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1 Introduction and preliminaries
The theoretical framework of metric fixed point theory has been an active research field
over the last nine decades. Of course, the Banach contraction principle [] is the first im-
portant result on fixed points for contractive-type mappings. So far, there have been a
lot of fixed point results dealing with mappings satisfying various types of contractive in-
equalities. In particular, the concepts of K-contraction andC-contractionwere introduced
by Kannan [], respectively, Chatterjea [] as follows.

Definition  Let (X,d) be a metric space and f : X → X.
. ([]) The mapping f is said to be a K-contraction if there exists α ∈ (,  ) such that

for all x, y ∈ X the following inequality holds:

d(fx, fy) ≤ α
(
d(x, fx) + d(y, fy)

)
.

. ([]) The mapping f is said to be a C-contraction if there exists α ∈ (,  ) such that
for all x, y ∈ X the following inequality holds:

d(fx, fy) ≤ α
(
d(x, fy) + d(y, fx)

)
.

In , Kannan [] proved that if (X,d) is a complete metric space, then every K-
contraction on X has a unique fixed point. In , Chatterjea [] established a fixed point
theorem for C-contractions.

Definition  Let (X,d) be a metric space, f : X → X and ϕ : [,∞)  → [,∞) be a con-
tinuous function such that ϕ(x, y) =  if and only if x = y = .
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. ([]) f is said to be weakly C-contractive (or a weak C-contraction) if for all x, y ∈ X ,

d(fx, fy) ≤ 

(
d(x, fy) + d(y, fx)

)
– ϕ

(
d(x, fy),d(y, fx)

)
.

. ([]) f is said to be weakly K-contractive (or a weak K-contraction) if for all x, y ∈ X ,

d(fx, fy) ≤ 

(
d(x, fx) + d(y, fy)

)
– ϕ

(
d(x, fx),d(y, fy)

)
.

In , Choudhury [] proved the following theorem.

Theorem  ([, Theorem .]) Every weak C-contraction on a complete metric space has
a unique fixed point.

For more details of weakly C-contractive mappings we refer to [] and [].

Definition  Let (X,d) be a metric space and T , f : X → X be two mappings.
. ([]) f : X → X is said to be a T-Kannan-contraction if there exists α ∈ (,  ) such

that for all x, y ∈ X the following inequality holds:

d(Tfx,Tfy) ≤ α
(
d(Tx,Tfx) + d(Ty,Tfy)

)
.

. ([]) f : X → X is said to be a T-Chatterjea-contraction if there exists α ∈ (,  )
such that for all x, y ∈ X the following inequality holds:

d(Tfx,Tfy) ≤ α
(
d(Tx,Tfy) + d(Ty,Tfx)

)
.

T-Kannan-contractions (in short,T-K-contractions) andT-Chatterjea-contractions (in
short, T-C-contractions) are special cases of T-Hardy-Rogers contractions []. Recently,
existence and uniqueness of fixed points for these types of contractions in cone metric
spaces have been investigated in [] and [].

Definition  ([]) Let (X,d) be a metric space. A mapping T : X → X is said to be se-
quentially convergent (respectively, subsequentially convergent) if, for a sequence {xn} in
X for which {Txn} is convergent, {xn} is also convergent (respectively, {xn} has a convergent
subsequence).

In [], Moradi has extended Kannan’s theorem [] as follows.

Theorem  (Extended Kannan’s theorem []) Let (X,d) be a complete metric space and
T , f : X → X be mappings such that T is continuous, one-to-one and subsequentially con-
vergent. If f is a T-K-contraction then f has a unique fixed point.Moreover, if T is sequen-
tially convergent then, for every x ∈ X, the sequence of iterates {f nx} converges to this fixed
point.

The notion of an altering distance function was introduced by Khan et al. as follows.

Definition  ([]) The function ψ : [,∞) → [,∞) is called an altering distance func-
tion, if the following properties are satisfied:

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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. ψ is continuous and strictly increasing.
. ψ() = .

In the following definitions and theorems, ψ is an altering distance function and ϕ :
[,∞)  → [,∞) is a continuous function such that ϕ(x, y) =  if and only if x = y = .

Definition  ([]) Let (X,d) be a metric space and let T , f : X → X be two mappings.
. f is said to be a generalized weak T-C-contraction if, for all x, y ∈ X ,

ψ
(
d(Tfx,Tfy)

) ≤ ψ

(
d(Tx,Tfy) + d(Ty,Tfx)



)
– ϕ

(
d(Tx,Tfy),d(Ty,Tfx)

)
.

. f is said to be a generalized weak T-K-contraction if, for all x, y ∈ X ,

ψ
(
d(Tfx,Tfy)

) ≤ ψ

(
d(Tx,Tfx) + d(Ty,Tfy)



)
– ϕ

(
d(Tx,Tfx),d(Ty,Tfy)

)
.

Puttingψ(t) = t in the above definition, we obtain the concepts of weakT-C-contraction
and weak T-K-contraction.
The following are the main results of [].

Theorem [] Let (X,d) be a complete metric space and let T , f : X → X be twomappings
such that T is one-to-one and continuous. Suppose that:
. f is a generalized weak T-C-contraction, or
. f is a generalized weak T-K-contraction.
Then we have the following.
(i) For every x ∈ X the sequence {Tf nx} is convergent.
(ii) If T is subsequentially convergent then f has a unique fixed point.
(iii) If T is sequentially convergent then for each x ∈ X the sequence {f nx} converges to

the fixed point of f .

The aim of this article is to extend the stated results to the framework of b-metric spaces,
introduced in  by Czerwik []. These form a nontrivial generalization of metric
spaces and several fixed point results for single and multivalued mappings in such spaces
have been obtained since then (see, e.g., [–] and the references cited therein).We recall
the following.

Definition  ([]) LetX be a (nonempty) set and s ≥  be a given real number. A function
d : X×X → [,∞) is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(b) d(x, y) =  iff x = y,
(b) d(x, y) = d(y,x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X,d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that ofmetric
spaces, since a b-metric is a metric if (and only if ) s = . We present an easy example to
show that in general a b-metric need not be a metric.
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Example  Let (X,ρ) be a metric space, and d(x, y) = (ρ(x, y))p, where p≥  is a real num-
ber. Then d is a b-metric with s = p–.
However, (X,d) is not necessarily a metric space. For example, if X = R is the set of

real numbers and ρ(x, y) = |x – y| is the usual Euclidean metric, then d(x, y) = (x – y) is a
b-metric on R with s = , but it is not a metric on R.

Recently, Hussain et al. [] have presented an example of a b-metric which is not contin-
uous (see [, Example ]). Thus, while working in b-metric spaces, the following lemma
is useful.

Lemma  ([]) Let (X,d) be a b-metric space with s ≥ , and suppose that the sequences
{xn} and {yn} are b-convergent to x, y, respectively. Then we have


s
d(x, y)≤ lim inf

n→∞ d(xn, yn)≤ lim sup
n→∞

d(xn, yn) ≤ sd(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = .Moreover, for each z ∈ X,we have,


s
d(x, z) ≤ lim inf

n→∞ d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

2 Fixed points of weakly T-Chatterjea contractions
From now on, we assume:

� =
{
ψ : [,∞)→ [,∞) | ψ is an altering distance function

}
and

� =
{
ϕ : [,∞)  → [,∞)

∣∣ ϕ(x, y) =  ⇐⇒ x = y =  and

ϕ
(
lim inf
n→∞ an, lim inf

n→∞ bn
)

≤ lim inf
n→∞ ϕ(an,bn)

}
.

Our first result is the following.

Theorem  Let (X,d) be a complete b-metric space with parameter s≥ , T , f : X → X be
such that, for some ψ ∈ � , ϕ ∈ � and all x, y ∈ X,

ψ
(
sd(Tfx,Tfy)

) ≤ ψ

(
d(Tx,Tfy) + d(Ty,Tfx)

s + 

)
– ϕ

(
d(Tx,Tfy),d(Ty,Tfx)

)
, (.)

and let T be one-to-one and continuous. Then we have the following.
() For every x ∈ X the sequence {Tf nx} is convergent.
() If T is subsequentially convergent, then f has a unique fixed point.
() If T is sequentially convergent, then for each x ∈ X the sequence {f nx} converges to

the fixed point of f .

Proof Let x ∈ X be arbitrary. Consider the sequence {xn}∞n= given by xn+ = fxn = f n+x,
n = , , , . . . . We will complete the proof in three steps.
Step I. We will prove that limn→∞ d(Txn,Txn+) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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Using condition (.), we obtain

ψ
(
sd(Txn+,Txn)

)
= ψ

(
sd(Tfxn,Tfxn–)

)
≤ ψ

(
d(Txn,Tfxn–) + d(Txn–,Tfxn)

s + 

)

– ϕ
(
d(Txn,Tfxn–),d(Txn–,Tfxn)

)
= ψ

(
d(Txn,Txn) + d(Txn–,Txn+)

s + 

)

– ϕ
(
d(Txn,Txn),d(Txn–,Txn+)

)
. (.)

Therefore, by the triangular inequality and since ϕ is nonnegative and ψ is an increasing
function,

ψ
(
sd(Txn+,Txn)

) ≤ ψ

(
d(Txn–,Txn+)

s + 

)

≤ ψ

(
s

s + 
(
d(Txn–,Txn) + d(Txn,Txn+)

))
.

Again, since ψ is increasing, we have

d(Txn+,Txn) ≤ 
s + 

(
d(Txn–,Txn) + d(Txn,Txn+)

)
,

wherefrom

d(Txn+,Txn) ≤ 
s
d(Txn,Txn–) ≤ d(Txn,Txn–).

Thus, {d(Txn+,Txn)} is a decreasing sequence of nonnegative real numbers and hence it
is convergent.
Assume that limn→∞ d(Txn+,Txn) = r ≥ . From the above argument we have

sd(Txn+,Txn) ≤ 
s + 

d(Txn–,Txn+)

≤ s
s + 

(
d(Txn–,Txn) + d(Txn,Txn+)

)
≤ s


(
d(Txn–,Txn) + d(Txn,Txn+)

)
.

Passing to the limit when n→ ∞, we obtain

lim
n→∞d(Txn–,Txn+) = s(s + )r.

We have proved in (.) that

ψ
(
sd(Txn+,Txn)

) ≤ ψ

(
 + d(Txn–,Txn+)

s + 

)
– ϕ

(
,d(Txn–,Txn+)

)
.

Now, letting n→ ∞ and using the continuity of ψ and the properties of ϕ we obtain

ψ(sr)≤ ψ(sr) – ϕ
(
, s(s + )r

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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and consequently, ϕ(, s(s + )r) = . This yields

r = lim
n→∞d(Txn,Txn+) = , (.)

by our assumptions about ϕ.
Step II. {Txn} is a b-Cauchy sequence.
Suppose that {Txn} is not a b-Cauchy sequence. Then there exists ε >  for which we

can find subsequences {Txm(k)} and {Txn(k)} of {Txn} such that n(k) is the smallest index
for which n(k) >m(k) > k and

d(Txm(k),Txn(k)) ≥ ε. (.)

This means that

d(Txm(k),Txn(k)–) < ε. (.)

From (.), (.) and the triangular inequality,

ε ≤ d(Txm(k),Txn(k))≤ s
[
d(Txm(k),Txn(k)–) + d(Txn(k)–,Txn(k))

]
< sε + sd(Txn(k)–,Txn(k)).

Letting k → ∞, and taking into account (.), we can conclude that

ε ≤ lim sup
k→∞

d(Txm(k),Txn(k)) ≤ sε. (.)

Further, from

d(Txm(k),Txn(k)) ≤ s
[
d(Txm(k),Txn(k)–) + d(Txn(k)–,Txn(k))

]

and (.), and using (.), we get

ε

s
≤ lim sup

k→∞
d(Txn(k)–,Txm(k)) ≤ ε. (.)

Moreover, from

d(Txm(k),Txn(k)) ≤ s
[
d(Txm(k),Txm(k)–) + d(Txm(k)–,Txn(k))

]

and

d(Txm(k)–,Txn(k)) ≤ s
[
d(Txm(k)–,Txm(k)) + d(Txm(k),Txn(k))

]
,

and using (.) and (.), we get

ε

s
≤ lim sup

k→∞
d(Txm(k)–,Txn(k)) ≤ sε. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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Similarly, we can show that

ε

s
≤ lim inf

k→∞
d(Txn(k)–,Txm(k)) ≤ ε (.)

and

ε

s
≤ lim inf

k→∞
d(Txm(k)–,Txn(k)) ≤ sε. (.)

Using (.) and (.)-(.) we have

ψ(sε) ≤ ψ
(
s lim sup

k→∞
d(Txm(k),Txn(k))

)

= ψ
(
s lim sup

k→∞
d(Tfxm(k)–,Tfxn(k)–)

)

≤ lim sup
k→∞

ψ

(
d(Txm(k)–,Tfxn(k)–) + d(Txn(k)–,Tfxm(k)–)

s + 

)

– lim inf
k→∞

ϕ
(
d(Txm(k)–,Tfxn(k)–),d(Txn(k)–,Tfxm(k)–)

)

≤ ψ

(
lim sup
k→∞

d(Txm(k)–,Txn(k)) + d(Txn(k)–,Txm(k))
s + 

)

– ϕ
(
lim inf
k→∞

d(Txm(k)–,Txn(k)), lim inf
k→∞

d(Txn(k)–,Txm(k))
)

≤ ψ

(
sε + ε

s + 

)
– ϕ

(
lim inf
k→∞

d(Txm(k)–,Txn(k)), lim inf
k→∞

d(Txn(k)–,Txm(k))
)

≤ ψ(sε) – ϕ
(
lim inf
k→∞

d(Txm(k)–,Txn(k)), lim inf
k→∞

d(Txn(k)–,Txm(k))
)

since s+
s+ ≤ s. Hence, we have

ϕ
(
lim inf
k→∞

d(Txm(k)–,Txn(k)), lim inf
k→∞

d(Txn(k)–,Txm(k))
)

≤ .

By our assumption about ϕ, we have

lim inf
k→∞

d(Txm(k)–,Txn(k)) = lim inf
k→∞

d(Txn(k)–,Txm(k)) = ,

which contradicts (.) and (.).
Since (X,d) is b-complete and {Txn} = {Tf nx} is a b-Cauchy sequence, there exists v ∈ X

such that

lim
n→∞Tf nx = v. (.)

Step III. f has a unique fixed point, assuming that T is subsequentially convergent.
As T is subsequentially convergent, {f nx} has a b-convergent subsequence. Hence,

there exist u ∈ X and a subsequence {ni} such that

lim
i→∞ f nix = u. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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Since T is continuous, by (.) we obtain

lim
i→∞Tf nix = Tu, (.)

and by (.) and (.) we conclude that Tu = v.
From Lemma  and (.) we have

ψ

(
s · 

s
d(Tfu,Tu)

)
≤ ψ

(
lim sup
n→∞

sd
(
Tfu,Tf n+x

))

= ψ
(
lim sup
n→∞

sd(Tfu,Tfxn)
)

≤ ψ

(
lim sup
n→∞

d(Tu,Tfxn) + d(Txn,Tfu)
s + 

)

– lim inf
n→∞ ϕ

(
d(Tu,Tfxn),d(Txn,Tfu)

)
≤ ψ

(
sd(Tu,Tu) + sd(Tu,Tfu)

s + 

)

– ϕ
(
lim inf
n→∞ d(Tu,Tfxn), lim inf

n→∞ d(Txn,Tfu)
)

≤ ψ
(
d(Tu,Tfu)

)
– ϕ

(
, lim inf

n→∞ d(Txn,Tfu)
)
,

sinceψ is increasing. By the properties of ϕ ∈ �, it follows that lim infn→∞ d(Txn,Tfu) = .
By the triangular inequality we have

d(Tfu,Tu) ≤ s
[
d(Tfu,Txn) + d(Txn,Tu)

]
.

Letting n→ ∞ we can conclude that d(Tfu,Tu) = . Hence, Tfu = Tu. As T is one-to-one,
fu = u. Consequently, f has a fixed point.
If we assume that w is another fixed point of f , because of (.), we have

ψ
(
sd(Tu,Tw)

)
=ψ

(
sd(Tfu,Tfw)

)
≤ ψ

(
d(Tu,Tfw) + d(Tw,Tfu)

s + 

)
– ϕ

(
d(Tu,Tfw),d(Tw,Tfu)

)

=ψ

(
d(Tu,Tw) + d(Tw,Tu)

s + 

)
– ϕ

(
d(Tu,Tw),d(Tw,Tu)

)
≤ ψ

(
sd(Tu,Tw)

)
– ϕ

(
d(Tu,Tw),d(Tw,Tu)

)
,

since 
s+ ≤ s and ψ is increasing. Hence, d(Tu,Tw) = . Since T is one-to-one, it follows

that u = w. Consequently, f has a unique fixed point.
Finally, if T is sequentially convergent, replacing {n} with {ni} we conclude that

limn→∞ f nx = u. �

Taking ψ(t) = t and ϕ(t,u) = ( 
s+ – α)(t + u), where α ∈ [, 

s+ ) in Theorem , the ex-
tended Chatterjea’s theorem in the setting of b-metric spaces is obtained.

http://www.journalofinequalitiesandapplications.com/content/2014/1/46
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Corollary  Let (X,d) be a complete b-metric space and T , f : X → X be mappings such
that T is continuous, one-to-one and subsequentially convergent. If α ∈ [, 

s+ ) and

d(Tfx,Tfy) ≤ α

s
(
d(Tx,Tfy) + d(Ty,Tfx)

)
,

for all x, y ∈ X, then f has a unique fixed point. Moreover, if T is sequentially convergent,
then for every x ∈ X the sequence of iterates f nx converges to this fixed point.

Remark  In the case when Tx = x, this corollary reduces to [, Corollary ..◦] (the
case g = f ), which is Chatterjea’s theorem [] in the framework of b-metric spaces.
By taking Tx = x and ψ(t) = t in Theorem , we derive an extension of Choudhury’s

theorem (Theorem ) to the setup of b-metric spaces.
If s = , Theorem  reduces to Theorem  (case ()).

We demonstrate the use of the obtained results by the following.

Example  (Inspired by []) LetX = {}∪{/n | n ∈N}, and let d(x, y) = (x–y) for x, y ∈ X.
Then d is a b-metric with the parameter s =  and (X,d) is a complete b-metric space.
Consider the mappings f ,T : X → X given by

f () = , f
(

n

)
=


n + 

, T() = , T
(

n

)
=


nn

, n ∈N.

We will show that the mappings f , T satisfy the conditions of Corollary  with α = 
 <


 =


s+ . Indeed, form,n ∈N,m > n, we have

d
(
Tf


n
,Tf


m

)
=

[


(n + )n+
–


(m + )m+

]

<
[


(n + )n+

]

.

It is easy to prove that, for n ∈ N,


(n + )n+

<



[

nn

–


(n + )n+

]
.

It follows that

d
(
Tf


n
,Tf


m

)
<



[

nn

–


(n + )n+

]

.

Now, m > n implies that m ≥ n +  and n +  ≤ m + . It follows that /(n + )n+ ≥ /(m +
)m+, and hence

d
(
Tf


n
,Tf


m

)
<



[

nn

–


(m + )m+

]

≤ α

s

[
d
(
T

n
,Tf


m

)
+ d

(
T


m
,TF


n

)]
.

If one of the points is equal to , the proof is even simpler.
By Corollary , it follows that f has a unique fixed point (which is u = ).
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3 Fixed points of weakly T-Kannan contractions
Our second main result is the following.

Theorem  Let (X,d) be a complete b-metric space with the parameter s≥ , T , f : X → X
be such that for some ψ ∈ � , ϕ ∈ � and all x, y ∈ X,

ψ
(
d(Tfx,Tfy)

) ≤ ψ

(
d(Tx,Tfx) + d(Ty,Tfy)

s + 

)
– ϕ

(
d(Tx,Tfx),d(Ty,Tfy)

)
. (.)

and let T be one-to-one and continuous. Then:
() For every x ∈ X the sequence {Tf nx} is convergent.
() If T is subsequentially convergent, then f has a unique fixed point.
() If T is sequentially convergent then, for each x ∈ X , the sequence {f nx} converges to

the fixed point of f .

Proof Let x ∈ X be arbitrary. Consider the sequence {xn}∞n= given by xn+ = fxn = f n+x,
n = , , , . . . . At first, we will prove that

lim
n→∞d(Txn,Txn+) = .

Using condition (.), we obtain

ψ
(
d(Txn+,Txn)

)
= ψ

(
d(Tfxn,Tfxn–)

)
≤ ψ

(
d(Txn,Tfxn) + d(Txn–,Tfxn–)

s + 

)

– ϕ
(
d(Txn,Tfxn),d(Txn–,Tfxn–)

)
= ψ

(
d(Txn,Txn+) + d(Txn–,Txn)

s + 

)

– ϕ
(
d(Txn,Tfxn),d(Txn–,Tfxn–)

)
. (.)

Since ϕ is nonnegative and ψ is increasing, it follows that

d(Txn+,Txn) ≤ d(Txn,Txn+) + d(Txn–,Txn)
s + 

,

that is,

d(Txn+,Txn) ≤ 
s
d(Txn,Txn–) ≤ d(Txn,Txn–).

Thus, {d(Txn+,Txn)} is a decreasing sequence of nonnegative real numbers and hence it
is convergent.
Assume that limn→∞ d(Txn+,Txn) = r. If in (.) n → ∞, using the properties of ψ and

ϕ we obtain

ψ(r)≤ ψ

(
r
s + 

)
– ϕ(r, r)≤ ψ(r) – ϕ(r, r),
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which is possible only if

r = lim
n→∞d(Txn,Txn+) = .

Now, we will show that {Txn} is a b-Cauchy sequence.
Suppose that this is not true. Then there exists ε >  for which we can find subsequences

{Txm(k)} and {Txn(k)} of {Txn} such that n(k) is the smallest index for which n(k) >m(k) > k
and d(Txm(k),Txn(k))≥ ε. This means that

d(Txm(k),Txn(k)–) < ε.

Again, as in Step II of Theorem  one can prove that

ε ≤ lim sup
k→∞

d(Txm(k),Txn(k)) ≤ sε. (.)

Using (.) we have

ψ
(
d(Txm(k),Txn(k))

)
= ψ

(
d(Tfxm(k)–,Tfxn(k)–)

)
≤ ψ

(
d(Txm(k)–,Tfxm(k)–) + d(Txn(k)–,Tfxn(k)–)

s + 

)

– ϕ
(
d(Txm(k)–,Tfxm(k)–),d(Txn(k)–,Tfxn(k)–)

)
= ψ

(
d(Txm(k)–,Txm(k)) + d(Txn(k)–,Txn(k))

s + 

)

– ϕ
(
d(Txm(k)–,Txm(k)),d(Txn(k)–,Txn(k))

)
.

Passing to the upper limit as k → ∞ in the above inequality and taking into account (.),
we have

ψ(ε) ≤ ψ() – ϕ(, ) = ,

and so ψ(ε) = . By our assumptions about ψ , we have ε = , which is a contradiction.
Since (X,d) is b-complete and {Txn} = {Tf nx} is a b-Cauchy sequence, there exists v ∈ X

such that

lim
n→∞Tf nx = v. (.)

Now, ifT is subsequentially convergent, then {f nx} has a convergent subsequence.Hence,
there exist a point u ∈ X and a sequence {ni} such that

lim
i→∞ f nix = u. (.)

Since T is continuous, by (.) we obtain

lim
i→∞Tf nix = Tu, (.)

and by (.) and (.) we conclude that Tu = v.

http://www.journalofinequalitiesandapplications.com/content/2014/1/46


Mustafa et al. Journal of Inequalities and Applications 2014, 2014:46 Page 12 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/46

From Lemma  and (.) we have

ψ

(

s
d(Tfu,Tu)

)
≤ ψ

(
lim sup
n→∞

d
(
Tfu,Tf n+x

))

= ψ
(
lim sup
n→∞

d(Tfu,Tfxn)
)

≤ ψ

(
lim sup
n→∞

d(Tu,Tfu) + d(Txn,Tfxn)
s + 

)

– lim inf
n→∞ ϕ

(
d(Tu,Tfu),d(Txn,Tfxn)

)
= ψ

(
d(Tu,Tfu) + 

s + 

)
– ϕ

(
d(Tu,Tfu), 

)

≤ ψ

(
d(Tu,Tfu)

s

)
– ϕ

(
d(Tu,Tfu), 

)
.

By the properties of ϕ ∈ �, it follows that

d(Tu,Tfu) = .

Since T is one-to-one, we obtain fu = u. Consequently, f has a fixed point.
Uniqueness of the fixed point can be proved in the same manner as in Theorem .
Finally, if T is sequentially convergent, replacing {n} with {ni} we conclude that

limn→∞ f nx = u. �

Taking ψ(t) = t and ϕ(t,u) = ( 
s+ – α)(t + u), where α ∈ [, 

s+ ) in Theorem , the ex-
tended Kannan’s theorem in the setting of b-metric spaces is obtained.

Corollary  Let (X,d) be a complete b-metric space with the parameter s≥ ,T , f : X → X
be such that for some α < 

s+ and all x, y ∈ X,

d(Tfx,Tfy) ≤ α
(
d(Tx,Tfx) + d(Ty,Tfy)

)
(.)

and let T be one-to-one and continuous. Then we have the following.
() For every x ∈ X the sequence {Tf nx} is convergent.
() If T is subsequentially convergent then f has a unique fixed point.
() If T is sequentially convergent then, for each x ∈ X , the sequence {f nx} converges to

the fixed point of f .

Remark  In the case when Tx = x, this corollary reduces to [, Corollary ..◦] (the
case g = f ). If s = , Corollary  reduces to Theorem  (i.e., [, Theorem .]). Of course, if
both of these conditions are fulfilled, we get just the classical Kannan’s theorem [].

The following example distinguishes our results from the previously known ones.

Example  Let X = {a,b, c} and d : X×X →R be defined by d(x,x) =  for x ∈ X, d(a,b) =
d(b, c) = , d(a, c) = 

 , d(x, y) = d(y,x) for x, y ∈ X. It is easy to check that (X,d) is a b-metric
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space (with s = 
 > ) which is not a metric space. Consider the mapping f : X → X given

by

f =

(
a b c
a a b

)
.

We first note that the b-metric version of classical weak Kannan’s theorem is not satisfied
in this example. Indeed, for x = b, y = c, we have d(fx, fy) = d(a,b) =  and d(x, fx)+d(y, fy) =
d(b,a) + d(c,b) = , hence the inequality

ψ
(
d(fx, fy)

) ≤ ψ

(
d(x, fx) + d(y, fy)

s + 

)
– ϕ

(
d(x, fx),d(y, fy)

)

cannot hold, whatever ψ ∈ � and ϕ ∈ � are chosen.
Take now T : X → X defined by

T =

(
a b c
b c a

)
.

Obviously, all the properties of T given in Corollary  are fulfilled. We will check that the
contractive condition (.) holds true if α is chosen such that



< α <




=


s + 
.

Only the following cases are nontrivial:
◦ x = a, y = c. Then (.) reduces to

d(Tfa,Tfc) = d(b, c) =  =



· 

< α

(
d(b,b) + d(a, c)

)
= α

(
d(Ta,Tfa) + d(Tc,Tfc)

)
.

◦ x = b, y = c. Then (.) reduces to

d(Tfb,Tfc) = d(b, c) =  <



· 


< α
(
d(c,b) + d(a, c)

)
= α

(
d(Tb,Tfb) + d(Tc,Tfc)

)
.

All the conditions of Corollary  are satisfied and f has a unique fixed point (u = a).
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