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Abstract. In this article we present an algorithm for solving bound constrained optimiza-

tion problems without derivatives based on Powell’s method [38] for derivative-free optimization.

First we consider the unconstrained optimization problem. At each iteration a quadratic inter-

polation model of the objective function is constructed around the current iterate and this model

is minimized to obtain a new trial point. The whole process is embedded within a trust-region

framework. Our algorithm uses infinity norm instead of the Euclidean norm and we solve a

box constrained quadratic subproblem using an active-set strategy to explore faces of the box.

Therefore, a bound constrained optimization algorithm is easily extended. We compare our im-

plementation with NEWUOA and BOBYQA, Powell’s algorithms for unconstrained and bound

constrained derivative free optimization respectively. Numerical experiments show that, in gen-

eral, our algorithm require less functional evaluations than Powell’s algorithms.

Mathematical subject classification: Primary: 06B10; Secondary: 06D05.
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1 Introduction

We consider the bound constrained optimization problem where the derivatives

of the objective function f are not available and the functional values f (x) are
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typically very expensive or difficult to compute. That is

min f (x) subject to x ∈ �,

where

� = {x ∈ Rn | L ≤ x ≤ U },

L < U , and we assume that ∇ f (x) cannot be computed for any x . First of all

we consider the unconstrained problem, i.e., � = Rn .

This situation frequently occurs in problems where functional values f (x)

either come from physical, chemical or geophysical measurements or are the

results from very complex computer simulations. The diversity of applications

includes different problems such as rotor blade design [10], wing platform design

[4], aeroacustic shape design [26], hydrodynamic design [17] and also problems

of molecular geometry [1, 27], groundwater community [19, 30], medical image

registration [33] and dynamic pricing [24].

There are several essentially different methods for solving this kind of prob-

lems [14]. A first group of methods includes the direct search or pattern search

methods. They are based on the exploration of the variables space using function

evaluations in sample points given by a predefined geometric pattern. That is the

case of methods where sampling is guided by a suitable set of directions [15, 41]

and based on simplices and operations over them, such as the Nelder-Mead algo-

rithm [31]. They do not exploit the possible smoothness of the objective function

and, therefore, require a very large number of function evaluations. They can also

be useful for non-smooth problems. A comprehensive survey of these methods

can be found in [23].

A second group of methods is based on modelling the objective function by

multivariate interpolation in combination with trust-region techniques. These

methods were introduced by Winfield [42, 43]. A polynomial model is built

in order to interpolate the objective function at the points where the functional

values are known. The model is then minimized over the trust-region and a

new point is computed. The objective function is evaluated at this new point

and thus possibly enlarging the interpolation set. This new computed point is

checked as to whether the objective function is improved and the whole process

is repeated until convergence is achieved. Thus, the geometry of the interpola-
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tion set points and the model minimization are the keys to a good performance

of the algorithms.

At the present time, there are several implementations of algorithms based on

interpolation approaches, although the most tested and well established are DFO

developed by Conn, Scheinberg and Toint [11, 12, 13] and NEWUOA developed

by Powell [34, 35, 36, 37, 38, 39, 40]. See also the Wedge method developed by

Marazzi and Nocedal [25] and the code developed by Berghen and Bersini [5],

named CONDOR, which includes a parallel version based on NEWUOA.

In this article we consider the model-based trust-region method NEWUOA

[38] because this code performed very well in recent comparison benchmark

articles by [18, 29, 32]. Moreover, Moré and Wild [29] report that NEWUOA

is the most effective derivative-free unconstrained optimization method for

smooth functions. These results and the recent developments by Powell [39]

have encouraged us for further development of model-based methods. Recently,

Powell introduced the algorithm BOBYQA [40], a new version of NEWUOA,

that successfully solves bound constrained optimization problems.

In NEWUOA [38] and BOBYQA [40] the trust-region subproblem is defined

using the Euclidean norm and it is solved by a (truncated) conjugate gradi-

ent method. In our research, we make use of the infinity norm instead of the

Euclidean norm, and use an active-set strategy in combination with the spectral

projected gradient method in the same way that was proposed by Birgin and

Martínez [7]. This strategy is not computationally expensive and it has been

successful for medium-scale problems, so we consider it could be useful for our

algorithm.

The numerical results and the observations made in this paper are based on

experiments involving all the smooth problems suggested in [29]. We have also

tested the algorithms for a set of medium-scale problems (100 variables). We

compare our implementation with NEWUOA (for unconstrained optimization

problems) and BOBYQA (for bound constrained optimization problems).

This article is organized as follows. In Section 2 we describe the main ideas

of the interpolation-based methods for derivative-free optimization. In Section 3

we give a short description of the NEWUOA solver for derivative-free optimiza-

tion. In Section 4 we describe the active-set strategy for solving the quadratic
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minimization trust-region subproblem. In Section 5 we show numerical results

of our implementation for unconstrained and bound constrained optimization

problems and we give some comments about the performance. Finally, conclu-

sions are given in Section 6.

2 Main ideas of the interpolation-based methods for derivative-free

optimization

Trust-region strategies have been considered in derivative-free optimization in

many articles [11, 12, 13, 37, 38, 39]. Basically, the main steps of the trust-

region method for nonlinear programming are the following:

Step 1: Building interpolation step. Given a current iterate xk , build a good

local approximation model (e.g., based on a second order Taylor approxima-

tion):

mk(xk + s) = dk + sT gk +
1

2
sT Gks,

where dk ∈ R, gk ∈ Rn and G ∈ Rn×n is a symmetric matrix, whose coefficients

are determined by using the interpolation conditions.

Step 2: Subproblem minimization. Set a trust-region radius 1k that define

the trust-region

Bk = {xk + s : s ∈ Rn, ‖s‖ ≤ 1k}

and minimize mk in Bk .

Step 3: Accepting or rejecting the step. Compute the ratio

ρk =
f (xk)− f (xk + s)

mk(xk)− mk(xk + s)
.

If ρk is sufficiently positive, the iteration is successful: the next iteration point,

xk+1 = xk + s will be taken and the trust-region radius 1k+1 could be enlarged.

If ρk is not positive enough, then the iteration was not successful: the current

iterate xk will be kept and the trust-region radius is reduced.

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/24 — 22:19 — page 175 — #5

MA. BELÉN AROUXÉT, NÉLIDA ECHEBEST and ELVIO A. PILOTTA 175

2.1 Interpolation ideas

To define the model mk(xk + s) we need to obtain the vector gk and the sym-

metric matrix Gk . They are both determined by requiring that the model mk

interpolates the function f at a set Y = {y1, y2, . . . , y p} of points containing

the current iterate xk

f (yi ) = mk(yi ) for all yi ∈ Y. (1)

The cardinality of Y must be p = 1
2 (n + 1)(n + 2) to get a full quadratic

model mk . Since there are 1
2 (n + 1)(n + 2) coefficients to be determined in

the model, the interpolation conditions represent a square system of linear equa-

tions in the coefficients dk, gk, Gk . If the interpolation points {y1, y2, . . . , y p}

are adequately chosen, the linear system is nonsingular and the model could

be uniquely determined [14]. In practice, however, conditions about the geo-

metry of the interpolation set (poisedness) are required in order to obtain a

good model.

3 The NEWUOA and BOBYQA algorithms

NEWUOA is an algorithm proposed by Powell in [38] based on previous arti-

cles [34, 35, 36, 37]. This method has a sophisticated strategy in order to manage

the trust-region radius and the radius of the interpolation set. The smaller of the

two radii is used to force the interpolation points to be sufficiently far apart

to avoid the influence of noise in the function values. Hence, the trust-region

updating step is more complicated than the classical steps in the trust-region

framework [14].

The main characteristic features of NEWUOA are the following:

(i) It uses quadratic approximations to the objective function aiming at a fast

rate of convergence in iterative algorithms for unconstrained optimiza-

tion. However, each quadratic model has 1
2 (n + 1)(n + 2) independent

coefficients to be determined, and this number could be prohibitively ex-

pensive in many applications with large n. So, NEWUOA tries to con-

struct suitable quadratic models from fewer data. Each interpolation set

has p points where n + 2 ≤ p ≤ 1
2 (n + 1)(n + 2). The default value in
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NEWUOA is p = 2n + 1. Since p could be less than 1
2 (n + 1)(n + 2),

the interpolation set Y may not be complete. The remaining degrees of

freedom are calculated by minimizing the Frobenius norm of the differ-

ence of two consecutive Hessian models [37]. This procedure defines

the model uniquely, whenever the constraints (1) are consistent and p ≥

n + 2, because the Frobenius norm is strictly convex. The updates along

the iterations take advantage of the assumption that every update of the

interpolation points is the replacement of just one point by a new one.

Powell justified in [37], using the Lagrange polynomials of the interpo-

lation points when one point x+ replaces one of the points in Y , that it

is possible to maintain the linear independence of the interpolation con-

dition (1). It was shown that these conditions are inherited by the new

interpolation points, when x+ replaces yt in Y, whenever they are chosen

such that the Lagrange polynomial Lt(x+) is nonzero. Furthermore, the

preservation of linear independence in the linear system (1) by the se-

quence of iterations, in the presence of computer rounding errors, may be

more stable if |Lt(x+)| is relatively large.

(ii) It solves the trust-region quadratic minimization subproblem using a trun-

cated conjugate gradient method. The Euclidean norm is adopted to define

the trust-region Bk .

(iii) Updates of the interpolation set points are performed via the following

steps:

(a) If the trust-region minimization of the k-th iteration produces a step

s which is not too short compared to the maximum distance between

the sample points and the current iterate, then the function f is eval-

uated at xk + s and this new point becomes the next iterate, xk+1,

whenever the reduction in f is sufficient. Furthermore, if the new

point xk + s is accepted as the new iterate, it is included into the

interpolation set Y , by removing the point yt so that the distance

‖xk − yt‖ and the value |Lt(xk + s)| are as large as possible. The

trade-off between these two objectives is reached by maximizing

the weighted absolute value ωt |Lt(xk + s)|, where ωt reflects the

distance ‖xk − yt‖.
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(b) If the step s is rejected, the new point xk + s could be accepted into

Y , by removing the point yt such that the value ωt |Lt(xk + s)| is

maximized, as long as either |Lt(xk + s)| > 1 or ‖xk − yt‖ > r1k

is satisfied for a given r ≥ 1.

(c) If the improvement in the objective function is not sufficient, and it

is considered that the model needs to be improved, then the algo-

rithm chooses a point in Y which is the farthest from xk and attempts

to replace it with a point which maximizes the absolute value of the

corresponding Lagrange polynomial in the trust-region.

The general scheme of NEWUOA is the following:

Step 0: Initialization. Given x0, NPT the number of interpolation points, Y

the set of interpolation points, ρ0 > 0, 0 < ρend < 0.1ρ0, 1 = ρ0,

ρ = ρ0, t = 0, k ← 0.

Build an initial quadratic model m0(x0 + s) of the function f (x).

Step 1: Solve the quadratic trust-region problem. Compute

s̄ = argmin mk(xk + s) subject to ‖s‖ ≤ 1.

Step 2: Acceptance test. If ‖s̄‖ ≥ 0.5ρ, compute

ratio = (F(xk)− F(xk + s̄))/(mk(xk)− mk(xk + s̄)).

Step 2.1: Update the trust-region radius. Reduce 1 and keep ρ. Set yt the

farthest interpolation point from xk . If ‖yt − xk‖ ≥ 21 go to Step 3,

otherwise go to Step 5.

Step 2.2: Update the trust-region radius and ρ. Go to Step 6.

Step 3: Alternative iteration. Re-calculate s̄ in order to improve the geometry

of the interpolation set.

Step 4: Update the interpolation set and the quadratic model.

Step 5: Update the approximation. If ratio > 0, set xk+1 → xk, k → k + 1

and go to Step 1.

Step 6: Stopping criterion. If ρ = ρend declare “end of the algorithm”,

otherwise set xk+1 → xk, k → k + 1 and go to Step 1.
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The algorithm terminates if one of following options holds: the quadratic

model does not decrease, ρ = ρend or the maximum number of iterations is

reached.

Numerical results of NEWUOA [39] encouraged the author to introduce

some modifications in order to solve bound constrained optimization problems.

The resulting algorithm is called BOBYQA [40].

In BOBYQA, Powell proposed the routine TRSBOX for solving the trust-

region problem, obtaining an approximate solution of mk(xk + s) in the in-

tersection of a spherical trust-region with the bound constraints, via a truncated

conjugate gradient algorithm. In BOBYQA we have replaced the routine

TRSBOX by our version described below. Besides that, in the BOBYQA al-

gorithm, others changes to the “variables” are designed to improve the model

without reducing the objective function f (x), using the subroutine ALTMOV.

In that routine, the quadratic model mk(xk + s) is ignored in the construction

of a new xk + s by an alternative iteration. This subroutine (ALTMOV) is

used by BOBYQA when the inclusion of the new iterate xk + s, computed by

TRSBOX, could determine a near linear dependence in the interpolation con-

ditions. Thus, BOBYQA replaces the s of TRSBOX by a new s, computed by

mean ALTMOV solving a quadratic function that is different to mk(xk + s).

4 The active-set strategy for solving the box constrained subproblem

The quadratic minimization trust-region subproblem is one of the most expen-

sive parts of the algorithm NEWUOA and BOBYQA. Both algorithms use the

Euclidean norm to define the trust-region. In our case, we adopted the∞-norm

since we have bounds on the variables.

Given xk and 1k > 0 the current approximation and the trust-region radius,

respectively, we define

Bk =
{
s ∈ Rn|‖s‖∞ ≤ 1k

}
.

The trust-region subproblem is given by

min mk(xk + s) = 1
2 sT Gks + gT

k s + dk

s. t. s ∈ �k = � ∩ Bk
(2)

where gk ∈ Rn and Gk is a n × n symmetric matrix.
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In our algorithm, called TRB-Powell (Trust-Region Box), we replaced the

quadratic solver of NEWUOA and BOBYQA by an active-set method that

uses the strategy described in [7]. For solving the trust-region problem (2),

this method uses a truncated Newton approach with line searches whereas, for

leaving the faces, uses spectral projected gradient iterations as defined in [9].

Many active constraints can be added or deleted at each iteration so that the

method is useful for large-scale problems. Besides that, numerical results have

proved that this strategy is successful and efficient for medium and large-scale

problems [2, 3, 6, 7, 8].

Specifically, suppose that s j is the current iterate which belongs to a particular

face of �k . In order to decide if it is convenient to quit this face or to continue

exploring it, we compute the gradient ∇mk(s j ), its projection onto �k (denoted

by gP(s j )) and its projection onto this face (gI (s j )). Given η ∈ (0, 1), if

‖gI (sk)‖ ≥ η‖gP(sk)‖ (3)

does not hold, the face is abandoned and s j+1 is computed performing one

iteration using the spectral projected gradient algorithm, as it was described

in [7]. On the other hand, while the condition (3) is satisfied, an approximate

minimum of mk(xk + s) belonging to the closure of �k is computed using the

conjugated gradient method. This procedure terminates when ‖gP(s∗)‖ is lower

than a tolerance for some s∗.

The theoretical results in [7] allow us to assure that the application of this

method to the quadratic model subject to �k is well-defined and the convergence

criterion is reached. In fact, Birgin and Martínez have proved that a Karush-

Kuhn-Tucker (KKT) is computed up to an arbitrary precision. Also, assuming

that all the stationary points are nondegenerate, the algorithm identifies the face

to which the limit belongs in a finite number of iterations [7].

5 Numerical experiments

As mentioned in the introduction, we compared TRB-Powell with NEWUOA

and BOBYQA in terms of number of function evaluations, as it is usual in

derivative-free optimization articles. We have chosen two groups of test prob-

lems, small-size and medium-size problems. TRB-Powell was developed in
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Fortran 77, as well as NEWUOA and BOBYQA. We have used Intel Fortran

Compiler 9.1.036. Codes were compiled and executed in a PC running Linux

OS, AMD 64 4200 Dual Core.

5.1 Test problems

Concerning the unconstrained case we considered a set of small-size problems

proposed by Moré and Wild in [29]. Most of them consist of nonlinear least

squares minimization problems from CUTEr collection [20]. The number of

variables of these problems varies from 2 to 12. Also, aiming to test problems

with larger dimensions, we considered several problems employed by Powell

[38] where n varies from 20 to 100. These functions are Arwhead, Chrosen,

Chebyqad, Extended Rosenbrock, Penalty1, Penalty2, Penalty3 and Vardim.

All these functions are smooth and the respective results are showed in Table 3.

On the other hand, for bound constrained optimization we have considered

some small-size problems from [22, 28, 29], whose names and dimensions can

be seen in Table 4.

In order to test medium-size problems we have considered the Arwhead,

Chebyqad, Penalty1 and Chrosen functions subject to bound constraints. The

bound constraints of the first three problems require that all the components

of x to be in the interval [−10, 10] and in the case of Chrosen function in the

interval [−3, 0]. Furthermore, we have considered one particular test problem

studied in [40]. That problem, denominated “points in square (Invdist2)”, has

many different local minima. The objective function being the sum of the re-

ciprocals of all pairwise distances between the points Pi , i = 1, . . . , M in two

dimensions, where M = n/2 and where the components of Pi are x(2i − 1)

and x(2i). Thus, each vector x ∈ Rn defines the M points Pi . The initial point

considered x0 gives equally spaced points on a circle. The bound constraints of

this problem require that all the components of x to be in the interval [−1, 1].

The details of the results in [40] showed that they are highly sensitive to

computer rounding errors. Other set of medium-size problems was taken from

[28]. They are Ackley, Griewangk and Rastrigin functions, which have sev-

eral local minima in each one particular search domain: 15 ≤ x(i) ≤ 30,

−600 ≤ x(i) ≤ 600, and −5.12 ≤ x(i) ≤ 5.12, i = 1, . . . , n respectively.
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These functions have the global minimum at x∗ = 0 and the corresponding

value f (x∗) = 0.

Moreover, we have considered some problems of CUTEr that were used in

the recent article by Gratton et al. [21], where the authors compared their new

solver BC-DFO with BOBYQA. The detailed list of these problems and their

characteristics is provided in Table 1. It shows the name and dimension of the

problems, the number of variables which are bounded from below and above

and the minimum value f ∗ which was reported in [21]. If one variable has not

an upper or lower bound we used a very large bound for numerical considera-

tions (1010 or−1010 respectively). The results of these experiments can be seen

in Table 6.

5.2 Implementation details

We used the default parameters for codes NEWUOA and BOBYQA. We run

both codes with a number m = 2n + 1 interpolation points using the Frobenius

norm approach, as Powell suggest [38].

Initial points and initial trust-region radius were the same as in the cited

references [21, 22, 28, 29, 38].

The stopping criterion that we have used is the same that Powell used, that is,

the iterative process stops when the trust-region radius is lower than a tolerance

ρend = 10−6.

The maximum number of function evaluations allowed for the unconstrained

case was:

max f un = 9000, for small-size problems, and

max f un = 80000, for medium-size problems.

The maximum number of function evaluations allowed for the bound con-

strained case was:

max f un = 9000, for small-size problems, and

max f un = 20000, for medium-size problems.

In the following tables the symbol (∗∗) indicates that the respective solver

failed to find a solution or the maximum number of function evaluations allowed

was reached.
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Problem n lbound ubound (l+u)bound f ∗

Biggsb1 25 24 1.50000000000000D-02

Bqp1var 1 1 0.00000000000000D+00

Camel6 2 2 –1.03162845348988D+00

Chebyqad 4 4 2.56057805386809D-22

Chenhark 10 10 –2.00000000000000D+00

Cvxbqp1 10 10 2.47500000000000D+00

Explin2 12 13 –7.09247239439664D+03

Hatflda 4 4 1.61711062151584D-25

Hatfldc 25 24 3.43494690036517D-27

HS1 1 1 7.13660798093435D-24

HS110 10 10 –4.57784755318868D+01

HS2 2 1 4.94122931798918D+00

HS25 3 3 1.81845940377455D-16

HS3 2 1 1.97215226305253D-36

HS38 4 4 2.02675622883580D-28

HS3mod 2 1 0.00000000000000D+00

HS4 2 2 2.66666666400000D+00

HS45 5 5 1.00000000040000D+00

HS5 2 2 –1.91322295498104D+00

Logros 2 2 0.00000000000000D+00

Mccormck 10 10 –9.59800619474625D+00

Mdhole 2 1 7.52316384526264D-35

Ncvxbqp1 10 10 –2.20500000000000D+04

Ncvxbqp2 10 10 –1.43818650000000D+04

Oslbqp 8 5 6.25000000000000D+00

Probpenl 10 10 –2.11912948080046D+05

Pspdoc 4 1 2.41421356237309D+00

Qudlin 12 12 –7.20000000000000D+03

Simbqp 2 1 0.00000000000000D+00

Sineali 4 4 –2.83870492243045D+02

Table 1 – Bound constrained CUTEr test problems.
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Algorithmic parameters in TRB-Powell (Step 1) used:

εP = 10−6.

η = 0.1. We have analyzed other values, but the best results were obtained with

this value of η.

γ = 10−4, σmin = 10−10 and σmax = 1010.

In the conjugate gradient method we have used ε̄ = 10−8.

5.3 Numerical results: unconstrained problems

Tables 2 and 3 report the name of the small and medium-size unconstrained

optimization problems respectively, the number of function evaluations (Feval)

used to reach the stopping criterion and the functional values obtained for TRB-

Powell and NEWUOA codes ( f (xend)).

The results in Table 2 enable us to make the following observations.

The number of function evaluations required by NEWUOA is the smallest

in 16 of the 36 problems while for TRB-Powell this number is the smallest in

17 problems. In the rest of the problems, both algorithms performed the same

number of function evaluations.

The average of the evaluations required in this whole set of problems was

1119 for TRB-Powell and 1272 for NEWUOA. In Bard problem NEWUOA

got a local minimum while TRB-Powell obtained the global minimum. The

obtained functional values are similar for both methods. NEWUOA obtained

lower functional values in 18 problems whereas TRB-Powell did it in 14 of

them.

These results are summarized in Figure 1 using the performance profiles

described by Dolan and Moré in [16]. Given a set of problems P and a set

S of optimization solvers, they compare the performance on problem p ∈ P by

a particular algorithm s ∈ S with the best performance by any solver on this

problem. Denoting by tp,s the number of function evaluations required when

solving problem p ∈ P by the method s ∈ S, they define the performance

ratio:

rp,s =
tp,s

min{tp,s : s ∈ S}
.
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Problem Feval f (xend )

name n NEWUOA TRB-Powell NEWUOA TRB-Powell

Linear Full Rank 9 42 42 3.600000D+01 3.599990D+01

Linear Rank 1 7 159 308 8.380200D+00 8.380202D+00

Linear Rank 1∗ 7 151 225 9.880500D+00 9.880507D+00

Rosenbrock 2 195 134 1.382200D-17 1.089153D-16

Helical valley 3 124 146 2.066500D-13 4.180530D-14

Powell singular 4 476 477 1.099100D-10 1.350267D-10

Freudenstein & Roth 2 76 74 4.898420D+01 4.898420D+01

Bard 3 114 145 1.774900D+00 8.215013D-03

Kowalik & Osborne 4 278 274 3.075000D-04 3.075056D-04

Watson 6 937 1023 2.287600D-03 2.287600D-03

9 9000 9000 (**) 2.160293D-06 (**) 1.782082D-06

12 9000 9000 (**) 5.562963D-07 (**) 4.902148D-08

Box 3-dimensional 3 212 282 3.336000D-17 2.476166D-12

Jennrich & Sampson 2 55 65 1.243621D+02 1.243621D+02

Brown & Dennis 4 191 180 8.582220D+04 8.582220D+04

Chebyqad 6 177 212 4.763800D-13 1.298316D-14

7 229 267 3.148000D-13 2.429278D-14

8 390 247 3.516800D-03 3.516803D-03

9 529 533 2.201700D-13 3.092237D-13

10 666 535 4.772700D-03 4.772713D-03

11 538 657 2.799700D-03 2.799751D-03

Brown almost-linear 10 1255 1153 1.553300D-12 1.588711D-12

Osborne 1 5 1012 1000 6.745600D-05 6.869259D-05

Osborne 2 11 1709 1024 4.013700D-02 4.013741D-02

Bdqrtic 8 432 507 1.023890D+01 1.023897D+01

10 670 522 1.828100D+01 1.828118D+01

11 758 614 2.226000D+01 2.226062D+01

12 781 636 2.627200D+01 2.627277D+01

Cube 5 2842 2050 7.617000D-07 1.277429D-07

6 4625 3080 4.772300D-06 3.328595D-06

8 6825 4580 5.613800D-06 4.744310D-06

Mancino 5 39 55 3.712400D-11 9.547387D-14

8 52 68 1.013600D-08 1.067564D-10

10 68 67 2.292100D-09 1.024540D-08

12 83 89 1.216000D-08 9.571743D-10

Heart 8 8 1118 1001 1.516400D-11 5.108511D-13

∗with zero columns and rows

Table 2 – Small-size unconstrained problems: NEWUOA vs. TRB-Powell.
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Problem Feval f (xend )

name n NEWUOA TRB-Powell NEWUOA TRB-Powell

Arwhead 20 409 495 6.827872D-12 3.321787D-13

40 1441 1079 6.320278D-12 1.322941D-12

80 3226 2791 8.715428D-11 3.022693D-11

100 3859 3705 4.438583D-11 4.041300D-11

Penalty 1 20 7348 6768 1.577771D-04 1.577771D-04

40 14620 18217 3.392511D-04 3.392511D-04

80 31180 20037 7.130502D-04 7.131754D-04

100 39364 22341 9.024910D-04 9.027157D-04

Penalty 2 20 19060 11180 6.389751D-03 6.389759D-03

40 15301 11889 5.569125D-01 5.569250D-01

80 19357 16863 1.776315D+03 1.776315D+03

100 15388 12523 9.709608D+04 9.709608D+04

Penalty 3 20 4660 1645 3.636060D+02 1.008361D-02

40 80000 5423 (**) 1.045973D-03 1.000000D-03

80 80000 33231 (**) 6.285525D+03 1.000000D-03

100 80000 78017 (**) 9.882811D+03 4.658901D-02

Chrosen 20 911 1005 2.031934D-11 2.128075D-13

40 2048 2329 4.950602D-12 5.195116D-12

80 4764 4529 1.803505D-10 5.955498D-11

100 4987 5814 4.664747D-10 1.350874D-10

Vardim 20 4791 6449 5.365843D-11 6.547327D-12

40 18725 28972 7.200291D-11 6.995020D-12

80 62562 46687 4.743123D-10 1.196846D-09

100 80000 77995 (**) 2.408154D-08 9.065575D-08

Rosenbrock Ext. 20 8585 9301 1.491622D-10 5.035342D-12

40 36435 30310 7.109087D-09 3.092178D-12

80 80000 78360 (**) 1.131952D-07 2.712245D-08

100 80000 52891 (**) 2.812546D-07 2.572285D-09

Chebyqad 20 1817 2177 4.572955D-03 4.572955D-03

40 26743 19970 5.960843D-03 5.961027D-03

80 73006 30800 4.931312D-03 4.931938D-03

100 46964 35200 8.715769D-03 4.517172D-03

Table 3 – Medium-size unconstrained problems: NEWUOA vs. TRB-Powell.

They assume that rp,s ∈ [1, rM ] and that rp,s = rM only when problem p is

not solved by solver s. They also define the fraction

%s(τ ) =
1

n p
size{p ∈ P : rp,s ≤ τ },

where n p is the number of solved problems. Thus, we draw %s(τ ), with τ ∈

[1, rM).
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In a performance profile plot, the top curve represents the most efficient

method within a factor τ of the best measure. The percentage of the test prob-

lems for which a given method is best in regard to the performance criterion

being studied is given on the left axis of the plot. It is necessary to point out that

when both methods coincide with the best result, both receive the corresponding

mark. This means that the sum of the successful percentages may exceed 100%.

Figure 1 shows the performance profile for both solvers in the interval

[1, 1.97]. It can be seen that NEWUOA performs less function evaluations

in 52% of the problems while TRB-Powell does it in 55% of problems and

the last one has the best performance for τ ∈ [1.18, 1.58].

1.1 1.3 1.5 1.7 1.9
0

0.2

0.4

0.6

0.8

1 1

0.52
0.55

1.581.18

τ

ρ s
(

τ)

NEWUOA    
TRB-Powell

Figure 1 – Function evaluations in small-size unconstrained problems.

For medium-scale problems we tested eight problems from [38], with dimen-

sion n = 20, 40, 80, 100. Table 3 reports the numerical results, from which we

can observe:

TRB-Powell required less function evaluations than NEWUOA in 23 of the

32 problems.

The average of the evaluations made by TRB-Powell was 21219 and for
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NEWUOA was 29611. For eight problems TRB-Powell performed better than

NEWUOA (NEWUOA needs more than 10000 extra function evaluations).

In Arwhead, Penalty 3, Rosenbrock Extended, Chrosen (n = 20) and Chrosen

(n=80) problems, it can be seen that TRB-Powell was more efficient respect to

the final functional value obtained ( f (xend)). In particular, the Penalty 3 was

solved significantly better by TRB-Powell than NEWUOA.

TRB-Powell obtained lower functional values than NEWUOA in 18 of 32

problems, while NEWUOA did it in 9. In the rest of the problems both methods

achieve the same functional values.

This seems to indicate that for medium-size problems TRB-Powell performs

better than NEWUOA.

1 2 3
0

0.2

0.4

0.6

0.8

1

0.28

0.71

0.63 1.51

0.96

τ

ρ s
(

τ)

NEWUOA    
TRB-Powell

1 

Figure 2 – Function evaluations in medium-size unconstrained problems.

These results are summarized in Figure 2 using the performance profiles

described before. Since rp,s is large for several medium-size problems, we

used a logarithmic scale in base 2 in the x-axis, as recommended in [16]. Thus,

we draw

%s(τ ) =
1

n p
si ze

{
p ∈ P : log2(rp,s) ≤ τ

}
, with α ∈ [0, log2(rM)),
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Problem Feval f (xend )

name n BOBYQA TRB-Powell BOBYQA TRB-Powell

Linear Full Rank 9 31 31 1.699999D+02 1.699999D+02

Linear Rank 1 7 84 82 8.380281D+00 8.380281D+00

Linear Rank 1∗ 7 90 82 9.880597D+00 9.880597D+00

Rosenbrock 2 171 170 4.720012D-12 4.213517D-09

Powell singular 4 131 83 4.840000D-04 4.840000D-04

Kowalik & Osborne 4 162 90 4.470176D-04 4.470176D-04

Brown Dennis 4 170 168 8.582220D+04 8.582220D+04

HS45 5 44 43 1.000000D+00 1.000000D+00

HS46 5 49 38 4.930380D-32 4.930380D-32

HS56 7 119 98 1.052166D-12 2.148472D-12

HS77 5 140 108 2.130995D-11 2.424337D-11

HS79 5 128 133 8.368490D-13 1.026634D-12

HS107 9 195 158 5.909464D-13 3.809796D-13

HS110 10 206 172 -4.577847D+01 -4.577847D+01

Rastrigin 10 69 68 2.487372D+02 2.487372D+02

Schwefel 10 90 73 -4.189829D+03 -4.189829D+03

∗with zero columns and rows

Table 4 – Small-size bounded constrained problems: BOBYQA vs. TRB-Powell.

where rM > 0 is such that rp,s ≤ rM , for all p and s.

Figure 2 shows that TRB-Powell solved this set of problems successfully.

TRB-Powell had a better performance in 71% of the problems.

5.4 Numerical results: bound constrained problems

Tables 4 and 5 show the performance of BOBYQA and TRB-Powell for small

and medium-size bound constrained problems, respectively. We observe in Ta-

ble 4 that the number of function evaluations required by TRB-Powell is less

than BOBYQA in 14 of the 16 test problems. Moreover, the obtained func-

tional values were similar for both methods. This performance of TRB-Powell

has been depicted in Figure 3, where it has required less function evaluations

in 93% of the problems.

On the other hand, for medium-size bound constrained problems, we observe

in Table 5 that TRB-Powell required less function evaluations than BOBYQA
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Problem Feval f (xend )

name n BOBYQA TRB-Powell BOBYQA TRB-Powell

Invdist2 20 182 236 3.220305D+01 3.220305D+01

40 943 826 1.677709D+02 1.677709D+02

60 6990 4832 4.081079D+02 4.087195D+02

80 5158 6125 7.699010D+02 7.689744D+02

100 20000 20000 (**) 1.251662D+03 (**) 1.248745D+03

Arwhead 20 636 558 1.826050D-11 4.961897D-11

40 1458 1468 1.208688D-09 1.054593D-08

80 3677 4332 8.622840D-10 1.097986D-09

100 6605 2927 3.969482D-08 2.774640D-09

Chrosen 20 242 235 1.900000D+01 1.900000D+01

40 464 612 3.900000D+01 3.900000D+01

80 864 825 7.900000D+01 7.900000D+01

100 1055 1037 9.900000D+01 9.900000D+01

Penalty 1 20 5677 5253 1.577706D-04 1.577901D-04

40 15006 11645 3.392511D-04 3.392517D-04

80 19410 15680 7.130502D-04 7.130518D-04

100 20000 17458 (**) 9.024911D-04 9.024942D-04

Chebyqad 20 2245 2020 4.572955D-03 4.572956D-03

40 20000 19617 (**) 5.960849D-03 5.960854D-03

80 20000 20000 (**) 4.932619D-03 (**) 4.933963D-03

100 20000 20000 (**) 4.523622D-03 (**) 4.566568D-03

Rastrigin 20 120 114 4.974745D+02 4.974745D+02

40 1301 297 9.949489D+02 9.949489D+02

80 600 613 1.989898D+03 1.989898D+03

100 820 795 2.487372D+03 2.487372D+03

Griewangk 20 882 523 6.312884D-11 3.234968D-12

40 2091 1309 7.525736D-11 1.494938D-11

80 12436 3031 2.297593D-10 1.809503D-10

100 5213 3927 2.405037D-10 6.107597D-10

Ackley 20 570 526 9.132573D-06 9.355251D-07

40 1129 1231 9.987129D-07 1.001365D-06

80 2112 1923 9.156053D-06 9.086830D-06

100 2968 2406 8.297680D-07 9.516777D-06

Table 5 – Medium-size bounded constrained problems: BOBYQA vs. TRB-Powell.

in 23 of the 33 test problems. Besides that, our method compares well with

BOBYQA in the sense of TRB-Powell needed less function evaluations. The

final functional values were similar for BOBYQA and TRB-Powell. Figure 4

shows that TRB-Powell solved the problems using less function evaluations

in 78% of them.
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Figure 3 – Function evaluations in small-size bound constrained problems.
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Figure 4 – Function evaluations in medium-size bound constrained problems (log scale).
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Problem Feval

2-dig 4-dig 6-dig 8-dig
name n

TRB BQA TRB BQA TRB BQA TRB BQA

Biggsb1 25 107 144 315 341 389 489 464 548

Bqp1var 1 4 7 5 7 5 7 5 7

Camel6 2 15 17 25 29 29 37 31 41

Chebyqad 4 10 15 18 50 28 60 48 64

Chenhark 10 108 90 124 121 143 151 161 172

Cvxbqp1 10 30 26 30 39 30 39 30 39

Explin2 12 126 224 210 233 219 236 227 258

Hatflda 4 36 46 152 104 167 141 180 182

Hatfldc 25 56 131 87 247 196 360 276 441

HS1 2 102 135 128 158 145 167 158 172

HS110 10 23 144 44 260 82 436 188 521

HS2 2 40 33 44 35 44 39 44 39

HS25 3 97 107 710 734 968 978 f 995

HS3 2 9 6 9 9 9 10 9 10

HS38 4 375 408 431 440 468 474 501 503

HS3mod 2 16 21 21 24 21 24 21 24

HS4 2 6 7 7 7 7 7 7 7

HS45 5 16 16 16 16 16 16 16 16

HS5 2 9 13 12 15 17 18 22 21

Logros 2 82 443 399 609 445 652 547 661

Mccormck 10 40 29 82 54 83 75 99 87

Mdhole 2 218 220 220 220 227 225 228 225

Ncvxbqp1 10 28 31 28 31 28 31 28 31

Ncvxbqp2 10 28 31 28 31 28 31 28 31

Oslbqp 8 20 22 20 22 20 22 20 22

Probpenl 10 f f f f f f f f

Pspdoc 4 40 41 50 55 57 57 65 65

Qudlin 12 32 34 32 34 32 34 32 34

Simbqp 2 12 12 12 12 12 12 12 12

Sineali 4 12 36 17 260 17 387 17 432

Table 6 – Results on bound constrained CUTEr test set with 2, 4, 6 and 8 significant figures

attained in f ∗.
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Table 6 shows the results obtained by BOBYQA (BQA) and TRB-Powell

(TRB) on the experiments with the problems described in Table 1. It shows

the name of the problem, the number of function evaluations needed by TRB-

Powell and BOBYQA to attain two, four, six and eight significant figures of

the objective function value f ∗, reported by the authors of [21]. We indicate

with “f” when a problem do not obtain the precision required.

The results reported in Table 6 show that both solvers fail to solve one test

problem in all four cases. Moreover, TRB-Powell did not obtain the precision

of 8 digits in the HS25 problem. For low accuracy BOBYQA solved 17%

of the test cases faster than TRB-Powell and TRB-Powell solved 73% of the

problems faster. For 8 correct significant figures, BOBYQA solved 17% of

the test cases faster, and TRB-Powell 67% of the problems faster. For 4 and 6

significant digits BOBYQA solved 13% of the test cases faster than TRB-Powell

and TRB-Powell solved 67% and 70% of the problems faster, respectively.

6 Conclusions

We have presented a modified version of the algorithms NEWUOA and

BOBYQA for solve unconstrained and bound constrained derivative-free

optimization problems. Our method use an active-set strategy for solving the

trust-region subproblems. Since we consider the infinity norm, a box constrained

quadratic optimization problem has to be solved at each iteration.

We have compared our new version TRB-Powell with the original NEWUOA

and BOBYQA. The numerical results reported in this paper are encouraging and

suggest that our algorithm takes advantage of the active-set strategy to explore

the trust-region box. The number of function evaluations was reduced in most

of the cases. These promising numerical results and the new articles by M.J.D.

Powell [39, 40] encourage us for further development in constrained optimiza-

tion without derivatives.
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