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In the framework of ordered 𝐺-metric spaces, fixed points of maps that satisfy the generalized (𝜓, 𝜑)-Chatterjea type contractive
conditions are obtained. The results presented in the paper generalize and extend several well known comparable results in the
literature.

1. Introduction and Preliminaries

The study of fixed points of mappings satisfying certain con-
tractive conditions has been at the center of rigorous research
activity. Mustafa and Sims [1] generalized the concept of
a metric space. Based on the notion of generalized metric
spaces, Mustafa et al. [1–5] obtained some fixed point theo-
rems formappings satisfying different contractive conditions.
Abbas and Rhoades [6] initiated the study of a common fixed
point theory in generalizedmetric spaces. Abbas et al. [7] and
Chugh et al. [8] obtained some fixed point results for maps
satisfying property𝑃 in𝐺-metric spaces. Recently, Shatanawi
[9] proved some fixed point results for self mappings in a
complete 𝐺-metric space under some contractive conditions
related to a nondecreasing map 𝜙 : 𝑅

+
→ 𝑅

+ with
lim
𝑛→∞

𝜙
𝑛
(𝑡) = 0 for all 𝑡 ≥ 0. Recently, Saadati et al. [10]

proved some fixed point results for contractive mappings in
partially ordered 𝐺-metric spaces.

Ran and Reurings [11] extended Banach contraction
principle in partially ordered metric spaces with some
applications to linear and nonlinear matrix equations, while
Nieto and Rodŕıguez-López [12] extended the result of Ran
and Reurings and applied their main result to obtain a
unique solution for a first order ordinary differential equation

with periodic boundary conditions. Bhaskar and Laksh-
mikantham [13] introduced the concept of mixed monotone
mappings and obtained some coupled fixed point results.
Also, they applied their results to a first order differential
equation with periodic boundary conditions.

Alber and Guerre-Delabriere [14] introduced the concept
of weakly contractive mappings and proved the existence of
fixed points of such mappings in Hilbert spaces. Thereafter,
in 2001, Rhoades [15] proved the fixed point theorem which
is one of the generalizations of Banach’s contraction mapping
principle. Weakly contractive mappings are closely related to
the mappings of Boyd andWong [16] and of Reich types [17].
Recently, Dorić [18] proved a common fixed point theorem
for generalized (𝜓, 𝜙)-weakly contractive mappings. Fixed
point problems involving weak contractions and mappings
satisfying weak contractive type inequalities have been stud-
ied bymany authors (see [8, 14, 15, 18–21] and references cited
therein).

In this paper, we generalize the Chatterjea type contrac-
tion mappings to generalized (𝜓, 𝜑)-Chatterjea type contrac-
tion mappings and derive some fixed point results for single-
valued mappings in ordered generalized metric spaces.

Consistent with Mustafa and Sims [1], the following
definitions and results will be needed in the sequel.
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Definition 1. Let 𝑋 be a nonempty set. Suppose that a map-
ping 𝐺 : 𝑋 × 𝑋 × 𝑋 → 𝑅

+ satisfies
(G
1
) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧;

(G
2
) 0 < 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, with 𝑥 ̸= 𝑦;

(G
3
) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, with 𝑦 ̸= 𝑧;

(G
4
) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetry
in all three variables);

(G
5
) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈
𝑋.

Then, 𝐺 is called a 𝐺-metric on 𝑋 and (𝑋, 𝐺) is called a 𝐺-
metric space.

Definition 2. A sequence {𝑥
𝑛
} in a 𝐺-metric space 𝑋 is

(i) a 𝐺-Cauchy sequence if, for every 𝜀 > 0, there
is a natural number 𝑛

0
such that for all 𝑛,𝑚, 𝑙 ≥

𝑛
0
, 𝐺(𝑥

𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) < 𝜀,

(ii) a 𝐺-Convergent sequence if, for any 𝜀 > 0, there is
an 𝑥 ∈ 𝑋 and an 𝑛

0
∈ N, such that for all 𝑛,𝑚 ≥

𝑛
0
, 𝐺(𝑥

𝑛
, 𝑥
𝑚
, 𝑥) < 𝜀.

A 𝐺-metric space on 𝑋 is said to be 𝐺-complete if every 𝐺-
Cauchy sequence in 𝑋 is 𝐺-convergent in 𝑋. It is known
that {𝑥

𝑛
} 𝐺-converges to 𝑥 ∈ 𝑋 if and only if 𝐺(𝑥

𝑚
, 𝑥
𝑛
, 𝑥) →

0 as 𝑛,𝑚 → ∞.

Proposition 3 (see [1]). Let 𝑋 be a 𝐺-metric space. Then, the
following are equivalent.

(1) The sequence {𝑥
𝑛
} is 𝐺-convergent to 𝑥 .

(2) 𝐺(𝑥
𝑛
, 𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞.

(3) 𝐺(𝑥
𝑛
, 𝑥, 𝑥) → 0 as 𝑛 → ∞.

(4) 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥) → 0 as 𝑛,𝑚 → ∞.

Proposition 4 (see [1]). Let 𝑋 be a 𝐺-metric space. Then, the
following are equivalent.

(1) The sequence {𝑥
𝑛
} is 𝐺-Cauchy.

(2) For every 𝜀 > 0, there exists 𝑛
0
∈ N, such that for

all 𝑛,𝑚 ≥ 𝑛
0
, 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑚
) < 𝜀; that is, if 𝐺(𝑥

𝑛
,

𝑥
𝑚
, 𝑥
𝑚
) → 0 as 𝑛,𝑚 → ∞.

Definition 5. A 𝐺-metric on 𝑋 is said to be symmetric if
𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

Proposition 6. Every𝐺-metric on𝑋 defines a metric 𝑑
𝐺
on𝑋

by

𝑑
𝐺
(𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝑦) + 𝐺 (𝑦, 𝑥, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (1)

For a symmetric 𝐺-metric space, one obtains

𝑑
𝐺
(𝑥, 𝑦) = 2𝐺 (𝑥, 𝑦, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (2)

However, if 𝐺 is not symmetric, then the following inequality
holds:
3

2
𝐺 (𝑥, 𝑦, 𝑦) ≤ 𝑑

𝐺
(𝑥, 𝑦) ≤ 3𝐺 (𝑥, 𝑦, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (3)

First, we recall some basic definitions and notations.

Let (𝑋, 𝑑) be a metric space. A map 𝑇 : 𝑋 → 𝑋 is said to
be

(a) Kannan type (see [22]) if there exists a 𝑘 ∈ (0, 1/2]
such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] for
all 𝑥, 𝑦 ∈ 𝑋;

(b) Chatterjea type [20] if there exists a 𝑘 ∈ (0, 1/2] such
that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)] for all 𝑥, 𝑦 ∈
𝑋.

Definition 7. We define two classes of mappings as follows:

Ψ = {𝜓 | 𝜓 : [0,∞) → [0,∞) is continuous and
nondecreasing with 𝜓(𝑡) = 0 if and only if 𝑡 = 0} and
Φ = {𝜑 | 𝜑 : [0,∞)

5

→ [0,∞) is lower semi-
continuous with 𝜑(𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 0 if and only if

𝑡
1
= 𝑡
2
= 𝑡
3
= 𝑡
4
= 𝑡
5
= 0}.

Definition 8. An ordered partial 𝐺-metric space is said to
have a sequential limit comparison property if for every
nondecreasing sequence (nonincreasing sequence) {𝑥

𝑛
}

in 𝑋 such that 𝐺(𝑥
𝑛
, 𝑥, 𝑥) → 0 as 𝑛 → ∞ implies that

𝑥
𝑛
⪯ 𝑥 (𝑥 ⪯ 𝑥

𝑛
), respectively.

2. Fixed Point Results

In this section, we obtain fixed point results formappings sat-
isfying generalized (𝜑, 𝜓)-Chatterjea type contractive condi-
tions on partially ordered complete generalized metric space.
We start with the following result.

Theorem 9. Let (𝑋, ⪯) be a partially ordered set and 𝑓 be a
nondecreasing self mapping on a complete 𝐺-metric space 𝑋
satisfying

𝜓 (𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦, 𝑦)) − 𝜑 (𝑁 (𝑥, 𝑦, 𝑦)) , (4)

where 𝜓 ∈ Ψ, 𝜑 ∈ Φ with

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) ,

[𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)]

2
} ,

𝑁 (𝑥, 𝑦, 𝑦) = (𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥))

(5)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦. Suppose that there exists 𝑥
0
∈

𝑋 with 𝑥
0
⪯ 𝑓𝑥
0
. If 𝑓 is continuous or 𝑋 a sequential limit

comparison property, then 𝑓 has a fixed point in𝑋.

Proof. If 𝑓𝑥
0
= 𝑥
0
, there is nothing to prove. Suppose that

𝑓𝑥
0
̸= 𝑥
0
. Since 𝑥

0
⪯ 𝑓𝑥
0
and 𝑓 is nondecreasing, we have

𝑥
0
⪯ 𝑓𝑥
0
⪯ 𝑓
2

𝑥
0
⪯ ⋅ ⋅ ⋅ ⪯ 𝑓

𝑛

𝑥
0
⪯ ⋅ ⋅ ⋅ . (6)
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Define a sequence {𝑥
𝑛
} by 𝑥

𝑛
= 𝑓
𝑛
𝑥
0
so that 𝑥

𝑛+1
= 𝑓𝑥
𝑛
. We

may assume that𝐺(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) > 0 for every 𝑛 ∈ N. If not,

then 𝑥
𝑛
= 𝑥
𝑛+1

for some 𝑛 and 𝑥
𝑛
becomes a fixed point of 𝑓.

Using (4), we obtain

𝜓 (𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
))

= 𝜓 (𝐺 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
))

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) − 𝜑 (𝑁 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) ,

(7)

where
𝑀(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)

= max{𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) ,

𝐺 (𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
) ,

[𝐺 (𝑥
𝑛
, 𝑓𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
) + 𝐺 (𝑥

𝑛+1
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
)]

2
}

= max{𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) ,

𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) ,

[𝐺 (𝑥
𝑛
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) + 𝐺 (𝑥

𝑛+1
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)]

2
}

= max {𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
)} ,

𝑁 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)

= (𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) ,

𝐺 (𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑓𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
) ,

𝐺 (𝑥
𝑛+1
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
))

= (𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) ,

𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) ,

𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

= (𝐺 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) ,

𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) , 0) .

(8)
If we take𝐺(𝑥

𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) ≥ 𝐺(𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) for some 𝑛 ≥

0, it follows that 𝜑(𝑁(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) = 0, a contradiction.

Therefore, for all 𝑛 ≥ 0,
𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) < 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) (9)

so that 𝑀(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) = 𝐺(𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
). Now {𝐺(𝑥

𝑛+1
,

𝑥
𝑛+2
, 𝑥
𝑛+2
)} is a decreasing sequence, so there exists 𝐿 ≥ 0

such that lim
𝑛→∞

𝐺(𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) = 𝐿. This gives

lim
𝑛→∞

𝐺(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) = lim

𝑛→∞
𝑀(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) = 𝐿.

By lower semicontinuity of 𝜑,

𝜑 (𝐿, 𝐿, 𝐿, 𝐿, 0) ≤ lim inf
𝑛→∞

𝜑 (𝑁 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) . (10)

We claim that 𝐿 = 0. Taking the upper limits as 𝑛 → ∞ on
both sides of

𝜓 (𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
))

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) − 𝜑 (𝑁 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)) ,

(11)

we have

𝜓 (𝐿) ≤ 𝜓 (𝐿) − lim inf
𝑛→∞

𝜑 (𝑁 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

≤ 𝜓 (𝐿) − 𝜑 (𝐿, 𝐿, 𝐿, 𝐿, 0) .

(12)

This implies 𝜑(𝐿, 𝐿, 𝐿, 𝐿, 0) = 0 and we conclude that

lim
𝑛→∞

𝐺 (𝑥
𝑛+1
, 𝑥
𝑛+2
, 𝑥
𝑛+2
) = 0. (13)

Next, we show that {𝑥
𝑛
} is a 𝐺-Cauchy sequence in 𝑋. If

not, then there exist 𝜀 > 0 and integers 𝑛
𝑘
and 𝑚

𝑘
with 𝑚

𝑘
>

𝑛
𝑘
> 𝑘 such that

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) ≥ 𝜀, 𝐺 (𝑥

𝑛𝑘
, 𝑥
𝑚𝑘−1

, 𝑥
𝑚𝑘−1

) < 𝜀. (14)

A joint effect of (13) and (14) on

𝜀 ≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1

, 𝑥
𝑚𝑘−1

) + 𝐺 (𝑥
𝑚𝑘−1

, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

(15)

yields

lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) = 𝜀. (16)

Also,

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) + 𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) + 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

(17)

implies that 𝜀 ≤ lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

).
On the other hand,

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) + 𝐺 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

(18)

combined with (13) and (16) results in lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
,

𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) ≤ 𝜀 so that

lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) = 𝜀. (19)
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Now,

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) + 𝐺 (𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) + 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) + 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) + 𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) + 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) + 𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

+ 𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

(20)

gives that 𝜀 ≤ lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

), and

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) + 𝐺 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) + 𝐺 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

(21)

implies by (13) and (19) that

lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) ≤ 𝜀. (22)

Hence,

lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) = 𝜀. (23)

Also, from (16) and

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) + 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

(24)

we obtain 𝜀 ≤ lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

).
But from

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) + 𝐺 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

)

≤ 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘
) + 𝐺 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

(25)

together with (13) and (16), we get lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
,

𝑥
𝑚𝑘+1

) ≤ 𝜀. Thus,

lim
𝑘→∞

𝐺(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

) = 𝜀,

𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

≤ 𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

= max {𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) , 𝐺 (𝑥
𝑛𝑘
, 𝑓𝑥
𝑛𝑘
, 𝑓𝑥
𝑛𝑘
) ,

𝐺 (𝑥
𝑚𝑘+1

, 𝑓𝑥
𝑚𝑘+1

, 𝑓𝑥
𝑚𝑘+1

) ,

[𝐺 (𝑥
𝑛𝑘
, 𝑓𝑥
𝑚𝑘+1

, 𝑓𝑥
𝑚𝑘+1

)

+ 𝐺 (𝑥
𝑚𝑘+1

, 𝑓𝑥
𝑛𝑘
, 𝑓𝑥
𝑛𝑘
)] × (2)

−1

}

= max {𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) , 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1
, 𝑥
𝑛𝑘+1
) ,

𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) ,

[𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)

+𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1
, 𝑥
𝑛𝑘+1
)] × (2)

−1

}

≤ max {𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) , 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1
, 𝑥
𝑛𝑘+1
) ,

𝐺 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) ,

[𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

) + 𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1
, 𝑥
𝑛𝑘+1
)

+𝐺 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
, 𝑥
𝑚𝑘+1

)] × (2)
−1

} .

(26)

This gives

𝜀 ≤ lim
𝑘→∞

𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)

≤ max {𝜀, 0, 0, [𝜀 + 𝜀]
2

}

= 𝜀

(27)

and so

lim
𝑘→∞

𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) = 𝜀. (28)

Also,

lim
𝑘→∞

𝑁(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

) = (𝜀, 0, 0, 𝜀, 𝜀) . (29)

From (4), we obtain

𝜓 (𝐺 (𝑥
𝑛𝑘+1
, 𝑥
𝑚𝑘+2

, 𝑥
𝑚𝑘+2

)) = 𝜓 (𝐺 (𝑓𝑥
𝑛𝑘
, 𝑓𝑥
𝑚𝑘+1

, 𝑓𝑥
𝑚𝑘+1

))

≤ 𝜓 (𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

))

− 𝜑 (𝑁 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘+1

)) ,

(30)
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which on taking the upper limit as 𝑘 → ∞ implies that

𝜓 (𝜀) ≤ 𝜓 (𝜀) − 𝜑 (𝜀, 0, 0, 𝜀, 𝜀) , (31)

a contradiction as 𝜀 > 0.
It follows that {𝑥

𝑛
} is a 𝐺-Cauchy sequence and by 𝐺-

completeness of 𝑋, there exists 𝑢 ∈ 𝑋 such that {𝑥
𝑛
}𝐺-

converges to 𝑢 as 𝑛 → ∞. If 𝑓 is continuous, then it is
clear that𝑓𝑢 = 𝑢. Next, if𝑋 has a sequential limit comparison
property, thenwe have 𝑥

𝑛
⪯ 𝑢 for all 𝑛 ∈ N. From (4), we have

𝜓 (𝐺 (𝑥
𝑛+1
, 𝑓𝑢, 𝑓𝑢))

= 𝜓 (𝐺 (𝑓𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢))

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑢, 𝑢)) − 𝜑 (𝑁 (𝑥

𝑛
, 𝑢, 𝑢)) ,

(32)

where

𝑀(𝑥
𝑛
, 𝑢, 𝑢)

= max{𝐺 (𝑥
𝑛
, 𝑢, 𝑢) , 𝐺 (𝑥

𝑛
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) , 𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

[𝐺 (𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢) + 𝐺 (𝑢, 𝑓𝑥

𝑛
, 𝑓𝑥
𝑛
)]

2
}

= max{𝐺 (𝑥
𝑛
, 𝑢, 𝑢) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

[𝐺 (𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢) + 𝐺 (𝑢, 𝑥

𝑛+1
, 𝑥
𝑛+1
)]

2
} ,

𝑁 (𝑥
𝑛
, 𝑢, 𝑢)

= (𝐺 (𝑥
𝑛
, 𝑢, 𝑢) , 𝐺 (𝑥

𝑛
, 𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) , 𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

𝐺 (𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢) , 𝐺 (𝑢, 𝑓𝑥

𝑛
, 𝑓𝑥
𝑛
))

= (𝐺 (𝑥
𝑛
, 𝑢, 𝑢) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) , 𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

𝐺 (𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢) , 𝐺 (𝑢, 𝑥

𝑛+1
, 𝑥
𝑛+1
)) .

(33)

This implies that lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑢, 𝑢) = 𝐺(𝑢, 𝑓𝑢, 𝑓𝑢). Thus,

from (32), we obtain

𝜓 (𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢)) = lim sup
𝑛→∞

𝜓 (𝐺 (𝑓𝑥
𝑛
, 𝑓𝑢, 𝑓𝑢))

≤ lim sup
𝑛→∞

[𝜓 (𝑀 (𝑥
𝑛
, 𝑢, 𝑢))

−𝜑 (𝑀 (𝑥
𝑛
, 𝑢, 𝑢))]

≤ 𝜓 (𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢))

− 𝜑 (0, 0, 𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) ,

𝐺 (𝑢, 𝑓𝑢, 𝑓𝑢) , 0) .

(34)

This gives 𝜑(0, 0, 𝐺(𝑢, 𝑓𝑢, 𝑓𝑢), 𝐺(𝑢, 𝑓𝑢, 𝑓𝑢), 0) = 0 so that
𝐺(𝑢, 𝑓𝑢, 𝑓𝑢) = 0 and, hence, 𝑓𝑢 = 𝑢.

Corollary 10. Let (𝑋, ⪯) be a partially ordered set and 𝑓 be
a nondecreasing self mapping on a complete 𝐺-metric
space 𝑋 satisfying

𝜓 (𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦, 𝑦)) − 𝜑 (𝑁 (𝑥, 𝑦, 𝑦)) ,

(35)

where 𝜓 ∈ Ψ, 𝜑 ∈ Φ with

𝑀(𝑥, 𝑦, 𝑦) = 𝑎
1
𝐺 (𝑥, 𝑦, 𝑦) + 𝑎

2
𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥)

+ 𝑎
3
𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) ,

𝑎
4
[𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)] ,

𝑁 (𝑥, 𝑦, 𝑦) = (𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥))

(36)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 with 𝑎
𝑖
≥ 0 for all 𝑖 = 1, 2, 3, 4

with 𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 2𝑎
4
≤ 1. Suppose that there exists 𝑥

0
∈ 𝑋

with 𝑥
0
⪯ 𝑓𝑥
0
. If 𝑓 is continuous or 𝑋 has a sequential limit

comparison property, then 𝑓 has a fixed point in𝑋.

Now we give an example to illustrate above result.

Example 11. Let 𝑋 = [0, 1] and 𝐺(𝑥, 𝑦, 𝑧) = max{|𝑥 − 𝑦|,
|𝑦 − 𝑧|, |𝑧 − 𝑥|} be a 𝐺-metric on𝑋. Define 𝑓 : 𝑋 → 𝑋 by

𝑓 (𝑥) =
𝑥

12
∀𝑥 ∈ 𝑋. (37)

We take 𝜓(𝑡) = (3/4)𝑡 and 𝜑(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = (1/12)(𝑡

1
+ 𝑡
2
+

𝑡
3
+ 𝑡
4
+ 𝑡
5
) for all 𝑡, 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
∈ [0,∞).

Now, for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, we have

𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) =
11𝑥

12
, 𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) =

11𝑦

12
,

[𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)]

2
=

12𝑥 − 𝑦
 + 12𝑦 − 𝑥

24
.

(38)

So that

𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑦) =
1

12
(𝑦 − 𝑥)

≤
3

4
[
1

6
(𝑦 − 𝑥) +

1

6
(
11𝑥

12
) +

1

6
(
11𝑦

12
)

+
1

6
(

12𝑥 − 𝑦
 + 12𝑦 − 𝑥

24
)]
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−
1

12
[ (𝑦 − 𝑥) +

11𝑥

12
+
11𝑦

12

+

12𝑥 − 𝑦
 + 12𝑦 − 𝑥

24
]

=
3

4
𝑀(𝑥, 𝑦, 𝑦) −

1

12
𝑁 (𝑥, 𝑦, 𝑦)

= 𝜓 (𝑀(𝑥, 𝑦, 𝑦)) − 𝜑 (𝑁 (𝑥, 𝑦, 𝑦)) .

(39)

Thus, (35) is satisfied with 𝑎
1
= 𝑎
2
= 𝑎
3
= 𝑎
4
= 1/6, where

𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 2𝑎
4
≤ 1. Hence, the conditions of Corollary 10

are satisfied and 0 is the fixed point of 𝑓.

Corollary 12. Let (𝑋, ⪯) be a partially ordered set and 𝑓 be
a nondecreasing self mapping on a complete 𝐺-metric space 𝑋
satisfying

𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑦) ≤ 𝑀(𝑥, 𝑦, 𝑦) − 𝜑 (𝑀 (𝑥, 𝑦, 𝑦)) , (40)

where 𝜑 ∈ Φ,

𝑀(𝑥, 𝑦, 𝑦) = max{𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) ,

𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) ,

[𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) + 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)]

2
} ,

𝑁 (𝑥, 𝑦, 𝑦) = (𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) , 𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) ,

𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥))

(41)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦. Suppose that there exists 𝑥
0
∈ 𝑋

with 𝑥
0
⪯ 𝑓𝑥
0
. If 𝑓 is continuous or 𝑋 has a sequential limit

comparison property, then 𝑓 has a fixed point in𝑋.

Corollary 13. Let (𝑋, ⪯) be a partially ordered set and 𝑓 be
a nondecreasing self mapping on a complete 𝐺-metric space 𝑋
satisfying

𝐺 (𝑓𝑥, 𝑓𝑦, 𝑓𝑦) ≤ 𝑀(𝑥, 𝑦, 𝑦) − 𝜑 (𝑁 (𝑥, 𝑦, 𝑦)) , (42)

where 𝜑 ∈ Φ,

𝑀(𝑥, 𝑦, 𝑦) = 𝑎
1
𝐺 (𝑥, 𝑦, 𝑦) + 𝑎

2
𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥)

+ 𝑎
3
𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) + 𝑎

4
[𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦)

+𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥)] ,

𝑁 (𝑥, 𝑦, 𝑦) = (𝐺 (𝑥, 𝑦, 𝑦) , 𝐺 (𝑥, 𝑓𝑥, 𝑓𝑥) , 𝐺 (𝑦, 𝑓𝑦, 𝑓𝑦) ,

𝐺 (𝑥, 𝑓𝑦, 𝑓𝑦) , 𝐺 (𝑦, 𝑓𝑥, 𝑓𝑥))

(43)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦, where 𝑎
𝑖
> 0 for 𝑖 = 1, 2, 3, 4

with 𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 2𝑎
4
≤ 1. Suppose that there exists 𝑥

0
∈

𝑋 with 𝑥
0
⪯ 𝑓𝑥
0
. If 𝑓 is continuous or 𝑋 has a sequential

limit comparison property, then 𝑓 has a fixed point in 𝑋.
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