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Abstract

In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop
decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select
multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms
of outage probability and computation complexity. To reduce the amount of collected channel state information
(CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a
detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified
by Monte Carlo simulations.
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1 Introduction
The basic concept behind cooperative communication
can be traced back to [1], where the capacity of a
three-node cooperative network was analyzed. Subse-
quent works proved in [2–5] that relaying techniques can
achieve spatial diversity in wireless networks with only
single-antenna nodes. This diversity can be achieved using
a multitude of cooperative protocols and under differ-
ent design criteria and channel information assumptions
[6–11]. Among these protocols, two of the most widely
used are the amplify-and-forward (AF) and decode-and-
forward (DF) protocols.
However, most of the cooperative protocols in the lit-

erature select only one relay to forward the data to the
destination node [3]. The idea of single-relay selection was
first generalized from dual-hop AF network to multiple-
relay selection in [12]. Different schemes of multiple-relay
selection have been also proposed [7, 8, 13], where relays
are assumed to cooperate either with full power or do not
cooperate, i.e., no relay gain optimization is performed.
Furthermore, to satisfy the growing demand for high-

quality multimedia services in next-generation cellular
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networks, high data rates have to be provided to the
end users. Since mobile stations (MSs) are energy con-
strained devices, the transmit power of the MSs cannot be
increased indiscriminately. Hence, the data rate can also
be increased by reducing the distance between the source
and destination node using multi-hop cellular networks
whereby the base stations (BSs) would communicate with
the faraway and otherwise unreachable MSs in multiple
hops through intermediate relays [14–16].
However, when dealing with large DF relay networks

[17], and especially in multi-hop cooperative networks
[18–20], the relay selection process becomes highly com-
plex. In fact, in many applications such as device-to-
device (D2D) communication networks and wireless sen-
sor networks, a large number of cooperating nodes are
used, which leads to a dramatic increase in the complexity
of the relay selection process.
Compressive sensing theory has been applied recently

in the design of cognitive radio networks [21], finite-
impulse-response (FIR) linear equalizers [22], and relay
selection schemes in dual-hop networks. In particular, the
authors in [23] focus on multiple relay selection with a
noisy limited feedback. In [24], a limited-feedback relay
selection algorithm is also proposed and investigated for a
multi-cast relay network. In addition, a compressive sens-
ing (CS)-based relay selection algorithm that reduces the
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feedback overhead of relay networks under the assump-
tion of noisy feedback channels is presented in [25].
In [26], a full-duplex relay-aided multi-user network is
considered and the proposed scheme permits the BS to
obtain channel state information (CSI) from a subset of
strong users. CS is used also as joint source-channel cod-
ing (JSCC) for the source and the relays in multi-relay
compressive cooperative schemes [27].
In this paper, we propose and investigate two multi-

ple relay schemes for largemulti-hop decode-and-forward
relay networks. Our proposed schemes exploit the spar-
sity of the relay selection vector to select the relays by
minimizing the mean-square error (MSE) based on a
sparse signal recovery theory. We also propose and inves-
tigate a limited-feedback scheme in a multi-hop network,
where the source collects only a limited amount of CSI to
perform the selection.
In fact, when only few relays are selected from a large

number of nodes, the relay selection vector becomes
sparse. Hence, based on the sparse signal recovery theory,
different signal recovery algorithms such as orthogonal
matching pursuit (OMP) may be used to solve the relay
selection problem [17, 28]. Based on MSE minimization,
we propose two different techniques for multiple-relay
selection that reduce both the selection complexity and
the outage probability compared with the existent tech-
niques such as exhaustive search [12] and the selective
decode and forward (SDF) technique [29] with and with-
out power control.
The rest of this paper is organized as follows. In

Section 2, the system model is presented. The pro-
posed selection techniques are introduced and analyzed
in Sections 3 and 4, respectively. In Section 5, the com-
putational complexities of the different techniques are
evaluated and compared. In Section 6, a new approach
for a limited feedback is investigated. In Section 7, Monte
Carlo simulations are carried out to confirm the analyt-
ical derivations and to demonstrate the higher efficiency

of the proposed techniques compared to the conventional
approaches. Finally, conclusions are drawn in Section 8.

2 Systemmodel
In this paper, the adopted system model consists of one
source (S),M equidistant clusters ofN relays and one des-
tination (D) as shown in Fig. 1. We define also the total
number of clusters including the source (cluster 0) and the
destination (clusterM + 1) as Nc = M + 2.
For each i ∈ {1..N} and j ∈ {1..M}, Ri,j denotes the jth

relay in the ith cluster. All nodes are equipped with a single
antenna which can be used in a half-duplex mode for both
transmission and reception. The direct link between the
source and the destination is ignored due to its assumed
large path loss.
The data is transmitted from the source to the desti-

nation using K different paths based on a decode-and-
forward technique. Different selection schemes are pro-
posed in this paper where the paths may be selected
directly by the source or at each stage by the nodes
forwarding the data.
In addition, each node is assumed to have perfect

CSI knowledge of its last hop links. This CSI is used
to decode the received signal in the intermediate hops
and to combine the different received versions of the
signal using maximum ratio combining (MRC) at the
destination.
Denote the channel coefficient from a node A to a node

B as hA,B, which is assumed to follow complex Gaussian
distribution withmean zero and variance σ 2

A,B. We assume
also that these channels are flat-fading and remain con-
stant during the transmission.
Moreover, to analyze the effect of the relay’s positions,

we adopt an asymmetric network geometry where the dis-
tance from any node in cluster i to any node in cluster
i + 1 is equal to di. Without loss of generality, the ditance
between the source and the destination is normalized to
be equal to 1 [30], i.e.,

∑M
i=0 di = 1.
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Fig. 1 System model
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In the subsequent numerical analysis, the path-loss
exponent α is assumed to be equal to 2. Hence, the vari-
ance of the complex Gaussian distribution corresponding
to the channel linking a node A in cluster i with any node
B in cluster i + 1 is expressed by

σ 2
A,B = E(|hA,B|2) =

(
dS,D
dA,B

)2
= 1

d2i
� σ 2

i , (1)

where E(.) denotes the expectation of a random variable
and the distance between the node A and the node B is
denoted by dA,B.
Considering the link A → B at any transmission stage

where node B receives from node A, the signal denoted by
yA,B is given by

yA,B = hA,BxA + nA,B, (2)

where xA denotes the transmitted signal by node A and
nA,B is the additive white Gaussian noise (AWGN) on the
link A → B.
Next, we propose two techniques to select the relays that

will decode and forward the data.

• EndtoEnd relay selection scheme which selects the
best K paths to forward the data directly by the source

• PerGroup relay selection scheme which divides the
network into different groups and the best K paths
selections are performed independently for each
group

3 EndtoEnd relay selection scheme
3.1 Motivation
As stated in Section 2, K different paths are selected to
forward the data from the source to the destination. Then,
the different received signals are combined using MRC to
reconstruct the original data at the destination. We con-
sider first the received signal through one selected path
P �

[
S → RP

1 → RP
2 .. → ..D

]
, where RP

i refers to the relay
in cluster i that belongs to the path P.
Since DF is used, the equivalent signal-to-noise ratio

(SNR) for the relay network composed by only the path P
can be approximated by γ P

eq = min(γ P
1 ; ...γ

P
M+1), where

γ P
i denotes the SNR of the link corresponding to the ith

hop in P [31].
Hence, for each selected path P, the transmission

becomes equivalent to a transmission over a single link
with an equivalent SNR

γ P
eq = min

(
γS,RP1

; γRP1 ,R
P
2
; ..; γRPM ,D

)
, where γA,B =

|hA,B|2
N0

and N0 denotes the noise spectral density.
In this proposed scheme, we force all the relays in one

selected path P to use the same gain factor. In fact, a set
of NEtE

Paths � NM possible paths is present for possible
selections. Therefore, we define the relay selection vector
gs �

[
gs(1) . . . gs(NEtE

Paths)
]T , where for each P ∈ P � { set

of all NEtE
Paths possible paths } , gs(P) denotes the selected

gain factor for all the relays in the path P. Consequently,
the equivalent SNR for the path P becomes

γ P
eq = min

(
|gs(P)|2γS,RP1 ;|gs(P)|2γRP1 ,RP2 ; ..; |gs(P)|2γRPM−1,D

)
= |gs(P)|2min(γS,RP1

; γRP1 ,R
P
2
; ..; γRPM−1,D

)

= |gs(P)|2
|min(hS,RP1 ; hRP1 ,RP2 ; ..; hRPM−1,D

)|2
N0

(3)

Consequently, we can also approximate the received
signal at the destination through a path P, denoted by
yPD, by the signal that passes through a channel with the
same characteristics of the adopted system model (zero-
mean complex Gaussian) and with the same equivalent
received SNR in Eq. (3) and thus also the same outage
probability, i.e,

yPD ≈ gs(P)hPeqx + n̂, (4)

where n̂ is an AWGN with variance N0 and hPeq =
min

(
hS,RP1 , hRP1 ,RP2 , .., hRPM ,D

)
. Consequently, the combined

received signal becomes [17]:

yD ≈ gsH (hx + v) (5)

where v is an NEtE
Paths × 1 AWGN vector with variance N0,

h is an NEtE
Paths × 1 equivalent channel vector defined by

h =
[
h1eq, h2eq, .., h

NEtE
Paths

eq

]T
.

3.2 Relay selection
To perform the relay selection, we assume that all the CSI
is known by the source. We understand that estimating
all the CSI by the source is a complicated task that may
induce transmission delays. However, if the channels are
slowly varying, less feedback is required to estimate the
CSI. Furthermore, based on sparse signal recovery, the
amount of CSI feedback can be dramatically reduced as
shown in [32, 33]. In addition, this problem is solved by
our limited-feedback scheme proposed and investigated
in Section 7 where we show that almost the same outage
performance can be reached with a limited CSI feedback.
The relay selection vector gs is computed based on the

MSEminimization. From Eq. (5), we deduce that the error
signal can be expressed as follows

e = x − yD = x − gsH (hx + v) (6)

Hence, the MSE at the destination is given by

E
[|e|2] = σ 2

x − gsHhσ 2
x − gshHσ 2

x +gsH
(
σ 2
x hhH+Rvv

)
gs
(7)

= σ 2
x − gsH h̃ − h̃Hgs + gsHRgs
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where

h̃ = hσ 2
x (8)

R = σ 2
x hhH + Rvv

Rvv = E
(
vvH

)
σ 2
x = E

(|x|2) .
Considering the Cholesky factorization of the positive

denitematrixR = LLH where L is anNEtE
Paths×NEtE

Paths lower-
triangular matrix, we can rewrite Eq. (8) as follows

MSE = σ 2
x − gsHLL−1h̃ − h̃HL−HLHgs + gsHLLHgs

(9)

By completing the square in Eq. (9), we get

MSE = σ 2
x − h̃HL−HL−1h̃ + ||LHgs − L−1h̃||22 (10)

For the case where no power control is used (the vec-
tor gs identifies only which paths to be used without any
information about transmission power), it is obvious that
the optimal solution of Eq. (10) can be found by an exhaus-
tive search among all the possibilities of the selected paths
[12]. However, as it will be discussed in Section 5, this task
requires a high computation complexity. Hence, to simul-
taneously reduce the complexity and select a complex
vector gs instead of a Boolean one, we use sparse signal
recovery techniques. In fact, since only a small number of
paths K is selected, the vector gs becomes sparse1 which
can be exploited to reduce the complexity by sparse signal
recovery algorithms and we adopt the OMP algorithm in
this paper for its simplicity.
Note that in EndtoEnd, K paths out of N (M − 1) are

selected. Consequently, even if a large number of relays K
is selected (up to N), the selection vector gs will remain
sparse by network design and can be computed using
OMP.
The expression of the MSE in Eq. (10) is divided into the

following two terms:

MSEmin = σ 2
x − h̃HL−HL−1h̃ (11)

MSEexcess = ||LHgs − L−1h̃||22
Since MSEmin does not depend on gs, the MSE is min-

imized by minimizing the term MSEexcess which can be
controlled through the path selection vector gs. As in
[17], to select multiple paths which minimize MSE from
Eq. (10), we use the OMP algorithm which proceeds by
finding, in each iteration, one column of the matrix LH
which is the most correlated with the residual error vector
obtained by subtracting the contributions of the selected
paths in the previous iteration from the vector L−1h̃, then
by solving a least squares problem to obtain a new signal
estimate and updating the new set of possible paths.
We adopt the OMP algorithm in [28] for which the stop-

ping criterion is the desired number of selected paths K
denoted by

gs = OMP
(
LH ,L−1h̃,Kiterations

)
(12)

In fact, in each of the K OMP iterations, the path that
minimizes MSEexcess is selected until finally obtaining K
paths.

3.3 Independent and dis-joint selection
For the EndtoEnd relay selection scheme, selecting K out
of NEtE

Paths paths to forward the data to the destination
may result in using the same relay in different paths.
This should increase the diversity of the system. However,
in practice, it may introduce some implementation chal-
lenges since the same relay may have to receive different
signals from different sources at the same time. Therefore,
to deal with these challenges, we propose and differentiate
in this section between two different versions of EndtoEnd
relay selection scheme.

3.3.1 Independent selection
When independent selection is performed, OMP algo-
rithm is used such that, at each iteration, one column
of the matrix LH is selected based only on the updated
residual error. Hence, the same relay may be selected
simultaneously in multiple paths. Hence, further diver-
sity is introduced to the system since channels with high
SNR may be used multiple times to improve the outage
performance of the system.
However, in practice, this may introduce some imple-

mentation challenges since the same relay may have to
receive different signals from different sources at the same
time. Furthermore, the same relay may have to transmit
different data to different relays at the same time. Thus,
this might be possible only if orthogonal channels are used
based on time division multiplexing (TDM) or frequency
division multiplexing (FDM).
At the ith iteration (where, i ∈ {1..K}) of the OMP

recovery algorithm, one path is selected between the pos-
sible remaining NEtE

Paths − i + 1 = NM − i + 1 columns of
the matrix LH based on the MSE residual error.

3.3.2 Dis-joint selection
When dis-joint selection is performed, the OMP algo-
rithm is forced at each step to select one of the paths for
which all the relays are never used. Hence, the multiple
receptions or transmissions problem for the same relay is
solved since all the selected paths are dis-joint. In partic-
ular, in step 6 of the OMP algorithm in [28], we remove
from the set of indices available for selection the indices
of all the paths that have joint relays with the last selected
path.
Thus, the selection complexity is reduced compared to

the joint selection scheme since the number of possible
paths reduces dramatically at each iteration. In fact, at the
iteration i ∈ {1..K}, (N − i + 1)M columns are available in
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LH for possible selection instead of (NM − i + 1) in joint
selection EndtoEnd selection scheme.

4 PerGroup selection scheme
4.1 Motivation
In the EndtoEnd selection scheme, the source is assumed
to know all the CSI to perform the path selection. How-
ever, this might be difficult to implement in practice
especially in large relay networks. Furthermore, the num-
ber of possible paths NPaths = NM is very high which
results in a high selection complexity. This problem may
be solved using the sparse signal recovery theory to reduce
the CSI feedback by allowing only relays that have an SNR
higher than a certain threshold to send their CSI to the
source as in [32, 33]. However, in this section, we propose
another solution which consists of dividing the network
into independent groups for which the path selections are
performed independently from each other.
In the PerGroup selection scheme, the network is

divided into NG groups of NpG
C � 1 + floor

[
M+1
NG

]
clus-

ters, where floor[ x] denotes the largest integer less than
or equal to x.
As it can be seen in Fig. 2 (where M = 5, NG = 3 and

NpG
C = 3), each group consists of 1 ( in the first group) or

K sources (other groups) and NpG
C − 2 = floor

[
M+1
NG

]
− 1

clusters of relays.
The source and the intermediate K relays at the begin-

ning of each group are assumed to have perfect CSI
knowledge for all the links in the corresponding group.

4.2 Relay selection
Concerning the relay selection in the first group, the
source has to select K out of NpG|pS

Paths � NNpG
C −1 possible

paths to forward the data to the next group. Consequently,
we define a virtual destination D1 at the end of group 1
able to combine all the received signals using MRC2. The

received signal at this virtual destination can be approxi-
mated by

yD1 ≈ g1s
H

(h1x + v) (13)

where v is an NpG|pS
Paths × 1 AWGN vector with variance

N0 and h1 is an NpG|pS
Paths × 1 equivalent channel vector

defined by h1 =
[
h11, h

2
1, .., h

NpG|pS
Paths

1

]T
, where for each

path, P ∈ P �
{
1, ..,NpG|pS

Paths

}
, hP1 = min

(
hS,RP1 ; hRP1 ,RP2

; ..; hRP
NpG
C −2

,RP
NpG
C −1

)
.

Hence, and by analogy with the EndtoEnd selection
scheme, the OMP algorithm is used to compute the gain
selection vector of the first group g1s by replacing h by its
new expression. Also, similarly to Section 3, both the dis-
joint and indepedndent selection schemes are considered
in the PerGroup selection technique.
Concerning any other group G, its first cluster con-

tains always K relays holding the data forwarded by
the previous group which are denoted by

{
R̃i | i = 1..K

}
,

respectively. By assuming that the group G − 1 forwarded
approximately the same data signal x̃ to the K relays in the
first cluster of the group G, this group becomes equiva-
lent to a system with only one virtual source S2 instead of
K sources and one virtual destination D2 that combines
all the received signals as explained in Fig. 2. In fact, the
virtual source S2 is connected to K duplicates of the fol-
lowing clusters by the channels connecting R̃i to the next
clusters where i ∈ {1, ..K} (Fig. 3).
Consequently, each one of the intermediate groups con-

tains NpG
Paths � KNpG|pS

Paths = K .NNpG
C −1 possible paths, and

the combined signal by the virtual destination DG can be
approximated by

R
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Fig. 2 Network division into independent groups in the PerGroup selection technique
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yDG ≈ gGs
H (

hGx̃ + v
)

(14)

where v is an NpG
Paths × 1 AWGN vector with variance

N0 and hG is an NpG
Paths × 1 equivalent channel vector

defined by h =
[
h1T | h2T | .. | hKT

]T
, where for each

i ∈ {1..K}, hi refers to the equivalent channel when the
source is R̃i. This equivalent channel is expressed by hi =[
h1i ,h

2
i , ..,h

NpG|pS
Paths

i

]T
, where for each path P ∈ P, hPi =

min
(
hR̃P

(i−1)NpG
C

,RP
(i−1)NpG

C +1
, .., hRP

i.NpG
C −1

,RP
i.NpG

C

)
.

Note that to make sure that every relay that received a
data forwards it, we force the OMP algorithm to select
at each iteration one path referring to a different relay R̃j.
In fact, at the iteration i ∈ {1..K}, (K − i + 1).NpG|pS

Paths =
(K−i+1).NNpG

C −1 columns are available in LH for possible
selection.
In the PerGroup scheme, all the CSI is assumed to be

known at the source (or in the K corresponding relays
in the first cluster of the intermediate groups). We also
proposed a new limited-feedback scheme that makes
the source use only partial knowledge of the CSI. We
showed that it is better in terms of outage probability
to get full CSI especially when Ncpg is small. However,
in terms of network throughput, it is better to use a
limited feedback since the gain from the CSI knowl-
edge becomes at some point not enough to compensate

for the losses in terms of the time needed to collect
the CSI.
Concerning the selection criteria of K, there is no opti-

mal choice of K because of the following:

1. In multiple relay selection schemes and when
sparse signal recovery theory is not used, it is
always better to use more relays to achieve better
outage performance. However, using all the
relays of the network to forward the data is not
practical and may lead to network congestion.
Hence, the optimal K is the total number
of relays, but in practice, K is chosen by the
network administrator to make a compromise
between the desired outage performance and
network congestion.

2. In the PerGroup scheme, K paths out of N (Ncpg−1)

(or KN (Ncpg−2) in the last group) are selected in each
group, where N and Ncpg denote the number of
relays per cluster and number of clusters PerGroup,
respectively. Consequently, even if a large number of
relays K is selected (up to N), the selection vector gs
will remain sparse and the can be computed using
OMP.

3. The sensing matrix is a square full-rank matrix as in
[17]. Note that even though the sensing matrix is
full-rank and the selection problem is well-posed, the
optimal solution is not sparse (all the paths are
selected) and OMP is used to compute the “best” K
sparse solution.
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5 Computation complexity comparison
5.1 EndtoEnd independent relay selection
5.1.1 Exhaustive search
For the case where gs is a Boolean vector (no power con-
trol ), the optimal EndtoEnd selection can be obtained
by exhaustive search where there are

(
K
NPaths

)
=

O
((
NM−1)K)

possibilities. To select the best one of them,
the complexity of the exhaustive search becomes:

CES
EtE−I = O

((
NM)K)

(15)

5.1.2 Proposedmodel
In the OMP-based proposed technique, K out of the
NPaths paths are selected independently. By computing a
sparse vector containing K non-zero elements based on a
measurement vector of length NPaths using OMP. Hence,
the computation complexity can be expressed by [17].

CP
EtE−I = O

(
K2NM)

(16)

5.2 EndtoEnd dis-joint relay selection
5.2.1 Exhaustive search
When dis-joint relay selection is performed based on ES,
the number of possible combinations of paths is dramati-
cally reduced compared to independent selection scheme
since the paths have to be dis-joint and not containing
any common relay. Hence, we deduce that the computa-
tion complexity for the EndtoEnd dis-joint ES technique
is very small compared to the EndtoEnd ES independent
technique.

CES
EtE−D << CES

EtE−I (17)

5.2.2 Proposedmodel
When dis-joint relay selection is performed based on
OMP, at each selection iteration i, the number of possi-
ble paths for the selection are reduced from NM − i + 1
to (N − i + 1)M compared with the independent selection
model. Hence, we deduce that the computation complex-
ity for the EndtoEnd dis-joint OMP technique is very small
compared to the EndtoEnd independent OMP technique.

CP
EtE−D << CP

EtE−I (18)

5.3 PerGroup relay selection
5.3.1 Exhaustive search
In the PerGroup relay selection technique, the best K
paths for each group of NpG

C are selected. Hence, if inde-
pendent selection is performed with the ES algorithm, the
computation complexity would be

C̃ES
pG = O

(
NG

(
N floor

[
1+M+1

NG

])K)
(19)

Hence, we deduce that when dis-joint selection is per-
formed, the computation complexity becomes

CES
pG << O

(
NG

(
N floor

[
1+M+1

NG

])K)
(20)

5.3.2 Proposedmodel
In the PerGroup relay selection technique, the best K
paths for each group of NpG

C are selected. Hence, if inde-
pendent selection is performed with the OMP algorithm,
the computation complexity would be

C̃P
PG = O

(
NGK2N floor

[
1+ M

NG

])
. (21)

Hence, we deduce that when dis-joint selection is per-
formed, the computation complexity becomes

CP
PG << O

(
NGK2N floor

[
1+ M

NG

])
(22)

6 Limited-feedback scheme
To reduce the computation complexity and also the
amount of CSI feedback needed for the relays selection
for both the EndtoEnd and PerGroup schemes, we inves-
tigate in this section a limited-feedback model where the
source (or intermediate sources) no longer has full CSI
knowledge.
As stated in Section 2, each node is assumed to have

perfect knowledge of the CSI corresponding to the links
with the relays of the previous cluster. Thus, to limit the
amount of CSI feedback, a limited number of nodes are
allowed to feedback their CSI to the previous cluster. This
is done if the relay already received the CSI from at least
one node of the next cluster and if the known SNR for the
previous hop is above the feedback threshold. The feed-
back threshold γth is optimized to meet a target feedback
percentage level.
In particular, for a node A in cluster i, the probability

that A has a link with the next cluster with an SNR above
γth is given by

Pi = Fi(γth)
= 1 − exp(−λiγth), (23)

where Fi denotes the cumulative density function (CDF)
of the channel realizations corresponding to the links in
hop i (hi), λi = 1

σ 2
i
.

For each possible path from the source to the destina-
tion, if the SNR in any intermediate hop is below γth, then
the source will not receive its CSI. Hence, the fraction of
CSI that would be received (in average) by the source is
given by
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r = 1 −
M−2∏
i=1

(1 − Pi) = 1 − exp
(

−
M−2∑
i=1

λiγth

)

(24)

Consequently,

1 − r = exp
(

−
M−2∑
i=1

λiγth

)
,

log(1 − r) = −
M−2∑
i=1

λiγth,

γth = − log(1 − r)∑M−2
i=1 λi

(25)

For the PerGroup scheme, by analogy, we get the follow-
ing expression for the threshold

γth = −log(1 − r)∑
i∈S λi

(26)

where S denotes the set of clusters in the group for which
the selection is done.
A limited number of paths K is selected (up to N). As it

can be seen in Fig. 8, an EndtoEnd scheme using a limited
feedback of only 20% (the source knows the CSI of only
20% of the paths) has the same outage performance as a
system with full CSI knowledge for the EndtoEnd scheme
(when K = 2, N = 10, Nc = 5). Hence, the amount
of feedback can be dramatically reduced without affecting
the outage performance.

7 Simulation results
In this section, the simulated performance of the proposed
schemes is evaluated in terms of outage probability, bit
error rate, and network throughput.
A symbol is considered in outage if it is received at

the destination with an equivalent end-end SNR below
a predefined threshold ε [34]. Since MRC is used at the
destination, the equivalent end-end SNR of the combined
received signal is the sum of the end-end SNRs through
the K used paths.
When computing the network throughput, the amount

of air-time reserved for feedback is no longer negligible
as compared to the transmission time. Hence, we define
the achievable throughput as the number of transmitted
bits per unit time (bps/Hz). The network throughput is
explicitly given by [26]

T =
(Tc − NpTms

Tc

)
log2(1 + γe)

= (1 − NPτ) log2(1 + γe) (27)

where γe denotes the equivalent MRC received SNR as
detailed in Section 3, Tc is the channel coherence time,

Tms is the time needed to transmit one feedback, τ = Tms
Tc

,
and Np is the number of CSI that need to be collected.
Note that when limited feedback is used, the amount of
CSI that need to be collected becomes Np = rNt

p, where
r denotes the ratio of CSI that need to be collected and
Nt
p denotes the total number of possible paths. To have

more insight, we simulate the network throughput for τ =
1/600 [26].
We also compare these results with previously proposed

techniques. In fact, to the authors’ knowledge, no previ-
ous work has been done for multiple relay selection in
multi-hop DF network. However, the authors in [29], pro-
posed two multiple relay selection schemes for dual-hop
cooperative networks entitled SDF and SDF with power
control. Hence, and for a fair comparison with our multi-
hop schemes, the selection process for these techniques
is repeated every two hops as detailed for the PerGroup
selection scheme. We also adapted the ES technique in
[12] to our system model by making an exhaustive search
over all the possible EndtoEnd paths or over all the possi-
ble paths in each group. In addition, for fair comparison,
the same average transmit power per relay constraint is
assumed, i.e., the selection vector gs satisfies E(gHs gs) = K
for all the studied techniques. The simulation parameters
used in the simulations are shown in Table 1.
Figure 4 compares the outage performance of the Per-

Group (nG = 2, 3) and the EndtoEnd schemes with ES and
SDF (with and without power control) techniques when
the number of clusters is N = 7, K = 2 relays are selected
out of N = 5 at each hop. It can be seen that the bigger
the number of groups is, the higher is the outage prob-
ability. In fact, it is always better to select based on the
CSI of all the hops but at the cost of more CSI that needs
to be collected and higher computation complexity. Also,
when applying independent selection, the outage proba-
bility is always better than dis-joint selection model since
it achieves more selection diversity, but at the price of
some practical implementation issues that may be caused
by allowing one relay receiving (or sending) from (to)
different nodes and also higher computation complexity.
It can be seen that the proposed algorithm outperforms

the existing techniques in terms of outage probability. In

Table 1 Simulation parameters

Parameter Value Description

ε 3 Outage probability threshold

N {5, 6, 8} Number of relays per cluster

K {2 → 5} number of selected relays

d Random vector Normalized distance between clusters

NG 1 .. 3 Number of groups

NC 3, 5, 7 Number of clusters

SNR {0 → 30 dB} Signal-to-noise ratio per hop
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fact, the ES technique only determines which K relays
should be used unlike the proposed scheme which com-
putes also the best gain factor for each relay. Hence, we
conclude that the proposed model outperforms ES in
terms of outage probability in addition to the computa-
tion complexity which is reduced from CES

EtE−I = O(NK )

to CP
EtE−I = O

(
K2NM−1).

Concerning SDF technique with and without power
control, there is no exact expression provided for the com-
putation complexity. However, from [29], we deduce that
they are linear in function of N. Hence, the EndtoEnd
OMP-based scheme does not outperform SDF in terms of
computation complexity. However, it can be seen in Fig. 4
that the SDF scheme is outperformed by the proposed
scheme in terms of outage probability. When power con-
trol is used, the performance of SDF is improved but it is
still outperformed by the OMP algorithm. In fact, in addi-
tion to the gain achieved by theOMP, the performance gap
between SDF and the proposed algorithm is increased due
to the two-by-two hops selection process in SDF unlike
the EndtoEndOMP scheme where the selection process is
done from end to end.
Figure 5 presents the effect of the number of clusters

on the outage performance of different techniques (N =
8, K = 2, Ncpg = 3, Nc = 3, 5, 7).

Note that the transmitted signal is decoded and for-
warded at each hop. Hence, increasing the number of hops
increases the chances of incorrect decoding in the inter-
mediate relays. Hence, as it can be seen in Fig. 5, the larger
the number of hops, the higher the outage probability [34].
In addition, compared to the independent selection

schemes, when the dis-joint selection is applied, all the
studied techniques suffer from a loss of outage perfor-
mance since the set of possible selected paths is reduced
due to the dis-joint selection constraint. However, this
loss is compensated by a reduction of the computation
complexity. Hence, a compromise between computation
complexity and outage performance is achieved between
independent and dis-joint selection schemes.
It can be seen also that the proposed scheme outper-

forms the SDF technique with and without power control
independently from the number of clusters.
Figure 6 compares the BER performance of the dif-

ferent studied techniques. It can be seen that—like the
outage probability performance measure—the proposed
EndtoEnd and PerGroup selection schemes outperform ES
and SDF techniques in terms of bit error rate. Also, the
EndtoEnd scheme outperfoms the PerGroup in terms of
BER at the price of increased amount of CSI that need to
be collected and higher complexity.
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Fig. 6 Comparison of the bit error rate performance of the EndtoEnd , PerGroup, ES, and SDF techniques
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Figure 7 presents the effect of the number selected relays
on the network throughput (N = 6, K = 2..5, Ncpg = 4,
Nc = 7). First, it can be seen that increasing the number
of selected relays always improves the throughput perfor-
mance because in multiple relay selection schemes and
when sparse signal recovery theory is not used, it is always
better to use more relays to achieve better outage perfor-
mance. However, using all the relays of the network to
forward the data is not practical and may lead to network
congestion. Hence, the optimal K is the total number of
relays, but in practice, K is chosen by the network admin-
istrator tomake a compromise between the desired outage
performance and network congestion. Also, even when
selecting five relays at each hop out of six, the selection
vector is still sparse since K paths out of N (Ncpg−1) are
selected in each group. Furthermore, the outage proba-
bility is always reduced when increasing the number of
relays because the sensingmatrix LH in Eq. (10) is a square
full-rank3 matrix as in [17].
Note also that when increasing the number of selected

relays, the proposed PerGroup technique (with Ncpg = 4)
is outperformed by the SDF technique in terms of net-
work throughput since the gain of the PerGroup schemes
compared to SDF in terms of outage probability is not
worth the time needed to collect all the needed CSI for the
selection.

Figure 8 presents the effect of the feedback reduction
on the outage probability on the PerGroup and EndtoEnd
selection schemes (N = 10, K = 2, 3, NG = 1, 2, Nc = 5).
It can be seen that when using limited knowledge of the
CSI, the outage performance is almost the same for full
CSI selection schemes if the feedback percentage is high
enough. This feedback percentage threshold is smaller
when the number of possible paths is bigger or the number
of selected relays is smaller. In particular, when (nG = 1
(EndtoEnd scheme), K = 2)), the knowledge of 20% of
the CSI is enough to achieve the outage performance of
full CSI knowledge model. However, for models where
the number of paths is lower or the number of selected
relays is bigger, a higher feedback percentage is needed to
achieve the full CSI selection scheme performance (40%
when nG = 2,K = 2 and 70% when nG = 2,K = 3).
In terms of network throughput, it can be seen in Fig. 9

(N = 10, K = 2, 3, NG = 1, 2, Nc = 5) that for both
the EndtoEnd and PerGroup schemes, when the nodes
feedback more than a specific percentage, the perfor-
mance starts decreasing since the gain in the equivalent
received SNR is no longer worth the time needed to col-
lect the CSI. This feedback percentage threshold is bigger
when the number of possible paths is larger and is not
affected by the number of selected relays. Note also that
for EndtoEnd scheme, the system can not be implemented
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in practice with a feedback percentage higher than 60%
since the channel would change after the source finished
collecting all the CSI unless the channel coherence time
is longer.

8 Conclusions
In this paper, two novel techniques were proposed
and investigated to select multiple relays in a large
multi-hop DF network based on MSE minimization.
By exploiting sparse signal recovery theory, these tech-
niques improve the outage performance compared to the
ES and SDF techniques with and without power con-
trol. The computation complexity is also reduced com-
pared to the ES technique. Furthermore, performance,
feasibility, and selection complexity tradeoffs are con-
sidered between the different studied techniques and
especially between the EndtoEnd and PerGroup selec-
tion schemes. Extensive simulations were also conducted
to evaluate and compare the performance of the pro-
posed techniques with the conventional ones. Finally,
we demonstrated that by using the proposed limited-
feedback scheme, almost the same outage performance
can be achieved while using only partial CSI knowledge of
the CSI.

Endnotes
1Note that the maximum number of selected paths K

is N (All the relays are used); and even in this case the
selection vector gs remains sparse since the selection is
done among the set of all possible paths.

2We assume the existence of a virtual node that will
combine all the received signals by the end of each group
using MRC to be able to compute and optimize the MSE
corresponding to that group. However, this MRC is not
done in reality unless the last node of that group is the
destination.

3Note that even thought the sensing matrix LH is full-
rank and the selection problem is well-posed, the optimal
solution is not sparse (all the paths are selected) and OMP
is used to compute the ’best’ K sparse solution.
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