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Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in
Software Engineering

new meta-models / new ontologies for artificial systems build up new
spaces
new spaces have to be “filled” by some suitably-shaped new (class of)
programming languages, incorporating a suitable and coherent set of
new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits,
and become cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are
proposed
finally, new well-founded languages are defined, which cover new spaces
adequately and coherently
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Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the
needs of real-world software engineering
However, technologies (like programming language frameworks)
require a reasonable amount of time (and resources, in general) to be
suitably developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or,
incoherently / insufficiently support) required abstractions &
mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies
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Spaces for PL in SE Examples
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Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology
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Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed
framework

The Web was born as a mere concept, implemented via HTML pages,
server & browsers

today the Web is a sort of cluster of related technologies in ultra-fast
growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying
model
conceptual integrity is lost in principle
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Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental
abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs
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Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s), e.g.

behaviour-based architecture in JADE [BCG07]
the BDI (Belief, Desire, Intention) architecture [RG91]

Agent architectures influence possible agent features
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Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however
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Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination
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Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Intra-agent languages, Inter-agent languages

Agent programming languages should be either / both

intra-agent languages languages to define (agent) computational
behaviour

inter-agent languages languages to define (agent) interactive
behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of inter-agent languages

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents
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Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired
features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both
communicative and pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon
the existing abstractions, mechanisms & constructs of the language
chosen
thus building an agent abstraction layer over our non-agent language
foundation
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Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint
of the individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the
MAS engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction [Sch01, OO03]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of
(system) interaction

coordination
organisation
security
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Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination [Sch01, OO03]
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Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions
permissions / commitments / policies / violations / fines / rewards /
. . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities and
power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [ORV05]
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Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether
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Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artefacts, and the A&A meta-model help on this?
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Spaces for PL in A&A Generality
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Spaces for PL in A&A Generality

The A&A Meta-model in Short

A&A: A conceptual framework for MAS modelling & engineering

Based on the conceptual foundations discussed in the previous block of
slides, the A&A meta-model is a conceptual framework characterised in
terms of three basic abstractions [ORV08]:

agents represent pro-active components of the systems,
encapsulating the autonomous execution of some kind of
activities inside some sort of environment

artefacts represent passive components of the systems such as
resources and media that are intentionally constructed,
shared, manipulated and used by agents to support their
activities, either cooperatively or competitively

workspaces are the conceptual containers of agents and artefacts, useful
for defining the topology for the environment and providing a
way to define a notion of locality
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Spaces for PL in A&A Generality

Artefacts in the A&A Meta-model

Definition (A&A Artefact)

An A&A artefact is a computational entity aimed at the use by A&A
agents

genus artefacts are computational entities

differentia artefacts are aimed to be used by agents

Artefacts are to be used by agents

From use, many other features stem

which are either essential or desirable, but need not to be used as
definitory ones
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Spaces for PL in A&A Generality

Artefacts in the TuCSoN Architecture I

Examples

Coordination media

Agent Coordination Contexts (ACC)

Transducers
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Spaces for PL in A&A Generality

Artefacts in the TuCSoN Architecture II
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Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artefacts

Artefacts link with artefacts

Artefacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to compute and languages to interact?
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Spaces for PL in A&A Generality

Programming Languages for Artefacts

Artefacts as MAS computational entities

Artefacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artefact programming languages are required

possibly covering both aspects
intra-artefact languages, to compute within artefacts, and
inter-artefact languages, to interact with agents and other artefacts
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Spaces for PL in A&A Generality

Programming Languages for Artefacts: Computation

Intra-artefact languages

Artefact computational behaviour is reactive

artefact languages should essentially be event-driven

Artefacts belong to the agent interaction space within a MAS

artefact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artefact
languages are likely to embody both aspects altogether
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Spaces for PL in A&A Generality

Programming Languages for Artefacts: Interaction

Inter-artefact languages

Artefact interactive behaviour deals with agents and artefacts

artefact languages should provide operations for agents to use them
artefact languages should provide links for artefacts to link with them

Artefacts work as mediators between agents and the environment

artefact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artefacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artefacts: The Environment

Artefacts & MAS Environment

Artefacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artefacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artefacts are our main places to model & engineer
coordination, organisation & security in MAS
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy [MORD06]

Individual artefacts

handling a single agent’s
interaction

Social artefacts

handling interaction among a
number of agents / artefacts

Environment artefacts

handling interaction between
MAS and the environment
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Organisation / Security

Individual artefacts

Individual artefacts are the most natural place where to rule individual
agent interaction within a MAS

on the basis of organisational / security concerns

If an individual artefact is the only way by which an agent can
interact within a MAS

organisation there, role, permissions, obligations, policies, etc.,
should be encapsulated

security working as a filter for any perception / action /
communication between the agent, MAS and the
environment

autonomy it could work as the harmoniser between the clashing
needs of agent autonomy and MAS control

boundaries it could be used as a criterion for determining whether
an agent belongs to a MAS

Example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefact Languages for MAS Organisation / Security

Languages for individual artefacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [RVO06a]
process algebra denotation [ORV06]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artefacts, and possibly
adapt their own behaviour, or change organisation structures
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Coordination

Social artefacts

Social artefacts are the most natural place where to rule social
interaction within a MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artefacts, and
there encapsulated

inspectability there, coordination policies could be explicitly
represented and made available for inspection

controllability functioning of coordination engine could be
controllable by engineers / agents

malleability coordination policies could be amenable to change by
agents / engineers

Example: Tuple Centres [OD01]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artefacts
ReSpecT tuple centres for A&A [Omi07]
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefact Languages for MAS Coordination

Languages for social artefacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artefact has just to capture interaction and to
react appropriately

Example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omi07]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artefacts, and possibly
adapt their own behaviour, or change coordination policies
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Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artefacts for MAS Environment

Environment artefacts

Environment artefacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artefact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Example: Situated Tuple Centres [ORV07, CO09, MO13]
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Cases of PL in MAS

Agent Communication Languages (ACL) I

Speech acts

Inspired by the study of human communication

Communication is based on direct exchange of messages between
agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action
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Cases of PL in MAS

Agent Communication Languages (ACL) II

Examples

Examples, working as standard protocols for information exchange
between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [LF97]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html

[FIP02]
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Cases of PL in MAS

Agent Oriented Programming Languages (AOP) I

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .

Architecture to implement practical reasoning

Examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/ [DvRDM04, DvRM05]

Jason Java-based interpreter for an extended version of
AgentSpeak(L) for programming BDI agents
http://jason.sourceforge.net/ [Rao96, BH06]
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Cases of PL in MAS

Artefact Programming Languages: Coordination

Languages to program social / environment artefacts

Example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/ [Omi07, OD01]

Tuple centres as coordinative artefacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artefacts

ReSpecT tuple centres as social artefacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change
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Cases of PL in MAS

Artefact Programming Languages: Organisation / Security

Languages to program individual artefacts

Example: Agent Coordination Context (ACC)

individual artefact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [ORV06]

Languages for policy specification & enaction

logic-based [RVO06a]
process algebra [ORV05]
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Cases of PL in MAS

Non-Agent Programming Languages I

Building the agent abstraction layer

Examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in

TuCSoN
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Cases of PL in MAS

Non-Agent Programming Languages II

Agents using artefacts

Examples

tuProlog logic agents using ReSpecT tuple centres: examples in
tuProlog http://tuprolog.apice.unibo.it/

[DOR05]
simpA extending Java towards A&A agents & artefacts:

examples in simpA http://simpa.apice.unibo.it/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and
ACC http://tucson.apice.unibo.it/

Jason/CArtAgO Jason agents using CArtAgO artefacts
http://cartago.apice.unibo.it/

[RVO06b, RVO07]
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