
Chapter 16
Undesirable Anisotropy in a Discrete Fiber
Bundle Model of Fibrous Tissues

Cormac Flynn and M.B. Rubin

Abstract Lanir (J Biomech. 16(1):1–12, 1983) proposed a structural model for the
anisotropic response of fibrous tissues with fiber bundles oriented in space by a
continuous orientation distribution. Each fiber bundle was assumed to have the same
undulation distribution that characterizes its nonlinear elastic response. Recently, a
discrete fiber icosahedron model for fibrous soft tissues has been introduced, which
is based on fiber bundles parallel to the six lines that connect opposing vertices
of a regular icosahedron. Although the parameters in the icosahedron model can
be determined to match experimental data for the anisotropic response of various
tissues, the icosahedron model predicts anisotropic response when the weights of
the six fiber bundles are equal. This chapter quantifies this undesirable anisotropic
response and refers to a new icosahedron model based on a generalized invariant
which also matches experimental data and analytically reduces to an isotropic form
when the weights of the fiber bundles are equal.

16.1 Introduction

Lanir (1983) proposed a structural model for the anisotropic elastic response of
fibrous tissues which was based on the idea that the tissue is a collection of fiber
bundles that are characterized by continuous orientation and undulation distribution
functions. More specifically, it was assumed that each fiber bundle is a collection of
coiled or undulated fibers and that an individual fiber does not resist compression
or extension when it is undulated. Consequently, it resists extension only when it
is straight. Thus, the undulation distribution characterizes the nonlinear response of
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the fiber bundle to stretching. Moreover, it was assumed that undulation distribution
is independent of orientation with each fiber bundle exhibiting the same response to
extension.

Within the context of this type of structural model the strain energy function is
expressed as a double integral over the orientation and undulation distributions. Due
to nonlinearity induced by general undulation distributions, it is usually not possible
to evaluate these integrals analytically. A number of procedures for numerical
integration over a sphere have been discussed in Bazant and Oh (1986), Ehret et al.
(2010), and Itskov et al. (2010) which evaluate the integrand at a finite set of
specific orientations and which cause varying degrees of unphysical anisotropy due
to discretization.

Structural models with a finite collection of fibers have been used to study
the response of low-density materials with open cells and fiber-dominated matrix
composites (Christensen 1986; Christensen 1987). Models of this type that are based
on orientations determined by opposing vertices of a regular icosahedron and of
a dodecahedron (ten fibers) have been studied in Elata and Rubin (1994, 1995).
Also, an icosahedron model for anisotropic response of fibrous soft tissue using six
discrete fiber bundles oriented in the directions of opposing vertices of a regular
icosahedron was recently considered in Flynn et al. (2011). Specifically, in Flynn
et al. (2011) the strain energy function for each fiber bundle was assumed to be the
same function of the stretch of the fiber bundle and the strain energy of the entire
tissue was taken to be a weighted sum of the strain energies of each of the six fiber
bundles in the discrete icosahedron model. Moreover, the strain energy function was
determined by simple undulation distributions which ensure that the fiber bundle
cannot be compressed. It was shown in Flynn et al. (2011) that the weights and
the material parameters of the undulation distribution can be determined to match
large deformation experimental data for the anisotropic response of various tissues.
However, it was also noted in Flynn et al. (2011) that for the proposed undulation
distributions, the tissue response was not isotropic even when the weights of the
strain energy of each fiber bundle are the same. This means that unequal weights
cannot be interpreted as the sole contribution to anisotropy.

The objective of this chapter is to analyze this undesirable anisotropy induced
by fiber undulation distributions in a discrete icosahedron model similar to the one
discussed in Flynn et al. (2011). An outline of this chapter is as follows. Section 16.2
describes a simplified icosahedron model for which the strain energy function of
each fiber bundle is taken to be a function of the Lagrangian strain of the fiber bundle
and not its stretch. As in Flynn et al. (2011), the strain energy of the entire tissue is a
weighted sum of the strain energies of the specified fiber bundles. Section 16.3 uses
the response to isochoric extension to quantify undesirable anisotropy caused by the
nonlinearity of simple undulation distributions. The undesirable anisotropy caused
by discreteness of the icosahedron model is also analyzed in Sect. 16.4 using a
refined icosahedron model for which the strain energy function is an average of the
strain energy function for N icosahedron models with different fiber orientations.
Section 16.5 introduces a randomly oriented fiber model and Sect. 16.6 presents
conclusions.
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16.2 An Icosahedron Model of the Fiber Distribution

For an icosahedron model of the fiber distribution the six unit vectors Ni (i D 1,
2, : : : , 6) that are parallel to the six lines connecting opposing vertices of a regular
icosahedron are specified relative to the rectangular Cartesian base vectors ei (i D 1,
2, 3) by the expressions (see Fig. 16.1)
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(16.1)

Moreover, it is convenient to define the symmetric structural tensors Bi, such that

Bi D Ni ˝ Ni .no sum on i D 1; 2; : : : ; 6/ ; (16.2)

Fig. 16.1 Sketch of a regular
icosahedron showing the
vectors Ni
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where
N

denotes the tensor product operator. Then, using the work in Elata and
Rubin (1994) it can be shown that for an arbitrary second order tensor E

6X
iD1

Bi D 2 I;
6X

iD1

Bi � E D 2 E � I; (16.3a, b)

6X
iD1

.Bi ˝ Bi/ � .E ˝ E/ D
6X

iD1

.Bi � E/2 D 2

5

h
.E � I/2 C 2 .E � E/

i
; (16.3c)

where I is the second order unity tensor, A � B D tr
�
ABT

�
denotes the inner product

between two second order tensors fA, Bg and (16.3c) generalizes the inner product
operator for fourth order tensors.

Next, recall that a material point located by X in the reference configuration is
deformed to the position x in the present configuration at time t. The mapping from
the reference to present configurations, the deformation gradient F, dilatation J, and
Lagrangian strain E are given by

x D x .X; t/ ; F D @x=@X; J D det .F/ > 0; E D 1

2
.C � I/ ; C D FTF:

(16.4)

Moreover, the Lagrangian strains Ei (i D 1, 2, : : : , 6) of the material fibers in the Ni

directions are defined by

Ei D E � Bi .i D 1; 2; : : : ; 6/ : (16.5)

Now, for a compressible hyperelastic material the strain energy function W per
unit mass for the icosahedron model is specified by

�0W D
6X

iD1

wif .Ei/; wi � 0;

6X
iD1

wi D 1; (16.6)

where �0 is the reference mass density, the strain energy function f of each fiber
bundle has the same form, and wi are nonnegative weighting functions. Using the
usual arguments it follows that the symmetric Piola–Kirchhoff stress S and the
Cauchy stress T associated with (16.6) are given by

S D
6X

iD1

wi
df .Ei/

dEi
Bi; T D J�1FSFT: (16.7a, b)

For the simple case of a single fiber bundle it follows that

w1 D 1 all other wi D 0; S1 D S � B1 D df .E1/

dE1

; (16.8)
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so that the stiffness K of the fiber bundle is given by

K D dS1

dE1

D d2f .E1/

dE2
1

: (16.9)

As discussed by Lanir (1983), the collagen fiber bundles in soft connective tissues
are typically coiled in the stress-free reference configuration and the stress response
of each fiber bundle is characterized by an undulation distribution D(x) which is
normalized so that Z 1

0

D.x/ dx D 1; (16.10)

where the fraction of fibers that are straight at the strain E is given by

Z E

0

D.x/ dx: (16.11)

Furthermore, assuming that the stiffness of each collagen fiber in the bundle is
constant Ec when the fiber is straight, the function f in (16.9) is determined by
integrating the expression

d2f .E/

dE2
D Ec

Z
0

E

D.x/ dx for E � 0: (16.12)

In this expression it is tacitly assumed that the fiber in the bundle is coiled when it
is compressed and that it makes no contribution to the stress when it is not straight
(E � 0).

To investigate undesirable anisotropy caused by nonlinearity of the undulation
distribution in the discrete icosahedron model, the weights are taken to be equal

wi D 1

6
.i D 1; 2; : : : ; 6/ ; (16.13)

and the strain energy function of the tissue is given by

�0W D 1

6

6X
iD1

f .Ei/: (16.14)

16.2.1 Anisotropic Response Case I

The simplest distribution considered in Flynn et al. (2011) is a step distribution that
vanishes for x � x1 and x > x2 and is constant in the interval x1 � x � x2, such that

D.x/ D 0 for x < x1 and x > x2;

D.x/ D 1

x2 � x1

for 0 � x1 � x � x2; (16.15)
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where x1 is a nonnegative constant that characterizes the strain when the first fiber
in the fiber bundle becomes straight. It then follows that the solution fI of (16.12) is
given by

f .E/ D fI.E/ D EchE � x1i3

6 .x2 � x1/
for E � x2;

f .E/ D fI.E/ D Ec.x2 � x1/
2

6
C Ec .E � x1/ .E � x2/

2
for E > x2;

(16.16)

where the Macaulay brackets hxi are defined by

hxi D 1

2
.x C jxj/ : (16.17)

16.2.2 Isotropic Response

For the simple case when the stiffness of the collagen fiber bundle is constant Ec

and the fiber is allowed to resist compression, the strain energy function f in (16.9)
is given by

f .E/ D EcE2

2
: (16.18)

It follows from (16.3c), (16.5), and (16.14) that the associated strain energy function
for the tissue is an isotropic function of the strain E given by

�0W D Ec

12

6X
iD1

E2
i D Ec

30

h
.E � I/2 C 2 .E � E/

i
: (16.19)

16.2.3 Anisotropic Response Case II

In order to analyze the influence of the assumption that the fibers cannot support
compression when they are coiled, the strain energy function (16.19) is modified to
take the form

f .E/ D fII.E/ D Ec

2
hE � x1i2; �0W D Ec

12

6X
iD1

hEi � x1i2: (16.20)

Figure 16.2 plots the functions fI and fII that characterize the strain energy of the
fiber bundles associated with (16.16 and 16.20), respectively.
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Fig. 16.2 Functions fI and fII

characterizing the strain
energy of fiber bundles

16.3 An Example of Isochoric Extension

In order to prove that a strain energy function characterizes isotropic response it
is necessary to prove analytically that it depends on the strain E only through its
invariants. In contrast, it is sufficient to consider a single numerical simulation to
prove that a strain energy function exhibits undesirable anisotropy. To this end,
it is convenient to define the right-handed orthonormal triad ai in the reference
configuration with fa1, a2g being in the plane of the vectors fN1, N2 C N6g, such
that

a1 D N1; a2 D a3 � a1; a3 D a1 � .N2 C N6/

ja1 � .N2 C N6/j : (16.21)

Moreover, it can be shown that the angle ˇ between a1 and the vector (N2 C N6) is
given by

ˇ D cos�1

 p
2p

5 C p
5

!
> 0: (16.22)

Then, it is possible to define another right-handed orthonormal triad of vectors Ai

parametrically in terms of the parameter ˛, such that

A1 D cos .˛ˇ/ a1 C sin .˛ˇ/ a2; A2 D � sin .˛ˇ/ a1 C cos .˛ˇ/ a2;

A3 D a3; 0 � ˛ < 1:
(16.23)

Specifically, this causes A1 to rotate about the A3 axis from the orientation a1 to the
vector a2 that is parallel to (N2 C N6) as ˛ ranges from zero to unity (see Fig. 16.3).
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Fig. 16.3 Sketch of the angle
� and triads ai and Ai of
vectors characterizing the
orientation of the sample of
material that is being loaded
in isochoric extension

Next, consider isochoric extension relative to Ai and specify F in the form

F D a A1 ˝ A1 C 1p
a

.A2 ˝ A2 C A3 ˝ A3/ ; a > 0; (16.24)

where a is the stretch of a material fiber in the A1 direction. It follows that this
deformation field can be used to examine the response of samples of the material
with different orientations in the reference configuration (characterized by the value
of ˛) to the same isochoric extension (characterized by the value of a).

Using the deformation (16.24), it is possible to calculate the value of the strain
energy as a function of fa, ˛g. In particular, when the weights wi are equal (16.13),
the strain energy function (16.14) takes the values fWI, WIIg, respectively, for the
specifications (16.16) and (16.20) with

�0WI .a; ˛/ D 1

6

6X
iD1

fI .Ei/; �0WII .a; ˛/ D 1

6

6X
iD1

fII .Ei/: (16.25)

Therefore, the relative errors fERI, ERIIg in these strain energy functions for a
specific value of a and varying values of ˛ can be defined by

ERI .˛/ D WI .a; ˛/

WI .a; 0/
� 1; ERII .˛/ D WII .a; ˛/

WII .a; 0/
� 1: (16.26a, b)

In the following example it will be shown that both of the models (16.16 and
16.20) predict undesirable anisotropy even though the weights wi have been taken
to be equal (16.13). Specifically, for the example specify

x1 D 1; x2 D 4; a D 3: (16.27)
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Fig. 16.4 Errors fERI, ERIIg
quantifying the undesirable
anisotropy for the two
icosahedron models
characterized by the
undulation distributions,
(16.16) and (16.20),
respectively

Figure 16.4 plots the errors fERI, ERIIg as functions of ˛. The maximum magnitudes
of these errors are about f69 %, 34 %g, respectively, for fERI, ERIIg. Since the values
of these errors are nonzero, it follows that nonlinearity of the undulation distribution
causes undesirable anisotropy in the discrete icosahedron model. Moreover, com-
parison of (16.16) with the isotropic strain energy (16.18) indicates that anisotropy
predicted by (16.16) fi.e., ERIg is due to both the cubic dependence on strain and
the presence of the cutoff strain E D x1. In contrast, comparison of (16.20) with the
isotropic strain energy (16.18) indicates that anisotropy predicted by (16.20) fi.e.,
ERIIg is due solely to the cutoff strain E D x1.

16.4 A Refined Icosahedron Model

In order to further analyze the influence of discreteness of the icosahedron model
on undesirable anisotropy, it is convenient to define a refined icosahedron model.
Within the context of the icosahedron model described in Sect. 16.2, it is necessary
to evaluate the strain energy function for only six directions defined by the vectors
Ni in (16.1). A refined icosahedron model can be obtained by defining the strain
energy function as an average of N D 6f5(4)J�1 C 1g icosahedron models with N
structural tensors Bi associated with N fiber orientations. The value of J (D1, 2 : : : )
determines the level of refinement as discussed presently.

To this end, it is noted that vectors Ni in (16.1) can be used to define five
equilateral triangles with the following triads of vectors locating the vertices of the
triangles

fNI; NIC1; N6g for I D 1; 2; : : : ; 4; fN5; N1; N6g for I D 5; (16.28)

each of which has the same vertex located by N6. These five triangles can be
tessellated into 4J�1 equilateral triangles (J D 1, 2, : : : ) as shown in Fig. 16.5.
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Fig. 16.5 Sketch of
tessellation of an equilateral
triangle into 4J�1 equilateral
triangles

For example, a typical triangle has vertices located by the three unit vectors ci (i D 1,
2, 3) and its centroid is located by the unit vectors c defined by

c D c1 C c2 C c3

jc1 C c2 C c3j : (16.29)

Next, the proper orthogonal rotation tensor R(c) is defined which rotates the vector
N6 to the vector c counterclockwise by the angle ı about the unit direction n3, which
is normal to the N6�c plane. Specifically, define the right-handed triad of vectors ni

by the expressions

n1 D N6; n2 D c � .c � n1/ n1

jc � .c � n1/ n1j ; n3 D n1 � n2: (16.30)

Then, R(c) can be written in the form

R .c/ D .cos ın1 C sin ın2/ ˝ n1 C .– sin ın1 C cos ın2/ ˝ n2 C n3 ˝ n3;

(16.31)

where the acute angle ı between the vectors n1 D N6 and c is given by

ı D cos�1 .n1 � c/ : (16.32)

For each value of R(c) an additional icosahedron model is generated using the six
structural tensors Bi (i D 1, 2, : : : , 6) in (16.2) to obtain the following six additional
structural tensors

R.c/BiRT.c/ for i D 1; 2; : : : ; 6: (16.33)

The resulting refined model has N structural tensors Bi, associated with N fiber
orientations and the strain energy function is specified by

�0W D �0WI .a; ˛/ D 1

N

NX
iD1

fI .Ei/; Ei D E � Bi .i D 1; 2; : : : ; N/ : (16.34)
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In these expressions, Ei is the component of the Lagrangian strain of a fiber bundle
in the direction Bi, the function fI associated with the undulation distribution of the
fiber bundle is specified by (16.16), and the parameters f˛, ag in (16.23) and (16.24)
characterize the loading. This model has N fibers, which are equally weighted. In
this regard, it should be emphasized that the definitions of the fiber orientations
in the refined icosahedron model are different conceptually from orientations used
to obtain numerical approximations of integrals over the unit sphere, which are
weighted unequally in order to increase accuracy of integrating specific functional
forms (e.g., Ehret et al. 2010; Bazant and Oh 1985). Moreover, it is noted that since
Bi (i D 1, 2, : : : , 6) satisfy (16.3a) it follows that the refined icosahedron model has
the symmetry that

NX
iD1

Bi D 3

N
I; (16.35)

for any level of refinement J.
As an example, use is made of the specifications (16.27) and the error ERI is

defined by (16.6). Figure 16.6 shows predictions of the error ERI for different
values of refinement. Specifically, for N D 6 the results correspond to the simple
icosahedron model described in Sect. 16.2; and the other predictions correspond
to the refined icosahedron model with N D 36 for J D 1, N D 126 for J D 2, and
N D 486 for J D 3. Also, Fig. 16.7 focuses attention on the results for the higher
values of N. These results indicate that even for a relatively simple strain energy
function a large number of fibers are needed to obtain nearly isotropic material
response. At this point it is not clear why the error predicted by the refined
icosahedron model does not reduce monotonically with increased refinement.

Fig. 16.6 Reduction in the
error ERI predicted by the
refined icosahedron model for
the values N D 6, 36, 126,
486 of the number of fiber
bundles in the model
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Fig. 16.7 Reduction in the
error ERI predicted by the
refined icosahedron model for
the higher values N D 36,
126, 486 of the number of
fiber bundles in the model

16.5 Equal Area Model

It is well known that the regular polyhedron (Platonic solid) with the greatest
number of faces is the regular icosahedron with 20 faces. Consequently, with regard
to numerical integration schemes over the unit sphere, Bazant and Oh (1985) state
that “we cannot have, for a hemisphere, a numerical integration formula with more
than N D 10 regularly spaced points : : : .” Nevertheless, in this section it is of
interest to consider a model based on N oriented fibers which locate the centroids
of patches of a hemisphere that have equal areas. In particular, this model is used
in conjunction with the refined icosahedron model of the Sect. 16.4 to help quantify
the number of fibers needed to reduce the error due to unphysical anisotropy.

An approximate uniform distribution of fibers can be developed by dividing the
surface area of a hemisphere into patches that have the same areas. Specifically,
consider the unit vector N defined in terms of the spherical polar angles f� , �g by

N D N .�; �/ D sin .�/ Œcos .�/ e1 C sin .�/ e2� C cos .�/ e3: (16.36)

It follows that the upper surface of hemisphere is characterized by the ranges

0 � � � 2�; 0 � cos .�/ � 1: (16.37)

Moreover, the area A of a patch on a hemisphere with unit radius for f� , �g in the
ranges �i � � � �iC1 and ˚j � � � ˚jC1 is given by

A D .�iC1 � �i/
�
cos

�
˚j
� � cos

�
˚jC1

��
: (16.38)

Consequently, the area of this hemisphere can be divided into N D K2 equal areas
by specifying f�i, ˚ jg in the forms
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�i D 2� .i � 1/

K
for i D 1; 2; : : : ; K C 1;

˚j D cos�1

�
K C 1 � j

K

�
for j D 1; 2; : : : ; K C 1: (16.39)

Then, the values f� i, � jg of f� , �g, which locate the centroids of these regions can
be defined by

�i D 1

2
.�i C �iC1/ for i D 1; 2; : : : ; K;

�j D cos�1

�
1

2

˚
cos

�
˚j
�C cos

�
˚jC1

�	

for j D 1; 2; : : : ; K: (16.40)

Now, using these values f� i, � jg the fibers are oriented in the N directions Ni defined
by (16.36) with � taking the K values � i for each of the K values of � j. Also, the
associated structural tensors Bi are given by

Bi D Ni ˝ Ni .no sum on i D 1; 2; : : : ; N/ : (16.41)

Next, it is convenient to define the average structural tensor B by the expression

B D 1

N

NX
iD1

Bi: (16.42)

For fibers uniformly distributed over the hemisphere, it would be expected that this
average structural tensor would be a scalar times the unity tensor I. Consequently,
an error measure of uniformity can be defined in terms of the relative magnitude of
the deviatoric part B

0
of B defined by

ERB D
vuuut 9B

0 � B
0

�
B � I

�2
; B

0 D B � 1

3

�
B � I

�
I (16.43)

Due to the result (16.35), the refined icosahedron model will predict that ERB

vanishes for all levels of refinement.
For the equal area model the strain energy function WI(a, ˛) is specified by

(16.34) and the error ERI(˛) is specified by (16.26a) using the values (16.27) and
the deformation (16.24). Figure 16.8 shows the predictions of ERI(˛) for different
values of the number N of fibers and Table 16.1 records the associated values of
the error ERB in (16.43). These results indicate that for N D 49 the equal area
model is less accurate than the refined icosahedron model for N D 36. However,
the monotonic error reduction with increasing values of N predicted by the equal
area model suggests that the fibers are more uniformly distributed in the model than
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Fig. 16.8 Reduction in the
error ERI predicted by the
equal area model for different
values of the number N of
fibers

Table 16.1 Values of the
error ERB in (16.40) predicted
by the equal area model

N ERB (%)

36 0.85
49 0.62
64 0.48
121 0.25

in the refined icosahedron model. Moreover, it is noted that the equal area model
predicts the error due to unphysical anisotropy to be less than 3 % for N D 64. Even
for this simple strain energy function, the computational effort required to evaluate
the equal area model for N D 64 is significant since the constitutive equation must
be evaluated at each Gauss point in a finite element program. An alternative model
that significantly reduces the computational effort is discussed in the next section.

16.6 Conclusions

The structural model for anisotropic elastic response of fibrous connective tissue
proposed by Lanir (1983) has the simplicity that the undulation distribution of fibers
in each fiber bundle is independent of the orientation distribution. This suggests
that the orientation distribution can be correlated to histological observations of
fiber orientations. In particular, a random orientation of fibers should lead to
isotropic response of the tissue. However, from a computational point of view it
is necessary to discretize the evaluation of the integral over the orientation region.
This discretization yields a finite number N of nonlinear strain energy functions
(characterizing fiber bundles in specified orientations) that need to be evaluated for
each strain at each material point.

The example in Sect. 16.4 considered a refined icosahedron model and the
example in Sect. 16.5 considered an equal area model. For each of these models
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Fig. 16.9 Reduction in the
error ERI predicted by the
equal area model for the
higher values N D 49, 64, 121
of the number of fiber
bundles in the model

the strain energy function needs to be evaluated for each of the N fibers. Also, the
Cauchy stress is expressed in terms of a weighted sum of N symmetric tensors Bi

defined in (16.33). It was shown in Figs. 16.7 and 16.9 that the error ERI due to
unphysical anisotropy for the refined icosahedron model is less than 5 % for N D 36
and for the uniform area model is less than 7 % for N D 49. Of course, the magnitude
of the unphysical anisotropy depends on the specific loadings considered. Moreover,
these levels of refinement cause considerable increased complexity, which may not
be justified by the accuracy and availability of experimental data.

Within the context of the icosahedron model proposed in Flynn et al. (2011) the
tissue is modeled by only six fiber bundles, each of which has the same undulation
distribution. This model can be thought of as a specific discretization of the model
in Lanir (1983). It was shown in Flynn et al. (2011) that this icosahedron model can
successfully reproduce experimental data exhibiting anisotropic response. However,
it was shown in Sect. 16.3 here that this icosahedron model exhibits significant
undesirable anisotropy when the weighting functions wi in (16.6) are equal (16.13).
This means that anisotropy in the model is influenced by both the nonlinearity of the
undulation distribution and differences in the values of the weights. Consequently,
the weights wi are not pure measures of anisotropy of the histological orientations
of fibers in the tissue.

Itskov and Ehret (2009) have proposed an alternative model of tissues which is
based on a generalized invariant of deformation determined by a weighted average
of different structural tensors. This idea has been used in Flynn and Rubin (2012)
to develop a generalized icosahedron model. Specifically, a generalized structural
tensor W is defined in terms of the weights wi and the structural tensors Bi in (16.2)
of the icosahedron model by

W D
6X

iD1

wi Bi; wi � 0; W � I D
6X

iD1

wi D 1: (16.44)
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Also, the generalized strain invariant � is defined by

� D �
C C C�1

� � W � 2 � 0; (16.45)

where C is the right Cauchy–Green deformation tensor (16.4). Then, the strain
energy is taken to be a nonlinear function of � . In view of the property (16.3a)
of Bi it follows that for equal weights wi (16.13), � becomes an isotropic invariant
of C given by

� D 1

3

�
C C C�1

� � I � 2 � 0: (16.46)

In particular, the response of the tissue is analytically isotropic for any nonlinear
dependence of the strain energy on � in (16.46). Moreover, it was shown in Flynn
and Rubin (2012) that when the strain energy is a simple polynomial function of � ,
the coefficients of the polynomial and the weights wi can be determined to match
large deformation experimental data for the anisotropic response of various tissues.

The advantages of this generalized icosahedron model are that the number of
material constants is small, it can be simplified to produce isotropic response exactly
and � depends on only a single structural tensor W so the constitutive response is
simple to evaluate numerically. Specifically, this is a phenomenological model that
characterizes a coupled network of fiber bundles. In this regard, the generalized
icosahedron model has the disadvantage that the nonlinear elastic response of the
model is not simply connected to an undulation distribution of each fiber bundle, as
proposed in the structural model of Lanir (1983).
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