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Synopsis

This thesis demonstrates the feasibility of machining high quality sculptured surfaces

directly from a point-based definition. The work is founded on the strategy of using a

sparse set of points to characterise shape although it is assumed that an appropriately

dense definition can be generated by the use of some unspecified high quality

interpolation algorithm. This is in contrast to the conventional CAD/CAM approach

where explicit parametric expressions are used to describe the part.

The research is founded on the Inverse Offset Method (10M) proposed by Kishinami;

the algorithm is chosen because it possesses a number of desirable properties, most

notably its versatility and robustness. The first fundamental contribution is an error

analysis of the 10M that has not been published before, the analysis is dependent on

the surface and cutter path point spacing, the tool radius and the local surface

curvature. The accuracy of the error analysis is corroborated by the machining and

measuring of a physical part. Furthermore it is established that the quality of the

finished part produced by the 10M compares favourably with that produced by a

commercial package for similar tolerances.

The principal research achievement is the optimisation of the 10M to exploit the

coherence of data ordered into sections. This results in the 10M generating cutter

paths in a time period comparable to that of the commercial package without a

reduction in the quality of the finished part. The last contribution made in this thesis

is a report on the issues concerning the machining of point definitions derived from

multi-surfaces.

The work presented in this thesis offers an alternative strategy to the design and

manufacture of free-form surfaces. The main benefits of adopting this strategy are

gained because it removes the need to generate a parametric surface definition.
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Chapter 1

Introduction

1.1 CAD/CAM

Manufactured products designed with free-form surfaces are becoming increasingly

common in today's society for aesthetic as well as functional [Li et al. 1994]. From

Bart Simpson styled alarm clocks to fashionably curved kettles, the eye pleasing

shape of a product can be key to its success in the market [Kuragno 1992]. In any

industry where performance is dependent on shape, e.g. the automobile industry

[Jerard et al. 1989], free-form surfaces of good quality are essential. Another

functional use of the free-form surface is in the ergonomic design of a product, e.g.

the comfortable hand shaped grip of a razor handle [Baxter 1995]. Hence there is an

obvious need to efficiently manufacture such surfaces. Two key stages in the

manufacturing process are the defining of the part and the machining of the respective

tooling. These stages come under the more general heading of Computer Aided

Design and Manufacturing (CAD/CAM) which is a large subject area and covers a

large number of disciplines. For a good general description see [Bedworth et al.

1991].

1.1.1 Defining a Part

In general a part is defined by a number of parametric patches that are joined with

tangent plane continuity where appropriate. A parametric patch is a mapping of a

rectangular region from 2-dimensional parametric space to 3-dimensional space [Faux

and Pratt 1987], an example is given in Figure 1.1. The geometric control of these

patches is important and hence a variety of different basis functions have arisen (the

means by which parametric curves and surfaces are controlled). An interesting
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selection of papers documenting the historical development of these methods written

by the pioneers involved can be found in [Piegl 1993].

Parametric domain Three-dimensional space

v Z

u x y

Figure 1.1: A parametric patch

A surface model consists of an assembly of patches, the patch boundaries of the

definition of a shoe last are shown in Figure 1.2. General practice is to regard this

assembly as the master model and all further operations are performed on it.

Figure 1.2: An assembly of patches representing the shoe last

1.1.2 Machining a Part

A numerical control (NC) milling machine is used to create a physically machined

part from a block of raw stock. The NC machine reads numerical input that instructs

the tool to make a number of movements [Marciniak 1991J. A collection of these

movements is called a cutter path or a cut; as the tool traces out a cutter path it

removes material from a block of raw stock to leave the desired shape. 3-axis

machines allow movement in the x, y and z directions as indicated in Figure 1.3. To

achieve this a combination of movement of both the tool and the stock may be

2



employed. Some milling machines also allow rotation about one or more of these

axes, e.g. those offered by a 5-axis machine are also indicated in Figure 1.3. In this

thesis we only consider generating cutter paths for a 3-axis milling machine.

z

x

z

Figure 1.3: 3-axis and 5-axis machining

There are two main stages to machining, the rough and the finish cut. The main

purpose of the rough cut is to efficiently remove large volumes of material and leave

only a small proportion of raw stock to be removed by the finishing cut. A number of

finishing cuts can be performed to leave a good surface finish. However, there is a

balance to be considered between the amount of hand finishing required and the time

taken to complete all the finishing cuts. In this thesis we will only be concerned with

the generation of finish cuts as rough cutting has a contrasting set of issues to be

considered [Dong and Vickers 1994]. For work on generating rough paths see

[Kuragno 1992], [Lee et ale 1994] or [Loney and Ozsoy 1987].

The cutting tool used by the machine has a number of possible shapes and sizes. A

diagram of the general definition of an APT-like tool as given by [Marciniak 1991] is

shown in Figure 1.4. APT stands for Automatically Programmed Tool and is a NC

language dating back to the fifties [Bedworth et al. 1991]. The most common types

of cutter are the ball-nosed (r=dl2), the flat-end (0.=0, J3=O, r=0) and the filleted-end

cutter (0.=0, J3=0, 0<r<dl2). The work presented in this thesis is applicable to all tool

shapes, however most of the error analysis is performed for a ball-nosed cutter and

needs further work to generalise to all cutters.

3
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Figure 1.4: General description of an APT-like tool

The contact point between the surface and the cutter is called the cutter contact (CC)

point and we define CC data as consisting of the CC point and its unit normal, n, as

shown in Figure 1.5. Cutter centre location (CL) data also consists of a point and a

vector, the CL point represents a datum for the tool and the vector is of unit length

and lies in the direction of the tool axis, 1.

Figure 1.5: CC and CL data

A cutter path consists of a list of CL points. A subset of CL points from the cutter

path leading to a single traversal of the region being machined will be called a pass.

Figure 1.6 shows a number of passes on an example surface. The distance between

two adjacent passes is called the pass interval. The pass interval controls the height of

the cusps left between adjacent passes. Finally, the distance between consecutive CL

points on a pass is called the step forward.



CL Points

A Pass

Step Forward

Figure 1.6: A cutter path consisting of a number of passes

[Lin and Liu 1998) give a geometry-based classification of the main approaches to

generating cutter paths from a surface model, they are:

• Surface Model -> Polyhedral Approximation of Surface -> Cutter Paths

• Surface Model -> Offset Surface Approximation -> Cutter Paths

• Surface Model -> Cutter Contact Points -> Cutter Paths

The software package used for comparison purposes in this research, Powermill,

employs the first approach, the surface is triangulated before the cutter paths are

generated. However, there are a number of inherent problems with the current overall

strategy of requiring a surface model be defined and then regarding it as the master

model.

Firstly, a small discrepancy may exist at the joint between two patches. Suppose we

wish to manufacture a panel on a car that runs across a number of surface joins, then

we need to machine a press tool. Although the discrepancy lies within tolerance, it

will lead to difficulties in defining the press tool and hence in the machining of it.

Reverse engineering is the process of defining a part from a physical model. This

usually involves the sampling of numerous points from the physical model using a

probe on a Co-ordinate Measuring Machine (CMM) or a non-contact I.ascr system.



Using the present strategy, patches must then be fitted by skilled designers to those

points in order to machine it.

Special attention is required when the part to be machined contains a patch of non­

rectangular topology, e.g. the red patch as highlighted on the car front in Figure 1.7.

There are a number of alternative strategies for coping with non-rectangular regions,

see [Hoschek and Lasser 1993], however each needs evaluating for its suitability for

the given problem.

Figure 1.7: A surface patch that does not have a rectangular boundary

The final problem identified here is the proliferation of surfaces that results from

transferring a surface model from one CAD/CAM software package to another [Ball

1994]. If two packages do not support the same types of parametric patches then an

approximation of the part has to be made by the receiving software. Tight tolerances

are generally required and this leads to the generation of numerous small patches to

satisfy those tolerances.

1.2 Point-Based Modelling

We now describe an alternative approach to CAD/CAM proposed by [Ball 1997]

upon which the research in this thesis is based. The main thrust of the argument is the

questionable practice of considering the surface model to he the master model. Since

CAD systems in general cannot match exactly shapes defined hy other CAD systems,
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manufactured products or an engineer's conceptual design, why should the surface

model it produces be considered exact? Hence a new strategy, geometric in nature, is

suggested where the surface is characterised by a set of points. This shift in

philosophy results in CAD/CAM tolerances that are consistent with the design

process. This approach to problem solving is alluded to by [Hartquist et al. 1999],

that is to focus on the mathematical requirements that are inherent to a particular

application.

1.2.1 Characterisation of Shape by Points

Assuming a part is curvature continuous, we can characterise that part by a set of

sparse surface points. These points characterise an equivalence class of surfaces that

are within an acceptable tolerance of the part using some unspecified interpolation

technique. We assume the technique is of high quality and has suitable geometric

constraints. Hence instead of defining a precise surface by an explicit equation, an

equivalence class of surfaces are characterised that are practically the same.

The density of the surface points is dictated by the required tolerance of the

characterised surface. In Figure 1.8, a sparse set of points characterising the shoe last

is shown.

. . .
. :. :. . , ~.

•• e •••• ' ,',... . . . . ,":

eo "0 ••••••••••••••••••••••• '.\

"0 • "0'
o •••

Figure 1.8: Points characterising the shoe last
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1.2.2 Interpolatory Subdivision

To perform most operations on a part characterised by points we will generally

require a much denser set of points. We will refer to a set of points as defining a part

if they are of sufficient density to machine the part within tolerance using the

suggested algorithm. To fill in the points such that they define the part we require an

interpolatory subdivision algorithm, that is an algorithm that geometrically inserts

intermediate points. There are a number of such algorithms available, a simple

scheme is given by [Dyn et al. 1987] who also gives a good introduction to the area.

[Kobbelt 1996] presents a scheme that can subdivide point sets with non-rectangular

topologies using a Catmull-Clark-type split as shown in Figure 1.9. [Tookey 1997]

describes a method that uses the Generalised Cornu Spiral, a locally fitted curve with

monotonic curvature, to generate intermediate points.

Figure 1.9: A Catmull-Clark-type split of a triangular region

For the purposes of this thesis we will assume we have an acceptable subdivision

scheme. Figure 1.10 shows the point set resulting from subdividing the points

characterising the shoe in Figure 1.8 using the algorithm suggested by Tookey.

Figure 1.10: Points defining the shoe last
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1.2.3 Our Approach to Generating Cutter Paths

The strategy employed is to generate cutter paths directly from a set of points that

define the free-fonn surface we wish to machine. In particular there is no requirement

to fit an assembly of parametric patches. Referring back to the classification

presented by [Lin and Liu 1998], the surface modelling is removed from the process

and a set of surface points becomes the initial model.

Employing this approach solves the problems stated in sub-section 1.1.2.

Discrepancies at patch joins are not a concern as there are no patches, furthermore

operating tolerances can be made consistent with the design approach. In reverse

engineering, sparse points can be sampled from the part to characterise the shape and

hence surface fitting is not required. Shapes with non-rectangular topologies can be

represented by using particular patterns of points, see for example [Kobbelt 1996].

Also transferring a model between systems is easily done except in the case that the

receiving system uses surface models and the sending system uses point definitions,

then the problem is that of surface fitting. Another benefit is that localised surface

modifications are easily made.

In this thesis we investigate implementing an algorithm employing this strategy which

leads to a number of enhancements being suggested for that particular method.

However it is the change in strategy that is the key message of this thesis.

1.3 Thesis Overview

In Chapter 2 we review the different techniques available for generating cutter paths.

The methods are divided into three different categories dependent on the strategy they

use to generate the cutter paths. The categories correspond to the 3 strategies

highlighted in sub-section 1.1.2.

We first introduce the Inverse Offset Method (lOM) [Kishinami 1987] in Chapter .3

and adopt the rOM for a number of reasons. Firstly, it does not rely on an underlying
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surface definition, it only requires the positional data of the surface points to perform.

It is highly robust, the CL points generated are guaranteed not to cause the gouging of

any surface points. The surface data is not required to have any particular topology,

the algorithm can operate on completely unordered data. The only requirement of the

surface data is that it is of sufficient density for the 10M to offset within tolerance.

Finally, cutter paths for any tool shape can be generated but appropriate analysis is

required to determine the tolerances.

The surface points do not necessarily have an order, hence we need to impose one for

the purpose of generating cutter paths. We establish this order using an offset grid,

that is a planar array of points, that after translation form the points of the cutter path.

We then introduce Powermill, the commercial CAM package against which the 10M

is tested. Powermill was developed by Delcam who being the CASE industrial

sponsors for this project allowed detailed support of its functions. The test-piece is a

shoe last supplied by Clarks International. It is chosen because it is a doubly curved

free-form surface; however it is noted that it does not contain pocket areas, planar

surfaces nor irregular topologies.

Two shoes are machined, one by Powermill and the other by the 10M. These shoes

are then measured using a CMM and surface stylus equipment. The results were used

to confirm that the accuracy of surface shape and quality of surface finish produced

by the 10M are comparable to those produced by Powermill.

The penultimate section in Chapter 3 gives the results of timing the two methods.

Inevitably, since the 10M is operating directly on what is assumed to be scattered

data, many surplus checks are made resulting in the 10M being much slower than

Powermill. The results are discussed in section 3.6.

Before considering how to improve the speed of the 10M, Chapter 4 addresses a

problem that occurs in regions containing a cliff-edge, i.e. where there is a tangent
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discontinuity between two surfaces one of which is vertical. The error analysis given

in Chapter 3 is only applicable in tangent continuous regions. However, nearly all

parts will contain at least one tangent discontinuous region, namely at the boundary of

the part. Hence we analyse the error in such regions and give a relation to calculate

an appropriate point spacing that guarantees the error lies within tolerance.

Chapter 5 is concerned with optimising the method in order to improve its speed. By

ordering the points we can reduce the number of surface points that are checked. We

do this in two stages, first we optimise the algorithm to operate on nests of sections.

This leads to a substantial improvement in speed. Then we optimise the algorithm to

operate on parallel planar sections which gives a greater improvement in speed and

allows the generation of cutter paths at a similar speed to Powermill.

In Chapter 6 we address some of the more prominent issues that anse when

attempting to machine more complex parts. A number of the problems are dealt with

inherently because of the geometric nature of the algorithm. For those that are not,

suggestions are made as to possible solutions.

Finally conclusions and possible further work on generating cutter paths from points

are given in Chapter 7.

11



Chapter 2

Literature Review

In this chapter we review some of the published literature concerned with generating

cutter paths. The literature is divided into sections based on the classifications

introduced in [Lin and Liu 1998] which depends on the fundamental geometric

approach:

• Surface is approximated by a polyhedron,

• Offset surface or an approximation of it is calculated,

• CC data is calculated

or a hybrid of these. An example of a hybrid case is given in [Kuragno 1992] who

generates points on the offset surface using CC data and then linearly interpolates this

data to approximate the offset surface. In such cases the most prominent feature in

the process dictates the section under which it is reviewed.

2.1 Methods Employing A Polyhedral Approximation of

the Surface

In this section we review the algorithms that use a polyhedral approximation of the

surface in the generation of the cutter paths.

[Duncan and Mair 1983] generate cutter paths from triangulations by generating CL

points along the normal to the midpoint of each triangle. These points will generally

lead to gouging and so an algorithm is provided that raises each point by an

appropriate amount. However the cutter paths are fixed for a given triangulation and

cutting tool because there is a one-to-one correspondence between the triangles and

12



the CL points. Hence a new triangulation is required to obtain cutter paths with either

a new step forward or pass interval.

The same problem is true of the method proposed by [Choi and Jun 1989] whereby

the vertices of the triangulation are offset. For a given vertex of the triangulation each

of its neighbours are determined as being in either a convex, concave, parallel or

inflection relation based on its relative position and normal. Each case is then dealt

with appropriately to ensure the CL point does not lead to the gouging of the local

triangles. In the generation of the cutter paths they also take into account the motion

of the cutter as it interpolates the CL points and ensure the local triangles are not

gouged. In areas where the radius of curvature of the surface is less than the radius of

the cutter another algorithm is necessary to avoid gouging, Figure 2.1 shows an

example of such a region.

Figure 2.1: Curvature of surface leading to gouging

The CL points that lead to this type of interference, referred to as 'self-interference'

[Kim and Kim 1995], are removed and two new CL points inserted. However a 'side­

step' in the path, as illustrated by the cutter centre points shown in Figure 2.2, may

occur since the cutter paths are non-planar. A side-step can lead to a relatively large

change in direction for the cutter and produce an undesirable surface marking.

13



CL points

Side-step in path

Figure 2.2 : CL points leadi ng to a side-s tep

[Kanda 1991], unlike [Duncan and Mair 1983] or [Choi and Jun 1989], does not let

the triangulation dictate the density of the CL points. Given the (xo,yo) co-ordinates

for the centre of the cutter, Kanda calculates the appropriate z-height such that each

triangle is not interfered with. To do this he flags each triangle that lies either

partially or wholly within the CC region. The CC region or cutter shadow is the area

formed by projecting the tool parallel to the tool-axis onto the surface, Figure 2.3

shows an example of a CC region indicated by the grey area.

CC region

Figure 2.3: The CC region or cutter shadow

For each flagged triangle the cutter is placed above and tangent to the plane

containing the triangle. If the point of contact between this plane and the sphere

representing the cutter lies within the boundary of the triangle then the tool height is

14



checked to see how it compares to the current height setting for this (xo,Yo)' If it is

greater then this height is set as the new cutter height, else the height is disregarded.

If the contact point between the sphere and the plane lies outside the triangle, then this

represents the case where the cutter sits on an edge of the triangle and must be offset

appropriately. Note that in this case the sphere will interfere with the plane

containing the triangle.

The edge which is to be used in the offsetting is determined by which area the contact

point falls into, Figure 2.4 highlights the three different regions.

Figure 2.4: The areas that determine which edge to offset from

If the contact point lies in Area 1 then offset using edge AB, if the contact point lies in

Area 2 then offset using edge BC and if the contact point lies in Area 3 then offset

using edge CA. Note Kanda offsets the infinite line through A and B, rather than the

line segment joining A and B, which means the exact offset is not generated.

However this method does guarantee that the triangle is not gouged. Figure 2.5 shows

the exact offset of a triangle on the left and the offset used by Kanda on the right. The

red regions indicate the areas in which Kanda's algorithm fails to produce the correct

offset.

15



Figure 2.5: The exact offset and the offset generated by Kanda

To avoid the gouging caused by the linear interpolation of the tool, intermediate CL

points are added whenever the shortest distance between the line joining two

consecutive CL points and the triangulation is less than r-. However there is no

algorithm provided for determining a suitable position for the new CL point. A

simple bisection method cannot be used because this will lead to the generation of

many superfluous points as there is no allowance for tolerance.

[Hwang 1992]'s method is similar to the one proposed by [Kanda 1991]. However

there are two notable differences that result in the actual offset of the triangulation

being machined, these are:

• the vertices of the triangulation are initially offset,

• only the line segments representing the edge of the triangle are offset,

which is in contrast to offsetting the infinite line. Hwang also introduces algorithms

for determining appropriate step forward and pass interval values to machine within a

given tolerance. In a later publication, [Hwang and Chang 1998], the method is

extended to generating cutter paths for both flat-end and filleted-end cutters.

[Lai and Wang 1994] generate the offset surface to a number of primitive shapes and

to triangulated NURB patches. The offsets are intersected with the drive plane to

generate CL-points. No details of the offsetting procedure are given, however in

determining an appropriate pass interval the authors take into account the cutting

16



action of the shaft of the tool for steep surfaces unlike most previous authors who

consider only the cutting action of the spherically shaped part. Figure 2.6 shows the

region left between two passes of a ball-nosed cutter on a steep incline.

Figure 2.6: Shaft of tool affecting the shape of the cusp

[Li and Jerard 1994] consider generating cutter paths for a 5-axis milling machine

using a flat-end cutter. They describe their work as an extension of [Duncan and Mair

1983] although the two algorithms bear little resemblance. Included in their paper is a

clear introduction to the common problems associated with generating cutter paths.

The method starts by creating edge lists, i.e. strings of points generated by intersecting

the surface triangulation with a plane. The front of the cutter is placed at each point in

the edge list. This position will generally lead to gouging and hence the tool is

inclined until the triangulation is not gouged. If this is impossible or results in too

great a change in angle, the tool is raised slightly. However the method takes no

account of the linear interpolation of the tool which in general will lead to gouged

regions. Also the generation of alternative cutter paths is severely restricted since a

new step forward requires a new triangulation.

The pass interval is calculated with respect to the effective cutting shape of the tool.

If the flat-end tool cuts the surface with its tool axis not perpendicular to the tool

motion, the effective cutting shape of the tool is an ellipse, Figure 2.7 shows the

effective cutting shape of a flat-end tool.

17
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Figure 2.7: Effective cutting shape of a flat-end tool

To summarise, the polyhedral methods have developed considerably over the last

fifteen years. The method by [Hwang 1992] seems particularly robust. However, it

does not seem conceptually sound to generate cutter paths that lie on offset surfaces

which have a greater degree of continuity than the actual part definition, Figure 2.7a

illustrates this concept in 2D.

~ffsetcurve

Figure 2.7a: The C 1 planar offset of a CO planar curve

[Li and Jerard 1994] note that using triangulation-based schemes is more efficient

than point-based schemes when generating cutter paths for a flat-end cutter. This

conclusion is amved at due to the point spacing required to limit the gouging by the

tool. Hence further research is required if a point-based scheme is to be effectively

employed in the generation of cutter paths for flat-end cutters.

2.2 Methods Employing the Offset Surface

In this section we review some of the published methods that use the offset surface to

generate cutter paths. Note that mostly an approximation of the offset surface. oapp, is

used as shown in Figure 2.8.
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[Gao et al 1989] use a bicubic parametric patch to approximate the offset to another

bicubic parametric patch. To do so, 16 offset data points (OOPs) are generated using

the vector product of the partial derivatives at 16 points on the surface patch; these

points are spaced at regular parametric intervals. The control polygon that defines

oapp is determined by lining up parametrically sampled points on the patch, called

approximate offset points (AOPs), to the OOPs. The same parametric intervals used

to generate the OOPs are also used to generate the AOPs and then the respective

AOPs and OOPs are aligned. However this method cannot guarantee a smooth

surface and may lead to ripples. Figure 2.7a shows a single planar Bezier curve and

its offset as approximated by another Bezier curve using the method described by

[Gao et al 1989]. At the far left of the offset curve, the blue curve, the strict

parameterisation has resulted in an inappropriate start tangent vector.

ODPs are generated
from parametrically
regular points on the
original surface

/

Automatically gen,ee rEra~ted!..-_--~
control polygon .>:

->../
//

AOPs genera ted with identical ./
parametri c interva ls are lined ,,//
up with ODPs / '//

Figure 2.7a: Restricti ve parameterisation of offset curve leading to a ripple

[Chen and Ravani 1987] suggest a more sophisticated method which generates a

number of OOPs from the surface patch and parametrically corresponding AOPs on

0app. The number of points used and their parametric spacing are left to the user to

determine. Then oapp is fitted using a least-squares fitting technique. Next, the AOPs

are adjusted by finding new parameter values such that they are closer to the OOPs
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using a Newton-Raphson based search, Figure 2.8 illustrates the selection of a new

AOP. This type of parameter correction technique used for surface fitting is further

detailed in [Hoschek and Lasser 1993].

Approximate Offset Patch - 0
aDD

NewAOP

Surface Patch

Figure 2.8: Parameter correction of AOP

A method for contouring is given to generate the CL points. Neither [Gao et al1989]

nor [Chen and Ravani 1987] give an error analysis of the offset surface approximation

and hence a tolerance for the generated cutter paths cannot be determined.

[Kuragno 1992] approximates the offset surface with a rectangular grid. To define the

part surface the author uses a rational bicubic parametric patch that was investigated

by [Hosaka and Kimura 1980] and allows patches to be joined with tangent plane

continuity. To generate the CL points a number of ODPs are generated along

isoparametric lines and hence the resulting set of points has a rectangular topology.

Neighbouring ODPs are joined with line segments corresponding to the grid-like

structure and intersecting these line segments with a drive plane generates the cutter

paths. Although the errors generated by the step-forward and pass-interval distances

are examined, the errors generated by the grid approximation of the offset surface are

not.
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[Chen et al 1993] formulate the equation of the intersection curve between the offset

surface of a parametric patch and the drive plane and then linearly approximate it in

parametric space. Given the implicit equation of the plane, the equation for the

intersection curve will be of the form:

Ax(u,v) + By(u,v) + Cz(u,v) + D =0 (2.1)

This defines a planar curve which is then linearly approximated in parameter space,

Figure 2.9 shows an example of a linearly approximated parameter curve in

parametric space.

v

-+-.....:...--:...--'...;....-...l.----I~ U

Figure 2.9: A planar surface curve linearly approximated in parametric space

This linear approximation defines a curve lying on the offset surface that is not planar.

However the linear approximation is performed such that the deviation between this

curve and the planar offset curve remains within tolerance. The vertices of the linear

approximation are then used to generate the CL points of the cutter path. The set of

piecewise linear curves defined by these CL points are then sorted and appropriate

curves linked to form the cutter paths. Loops and gaps are easily detected and

removed since the curves are planar. Figure 2.10 illustrates the method used to do

this.
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Figure 2.10: Illustration of method used to cope with loops and gaps

[Chen et al 1993]'s method seems generally sound and robust but will fail when the

vector product of the partial derivatives is zero (e.g. at a cusp) as will the other

methods that use ODPs. Also there is no suggested method for dealing with the

boundary of a part which will generally lead to surplus stock being left as shown in

Figure 2.11.

Surplus Stock

Figure 2.11: Result of cutter paths not being generated at boundary

[Tang et al 1995] solve the boundary problem by offsetting the surface and its

boundary separately. To offset the boundary curve of a surface they first derive the

guard surface of a point P, grd(P), that is the surface which the CL point of a tool

must move along to machine P. This surface is the inverted tool that is defined as the

image of the tool mirrored against a plane orthogonal to the tool axis. The concept of

the inverted tool lies at the heart of the Inverse Offset Method, the focus of this thesis.

A proof that the inverted tool is equivalent to grd(P) is given by [Kishinami et al

1987] and is reproduced later in Chapter 3.



The offset surface of a curve C is then defined as the envelope of the sweep of grd(P)

along C, Figure 2.12 illustrates this. However, it is difficult to generate points on the

envelope using this definition and hence the authors suggest an alternative but

equivalent definition to the guard surface. The alternative definition, E(C), is given

by intersecting the inverse tool with the plane orthogonal to the curve at each point on

C. Hence the offset surface of C is defined by a sequence of curves as illustrated in

Figure 2.13. The end points of C are dealt with separately, the offsets of these are

defined by grd(C(O)) and grd(C( 1)).

Figure 2.12: Sweep of grd(P) along C

Figure 2.13: The alternative definition, E(C)

[Tang et af 1995] generate the cutter paths in a similar fashion to [Chen et al 1993]

and use a Newton-Raphson based technique to find parameter values on the offset to

give a planar curve. The algorithm should produce good results and is applicable to
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all cutter shapes. However the algorithm that finds the appropriate parameter values

has to be run on both the offset of the current patch and on the four offsets of the

boundary curves, a computationally expensive process.

[Kim and Kim 1995] use a bicubic Coons patch to define oapp with respect to another

bicubic Coons patch. Since the position and partial derivatives of its comer points

define a Coons patch, appropriate data for the comer points of oapp are derived.

To generate the CL data, the authors use the parametric definition of the approximate

offset surface. However, this does not solve many of the key problems associated

with parameter based cutter paths, for example pass interval control. Also the authors

suggest that to remove the problem of self-interference, cutters with radius small

enough to fit into all areas of the surface should be used. Hence if a surface contains

fillets with greater curvature than the cutter, then manual intervention is required to

ensure that the surface is not gouged.

These methods do not give tolerances for the approximation of the offset surface that

are essential when generating cutter paths. With appropriate error bounds these

methods may prove useful.

The methods that generate points that lie on the exact offset surface rely on iterative

root finding algorithms to find appropriate parameter values to generate the CL

points. These algorithms lead to the methods being computationally expensive. Also

all the methods presented in this section rely on the vector product of the partial

derivatives being non-zero, which is not guaranteed.

2.3 Methods Employing CC Data

This section is essentially divided into two parts. The first part examines a selection

of papers that use CC data to generate the cutter paths whilst the second part is

concerned with the 10M, which is the focus of this thesis.
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[Haapaniemi et al 1986] uses Gregory patches to describe the part surface. Gregory

patches are modified bicubic Bezier patches similar to those used by [Kuragno 1992].

The CL points are calculated using the CC data from the isoparametric lines lying on

the surface as illustrated in Figure 2.15.
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Figure 2.15: CL points generated directly from the CC data

The gouging of neighbouring patches is avoided by removing the offending points

and inserting new CL points in a similar manner to [Choi and Jun 1989], however this

leads to the same side-step problem as the generated cutter paths are non-planar. A

problem highlighted by the authors is that, unless extra surfaces are defined at vertical

regions, fouling will occur. Also there are no means given by which to calculate the

error resulting from the step-forward or pass interval distance.

[Loney and Ozsoy 1987] generate cutter paths for bicubic parametric patches from

CC data along isoparametric curves. An appropriate pass interval is calculated by

locally approximating the surface perpendicular to the pass direction by the osculating

circle, a method commonly employed in the literature. A similar approximation is

commonly used to determine the step forward as well, however Loney and Ozsoy

calculate the step forward based on the actual deviation of the isoparametric curve

from the chord. Also included are the details of an algorithm for generating roughing
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paths. However the authors do not consider the gouging caused to patches other than

the one currently being machined, nor do they consider the self-interference problem.

[Choi et al 1988] present an algorithm to generate cutter paths for analytic compound

surfaces, i.e. an assembly of surfaces each of which is represented by an equation of

the form:

g(x, y, z)=O. (2.2)

In particular they present the implementation of a constructive solid geometry (CSG)

scheme that defines surfaces by Boolean operations on a selection of primitive shapes.

The algorithm also accommodates the definition of a parametric base surface. They

define two terms, CC-Cartesian and CL-Cartesian. Algorithms that use planar strings

of CC points are CC-Cartesian and algorithms that generate planar cutter paths are

CL-Cartesian. The algorithm described by [Choi et a11988] is CC-Cartesian.

Both step forward and pass interval values are calculated based on local

approximation of the surface by the osculating circle. However the method suffers

from the gouge avoidance algorithm leading to the side-step problem which is also a

problem with the follow on paper by the same leading author, [Choi and Jun 1989].

[Kim and Ko 1994] employ an original method in which bicubic Bezier surfaces are

first subdivided until the 'thickness' of each patch is within some tolerance. The

thickness of the patch is approximated using the control polyhedron and is measured

along the vector given by:

(V33 - V00) x (V30 - V03 )N =~-=-=--_"":"--'----'-:-:-

I/(V33 - VOO) X (V30 - V03 )1I

Figure 2.16 shows the vectors V33-Voo and V30-V03 represented by the red lines, the

normal to these vectors represented by the green arrow, and the measured thickness of

the control polyhedron.
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Figure 2.16: Thickness of a given control polyhedron

Once each patch's thickness is within tolerance it is then approximated by a bilinear

tile. The error introduced by this approximation is restricted to being less than the

thickness of the control polygon since the Bezier surface lies within the convex hull

defined by the polygon. Intersecting the boundaries of these tiles with the drive plane

generates the CC points. The author then suggests that this piecewise linear curve be

compared against the 'true intersection curve'. Intersecting the control polygon with

the drive plane generates the control vertices of this curve. However this process does

not generate the true intersection curve and hence will create inaccurate error

measures.

[Huang and Oliver 1994] use a CC-Cartesian algorithm for generating cutter paths for

a parametric surface. They suggest the tool path is projected onto the surface to detect

regions where there is too much gouging or undercut. This measure is used to alter

the step forward appropriately. However such an operation is computationally

expensive and will result in lengthy path generation times. The method used for

gouge avoidance also suffers from the side-step problem.

[Hermann 1988] suggests two algorithms, the first is similar to [Haapaniemi et al

1986] except that the CC points are generated from the triangulation of the surface

rather than the surface itself. The second algorithm is more interesting with the cutter

contact points being generated along isoparametric curves. If two of these curves

come within a prescribed distance of each other, the tool can be moved along at high
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speed until the paths are again at sufficient separation. Conversely, if the distance

between the curves is too large then an extra path is introduced. [Elber and Cohen

1994] later investigate this adaptive machining along isoparametric lines. However

their method starts with sufficient isoparametric lines to machine the entire surface to

within tolerance and then superfluous portions are removed.

[Lin and Liu 1998] address the generation of both rough and finish cuts from a large

set of data points lying in parallel planes. The points are pre-processed for indexing

purposes and to obtain certain geometric data. The algorithm essentially overlays a

regular grid of points onto the measured data points. The height at each grid point can

be quickly computed using the geometric data found in the pre-processing stage.

To create the cutter paths a CL point is generated above each point in the regular grid.

Suppose we wish to calculate the height of the CL point in the mth column and nth

row as shown in Figure 2.17.

==r-=I--1,-1" '~,:-1
-- , " ' I I

I ii",I I "
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. I . I. I I

I , j_

I<~:, I
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Figure 2.17: Points atwhich the height is pre-calculated

Let z'(m,n) be the height of the offset point in the mth column and nth row of the grid,

z(iJ) be the part height at the i th column and j th row and R be the radius of the cutter.

Then the height of the CL point is given by:

z'(m,n)= .' .'!lax . {z(i,j)+h(i,j,m,n,R)}.
(I.J ):z(I,J) III CC<regton
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where:

h(i,j,m,n,R) =-V R2
- L2 (2.4)

where L is the Euclidean distance between the cutter centre and the mesh point in the

x-y plane. To save processing time h(i,j,m,n,R) is pre-calculated for every mesh

point combination in a quarter of the cutter region. Only a quarter of the region needs

pre-calculating because:

h(i,j,i + istep,j + jstep, R) =h(i,j,i - istep,j + jstep, R)

= h(i,j,i + istep,j - jstep, R)

= hii.], i - istep,j - jstep, R)

(2.5)

The problem with this method is that only cutter paths lying along a row or column of

the mesh can be generated. Although an analysis of the error of this algorithm is not

given, the author does suggest an algorithm that attempts to ensure the step forward

does not lead to excessive undercut or gouging. The algorithm generates a CL point

between the two current CL points and then checks the deviation of the new path from

the original path. If it is not within tolerance then the new CL point is included and

the process repeated on the new section of cutter path.

[Lin and Lin 1999] extend the work presented in [Lin and Liu 1998] by including a

smoothing algorithm to cope with noisy data such as that from contact or non-contact

CMMs.

The problem underlying nearly all of the methods based on CC data is the fact that

non-planar cutter paths with loops, large gaps and self-interference portions may be

generated. The detection of such regions is difficult and the fixing of them generally

leads to the side-step problem. Also, like the offset surface methods the algorithm

will fail when the vector product of the partial derivatives is zero. The method of [Lin

and Liu 1998] does not suffer from these flaws and in strategy is similar to the Inverse

Offset Method which we now consider.
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The 10M is a method that generates cutter paths for 3-axis machining and is first

presented in [Kishinami et al 1987] which includes a proof applicable to an arbitrarily

shaped tool machining a single point in space. The surface upon which the tool's

datum must move to machine the point is the tool shape reflected in the x, y and z

directions. By observing that tool shapes are symmetrical about the tool axis, the

inverse tool shape becomes the offset surface of the space point; key definitions and

the details of this proof are reproduced in Chapter 3. Figure 2.18 shows the inverted

tool shape for a filleted-end cutter.

Inverted tool

Figure 2.18: The inverted tool of a filleted-end cutter

The 10M is the application of this to a surface. However it is difficult to generate CL

points from the surface defined by the envelope of the inverted tool as it is swept

along the surface. This is because the analytical determination of each CL point on

the envelope includes solving an integral equation, hence we discretise the surface to

simplify the computation.

To store the CL points a 2D array is prepared, the elements of which have pre-defined

x and y co-ordinates. The z-height of each is then determined using the 10M. The

authors suggest a quadtree structure should be used to store the surface points to

improve performance.

[Takeuchi et at 1989] describes a CAD/CAM system called P-CAPS for I110uld

manufacture incorporating the 10M. For a small mould making company an
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expensive and advanced CAD/CAM package would not be cost effective whereas this

system would. Once the part has been defined, using either solid or surface geometry,

it is converted into a spatial array model, Figure 2.19 illustrates a few elements from

an example of such a model. This spatial array can then be operated on with specific

use of the 10M for the generation of NC data. Also presented is the application of the

rOM for generating fillets and cavity-core moulds.

z

y

Figure 2.19: Spatial array representation of surface

[Suzuki et at 1991] then apply parallel processing to the 10M to enhance its

performance. A detailed description of the optimisations provided by parallel

processing are beyond the scope of this research, however it is made clear that the

rOM naturally lends itself to parallel processing.

[Saito and Takahashi 1991] extend the G-buffer method to 3-axis NC machining. The

G-buffer method was originally intended for rendering surfaces. A G-buffer is a 2D

array, each 'pixel' of which contains various geometric information. This information

can then be used to efficiently perform various rendering techniques. They point out

that the application of this method to generating tool offsets is equivalent to the 10M.

The method is then applied to tool path verification, tool load evaluation, collision

avoidance and identifying undercut regions. It is noted by [Saito and Takahashi 1991]

that an error analysis of the 10M is required to generate finishes to within final

product tolerances.
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An application to rough cutting is also mentioned, but this amounts to increasing the

cutter radius to define a virtual cutter. No mention is given to the machining of

constant z-levels or to the optimisation of cutter path topology, important factors in

rough machining [Li et al. 1994].

The greatest advantage of the method, as stated by the author, is its simplicity. The

cutter path generation and simulation for a given part are based on the same

methodology and rely on the same underlying definition. This leads to software

packages that are more efficient.

Lying at the heart of the CAM system proposed in [Choi et a11994] is the concept of

the soft master model. The main requirement of the data structure for the soft master

model is versatility as it is subjected to a variety of operations. It is suggested that a

discrete representation scheme is used similar to that described by [Takeuchi et al

1989]. Again for the purposes of cutter path generation, the 10M is suggested due to

its robustness. The authors also identify that little is understood about the

approximation errors.

In summary the 10M is attractive due to the robustness it offers in generating gouge

free planar/non-planar cutter paths in a direct and simple manner. Hence in this thesis

we investigate the effectiveness of the 10M as a point-based algorithm for generating

cutter paths. In Chapter 3 we provide an error analysis and compare the quality of a

physically machined part produced by the 10M against that produced by Powermill.
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Chapter 3

Evaluation of the 10M

The aim of this chapter is to demonstrate that it is possible to generate good quality

cutter paths directly from a point definition of a part. It is required that the part

should be machined to within tolerance and have a good surface finish.

The algorithm used is a slight modification of the Inverse Offset Method proposed by

[Kishinami et al 1987] which was introduced in section 2.3. Their proof that this

method gives an approximation of the tool offset is given in sub-section 3.1.1. The

10M has a number of advantageous properties that are listed in sub-section 3.1.2. An

error analysis of the algorithm is given in sub-section 3.1.3. Note that this analysis

assumes that the underlying part shape is tangent continuous. An error analysis

applicable to regions containing a cliff is given in Chapter 4.

To demonstrate the effectiveness of the 10M its performance is compared against that

of a commercially available software package, Powermill, the details of which can be

found in section 3.2. Two shoes are machined using the cutter paths generated by

each of these algorithms. In section 3.3 these shoes are measured on a CMM and

compared to the original shoe last definition. Some of the discrepancies are found to

lie slightly outside the machining tolerance on both machined parts. However in the

case of the 10M shoe, it is shown that they are consistent with the error of the

measunng process.

In section 3.4 we compare the surface finish of the two shoes. The results indicate

that the 10M creates a slightly better surface finish than Powermill for equal pass

interval distances. In section 3.5 we compare the generation periods of the two

algorithms and the 10M is found to take significantly longer than Powermill to

generate cutter paths. Finally, the results of this chapter are discussed.
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3.1 The 10M

3.1.1 Assumptions, Proof and Algorithm Description

The research described in this chapter is based on the following assumptions:

• the part is defined by points,

• a denser definition is available if required to satisfy machining tolerances,

• the underlying part shape is tangent continuous and

• the minimum radius of curvature for the part is known.

We re-create here the proof given in [Kishinami et a11987]. First it is proved that the

tool offset of a single point in space is the tool shape reflected in the x,y and z axes.

Then by observing that machine tools are symmetric about the tool axis, we deduce

that the inverted tool gives the offset surface of the point. We then apply this theory

to a discrete representation of a part to approximate the tool offset surface and

generate the cutter paths using a 2-dimensional (2D) array called an offset grid. The

grid points before being offset and the surface points are shown in Figure 3.1.

. ". ..

............. ", . Surface Points

',' ,-,",' .
...: .>'

...... ..'

", '. ..
··::)/}}Y:i?({/:.Y/:.:.::::.: .. :-::> .

Offset grid points

Figure 3.1: Offset grid and surface points

Suppose we wish to machine a space point, Ow, located at the origin of the workpiece

co-ordinate system, Ow-X-Y-Z, using a tool with shape S(u,v) where UO<U<Ul and

VO<V<Vl. Let S(u,v) be defined in the tool co-ordinate system, Oj-x-y-z, and let the
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workpiece and tool co-ordinate system have parallel axes. Let the origin of the tool

co-ordinate system, Or, be the reference point of S(u,v). Then as the tool moves while

keeping in constant contact with Ow, the following relation is obtained between the

two co-ordinate systems:

x 1 0 0 -Sx(u,v) X
y 0 1 0 -Sy(u,v) Y (3.1)=z 0 0 1 -Sz(u,v) Z

1 0 0 0 1 1

where (Sx(u,v), Sy(u,v), Sz{u,v)) is the vector from Ow to Ot. Figure 3.2 shows S(u,v),

the tool shape, and S'(u,v), the locus of Ot as it moves around Ow for a fixed value of

z. The tool has a distinctive shape to highlight the symmetry of the system. The

surface on which this path lies is defined in the workpiece co-ordinate system by:

S'(U,v)= (-Sx(u,v), -Sy(u,v), -Sz(u,v)) (3.2)

S'(u, v)

S(u,V)

- - - . - -..-x
S (u, v)

y

Figure 3.2: Tool path that tool with shape S must take to machine Ow for fixed z

We now consider the symmetry of the tool around the tool-axis. If the tool-axis lies

along the z-axis of the tool co-ordinate system then:

(Sx(u,v), Sy(U,v), Sz(u,v)) = (-Sx(u,v), -Sy(u,v), Sz(u,v)),

where UO<U<Ul and VO<V<Vl·
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This gives the tool offset surface of Ow as:

S'(U,v) = (Sx(U,V), Sy(U,v), -Sz(U,v)). (3.4)

That is the tool offset surface is the same shape as the inverted tool as shown in

Figure 3.3.

Cutter centre

- - Tool offset surface

Interference region

Figure 3.3: The inverted tool

The exact tool offset is the envelope of the volume generated by moving the inverted

tool along the desired part surface. However it is in general difficult to generate

cutter centre points from the definition of the exact envelope and hence we operate on

a discrete definition of the part to generate the cutter centre points.

We now describe the method by which the cutter paths are generated using the

inverted tool. By placing the cutter centre point of the inverted tool at each point in

the definition of the surface we generate an approximation of the tool offset surface as

shown in Figure 3.4.

Figure 3.4: Approximation of tool offset surface
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A 2D array of points, called an offset grid, is prepared which is used to store the cutter

path. Through each 2D point in the CC-region, as defined in section 2.1, we construct

a grid line running parallel to the tool-axis. To generate the cutter path points we

intersect these grid lines with each inverted tool. The highest intersection point gives

the cutter path point for each grid line. Figure 3.5 illustrates this procedure.

Generated cutter
/ path points

Figure 3.5: Generation of tool offset points

Suppose we wish to machine using a tool with general description as shown in Figure

3.6, where Zo is the height of the cutter centre point, R, is the radius of the flat part of

the cutter, R2 is the fillet radius, eis the angle of slope between the fillet and the shaft

of the tool and d is the diameter of the tool. Note that this definition requires that the

tool have a flat bottom, which is a simplification of the cutter described in Chapter 1.

Nevertheless this definition still allows the description of the most commonly used

cutter types in industry.

z~
o

d

e

Figure 3.6: Parameters of inverted tool



The intersection points as shown in Figure 3.5 are given by the formulae:

z = z, +~R; - (r - R1)2

( r - R - ~ case)z = Z + ~ sine- ~_...:....l_-=---_....L
o tan 8

d
R1 + R; cos 8 < r < -.

2

(3.5)

(3.6)

(3.7)

where r is the Euclidean distance between the CC point and the grid line.

3.1.2 Advantageous Properties of the 10M

In addition to the advantages point-based systems have over surface-based systems as

described in sub-section 1.2.3, the 10M has some inherent advantages:

• The tool offset surface for a tool of any shape can be generated using the method

described in sub-section 3.1.1. The most common cutter types used in industry

are catered for using relationships (3.5), (3.6) and (3.7). However appropriate

error analysis is required to ensure machining is within tolerance; we give the

error analysis for the case of a ball-nosed cutter in sub-section 3.1.3. Also note

that [Li and Jerard 1994] highlight the limitations of this method applied to a flat-

end cutter.

• The tool offset surface generated by the method is free of gaps and loops [Choi et

al 1994]. For example the 10M will not cause the gouging of an overhanging

region, nor will it gouge a region that has radius of curvature less than the radius

of the cutter. Figure 3.7 shows the result of using the 10M on examples of

surfaces with these characteristics. This particular feature is highly beneficial

since the detection and handling of such regions is an involved task, see for

example [Chen and Ravani 1987].
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Figure 3.7: Offset generated by 10M for problematic areas

The topology of the cutter path does not require special attention at the edge of the

part. The whole part will be machined provided the offset grid extends beyond

the boundary of the desired part by the cutter radius. Figure 3.8 shows the

unmachined region that is left if the offset grid does not extend beyond the part

boundary. Note that the cutting plane defines the default surface to cut when

beyond the part boundary, for a full description of the cutting plane/surface see

Chapter 4.

•••. ....--------­
~~ Cutter path points

•
• • Surface points

Cuts resultin g from extended
cutter path points

o
Cutter path point s extended ---
past part edge ~ 0

o

Unmachined region if cutte~

path points not extended

Cut ting plane~- •

•~-------- Region inaccessible to current tool shape

•

Figure 3.8: Unmachined region due to cutter path not extending past part boundary

Surfaces defined by sets of points with arbitrary topology can be machined as

readily as ones with a rectangular topology. Hence cutter paths can be generated for

surfaces defined by nests of sections, triangulations and even scattered data. The only
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requirement being that the data is of sufficient density to satisfy the machining

tolerances.

3.1.3 Error Analysis

A minimum density of surface points is required to machine a part to some specified

tolerance. In this sub-section we analyse the error of the 10M for a ball-nosed cutter

in order to find the tolerance of a given set of point data. We then apply this analysis

to a specific example, the shoe last, to determine the point density required by the

10M.

When machining there are a number of stages where error is introduced. Two of

them are addressed in this sub-section, namely geometric machining error and

algorithmic error. The milling machine can use linear, circular or spline interpolation

to machine between points in the cutter path. The geometric machining error is the

error introduced by this interpolation. We analyse the error caused by the machine

linearly interpolating the points as this is the most commonly used method of

interpolation. The total machining error would also include the error associated with

the physical machining of the part but we do not consider it here.

Algorithmic error is the error caused by the offsetting algorithm not generating points

that lie on the exact tool offset surface. The numerical error due to rounding is not

considered; however with respect to the data employed in this research the error due

to rounding will be less than O.OOOlmm. After analysing the geometric machining

error we consider the algorithmic error due to the 10M generating cutter paths for a

ball-nosed cutter from a set of points. Given 3 points on which the cutter sits either 2

or 3 points will determine the maximum error depending on the arrangement of the

points. We define r, as the radius of the interpolating circle, that is the circle lying on

the surface of the tool and passing through those points that lie on the tool whether it

be 2 or 3, the example shown in Figure 3.9 represents the case for 3 points. The first

case occurs when rt is greater than the radius of the cutter; in this case just two of the
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three points determine the error. The second case, as shown in Figure 3.9, occurs

when r, is smaller than the radius of the cutter.

Cutter

Interpolating eire

Surface points

Figure 3.9: Interpolating circle has radius smaller than radius of cutter

In the following analysis the surface is locally approximated by a sphere with radius

Ts- We approximate the radius using the method described by [Todd and McLeod

1986] who derive the radius by using an approximation of the Dupin indicatrix at the

point in question using 8 nearby points. We also assume the surface is machinable

everywhere by a ball-nosed cutter of radius rc, this implies rc<rs.

We assume the surface is tangent plane continuous and hence for any given set of

surface points, the maximum the surface can deviate from these points is bounded by

the maximum deviation of the approximating sphere. We also assume the surface

points have maximum separation 2s and the cutter path points have step forward

interval 2e.

Note that in calculating the geometric machining error the analysis is based on the 3D

distance between the cutter path points. We simplify the problem by using the 20

distance between the cutter path points to approximate the 3D distance.
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Geometric Machining Error

Suppose an offsetting technique has algorithmic error, ea. We analyse the case where

the surface is convex and the CL points have maximum error below the tool offset

surface as shown in Figure 3.10.

____2_c_ .. _ ~

Figure 3.10: Geometric machining error

Figure 3.10 shows the surface, the offset and its error bound. Also shown is the linear

interpolation of the milling machine. The gouge that can be caused by linear

interpolation is given by:

e = r + r - e - ~(r + r - e )2 - c2
mg sea sea (3.8)

This relation gives the maximum gouging of the surface; the case for maximum

undercut is given by:

e =r - r + e - ~(r - r + e )2 - C
2

mu sea sea
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Note: there can be no undercutting with respect to algorithmic error due to the nature

of the 10M and the assumption that rs > r; Hence the overall maximum undercut can

be calculated by substituting e, =0 into equation (3.9).

Algorithmic Error, Case 1: r,» rc

If rt is greater than rc then only two of the three points can touch the sphere in any

given configuration. The maximum possible separation of these two points is 2s and

hence the maximum gouging occurs when the cutter centre lies directly between the

two points and the surface is convex, as shown in Figure 3.11. The gouging is

indicated by elO2 and given by:

(3.10)

Figure 3.11: Maximum algorithmic error between two points
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Algorithmic Error, Case 2: rt < rc

Given the three surface points, we position the ball-nosed cutter such that the

maximum gouging is caused. This occurs when the cutter touches all three points as

depicted in Figure 3.9.

The circle interpolating the three points forms a cross-section of the ball-nosed cutter.

An upper bound for the gouging is calculated by finding the distance from the cross-

section, away from the centre of the cutter, to the edge of the cutter. However by

examining a case where this bound leads to exaggerated results, we find a more

appropriate measure of the error.

Let a and b be vectors joining the three points as shown in Figure 3.12. The radius of

the circle passing through the three points is given by [Faux and Pratt 1985] as:

lallblla-blr. =.:......:.:......;:....._.....:.

t 21a 1\ bl

Figure 3.12: Vectors a and b used to find the radius of the circle

The upper bound for the error can be seen in Figure 3.13 and is given by:

44

(3.11)

(3.12)



Plane containg
interpolating circle

Cutter

elO3

Figure 3.13: Bound of the error

However there is a problem with this measure as the triangle defined by the three

points tends away from the centre of the interpolating circle, Figure 3.14 gives an

illustration of such an occurrence. The gouge in the region of the triangle is much

smaller than that caused at the centre of the cross-section.

Figure 3.14: Error measured at the centre of the cross-section gives pessimistic results

To find the appropriate error we calculate the greatest gouge caused by the cutter

within the boundary of the triangle. At this stage [Drysdale and Jerard 1987] choose

to measure the maximum gouge normal to the cutter, see Figure 3.15. However, since

it is the triangle that represents the surface and we wish to measure the gouge normal

to the surface, an alternative method is presented.



Measure normal
to cutter

Measure normal
to triangle

Figure 3.15: Gouge measure normal to the cutter

If the centre of the circular cross-section, C, does not lie within the triangle, ~, then

the greatest gouge will be caused at the point on ~ closest to C, we call this point M.

Figure 3.16 shows the plane containing the circular cross-section of radius rt and the

point M on A.

Figure 3.16 : Point M on the triangle ~

Figure 3.17 shows the cutter from the side, with gouge elO3 caused in the region of ~.

The modified gouge depth is given by:

(3.13)

Note that (3.13) is consistent with (3.12) when h=O, i.e. when the projection of the

centre of the cutter along the normal to the triangle lies within ~.
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C r\~
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Figure 3.17: Gouge measured normal to the triangle.

Example: Application of error analysis to the shoe last

We now apply equations (3.8), (3.9), (3.10) and (3.13) to the example of the shoe last.

Clarks International supplied the shoe last definition and Figure (1.2) shows the

surface model defining it. Sampling a grid of 337x211 points at regular parametric

intervals from the surface definition generated the point definition as shown Figure

3.18.

Figure 3.18: The point definition of the shoe last

Note that the point definition shown in Figure (1.7) was generated using an

interpolatory subdivision scheme on a characterising set of points. We use points
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sampled directly from the surface as it is the quality of the machining algorithm we

wish to test, not the subdivision scheme.

To bound the algorithmic error we calculate the maximum gouging of a 5mm radius

ball-nosed cutter into the point definition. We locally approximate the part by a

sphere of radius 12mm, this is the minimum radius of curvature for the surface and

hence gives an upper bound for the error. This value was obtained using the

algorithm described by [Todd and McLeod 1986] for estimating principal curvatures.

The error calculated by (3.10) and (3.13) is the maximum a sphere of given radius can

gouge the triangulation of the points. Hence the total algorithmic error is given by

summing the error due to the cutter and that due to the sphere approximating the

surface. The algorithm was implemented using C++ and run on the point definition.

It was found that all combinations of three neighbouring points defined circles with

radius less than that of the cutter, hence we use (3.13) to find the error due to a ball-

nosed cutter of radius 5mm gouging the triangulation of the surface:

elO3=0.0713 mm.

Error due to a sphere of radius 12mm protruding between the surface triangulation:

Hence the total algorithmic error is:

elO=0.1006 mm.

Using (3.8) and setting c=lmm we calculate the geometric machining error:

e =0.0074 mm.mg

Which gives total maximum gouge:

e 1=0.1080 mm.tota
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Although this total error is not below O.lmm only a small region of the shoe last has

radius of curvature 12mm. The minimum radius of curvature on most of the shoe last

is greater than 16mm, which leads to a total error below O.lmm.

The maximum undercut is given by equation (3.9):

emu=O.0455 mm.

Hence we use this point definition of the shoe last to achieve an overall machining

tolerance of O.lmm.

3.2 Powermill

Powermill is a CAM software package developed by Delcam Ltd. Powermill is used

throughout this thesis as the commercial package against which the performances of

the implemented algorithms are compared. Powermill operates on triangulations of

surfaces hence Duct 5.1, a CAD package also by Delcam Ltd, was used to triangulate

the bi-sextic Bezier patch surface model that defines the shoe last. Associated with

this triangulation is a tolerance bounding the maximum deviation of the triangles from

the surface. After discussions with Delcam it was decided to allow half the overall

machining tolerance to be used by the triangulation and half in the generation of the

cutter paths.

Although Powermill has a number of alternative finishing patterns, planar cutter paths

are used as they are the simplest to implement and allow an accurate comparison of

the two parts.

3.3 CMM Results

The results presented in this section were obtained by measuring the two machined

shoes using a CMM. The CMM uses a spherical probe of non-zero radius to contact

the surface, a l mm radius probe was used for the research presented here. When the
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probe is pushed off-centre an electrical contact is broken and the co-ordinates stored.

The tolerances of various set-ups on a CMM were investigated by [Miguel 1996] and

for similar parameter values (e.g. stem length, probe radius, 2D/3D linear movement)

the tolerances were found to be below 0.01 mm, which is typical for most CMMs.

A contouring algorithm was used to sample points automatically on the shoe. The

software samples points at some user-defined separation between user-defined start

and end points on the shoe. These points must lie in a horizontal plane, i.e. a plane

parallel to the XY plane in the CMM co-ordinate system. The shoe was positioned

such that it had a similar orientation in the CMM co-ordinate system as in the CNC

co-ordinate system. The sampling interval used in each profile was set at 2mm.

Profiles were taken in horizontal planes at 5mm intervals.

The problem with the software is that it gives an inaccurate contact point and not the

actual contact point in the output data file. The probe operates in a horizontal plane

and approximates the contact point in this plane. As can be seen in Figure 3.19 there

will generally be a discrepancy between the approximated contact point and the actual

contact point. The maximum error this discrepancy can lead to is rp, where rp is the

radius of the probe.

Sampling plane

Probe movement vector

Approximated
contact point

Actual contact
point

Figure 3.19: Approximated contact point with the surface
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To overcome this problem we generate the probe centre. We know this point lies rp

away from the surface being measured and hence when comparing the measured data

against the original definition the error is given by:

error(sampled points) =Ippc - Pnpl- rp

where Ppc is the probe centre and Pnp is the point on the surface definition nearest Ppc-

However, the algorithm does not include an option to output the probe centre and

hence we must use a second piece of software to determine Ppc-

We now investigate the stages in the measuring process where error could be

introduced, Figure 3.20 highlights these different stages.

Sampling point data

Approximation of
probe centre

Alignment of the
sampled data and
shoe last definition
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Figure 3.20: Stages at which error can be introduced

Sampling Point Data

The measuring accuracy of the CMM has already been discussed and has error below

O.Olmm.

Approximation of Probe Centre

The CMM outputs the probe centre to the computer terminal, however the software

used to automatically generate the profile data outputs an approximate contact point.

As discussed abovejhis process must then be reversed to regenerate the probe centre.!/l''' ",F ', ,

,~ >'
\\~ ,~
\(.. ~~~~~



This involves degradation in the quality of the probe centre data. A bound on the

error that this process may introduce is derived in Appendix 1 and is given by:

error(approximation of probe centre) ~ 2.error(approximation of contact point)

In Appendix 1 the error introduced by approximating the contact point is estimated at

less than O.03mm and hence the bound on the error introduced by approximating the

probe centre is estimated at less than O.06mm.

Note that the software used to regenerate the probe centre from the approximated

contact points fits a spline. This software requires that boundary data is inputted

manually via a graphical interface which may lead to large errors since the data will

not be precise. Since the software splines the data it is assumed that the error will be

localised to the boundaries.

Alignment of Data

To align the measured data to the shoe last co-ordinate system, the shoe last definition

is offset by the probe radius. The probe centre is then aligned to this offset surface

using a semi-automatic procedure within CopyCAD. a software package developed

by Delcam Ltd. The error resulting from this process is difficult to evaluate and in

future a datum will be machined in the workpiece which will remove this stage from

the process.

Measuring the Discrepancy

CopyCAD uses a nearest point algorithm to calculate the discrepancy between the

measured data and the surface definition but again it is difficult to evaluate the error

in this measurement. Discussions with Delcam suggest though, that this error will be

below O.OOlmm.
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The discrepancy plots are given in Figure 3.21a and Figure 3.21b. Each discrepancy

has had Irnm subtracted to account for the probe radius. The colours represent

different ranges, they are:

Blue

Green

Yellow

Red

discrepancy < O.lmm

0.1mm < discrepancy < 0.2mm

0.2mm < discrepancy < O.3mm

0.3mm < discrepancy

Each shoe has some relatively large discrepancies at the boundary points. These are

due to the software using the manually minimised boundary conditions. Also note

that on the third contour from the top a measurement is missing on both, this is due to

the CMM having difficulty locating the surface in this region.

The data measured from the Powennill shoe contains some non-boundary points with

discrepancies greater than 0.2mm, if the Powermill shoe is machined to within

tolerance this corresponds to a measurement error greater than O.lmm outside the

total machining tolerance. This would imply there is an alignment error of at least:

error(alignment) > 0.1- 0.01 - 0.06 - 0.001 =0.03mm

However it is not possible to determine whether these errors are due to the alignment

procedure, or to out of tolerance cutter paths.

All of the non-boundary points on the 10M shoe lie within tolerance or within the

next error band. This is consistent with a well-aligned model and the error analysis

performed earlier in this section.
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Figure 3.21a: Discrepancy plot of the sampled data from the Powermill shoe
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Figure 3.21 b: Discrepancy plot of the sampled data from the 10M shoe
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3.4 Stylus Results

The previous section gave confidence that the 10M generates cutter paths to within

the theoretical tolerances calculated. We now examine the surface finish produced by

the 10M and compare it to that of Powermill. The finishing patterns of both are

chosen as parallel planar paths of lmm separation. Taylor-Hobson stylus equipment

was used to sample points from the model. The equipment drags a stylus across the

surface and the vertical displacement of the stylus is measured by a laser and

recorded. The equipment can measure either a single profile (a planar cross-section)

of the surface or a nest of profiles to approximate an area of the surface. The height

of the surface is recorded at regularly spaced data points and the region is

approximated by the linear interpolation of these points.

Two approximately rectangular regions, 12mm x 12mm, were measured from each

shoe in relatively flat areas. The regions are required to be relatively flat and near

horizontal because the measurement range of the stylus equipment is quite restricted.

The number of data points that can be recorded by the equipment is fixed and hence

the size of the sampling region dictates the length of the sampling interval. A 12mm

x 12mm sampling region requires a sampling interval of 73 microns, which is

sufficient to measure cusp heights at Irnm intervals.

To analyse the roughness of the surface it is necessary to approximate a profile by

taking a planar cut through the linear interpolation of the data points. To get a fair

result six profiles are approximated from each region and analysed. In sub-section

304.1 we describe the numerical measure of roughness that is used. In sub-section

304.2 the results of the measuring are given.
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3.4.1 Description of Roughness Average, R,

Roughness average, Ra, is defined as the arithmetic mean of the departures of the

profile above and below the centre line along the sampling length. The centre line is

taken as the arithmetic mean of all the heights as illustrated in Figure 3.22.

Centre line

Sampling length.... - - ----------- •

- _. --
-----~._- -- ~

I I I I I I I I

Figure 3.22: Centre line of a profile

The calculation of the average height is illustrated in Figure 3.23 and given by:

_I~I+I~I+···Ra - .:...-..;..:.----.:.--:;;..:..--_--:......;..:.
n

(3.14)

Hence a smaller Ra indicates less departure from the centre line. Since the surface

topology is consistent for all four surfaces, i.e. a series of cusps, a smaller R, means a

smoother surface and hence is desirable.

Sampling length = n.d

II I

Figure 3.23: TIlustration of average height calculation

3.4.2 Results of Measuring with Stylus Equipment

The two regions that were sampled are shown in Figure 3.24. The regions are located

in relatively flat and near horizontal areas, as mentioned in section 3.4, this was a

requirement of the equipment.
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Figure 3.24: Sampled regions from each shoe

The 3D plots of each region are given in Figures 3.24a, 3.24b, 3.24c and 3.24d. Six

profiles are taken from each region to analyse and their plots can be found in

Appendix 2. Figure 3.26 shows the spacing at which the profiles were taken. To

analyse and display the data, software was used to remove the wavelengths greater

than 5mm. This value was one of a number of values available ranging from O.8mm

to 5mm. The largest was chosen to retain as much surface detail as possible.

It is difficult to compare the quality of the shoes visually using the 3D plots.

However it can be seen that the consistency of the cusps in Area 1 is better than that

of Area 2 for both shoes. This is reflected in the profile plots where each profile from

Area 1 has greater regularity with respect to the cusp shape than those in Area 2.

Also there appears to be a slight flat spot at the centre of Area 2 and this again is

reflected in the respective profiles. At the centre of Profile 3 on IOM-Area2 and right

of centre of Profile 4 on PM-Area2, it appears that the cutter has missed the surface.

It is difficult to be certain of the reason for this however the anomaly appears on both

shoes which may suggest that the cause is geometric in nature.
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Figure 3.25a: 10M - Area 1

Figure 3.25b: Powennill - Area 1

58



Figure 3.25c: 10M - Area 2

Figure 3.25d: Powermill - Area 2
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Profile 1

Profile 2

Profile 3 .

Profile 4

Profile 5

Profile 6

Figure 3.26: Spacing of profiles

[Loney and Ozsoy 1987] give a formula for calculating the pass interval, I, required

to machine a plane with cusps of height h. Re-arranging the formula gives:

(3.15)

where the radius of the cutter is r., Using the respective values for the two machined

shoes, re=5mm and 1=lmm:

h=25 microns

It can be seen from the profile plots that the profiles have average height, from valley

to peak, under 30 microns which corresponds quite closely to this theoretical value

and gives confidence in the results produced by the stylus equipment.

The R, value for each profile and the average R, for each set of profiles can be found

in Table 3.1. These Ra values indicate the 10M produces a slightly better finish than

Powermill in both regions.
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10M Powermill

Area 1 Area 2 Area 1 Area 2

Profile 1 7.76 7.07 7.84 9.40

Profile 2 7.49 7.08 7.71 7.54

Profile 3 7.48 7.2 8.34 7.45

Profile 4 7.58 6.39 8.59 7.88

Profile 5 7.44 6.41 8.21 6.43

Profile 6 6.82 6.35 8.60 7.13

Average 7.43 6.75 8.22 7.64

Table 3.1: Ra values from the sampled areas for each shoe

3.5 Timing Results

The time taken by each algorithm to generate the cutter paths, called the generation

period, are given in Table 3.2.

The times shown are the average of three measurements. The machining tolerance

used for both algorithms was O.lmm. The computer used to run both algorithms is a

PIn 500 MHz PC with 256 Mb of RAM.

Method

Powermill

10M

Time (sees)

11

1292

Table 3.2: Generation period of the two algorithms
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3.6 Discussion of Results

In this chapter we have provided an error analysis of the 10M. The implementation

of this algorithm and the subsequent measuring of the machined part confirmed the

accuracy of this error analysis. Also, the comparison of the surface finish of the 10M

shoe against that of the Powermill shoe demonstrates that the 10M produces

satisfactory finishes. Finally, it is highlighted in section 3.5 that the main problem

with the 10M is that it has an extensive generation period.

However before investigating this problem we need to address the generation of cutter

paths at the boundary of a part. The error analysis contained in this chapter assumes

the underlying shape is tangent continuous, but the boundary of a part will generally

contain a tangent discontinuity. Machining this region to within tolerance is the

subject of Chapter 4.
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Chapter 4

The Cliff Problem

In the last chapter we established a method for generating cutter paths directly from

points using the 10M. An error analysis was performed that allows the calculation of

the theoretical tolerances of the method. We verified the accuracy of this error

analysis by measuring a physically machined part. One of the assumptions made in

the error analysis was that the part should not contain a tangent discontinuity.

However, many parts will contain a cliff-edge around the boundary of the part which

is an extreme case of a tangent discontinuity. In this chapter we extend the work

presented in Chapter 3 to include an analysis of boundary regions containing a cliff.

The strategy is to insert extra CL points into each pass to ensure the path is machined

within tolerance in the region of the cliff. The positioning of these extra CL points is

determined by the maximum allowable CL point separation.

Note that by inserting CL points we destroy the rectangular topology of the offset

grid. However none of the theory presented thus far requires that the definition of the

offset grid be so strict and so we now relax this definition to allow the rows of the grid

to contain varying numbers of grid points.

We start by giving the definition and altemative point representations of a cliff. The

algorithmic and geometric machining errors in the vicinity of the cliff are then

calculated. The method that inserts extra CL points is described and then applied to a

couple of examples. The chapter concludes with a discussion of possible extensions

to this work. It is assumed throughout this chapter that the part is machinable and that

the tool is a ball-nosed cutter.
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4.1 A Cliff and its Point Representation

We define a cliff as a practically vertical surface on a part the summit of which is a

tangent discontinuity referred to as the cliff-edge. In general the part will have a

cutting surface associated with it, we assume this is the case. It is required that the

cutting surface is distinct from the part definition so that the boundary of the part is

defined. A cutting surface is usually a relatively simple shape that extends beyond the

part and defines the shape that is to be machined outside the part boundary. Figure

4.1 shows the respective views of a simple part and cutting plane.

Cutting Plane--

Figure 4.1: A cutting plane

It is assumed that there are no tangent discontinuities within the interior of the part

and hence the cliff must lie between the part and the cutting surface. It is also

required that the cliff drops down from the part surface and does not go up, this

configuration is highlighted in Figure 4.2.

Cutter

Cutting surface -

Part surface

Figure 4.2: A cliff
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Figure 4.3 shows some of the different shapes that constitute a cliff, in each case the

cliff-edge is circled.

--,- --

<......_.......,.-

Cutting surface

z

L~xy

Figure 4.3: Possible cliff shapes

A cliff can be represented by four fundamentally different point combinations. The

cliff can have points defining the cliff face or not, and points defining the cliff-edge or

not. The part and cutting surface are necessarily defined by points. Figures 4.4b and

4.4c show the four generalised cases for the cliff cross-section shown in Figure 4.4a.

The representations in Figure 4.4b represent the cases where the cliff face is defined

by points. In both Figures 4.4b and 4.4c the representation on the left has a cliff-edge

point indicated by a cross on the cliff-edge, and the one on the right does not.

Figure 4.4a: Cliff cross-section
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Figure 4.4b: Points lying on cliff face
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Figure 4.4c: Points not lying on cliff face

In general the discrete definition of a part will include points defining its boundary

and so for the error analysis it is assumed that the cliff-edge is defined by points. This

reduces the number of cases that need considering to just two. Furthermore, the

points lying on the cliff face are made redundant because we are only considering 3­

axis machining and the cliff is practically vertical; hence we are left with just one case

to consider in the error analysis.

4.2 The Error Analysis

As in Chapter 3, we identify and analyse the two main sources of error, the

algorithmic error and the geometric machining error. Note that the two errors are

calculated independently of each other and the total error bound is given by their sum.

4.2.1 Cliff Algorithmic Error

Since we are machining from a discrete definition of the part the exact position of the

cliff-edge will not generally be known. Hence, as shown in Figure 4.5, the

algorithmic error may be as large as the maximum surface point separation, 2s. The

cutter path shown is that as would be generated by the 10M for this point definition.
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Offset generated by 10M

I 2...-

Cliff edge

Gouged region

Figure 4.5: Discrete surface definition leading to large error

As stated in section 4.1, the discrete definition of a part will generally include points

defining its boundary and so for the rest of this chapter this is assumed. Hence the

algorithmic error is restricted to lying between the cliff-edge points, Figure 4.6

highlights the difference this restriction makes.

Figure 4.6: Points defining the cliff restrict the algorithmic error

We now calculate the algorithmic error at a cliff as a function of the algorithmic error

at a tangent continuous region, i.e. as calculated in sub-section 3.1.3. Figure 4.7

shows the cross-sections of three different cliffs, the part surface is represented by the

bold line and the maximum gouge that can be caused by algorithmic error is
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represented by the light line. As can be seen from the figure, the error, eca , is

dependent on the angle, y, made between the cliff face and the part, we refer to this

angle as the cliff-part angle. Each figure shows the respective algorithmic error, e;

for the tangent continuous regions. The algorithmic error at the cliff is given by:

eca =2ea cos ~ (4.1)

Figure 4.7: The algorithmic error at a cliff-edge

4.2.2 Cliff Geometric Machining Error

To calculate the geometric machining error at a cliff we find the maximum gouge

caused by the discrete approximation of the exact cutter path. In doing so it will be

useful to define a number of regions with respect to horizontal distance, dhz > 0, from

the part shape because in each region a different CL point spacing is required. By

horizontal distance we mean the distance in the plane perpendicular to the tool-axis.

The outer region lies above the cutting surface and is further than the radius of the

cutter away from the part boundary. The surface in this region is tangent continuous

and hence is consistent with the assumptions made for the analysis performed in sub-

section 3.1.3.

The local region also lies above the cutting surface and is less than Tc away from the

part. In this region the cutter negotiates the cliff-edge and hence needs analysing.
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The local region is separated from the outer region by the frontier which is the 2D

offset of the part boundary by distance r.. The CL points that straddle the frontier

form the endpoints of the transition movement. The transition movement brings the

cutter into contact with the part. This is a key movement and requires a separate error

analysis to the other movements in the local region.

Finally the area above the part is called the inner region. The interior of the part is

assumed to be tangent continuous and hence is consistent with the analysis performed

in sub-section 3.1.3. These different regions are illustrated on an example in Figure

4.8. To summarise:

dhZ = 0
. .
Inner region,

0< dhz < r. local region,

dhz = r. frontier,

r. < dhz outer region,

Frontie\

Outer 1Local Inner

z

L~xy _J
Figure 4.8: The different types of CL points

The Transition Movement Error

The current method of generating cutter paths from regularly spaced CL points (c.f.

sub-section 3.1.3) will generally lead to excessive gouging of the cliff as can be seen

in Figure 4.9. The figure demonstrates that most of the gouging is caused by the
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transition movement of the tool as it crosses the frontier. The maximum gouge this

movement can cause is now calculated.

Gouged region

Two consecutive
tool positions

Offsetted grid points
_ - " - - - ;- - -X - - X

Figure 4.9: Transition movement leading to large gouge

The gouge is measured as the maximum discrepancy between the surface and its

nearest point on the machined surface. Let h, be the cliff height and Chz the horizontal

separation of the CL points terminating the transition movement. It is assumed that

the cliff height is greater than the cutter radius, i.e. hI > reo Figure 4.9a shows the cliff

and the error, ecm} ' As can be seen from the figure, the maximum gouging occurs

when the cutter centre passes the intersection of the transition movement and the line

at angle e to the horizontal. It is also evident from the figure that as h; --7 00 the

gouge increases to its supremum, Chz' From Figure 4.9a the following expressions can

be determined:

(4.2)

C
tane = hz

~-'"c+hz
(4.3)
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h2
/ ~ \

I \
I \

• / ecml ' r:

/ -, !Consecutive tool -+---Ir---~.l---=-

positions

Gouged region

Figure 4.9a: Error due to the transition movement

Substituting (4.3) into (4.4) and (4.4) into (4.6) gives the result:

(4.4)

(4.5)

(4.6)

(4.7)

Note that equation (4.7) verifies the limit observed from the diagram; as ~ ---t 00,

() ---t 0 and ecm1 --7 chz from below which gives the useful bound:
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In general ecm l will be much greater than the overall tolerance and hence to satisfy a

given tolerance an appropriate horizontal CL point spacing is given by relation (4.8).

To ensure the transition movement does not gouge the cliff beyond tolerance its

horizontal length must not be greater than Chz as calculated by equation (4.8). Hence

we place a CL point in the outer region, just beyond the frontier and another in the

local region with separation from the first less than Chz'

However this does not yet guarantee that the cliff is machined to within tolerance, the

reason for this is that the local CL point may not be close enough to the cliff to be

offset by the cliff-edge points. Figure 4.10 shows an example of such an occurrence

on a cliff as viewed from above.

Frontier------
New CL point not close /
enough to be offset

Figure 4.10: Frontier CL point not offset by cliff-edge points

To remedy this problem we require that the local CL point is placed such that its

horizontal distance from the cliff is bounded by:

(4.10)

where elO2 is as calculated from sub-section 3.1.3. This ensures the CL point is offset

because e102 is the maximum distance that the offsetting procedure can deviate from
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the actual offset. Note that if elOZ > Chz then the boundary of the part is insufficiently

defined and more cliff point edge points are required.

Local Movement Error

We now determine the gouging caused by the interpolation of the local CL points.

Figure 4.11 shows the error, ecmZ, caused by local movement that is given by:

(4.11)

Figure 4.11: The error caused by the linear interpolation of two local CL points

If the current CL point spacing results in too large an error then a sufficiently small

spacing to machine within tolerance is given by:

(4.12)

Although the geometric machining error caused by the interpolation of local CL

points will always be larger than that caused by inner CL points, the total error will

generally be smaller since the algorithmic error is smaller. This is because the

algorithmic error in the local region is restricted by two points which are constrained

to lie on the cliff-edge and the maximum gouge that can be caused between two

points is less than can be caused between three points. See algorithmic error, cases 1

and 2 in sub-section 3.1.3 for the details.
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4.3 Solving the Cliff Problem

We now detail the method for inserting CL points into the cutter paths to machine the

cliffs to within a given tolerance. Suppose we have overall tolerance t, we find the

geometric machining error by subtracting the algorithmic error from r, For each pass

in the cutter path we insert a CL point just outside the frontier and another in the inner

region such that relation (4.10) is satisfied. Extra CL points are inserted into the local

region such that relation (4.12) is satisfied. Figure 4.12 shows a single pass on an

example part and the regions into which the new CL points are placed. The red points

terminate the transition movement and the white points represent the local CL points.

Outer region

Local region

Frontier

Inner region / Part
A cutter pass

Figure 4.12: Placement of new CL points to machine cliff to within tolerance

4.4 Application of Error Analysis to Examples

We first show graphically the effectiveness of the above analysis on a simple example

of a cliff. Then we apply the analysis to the shoe last to get an idea of the appropriate

spacing values on an actual example.
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4.4.1 A Simple Cliff

Figure 4.13a shows the example cliff as would be machined using the offset grid with

regularly spaced points. The blue curve represents the gouge-free cutter path and the

black dots joined by black line-segments represent the generated cutter path. It can be

seen in the figure that the transition movement leads to a much larger gouge than that

produced by the modified cutter path as shown in Figure 4.13b. Note that the local

movement adjacent to the transition movement now causes the largest gouge in Figure

4.13b. This movement is slightly out of tolerance due to the simplification made in

sub-section 3.1.3 and is because the horizontal separation of the CL points is set equal

to the appropriate 3D separation, i.e. slightly larger than it should be. Note that by

generating a circular arc in such regions the cliff geometric machining error would be

completely removed.

\
\.

.~

,
I

I
I

I
/
!
I

I

Figure 4. 13a: Regular spaced CL points Figure 4.13b: Modified CL path

4.4.2 The Shoe Last

We first calculate the algorithmic error and then the two geometric machining errors

for the machining of the cliffs on the shoe last. Equation (4.1) requires the cliff-part
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angle in order to calculate a bound for the algorithmic error, from a visual inspection

of the shoe it is clear that all the cliff-part angles are greater than 90 0 and hence:

(4.13)

Setting the minimum radius of curvature of the part equal to 16mm, as suggested in

sub-section 3.1.3, and the cutter radius equal to 5mm, equations (3.9) and (4.13) give:

eca < 0.0465mm.

The geometric machining error of the transition movement is given by (4.7):

ecml = 0.9263mm.

This gives the total cliff error for the transition movement as:

ec1total = 0.9728mm.

The geometric machining error due to local movements is given by (4.11):

ecm2 = 0.0251mm.

This gives the total cliff error due to local movements as:

e c2total =0.0716mm.

These results indicate that although local movements do not lead to excessive

gouging, the transition movement does. Hence we calculate a suitable CL point

spacing for the transition movement to ensure that the cliff is machined to within

tolerance.

Let «: = 0.0535mm since the sum of eca and e:ml must be less than our tolerance,

O.lmm. Then relation (4.8) gives:

Clrz =0.0535mm,
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which guarantees e' 1 < O.0535mm. Hence for each CL path we must insert a newem

outer CL point just beyond the frontier and a local CL point with horizontal distance

from the cliff satisfying:

r; - Chz =4.9465 < dhz < 4.9671 =r e - eIOM2

4.5 Discussion

In this chapter we have solved the cliff problem by extending the error analysis

contained in Chapter 3 so that regionally dependent CL point separations can be

calculated. Currently the process can only be applied to parts that contain cliffs on the

boundary. To extend the process further and include parts containing internal cliffs,

an algorithm is required to identify such features so that appropriate CL points can be

inserted. In particular this extension would allow the machining of pocket regions.

Weare now equipped to generate toleranced cutter paths for tangent continuous parts

with boundary cliffs and so in Chapter 5 we focus on improving the performance on

the algorithm, i.e. reducing the generation period.
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Chapter 5

Optimisation of 10M for Ordered Data

In chapters 3 and 4 we developed the 10M, an algorithm that generates cutter paths

directly from points. It was demonstrated that the resulting quality of machining

matched that of a commercially available CAD/CAM package. However, as

highlighted in section 3.5, our implementation of the 10M is relatively slow. This is

because the implementation checks every grid point for every surface point and no

account is taken of the coherence of the data sets. We use the term coherence to refer

to the geometric "locality" of points, this is similar to the usage of the term spatial

coherence in computer graphics [Foley and Van Dam 1983]. Hence the aim of this

chapter is to modify the 10M such that superfluous checks are eliminated. We do this

by using data arranged in sections and omitting from the checking procedure all

sections that cannot contribute to a given iteration of the 10M.

Generally both the surface data and the pre-offset cutter paths, referred to as grid data,

will be ordered sets. However this is not always the case and hence in section 5.1 we

formulate the dual process to the 10M which gives us the choice of exploiting either

the coherence of the surface data or the coherence of the grid data.

In section 5.2 we describe and subsequently analyse the two modifications optimised

for data ordered into nests of sections. The first modification is suitable for all

sectional data whereas the second requires that the points are monotonically ordered

along the sections. In section 5.3 we do the same for the two methods optimised for

nests of parallel planar sections. The chapter closes in section 5.4 with a discussion of

the results obtained from each of the modifications.
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5.1 The Dual Process of the 10M

We now describe the dual process which allows us to offset, exploiting the coherence

of the grid data. The core process of the original 10M as described in sub-section

3.1.1 can be summed up as follows; recall that the CC-region is the region formed by

projecting the tool along the tool axis onto the surface:

Given a grid point, its final offset position is determined by all the surface

points located in its CC-region and so we offset with respect to these points.

Figure 5.1 shows the CC-region of a given grid point and all the surface points that lie

in it. Hence instead of checking every surface point for each CC-region, the process

is made more efficient by exploiting the coherence of the surface data.

Grid Point

Surface points lying in
CC-region

Figure 5.1: Surface points lying in the CC-region of a grid point
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However we can achieve the same result as that of the 10M by using the dual process.

The dual process effectively checks each relevant grid point for every surface point as

opposed to the original 10M that checks each relevant surface point for every grid

point. The core process of the dual process can be described as:

Given a surface point, offset with respect to that point all grid points

contained in its active zone.

The active zone of a surface point is analogous to the CC-region of a grid point. It is

the region which contains all the grid points acted upon by a given surface point and

hence consists of all the grid points not greater than the radius of the cutter away from

the projected surface point onto the grid data plane. Figure 5.2 shows the grid points

that lie in the active zone of the displayed surface point. Note that though the grid

points are shown in a regular rectangular arrangement they are not constrained to lie

in such an arrangement.

• • • • • • •

Surface Point -

• •

• •
•

•

•
•Active Grid Points

••••

•

•

•

•

•

•
Figure 5.2: Grid points that lie in active zone of surface point

Hence by using the dual process we can exploit the coherence of the grid data to

simplify the process instead. To highlight the difference between the two processes

Figure 5.3a and Figure 5.3b show the result of one iteration of each algorithm
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respectively. In Figure 5.3a. representing one iteration of the original rOM, the red

grid line intersects with the blue inverted tools at the final height of the grid point.

Note that only a few of the inverted tools are partially displayed for clarity.

In Figure 5.3b, representing one iteration of the dual process, all the grid points that

are affected by a single surface point have been offset.

•

Figure 5.3a: One iteration of the original 10M process

. .
, . . . . .

Figure 5.3b: One iteration of the dual process

Hence if either of the data sets is arranged into sections we may choose the process

which will prove most beneficial.
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5.2 Non-planar Section-Based 10M (S-IOM)

We now modify the 10M to exploit the features of a data set which is arranged in

nests of sections. The modification is described for the dual process, i.e. for grid data

arranged in nests of sections, but the modification for the original 10M, i.e. for

surface data arranged in nests of sections, is easily derived. The reason for doing so is

that it is anticipated that the grid data will have a greater degree of coherence than the

surface data because the grid data represents the path a cutting tool will eventually

follow.

We define an active point as a grid point that lies in the active zone of a given surface

point; we define an active column as a grid column that contains an active grid point.

To remove some columns from the checking process we require that a given surface

point's corresponding set of active columns are all adjacent. This means that once we

have established an inactive column either side of the active zone we can eliminate all

further columns from consideration. This is not an unreasonable constraint as the

points characterise curves and we are effectively requiring that these curves do not

cross. Figure 5.4 shows a set of curves where the active columns are not all adjacent,

remember that the grid columns do not necessarily have to be linear. The circles

represent grid points that lie on active columns and crosses represent points that lie on

inactive columns.

Figure S.4: Sections that cross each other and fail to meet criterion
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Since the curves are defined discretely a less pathological scenario may have the same

result. Figure 5.5 shows such an example where the active zone fits between the

points on one column and includes a point from the next. For clarity only a few of the

curves are shown and the active columns are in bold. It can be seen from the figure

that the points need to be spaced relatively far apart along the curve in relation to the

spacing of the curves in order to fail this criterion. Generally the user will generate

the grid data to ensure the criterion is satisfied but if this not practicable then the basic

10M as described in section 3.2 must be used.

Figure 5.5: Sections that do not cross each other but still fail criterion

5.2.1 S-IOM Description

Phase 1: Initial Case

To start we must find an active column for the first surface point, i.e. find a column

from the grid data that enters the active zone. This requires that we check each grid

point on each column until an active grid point is found. This column is labeled as

the first active column, FAC, and each active grid point in this column is offset.

The range of active columns is then established with the last active column being

labeled LAC. Using the FAC and the LAC we calculate the middle active column,

MAC; let the FAC be thej;}h column, the LAC be the i» column and the MAC be

the ma}h column using:

(5.1 )
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where the square brackets denote the integer part. Note that if there are no active

columns for the first surface point we move onto the next surface point and repeat

Phase 1 until an active column is found. Figure 5.6 shows the points that are checked

in Phase 1 of the S-10M.

• • •• • 0 0• • •
• • 0 0• • • • • • 0

• • 0 0• • • • • • 0

• • 00 0• • • • •• • o 0 0• • • • •
• • • 0

0 0• • • Unchecked Points• 0• Active Zone 0 0• • •• - 0 0
Checked Points • · · ..i·· · 0

0 0• •• • •• • 0

• • 0
0 0· - .. •• Initial surface point • 0 0 0· - •• • 0

0 0• • • • •• 0 0• • • • • 0

• • 0 0• • • • • 0

• • • 0 0• • • • 0• • 0 0• • • 0

• 0• • •
Figure 5.6: Points that are checked in Phase 1 of the S-IOM

Phase 2: Mainstream Case

We move onto the next surface point and by starting at the MAC establish the range

of active columns labeling the new FAC and LAC as appropriate. The MAC is

updated by substituting the new values for the FAC and the LAC into (5.1).

If the original MAC is not an active column then it is likely that an active column is

not far away. Hence we search outwards checking each side of the MAC in turn until

a new active column is found. This is labeled as the new MAC and we continue. If

the next active column is not close this indicates a lack of coherence in the surface

points, such an event will only delay the process and not cause the algorithm to fail.
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Figure 5.7: Points that are checked in Phase 2 of the S-IOM

5.2.2 Theoretical Improvement Achieved by the S-IOM

Using the S-lOM as opposed to the 10M reduces the number of performed operations.

We now calculate the number of operations performed by the S-lOM and the 10M

respectively in order to quantify the reduction in computation. There are two

fundamental operations performed by the algorithms; a check to see if a given grid

point is active and the inverse offset function. The same operation is used for both

and hence a single instance of either is called a check. The relationships derived for

each are applied to the example of the shoe last and the reduction in checks achieved

by the S-lOM is given as a percentage of the number of checks performed by the

10M. The actual generation period of the S-lOM is also recorded.

The basic 10M checks every grid point for every surface point. Hence if there are p

surface sections each containing an average of q entries and the offset grid has m

columns and n rows, see Figure 5.8 for an example of these parameters on an

example, then the number of checks made by the 10M is:

CIOM = pqmn (5.2)
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Number of surface sections - p

/~~~~~-----.
<, '. "'"

Average number of entries - q

No ofgrid cols - m
Grid width~~.

~ '..

No of grid rows - n
Grid height - h

.L-- "

Figure 5.8: Parameters used to calculate theortical improvemtnt achieved by the S-IOM

To calculate the number of checks made by the S-IOM we simplify the problem. It is

assumed the surface data and grid data occupy a rectangular region of space, of

dimensions hxw, when viewed along the tool-axis. We also assume that the points in

each data set are evenly dispersed. To facilitate the calculation of the number of

checks, the points are divided into two sets. Figure 5.9 shows the two sets of points,

Set A and Set B, which represent the grid points that are checked for any given

surface point in Phase 2. Note that since only a rough approximation is required we

ignore the additional points checked in Phase 1.

»>:' Set A________
.~ .::=:---_ ..._-_. ...~
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•
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•
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Figure 5.9: The sets of points checked for a given surface point
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Set A consists of all the grid points that lie in the inactive sections either side of the

active zone. Set A contains:

2n grid points.

Set B is a box of points with height =h and width =2rc. Hence Set B contains:

n[2r" : Jgrid points,

These points are checked for each surface point which gives:

pq(2n +n[2r" : J) checks.

However there is still a group of checks that may be made which we have not yet

considered. Suppose a given surface point contains no grid points in its active zone,

for such a surface point the S-IOM checks every grid point. This is equivalent to the

surface point not lying in the CC-region of any grid point, such an instance may occur

if we wish to machine only part of a given surface. Let a equal the ratio:

number of surface points not contained in any CC - regiona =-------=------------:;....-----==---
number of surface points

Then the total number of checks made by the S-IOM is:

CS- IOM =p~2n +n[2r" : J) +apqmn

(5.3)

(5.4)

Hence if both data sets are arranged in nests of sections the choice of whether to

employ the dual process or not can be decided by which results in a smaller a. We

now apply the above calculations to the example of the shoe last. In doing so we note

that the surface data is entirely contained within the grid data and hence choose to

employ the dual process which results in a =O.

The shoe is contained within a rectangular region measuring 247mm x 151mm and

defined by 337 sections each containing 211 entries. The grid data used contains 248

columns and 152 rows. These values are consistent with the error analysis performed
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in Chapter 3 to achieve a O.lmm tolerance and are shown in table 5.1 for ease of

reference.

Variable name Letter Value

Grid width (in mm) w 247

Grid height (in mm) h 151

Number of surface sections p 337

Average number of entries q 211

Number of grid columns m 248

Number of grid rows n 152

Table 5.1: Variables used from shoe example

Substituting these values into equation (5.4):

CS-IOM=1.30 x108 checks (to 3 s.f.)

The number of checks performed by the 10M is given by equation (5.2):

CIOM= 2.68 x109 checks (to 3 s.f.)

Hence the S-IOM performs only 4.8% of the checks performed by the 10M. The

actual generation period of the S-IOM is given by the average of three runs as were

all the methods:

35.5 seconds.

It is expected that the generation period of the modifications will be proportional to

the number of checks made with some nominal period to account for the

administrative operations performed by the computer, e.g. writing the output files.

Hence once we have another result we can start predicting the generation period of

the remaining algorithms.
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5.2.3 S-IOM with Intra-Sectional Coherence (ES-IOM)

We now give the details for an enhancement to the S-IOM which exploits the

intra-sectional coherence of the data. To do so it is required that once a section has

left the active zone it cannot re-enter it. Hence two criteria are given which are

sufficient to ensure that this requirement is met. Note that if we are considering

surface sections we assume they have been projected along the tool-axis vector onto a

plane perpendicular to the tool axis.

Criterion 1

The first criterion is that each column is strictly monotonic in some direction. This

ensures the points are monotonically ordered along the column and that the column

does not turn back on itself and re-enter the active zone.

Criterion 2

The second criterion is that any three consecutive points on a column lie on a circle

with radius greater than that of the cutter. This criterion ensures the column does not

leave the active zone and then turn back sharply to re-enter it as shown in Figure

5.10a. Note that if the columns fail to meet either of these criteria then the previous

algorithm, the S-IOM, can be used. Figure 5.1Oa shows an example of a column that

satisfies Criterion 1 but not Criterion 2 and Figure 5.1Ob shows a column that satisfies

Criterion 2 but not Criterion 1.

Grid points

•
Surface point

Monoton ic direct ion
of co lumn

Radius of 3 co nsec utive
points smaller than that of
cutting tool

Figure 5. 1Oa: Co lumn satisfying Cri terion I but not 2
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•
•

Column has no direction of monotonicity
Grid points------..

• • •• • •
• •• •

•
•
• Surface point

• •• • •• •• ••• • •
•

Figure 5.10b: Column satisfying Criterion 2 but not I

Hence once a column has exited the active zone we can eliminate the rest of the grid

points on that column from consideration.

The method is identical to the S-IOM except for the subroutine(offset contour). As

each consecutive column is offset, the grid point that is initially checked is chosen

such that the intra-sectional coherence is exploited.

Suppose that the fagpth and lag/h grid points were the first and last active grid points.

Then the first grid point we check on the next column is the mag/ h point where:

m =[fagp + lagp]
agp 2 (5.5)

5.2.4 Theoretical Improvement Achieved by the ES-IOM

We make the same simplifications as were made in sub-section 5.2.2. Figure 5.11

shows the points that are checked for a given surface point.
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Figure 5.11: The points checked by the ES-IOM

Set A is as calculated in sub-section 5.2.2:

2n grid points.

Set B consists of all the points checked as the algorithm exits the active zone. This is

effectively a box containing:

2[2r" : ] grid points.

Set C is the set of all active grid points, we approximate the density of points in this

region by:

[iM
~-;J;

Which gives an approximate size of Set Cas:

1rr2mn . ~ .
C gnd points.
wh

Each of the above sets is checked for every surface point giving:

pq(2n + 2[2r" : ] + 1rr~;n ) checks.
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Finally we take into account the ratio of surface points which contain no grid points in

their active zone as calculated in sub-section 5.2.2 giving the total:

( [ m] nr
2mn)CES - IOM = pq 2n + 2 2~ w + :h + apqmn checks.

Applying this formula to the shoe last:

(5.6)

CES-IOM=2.42 xio? checks (to 3 s.f.)

This means that the ES-IOM performs 0.9% of the checks performed by the 10M.

The actual generation period of the ES-10M is:

Actual time =13.5 seconds

The above two timings enable us to fit a linear model and hence to predict generation

periods for the remaining two modifications.

5.3 Parallel Planar Section-Based 10M (PPS-IOM)

We now turn our attention to sections that lie in parallel planes, which are also

referred to as contours. Note that grid data only qualifies as parallel planar sections if

the finished cutter paths lie in parallel planes. Hence the grid data will either have

linear rows or linear columns and the containing plane of the resulting cutter paths is

described by a single row/column and the tool-axis. As in section 5.2 we describe the

case for offsetting using the dual process to the 10M.

We define an active contour slightly differently to an active column to make the

definitions consistent with the algorithm. A contour is active if the distance between

the surface point and the plane containing the contour is less than the radius of the

cutter. The main difference between an active column and an active contour is that an

active contour does not necessarily contain an active grid point. Figure 5.12 shows an

example of a section that would qualify as an active contour but not as an active

column.
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An active contour but
not an a tive column

Figure 5.12: A section that enters the active zone but does not contain an active grid point

5.3.1 PPS-IOM description

Phase1: Initial Case

As in sub-section 5.2.1 we must find an active contour from the grid data. Given the

normal to the plane containing the contour we can do this by checking only a single

point from each contour. Once we have found an active contour we mark it as the

FAC and then check along the contour offsetting any active grid points on it. If no

active grid points are found we proceed to the next contour.

We then establish the range of active contours labeling the last as the LAC and offset

each contour in this range.

Phase 2: Mainstream Case

Using equation (5.1) we calculate the MAC and use it as a start contour for offsetting

with respect to the next surface point. If the MAC is an active contour then we offset

all neighbouring active contours, stopping in each direction when an inactive contour

is found. Update the MAC using the new FAC and LAC and then restart Phase 2 for

the next surface point.
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If the original MAC was inactive then we search, alternating between both sides of

the MAC, until an active contour is reached and then continue.

The only substantial difference between this algorithm and the S-IOM is in the

subroutine(find next MAC), which actually finds the next active column/contour and

not the next MAC.

5.3.2 Theoretical Improvement Achieved by the PPS-IOM

To calculate the number of checks made by the PPS-IOM we simplify the problem as

in sub-section 5.2.2. The points checked in a single iteration are divided into two sets

as shown in Figure 5.13. Set A consists of the two points checked either side of the

active zone and Set B consists of all the grid points in the active contours.

~ ....._----- •..~ ._--'.

0 0 i. • • .' 0 0

0 0 • 0 0

0 0 0 0

0 0 • • 0 0

0 0 .Set~ 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 0

0 • • • 0 0

0 0 • • • • 0 0

0
.~. 7"- 0

SetA

Figure 5.13: The sets of points checked by the PPS-IOM

Set A contains:

2 grid points.

Set B is a box of points containing:

n[2r;, : ] grid points.
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These points are checked for each surface point giving:

em-10M =pq(2 +n[2r;, :] checks. (5.7)

Note that we do not need to take into account the checks performed for surface points

that do not lie in any CC-region as in sub-sections 5.2.2 and 5.2.4. This is because

only a single check needs to be made per contour. We now apply equation (5.7) to

the shoe last example.

8
CPPS-IOM =1.08 xl0 checks. (to 3 s.f.)

Hence the PPS-IOM performs 4.0% of the checks performed by the 10M. Now using

the previous two results we predict that the generation period of the PPS-IOM is

roughly:

31.0 seconds.

The actual generation period of the PPS-10M is:

30.8 seconds.

As the actual result shows, the linear fit provides a good model of the time complexity

of the modifications.

5.3.3 PPS-IOM with Intra-Sectional Coherence (EPPS-IOM)

Following the lead of section 5.2 we enhance the PPS-IOM by exploiting the

intra-sectional coherence of the data. This results in the elimination of nearly all the

superfluous checks made along any of the contours. Since the contours lie in parallel

planes it is sufficient that the points are monotonically ordered along the section to

ensure the following enhancement is applicable.
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5.3.4 Theoretical Improvement Achieved by the EPPS-10M

Making the same simplifications as before, Figure 5.14 shows the points that are

checked for a given surface point.

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 • • 0 0

0 0 • • • • 0

0 0 • • • •Set A0--. • .Set~ •
0 • • • • 0

0 • • • • 0

0 0 • 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

Figure 5.14: Points checked by the EPPS-IOM

The points checked in set A will generally be nearly in line with the centre of the

active zone as it is in this region where each column is first checked and contains:

2 grid points.

Set B consists of all the points that are checked as the algorithm exits the active zone.

This will generally be a box containing:

2[2r" : ] grid points.

Set C is the set of all active grid points and we approximate the size of this set with:

..,
1Cr-mn id .

C gn points.
wh

Each set of points is checked for each surface point giving:

em S-10M=pq(2 + 2[2r" : ] + nr:~nJchecks.
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This formula suggests that if there is a choice as to which orientation we put the grid

rows and columns it would be beneficial to choose the direction of the grid columns

such that they have least density. However in practice the machining strategy will

take precedence, e.g. if we are machining a long thin shape the cutter paths will lie

along the longest axis. Applying this equation to the example of the shoe last:

CEPPS-IOM= 2.69 x106 checks. (to 3 s.f.)

Hence the EPPS-IOM performs 0.1% of the checks performed by the 10M. Using the

same linear fit as in sub-section 5.3.2 we predict the generation period of the

EPPS-10M to be:

9.0 seconds.

The actual generation period of the EPPS-IOM is:

9.7 seconds.

Again the linear model provides a good prediction. In the next section we discuss the

timing results of all the previous sections.

5.4 Discussion of Results

Table 5.2 shows the number of checks performed by each of the modifications as a

percentage of those made by the 10M and their actual generation periods. It is worth

noting that PowerMILL took 11 seconds to generate cutter paths of a similar quality.

Algorithm Percentage checks Actual result

S-IOM 4.8% 35.5 sees

PPS-IOM 4.0% 30.8 sees

ES-IOM 0.9% 13.5 sees

EPPS-IOM 0.1% 9.7 sees

Table 5.2: Percentage of checks made by modifications and generation periods
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These results are shown in a graph in Figure 5.15. The red crosses represent the four

actual results; from the left they are the EPPS-IOM. the ES-IOM, the PPS-IOM and

the S-IOM. The blue line shows the linear fit that was used to predict the generation

periods of the PPS-IOM and the EPPS-IOM. The intersection of the linear model

with the y-axis can be interpreted as the administration period of the algorithm. The

slope of the graph effectively represents the rate at which the computer can perform

the checks. A faster processor would result in the graph becoming less steep.
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Figure 5.15: Actual results and linear model

Further tests were performed on data sets other than the shoe last. The data sets used

were consistent with the simplifications made in sub-section 5.2.2 and of varying

sizes. Firstly the administration period was found to be roughly proportional to the

number of grid points; this was expected as the main function performed by the

algorithm apart from offsetting is the writing of the output to a tile.

Secondly, if we ignore the administration period and assume that the active zone

contains only a small fraction of the grid points then the time complexity of the

modifications are roughly given by:
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S-IOM cc pqmn/w

PPS-IOM oc pqrnnlw

ES-IOM oc pqn

EPPS-10M cc pqmnlhw

(5.9)

(5.10)

(5.11)

(5.12)

These are derived from the formulae (5.4), (5.6), (5.7) and (5.8). From (5.11) we can

infer that it is better to have more columns than rows in the offset grid when using the

ES-IOM. Relation (5.12) indicates that if the density of the offset grid is maintained

then the number of calculations performed by the EPPS-IOM will only increase

proportionally to the number of extra surface points introduced. Also if we compare

each of the above relations with equation (5.2) it is clear they all offer a much better

time complexity than that of the basic 10M.

To conclude we note that we have generated cutter paths quickly and to within

tolerance directly from point data. It remains to illustrate where our work is

compatible with current machining practices. Hence in Chapter 6 we consider the

process of generating cutter paths starting from a multi-patch IGES surface.
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Chapter 6

Aspects of Operating on Multi-Surfaces

In the previous three chapters we investigated the 10M and developed a number of

enhancements that allowed the efficient generation of cutter paths for a part whose

shape is defined by a set of points. The basic 10M as described in Chapter 3 can

operate on any set of points and generate paths to within tolerance assuming that the

points are suitably dense and define a tangent continuous surface. A modification to

deal with cliff-edges is described in Chapter 4. Finally in Chapter 5, a number of

enhancements are presented that make the 10M more efficient by ordering the points

in sections.

The work presented in these chapters has been undertaken with the tacit assumption

that we are dealing with a straightforward point definition, that is a part whose

underlying shape can be defined by a single valued surface with a rectangular

topology. However not all part shapes are simple and defining a more complex shape

can require a non-rectangular assembly of surfaces. We refer to such a definition as a

multi-surface and in this chapter investigate the issues they raise but restrict ourselves

to those that are generic to all CAM packages which are illustrated in Figure 6.1. The

end nodes of the diagram are coloured to indicate the extent to which each has been

addressed either directly or indirectly by this thesis so far. Items in green have been

addressed but are revisited and described further; items in orange have been partially

addressed; and items in red have not been considered at all.

The chapter is divided into six sections, the first five address the categories given in

the primary nodes of the diagram, i.e. surface representation, parameterisation,

trimmed surfaces, machining strategy and sampling interval. Note that for the rest of

this chapter the 10M and its enhancements as presented in the previous chapters are

simply referred to as the 10M.
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Figure 6. I : Problems tackled in thi s chapte r

6.1 Surface Representation

The part that is to be machined may be defined originally in anyone of a number of

representations and it will be required that the CAM package perform a number of

operations on the part. Suppose we have m representations and n operations, then

there are nxm combinations to implement. However by converting the representation

into a common one upon which all the CAM operations are performed, the number of

combinations is reduced to n+m . We refer to the common representation as the

intermediate representation . Figure 6.2a and Figure 6.2b illu strate the reduction of

combinations that results from employing an intermediate representation.

m Surface Representations 11CA M Operations

~~~=t:
••••••

•
•
• ~.:.: -. - . .2"~ --....,;7 __

•
. ~==--

Figure 6.2a: mxn co mbi nations
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Figure 6.2b: m+n combinations

The intermediate representation chosen will generally reflect the strategy used to

generate the cutter paths. This is reflected in Chapter 2 where the three main

strategies described in the literature employed either:

• Polyhedral approximation of the part,

• Generation of the offset surface or an approximation it,

• Calculation of the surface points and normal data.

By definition the first strategy must employ a polyhedron as the intermediate

representation. For the remaining two strategies, although they are not constrained to

use any particular intermediate representation, it was found that the literature

employing them typically used either a parametric or point representation.

The overall strategy as presented in Chapter 1 of this thesis is to move away from the

various representations as the initial definition and simply use a characterising set of

points to initially define the surface. However the characterising set of points can

equally be regarded as the intermediate representation.

6.2 Surface Parameterisation

In Chapter 2 we mentioned a number of difficulties associated with generating

parameter-based cutter paths, e.g. non-planar paths, self-intersection resulting in the
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side-step problem. However these issues are made evident by the consideration of a

straightforward surface definition. In this section we consider the issues that arise

when considering the machining of a multi-surface and indicate the solutions

provided by the 10M.

Underlying the natural way in which the 10M solves these issues is the fact that from

the outset a geometrically motivated algorithm was sought. Hence as part of the

concept of using a point-based strategy, the issues raised by parameterisation are

inherently solved.

6.2.1 Correlation of Parametric Definition with 3D Shape

The first problem we address is that of correlation between the parametric definition

of a part and its 3D shape. Although this topic is not strictly motivated by multi­

surfaces, the increase in complexity of a part associated with the addition of more and

more parametric surfaces leads to the parameterisation being less likely to reflect the

3D shape. This is in contrast to the parameterisation of a single patch which will

generally, though not necessarily, correspond fairly closely to its 3D shape.

A lack of correlation between the parameterisation and the shape can create two

distinct problems for a CAM package. Firstly, if the CAM package generates

parameter based cutter paths, the part's surface finish may suffer from the cutting path

pattern being unrelated to its shape. For example the isoparametric lines on a

parametrically defined plane may deviate from the expected path as shown in Figure

6.3. The cutter paths generated by the 10M are inherited from an offset grid that is

independent of the surface definition and hence the parameterisation cannot affect the

cutter path pattern.
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Figure 6.3: Isoparametric lines varying unexpectedly on a plane

Secondly, if the CAM package interrogates the parameterisation at regular sampling

intervals with respect to 3D space, irregular definitions may lead to the sampling

algorithm having difficulties. Similarly, the section-based modifications presented in

Chapter 5 have a number of criteria to be satisfied by the point definition in order to

employ the optimisations, however the 10M is not restricted to operating on data

satisfying these criteria.

There is another issue which must also be considered, the spacing of the surface

points has a direct impact on the tolerance of the algorithm and so if the

parameterisation varies greatly over a surface, care must be taken when generating the

point definition. In such cases a geometric method for sampling the points from the

surface would be advantageous, e.g. with respect to arc-length. A study of geometric

sampling is beyond the scope of this work but for further details see

[Czerkawski 1996].

6.2.2 Variation of Parametric Definition between Surfaces

The constituent surfaces of a multi-surface will generally be required to meet with

tangent continuity to within some tolerance. However this does not mean the

parameterisations of neighbouring surfaces will meet up. Figure 6.4 shows two

planar bi-cubic Bezier patches that meet with tangent continuity. The internal lines

represent the isoparametric lines for u and v taking the values 0.2, 0.4, 0.6 and 0.8.

As can be seen in the figure, the parameterisations of the two surfaces in the u­

direction do not line up.
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Figure 6.4: Tangent continuous surfaces with discontinuous parameter lines

The general situation will be more complicated with curved surfaces and a tolerance.

Figure 6.5 shows a practical example taken from the definition of a car bonnet kindly

supplied by Rover. The blue curves in the wire-frame pictures represent patch

boundaries, the grey curves regular parametric intervals and the red curves highlight a

parametric discontinuity across neighbouring patches. Note that unlike in Figure 6.4,

the neighbouring surfaces in this example have different degrees but the net result is

still the same - discontinuous parameter lines.

A CAM package that depends on the parameterisation to generate the cutter paths will

face difficulties each time it exits a surface because to generate continuous paths the

boundaries of each adjoining surface must be searched for a suitable parameter value.

To further complicate matters, once the parameter value giving positional continuity

has been found, the parameter direction will not necessarily be continuous with that of

the previous surface which may result in the undesirable feature of a sharp change of

direction in the cutter path. However, the whole issue is solved by the 10M for the

same reasons as described in sub-section 6.2.1.
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6.3 Trimmed Surfaces

When a multi-surface is defined some of the surfaces will typically need trimming.

To trim two surfaces so that they meet exactly requires that their intersection curve be

generated exactly. However, in general the package will not be able to represent that

curve and so it is usually approximated, typically by a poly-line. A poly-line is a

series of points that lie on the intersection curve, the trimmed surface is defined by the

linear interpolation of those points in the parameter space of the surface being

trimmed.

Inexact trimming leads to an inaccurate definition of the part and consequently creates

difficulties when generating cutter paths for it. We simplify the problem by taking

cross-sections and noting that these cross-sections can be characterised by three

inherently different configurations as illustrated in Figure 6.6. Also note that the

configuration type of a cross-section may change along the length of the intersection

curve of the two surfaces. The lines in the figure simply represent sets of points and

not necessarily distinct sections. Type A cross-sections result from both surfaces

extending past their intersection, type C cross-sections result from both surfaces being

trimmed short of their intersection and type B cross-sections result from one surface

extending past and the other being trimmed short. The next two sub-sections

investigate the three types of inexact trim for both the concave and convex cases.

Type A TypeB TypeC

Figure 6.6: The three different types of inexact trimming
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6.3.1 Inexact Concave Trim

The 10M handles inexact concave trims predictably and in most cases ideally. Figure

6.7 shows the path generated by the 10M for each case, which in general is identical

to the path that would have been generated even if the patches had been trimmed

exactly.

Type A Type B

~

TypeC

Figure 6.7: Result of offsetting inexact concave trims

The only instance in which the ideal path is not generated is if the trimming process

creates a relatively large gap. We now calculate the maximum size the gap can be but

still ensure that the 10M generates the ideal path. We only consider the case in 20

and assume that a nest of planar sections defines the surface. Also, since we are only

considering a small region, we assume that the two surfaces can be locally

approximated by planes. Figure 6.8 shows the cross-section of the cutter as it touches

the both sides of the joint.

•
• •

•
•

•

Figure 6.8: The maximum gap between two points at a concave joint
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If the gap, g, is less than or equal to l then the 10M is guaranteed to generate the ideal

path as illustrated in Figure 6.7 . We can derive / from Figure 6.8 :

(
lC - a )/ = t: sin 2 (6. 1)

As an example, if we are machining with a tool of radius 5mm and at some concave

joint we have a = lC/2 then :

/ = 3.536mm.

If / < g < 2/ then the 10M may generate paths that lead to the gouging of the surface.

If g > 2/, then the 10M is guaranteed to cause gouging.

6.3.2 Inexact Convex Trim

The 10M also handles inexact convex trims predictably but not generally ideally. The

cross-sections of the offsets generated are shown in Figure 6.9. The thick blue curves

represent the generated offset and the thin blue curves represent the offset that would

have been generated had the surfaces been accurately trimmed.

Type A Type B

Figure 6.9: Result of offsetting inexact convex trim s

As is immediately obvious from Figure 6.9 , the result of offsetting a convex joint that

has been inexactly trimmed is severe . However thi s is an issue that all CAM

packages must tackle and so a solution may be derived from literature that addresses

the issue for parametric methods although non are currently known of. Until such a

solution is found it is important to en sure that any convex joints are trimmed to a tight

tolerance.
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6.4 Machining Strategy

So far in this thesis we have only been concerned with generating raster cuts.

However there are many other types of finishing cuts used in industry. Therefore in

this section we look at a selection of algorithms for generating: constant z-height cuts

[Vadlamudi 1998], parametric cuts [Loney and Ozsoy 1987] and pencil-curve cuts

[Park et at 1998]. Also, as in section 4.3, we observe that the grid-like structure

imposed on the cutter paths is not a necessary restriction for any of the theory

presented thus far and hence to facilitate generating economic cutter paths we allow

cutter passes to contain any number of grid points.

6.4.1 Constant Z-Height Cuts

In this sub-section we present three approaches to generating constant z-height cuts

highlighting the strengths and weaknesses of each. Note that when referring to z­

height cuts we assume that the tool-axis lies parallel to the z-axis.

Cut-Off Technique

We start by generating the discrete definition of the offset surface by using the 10M.

The offset points are then compared to the z-height plane in question and each point is

determined as lying either above or below this plane. In Figure 6.10 the points that lie

above the plane are coloured red and those below are coloured yellow. Joining the

inner boundary of those points that lie below the plane forms the approximation to the

contour. Doing so does not guarantee the surface will not be gouged but will

minimise such gouging.
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Figure 6. 10: The contour generated by the cut-off technique.

This method is robust and provided that the offset grid covers the entire part and is

sufficiently dense it will not miss any parts of the contour. The main weakness of the

cut-off technique is that the contour is restricted to interpolating points that lie directly

above the original offset grid which leads to aliasing effects, i.e. the sampling interval

leads to irregular patterns in the contour. In Figure 6.10, this is most significantly

apparent at the sides where the approximation to the circular contour pokes out.

Interpolation Technique

The interpolation technique is effectively an adaptation of the cut-off technique but

with the quality of the contour improved by using a linear approximation of the offset

surface. Again we start by generating the discrete definition of the offset surface by

using the 10M. Then the offset data set is triangulated using a pattern like in Figure

6.11 and intersected with the appropriate planes to generate the constant z-height

cutter paths. Each point in each pass is generated by the intersection of the plane with

either an edge or a vertex of the triangulation.

Figure 6. II : Possible triangulation pattern to be used on offset grid
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The strengths and weaknesses of this method are akin to those for the cut-off

technique; the method is robust but suffers from aliasing effects. The effect is most

significant near curved vertical surfaces as highlighted in Figure 6.12a which shows

the aliasing that occurs for a cylinder with a flat cap. The blue surface represents the

triangulated offset grid and the red plane indicates the z-height. Figure 6.12b shows

the top-view in which the effect can be seen clearly and can be compared to the

contour generated by the cut-off technique in Figure 6.10. However the error of the

interpolation technique is less than that of the cut-off technique because the contour

points are generated from the triangulation of the offset data and are not restricted to

lying directly above the offset grid.

Figure 6.12a: Constant z-height contour generated by triangulation of offset grid

Figure 6. 12b: Top-view of contour generated by triangulation method
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Multiple Offset Directions Technique

By using the 10M to offset a part in a direction perpendicular to the z-axis we can

generate an offset curve with constant z-height. Figure 6.13a highlights how a line of

grid points is offset in the positive x direction to generate a constant z-height cut for

the green cylinder. The points are moved onto the blue cylinder, which represents the

offset of the green cylinder. As can be seen more clearly from the top-view in Figure

6.13b, only part of the contour is generated. We then offset again in another

direction.

After offsetting in enough directions to ensure the whole contour is defined, any

points that have not been offset, called non-offset points, are eliminated. The grid

points are then concatenated to form a single continuous path. An algorithm to

concatenate the separate paths has not yet been devised and will require further work.

In both Figure 6.13a and Figure 6.13b the non-offset grid points are indicated by the

points that do not lie on the offset contour/surface. We now consider the number of

offsetting directions required.

x

Figure 6.l3a: Contour generated by offset perpendicular to z-axis
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Grid Points
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Figure 6.13b: Top-view of Figure 6.13a

To generate grid points along the entire contour the next logical step is to offset in the

opposite direction to the first as illustrated in Figure 6.14. However if we consider the

offsetting direction to be the positive z-axis then we are faced with a problem similar

to the cliff problem as described in Chapter 4. The solution to the cliff problem,

referred to as the 'cliff modification' , works by placing one grid point just beyond the

frontier and one just before. The resulting path then machines the part to within

tolerance, Figure 6.15 shows the application of the cliff modification to the multiple

offset directions technique.

y Contour left by machining the two
- -

sets of generated grid points .

Regions that are near parallel to
both offse tting directions.

Off et Direction I Offset Directi n 2

x

Figure 6.14: The contour generated by two offsetting directions
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Applying the cliff modification in both directions results in the contour being

machined to within tolerance, Figure 6.15 illustrates the insertion of the points in just

one offsetting direction. However we do not wish to machine two distinct sections for

a single contour and therefore remove the non-offset points. Concatenating the

remaining points generates the final contour. The contour is defined to within

tolerance because of the points inserted in the local region some small distance from

the frontier as illustrated in Figure 6.16. The figure shows the two new points

improving the definition of the contour.

Y Offset Direction 1.-------.

<.
Points inserted by the
cliff modifi cation

Frontier

x

y

Figure 6.15 : The cliff modification applied in one offsetting direction

Offset Direction 1 Offset Direction 2

--t----------~=~===_;~----------_._ Fron t ier

Local Region

Points inserted just before frontier

Figure 6.16: Final contour definition omits the non-offset points

115

x



However, there are times when two directions are insufficient. Figure 6.17 shows an

example of a contour that requires three offset directions and indicates three suitable

orientations for them. Further work is required to automate the process of selecting

the most suitable number of offset directions and their orientation. Figure 6.18 shows

an example of a contour where sufficient directions have been used but not orientated

correctly.

•. Offsetting Direction 1
,,

•Offsetting Direction 3
~

Offsetting Direction 2

Figure 6.17: A contour shape that cannot be fully defined by using only 2 offset directions

•
I

II>

. -- ---- ~

\
•

Figure 6.18: Incorrect orientation of the offset directions leading to an undefined region

Finally, there are some contour shapes that cannot be completely defined using this

algorithm. The reason for this is there exists a region on the contour that for any

given direction in the plane, the contour is not single-valued. That is if we consider

the given offset direction as up, the undefined region will always contain an overhang.
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This region cannot be defined using i
~multiple offset directions techniqUe)

Figure 6.19: Example of a contour that contains an indefinable region

Assuming that the part shape contains no indefinable regions, to generate a complete

set of contours we start by defining an offset grid for each offset direction. Each grid

is perpendicular to its associated offset direction and has a row of points

corresponding to each contour height. Each grid is then offset as described above to

form the contour paths.

Note that the assumption that the part contains no vertical overhangs is also key to the

application of this technique. If a part does contain an overhang then unlike for the

cut-off or interpolation technique, the surface will be gouged as illustrated in Figure

6.20.

Placement by
interpolation technique
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Figure 6.20: Overhang leads to algorithm failure
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The strength of this method is that no additional approximation has been introduced,

only the error as calculated for the 10M in Chapter 3 needs addressing. However

there are a number of potential problems with using this technique. Firstly the cutter

path points in the contour will have irregular spacing due to the multiple sections

used. Also the procedure will prove computationally expensive since each set of

contours requires at least two offsets. The most restricting feature however is the fact

that this technique will fail on some non-convex or multi-path contours as illustrated

in Figure 6.19.

Summary

In summary the interpolation technique is the most attractive option. It offers better

quality contours for a given offset data set than the cut-off technique. Therefore it

should prove more efficient than the cut-off technique because offsetting is a

computationally expensive operation although further research is required to verify

this.

The interpolation technique is better than the multiple offset directions technique for

two reasons, firstly because it handles vertical overhangs appropriately whereas the

multiple offset directions technique leads to the part being gouged. Secondly, the

multiple offset directions technique cannot guarantee generating a complete contour

due to indefinable regions.

6.4.2 Parametric Cuts

Although there are numerous difficulties associated with parameter-based machining

patterns as mentioned in Chapter 2 and section 6.2, it may on occasion be the most

appropriate choice. Hence we include a method of generating such cuts that employs

the 10M. For the following work we assume the surface points have been generated

at regular parametric intervals.
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The standard way of generating parametric cuts is to calculate the normal at each

surface point using the parametric definition and then generate the CL-data. Hence

the analogous method would be to approximate the normal at each surface point using

neighbouring surface points and then generate the CL-data.

However, we offer an alternative that generates pseudo-parametric cuts and is

consistent with the 10M. To do so we define the lifted offset grid, an offset grid

where the grid points are generated by projecting the surface points along the tool­

axis onto the offset grid plane, i.e. when viewed along the tool-axis the grid points

line up exactly with the surface points. The 10M is then used to generate the cutter

paths. The main difficulty of using lifted offset grids lies at the boundary of the part.

This is because the grid points will end wherever the definition ends. It is therefore

necessary to extend the surface definition to include a cutting plane, see section 4.1,

which will provide grid points beyond the boundary of the part. However the

transition from above the surface to above the cutting plane may not be ideal since the

part and cutting plane are defined distinctly from each other. Figure 6.21 illustrates

the different paths generated by the standard parametric method and the lifted offset

grid method. Note that, although not indicated in the figure, the lifted offset grid

method will benefit from the cliff modification.

[[!1/
~

Parame tric .--.
Method

I
Lifted Offset
Grid Method

,~
Cutting Plane Points

Figure 6.21: Two ways of generating parameter based cutter paths

119



6.4.3 Pencil-Curve Cuts

Pencil-curve machining consists of just a single pass that traces along tight concave

edges of a surface. This operation is widely used in die-surface machining to either

relieve the load a tool experiences in a subsequent cut or to clean-up uncut volumes in

concave regions where previous cuts using larger radius cutters have missed. We

give two alternative methods both taken from the literature and consistent with the

10M for tackling this problem.

The first method, described by [Saito 1991], can only be applied to generating clean-

up pencil-curves and relies on the accurate identification of uncut regions. Firstly the

10M is used to generate the cutter paths for a given tool, Figure 6.22 shows a cross­

section for one of the paths. The cutter paths themselves are then offset using the

10M to regenerate the surface definition. Any regions that do not correspond directly

with the original surface indicate regions that cannot be accessed by the original tool.

Offset generated by 10M

f l t 1"-

/
Surface regenerated by 10M

f +"- Unmachined region

Figure 6.22: Identification of unmachined regions

These regions are then evaluated using a variable called the 'static milling volume' to

determine whether they contain enough unmachined material to warrant a pencil­

curve cut. If they do, then the peak values of unmachined volume are traced to define

the cut. The author does not give typical values for the static milling volume and so

although the method itself is simple to implement, further research is required to
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establish a suitable threshold value for this variable above which it is desirable to

machine the region.

The second method by [Park et al1998] uses the 10M to generate the offset surface

and then evaluates the quality of each offset point as a pencil point, i.e. a sharp

concave point. The points are classified as Gold, Silver, Bronze or Clay; Gold

representing a very good pencil point and Clay the points that are least pencil-like.

Strings of good quality pencil points are generated to form pencil-curves that are then

smoothed to generate the final pencil-curves. An adaptive sampling scheme is

included as an option to efficiently increase the accuracy of the method.

The method by [Park et al 1998] includes a number of heuristic tests each of which

requires a total of 9 'magic numbers' to be defined by the user. Though default

values are suggested, these are motivated by the generation of cutter paths for

stamping-dies in the automotive industry and hence to implement this method,

extensive testing may be required to establish suitable values for the application in

question.

To summarise both methods offer effective pencil cut generation routines and both

are built on the 10M. Also the error analysis from Chapter 3 should prove helpful in

establishing their relative efficiency and accuracy.

6.5 Sampling Interval

Crucial to the quality and efficiency of the 10M and the cutter paths generated is the

optimisation of the sampling interval of the points. In this section we only consider

optimising the sampling interval of the grid points and not the surface points. It

should be noted however, that the surface definition could be recursed, i.e. filled in, if

a denser set of points is required.
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In sub-section 6.5.1 we restrict ourselves to two dimensions and consider only a

single planar pass of the cutting tool. In sub-section 6.5.2 we highlight the

consequences of extending naively from 2D to 3D by considering a number of

neighbouring planar passes.

6.5.1 Sampling Theory

Cutter Path Point Frequency

In sampling theory the objective is typically to represent accurately the original

pattern of some analogue data using discrete data. For example when digitising

sound, the sampling rate should be sufficiently frequent to pick up the highest

frequency contained within the sample. Nyquist's theorem states that the frequency

of the sampling rate should be at least twice that of the highest frequency contained

within the original sample. Figure 6.23 shows the result of sampling with a frequency

less than this. The wavelength exhibited by the sampled points, As, is three times that

of the original, Ao• Using the analysis contained in Chapter 3 it is assumed that the

surface points are sampled at sufficient frequency to accurately represent the surface.

Maximum sampling
interval according to
Nyquists theorem. Sampled Points-.

Figure 6.23: Result of sampling less frequently than suggested by Nyquist's theorem
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However we are faced with a different objective from that of typical sampling theory

for the cutter path points. The underlying pattern in the offset surface will reflect the

shape of the inverted cutter, Figure 6.24 shows an example of this.

-~- ­
10M Wave Pattern

Surface Points

• • • •
Figure 6.24: Wave pattern created by using the 10M with a ball-nosed cutter

The objective here is to avoid picking up the shape of the inverted tool. Hence using

Nyquist's theorem we can deduce that:

1 2
-<- ~ c>.J,s
c S

(6.2)

where c is the cutter path point separation and s is the surface point separation. The

effect of the wave pattern can be further reduced by requiring:

c = IS where i E Z+ (6.3)

Figure 6.25 shows the result of letting c=2s, as can be seen the result is that the

sampled points completely miss the tool shape. In practice the wavelength will not be

constant due to the surface varying in shape and gradient. However by making the

ratio, s:c, as large as possible while satisfying the tolerances given in Chapter 3 we

help even out the distribution of the error and hence improve the surface finish.

Resulting samples avoid inheriting wave pattern.

~

Surface Points

• • • •
Figure 6.25: Relation (6.3) results in reducing the effect of the 10M wave pattern
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Cutter Path Point Distribution

If we are generating paths for a part shape that contains flat regions and highly curved

regions then selecting a single sampling interval for all of the cutter path passes will

lead to high inefficiency. The work presented here can be seen as an extension to the

work presented in Chapter 4 on the cliff problem. However instead of simply

increasing the density of the cutter path points to handle tangent discontinuities, i.e.

regions with infinitely large curvature, we propose a graded map of the part where the

gradient of a region determines the density of the grid points. The grade is a function

of the local surface curvature, normal direction and the cutter radius.

Figure 6.26 shows the cross-section of an example extruded-surface and the 2D

version of a grade map. Grade I signified by a white region corresponds to a

practically linear region of offset and hence needs no internal grid points at all, just

one at either end of the region. The next three grades have increasing grid point

density, up to grade 4 that is also suitable for tangent discontinuities. Using the

analysis in Chapter 3 we can determine a suitable grid point separation for each

region. The optimum number of grades that should be used to define a grade map

requires further investigation but relation (6.3) from the previous section naturally

determines the minimum intervals each grade should have.

Grade Map

0Grade I

0Grade 2

I Grade 3

I Grade 4
Offset

Cross-Section

Figure 6.26: Cross section of extruded surface and grade map determining grid point separation
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6.5.2 Extension to 3D

Using the above method each pass can be generated in isolation and cutter paths

generated to within tolerance. However, we now highlight the result if care is not

taken when generating multiple neighbouring passes. Suppose by using the method

described in sub-section 6.5.1 we generate a grid for a part. Depicted in Figure 6.27

is a portion of this grid for a spherically shaped part of the surface.

, Grid Points

Misaligned Column

/

Figure 6.27: Example grid generated by method described in sub-section 6.5.1

The misalignment in column 2 could occur because of the shape of the part beyond

this portion of the grid. Figure 6.28 shows a simulation of machining these cutter

paths. As can be clearly seen the misaligned grid points result in the undesirable

feature of a cusp line that zigzags across the surface. Even the aligned grid points

result in a slightly stepped effect in the cusp line that is highlighted by its shadow.

This result is also apparent in the machining of the shoe produced by the 10M. In

Figure 6.29, the circled region in both the picture and the simulation contains

evidence of the effect artificially created in Figure 6.28. Solving this problem is not

trivial and requires further research to provide a solution.
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Figure 6.28: Simulation of machining using grid from Figure 6.27

I
I

I
I., )~ation

- • -'=--~ I

Figure 6.29: The machining of the shoe and its simulation
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6.6 Summary

In this chapter we have briefly covered a number of issues associated with creating a

CAM package capable of generating cutter paths for multi-surfaces. Undoubtedly

there are other problems but we have restricted ourselves to considering those which

are generic to all CAM packages.

It was found that in many cases the geometric nature of the point-based algorithm

provided an immediate solution. In the remaining cases the results of preliminary

investigations were given but still require further research to provide appropriate error

analysis.
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Chapter 7

Conclusions

In this thesis we have developed an algorithm for efficiently generating good quality

cutter paths for a part whose shape is defined by a set of points. This work builds on

the point-based approach to CAD/CAM and is motivated by a sensible consideration

of the tolerances used throughout the design and manufacturing process. Current

industrial practice is based on the parametric definition, which is regarded as being an

exact definition even though it is the culmination of inexact design processes and the

origin of inexact manufacturing processes. Our objective has been to provide the

theory required for adding machining capability to a point-based CAD/CAM package.

The research began in Chapter 3 with an evaluation of the Inverse Offset Method as a

possible algorithm for generating cutter paths from sets of points. An error analysis

was performed and its accuracy confirmed by the machining of an actual example.

For the error analysis it was assumed that a ball-nosed cutter would be used. Figure

7.1 shows the error for a ball-nosed cutter as calculated in sub-section 3.1.3.

Extending the analysis to include other shaped tools remains an outstanding issue. It

is anticipated that the main difficulties of such a generalisation would centre around

tool profiles containing a tangent discontinuity as in the case of the flat-end cutter.

Figure 7.2 illustrates the maximum error that results from machining with a flat-end

cutter for a point set identical to that as shown in Figure 7.1 for the ball-nosed cutter.
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Error

Figure 7.1: Error that results from using a ball-nosed cutter

Figure 7.2: Error that results from using a flat-end cutter

In Chapter 4 we provided a modification to the 10M that allowed the machining of a

cliff-edge to within a tolerance consistent with the rest of the part. Currently the

modification is only applicable to cliff-edges that lie between the part and the cutting

surface but the work could be adapted so as to be applicable to all tangent

discontinuities. The key to such a generalisation lies in the locating of regions

requiring special attention. Since the part is discretely defined it is anticipated that

such an algorithm would need to flag regions containing sequences of points that

exhibit curvature greater than some prescribed tolerance. Note that such a
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modification is effectively just a sub-case of the theory presented in sub-section 6.5.1

in which it is suggested that an adaptive scheme be implemented for generating

curvature dependent CL points to improve efficiency.

In Chapter 5 we presented four different optimisations for the 10M which all require

that the point data be ordered in sections. We formulated the dual process which

exploited the order of the cutter paths and not the surface data meaning that the

optimised algorithms are applicable to all sets of surface points. Placing the

constraints on the cutter paths is not restrictive because cutter paths generally lie in

ordered sections. These optimisations were implemented and run on the test piece.

The result was a significant improvement in performance; generation periods were

achieved comparable to that of the commercial package. Further optimisations could

be achieved by using a bucketing system such as that employed by [Drysdale and

Jerard 1989] for their simulation algorithm. Alternatively by pre-ordering the data sets

the optimisations could be used on all given point definitions.

Finally in Chapter 6 we considered some of the issues raised by multi-surfaces. At

this point we reap a number of benefits from having employed a point-based strategy.

The disassociation from parametric representations nullifies a number of difficulties

that parameter-based CAD/CAM packages must still tackle, e.g. data exchange,

correlation between parameterisation and shape, correlation of parameterisation

between two surfaces. However two issues remain outstanding:

• Negotiation of inexact convex trims,

• Adaptive calculation of CL point intervals in 3D.

The latter issue is of prime concern and is crucial to the performance of any

machining algorithm. The distribution of the points is critical to the surface finish and

hence even though a part may be machined to within tolerance the result can still be

unsatisfactory as illustrated in sub-section 6.5.2. This is an issue that must equally be
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tackled by parameter-based algorithms which in turn may provide a comparable

solution.

It is anticipated that a complete change to a point-based system may not be in the best

interests of most companies and hence investigation into a hybrid system that

incorporates both surfaces and points may be beneficial.

In summary we have developed a point-based algorithm that can efficiently generate

good quality cutter paths. The 10M is presented as part of the point-based approach

to CAD/CAM as an alternative to parameter-based approaches and has key

advantages in reverse engineering, data exchange and manufacture. To conclude we

have demonstrated that the point-based strategy is a feasible and positive direction for

CAD/CAM from which the manufacturing industry should benefit.
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Appendix 1

When sampling points using the CMM two software packages are used to generate

the probe centre, in this appendix we derive the error introduced by them. The first

package (Pack 1) outputs approximated contact points using the probe centre data

provided by the CMM. However as explained in section 3.3, it is the probe centre,

not an approximate contact point that is desired. Unfortunately an unknown

algorithm is used by Pack 1 and so we cannot formulate the reverse process exactly.

Instead we use a second piece of software, Pack 2, to approximate the probe centre.

We use a naive algorithm to simulate the calculations performed by Pack 1 and

assume that the error of our algorithm is greater than that of the software. It is

assumed that Pack 2 introduces less error than Pack 1 because it has access to all the

data given by Pack 1; whereas Pack 1 can only access previously sampled points from

the CMM.

Illustrated in Figure A 1.1 is the motion of the probe as it samples points along a

profile. The probe starts at a prescribed clearance distance away from the surface. It

then moves towards the surface until contact is made. The probe then moves away

from the surface by the clearance distance and then along the tangent by the user set

sampling distance. The process repeats until the user-defined end point is reached.

Figure A1.1: Illustration of the probe's motion
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We now describe our simulation of Pack 1 and calculate an error bound for the

approximation of the contact point.

Let Po and P I be the last two probe centre points sampled, rs be the radius of the

sphere used to approximate the surface locally and rp be the radius of the probe.

Figure A 1.2 illustrates these parameters on an example. The tangent is approximated

by joining Po and PI. After retreating from the surface by the clearance distance, the

probe moves along the approximated tangent by the sampling interval, l. Then the

probe moves towards the surface, normal to the approximated tangent. When contact

is made the new probe centre is used to approximate the contact point.

t

Figure Al.2: Illustration of parameters

(J

Approximated
contact point

Actual contact point

First we calculate e and then calculate the discrepancy between the approximated

contact point and the surface. It can be shown that:

I 1(~r2 fFr2 )a=tan- - --1- --9
2 f f

~ =2sin~I(L)

e=a+{3

133



where r = rs +rp if the surface is convex or r = rs -rp if the surface is concave. To

find the error bound appropriate for our measurements let I = 2mm, rs = 16mm (which

corresponds to a convex region) and rp = 1mm:

r= 17mm

a = 6.7683°

f3 =6.7445°

() = 13.5128°

(4 d.p.)

(4 d.p.)

(4 d.p.)

To calculate the error introduced by approximating the contact point we find the

distance between the approximated point and the surface, Figure A 1.3 illustrates this

calculation.

error(approximation of contact point)

Figure A 1.3: Calculating the error of the approximated point

Note that the corresponding calculation for a concave surface requires a slight

modification to the procedure presented above. From the figure and the cosine law:

134



Again we use the parameters specific to our measurements to calculate the error:

error(approximation of contact point)= d-rs

= 0.0294 (4 d.p.)

Assuming the error introduced by Pack 2 is less than the error introduced by Pack 1:

error(approximation of probe centre) < 2.error(approximation of contact point)
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Appendix 2
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Appendix 3
In this appendix we give implementation details and program operation of the

algorithms that were investigated in this thesis. All the algorithms were developed in

Microsoft Developer Studio on Windows NT. All programs used the 'math.h ' header

file also. The 10M was written in C, while all the optimisations were written in C++.

In Figure A3.1 a flow chart is given the program structure of the 10M.

For each surface point ......

Offset the grid point with respect to the surface point

Figure A3.1: IOMs program structure

Figure A3.2 shows the program structure of the S-IOM and PPS-IOM. The only

difference between the two is in the way that a section is checked to see if it is active.

For each surface point on an active column

Offset the grid point with respect to the surface point .

Figure A3.2: The S-IOM and PPS-IOMs program structure

Figure A3.3 shows the program structure of the ES-IOM and EPPS-IOM. As for the

S-IOM and the PPS-IOM, the only difference between the two algorithms is the way

in which a section is checked to see if it is active.

For each surface point in the active zone

Offset the grid point with respect to the surface point

Figure A3.3:The ES-IOM and EPPS-IOMs program structure
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