
Programming Languages for Distributed Systems
as Multiagent Systems

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2015/2016

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 1 / 62



Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 2 / 62



Spaces for PL in SE

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 3 / 62



Spaces for PL in SE Paradigm Shifts

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 4 / 62



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in
Software Engineering

new meta-models / new ontologies for artificial systems build up new
spaces
new spaces have to be “filled” by some suitably-shaped new (class of)
programming languages, incorporating a suitable and coherent set of
new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits,
and become cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are
proposed
finally, new well-founded languages are defined, which cover new spaces
adequately and coherently

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 5 / 62



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the
needs of real-world software engineering
However, technologies (like programming language frameworks)
require a reasonable amount of time (and resources, in general) to be
suitably developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or,
incoherently / insufficiently support) required abstractions &
mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 6 / 62



Spaces for PL in SE Examples

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 7 / 62



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 8 / 62



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed
framework

The Web was born as a mere concept, implemented via HTML pages,
server & browsers

today the Web is a sort of cluster of related technologies in ultra-fast
growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying
model
conceptual integrity is lost in principle

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 9 / 62



Spaces for PL in MAS

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 10 / 62



Spaces for PL in MAS Programming Agents

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 11 / 62



Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental
abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 12 / 62



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s), e.g.

behaviour-based architecture in JADE [BCG07]
the BDI (Belief, Desire, Intention) architecture [RG91]

Agent architectures influence possible agent features

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 13 / 62



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 14 / 62



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 15 / 62



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Intra-agent languages, Inter-agent languages

Agent programming languages should be either / both

intra-agent languages languages to define (agent) computational
behaviour

inter-agent languages languages to define (agent) interactive
behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of inter-agent languages

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 16 / 62



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired
features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both
communicative and pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon
the existing abstractions, mechanisms & constructs of the language
chosen
thus building an agent abstraction layer over our non-agent language
foundation

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 17 / 62



Spaces for PL in MAS Programming MAS

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 18 / 62



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint
of the individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the
MAS engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction [Sch01, OO03]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of
(system) interaction

coordination
organisation
security

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 19 / 62



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination [Sch01, OO03]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 20 / 62



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions
permissions / commitments / policies / violations / fines / rewards /
. . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities and
power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [ORV05]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 21 / 62



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 22 / 62



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artefacts, and the A&A meta-model help on this?

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 23 / 62



Spaces for PL in A&A

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 24 / 62



Spaces for PL in A&A Generality

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 25 / 62



Spaces for PL in A&A Generality

The A&A Meta-model in Short

A&A: A conceptual framework for MAS modelling & engineering

Based on the conceptual foundations discussed in the previous block of
slides, the A&A meta-model is a conceptual framework characterised in
terms of three basic abstractions [ORV08]:

agents represent pro-active components of the systems,
encapsulating the autonomous execution of some kind of
activities inside some sort of environment

artefacts represent passive components of the systems such as
resources and media that are intentionally constructed,
shared, manipulated and used by agents to support their
activities, either cooperatively or competitively

workspaces are the conceptual containers of agents and artefacts, useful
for defining the topology for the environment and providing a
way to define a notion of locality

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 26 / 62



Spaces for PL in A&A Generality

Artefacts in the A&A Meta-model

Definition (A&A Artefact)

An A&A artefact is a computational entity aimed at the use by A&A
agents

genus artefacts are computational entities

differentia artefacts are aimed to be used by agents

Artefacts are to be used by agents

From use, many other features stem

which are either essential or desirable, but need not to be used as
definitory ones

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 27 / 62



Spaces for PL in A&A Generality

Artefacts in the TuCSoN Architecture I

Examples

Coordination media

Agent Coordination Contexts (ACC)

Transducers

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 28 / 62



Spaces for PL in A&A Generality

Artefacts in the TuCSoN Architecture II

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 29 / 62



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artefacts

Artefacts link with artefacts

Artefacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to compute and languages to interact?

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 30 / 62



Spaces for PL in A&A Generality

Programming Languages for Artefacts

Artefacts as MAS computational entities

Artefacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artefact programming languages are required

possibly covering both aspects
intra-artefact languages, to compute within artefacts, and
inter-artefact languages, to interact with agents and other artefacts

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 31 / 62



Spaces for PL in A&A Generality

Programming Languages for Artefacts: Computation

Intra-artefact languages

Artefact computational behaviour is reactive

artefact languages should essentially be event-driven

Artefacts belong to the agent interaction space within a MAS

artefact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artefact
languages are likely to embody both aspects altogether

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 32 / 62



Spaces for PL in A&A Generality

Programming Languages for Artefacts: Interaction

Inter-artefact languages

Artefact interactive behaviour deals with agents and artefacts

artefact languages should provide operations for agents to use them
artefact languages should provide links for artefacts to link with them

Artefacts work as mediators between agents and the environment

artefact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artefacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 33 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 34 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artefacts: The Environment

Artefacts & MAS Environment

Artefacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artefacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artefacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 35 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy [MORD06]

Individual artefacts

handling a single agent’s
interaction

Social artefacts

handling interaction among a
number of agents / artefacts

Environment artefacts

handling interaction between
MAS and the environment

 I 

I 

I 

I

I 

S

S

 E

 E

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 36 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Organisation / Security

Individual artefacts

Individual artefacts are the most natural place where to rule individual
agent interaction within a MAS

on the basis of organisational / security concerns

If an individual artefact is the only way by which an agent can
interact within a MAS

organisation there, role, permissions, obligations, policies, etc.,
should be encapsulated

security working as a filter for any perception / action /
communication between the agent, MAS and the
environment

autonomy it could work as the harmoniser between the clashing
needs of agent autonomy and MAS control

boundaries it could be used as a criterion for determining whether
an agent belongs to a MAS

Example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 37 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefact Languages for MAS Organisation / Security

Languages for individual artefacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [RVO06a]
process algebra denotation [ORV06]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artefacts, and possibly
adapt their own behaviour, or change organisation structures

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 38 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Coordination

Social artefacts

Social artefacts are the most natural place where to rule social
interaction within a MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artefacts, and
there encapsulated

inspectability there, coordination policies could be explicitly
represented and made available for inspection

controllability functioning of coordination engine could be
controllable by engineers / agents

malleability coordination policies could be amenable to change by
agents / engineers

Example: Tuple Centres [OD01]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artefacts
ReSpecT tuple centres for A&A [Omi07]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 39 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefact Languages for MAS Coordination

Languages for social artefacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artefact has just to capture interaction and to
react appropriately

Example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omi07]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artefacts, and possibly
adapt their own behaviour, or change coordination policies

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 40 / 62



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Environment

Environment artefacts

Environment artefacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artefact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Example: Situated Tuple Centres [ORV07, CO09, MO13]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 41 / 62



Cases of PL in MAS

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 42 / 62



Cases of PL in MAS

Agent Communication Languages (ACL) I

Speech acts

Inspired by the study of human communication

Communication is based on direct exchange of messages between
agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 43 / 62



Cases of PL in MAS

Agent Communication Languages (ACL) II

Examples

Examples, working as standard protocols for information exchange
between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [LF97]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html

[FIP02]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 44 / 62

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Oriented Programming Languages (AOP) I

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .

Architecture to implement practical reasoning

Examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/ [DvRDM04, DvRM05]

Jason Java-based interpreter for an extended version of
AgentSpeak(L) for programming BDI agents
http://jason.sourceforge.net/ [Rao96, BH06]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 45 / 62

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Artefact Programming Languages: Coordination

Languages to program social / environment artefacts

Example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/ [Omi07, OD01]

Tuple centres as coordinative artefacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artefacts

ReSpecT tuple centres as social artefacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 46 / 62

http://respect.alice.unibo.it/


Cases of PL in MAS

Artefact Programming Languages: Organisation / Security

Languages to program individual artefacts

Example: Agent Coordination Context (ACC)

individual artefact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [ORV06]

Languages for policy specification & enaction

logic-based [RVO06a]
process algebra [ORV05]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 47 / 62



Cases of PL in MAS

Non-Agent Programming Languages I

Building the agent abstraction layer

Examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in

TuCSoN

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 48 / 62



Cases of PL in MAS

Non-Agent Programming Languages II

Agents using artefacts

Examples

tuProlog logic agents using ReSpecT tuple centres: examples in
tuProlog http://tuprolog.apice.unibo.it/

[DOR05]
simpA extending Java towards A&A agents & artefacts:

examples in simpA http://simpa.apice.unibo.it/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and
ACC http://tucson.apice.unibo.it/

Jason/CArtAgO Jason agents using CArtAgO artefacts
http://cartago.apice.unibo.it/

[RVO06b, RVO07]

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 49 / 62

http://tuprolog.apice.unibo.it/
http://simpa.apice.unibo.it/
http://tucson.apice.unibo.it/
http://cartago.apice.unibo.it/


References

References I

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing Multi-Agent Systems with JADE.
Wiley, February 2007.

Rafael H. Bordini and Jomi F. Hübner.
BDI agent programming in AgentSpeak using Jason (tutorial paper).
In Francesca Toni and Paolo Torroni, editors, Computational Logic in
Multi-Agent Systems, volume 3900 of Lecture Notes in Computer
Science, pages 143–164. Springer, April 2006.
6th International Workshop, CLIMA VI, London, UK, June 27-29,
2005. Revised Selected and Invited Papers.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 50 / 62



References

References II

Matteo Casadei and Andrea Omicini.
Situated tuple centres in ReSpecT.
In Sung Y. Shin, Sascha Ossowski, Ronaldo Menezes, and Mirko
Viroli, editors, 24th Annual ACM Symposium on Applied Computing
(SAC 2009), volume III, pages 1361–1368, Honolulu, Hawai’i, USA,
8–12 March 2009. ACM.

Enrico Denti, Andrea Omicini, and Alessandro Ricci.
Multi-paradigm Java-Prolog integration in tuProlog.
Science of Computer Programming, 57(2):217–250, August 2005.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 51 / 62



References

References III

Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and
John-Jules Ch. Meyer.
A programming language for cognitive agents: Goal directed 3APL.
In Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni,
editors, Programming Multi-Agent Systems, volume 3067 of Lecture
Notes in Computer Science, pages 111–130. Springer, 2004.
1st International Workshop, PROMAS 2003, Melbourne, Australia,
July 15, 2003, Selected Revised and Invited Papers.

Mehdi Dastani, Birna van Riemsdijk, and John-Jules Ch. Meyer.
Programming multi-agent systems in 3APL.
In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah-Seghrouchni, editors, Multi-Agent Programming, volume 15
of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 39–67. Springer, 2005.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 52 / 62



References

References IV

Foundation for Intelligent Physical Agents (FIPA).
Agent Communication Language Specifications, 2002.

Yannis Labrou and Tim Finin.
Semantics and conversations for an agent communication language.
In Michael N. Huhns and Munindar P. Singh, editors, Readings in
Agents, pages 235–242. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 53 / 62



References

References V

Stefano Mariani and Andrea Omicini.
Space-aware coordination in ReSpecT.
In Matteo Baldoni, Cristina Baroglio, Federico Bergenti, and Alfredo
Garro, editors, From Objects to Agents, volume 1099 of CEUR
Workshop Proceedings, pages 1–7, Turin, Italy, 2–3 December 2013.
Sun SITE Central Europe, RWTH Aachen University.
XIV Workshop (WOA 2013). Workshop Notes.

Ambra Molesini, Andrea Omicini, Alessandro Ricci, and Enrico Denti.
Zooming multi-agent systems.
In Jörg P. Müller and Franco Zambonelli, editors, Agent-Oriented
Software Engineering VI, volume 3950 of LNCS, pages 81–93.
Springer, 2006.
6th International Workshop (AOSE 2005), Utrecht, The Netherlands,
25–26 July 2005. Revised and Invited Papers.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 54 / 62



References

References VI

Andrea Omicini and Enrico Denti.
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294, November 2001.

Andrea Omicini.
Formal ReSpecT in the A&A perspective.
Electronic Notes in Theoretical Computer Science, 175(2):97–117,
June 2007.
5th International Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 August 2006. Post-proceedings.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 55 / 62



References

References VII

Andrea Omicini and Sascha Ossowski.
Objective versus subjective coordination in the engineering of agent
systems.
In Matthias Klusch, Sonia Bergamaschi, Peter Edwards, and Paolo
Petta, editors, Intelligent Information Agents: An AgentLink
Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages
179–202. Springer, 2003.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
An algebraic approach for modelling organisation, roles and contexts
in MAS.
Applicable Algebra in Engineering, Communication and Computing,
16(2-3):151–178, August 2005.
Special Issue: Process Algebras and Multi-Agent Systems.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 56 / 62



References

References VIII

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
Agent Coordination Contexts for the formal specification and
enactment of coordination and security policies.
Science of Computer Programming, 63(1):88–107, November 2006.
Special Issue on Security Issues in Coordination Models, Languages,
and Systems.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
Timed environment for Web agents.
Web Intelligence and Agent Systems, 5(2):161–175, August 2007.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 57 / 62



References

References IX

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3):432–456,
December 2008.
Special Issue on Foundations, Advanced Topics and Industrial
Perspectives of Multi-Agent Systems.

Anand S. Rao.
AgentSpeak(L): BDI agents speak out in a logical computable
language.
In Walter Van de Velde and John W. Perram, editors, Agents
Breaking Away, volume 1038 of LNCS, pages 42–55. Springer, 1996.
7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW’96), Eindhoven, The Netherlands,
22-25 January 1996, Proceedings.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 58 / 62



References

References X

Anand S. Rao and Michael P. Georgeff.
Modeling rational agents within a BDI architecture.
In James F. Allen, Richard Fikes, and Erik Sandewall, editors, 2nd
International Conference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 473–484, San Mateo, CA, 1991.
Morgan Kaufmann Publishers.

Alessandro Ricci, Mirko Viroli, and Andrea Omicini.
Agent coordination contexts in a MAS coordination infrastructure.
Applied Artificial Intelligence, 20(2–4):179–202, February–April 2006.
Special Issue: Best of “From Agent Theory to Agent Implementation
(AT2AI) – 4”.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 59 / 62



References

References XI

Alessandro Ricci, Mirko Viroli, and Andrea Omicini.
Construenda est CArtAgO: Toward an infrastructure for artifacts in
MAS.
In Robert Trappl, editor, Cybernetics and Systems 2006, volume 2,
pages 569–574, Vienna, Austria, 18–21 April 2006. Austrian Society
for Cybernetic Studies.
18th European Meeting on Cybernetics and Systems Research
(EMCSR 2006), 5th International Symposium “From Agent Theory to
Theory Implementation” (AT2AI-5). Proceedings.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 60 / 62



References

References XII

Alessandro Ricci, Mirko Viroli, and Andrea Omicini.
CArtAgO: A framework for prototyping artifact-based environments in
MAS.
In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors,
Environments for MultiAgent Systems III, volume 4389 of LNAI, pages
67–86. Springer, May 2007.
3rd International Workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Selected Revised and Invited Papers.

Michael Schumacher.
Objective Coordination in Multi-Agent System Engineering. Design
and Implementation, volume 2039 of LNCS.
Springer, April 2001.

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 61 / 62



Programming Languages for Distributed Systems
as Multiagent Systems

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2015/2016

Andrea Omicini (DISI, Univ. Bologna) 21 – PL for DS as MAS A.Y. 2015/2016 62 / 62


	Spaces for Programming Languages in Software Engineering
	Paradigm Shifts
	Examples

	Spaces for Programming Languages in Multiagent Systems
	Programming Agents
	Programming MAS

	Spaces for Programming Languages in the A&A Meta-model
	Generality
	Environment, Coordination, Organisation & Security

	Remarkable Cases of (Programming) Languages for Multiagent Systems

