.e. all off-diagonal entries are non-integer, then IIm(A) = ISA.

Proof. Let b ∈ IIm(A) and suppose that b /∈ ISA. Then ∃i1, i2 ∈ N , i1 6= i2 such that

i1 ∈Mi2(A, b), i.e.

ai1i2 − bi1 ≥ ai2i2 − bi2 = −bi2 .

Since b ∈ Zn and f(ai1i2) 6= f(ai2i2) = 0, this implies that both sides cannot be equal.

Therefore we have

ai1i2 − bi1 > −bi2 .

Since b ∈ Im(A), this implies that ∃i3 ∈ N , i3 6= i2 such that i2 ∈Mi3(A, b), i.e.

ai2i3 − bi2 ≥ ai3i3 − bi3 = −bi3 .

138

By using the same argument as before, we will then have

ai2i3 − bi2 > −bi3 .

We will now repeat this process until we obtain

aikik+1
− bik > −bik+1

where ik+1 is one of the previous indexes and without loss of generality, we can assume

ik+1 = i1. Now if we sum up all the inequalities, we will then obtain

ai1i2 + ai2i3 + ...+ aiki1 > 0.

Since the weight of the identity permutation is equal to zero, this implies that there exists a

heavier permutation than the identity permutation and hence id /∈ ap(A). This is a contradic-

tion and therefore b ∈ ISA and hence IIm(A) ⊆ ISA. Since SA ⊆ Im(A), it immediately

follows that ISA ⊆ IIm(A) and hence IIm(A) = ISA.

Note that the matrix C is closely related to the matrix C̃. In fact the two matrices are

equal if the fractional part of the diagonal entries are different than any other entries on the

same column, i.e. ∀j ∈ N , |Ij(A, j)| = 1. Using this fact, we can then combine the above

proposition with Corollary 6.4.7 and obtain the following corollary.

Corollary 6.4.9. Let A ∈ Rn×n be strongly regular, strongly definite and C = (daije).

Suppose that ∀j ∈ N , |Ij(A, j)| = 1, then IV (C) = IIm(A). Furthermore, C is definite if

and only if IIm(A) 6= ∅.

Proof. It immediately follows from Corollary 6.4.7 and Proposition 6.4.14.

The above corollary gives us a special case when we can obtain the set of integer images.

139

By Corollary 6.4.4, we can describe the set of integer images explicitly.

Corollary 6.4.10. Let A ∈ Rn×n be strongly regular, strongly definite and C = (daije).

Suppose that ∀j ∈ N , |Ij(A, j)| = 1, then C is definite if and only if

IIm(A) = {Γ(C)⊗ x | x ∈ Zn}.

Proof. It immediately follows from Corollary 6.4.9 and Corollary 6.4.4.

Previously we have seen that Proposition 6.4.13 gives us a sufficient condition for a

strongly definite matrix to have integer images. Next we would like to find out if the matrix

still have integer images when this condition is not satisfied.

Definition 6.4.6. Let A ∈ Rn×n, R = {r1, r2, ..., rµ} ⊆ N where 1 ≤ r1 < r2 < ... < rµ ≤

n. Then we will denote A[R] to be a principal sub-matrix of A where

A[R] =

ar1r1 ar1r2 ... ar1rµ

ar2r1 ar2r2 ... ar2rµ

...

arµr1 arµr2 ... arµrµ

.

Proposition 6.4.15. Let A ∈ Rn×n be strongly definite, then IIm(A) 6= ∅ if ∃R ⊆ N ,

R 6= ∅ such that

1) C[R] is definite,

2) ∀s /∈ R, ∃r(s) ∈ R such that asr(s) ∈ Z and ar(s)j ≥ asj − asr(s)∀j ∈ R.

Proof. Suppose that ∃R ⊆ N such that 1) and 2) hold. By Corollary 6.4.6 we know that

140

IV (C[R]) 6= ∅. Let b ∈ Rn be the vector such that b[R] ∈ IV (C[R]) and ∀s /∈ R,

bs = asr(s) + br(s) (6.23)

where s and r(s) satisfy 2).

Since b[R] ∈ IV (C[R]) and C[R] is definite, by Proposition 6.4.13 we know that b[R] ∈

IIm(A[R]). Furthermore, by (6.22) we also know that ∀j ∈ R

aij − bi ≤ −bj, ∀i ∈ R. (6.24)

Now let s /∈ R, then by 2) we know that ∃r(s) ∈ R such that

ar(s)j ≥ asj − asr(s),

ar(s)j ≥ asj − (bs − br(s)), by (6.23)

ar(s)j − br(s) ≥ asj − bs.

(6.25)

Since r(s) ∈ R, then using (6.24), we know that ∀j ∈ R,

−bj ≥ ar(s)j − br(s)

and hence ∀j ∈ R,

−bj ≥ asj − bs. (6.26)

Therefore (6.24) and (6.26) imply that j ∈ Mj(A, b), ∀j ∈ R. By (6.23), we also know that

141

∀s /∈ R,

bs = asr(s) + br(s),

−br(s) = asr(s) − bs.
(6.27)

This implies that ∀s /∈ R, ∃r(s) ∈ R such that s ∈Mr(s)(A, b). Therefore

⋃
j∈R

Mj(A, b) = M

and hence b ∈ Im(A). We have ∀j ∈ R, bj ∈ Z and also ∀s /∈ R, bs ∈ Z. Since asr(s) and

br(s) are integers, we then have b ∈ Zn and hence b ∈ IIm(A).

The above proposition gives us another sufficient condition for the existence of an integer

image in a strongly definite matrix. Using a similar idea and the following definitions, we

can present another sufficient condition.

Definition 6.4.7. Let A ∈ Rn×n, rl ∈ R = {r1, r2, ..., rµ} ⊆ N and s /∈ R, then we will

denote A[R, rl, s] to be the matrix

(A[R, rl, s])ij =

 asrj − asrl if i = l,

arirj otherwise.

Hence

A[R, rl, s] =

ar1r1 ar1r2 ... ar1rµ

...

asr1 − asrl asr2 − asrl ... asrµ − asrl

...

arµr1 arµr2 ... arµrµ

.

142

Furthermore, we will denote C[R, rl, s] to be the matrix devised from A[R, rl, s] by taking

the upper integer part of all entries in A[R, rl, s].

Proposition 6.4.16. Let A ∈ Rn×n be strongly definite, then IIm(A) 6= ∅ if ∃R ⊆ N ,

R 6= ∅ and S = {s1, ..., sν} = N −R such that

1) C[R] is definite,

2) ∀s ∈ S,∃r(s) ∈ R such that asr(s) ∈ Z,

3) ∀si ∈ S, IV (C[R, r(si), si]) is definite, and

4) IV (C[R, r(s1), s1]) ∩ ... ∩ IV (C[R, r(sν), sν]) ∩ IV (C[R]) 6= ∅.

Proof. Let U be the intersection in 4) and suppose that ∃R ⊆ N such that 1), 2), 3) and 4)

hold. Then we let b ∈ Rn be the vector such that b[R] ∈ U and ∀s ∈ S,

bs = asr(s) + br(s) (6.28)

where s and r(s) satisfy 2), 3) and 4).

Since b[R] ∈ IV (C[R]) and C[R] is definite, by Proposition 6.4.13 we know that b[R] ∈

IIm(A[R]). Furthermore, by (6.22) we also know that

arirj − bri ≤ −brj , ∀ri, rj ∈ R. (6.29)

We also know that b[R] ∈ IV (C[R, r(s), s]), then we have

C[R, r(s), s]⊗ b[R] = b[R].

Now if we consider the row of the above linear system which corresponds to the r(s)th row

143

of C, we will obtain

max
rj∈R

((csrj − csr(s)) + brj) = br(s),

max
rj∈R

(d(asrje − dasr(s))e+ brj) = br(s),

d(asrj − asr(s))e+ brj ≤ br(s), ∀rj ∈ R since asr(s) ∈ Z.

(6.30)

Since asr(s) ∈ Z and dasrje ≥ asrj , then we have

d(asrj − asr(s))e ≥ asrj − asr(s). (6.31)

Using (6.30) and (6.31), we will have obtained ∀rj ∈ R,

asrj − asr(s) + brj ≤ br(s),

asrj − asr(s) − br(s) ≤ −brj ,

asrj − bs ≤ −brj , by (6.28).

(6.32)

Therefore (6.29) and (6.32) implies that rj ∈ Mrj(A, b), ∀rj ∈ R. By (6.28), we also know

that ∀s ∈ S

bs = asr(s) + br(s),

−br(s) = asr(s) − bs.
(6.33)

This implies that ∀s ∈ S, ∃r(s) ∈ R such that s ∈Mr(s)(A, b). Therefore

⋃
j∈R

Mj(A, b) = M

and hence b ∈ Im(A). We know that ∀rj ∈ R, brj ∈ Z and we have ∀s ∈ S, bs ∈ Z. Since

asr(s) and br(s) are integers, then b ∈ Zn and hence b ∈ IIm(A).

144

6.5 The General Case

In this section, we will consider the task of deciding whether the integer image of a matrix

exists for the general case. Let us first consider the following proposition.

Proposition 6.5.1. Let A ∈ Rm×n, then ∀b ∈ IIm(A),

d min
k=1,...,n

(aik − ajk)e ≤ bi − bj ≤ b max
k=1,...,n

(aik − ajk)c, ∀i, j ∈M.

Proof. Let b ∈ IIm(A), then by Corollary 2.3.1, ∀i ∈ M , ∃r ∈ N such that i ∈ Mr(A, b).

Hence ∀j ∈M ,

air − bi ≥ ajr − bj,

air − ajr ≥ bi − bj,

max
k=1,...,n

(aik − ajk) ≥ air − ajr,

≥ bi − bj.

But since b ∈ Zm, we have ∀i, j ∈M ,

b max
k=1,...,n

(aik − ajk)c ≥ bi − bj.

Similarly we also have ∀i, j ∈M ,

max
k=1,...,n

(ajk − aik) ≥ bj − bi,

− max
k=1,...,n

(ajk − aik) ≤ bi − bj,

min
k=1,...,n

(aik − ajk) ≤ bi − bj,

145

and hence ∀i, j ∈M ,

d min
k=1,...,n

(aik − ajk)e ≤ bi − bj.

Using the above proposition, we can obtain a bound between any two components for

any integer image of a real matrix. This provides a necessary condition for the existence of

an integer image for a matrix. Therefore an integer image of a matrix can only exist when

for each bound, there exists at least an integer value satisfying the bounds.

Since the matrix is real and the difference between any two components of an integer

image must be integer, the number of possibilities for each bound is finite. We can also

assume without loss of generality, that one component of b, say b1, is zero. Using these

facts, we can generate an algorithm to check for the existence of integer images for any real

matrices.

Algorithm 4.

Input: A matrix A ∈ Rm×n.

Output: A vector b ∈ Zn for which b ∈ IIm(A) or an indication that such a b does not

exist.

Set l1 := 0 and u1 := 0.

for i = 2 to m do

begin

Set

li := d min
k=1,...,n

(aik − a1k)e

ui := b max
k=1,...,n

(aik − a1k)c.

Set di := ui − li + 1.

146

if di ≤ 0 then no integer image exists. Stop.

end

Set b(1) := l and

D :=
m∏
i=2

di.

for i = 1 to D do

begin

if b(i) = A⊗ (A∗ ⊗′ b(i))

Integer image exists and b := b(i) is an integer image of A. Stop.

else

Set b(i+1) := b(i) and b(i+1)
m := b

(i)
m + 1.

for j = m to 2 do

begin

if b(i+1)
j > uj

Set b(i+1)
j := lj and b(i+1)

j−1 := b
(i+1)
j−1 + 1.

end

end

The above algorithm generates all possible candidates which can be an integer image and

checks if any of the integer vectors are indeed an integer image of A. We can see that the

main loop is repeated at most D times and D is determined by calculating the difference

between the entries in the first row with corresponding entries in other row. We can reduce

the number of times the loop is repeated by finding a row which generates a smaller D. This

can be done by the following subroutine.

Subroutine 2.

Input: A matrix A ∈ Rm×n.

147

Output: A row index p, D ∈ Z, l, u ∈ Zm and A′ ∈ Rm×n.

for i = 1 to m do

begin

for j = 1 to m, j 6= i do

begin

Set

lij := d min
k=1,...,n

(ajk − aik)e

uij := b max
k=1,...,n

(ajk − aik)c

dij := uij − lij + 1.

if dij ≤ 0, then no integer images exist. Stop.

end

end

Set

Di :=
m∏
j=1

j 6=i

dij.

Find

Dp = min
i=1,...,m

Di.

Set D := Dp and for all j ∈M , set lj := lpj , uj := upj and

A′ = (a′ij) =

apj if i = 1,

a1j if i = p,

aij otherwise.

148

The above subroutine finds the row which will generate the smallest D by setting bi = 0

for each i ∈M . It also checks if the matrix satisfied the necessary condition from Proposition

6.5.1.

Note that the main loop of Subroutine 2 is repeated mn times which is linear in the size

of the input. Since the value ofD could be significantly reduced in the case of large matrices,

it may be desirable to use this subroutine when finding the integer image in this instance.

Now by combining Algorithm 4 and Subroutine 2, we can obtain the following modified

algorithm.

Algorithm 5.

Input: A matrix A ∈ Rm×n.

Output: A vector b ∈ Zn for which b ∈ IIm(A) or an indication that such a b does not

exist.

Run Subroutine 2.

for i = 1 to D

begin

if b(i) = A′ ⊗ (A′∗ ⊗′ b(i)),

Integer image exist and b is an integer image of A where

b := (bj) =

b

(i)
p if j = 1,

b
(i)
1 if j = p,

b
(i)
j otherwise.

Stop.

else

Set b(i) := b(i−1) and b(i)
m := b

(i−1)
m + 1.

for p = m to 2 do

begin

149

if b(i)
p > up,

Set b(i)
p := lp and b(i)

p−1 := b
(i)
p−1 + 1.

end

end

6.6 Summary

In this chapter, we have investigated the integer linear system problem. We have found that

the problem is relatively easy to solve for the case when the matrix A only consists of one or

two columns, i.e. n = 1 and n = 2. For both of these cases, we have obtained a necessary

and sufficient condition such that the matrix has an integer image.

We have also shown that if we transform a square matrix into a strongly definite matrix,

its image set will not be affected. It will also be the case for its simple image set if the

square matrix is strongly regular. It turns out that when A is a strongly regular and strongly

definite matrix, it is not difficult to obtain the integer simple set of this matrix. We found

that the integer simple image set is exactly the set of integer eigenvectors of another matrix,

namely C̃ which is easily obtained from A. Using the results we obtained for strongly

regular matrices, we have found some sufficient conditions for an integer image to exist for

any strongly definite matrix.

Finally, we have investigated the general case. We have obtained an upper and lower

bound between any two components for any integer image of a finite matrix. Using this fact,

we have developed an algorithm to generate all possible candidates for an integer image.

Unfortunately, the complexity of the algorithm is exponential, so we have created a subrou-

tine to minimize the maximum number of possible candidate. This algorithm provides us a

benchmark on solving inter linear system for any matrices in general.

150

Chapter 7

On Permuted Linear Systems

7.1 Introduction

In the steady state problem, the manufacturers may have a set of starting times in which they

desire to use for their system. These starting times may be chosen for various reasons; it

includes the power consumption of the machines, manpower available at different times of

a day, etc. But it may also be the case that the manufacturers have not assigned specified

starting time for each machine. Then the problem which will arise from this situation will be

to find a one to one correspondence between the starting time and the machine subject to the

system will achieve steady state immediately.

Another possible scenario will be that the manufacturers have already decided a list of

completion times for their products. This is likely to be the case since the manufacturers need

to deliver their products to their buyers within some certain deadlines. But it may also be the

case that the completion time is not restricted on a certain product; i.e. there is a freedom on

choosing which products will meet which completion time as long as the completion time

for all the products match the set of times specified at the start. One example in which this

would happen is when all the finished products are the same but the manufacturers need to

151

ship the products to different buyers at different times.

Finding the one to one correspondence between the specified time and machines can be

modelled as a permutation problem. Therefore the two problems we discussed above can be

formulated as a permuted eigenvector problem and permuted linear system problem respec-

tively. In Chapter 3, we know that the steady state problem can be transformed into linear

system problem and therefore we will only consider the permuted linear system problem in

this chapter.

From [16], we also know that the permuted linear system problem is NP-complete but

we will show that we can solve the problem efficiently when the matrix is small. We will

develop polynomial algorithms for solving this problem for the case when n = 2 and n = 3.

Then using these results, we will modify the algorithms to solve the general case.

We will assume that the vector of starting time given by the manufacturer is finite and

by the same argument discussed in Chapter 2 regarding system of linear equations, we can

assume without loss of generality that all matrices considered are doubly R-astics.

We will first start by formally defining the permuted linear system problem.

Definition 7.1.1. Let A = (aij) ∈ R
m×n

, b ∈ Rm and π ∈ Pm be a permutation, then A(π)

is the matrix in which the row indices have been permuted by π, i.e. A(π) = (aπ(i),j) and

b(π) is the vector in which the permutation π have been applied to b, i.e.

b(π) = (bπ(i)) = (bπ(1), ..., bπ(m)).

Example 7.1.1. Let b = (1, 2, 3, 4, 5)T and π = (1 3). Then b(π) = (3, 2, 1, 4, 5)T where

the first element and third element in b are swapped with each other.

Problem 8. Given a matrix A ∈ Rm×n and a vector b ∈ Rm, is there a π ∈ Pm s.t.

b(π) = A⊗ x, for some x ∈ Rn

152

7.2 Deciding whether a Permuted Vector is in the Image

Set

Let us start by the case of a one column matrix. It turns out that the case when n = 1 is

trivial. When n = 1 the matrix A is simply a vector. Therefore to check if b can be permuted

such that it is an image of A, we can sort A and b into same ordering and check if b is a

multiple of A. This method will be significant when we move on to the second half of this

chapter.

7.2.1 The Case of Two Columns Matrix

Let us recall Proposition 6.3.1 in Chapter 6. As a reminder, it will be displayed again here.

Proposition 7.2.1. [23][62] Let A ∈ Rm×2
be doubly R-astic, m > 1, then there exist

s, t ∈ M , s 6= t such that s ∈ M1(A, b), t ∈ M2(A, b) for any b ∈ Im(A). Furthermore, s

and t are the indices such that

as1 − as2 = max
i=1,...,m

(ai1 − ai2),

at1 − at2 = min
i=1,...,m

(ai1 − ai2).

Using the property from the proposition above, we can define a necessary condition for

b(π) ∈ Im(A).

By Proposition 7.2.1, we know that we can always find s ∈ M such that s ∈ M1(A, b),

∀b ∈ Im(A) or equivalently ∀i ∈M ,

as1 − bs ≥ ai1 − bi.

153

Now if b(π) ∈ Im(A), it immediately follows that ∀i ∈M ,

as1 − bπ(s) ≥ ai1 − bπ(i). (7.1)

By using the same argument, we will get

at2 − bπ(t) ≥ ai2 − bπ(i). (7.2)

But we also know that if b(π) ∈ Im(A) then ∀i ∈ M , either i ∈ M1(A, b(π)) or i ∈

M2(A, b(π)), i.e.

as1 − bπ(s) = ai1 − bπ(i) or (7.3)

at2 − bπ(t) = ai2 − bπ(i). (7.4)

Note that if b(π) satisfies (7.1),(7.2),(7.3) and (7.4) for all i ∈ M , then by Corollary 2.3.1 it

immediately implies that b(π) ∈ Im(A). Therefore we can use these conditions to devise a

method for deciding whether for a b ∈ Rm, there exists a π ∈ Pm such that b(π) ∈ Im(A).

Let us consider the two matrices B(1) = (ai1 − bj) and B(2) = (ai2 − bj) where b ∈ Rm.

From these two matrices, we can see that if b(π) ∈ Im(A) we can find a permutation such

that it satisfies both (7.1) in B(1) and (7.2) in B(2).

Using Proposition 7.2.1 again, we know that the indices such that s ∈ M1(A, b(π))

and t ∈ M2(A, b(π)) when b(π) ∈ Im(A) or equivalently the row s and t are the column

maximum for column one and column two of the normalized matrix Ā = (aij − bπ(i))

respectively. We also know that s 6= t and therefore we can obtain m(m− 1) possible pairs

of values and use them to find out if a permutation exists such that it satisfies (7.1) and (7.2).

This can be done by generating a 0−1 matrix which is a matrix consisting of only zeroes

and ones. We will generate this matrix for each pair of values mentioned above. For each

154

pair of values, we first create a m×m matrix, namely E with all entries equal to ones. Then

we will check from B(1) and B(2) to find the entries such that (7.3) and (7.4) are satisfied and

in the possible case set the corresponding entries in E to zeroes.

Next we check again from B(1) and B(2) to find the entries such that (7.1) and (7.2) is not

satisfied and set the corresponding entries in E back to one.

At the end the zeroes entries in the updated matrix imply that the corresponding entries in

B(1) andB(2) will satisfy all four conditions, i.e. (7.1),(7.2), (7.3) and (7.4). If we can findm

zeroes in E such that no two are in the same row or column (independent zeroes) then there

exists a permutation π such that b(π) ∈ Im(A) and the corresponding permutation from E

will be π.

If we cannot findm independent zeroes for all possiblem(m−1) pairs of column maxima

then it implies that no such permutation exists, i.e. b(π) /∈ Im(A) ∀π ∈ Pm.

Note that the problem of finding m independent zeroes in the matrix E called the bottle-

neck assignment problem (BAP). Recall that BAP is the following:

Problem 9. [13] Given an m×m matrix A = (aij) with entries from R∪{∞}, find π ∈ Pm

such that

max
i∈M

ai,π(i) → min .

There is a number of efficient algorithms for solving this problem including one of com-

putational complexity O(m2.5) [54].

Algorithm 6.

Input: A matrix A ∈ Rm×2 and a vector b ∈ Rm.

Output: b(π) ∈ Im(A) and a permutation π or b(π) /∈ Im(A), ∀π ∈ Pm.

Find k s.t.

ak2 − ak1 = min
i

(ai2 − ai1)

155

and l such that

al1 − al2 = min
i

(ai1 − ai2).

Set B(1) := (ai1 − bj) and B(2) := (ai2 − bj).

For i = 1 to m,

For j = 1 to m, j 6= i,

Set E to be the m×m all one matrix.

For r = 1 to m,

For s = 1 to m,

If b(1)
rs = b

(1)
ki or b(2)

rs = b
(2)
lj ,

Set ers := 0.

If b(1)
rs > b

(1)
ki or b(2)

rs > b
(2)
lj ,

Set ers := 1.

If π solves BAP and the solution is 0, then b(π) ∈ Im(A). End of Algorithm.

Cannot find m independent 0 in E for all i and j therefore b(π) /∈ Im(A), ∀π ∈ Pm.

7.2.2 Computational Complexity of Algorithm 6

Now let us consider the total number of operations required for Algorithm 6 by considering

each step in the algorithm. The first step will require us to compute the two rows k and l. We

can see that it require 2m operations to find k and 2m operations to find l.

The next step will require us to find the two matrices B(1) and B(2) and each matrix

required m2 operations therefore we would have done 2m2 operations.

Now we will need to find all possible values of column maxima by using entries in b.

This is represented by the two loops i, j and we will have m2 sub-cases.

Next we will need to check through B(1) and B(2) and find out which entries satisfy the

156

two conditions and store these entries in a matrixE. This will require six operations to obtain

each entry of E and hence the number of operations required will be 6m2.

Finally we will need to check if E have m independent zeroes and this required O(m2.5)

operations. Therefore the total number of operations required for this algorithm is:

2m+ 2m2 + (m2)(6m2 +m2.5) ∼ O(m4.5)

7.2.3 The case when n = 3

Next we will consider the case when n = 3. Note that the statement of Proposition 7.2.1

cannot be extended to matrices with three or more columns. For instance let

A =

 1 3 0

0 0 1

 ,

then both b1 = (0, 0)T and b2 = (2, 0)T are in Im(A). However M1(A, b1) = {1} and

M1(A, b2) = {2}.

Since the property in Proposition 7.2.1 cannot be generalized to the case n = 3, therefore

we do not know where the column maxima will be for any b ∈ Im(A).

Suppose that b ∈ Im(A) and we will again let Ā = (aij − bi) be the normalized matrix

of A. We know that there are m3 different possible cases on where the column maxima will

be in Ā (m possibilities in each column). Therefore we can consider every case and for each

case, we can use the same method developed in Subsection 7.2.1 but instead we will have

three matrices B(1), B(2) and B(3). After obtaining these three matrices, we will have to

check the sufficient conditions using them.

By modifying Algorithm 6 we can obtain the following algorithm which can solve Prob-

lem 8 for the case n = 3.

157

Algorithm 7.

Input: A matrix A ∈ Rm×3, and a vector b ∈ Rm

Output: b(π) ∈ Im(A) and a permutation π or b(π) /∈ Im(A), ∀π ∈ Pm

Set B(1) := (ai1 − bj), B(2) := (ai2 − bj) and B(3) := (ai3 − bj)

For u = 1 to m

For v = 1 to m

For w = 1 to m

For i = 1 to m

For j = 1 to m

For k = 1 to m

Set E to be a m×m matrix with all entries are ones

For r = 1 to m

For s = 1 to m

If b(1)
rs = b

(1)
ui or b(2)

rs = b
(2)
vj or b(3)

rs = b
(3)
wk

Set ers := 0

If b(1)
rs > b

(1)
ui or b(2)

rs > b
(2)
vj or b(3)

rs > b
(3)
wk

Set ers := 1

If π solves BAP for E and the solution is 0, then

b(π) ∈ Im(A). End of Algorithm.

Cannot find m independent 0 in E for all i and j therefore b(π) /∈ Im(A) ∀π.

7.2.4 Computational Complexity of Algorithm 7

We can check the total number of operations required for Algorithm 7 by considering each

step in the algorithm. First we will need to create three matricesB(1), B(2) andB(3) and each

matrix required m2 operations therefore we would have done 3m2 operations.

Next we will consider the three loops: u, v andw in the algorithm. These represent all the

158

cases on where the column maxima will be for each column of A and there are m different

possibilities in each column. Hence we will have m3 cases.

Then for each different case we will need to find all possible values of column maxima

by using entries in b. This is represented by the three loops i, j and k and we will have m3

sub-cases.

For each sub case we will need to check through B(1), B(2) and B(3) and find out which

entries satisfy the two conditions and store these entries in a matrix E. This will require 8

operations to obtain each entry of E and hence the number of operations required will be

8m2.

Finally we will need to check if E have m independent zeroes and this can be checked

with m2.5 operations. Therefore the total number of operations required for this algorithm is:

3m2 + (m3)(m3)(8m2 +m2.5) ∼ O(m8.5)

7.2.5 The case when n > 3

The method developed for the case when n = 3 can be generalized for the case when n > 3.

We formally describe it here although it is computationally infeasible since the number of

operations increase exponentially. For the case when n > 3 we will have:

n matrices B(1), ..., B(n)

mn cases on where the column maxima will be

mn sub-cases on the value of column maxima

(2n+ 2)m2 operations for obtaining E

m2.5 operations for checking if E have independent 0.

Therefore for n > 3 this method will require:

nm2 + (mn)(mn)((2n+ 2)m2 +m2.5) ∼ O(nm(2n+2.5)) operations.

159

We can see that when n increases the computational complexity increases exponentially.

7.3 Finding the Permuted Vector Closest to the Image Set

In general, it is possible that a given vector b cannot be permuted into an image of A. One of

the question the manufacturer may want to ask is if we can find a permutation on the vector

b such that it is close to being the image A. First we will need to define the distance of a

vector from the image set by the following definition:

Definition 7.3.1. Let A ∈ Rm×n be doubly R-astic and b = (b1, ..., bm) ∈ Rm. Suppose that

x̄ = (x̄1, ..., x̄n) ∈ Rn is the principal solution to the system A⊗ x = b, that is x̄ = A∗ ⊗′ b.

Then we will define

slk(A, b) = max
i∈M
|(A⊗ x̄)i − bi|

to be the slack of b from the image ofA. The value of the slack is called the Chebyshev-norm.

Then the problem can be formulated as below:

Problem 10. Given a matrix A ∈ Rm×n and a vector b = (b1, ..., bm) ∈ Rm, find a permuta-

tion π ∈ Pm that minimizes

slk(A, b(π)) = max
i∈M
|(A⊗ (A∗ ⊗′ b(π)))i − bπ(i)|.

Note that if we can find a permutation π such that slk(A, b(π)) = 0, i.e. there is no slack

between b(π) and the image of A then it means that b(π) ∈ Im(A) and then Problem 8 is

solved.

160

7.3.1 The One Column Problem

Since finding if a permuted vector is in any image set is NP-complete and the problem of

finding the permuted vector closest to the image set is more complex, we do not expect an

efficient method (a method which solves the problem in polynomial time) in general but will

do so for the case when n = 1, 2. We may assume without loss of generality that the entries

are sorted.

Proposition 7.3.1. Suppose that A, b ∈ Rm and A is ordered non-decreasingly, i.e.

a1 ≤ a2 ≤ ... ≤ am

Then the permutation π solves Problem 10 if b(π) is also ordered

non-decreasingly, i.e.

b1(π) ≤ b2(π) ≤ ... ≤ bm(π)

Proof. Let A, b ∈ Rm and suppose that b is already permuted s.t. it is a solution to Problem

10. We have

slk(A, b) = max
i=1,...,m

|(A⊗ x̄)i − bi|

and

x̄ = min
i=1,...,m

(−ai + bi)

= − max
i=1,...,m

(ai − bi).

161

Therefore

slk(A, b) = max
j=1,...,m

|(A⊗ (− max
i=1,...,m

(ai − bi))j − bj|

= max
j=1,...,m

|(aj − max
i=1,...,m

(ai − bi))− bj|

= max
j=1,...,m

|(aj − bj)− max
i=1,...,m

(ai − bi)|

= | min
j=1,...,m

(aj − bj)− max
i=1,...,m

(ai − bi)|

= max
j=1,...,m

(aj − bj))− min
i=1,...,m

(ai − bi).

For simplicity we will denote

∆ = max
i=1,...,m

(ai − bi)

and

δ = min
i=1,...,m

(ai − bi).

Therefore

∆ > ai − bi ≥ δ ∀i

and

slk(A, b) = ∆− δ.

Suppose that b is not ordered non-decreasingly, that is ∃k s.t. bk > bk+1. Let b′ be the vector

b′k = bk+1

b′k+1 = bk

b′i = bi, i 6= k, k + 1

We know that

∆ ≥ ak − bk ≥ δ (7.5)

162

and

∆ ≥ ak+1 − bk+1 ≥ δ (7.6)

So if we consider swapping the k and k + 1 entries of the vector b then using the fact that

bk+1 − bk < 0 and 7.5 we will get

(ak − bk+1) > (ak − bk+1) + (bk+1 − bk) = (ak − bk) ≥ δ. (7.7)

Then we will use the fact that A is ordered, i.e. ak+1 − ak ≥ 0 and 7.6 then we will get the

following inequality:

(ak − bk+1) ≤ (ak − bk+1) + (ak+1 − ak) = (ak+1 − bk+1) ≤ ∆ (7.8)

Combining 7.7 and 7.8 we will get

∆ ≥ ak − bk+1 > δ (7.9)

We can use a similar method to obtain the following two inequalities:

(ak+1 − bk) ≥ (ak+1 − bk) + (ak − ak+1) = (ak − bk) ≥ δ (7.10)

(ak+1 − bk) < (ak+1 − bk) + (bk − bk+1) = (ak+1 − bk+1) ≤ ∆. (7.11)

Combining 7.10 and 7.11 we will get

∆ > ak+1 − bk ≥ δ (7.12)

163

Therefore using 7.3.1, 7.9 and 7.12 we know that

∆ ≥ ai − bi ≥ δ ∀i 6= k, k + 1

∆ ≥ ak − bk+1 > δ

∆ > ak+1 − bk ≥ δ

and hence ∆ ≥ ai − b′i ≥ δ ∀i.

This implies that slk(A, b′) ≤ slk(A, b). Since b is already a solution to Problem 10

before the permutation therefore b′ is also a solution to Problem 10. We can then continue

to swap any two unordered elements of b and after a finite number of swaps the vector will

become ordered and the resulting vector will still be a solution to Problem 10 and hence the

statement.

Corollary 7.3.1. Suppose that A, b ∈ Rm and π, σ ∈ Pm then the permutation σ−1πσ solves

Problem 10 if A(σ) is ordered and b(πσ) is ordered.

Proof. Let A, b ∈ Rm and let σ to be the permutation such that A is ordered. If we apply

the permutation σ to both A and b the problem will remain the same but now A(σ) will be

ordered then we can apply Proposition 7.3.1 and we will get πσ for the solution. Finally we

could apply the inverse permutation of σ to get b for the original A.

7.3.2 The Two Columns Problem

Now we have considered the one column problem. The next step will be to consider two

columns problem. First we will develop a method on transforming n columns problem into

a one column problem by using the following proposition.

164

Proposition 7.3.2. Suppose that A ∈ Rm×n and b ∈ Rm then

π is a solution =⇒ ∃ x ∈ Rn s.t. π is a solution to the one column

to Problem 10 problem with the matrix of the system A′ = A⊗ x

Proof. Let A ∈ Rm×n be doubly R-astics, b ∈ Rm and π be a solution to Problem 10 then

slk(A, b(π)) is minimized =⇒ max
i=1,...,m

|(A⊗ (A⊗′ b(π)))i − b(π)i| is minimized.

Let x = A⊗′ b(π) ∈ Rn and A′ = A⊗ x ∈ Rm then we will have

max
i=1,...,m

|(A′)i − b(π)i| is minimized =⇒ slk(A′, b(π)) is minimized

Therefore π is a solution to Problem 10 for the one column problem A′ with x = A ⊗′

b(π)

Unfortunately the above result will require us to know π first in order to find out x and

transform A into a one column problem. But if we only consider n = 2 case, i.e. let

A ∈ Rm×2
and x = (x1, x2)T ∈ R2 then the images of A can be written as follows:

A⊗ x =(A1, A2)⊗ (x1, x2)T

= x1 ⊗ A1 ⊕ x2 ⊗ A2

= x1 ⊗ (A1 ⊕ (x2 ⊗ x−1
1)⊗ A2).

Note that if we fix x1 = 0 and consider all possible values of x2 then we will obtain a set of

vectors that are in the images of A and the multiples of these vectors will be the whole image

set for A. Using this set of vectors we will know how the image set looks like and therefore

we can use this property to transform the two columns problem into a one column problem.

Now if we obtain all possible permutations π which solve the one column problem from

165

the set of vectors then from Proposition 7.3.2 we know that one of these permutations will

be a solution to the two columns problem. So we can check the slack on A for each of these

permutations and the permutation which gives the minimal slack will be a solution to the

two columns problem. We will illustrate the method on solving the two columns problem by

using the following example.

Example 7.3.1. Given A =

1 1

2 −6

3 −11

4 −16

5 −21

and b =

1

8

9

14

20

.

Find a permutation π s.t. slk(A, b(π)) is minimized.

The first step will be considering the image set of A by fixing x1 to be zero and we will

have

1

2

3

4

5

⊕ (x2 ⊗

1

−6

−11

−16

−21

)

If we assume x2 to be extremely small, i.e. x2 = ε, then the second column will be ignored

and we will have the first column as our first vector. Since the first column of A and b are

already ordered then the permutation that solved the one column problem for our first vector

will the identity, i.e. π1 = id.

The next step will be to increase x2. Note that the slack may have changed as x2 increases

but this will not affect the permutation until the image is not ordered anymore. Now we will

keep increasing x2 until it reaches the point when an entry on the second column starts to

166

affect the image for the first time.

If we consider the minimum difference between the corresponding entry on the first and

second column, i.e.

min(1− 1, 2− (−6), 3− (−11), 4− (−16), 5− (−21)) = 0.

Then we know that when x2 = 0 the first entry of the second column will be the first to affect

the images. We will call this entry active. When an entry becomes active, it means that this

entry will continue to change in value as x2 increases. Therefore the resulting image will

also change as x2 increases. Henceforth we will take a note of this by first create an empty

set called S. Then we will include the index for this entry into S, i.e. S = {1} in this case.

Since the order is not affected so we will start increasing x2 again.

Now we have increased x2 to 1 then

1

2

3

4

5

⊕ (1⊗

1

−6

−11

−16

−21

) =

2

2

3

4

5

.

We can see that the first and the second entry of the image is now equal and the image will

not be ordered as x2 increases beyond this point. Therefore we will have a new permutation

and using Corollary 7.3.1 we have σ = (1 2) and π = (1 2), hence π2 = σ−1πσ = (1 2).

For simplicity we would want to keep the image ordered therefore we will apply σ to both A

and b and increase x2 by using the permuted A.

167

Once again we will increase x2 and when x2 = 2 we will have

2

1

3

4

5

⊕ (1⊗

−6

1

−11

−16

−21

) =

2

3

3

4

5

.

This time the second and the third entry of the image is now equal and again the image will

not be ordered as x2 increases beyond this point. Therefore we will have another permutation

and using Corollary 7.3.1 again, we will have σ = (1 3 2) and π = (2 3 1), hence π3 =

σ−1πσ = (1 2 3). Now we will apply σ to A and repeat this process again.

We will continue to get new permutation in every step until x2 = 8. Then the second

entry of the second column will start to affect the images and this entry will now become

active. Then we will have a new element in S and it is now S = {1, 2}. By repeating this

process we will have obtain new permutations until all entries become active. Table 7.1 and

7.2 represent our results.

Step x2 A1 A2 x2 ⊗A2 A1 ⊕ x2 ⊗A2 b(π) A(σ)

1 −∞

1
2
3
4
5

1
−6
−11
−16
−21

−∞
−∞
−∞
−∞
−∞

1
2
3
4
5

1
8
9
14
20

1 1
2 −6
3 −11
4 −16
5 −21

2 0

1
2
3
4
5

1
−6
−11
−16
−21

1
−6
−11
−16
−21

1
2
3
4
5

1
8
9
14
20

1 1
2 −6
3 −11
4 −16
5 −21

3 1

1
2
3
4
5

1
−6
−11
−16
−21

2
−5
−10
−15
−20

2
2
3
4
5

8
1
9
14
20

2 −6
1 1
3 −11
4 −16
5 −21

168

Step x2 A1 A2 x2 ⊗A2 A1 ⊕ x2 ⊗A2 b(π) A(σ)

4 2

2
1
3
4
5

−6
1
−11
−16
−21

−4
3
−9
−14
−19

2
3
3
4
5

9
1
8
14
20

2 −6
3 −11
1 1
4 −16
5 −21

5 3

2
3
1
4
5

−6
−11

1
−16
−21

−3
−8
4
−13
−18

2
3
4
4
5

14
1
8
9
20

2 −6
3 −11
4 −16
1 1
5 −21

6 4

2
3
4
1
5

−6
−11
−16

1
−21

−2
−7
−12

5
−17

2
3
4
5
5

20
1
8
9
14

2 −6
3 −11
4 −16
5 −21
1 1

7 8

2
3
4
5
1

−6
−11
−16
−21

1

2
−3
−8
−13

9

2
3
4
5
9

20
1
8
9
14

2 −6
3 −11
4 −16
5 −21
1 1

8 9

2
3
4
5
1

−6
−11
−16
−21

1

3
−2
−7
−12
10

3
3
4
5

10

20
8
1
9
14

3 −11
2 −6
4 −16
5 −21
1 1

9 10

3
2
4
5
1

−11
−6
−16
−21

1

−1
4
−6
−11
11

3
4
4
5

11

20
9
1
8
14

3 −11
4 −16
2 −6
5 −21
1 1

10 11

3
4
2
5
1

−11
−16
−6
−21

1

0
−5
5
−10
12

3
4
5
5

12

20
14
1
8
9

3 −11
4 −16
5 −21
2 −6
1 1

11 14

3
4
5
2
1

−11
−16
−21
−6
1

3
−2
−7
8
15

3
4
5
8

15

20
14
1
8
9

3 −11
4 −16
5 −21
2 −6
1 1

12 15

3
4
5
2
1

−11
−16
−21
−6
1

4
−1
−6
9
16

4
4
5
9

16

20
14
8
1
9

4 −16
3 −11
5 −21
2 −6
1 1

13 16

4
3
5
2
1

−16
−11
−21
−6
1

0
5
−5
10
17

4
5
5

10
17

20
14
9
1
8

4 −16
5 −21
3 −11
2 −6
1 1

169

Step x2 A1 A2 x2 ⊗A2 A1 ⊕ x2 ⊗A2 b(π) A(σ)

14 20

4
5
3
2
1

−16
−21
−11
−6
1

4
−1
9
14
21

4
5
9

14
21

20
14
9
1
8

4 −16
5 −21
3 −11
2 −6
1 1

15 21

4
5
3
2
1

−16
−21
−11
−6
1

5
0
10
15
22

5
5

10
15
22

20
14
9
8
1

5 −21
4 −16
3 −11
2 −6
1 1

16 26

5
4
3
2
1

−21
−16
−11
−6
1

5
10
15
20
27

5
10
15
20
27

20
14
9
8
1

5 −21
4 −16
3 −11
2 −6
1 1

Table 7.1: The results obtained when the value for x2 increase continuously.

Step x2 Permutation Comment
1 −∞ id π1 = id, S = φ
2 0 id First entry becomes active, S = {1}
3 1 (1 2) New permutation obtained π2 = (1 2)
4 2 (1 2 3) New permutation obtained π3 = (1 2 3)
5 3 (1 2 3 4) New permutation obtained π4 = (1 2 3 4)
6 4 (1 2 3 4 5) New permutation obtained π5 = (1 2 3 4 5)
7 8 (1 2 3 4 5) Second entry becomes active, S = {1, 2}
8 9 (1 3 4 5) New permutation obtained π6 = (1 3 4 5)
9 10 (1 3 2 4 5) New permutation obtained π7 = (1 3 2 4 5)
10 11 (1 3 5)(2 4) New permutation obtained π8 = (1 3 5)(2 4)
11 14 (1 3 5)(2 4) Third entry becomes active, S = {1, 2, 3}
12 15 (1 4 2 3 5) New permutation obtained π9 = (1 4 2 3 5)
13 16 (1 4 2 5) New permutation obtained π10 = (1 4 2 5)
14 20 (1 4 2 5) Fourth entry becomes active, S = {1, 2, 3, 4}
15 21 (1 5)(2 4) New permutation obtained π11 = (1 5)(2 4)
16 26 (1 5)(2 4) Fifth entry becomes active, S = {1, 2, 3, 4, 5}

Table 7.2: Summary on the results obtained.

Therefore after step sixteen all entries will become active. The order will not change as

x2 increases beyond this point and the resulting image will become a multiple of the second

column of A. Hence all permutations are being obtained and we will need to compare all

eleven permutations and find out which one will give out the best slack.

170

i πi b(πi) A⊗ (A∗ ⊗′ b(πi)) slk(A, b(πi))

1 id

1
8
9
14
20

1
2
3
4
5

15

2 (1 2)

8
1
9
14
20

8
1
2
3
4

16

3 (1 2 3)

9
1
8
14
20

8
1
2
3
4

16

4 (1 2 3 4)

14
1
8
9
20

8
1
2
3
4

16

5 (1 2 3 4 5)

20
1
8
9
14

8
1
2
3
4

12

6 (1 3 4 5)

20
8
1
9
14

13
6
1
2
3

11

7 (1 3 2 4 5)

20
9
1
8
14

13
6
1
2
3

11

8 (1 3 5)(2 4)

20
14
1
8
9

13
6
1
2
3

8

9 (1 4 2 3 5)

20
14
8
1
9

18
11
6
1
2

7

10 (1 4 2 5)

20
14
9
1
8

18
11
6
1
2

6

171

i πi b(πi) A⊗ (A∗ ⊗′ b(πi)) slk(A, b(πi))

11 (1 5)(2 4)

20
14
9
8
1

20
13
8
3
1

5

Table 7.3: The slacks obtained from all the possible solution.

The table above shows that the permutation which gives out the best slack is π11 and

therefore π11 will be our solution to Problem 10.

From Example 7.3.1, we now have the general idea on how this method work. So we will

need to formulate this method precisely and create an algorithm for solving solve Problem

10. The first step will be obtaining the set of vectors which represent the images and use it

to find the permutation that is a solution to the one column problem. For simplicity we will

let

A1 ⊕ (x2 ⊗ A2) = c.

First we will start with the value when x2 = −∞, then the resulting vector c will be the first

column of A. So using Corollary 7.3.1, we can find a permutation π1 which will solve this

one column problem. Hence we will get our first permutation. Then we will need to apply

the permutation σ to both A and b to transform the two columns problem such that c(σ) is

ordered.

Then for the first time, we will need to find our next vector, i.e. we will start increasing

the x2 value until a value in the second column replaces the corresponding value in the first

column to become an entry of c. This happens when

cr = ar1 ⊕ x2 ⊗ ar2 = x2 ⊗ ar2 and

ci = ai1 ⊕ x2 ⊗ ai2 = ai1 ∀i 6= r

i.e. when

x2 = (ar1 − ar2) = min
i=1,...,m

(ai1 − ai2).

172

Then the rth entry of the second column will become active and will start to affect the rth

entry of c. We will now add r into the set S where S is defined to be the set of indices that

are active on the second column, i.e.

S = {i ∈M | ai1 ⊕ x2 ⊗ ai2 = x2 ⊗ ai2}

We will suppose the value of x2 has started to increase again and we will stop when the

system satisfies one of the following two possible cases:

Case 1. Another entry from the second column (inactive) will start to replace an entry in the

first column to become an entry in c, i.e. ∃k /∈ S such that

ck = ak1 ⊕ x2 ⊗ ak2 = x2 ⊗ ak2 and

ci = ai1 ⊕ x2 ⊗ ai2 = ai1 ∀i /∈ S, i 6= k.

This happens when

x2 = (ak1 − ak2) = min
i/∈S

(ai1 − ai2).

Then the kth entry of the second column will start to become active and we will add k into

the set S.

Case 2. c is not ordered anymore, i.e. cl = cl+1 then the one column problem is changed and

we will have a new permutation. This can only happen when the kth entry is active and the

(l + 1)st entry is not active. Therefore x2 has to be increased up to a value s.t. the following

is satisfied:

al1 ⊕ x2 ⊗ al2 ≥ al+1,1 ⊕ x2 ⊗ al+1,2 l ∈ S, l + 1 /∈ S

=⇒ x2 ⊗ al2 ≥ al+1,1 l ∈ S, l + 1 /∈ S

173

Then the value of x2 will be

x2 = (al+1,1 − al2) = min
i∈S
i+1/∈S

(ai+1,1 − ai2)

Then the lth and the (l + 1)st entry will need to be swapped to achieve the order in c again.

Therefore we can use Corollary 7.3.1 to obtain a new permutation and the new permutation

will be πiσi where πi is the permutation obtained before the order is changed and σi =

(l, l + 1). Finally we will need to apply the permutation σi to both A and b to transform the

two columns problem so that c(σi) is ordered.

We continue to check for each one of the above cases after a new entry is active or after

a new permutation is obtained until it reaches the point such that all the entries in the second

column are active. This is because after the value of x2 passes this point, the obtained vector

will only be the multiple of the second column. Therefore the permutation will not change

anymore after this point and we can end our algorithm here.

From Example 7.3.1 we can see that when the first entry in the second column of A

becomes active, we have obtained five permutations before second entry in column two is

active. Then we have obtained four permutations when the second entry becomes active and

so on. So at the end we have obtained

1 + 4 + 3 + 2 + 1 = 11

permutations. In general case, the first active entry can produce at most (m−1) permutations

since the order of c can change at most (m − 1) times. Then the second active entry can

produce at most (m − 2) permutations as the order of c can change at most (m − 2) times.

This is due to the fact that the difference between the value at the first and second active entry

for c is fixed. Similarly when the kth entry become active it can produce at most (m − k)

permutations. Finally we need to consider the first permutation we obtained from the first

174

column of A and hence the maximum number of permutations obtained will be

1 + (m− 1) + (m− 2) + ...+ (m−m) = 1 +
m∑
k=1

(m− k)

= 1 +
m−1∑
k=1

(k)

= 1 +
1

2
(m)(m− 1).

After finding all the possible permutations, we will need to check the slack of b on the image

of A for them. The permutation which gives the best result will be the solution to Problem

10 for the two columns problem. Note that if we use this algorithm and find a permutation π

s.t. slk(A, b(π)) = 0, it means that b(π) ∈ Im(A) so this algorithm may also solve Problem

8 for the n = 2 case.

Algorithm 8.

Input: A matrix A ∈ Rm×2, and a vector b ∈ Rm

Output: A permutation π and slk(A, b(π))

Find permutations σ and π1 where A1(σ) and b(πσ) are ordered.

Set A := A(σ), S := ∅ and p := 1.

While |S| 6= m,

Let

α1 : = (ak1 − ak2) = min
i/∈S

(ai1 − ai2) and

α2 : = (al+1,1 − al2) = min
i∈S
i+1/∈S

(ai+1,1 − ai2).

If α1 = min(α1, α2),

Add k to S;

175

Else

Let πp+1 := πp(l, l + 1). Set A := A(l, l + 1) and p := p+ 1.

Let π := πr and slk(A, b(π)) := slk(A, b(πr)) where

slk(A, b(πr)) = min
j=1,...,p

slk(A, b(πj)).

7.4 Summary

In this chapter, we have investigated the problem of permuted linear systems. We know that

this problem is NP-complete [16]. But we have found out that the case is easily solvable

for the case when the matrix consists of only one column. We also developed an algorithm

on solving the case when the matrix consists of only two columns by using a result we

presented in Chapter 6 (Proposition 6.3.1). The immediate consequence of this is that we

have developed a similar method for solving the general case although the computational

complexity will be exponential.

We have also considered the case when a given vector may not be permuted into an image

of the given matrix, but we would like to find out a permutation such that the permuted vector

is closest to the image set. We have shown that this problem is trivial for the one column

case and using this we have developed a solution method on solving the two columns case.

176

Chapter 8

Heuristics for the Permuted Linear

Systems Problem

8.1 Introduction

Since the permuted linear systems problem is NP-complete, we know an exact solution

method is highly unlikely to be efficient. Therefore in this chapter we will develop some

forms of heuristic to find a vector that is as close as possible to a permuted image of A. The

distance is again measured by the Chebyshev norm.

As a reminder the definition of doubly R-astic, the Chebyshev norm and the permuted

linear systems problem will be repeated as Definition 8.1.1, Definition 8.1.2 and Problem 11,

respectively.

Definition 8.1.1. [29] Let A ∈ R
m×n

be a matrix which has at least one finite entry on each

row (column) then A is called row R-astic (column R-astic). A is called doubly R-astic if it

is both row and column R-astic.

Definition 8.1.2. Let A ∈ Rm×n be doubly R-astic and b = (b1, ..., bm) ∈ Rm. Suppose that

x̄ = (x̄1, ..., x̄n) ∈ Rn is the principal solution to the system A⊗ x = b, that is x̄ = A∗ ⊗′ b.

177

Then we will define

slk(A, b) = max
i∈M
|(A⊗ x̄)i − bi|

to be the slack of b from the image ofA. The value of the slack is called the Chebyshev-norm.

Problem 11. Given a matrix A ∈ Rm×n and a vector b = (b1, ..., bm) ∈ Rm, find a permuta-

tion π ∈ Pm that minimizes

slk(A, b(π)) = max
i∈M
|(A⊗ (A∗ ⊗′ b(π)))i − bπ(i)|.

8.2 The Steepest Descent Method

We will first consider using what is called the steepest descent method. The principle idea of

this method is to start with a permutation which can be randomly chosen and we evaluate the

corresponding slack for this permutation. Then we will find other permutations which are

often derived from the starting permutation and evaluate the corresponding slack generated

from these permutations. Sometimes these permutations are said to be in the neighborhood

of the starting permutation. We will compare these newly obtained values with the values

obtained from the starting permutation. If we have found a better slack from one of these

values, we say that we will found an improved solution and we will take the permutation

which generated the smallest slack, i.e. the best improvement. We will continue this process

until we cannot find a permutation with better slack and we will stop this process. Then the

solution obtained from the previous step with be our solution.

Note that for this method, we never continue if we cannot find a better permutation at

the end of a step. In Section 8.5, we will discuss a method which will continue to search for

better permutations in the case when worse permutations can only be found at the end of a

step.

Now we will need to devise a method which enables us to find the permutations in the

178

neighborhood of the starting permutation. Neighborhood can be defined in various ways. In

this chapter, we will define the neighborhood of a permutation by swapping two elements in

the permutation.

8.2.1 Full Local Search

The following method is a combination of steepest descent and local search method. We

will consider swapping two elements at one time, the full local search would mean to check

swaps for every component before hand. We will use the swap that gives out the best result.

We will first need to choose a starting permutation. This starting permutation can be any

randomly generated and for simplicity we can choose the identity as a starting permutation.

Then we will apply a starting permutation π on the vector b and obtain the slack from this

starting permutation. After that we will check all two elements swaps and we will find one

which results in the greatest decrease of slack and we will apply this swap to b and repeat the

process. The method can be formulated as the following algorithm.

Algorithm 9.

Input: A matrix A ∈ Rm×n, a vector b ∈ Rm and a starting permutation π ∈ Pm.

Output: A permutation π̄ and slk(A, b(π̄)).

Set z = 1 and πz := π.

Set b := b(π) and find slk(A, b).

While slk(A, b) 6= 0

For i = 1 to m

For j = 1 to m, j 6= i

Find slk(A, b(i, j)).

179

Let

slk(A, b(r, s)) = min
i,j

slk(A, b(i, j)).

If slk(A, b(r, s)) < slk(A, b)

Set πz+1 := πz(r, s) and z := z + 1.

else

slk(A, b) cannot be improved anymore. Therefore π̄ := πz and

slk(A, b(π̄)) := slk(A, b(πz)). Stop.

slk(A, b(πz)) = 0 implies that b(πz) is an image of A and therefore π̄ := πz

and slk(A, b(π̄z)) = 0.

Example 8.2.1. Given A =

1 1 3

2 4 2

4 −1 5

3 6 0

and b =

10

5

4

1

.

Find a permutation π s.t. slk(A, b(π)) is minimized.

First we need to decide a starting permutation. For convenience we have used the identity

as the starting permutation and the resulting slack will be:

180

A⊗ x̄ =

1 1 3

2 4 2

4 −1 5

3 6 0

⊗ (

−1 −2 −4 −3

−1 −4 1 −6

−3 −2 −5 0

⊗′

10

5

4

1

),

=

1 1 3

2 4 2

4 −1 5

3 6 0

⊗

−2

−5

−1

 ,

=

2

1

4

1

.

Therefore slk(A, b) = max(10− 2, 5− 1, 4− 4, 1− 1) = 8.

Since this permutation does not give b as an image of A, we want to find another permu-

tation such that the permuted b is an image of A or as close to being the image as possible.

So we would want to find two entries of b to swap; to find these two entries we will need to

check for all possible swaps.

Swaps New b A⊗ x̄ slack

(1 2)

5
10
4
1

2
1
4
1

 9

(1 3)

4
5
10
1

4
3
6
1

 4

181

Swaps New b A⊗ x̄ slack

(1 4)

1
5
4
10

1
4
4
6

 4

(2 3)

10
4
5
1

3
2
5
1

 7

(2 4)

10
1
4
5

2
1
4
3

 8

(3 4)

10
5
1
4

−1
2
1
4

 11

Table 8.1: The First Iteration of the Full Local Search.

From Table 8.1, we noticed that if we swap the first and the third entry or the first and the

fourth entry, we will obtain best slack. Therefore we will need to choose one of these two

vectors to be our new b and repeat the process again. For simplicity we will use the vector

(4, 5, 10, 1)T as our new b since we have obtained this vector first from the above calculation.

We will get the following result:

Swaps New b A⊗ x̄ slack

(1 2)

5
4
10
1

4
3
6
1

 4

(1 3)

10
5
4
1

2
1
4
1

 8

(1 4)

1
5
10
4

1
2
4
4

 6

(2 3)

4
10
5
1

3
2
5
1

 8

(2 4)

4
1
10
5

2
1
4
3

 6

182

Swaps New b A⊗ x̄ slack

(3 4)

4
5
1
10

2
5
1
7

 3

Table 8.2: The Second Iteration of the Full Local Search.

From Table 8.2, we can see that the vector (4, 5, 1, 10)T gives the best slack therefore we

will use this vector as the new b and finally we will get:

Swaps New b A⊗ x̄ slack

(1 2)

5
4
1
10

1
4
1
6

 4

(1 3)

1
5
4
10

−1
2
1
4

 11

(1 4)

10
5
1
4

1
4
4
6

 9

(2 3)

4
1
5
10

2
1
4
3

 7

(2 4)

4
10
1
5

0
3
1
5

 7

(3 4)

4
5
10
1

4
3
6
1

 4

Table 8.3: The Third iteration of the Full Local Search.

Therefore the slack cannot be improved anymore and we will conclude the vector (4, 5, 1, 10)T

is the best output found using this method with slack 3. In fact this output is the optimal so-

lution for this problem (this can be checked by considering all 4! = 24 permutations).

Out of interest we may want to know the output we will get if we use the vector (1, 5, 4, 10)T

instead of the one we have chosen which is (4, 5, 10, 1)T when there were two choices of vec-

tor earlier in the calculation. Now if we use the vector (1, 5, 4, 10)T as our new b then the

183

result will be the following:

Swaps New b A⊗ x̄ slack

(1 2)

5
1
4
10

2
1
4
3

 7

(1 3)

4
5
1
10

2
5
1
7

 3

(1 4)

10
5
4
1

2
1
4
1

 8

(2 3)

1
4
5
10

1
4
4
6

 4

(2 4)

1
10
4
5

1
3
4
5

 7

(3 4)

1
5
10
4

1
2
4
4

 6

Table 8.4: The Second Iteration of the Full Local Search when a different
vector is chosen.

As we can see that the vector (4, 5, 1, 10)T appeared here as well and therefore in this

case, we will get the optimal solution regardless of the choice we made earlier on.

8.2.2 Semi-full Local Search

As we can see from the Example 8.2.1, Algorithm 9 will result in 1
2
m(m − 1) different

checks if we are looking for all two elements to swap at a time. This means that we will

have to check 1
2
m(m − 1) times for every step of the algorithm. If we are looking for more

elements to swap at a time, the total check will increase significantly. Therefore we may

want to consider another method that would require less computational time to calculate an

output in the case when m is very large.

184

In order to reduce the number of calculations, instead of swapping all 1
2
m(m−1) pairs of

components, we swap one selected component with all m− 1 remaining swaps. We will use

the swap that results in the greatest decrease of slack. This method will only require m − 1

checks in every step but this will likely to decrease the quality of the output. Therefore the

choice of the element we will want to swap first is very important and we would want to

choose one such that the quality of the output is reduced as little as possible.

A possible good candidate for the choice could be the entry in b which contributes to the

slack, i.e. the kth entry where

slk(A, b) = max
i=1,...,m

|(A⊗ x̄)i − bi| = |(A⊗ x̄)k − bk|.

This is the entry in b which is furthest away from the vector (b̄ = A⊗ x̄) where x̄ = A∗⊗′ b.

The intuitive reason of choosing this entry to swap is because it looks like we will get a better

slack if we choose this entry to swap. Also we know that this entry is not hard to find. The

following example will illustrate the working for this method.

Example 8.2.2. Given A =

1 1 3

2 4 2

4 −1 5

3 6 0

and b =

10

5

4

1

.

Find a permutation π s.t. slk(A, b(π)) is minimized.

We will again use the identity as our starting permutation. Therefore from Example 8.2.2

we know that the resulting slack will be 8.

Now this permutation does not give b as an image of A, therefore we would want to find

two entries of b to swap; one of the entries we would like to swap would be the first entry

of b since we obtained the slack by this entry. We would swap the first entry with the other

three to find out if any one of them will give a better slack.

185

Swaps New b A⊗ x̄ slack

(1 2)

5
10
4
1

2
1
4
1

 9

(1 3)

4
5
10
1

4
3
6
1

 4

(1 4)

1
5
4
10

1
4
4
6

 4

Table 8.5: The First Iteration of the Semi-full Local Search.

Again we can see that if we swap the first and the third entry or the first and the fourth

entry, we will obtain a better a slack. Therefore we will choose the vector (4, 5, 10, 1)T as

our new b by the same reason as in the previous example. Now we will repeat the process

again. From Table 8.5, we can see that the entry that gives the slack is the third entry. So we

swap the third entry with other three entries and we will get:

Swaps New b A⊗ x̄ slack

(3 1)

10
5
4
1

2
1
4
1

 8

(3 2)

4
10
5
1

3
2
5
1

 8

(3 4)

4
5
1
10

2
5
1
7

 3

Table 8.6: The Second Iteration of the Semi-full Local Search.

So the vector (4, 5, 1, 10)T will give a better slack than before and we will use this vector

as the new b and after all the calculations we will get:

186

Swaps New b A⊗ x̄ slack

(4 1)

10
5
1
4

−1
2
1
4

 11

(4 2)

4
10
1
5

0
3
1
5

 7

(4 3)

4
5
10
1

4
3
6
1

 4

Table 8.7: The Third Iteration of the Semi-full Local Search.

Therefore the slack cannot be improved anymore and we will conclude that the vector

(4, 5, 1, 10)T is the best output found using this method with slack 3. Note that for this

example the method also gives out the optimal solution for this problem and it also uses the

same number of steps as Algorithm 10 but with fewer calculations.

Now it may be interesting to know what will happen of we use the other vector which

is (1, 5, 4, 10)T instead of the one we have chosen earlier. Therefore we will use the vector

(1, 5, 4, 10)T as our b and we will obtain the following table:

Swaps New b A⊗ x̄ slack

(4 1)

10
5
4
1

2
1
4
1

 8

(4 2)

1
10
4
5

1
3
4
5

 7

(4 3)

1
5
10
4

1
2
4
4

 6

Table 8.8: The Second Iteration of the Semi-full Local Search when a
different vector is chosen.

We can clearly see that we cannot improve our output anymore, therefore if we choose

the second vector we will conclude that the vector (1, 5, 4, 10)T with the slack 4 will be the

187

output. Unlike the full local search method we cannot find a better output with this vector.

This shows that this method may sacrifice accuracy in return for the decrease in calculation.

Algorithm 10.

Input: A matrix A ∈ Rm×n, a vector b ∈ Rm and a starting permutation π

Output: A permutation π̄ and slk(A, b(π̄))

Set z = 1 and πz := π.

Set b := b(π) and find slk(A, b).

While slk(A, b) 6= 0

Find r s.t. br − (A⊗ (A∗ ⊗ b))r = slk(A, b).

Find s s.t.

slk(A, b(r, s)) = min
j=1,...,m

slk(A, b(r, j)).

If slk(A, b(r, s)) < slk(A, b)

Set πz+1 := πz(r, s) and z := z + 1.

else

slk(A, b) cannot be improved anymore. Therefore π̄ := πz and

slk(A, b(π̄)) := slk(A, b(πz)). Stop.

slk(A, b(πz)) = 0 implies that b(πz) is an image ofA and therefore π̄ := πz, slk(A, b(π̄z)) =

0.

188

8.3 The Column Maxima Method

Consider the following equalities:

slk(A, b) = max
k=1,...,m

|(A⊗ (x̄))k − bk|

= max
k=1,...,m

|(A⊗ (A∗ ⊗′ b))k − bk|

= max
k=1,...,m

|(max
j=1,...,n

(aij + (min
i=1,...,m

(−aij + bi))))k − bk|

= max
k=1,...,m

|(max
j=1,...,n

(aij − max
i=1,...,m

(aij − bi)))k − bk|

= max
k=1,...,m

| max
j=1,...,n

(akj − max
i=1,...,m

(aij − bi))− bk|

= max
k=1,...,m

| max
j=1,...,n

((akj − bk)− max
i=1,...,m

(aij − bi))|

= max
k=1,...,m

| − min
j=1,...,n

(max
i=1,...,m

(aij − bi)− (akj − bk))|

= max
k=1,...,m

(min
j=1,...,n

(max
i=1,...,m

(aij − bi)− (akj − bk)))

(8.1)

Now we will let the matrix Ā = āij = (aij − bi), i.e. we normalize A, then the equation 8.1

will become

slk(A, b) = max
k=1,...,m

(min
j=1,...,n

(max
i=1,...,m

(āij)− ākj))

where

max
i=1,...,m

āij

is the column maximum of column j in Ā.

We will suppose that row r in A gives the slack slk(A, b), i.e.

slk(A, b) = min
j=1,...,n

(max
i=1,...,m

(aij − bi)− (arj − br))

= min
j=1,...,n

(max
i=1,...,m

(āij)− ārj)).
(8.2)

From the above equation, we can see that the slack can be found by subtracting every column

189

maximum of the matrix Ā by the corresponding values on row r and take the minimal from

these values.

Suppose that we have used a starting permutation and find out at which row in A, the

slack for this permutation is attained. Now we will want to find another permutation such

that the slack will improve. The new permutation is obtained by finding two components in

b and swap them. The next step will be to find which two components to swap.

Let us look at (8.2) again, we can see that there are two ways to reduce the slack:

1) We will look for an entry bs to swap with the value for br such that every entry of row r in

Ā will increase, i.e. ∀j ∈ N ,

arj − bs > arj − br = ārj.

Then the difference between the values of row r and the column maxima are decreased after

the swap and the slack will decrease as the result.

2) We find the column l such that the minimal value between the column maximum and the

value on row r is attained, i.e.

slk(A, b) = max
i=1,...,m

(āil − ārl)

Then we will find an entry bq to swap with the value bp where āpl is the column maximum of

column l such that

apl − bq < apl − bp = āpl.

Therefore the column maximum for column l is decreased after the swap and hence the slack

will decrease.

190

8.3.1 Formulation of the Algorithm

Step 1. The first step of this method will require us to have a starting permutation, the

identity for instance and we will use this permutation to find out Ā. Using Ā we can find

out the slack for this permutation and also the row r in which this slack is obtained. We will

also want to acquire the set M̄ ⊆ M where M̄ is the set of indices which are covered by a

column maximum in Ā, i.e.

M̄ = {k ∈M | ∃j ∈ N, ākj = max
i∈M

āij}

or equivalently

M̄ =
⋃
j∈N

Mj(A, b)

where

Mj(A, b) = {k ∈M | (akj − bk) = max
i=1,...,m

(aij − bi)}

which were seen previously in different chapters.

Note that if there are more than one row in which the slack is obtained then we will

choose the row with the largest value of b as br.

Example 8.3.1.

row u

row v

.

.

bu

bv

.

From the matrix above, the rows u and v represent the rows in which the slack is obtained.

Therefore we will choose the row which has the largest value for b, therefore we have br =

191

max(bu, bv).

Step 2. The next step will be to find out which component in b we will need to swap from.

We will first look at row r and try to increase every value of this row in Ā so that the slack is

reduced. In order to do this we will need to find bs such that ∀j ∈ N ,

arj − bs > arj − br

or

bs < br.

We would also like to choose bs where there exists j ∈ N such that āsj is a column maximum

in Ā, i.e.

s ∈Mj(A, b)

or equivalently,

āsj = max
i∈M

āij.

This is because we would want to reduce the value of the column maximum at the same

time. We also want to decrease the slack in small steps to avoid the slack going past a local

minimum. Therefore if there exists more than one choice for bs, we would like to choose the

largest from them all, i.e.

br − bs = min
i∈M̄

((br − bi) > 0).

We immediately see that bs is the smaller closest value of br. After we found this bs we will

perform the swap and obtain the new Ā. We will calculate the resulting slack from the new

Ā. If the value is better than we obtained previously, then we will repeat this process with

the new Ā from Step 1.

192

Step 3. If we cannot find a value of bs which satisfies the criteria above or we have ob-

tained a worse slack from the previous step, we will move on to this step. We will need to

obtain all the column maxima such that the minimal value between these column maxima

and the value on row r is attained. In the case when there are more than one row with a

column maximum which contribute to the slack, we choose the row p such that bp has the

smallest value of b from the other row.

Example 8.3.2.

©

© ©

©

row u

row v

row w

row r

.

bu

bv

bw

.

br

.

© are the column maxima

which contribute

to the slack

From the matrix above © represents the column maximum which contribute to the slack,

then we would have row u, v and w to choose as from. Now we will choose the row which

has the smallest value for b, hence we have bp = min(bu, bv, bw).

Now we want to decrease the column maxima of row p by choosing a value bq such that

apl − bq < apl − bp

or

bq > bp.

193

We also want to choose bq such that row q in Ā do not have a column maximum, i.e. ∀j ∈ N ,

q /∈Mj(A, b)

or equivalently,

āqj 6= max
i∈M

āij.

By the similar reason as Step 2, if there exists more than one choice for bq, we would want

to choose the smallest of them all. This is because we want the slack to decrease in small

steps, i.e.

bp − bq = max
i/∈M̄

((bp − bi) < 0).

We will perform the swap and obtain the resulting slack from the new Ā. If the value is better

than that we obtained previously, we will start from Step 1 again using the new permutation.

If we cannot find a bq for the swap or if we obtain a worse output after the swap, we will say

that the output cannot improve. A local minimum is obtained by the permutation we used

before the swap and this is the end of algorithm.

There are a couple of points we will need to consider during the run of this algorithm:

• If we have obtained a permutation π such that |M̄ | = m, this means that there exists

at least one column maximum in every row of Ā. This immediately implies that b(π)

is an image of A. Hence slk(A, b(π)) = 0 and we can stop the algorithm with this

permutation.

• If we have a repeated permutation after we applied Step 2 or Step 3, then we will have

a cycle and therefore we cannot find a better output after this point. We will stop the

algorithm here and we will take this permutation to be the output of this algorithm.

Algorithm 11.

Input: A matrix A ∈ Rm×n, a vector b ∈ Rm and a starting permutation π

194

Output: A permutation π̄ and slk(A, b(π̄))

Set z = 1, πz := π, b := b(π) and Ā := āij = (aij − bi).

Find slk(A, b) and

M̄ := {k ∈M | ∃j ∈ N, ākj = max
i∈M

āij}.

While |M̄ | 6= m

If πz 6= πi, i = 1, ..., (z − 1)

Find the set

R := {l /∈ M̄ | min
j∈N

(max
i∈M

(āij)− ālj)) = slk(A, b)}.

Find r s.t.

br = max
i∈R

bi

If ∃s s.t.

br − bs = min
i∈M̄

((br − bi) > 0)

and slk(A, b(r, s)) ≤ slk(A, b).

Set b := b(r, s), πz+1 := (r, s)πz, z := z + 1 and find the new M̄

Else

Find the set

P := {u ∈M | min
j∈N

(āuj − ārj) = slk(A, b) and

āuj = max
i∈M

āij}.

195

Find p s.t.

bp = min
i∈P

bi

If ∃q s.t.

bp − bq = max
i/∈M̄

((bp − bi) < 0)

and slk(A, b(p, q)) ≤ slk(A, b).

Set b := b(p, q), πz+1 := (p, q)πz, z := z + 1 and find the new M̄

Else

slk(A, b) cannot be improved anymore. Therefore π̄ := πz and slk(A, b(π̄)) :=

slk(A, b(πz)). Stop.

Stop.

Stop.

else

πz is a repeated permutation and we will not obtain a better solution beyond this

point. Therefore π̄ := πz and slk(A, b(π̄)) := slk(A, b(πz)). Stop.

Stop.

else

|M̄ | = m implies that b(πz) is an image of A and hence slk(A, b(πz)) = 0. Therefore

π̄ := πz and slk(A, b(π̄z)) = 0. Stop.

196

8.4 Test Results for the Three Methods

In this section we will run tests on the three algorithms arising from the three methods and

compare the results obtained. We will run tests on 20 different sets of problem, i.e. we have

20 distinct sets of matrix A and vector b. For each set of problem we will use 7 different

permutations as our starting permutations; the identity, Atimes0 and five other randomly

generated permutations. The permutation Atimes0 is generated by considering the vector

A⊗ 0 as a one column problem and Atimes0 will be a solution to this problem.

In order to assess the quality of the methods, the first four sets of problem are randomly

generated which consists of only two columns. Using Algorithm 8, we can solve these

problems precisely and therefore the best slack is known for all these four cases.

For the rest of the sets, we have generated a random matrix A with specified number of

rows and columns with b is generated by choosing randomly permuted of a random image of

A. Therefore we know that the minimum slack will be 0 for all these cases. The results will

be presented in the following pages.

The following table represents results obtained by using Full Local Search Method:

Test matrix m n Optimal Starting permutation Result Step Time

1 10 2 2131

Identity 7309 2 < 1s
Atimes0 6824 3 < 1s

Random 1 7011 3 < 1s
Random 2 5653 2 < 1s
Random 3 4770 2 < 1s
Random 4 3964 5 < 1s
Random 5 6341 2 < 1s

2 50 2 2343

Identity 13806 2 < 1s
Atimes0 12240 3 < 1s

Random 1 12462 3 < 1s
Random 2 14720 2 < 1s
Random 3 14015 1 < 1s
Random 4 11185 2 < 1s
Random 5 12828 2 < 1s

197

Test matrix m n Optimal Starting permutation Result Step Time

3 100 2 1503

Identity 12871 2 10s
Atimes0 14344 2 10s

Random 1 13714 3 14s
Random 2 11124 3 14s
Random 3 15622 1 5s
Random 4 12803 5 23s
Random 5 14579 1 5s

4 200 2 892

Identity 16702 2 1m37s
Atimes0 16059 4 3m17s

Random 1 15127 2 1m41s
Random 2 15026 3 2m30s
Random 3 15127 2 1m41s
Random 4 14856 1 49s
Random 5 16095 2 1m39s

5 10 10 0

Identity 583 2 < 1s
Atimes0 466 2 < 1s

Random 1 321 3 < 1s
Random 2 726 2 < 1s
Random 3 841 2 < 1s
Random 4 827 3 < 1s
Random 5 440 3 < 1s

6 50 10 0

Identity 3023 2 2s
Atimes0 2628 2 2s

Random 1 2787 2 2s
Random 2 2868 3 3s
Random 3 2976 1 1s
Random 4 2692 2 2s
Random 5 2642 3 3s

7 100 10 0

Identity 3979 2 25s
Atimes0 4271 4 53s

Random 1 3898 3 38s
Random 2 4699 2 26s
Random 3 4462 2 26s
Random 4 4389 2 26s
Random 5 4715 2 25s

8 200 10 0

Identity 5321 2 5m41s
Atimes0 5050 2 5m42s

Random 1 4810 2 5m47s
Random 2 4851 3 8m39s
Random 3 4786 2 5m43s
Random 4 4748 3 8m35s
Random 5 4586 4 11m26s

9 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

198

Test matrix m n Optimal Starting permutation Result Step Time

10 50 50 0

Identity 529 2 7s
Atimes0 427 2 7s

Random 1 454 3 11s
Random 2 390 3 11s
Random 3 416 3 11s
Random 4 507 2 7s
Random 5 382 4 15s

11 100 50 0

Identity 1185 2 1m47s
Atimes0 916 3 2m54s

Random 1 994 2 1m57s
Random 2 933 4 4m
Random 3 1049 3 2m57s
Random 4 1002 2 1m50s
Random 5 1114 2 1m47s

12 200 50 0

Identity 1159 2 26m9s
Atimes0 1096 4 50m29s

Random 1 1056 4 50m36s
Random 2 1236 2 25m22s
Random 3 1228 2 25m19s
Random 4 1237 3 37m54a
Random 5 1126 4 50m27s

13 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

14 50 100 0

Identity 214 2 14s
Atimes0 218 2 14s

Random 1 271 2 14s
Random 2 173 3 21s
Random 3 103 2 14s
Random 4 210 3 21s
Random 5 124 2 14s

15 100 100 0

Identity 537 2 3m18s
Atimes0 419 2 3m27s

Random 1 408 3 5m9s
Random 2 527 2 3m26s
Random 3 491 2 3m25s
Random 4 520 2 3m28s
Random 5 393 3 5m4s

16 200 100 0

Identity 701 2 52m4s
Atimes0 737 3 1h16m55s

Random 1 681 3 1h14m47s
Random 2 735 1 24m56s
Random 3 713 3 1h14m42s
Random 4 704 4 1h42m14s
Random 5 716 3 1h16m46s

199

Test matrix m n Optimal Starting permutation Result Step Time

17 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

18 50 200 0

Identity 0 1 14s
Atimes0 56 1 13s

Random 1 2 2 27s
Random 2 29 2 27s
Random 3 0 3 40s
Random 4 0 1 13s
Random 5 0 1 13s

19 100 200 0

Identity 293 2 6m39s
Atimes0 212 2 6m34s

Random 1 244 3 9m45s
Random 2 208 5 16m14s
Random 3 194 3 9m45s
Random 4 263 2 6m30s
Random 5 236 2 6m31s

20 200 200 0

Identity 408 2 1h38m32s
Atimes0 372 3 2h33m16s

Random 1 364 3 2h33m40s
Random 2 327 2 1h44m32s
Random 3 399 2 1h42m17s
Random 4 391 2 1h38m42s
Random 5 352 4 3h22m37s

Table 8.9: Results obtained using Full Local Search Method for 20 matrices with different
dimensions.

The following table represents results obtained by using Semi-full Local Search Method:

Test matrix m n Optimal Starting permutation Result Step Time

1 10 2 2131

Identity 7309 2 < 1s
Atimes0 8018 2 < 1s

Random 1 7498 3 < 1s
Random 2 7019 3 < 1s
Random 3 10122 2 < 1s
Random 4 8317 3 < 1s
Random 5 8134 3 < 1s

2 50 2 2343

Identity 13806 2 < 1s
Atimes0 14410 2 < 1s

Random 1 16160 1 < 1s
Random 2 14720 2 < 1s
Random 3 14015 1 < 1s
Random 4 12648 3 < 1s
Random 5 14141 2 < 1s

200

Test matrix m n Optimal Starting permutation Result Step Time

3 100 2 1503

Identity 12871 2 < 1s
Atimes0 14798 2 < 1s

Random 1 15491 1 < 1s
Random 2 15053 3 < 1s
Random 3 15622 1 < 1s
Random 4 15935 3 < 1s
Random 5 14579 1 < 1s

4 200 2 892

Identity 16702 2 < 1s
Atimes0 16973 1 < 1s

Random 1 15280 2 < 1s
Random 2 16005 3 1s
Random 3 15932 2 < 1s
Random 4 14856 1 < 1s
Random 5 16369 2 < 1s

5 10 10 0

Identity 868 2 < 1s
Atimes0 1012 2 < 1s

Random 1 708 3 < 1s
Random 2 1055 2 < 1s
Random 3 1846 1 < 1s
Random 4 1190 1 < 1s
Random 5 587 3 < 1s

6 50 10 0

Identity 3052 2 < 1s
Atimes0 2768 3 < 1s

Random 1 2827 4 < 1s
Random 2 2936 3 < 1s
Random 3 2976 1 < 1s
Random 4 2692 2 < 1s
Random 5 2809 2 < 1s

7 100 10 0

Identity 3979 2 < 1s
Atimes0 4598 3 < 1s

Random 1 4590 3 < 1s
Random 2 4749 2 < 1s
Random 3 4706 2 < 1s
Random 4 4487 2 < 1s
Random 5 4724 2 < 1s

8 200 10 0

Identity 5364 2 3s
Atimes0 5050 2 3s

Random 1 4965 2 3s
Random 2 5185 1 2s
Random 3 4786 2 3s
Random 4 5121 3 5s
Random 5 4888 4 7s

9 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

201

Test matrix m n Optimal Starting permutation Result Step Time

10 50 50 0

Identity 529 2 < 1s
Atimes0 597 1 < 1s

Random 1 611 1 < 1s
Random 2 463 2 < 1s
Random 3 606 2 < 1s
Random 4 675 1 < 1s
Random 5 526 1 < 1s

11 100 50 0

Identity 1185 2 2s
Atimes0 895 4 5s

Random 1 984 3 4s
Random 2 1126 2 2s
Random 3 1049 3 4s
Random 4 1002 2 2s
Random 5 1219 1 1s

12 200 50 0

Identity 1159 2 15s
Atimes0 1341 1 8s

Random 1 1096 3 23s
Random 2 1275 2 16s
Random 3 1195 3 23s
Random 4 1237 3 23s
Random 5 1206 2 16s

13 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

14 50 100 0

Identity 214 2 < 1s
Atimes0 203 4 1s

Random 1 453 1 < 1s
Random 2 383 1 < 1s
Random 3 217 2 < 1s
Random 4 237 2 < 1s
Random 5 124 2 < 1s

15 100 100 0

Identity 574 2 4s
Atimes0 419 2 4s

Random 1 408 3 6s
Random 2 639 2 4s
Random 3 581 2 4s
Random 4 578 2 4s
Random 5 470 3 6s

16 200 100 0

Identity 731 2 30s
Atimes0 812 1 15s

Random 1 704 3 45s
Random 2 735 1 15s
Random 3 829 1 15s
Random 4 843 2 30s
Random 5 716 3 45s

202

Test matrix m n Optimal Starting permutation Result Step Time

17 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

18 50 200 0

Identity 12 2 1s
Atimes0 56 1 < 1s

Random 1 55 3 2s
Random 2 63 2 1s
Random 3 127 1 < 1s
Random 4 0 1 < 1s
Random 5 0 1 < 1s

19 100 200 0

Identity 293 2 8s
Atimes0 212 2 8s

Random 1 320 2 8s
Random 2 292 2 8s
Random 3 251 2 8s
Random 4 275 2 8s
Random 5 274 1 4s

20 200 200 0

Identity 408 2 1m
Atimes0 386 3 1m29s

Random 1 369 3 1m33s
Random 2 353 2 59s
Random 3 409 2 59s
Random 4 400 4 1m59s
Random 5 368 4 1m59s

Table 8.10: Results obtained using Semi-full Local Search Method for 20 matrices with
different dimensions.

The following table represents results obtained by using the Column Maxima Method:

Test matrix m n Optimal Starting permutation Result Step Time

1 10 2 2131

Identity 9979 1 < 1s
Atimes0 8275 3 < 1s

Random 1 10238 2 < 1s
Random 2 9999 1 < 1s
Random 3 8276 3 < 1s
Random 4 10371 2 < 1s
Random 5 9938 4 < 1s

2 50 2 2343

Identity 13059 7 < 1s
Atimes0 13579 5 < 1s

Random 1 10242 4 < 1s
Random 2 11376 6 < 1s
Random 3 12726 3 < 1s
Random 4 13976 6 < 1s
Random 5 12457 6 < 1s

203

Test matrix m n Optimal Starting permutation Result Step Time

3 100 2 1503

Identity 12425 6 < 1s
Atimes0 13047 7 < 1s

Random 1 12608 13 < 1s
Random 2 15858 5 < 1s
Random 3 12969 6 < 1s
Random 4 14793 5 < 1s
Random 5 13029 6 < 1s

4 200 2 892

Identity 14727 10 < 1s
Atimes0 14692 5 < 1s

Random 1 14337 8 < 1s
Random 2 16196 3 < 1s
Random 3 16751 6 < 1s
Random 4 12910 14 < 1s
Random 5 13717 11 < 1s

5 10 10 0

Identity 1362 0 < 1s
Atimes0 1572 0 < 1s

Random 1 457 1 < 1s
Random 2 877 4 < 1s
Random 3 1572 1 < 1s
Random 4 1172 1 < 1s
Random 5 2669 2 < 1s

6 50 10 0

Identity 3095 2 < 1s
Atimes0 3148 2 < 1s

Random 1 4379 1 < 1s
Random 2 3574 1 < 1s
Random 3 2832 1 < 1s
Random 4 2952 2 < 1s
Random 5 3308 1 < 1s

7 100 10 0

Identity 4456 6 < 1s
Atimes0 4305 2 < 1s

Random 1 5182 3 < 1s
Random 2 3833 7 < 1s
Random 3 5654 0 < 1s
Random 4 4698 0 < 1s
Random 5 4404 5 < 1s

8 200 10 0

Identity 5948 0 < 1s
Atimes0 5085 5 < 1s

Random 1 4487 5 < 1s
Random 2 4740 3 < 1s
Random 3 5300 3 < 1s
Random 4 4814 7 < 1s
Random 5 5596 1 < 1s

9 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

204

Test matrix m n Optimal Starting permutation Result Step Time

10 50 50 0

Identity 557 2 < 1s
Atimes0 597 0 < 1s

Random 1 308 8 < 1s
Random 2 643 1 < 1s
Random 3 502 5 < 1s
Random 4 509 1 < 1s
Random 5 333 3 < 1s

11 100 50 0

Identity 1136 3 < 1s
Atimes0 1297 3 < 1s

Random 1 782 8 2s
Random 2 1100 4 < 1s
Random 3 1085 6 < 1s
Random 4 1014 6 < 1s
Random 5 1066 3 < 1s

12 200 50 0

Identity 1187 3 1s
Atimes0 1072 4 2s

Random 1 1263 3 2s
Random 2 1361 3 1s
Random 3 1290 4 2s
Random 4 1015 12 5s
Random 5 1438 4 2s

13 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

14 50 100 0

Identity 190 5 < 1s
Atimes0 482 0 < 1s

Random 1 118 9 1s
Random 2 216 3 < 1s
Random 3 146 12 2s
Random 4 192 3 < 1s
Random 5 510 0 < 1s

15 100 100 0

Identity 574 2 1s
Atimes0 434 5 2s

Random 1 323 10 2s
Random 2 636 1 < 1s
Random 3 449 4 1s
Random 4 612 3 2s
Random 5 437 6 2s

16 200 100 0

Identity 731 2 3s
Atimes0 791 2 3s

Random 1 732 4 4s
Random 2 653 5 6s
Random 3 695 8 7s
Random 4 689 3 4s
Random 5 688 5 5s

205

Test matrix m n Optimal Starting permutation Result Step Time

17 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

18 50 200 0

Identity 0 2 < 1s
Atimes0 56 0 < 1s

Random 1 0 8 2s
Random 2 0 4 1s
Random 3 2 4 2s
Random 4 31 1 1s
Random 5 0 1 < 1s

19 100 200 0

Identity 439 0 2s
Atimes0 298 0 2s

Random 1 361 0 2s
Random 2 197 8 4s
Random 3 338 4 4s
Random 4 290 1 3s
Random 5 228 4 4s

20 200 200 0

Identity 332 12 23s
Atimes0 476 1 5s

Random 1 399 3 9s
Random 2 338 2 7s
Random 3 403 2 7s
Random 4 338 10 18s
Random 5 332 11 25s

Table 8.11: Results obtained using The Column Maxima Method for 20 matrices with
different dimensions.

The following table compares the results obtained from the three methods:

Test matrix m n Optimal Starting permutation FLS S-FLS TCMM

1 10 2 2131

Identity 7309 7309 9979
Atimes0 6824 8018 8275

Random 1 7011 7498 10238
Random 2 5653 7019 9999
Random 3 4770 10122 8276
Random 4 3964 8317 10371
Random 5 6341 8134 9938

2 50 2 2343

Identity 13806 13806 13059
Atimes0 12240 14410 13579

Random 1 12462 16160 10242
Random 2 14720 14720 11376
Random 3 14015 14015 12726
Random 4 11185 12648 13976
Random 5 12828 14141 12457

206

Test matrix m n Optimal Starting permutation FLS S-FLS TCMM

3 100 2 1503

Identity 12871 12871 12425
Atimes0 14344 14798 13047

Random 1 13714 15491 12608
Random 2 11124 15053 15858
Random 3 15622 15622 12969
Random 4 12803 15935 14793
Random 5 14579 14579 13029

4 200 2 892

Identity 16702 16702 14727
Atimes0 16059 16973 14692

Random 1 15127 15280 14337
Random 2 15026 16005 16196
Random 3 15127 15932 16751
Random 4 14856 14856 12910
Random 5 16095 16369 13717

5 10 10 0

Identity 583 868 1362
Atimes0 466 1012 1572

Random 1 321 708 457
Random 2 726 1055 877
Random 3 841 1846 1572
Random 4 827 1190 1172
Random 5 440 587 2669

6 50 10 0

Identity 3023 3052 3095
Atimes0 2628 2768 3148

Random 1 2787 2827 4379
Random 2 2868 2936 3574
Random 3 2976 2976 2832
Random 4 2692 2692 2952
Random 5 2642 2809 3308

7 100 10 0

Identity 3979 3979 4456
Atimes0 4271 4598 4305

Random 1 3898 4590 5182
Random 2 4699 4749 3833
Random 3 4462 4706 5654
Random 4 4389 4487 4698
Random 5 4715 4724 4404

8 200 10 0

Identity 5321 5364 5948
Atimes0 5050 5050 5085

Random 1 4810 4965 4487
Random 2 4851 5185 4740
Random 3 4786 4786 5300
Random 4 4748 5121 4814
Random 5 4586 4888 5596

9 10 50 0

Identity 0 0 0
Atimes0 0 0 0

Random 1 0 0 0
Random 2 0 0 0
Random 3 0 0 0
Random 4 0 0 0
Random 5 0 0 0

207

Test matrix m n Optimal Starting permutation FLS S-FLS TCMM

10 50 50 0

Identity 529 529 557
Atimes0 427 597 597

Random 1 454 611 308
Random 2 390 463 643
Random 3 416 606 502
Random 4 507 675 509
Random 5 382 526 333

11 100 50 0

Identity 1185 1185 1136
Atimes0 916 895 1297

Random 1 994 984 782
Random 2 933 1126 1100
Random 3 1049 1049 1085
Random 4 1002 1002 1014
Random 5 1114 1219 1066

12 200 50 0

Identity 1159 1159 1187
Atimes0 1096 1341 1072

Random 1 1056 096 1263
Random 2 1236 1275 1361
Random 3 1228 1195 1290
Random 4 1237 1237 1015
Random 5 1126 1206 1438

13 10 50 0

Identity 0 0 0
Atimes0 0 0 0

Random 1 0 0 0
Random 2 0 0 0
Random 3 0 0 0
Random 4 0 0 0
Random 5 0 0 0

14 50 100 0

Identity 214 214 190
Atimes0 218 203 482

Random 1 271 453 118
Random 2 173 383 216
Random 3 103 217 146
Random 4 210 237 192
Random 5 124 124 510

15 100 100 0

Identity 537 574 574
Atimes0 419 419 434

Random 1 408 408 323
Random 2 527 639 636
Random 3 491 581 449
Random 4 520 578 612
Random 5 393 470 437

16 200 100 0

Identity 701 731 731
Atimes0 737 812 791

Random 1 681 704 732
Random 2 735 735 653
Random 3 713 829 695
Random 4 704 843 689
Random 5 716 716 688

208

Test matrix m n Optimal Starting permutation FLS S-FLS TCMM

17 10 50 0

Identity 0 0 0
Atimes0 0 0 0

Random 1 0 0 0
Random 2 0 0 0
Random 3 0 0 0
Random 4 0 0 0
Random 5 0 0 0

18 50 200 0

Identity 0 12 0
Atimes0 56 56 56

Random 1 2 55 0
Random 2 29 63 0
Random 3 0 127 2
Random 4 0 0 31
Random 5 0 0 0

19 100 200 0

Identity 293 293 439
Atimes0 212 212 298

Random 1 244 320 361
Random 2 208 292 197
Random 3 194 251 338
Random 4 263 275 290
Random 5 236 274 228

20 200 200 0

Identity 408 408 332
Atimes0 372 386 476

Random 1 364 369 399
Random 2 327 353 338
Random 3 399 409 403
Random 4 391 400 338
Random 5 352 368 332

Table 8.12: Comparison of the results obtained from the three methods.

From Table 8.9, 8.10 and 8.11, we can clearly see that the full local search (FLS) method

uses the most time out of the three methods. The semi-full local search (S-FLS) uses con-

siderably less time than FLS which is expected. And we can see that the column maxima

method (CMM) is the fastest algorithm out of the three.

When we compare the results obtained from the three algorithms using Table 8.15, we

can see that FLS method generally gives a better result than S-FLS. This is also expected

due to the fact that we have decreased the quality of the output by reducing the number

of calculations. We can see that CMM gives mix results but in general, it did not give a

better result than FLS or S-FLS. We can also see that if we choose any one of these seven

permutations as a starting permutation, generally we do not obtain a better output than by

209

choosing the other six permutations. This may imply that the choice of starting permutation

does not affect the output.

Now we will compare the results with the optimal solutions. For the first four cases, the

outputs we have obtained are significantly larger then the optimal solutions. This implies that

the three methods did not give a good approximation to the optimal solution. This remains

generally the case for most of the other test matrices. We should note that for any fix value

of n, the quality of the outputs from the three methods started to decrease when we increased

m. In general we have noticed that when m is significantly larger than n we are unable to

get a good quality output from the three methods.

We should also pay some attention to the Test matrix 9, 13 and 17 from Table 8.9, 8.10

and 8.11 where n >> m. We can see that for these three sets of problem we have obtained

the optimal solution by using the starting permutations. This implies that after applying these

seven starting permutations to b, the vectors we obtained are still images of A. This could

imply that this vector b may remain to be an image of A after any permutations. This may be

a significant result in permuted linear system problem and we may wish to investigate this in

the future.

We may also try to investigate and develop some other heuristic methods to obtain a

better approximate for the permuted linear system problem especially when m >> n. There

are several promising methods available which include simulated annealing, tabu search,

genetic algorithms and particle swarm optimization.

Unfortunately we are unable to obtain a good approximate of the optimal solution from

FLS, S-FLS and CMM. But if we look at Table 8.9, 8.10 and 8.11 again we can see that all

three algorithms stop after a small number of steps. This implies that the local minima are

very close together therefore we would want to modify our methods so that we can move

away from a local minimum when we reached it.

One of the methods we can use is simulated annealing and we will combine simulated

210

annealing into the FLS and S-FLS to produce two other heuristic methods.

8.5 Simulated Annealing

Simulated annealing [50] [65] is another local search method in which we use an initial

solution as our current solution and then look for a possible solution in the neighbourhood

of the current solution. Then we compare the objective function values between the two

solutions. If the possible solution gives a better value than the current solution, then we will

accept it as our new solution. But in the case when the value from the possible solution is

worse than the value given by the current solution, we will find the probability of it to be

accepted as our new solution. If the probability of being accepted is high enough then we

will use it as our new solution or we will reject it otherwise.

The probability of accepting a worse solution depends on the difference in objective

function values between the two solution. If the objective value from the possible solution is

a lot worse than the value given by the current solution then it is more likely to be rejected

and there is more chance to accept the solution if the difference is small.

This probability also depends on a parameter T in which T is called the temperature.

The value of T decreases after every step by a ratio which is strictly between 0 and 1. As the

temperature decreases the probability of a worse solution being accepted also decreases and

we will stop when the temperature is reduced to a certain level, i.e. frozen. The following is

an outline of the simulated annealing algorithm:

Algorithm 12. (Simulated Annealing algorithm)

Input: Initial solution x, initial temperature T , frozen temperature t and reduction ratio

0 < r < 1.

Output: Solution x̄

While T � t

211

Find a new solution x′ in the neighbourhood of x

If random(0, 1) < exp Obj(x)−Obj(x′)
T

Set x := x′, T := rT .

Else

Break.

Algorithm reach ending condition and solution is given by x̄ = x.

8.5.1 Simulated Annealing Full Local Search

From the test we have done on the algorithm of full local search, semi-full local search and

the column maxima method, we can see that alone they do not give us an output close to an

optimal solution. Now we apply the method of simulated annealing into the full local search

method.

The SAFLS method (short for Simulated Annealing Full Local Search) will use the basic

structure of Algorithm 12 but we will have permutation as our solution and slacks as our

objective function value. Also we will now use the best permutation found by the local search

method as our new solution x′. Therefore the SA-FLS algorithm will be the following:

Algorithm 13.

Input: A matrix A ∈ Rm×n, a vector b ∈ Rm, a starting permutation π, initial temperature

T , frozen temperature t and reduction ratio 0 < r < 1.

Output: A permutation π̄ and slk(A, b(π̄))

Set z = 1 and πz := π.

Set b := b(π) and find slk(A, b).

While T � t

While slk(A, b) 6= 0

For i = 1 to m

212

For j = 1 to m, j 6= i

Find slk(A, b(i, j)).

Let

slk(A, b(r, s)) = min
i,j

(slk(A, b(i, j))).

If

random(0, 1) < exp slk(A,b)−slk(A,b(r,s))
T

Set πz+1 := πz(r, s), z := z + 1 and T := rT .

Else

slk(A, b) cannot be improved anymore. Therefore

π̄ := min
z

(πz)

and slk(A, b(π̄)) is the resulting slack. Stop.

slk(A, b(πz)) = 0 implies that b(πz) is an image of A and therefore π̄ := πz and

slk(A, b(π̄z)) = 0.

Termination criterion is satisfied therefore

π̄ := min
z

(πz)

and slk(A, b(π̄)) is the resulting slack.

8.5.2 Simulated Annealing Semi-Full Local Search

Similarly to the local search method we can also apply the method of simulated annealing

into the semi-full local search method and we will have created the SASFLS method (short

for Simulated Annealing Semi-Full Local Search). The resulting algorithm will be as follows:

213

Algorithm 14.

Input: A matrix A ∈ Rm×n, a vector b ∈ Rm, a starting permutation π, initial temperature

T , frozen temperature t and reduction ratio 0 < r < 1.

Output: A permutation π̄ and slk(A, b(π̄))

Set z = 1 and πz := π.

Set b := b(π) and find slk(A, b).

While T � t

While slk(A, b) 6= 0

Find r s.t. br − (A⊗ (A∗ ⊗ b))r = slk(A, b).

Find s s.t.

slk(A, b(r, s)) = min
j=1,...,m

slk(A, b(r, j)).

If

random(0, 1) < exp slk(A,b)−slk(A,b(r,s))
T

Set πz+1 := πz(r, s), z := z + 1 and T := rT .

else

slk(A, b) cannot be improved anymore. Therefore

π̄ := min
z

(πz)

and slk(A, b(π̄)) is the resulting slack. Stop.

slk(A, b(πz)) = 0 implies that b(πz) is an image of A and therefore π̄ := πz and

slk(A, b(π̄z)) = 0.

214

Termination criteria is satisfied therefore

π̄ := min
z

(πz)

and slk(A, b(π̄)) is the resulting slack.

8.6 Test Results for Simulated Annealing

In this section we will run tests on the two algorithms we obtained by considering simulated

annealing. We will use the same 20 sets of problems as before and we will also use the seven

permutations we used before as our starting permutations. The results are as follows: The

following table represents results obtained by using Simulated Annealing Full Local Search

Method:

Test matrix m n Optimal Starting permutation Result Step Time

1 10 2 2131

Identity 2392 45 4s
Atimes0 2232 42 4s

Random 1 2392 45 4s
Random 2 2392 45 4s
Random 3 2392 45 4s
Random 4 2392 45 4s
Random 5 2392 45 4s

2 50 2 2343

Identity 4679 45 7m38s
Atimes0 9695 45 7m35s

Random 1 8499 45 7m34s
Random 2 8704 45 7m42s
Random 3 7100 45 7m36s
Random 4 7688 42 6m57s
Random 5 8841 45 7m37s

3 100 2 1503

Identity 9932 45 1h12m13s
Atimes0 10898 45 1h13m29s

Random 1 10486 45 1h12m26s
Random 2 10912 45 1h12m12s
Random 3 11051 43 1h9m39s
Random 4 10096 45 1h12m57s
Random 5 10652 45 1h12m48s

215

Test matrix m n Optimal Starting permutation Result Step Time

4 200 2 892

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

5 10 10 0

Identity 305 45 6s
Atimes0 54 45 6s

Random 1 113 29 3s
Random 2 1 19 1s
Random 3 1 22 1s
Random 4 82 35 4s
Random 5 44 19 1s

6 50 10 0

Identity 760 45 16m55s
Atimes0 1679 44 16m52s

Random 1 1933 45 16m37s
Random 2 1827 45 16m27s
Random 3 1743 45 16m28s
Random 4 1760 45 16m33s
Random 5 1674 45 16m30s

7 100 10 0

Identity 1514 45 3h25m18s
Atimes0 3729 45 3h29m51s

Random 1 3527 45 3h26m31s
Random 2 3398 44 3h30m12s
Random 3 2809 43 3h20m17s
Random 4 3270 43 3h21m5s
Random 5 3393 45 3h20m44s

8 200 10 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

9 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

10 50 50 0

Identity 93 45 1h3m6s
Atimes0 256 42 55m4s

Random 1 294 43 1h2m34s
Random 2 280 45 1h3m41s
Random 3 274 43 1h14s
Random 4 288 45 1h3m21s
Random 5 283 44 1h37s

216

Test matrix m n Optimal Starting permutation Result Step Time

11 100 50 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

12 200 50 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

13 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

14 50 100 0

Identity 0 22 26m41s
Atimes0 42 43 1h51m53s

Random 1 64 44 1h54m54s
Random 2 90 38 1h24m12s
Random 3 68 42 1h45m14s
Random 4 85 40 1h35m33s
Random 5 87 43 1h49m44s

15 100 100 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

16 200 100 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

17 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

217

Test matrix m n Optimal Starting permutation Result Step Time

18 50 200 0

Identity 0 2 14s
Atimes0 0 6 3m29s

Random 1 0 8 6m30s
Random 2 0 4 1m24s
Random 3 0 4 1m24s
Random 4 0 2 14s
Random 5 0 2 14s

19 100 200 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

20 200 200 0

Identity

N/A

Atimes0
Random 1
Random 2
Random 3
Random 4
Random 5

Table 8.13: Results obtained using Simulated Annealing Full Local Search Method for 20
matrices with different dimensions.

The following table represents results obtained by using Simulated Annealing Semi-full

Local Search Method:

Test matrix m n Optimal Starting permutation Result Step Time

1 10 2 2131

Identity 3124 7 < 1s
Atimes0 8018 2 < 1s

Random 1 7498 3 < 1s
Random 2 7019 3 < 1s
Random 3 10122 2 < 1s
Random 4 8317 3 < 1s
Random 5 8134 2 < 1s

2 50 2 2343

Identity 13526 45 18s
Atimes0 14410 2 < 1s

Random 1 16160 1 < 1s
Random 2 14720 2 < 1s
Random 3 14015 1 < 1s
Random 4 12648 3 < 1s
Random 5 14141 2 < 1s

3 100 2 1503

Identity 12726 45 1m31s
Atimes0 14798 2 < 1s

Random 1 14387 3 < 1s
Random 2 15053 3 < 1s
Random 3 15622 1 < 1s
Random 4 15935 3 < 1s
Random 5 14579 1 < 1s

218

Test matrix m n Optimal Starting permutation Result Step Time

4 200 2 892

Identity 16401 45 7m57s
Atimes0 16973 1 < 1s

Random 1 15280 2 1s
Random 2 16005 3 3s
Random 3 15935 2 1s
Random 4 14856 1 < 1s
Random 5 16369 3 3s

5 10 10 0

Identity 868 45 1s
Atimes0 1012 2 < 1s

Random 1 708 3 < 1s
Random 2 1055 2 < 1s
Random 3 1846 1 < 1s
Random 4 1190 1 < 1s
Random 5 587 3 < 1s

6 50 10 0

Identity 2262 45 39s
Atimes0 2768 3 < 1s

Random 1 2827 4 < 1s
Random 2 2936 3 < 1s
Random 3 2976 1 < 1s
Random 4 2692 2 < 1s
Random 5 2809 2 < 1s

7 100 10 0

Identity 3857 45 4m4s
Atimes0 4598 4 2s

Random 1 4590 3 2s
Random 2 4749 2 < 1s
Random 3 4706 2 < 1s
Random 4 4487 2 < 1s
Random 5 4724 2 < 1s

8 200 10 0

Identity 5707 45 28m13s
Atimes0 5050 2 5s

Random 1 4965 2 5s
Random 2 5185 1 2s
Random 3 4786 2 5s
Random 4 5121 3 10s
Random 5 4888 4 17s

9 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

10 50 50 0

Identity 500 45 2m24s
Atimes0 533 5 2s

Random 1 522 3 < 1s
Random 2 463 2 < 1s
Random 3 603 5 2s
Random 4 675 1 < 1s
Random 5 526 1 < 1s

219

Test matrix m n Optimal Starting permutation Result Step Time

11 100 50 0

Identity 859 45 19m1s
Atimes0 895 4 12s

Random 1 984 3 7s
Random 2 967 4 12s
Random 3 1049 3 7s
Random 4 1002 2 4s
Random 5 1219 1 1s

12 200 50 0

Identity 1085 45 2h9m56s
Atimes0 1155 4 1m38s

Random 1 1096 3 47s
Random 2 1275 2 24s
Random 3 1162 6 2m47s
Random 4 1117 5 1m59s
Random 5 1206 2 24s

13 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

14 50 100 0

Identity 214 45 4m49s
Atimes0 203 4 3s

Random 1 153 6 6s
Random 2 383 1 < 1s
Random 3 217 2 < 1s
Random 4 237 3 2s
Random 5 124 2 < 1s

15 100 100 0

Identity 519 45 32m59s
Atimes0 419 2 6s

Random 1 408 3 12s
Random 2 639 2 6s
Random 3 412 8 1m10s
Random 4 578 2 6s
Random 5 470 3 12s

16 200 100 0

Identity 679 45 4h6m11s
Atimes0 777 6 5m13s

Random 1 704 3 1m30s
Random 2 735 1 15s
Random 3 679 4 2m29s
Random 4 809 4 2m29s
Random 5 716 3 1m39s

17 10 50 0

Identity 0 0 < 1s
Atimes0 0 0 < 1s

Random 1 0 0 < 1s
Random 2 0 0 < 1s
Random 3 0 0 < 1s
Random 4 0 0 < 1s
Random 5 0 0 < 1s

220

Test matrix m n Optimal Starting permutation Result Step Time

18 50 200 0

Identity 12 45 8m55s
Atimes0 56 1 < 1s

Random 1 55 3 3s
Random 2 0 4 4s
Random 3 30 3 3s
Random 4 0 2 < 1s
Random 5 0 2 < 1s

19 100 200 0

Identity 286 45 1h4m31s
Atimes0 212 2 12s

Random 1 320 3 23s
Random 2 292 3 23s
Random 3 251 2 12s
Random 4 255 6 1m12s
Random 5 274 2 12s

20 200 200 0

Identity 408 45 8h21m56s
Atimes0 351 10 28m24s

Random 1 369 7 14m18s
Random 2 353 2 1m32s
Random 3 409 2 1m32s
Random 4 400 6 10m35s
Random 5 388 4 5m6s

Table 8.14: Results obtained using Simulated Annealing Semi-full Local Search Method
for 20 matrices with different dimensions.

The following table compares the results obtained from the two simulated annealing

methods:

Test matrix m n Optimal Starting permutation SA-FLS SA-SFLS

1 10 2 2131

Identity 2392 3124
Atimes0 2232 8018

Random 1 2392 7498
Random 2 2392 7019
Random 3 2392 10122
Random 4 2392 8317
Random 5 2392 8134

2 50 2 2343

Identity 4679 13526
Atimes0 9695 14410

Random 1 8499 16160
Random 2 8704 14720
Random 3 7100 14015
Random 4 7688 12648
Random 5 8841 14141

3 100 2 1503

Identity 9932 12726
Atimes0 10898 14798

Random 1 10486 14387
Random 2 10912 15053
Random 3 11051 15622
Random 4 10096 15935
Random 5 10652 14579

221

Test matrix m n Optimal Starting permutation SA-FLS SA-SFLS

4 200 2 892

Identity

N/A

16401
Atimes0 16973

Random 1 15280
Random 2 16005
Random 3 15932
Random 4 14856
Random 5 16369

5 10 10 0

Identity 305 868
Atimes0 54 1012

Random 1 113 708
Random 2 1 1055
Random 3 1 1846
Random 4 82 1190
Random 5 44 587

6 50 10 0

Identity 760 2262
Atimes0 1679 2768

Random 1 1933 2827
Random 2 1827 2936
Random 3 1743 2976
Random 4 1760 2692
Random 5 1674 2809

7 100 10 0

Identity 1514 3857
Atimes0 3729 4598

Random 1 3527 4590
Random 2 3398 4749
Random 3 2809 4706
Random 4 3270 4487
Random 5 3393 4724

8 200 10 0

Identity

N/A

5707
Atimes0 5050

Random 1 4965
Random 2 5185
Random 3 4786
Random 4 5121
Random 5 4888

9 10 50 0

Identity 0 0
Atimes0 0 0

Random 1 0 0
Random 2 0 0
Random 3 0 0
Random 4 0 0
Random 5 0 0

10 50 50 0

Identity 93 500
Atimes0 256 533

Random 1 294 522
Random 2 280 463
Random 3 274 603
Random 4 288 675
Random 5 283 526

222

Test matrix m n Optimal Starting permutation SA-FLS SA-SFLS

11 100 50 0

Identity

N/A

859
Atimes0 895

Random 1 984
Random 2 967
Random 3 1049
Random 4 1002
Random 5 1219

12 200 50 0

Identity

N/A

1085
Atimes0 1155

Random 1 1096
Random 2 1275
Random 3 1162
Random 4 1117
Random 5 1206

13 10 50 0

Identity 0 0
Atimes0 0 0

Random 1 0 0
Random 2 0 0
Random 3 0 0
Random 4 0 0
Random 5 0 0

14 50 100 0

Identity 0 214
Atimes0 42 203

Random 1 64 153
Random 2 90 383
Random 3 68 217
Random 4 85 237
Random 5 87 124

15 100 100 0

Identity

N/A

519
Atimes0 419

Random 1 408
Random 2 639
Random 3 412
Random 4 578
Random 5 470

16 200 100 0

Identity

N/A

679
Atimes0 777

Random 1 704
Random 2 735
Random 3 679
Random 4 809
Random 5 716

17 10 50 0

Identity 0 0
Atimes0 0 0

Random 1 0 0
Random 2 0 0
Random 3 0 0
Random 4 0 0
Random 5 0 0

223

Test matrix m n Optimal Starting permutation SA-FLS SA-SFLS

18 50 200 0

Identity 0 12
Atimes0 0 56

Random 1 0 55
Random 2 0 0
Random 3 0 30
Random 4 0 0
Random 5 0 0

19 100 200 0

Identity

N/A

296
Atimes0 212

Random 1 320
Random 2 292
Random 3 251
Random 4 255
Random 5 274

20 200 200 0

Identity

N/A

408
Atimes0 351

Random 1 369
Random 2 353
Random 3 409
Random 4 400
Random 5 388

Table 8.15: Comparison of the results obtained from the two simulated annealing methods.

Unfortunately due to the limitations of the computers available we were not able to obtain

all the results. In these experiments we have set the range of the matrices and vectors to be ten

thousands. We have set temperature = 100, probability = 0.5 and the decreasing ratio =

0.9 for the results obtained. When either the dimension of m or n reaches one hundred, the

computational time for the SA-FLS method started to increase dramatically. We were not

able to obtain the results within 10 hours by using a 2.8GHz processor. These entries are

labelled N/A in the tables. But by using results from SA-FLS, we can give a good estimate

on the results that are not available.

From Table 8.13 and table14 we can see that both algorithms use considerable more time

than FLS and S-FLS. But again SA-SFLS is much faster than SA-FLS.

If we compare the results obtained from the two algorithms by looking at Table 8.15, we

can see that SA-FLS perform much better than SA-SFLS. Also we can see that when m is

not significantly larger than nwe are getting a good approximate to the optimal solution. But

when m is significantly larger than n we are still unable to get a acceptable approximate to

224

the optimal solution. We may need to develop some other forms of specified heuristic for the

case when m >> n to obtain a good approximate to the optimal solution.

8.7 Summary

In this chapter, we have discussed heuristics methods on solving the permuted linear system

problem. We have developed three heuristic methods to obtain a approximation of the solu-

tion to the permuted linear systems problem. They are the full local search method, semi-full

local search method and column maxima method.

Unfortunately we were not able to obtain a reasonable approximation from these three

methods, therefore we have developed another two methods by considering simulated an-

nealing with the local search methods we developed earlier. Henceforth we obtained sim-

ulated annealing full local search method and simulated annealing semi-full local search

method.

From the tests we made, we found that the new methods give a better approximation

than the three results we developed originally. But when the number of rows of the matrix

is significantly larger than the number of columns, we were still unable to obtain a good

heuristic solution with the new method.

225

Chapter 9

Conclusion and Future Research

9.1 Summary

In this thesis we have studied the concept of max-algebra and we have presented solution

methods on max-algebraic linear system. We have considered the theory of max-algebraic

eigenproblem and we have found that this have great interaction with synchronization of

discrete event systems, i.e. machine scheduling and railway timetabling.

In the first chapter, we have presented the historical background and some of the major

works done in the field of max-algebra. In Chapter 2 and 3, we have summarized some

well known results in max-algebra. The results presented in Chapter 4, 5, 6, 7 and 8 are all

original.

In Chapter 2 we have provided the terminology, notations and basic definitions of max-

algebra. We have also presented some of the theories on linear system and we have shown

that the linear systems can be formulated as a set covering problem. Using the definitions

of linear system, we have defined the notions of image set and simple set which played an

important part in this thesis.

In Chapter 3 we have presented definitions and results on max-algebraic eigenvalue-

226

eigenvector problem. At first we have discussed the concept of steady state and how it is

related to the max-algebraic eigenproblem. Then we have presented definitions and results

on graph theory and we have shown that the max-algebraic eigenproblem is very much re-

lated to graph theory. Using this relation, we have presented a solution method on finding all

eigenvalues and eigenvectors for any square matrices.

We have shown that the maximum cycle mean of a matrix plays an important role on

solving the eigenproblem and we have shown that it always is an eigenvalue. It is called

the principal eigenvalue. We have also seen that square matrix can have at most n distinct

eigenvalues where n is the order of the matrix. We have presented results on finding all

eigenvalues and the set of eigenvectors for each eigenvalue. Using this, we can generate

at most n rectangular matrices; one for each eigenvalue, such that the set of eigenvectors

can be obtained by considering the image set of these matrices. Henceforth the problem of

optimizing eigenvectors has been transformed into optimizing the image set of a matrix.

In Chapter 4 we have considered the problem of minimizing and maximizing the range

norm of an image of a matrix. In the case of minimization, we have shown that when the

image is finite, the solution can be found by considering A ⊗ x̄ where x̄ is the principal

solution of the linear system A ⊗ x = 0. We have generalized the result to the case when

the image may not be finite and developed an algorithm to solve the problem of minimizing

and maximizing the range norm for this case. For maximization, the solution is obtained by

considering the range norm for each column of the matrix. We have shown that the solution

is bounded only if the matrix is finite.

In Chapter 5, we have investigated the case of minimizing and maximizing the range

norm of an image when some of the components of the vector are given and fixed. We

have shown that both the minimization and the maximization problem are very similar to

the counterpart in Chapter 4 for the case when only one component is prescribed. We have

developed a method on solving the case when all but one component were prescribed and

227

using this result, we were able to develop an algorithm to solve the general case. Furthermore

we were also able to use the algorithm we developed for the minimization problem and

modified it to solve the maximization case.

In Chapter 6, we have investigated the integer linear system problem. It turns out that

the problem can be easily solved when the matrix only consists of one or two columns, i.e.

n = 1 and n = 2. We were able to obtain a necessary and sufficient condition such that the

matrix has an integer image for both of these cases.

We have also shown that for every square matrix, we can transform it into a strongly

definite matrix without affecting its image set (or its simple image set if it is strongly regular).

We have seen that for a strongly regular and strongly definite matrix, we are able to obtain

the integer simple set of this matrix efficiently. We have seen that the integer simple image

set is exactly the set of integer eigenvectors of another matrix which is obtained from A.

Using this, we have found some sufficient conditions for an integer image to exist for any

strongly definite matrix.

We have also investigated the general case. We have obtained a upper and lower bound

between any two components for any integer image of a finite matrix. Using this result, we

have developed an algorithm to generate all possible candidates for an integer image which

provides us a benchmark on solving integer linear systems for any matrices in general.

In Chapter 7, we have investigated the permuted linear system problem which is NP-

complete. We have developed algorithms to decide if a permuted vector is in the image of A

for the case of n = 2, n = 3 and n > 3. We have shown that the problem is trivial when the

matrix only contains one column. For the case when n = 2, we have developed an algorithm

to solve it efficiently. For the case n = 1 and n = 2 we have also developed algorithms to

find out if we can find a permuted vector such that the distance from this vector to the image

set is minimized. We measured this distance by using the Chebyshev norm.

Finally in Chapter 8 we have developed three heuristic methods to obtain a approximation

228

of the solution to the permuted linear systems problem. Unfortunately we were not able to

obtain a reasonable approximation from this method therefore we have developed another

two methods by using simulated annealing. Although we got a better approximation than

before, the results still were not a good enough approximation when m >> n.

9.2 Possible Future Research

When we are investigating the range norm of the image set, we have only considered the case

of one sided linear system, i.e. A ⊗ x = b. It may be interesting to consider the case when

we have a two-sided linear system, i.e, A ⊗ x = B ⊗ y or A ⊗ x = B ⊗ x and investigate

the case of minimizing or maximizing the range norm of solutions to such systems. It may

also be interesting to consider the case when some components are prescribed as well.

While investigating the integer linear system problem, we were not able to find an ef-

ficient algorithm for the general case. One of the interesting research directions for this

problem is to either prove that it is unlikely that an efficient algorithm exists, i.e. NP-hard or

NP-complete, or we find an efficient algorithm to solve this problem.

Another possible area for future research will be to combine the range norm problem with

the integer linear systems problem. It is likely that in real-life situations, a manufacturer

would prefer the range norm of the starting time vector or completion time vector to be

minimized/maximized and at the same time consists of only integer values.

For the case of permuted linear systems problem, we were not able to obtain a good

heuristic method for approximating an acceptable result for this problem. It may be interest-

ing to investigate the structure of the matrix A and obtain some sufficient conditions for b to

be a permuted image of A. One such condition would be if there exists a permutation such

that when b is permuted, then it is equal to one of the column of A or a multiple of one of the

column of A. If this condition is satisfied, then we can immediately say that b is an image of

229

A.

230

Appendix A

On some properties of the image set of a
max-linear mapping

In this appendix a paper co-written by myself and Dr P. Butkovič entitled On some properties
of the image set of a max-linear mapping [23] is presented. This paper is published in
Contemporary Mathematics Series, AMS Providence, 495 (2009) 115-126.

231

List of References

[1] M. Akian, R. Bapat, S. Gaubert, Max-plus algebra, in: L. Hogben(Ed.), Handbook
of Linear algebra: Discrete Mathematics and its Application, Chapman & Hall/CRC,
(2007).

[2] M. Akian, S. Gaubert, V.N. Kolokoltsov, Set coverings and invertibility of func-
tional Galois connections, Idemoptent mathematics and mathematical physics, 19-
51, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, (2005).

[3] M. Akian, S. Gaubert, C. Walsh, Discrete max-plus spectral theory, in Idempotent
Mathematics and Mathematical Physics, Contemp. Math. 377, G. L. Litvinov and V.
P. Maslov, eds., AMS, Providence, RI, 2005, pp. 5377.

[4] M. Akian, J.P. Quadrat, M. Viot, Duality between probability and optimization in:
Gunawardena(Ed.), Idempotency, Cambridge, (1988) 331-353.

[5] N. Bacaër, Modèles mathématiques pour Poptimisation des rotations, Comptes Ren-
dus de Académie d’Agriculture de France, 89(3):52 (2003).

[6] F.L. Bacelli, G. Cohen, G.J. Olsder, J.P. Quadrat, Synchronization and Linearity, An
Algebra for Discrete Event Systems, Wiley, Chichester, (1992).

[7] R.B. Bapat, D. Stanford, P. van den Driessche, Pattern properties and spectral in-
equalities in max-algebra, Journal of Matrix Analysis and Applications 16(3) (1995),
964-976.

[8] R.B. Bapat, D. Stanford, P. van den Driessche, The eigenproblem in max algebra,
DMS-631-IR, University of Victoria, British Columbia, 1993.

[9] A.Berman and R.J.Plemmons, Nonnegative matrices in the mathematical sciences,
Academic Press, 1979

[10] P.A. Binding, H. Volkmer, A generalized eigenvalue problem in the max algebra,
Linear Algebra & Appl. 422 (2007) 360-371.

[11] T. S. Blyth, M. F. Janowitz, Residuation Theory, Pergamon press (1972).

[12] R. Bronson, G. Naadimuthu, Schaums’ Outline Theory and Problems of Operations
Research, McGraw-Hill, (1997).

244

[13] R.E.Burkard and E. ela, Linear assignment problems and extensions. Handbook of
combinatorial optimization, Supplement Vol. A, 75?149, Kluwer Acad. Publ., Dor-
drecht, 1999.

[14] P. Butkovič, Max-algebra:the linear algebra of combinatorics?, Linear Algebra &
Appl. 367 (2003) 313-335.

[15] P. Butkovič, Strong regularity of matrices- a survey of results, Discrete Applied
Mathematics, North-Holland, 48 (1994), 45-68.

[16] P. Butkovič, Permuted max-algebraic eigenvector problem is NP-complete, Linear
Algebra & Appl. 428 (2008), 1874-1882.

[17] P. Butkovič, R. A. Cuninghame-Green An O(n2) algorithm for the maximum cycle
mean of an n× n bivalent matrix, Discrete Appl. Math., 35 (1992) 157-162.

[18] P. Butkovič, R.A. Cuninghame-Green, Bases in max-algebra, Linear Algebra &
Appl. 389 (2004), 107-120.

[19] R.A. Cuninghame-Green, P. Butkovič, Generalised eigenproblem, The University of
Birmingham, preprint 2008/12.

[20] P. Butkovič, R.A. Cuninghame-Green, On matrix powers in max-algebra, Linear
Algebra & Appl. 421 (2007), 370–381.

[21] P. Butkovič, R.A. Cuninghame-Green, S. Gaubert, Reducible spectral theory with
applications to the robustness of matrices in max-algebra, SIAM Journal on Matrix
Analysis and Applications 31(3) (2009) 1412-1431.

[22] P. Butkovič, G. Hegedüs, An elimination method for finding all solutions of the
system of linear equations over an extremal algebra, Ekonom. mat. Obzor 20 (1984)
2003-215.

[23] P. Butkovič, K.P.Tam, On some properties of the image set of a max-linear mapping,
Contemporary Mathematics Series, AMS Providence, 495 (2009) 115-126.

[24] Z.Q. Cao, K.H. Kim, F.W. Roush, Incline algebra and applications, Ellis Horwood
(1984).

[25] J.P. Comet, Application of Max-plus algebra to biological sequencing comparisons,
Theoret. Comput. Sci., 293 (2003) 189-217.

[26] A. Dasdan, R.K. Gupta, Faster maximum and minimum mean cycle algorithms for
system-performance analysis, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 17(10):889–899, October (1998).

245

[27] R.A.Cuninghame-Green, Describing industrial processes with interference and ap-
proximating their steady-state behaviour, Operations Research Quarterly 13(1962)
95-100

[28] R.A. Cuninghame-Green, Projections in minimax algebra. Math. Programming 10
(1976), no. 1, 111-123.

[29] R.A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Math-
ematical Systems, vol.166, Springer, Berlin, (1979).

[30] R.A. Cuninghame-Green, Minimax Algebra and applications, in: Advances in Imag-
ing and Electron Physics, vol. 90, Academic Press, New York, (1995), 1-121.

[31] R.A. Cuninghame-Green, Process synchronisation in a steelworks - a problem of
feasibility. In Proc. 2nd Int. Conf. on Operational Research (ed. by Banburry and
Maitland), English University Press, (1960) pp. 323-328.

[32] R.A. Cuninghame-Green, P. Butkovič, The equation A⊗x = B⊗ y over (max,+),
Theoret. Comput. Sci. 293 (1991) 3-12.

[33] R.A. Cuninghame-Green, K. Zimmermann, Equation with residual functions, Com-
ment. Math. Uni. Carolina. 42(2001) 729-740.

[34] L. Elsner, P. van den Driessche, On the power method in max algebra, Linear Alge-
bra & Appl. 302-303 (1999) 17-32.

[35] L. Elsner, P. van den Driessche, Modifying the power method in max algebra, Linear
Algebra & Appl. 332-334 (2001) 3-13.

[36] M.R. Garey, D.S. Johnson, Computers and intractability, A guide to the theory of
NP-completeness, Bell Labs, (1979).

[37] S. Gaubert, Methods and Application of (max,+) Linear Algebra, INRIA, (1997).

[38] S. Gaubert, Théorie des systèmes linéaires dans les diöides, Theèse, Ecole des Mines
de Paris, 1992.

[39] M. Gondran, M. Minoux, Graphes et algorithmes, Eyrolles, Paris, (1979). Engl.
transl. Graphs and Algorithms, Wiley (1984).

[40] M. Gondran, M. Minoux, Linear algebra in dioids: a survey of recent results, Annals
of Discrete Mathematics,19 (1984) 147-164.

[41] M. Gondran, M. Minoux, Valeurs propres et vecteur propres dans les diöides et leur
inteprétation en théorie des graphes, Bulletin de la direction des etudes et recherches,
Serie C, Mathematiques et Informatiques, No 2, 1977 (25-41).

246

[42] K. Hashiguchi, Improved limitedness theorems on finite automata with distance
functions, Theoret. Comput. Sci., 72 (1990) 27-38.

[43] B. Heidergott, G. J. Olsder, J. van der Woude, Max-plus at work, Princeton Univer-
sity Press, New Jersey, (2006).

[44] R.M. Karp. A characterization of the minimum cycle mean in a digraph, Discrete
Mathematics 23, 309-311, (1978).

[45] V.N. Kolokoltsov, Idempotent analysis and its applications, Kluwer Academic Pub-
lishers Groups, Dordrecht, (1997).

[46] D. Krob, A. Bonnier-Rigny, A complete system of identities for one letter rational
expressions with multiplicities in the tropical semiring, J. Pure Appl. Algebra, 134
(1994) 27-50.

[47] H. Leung Limitedness theorem on finite automata with distance function: an alge-
braic proof, Thoret. Comput. Sci., 81 (1991) 137-145.

[48] S. Lipschutz, M. Lipson, Schaums’ Outline Theory and Problems of Linear Algebra,
McGraw-Hill, (2001).

[49] V.P Maslov, Méthodes Operatorielles, Mir, Moscou, (1973).

[50] Z. Michalewicz, D. B. Fogel, How to Solve It: Modern Heuristics Second Edition
Springer, (2004).

[51] P.D. Moral, Maslov optimization theory: topological aspects in: Gunawardena(Ed.),
Idempotency, Cambridge, (1988) 354-382.

[52] P.D. Moral, G. Salut, Random particle methods in (max,+) optimization problems
in: Gunawardena(Ed.), Idempotency, Cambridge, (1988) 383-391.

[53] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization-Algorithms and Com-
plexity, Dover, (1998).

[54] A.P.Punnen and K.P.K.Nair, Improved complexity bound for the maximum cardi-
nality bottleneck bipartite matching problem, Discrete Appl. Math. 55(1) (1994),
91-93.

[55] J.E. Pin, Tropical semirings, in: Gunawardena(Ed.), Idempotency, Cambridge,
(1988) 50-69.

[56] I.V. Romanovski, Optimization and stationary control of discrete deterministic pro-
cess in dynamic programming. Kibernetika, 2:66-78, 1967. Engl. transl. in Cyber-
netics 3 (1967).

247

[57] K.H.Rosen et al, Handbook of discrete and combinatorial mathematics, CRC Press
2000.

[58] S. Sergeev, Alternating method for homogeneous systems of equations over max
algebra, University of Birmingham-Preprint 2008/18, (2008).

[59] I. Simon, Limited subsets of free monoid, 19th Annual Symposium on Foundations
of Computer Science, IEEE, (1978) 143-150.

[60] I. Simon, On semigroups of matrices over the tropical semiring, Theoret. Infor. and
Appl, 28(3-4) (1994) 277-294.

[61] H.Schneider, The Influence of the Marked Reduced Graph of a Nonnegative Matrix
on the Jordan Form and on Related Properties: A Survey, Linear Algebra and Its
Applications 84:161-189 (1988).

[62] K.P. Tam, Optimising and approximating eigenvectors in max-algebra, MPhil(Qual)
Thesis, The University of Birmingham, (2008).

[63] N.N. Vorobjov, Extremal algebra of positive matrices, Elektronische Datenverar-
beitung und Kybernetik 3 (1967) 39-71. (in Russian)

[64] E.A. Walkup, G. Boriello, A general linear max-plus solution technique, in: Gu-
nawardena(Ed.), Idempotency, Cambridge, (1988) 406-415.

[65] L.A. Wolsey, Integer programming, Chichester : Wiley, (1998).

[66] K. Zimmermann, Extremálńi algebra, Výzkumná publikace Ekonomicko-
matematickélaboratǒre p̌ri Ekonomickém ústave ČSAV, 46, Praha, (1976) (in
Czech).

[67] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic struc-
tures, Ann. Discrete Math. 10 (1981).

248

	Introduction
	Aims and Scopes of the Thesis
	Literature Review
	Motivation of the Problem
	Overview of Chapters

	Introducing Max-Plus Algebra System
	Introduction
	Basic Concepts and Definitions
	Algebraic Properties of Max-Algebra

	Max-Algebraic Linear System
	System of Linear Equations
	System of Linear Inequalities
	Image Set
	Strongly Regular Matrices and Simple Image Set

	Summary

	Max-algebraic Eigenvalues and Eigenvectors
	Introduction
	The Steady State Problem
	Basic Principles
	Principle Eigenvalue
	Finding All Eigenvalues
	Finding All Eigenvectors
	Formulation of the Problem
	Summary

	Optimizing Range Norm of the Image Set
	Introduction
	Minimizing the Range Norm
	The Case when the Image Vector is Finite
	The Case when the Image Vector is Not Finite

	Maximizing the Range Norm
	The Case when the Matrix is Finite
	The Case when the Matrix is Non-Finite

	Summary

	Optimizing Range Norm of the Image Set With Prescribed Components
	Introduction
	Minimizing the Range Norm
	The Case when Only One Machine is Prescribed
	The Case when All but One Machine are Prescribed
	The General Case
	Correctness of the Algorithm

	Maximizing the Range Norm
	The Case when Only One Machine is Prescribed
	The Case when All but One Machine are Prescribed
	The General Case

	Summary

	Integer Linear Systems
	Introduction
	The Case of One Column Matrix
	The Case of Two Columns Matrix
	Strongly Regular Matrix
	Basic Principle
	Integer Simple Image Set
	Integer Image Set

	The General Case
	Summary

	On Permuted Linear Systems
	Introduction
	Deciding whether a Permuted Vector is in the Image Set
	The Case of Two Columns Matrix
	Computational Complexity of Algorithm 6
	The case when n = 3
	Computational Complexity of Algorithm 7
	The case when n > 3

	Finding the Permuted Vector Closest to the Image Set
	The One Column Problem
	The Two Columns Problem

	Summary

	Heuristics for the Permuted Linear Systems Problem
	Introduction
	The Steepest Descent Method
	Full Local Search
	Semi-full Local Search

	The Column Maxima Method
	Formulation of the Algorithm

	Test Results for the Three Methods
	Simulated Annealing
	Simulated Annealing Full Local Search
	Simulated Annealing Semi-Full Local Search

	Test Results for Simulated Annealing
	Summary

	Conclusion and Future Research
	Summary
	Possible Future Research

	On some properties of the image set of a max-linear mapping
	List of References

