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Reference 

Csanady: Chapter 2
“Inertial response to wind”
Sections 2.4, 2.5, 2.7



Consider:
Semi-infinite shallow basin with
x≤0
bounded by a straight infinitely long coast coincident with the y axis.
The basin is forced by a constant wind perpendicular to the coast:

Bottom stress is also neglected

Under such conditions NO differences in elevation along y can arise. Therefore the transport
Equations become:
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Also the equation                                            (see previous lecture)reduces to (x≤0):

At the coast (x=0) The no-Normal transport boundary condition (U=0 and then V=0) give the 
static wind setup

and the above eq.  becomes                        

Solving for η allow to solve for the long- (V) and cross- (U) shore transport.
Time independent steady state solutions are: 
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The steady state solution is characterised by:
V=0 at x=0: No longshore transport at the coast.

at x=0: no rotation value of the elevation gradient at the coast.

: Ekman transport far away from the coast

and illustrates how  Earth rotation affects the  propagation of a pressure signal:

The transition takes places on the scale of the deformation radius R

The  establishment of the pressure field is described by the full solution of the 
Transport  equation system (time dependent): 
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An approximate solution valid for ft>>1 (a long time after the imposition of the wind stress) is:

The time dependent solution is formed by the steady state solution plus inertial oscillations of 
Decaying amplitude.

INERTIAL OSCILLATIONS
Far away from coast and in absence of forcing we can postulate η=0 and the transport and 
continuity equations reduce to

Wind “setup” (semi-infinite basin)
Cross-shore wind

η =
u*
2

fc
e
x
R +

2
π

sin ft −π 4( )
ft

−.........
"

#
$

%

&
'

∂U
∂t

− fV = 0

∂V
∂t

+ fU = 0

∂U
∂x

+
∂V
∂y

= 0



Wind “setup” (semi-infinite basin)
Cross-shore wind

U =U0 cos ft
V = −U0 sin ft

u =U0

H
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Balance between local 
Acceleration and Coriolis
force

Periodic motion with period
T=2π/f (half of a pendulum
Day).
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Inertial oscillation components

Oscillations are slowly decaying.
Decays occur trough dispersal of the waves to infinity
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Development of setup and oscillations
For the cross-shore wind case.
Plots are for different distances from coast
At different times
Beyond a few radii of deformation
Only oscillations arise
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Development of setup and oscillations
For the cross-shore wind case.
Sea surface elevation at successive times

Oscillations decay while original pulse 
Travels to Infinity.

A wake of inertial oscillations is left behind the
Pulse.

Once the wake decays the static wind setup 
remains but only at distances of order R from
The coast 
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At the coast:

U=0 at all times

Then no long shore transport can develop

At distance of order R transient cross-shore transport
Appears at times of order f-1, allowing the establishment
Of steady state along shore transport.
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Without Earth Rotation (trivial case)
Fluid accelerate downwind, no pressure field generated (no coast “damming” the fluid).

With Earth rotation
Generation of cross stream Coriolis force balanced by pressure field leading to
Coastal sea Level changes.

Consider:
Semi-infinite shallow basin with
x≤0
bounded by a straight infinitely long coast coincident with the y axis.
The basin is forced by a constant wind parallel to the coast:

Bottom stress is also neglected
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Then the transport equations become:

At the coast the  (x=0) the boundary condition U=0 yields:

• At the boundary (ONLY!!!) fluid accelerates downwind, as in the trivial no rotation case.
• The developing coastal current is in geostrophic balance with the developing pressure field.
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The equation:

Used for the cross-shore wind can still be used in order to solve for η
An approximate solution valid for ft>>1 is

That describes a pressure field with inertial oscillations of decaying amplitude (as for the 
cross-shore wind case, BUT, differently from the previous case the NON oscillatory part
(confined to a coastal band of scale width R) increase linearly with time 
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Development of the surface elevation
Field at different distances fro coast.

Close to the coast the sea level keep 
rising 
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Spatial structure of the pressure field
At different times.

Decaying pressure pulse penetrate the fluid

Close to the coast the surface elevation
Increase and outgrows the setup determined by
The cross-shore wind case
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The transport components associated with the non-oscillatory part of the solution  for η are: 

N.B. The non oscillatory part of the solution is significant for the coastal band of scale width R

V: in geostrophic balance with the pressure field

U: significant except very close to the coast                        and NOT in geostrophic balance 
(no long shore pressure gradient)
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The dynamical role of  the non oscillatory U transport can be understood by observing again 
the Transport equation

Near the coast (U≅0): the wind simply accelerate the fluid downwind.
Far away from the coast we have:

And consequently V=0 (no longshore transport develops)

In between the gradual change of U provides the transition.
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Some more insight on the mechanism of sea level  rise/fall due to longshore wind.
The solution:

Implies:

Therefore the continuity equation for the case analysed so far  is:

With

The implied change               in between REQUIRES sea level rise/fall according to the 

Continuity equation.

To compute sea level changes at the coast the offshore value of U and the spatial scale R of 
its changes must be known.
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Moreover:
Looking back at the boundary condition:

Then:
Sea level change from the pressure field geostrophic adjustment to the developing long shore 
current.  

Coastal sea level changes accompany the development of longshore currents due NOT only
To wind (e.g. to coastal fresh water input)
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Consider the linearised equation of motion:

With           = constant below/above the surface/bottom wall layers 

Sea level gradients                         (depth independent forcing term) provided by solving the 

global problem.

The correspondent solutions of the local problem u(z, t), v (z,t) may be written as: 

u= u1(t)+u2(z,t)    v =v1(t)+v2(z,t)
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u-= u1(t)+u2(z,t)    v =v1(t)+v2(z,t)
u1(t), v1(t) is the solution of the linearised equation of motion with the stress terms deleted.

The above are O.D.E (ordinary differential equations) solvable with the initial conditions:
u1=v1=0 (t=0)

The solutions describe the “pressure field induced” component of the flow. 

Subtracting the above equations from the linearised equation of motions, yields the depth-
dependent (frictionally induced) velocity components
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The above equation can be solved with initial conditions:
u2=v2=0 (t=0)

And surface/bottom stress boundary conditions:
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Assuming Av= constant, the above system with the specified boundary conditions
Specify the description of a time–dependent Ekman layer evolution.
N.B. the steady state solution is the “classic” Ekman problem solution.  
The time dependent solution adds, to the steady state one (steady state Ekman layer), inertial 
oscillations propagating surfaceàdownward.
In order to understand the frictional properties, the equations above are vertically integrated to 
obtain a degenerated form of the transport equations:

U2, V2 : depth integrated 
Velocities u2, v2
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Example: bottom stress neglected and only wind forcing a longshore wind stress:

the solution is:
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A superposition of Ekman transport (long shore wind stress case)

And inertial oscillation
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Hodograph of frictional contribution
To total transport vector

With positive wind stress along y. Inertial 
frequency oscillations originate directional 
changes between π/2 and -π/2, while
Magnitude changes between 0 and twice the 
Ekman transport
The local solution consist of a steady state 
Ekman spiral and of inertial oscillations.

Steady state Ekman spiral: “classic solution 
ofthe Ekman problem: spiral extending in 
depth to DE (Ekman depth)’

Inertial oscillations progressively extending 
in depth and (after “long” time) becoming 
inperceptible as the momentum become 
distributed over a deep water column.
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Pressure field induced interior velocities

The global problem solved so far yielded the TOTAL depth integrated tranport U, V.
The splitting of the solution in two parts

u= u1(t)+u2(z,t)    v =v1(t)+v2(z,t)

Applies also to the transports so that it is possible to write

∂u1
∂t

− fv1 = −g
∂η
∂x

∂v1
∂t

+ fu1 = −g
∂η
∂y

u1 =
1
H

U −U2( )

v1 =
1
H

V −V2( )



Wind “setup” (semi-infinite basin)
The local solution

Therefore the local problem solution can be carried out in two steps (after solution of global 
problem):

1) Determining the frictionally induced interior velocity u2(z,t) and v2(z,t).
u2(t) and v2(t) can be found by solving the Ekman layer evolution problem. With inertial 
oscillations
Neglected this reduces to solving the steady state ekman problem.

2) The pressure field induced velocities u1(t) and v1(t) are then calculated from the above 
equations.
Neglecting inertial oscillations this reduced to subtraction of the Ekman transport from the total 
transport 
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Local solution for the cross-shore wind case.

With bottom stress neglected we solve

Neglecting inertial oscillations in both the global and local problem the non oscillatory solution 
applies.
The global solution was:

While the non oscillatory “Global” solution for the frictionally induced flow computed according 
to                                                                    is:

ßEkman transport and 
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Local solution for the cross-shore wind case.

The pressure field induced velocity is 

The frictionally induced velocity profiles u2 and v2 are obtained 
(neglecting inertial oscillation) by solving a “classical” steady state surface 
Ekman layer profile. 

(see eq. 5.6 in Pinardi’s notes)
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Local solution for the cross-shore wind case. y
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coastal

offshore

Far from coast velocities are significant ONLY
In the Ekman layerClose to coast geostrophic longshore transport

EXACTLY balance the the longshore Ekman 
Transport, so that the cross-shore
Coriolis force is zero.

Ekman only
u2

Ekman only
v2

geostrophic
v1
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Local solution for the along-shore wind case.

With bottom stress neglected we solve (again)

Neglecting inertial oscillations in both the global and local problem the non oscillatory 
solution applies (again).

The global solution was

While the non oscillatory “Global” solution for the frictionally induced flow computed according 

to                                                                    is:

Ekman transport 
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Local solution for the along-shore wind case.

The pressure field induced velocity is 

The frictionally induced velocity profiles u2 and v2 are obtained  (again)
(neglecting inertial oscillation) by solving a “classical” steady state surface 
Ekman layer profile. 

(see eq. 5.6 in Pinardi’s notes)
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Local solution for the along-shore wind case.

x
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Longshore geostrophic current + Ekman

Ekman drift

Geostrophic  adjustement


