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SMEDL: Combining Synchronous and
Asynchronous Monitoring

Teng Zhang1, Peter Gebhard1, and Oleg Sokolsky1

University of Pennsylvania, Philadelphia PA 19104, USA,
{tengz,pgeb,sokolsky}@cis.upenn.edu

Abstract. Two major approaches have emerged in runtime verification,
based on synchronous and asynchronous monitoring. Each approach has
its advantages and disadvantages and is applicable in different situations.
In this paper, we explore a hybrid approach, where low-level proper-
ties are checked synchronously, while higher-level ones are checked asyn-
chronously. We present a tool for constructing and deploying monitors
based on an architecture specification. Monitor logic and patterns of
communication between monitors are specified in a language SMEDL.
The language and the tool are illustrated using a case study of a robotic
simulator.

Keywords: Monitor generation, Synchronous monitoring, Asynchronous
monitoring

1 Introduction

Runtime verification(RV) [1] has emerged as a powerful technique for correct-
ness monitoring of critical systems. Numbers of approaches have been proposed
among which synchronous monitoring [2] and asynchronous monitoring [3] are
broadly used. Synchronous monitoring will block the execution of the system
being monitored until validity of an observation is confirmed, ensuring that po-
tentially hazardous behavior is not propagated to the system environment. This
makes this method suitable for safety- and security-related contexts. However,
synchronous monitoring incurs high execution overhead for the target system,
and less critical properties may not require such strict guarantees. On the other
hand, asynchronous monitoring may allow to check the properties with less over-
head for the target system, but as the system continues its execution while
checking is performed, it may not be suitable for some critical properties. More-
over, the error point is hard to locate: when the monitor reports the violation
of the property, the target system may have already left the position causing
the problem. Most RV tools target one of these two approaches. Furthermore,
synchronous monitoring may not be suitable for distributed systems. In many
practical cases, it is desirable to combine the two approaches to get the benefits
of both and reduce effects of drawbacks.

The contribution of this paper is a tool for construction and deployment
of hybrid monitoring. The tool uses the language SMEDL to specify monitoring



architecture and individual monitors. Properties to be checked are represented in
a state-machine style in monitors. Generated monitors can be integrated with the
target system or deployed separately, according to the architecture specification.
Execution within a monitor is synchronous while the communication among
monitors is asynchronous. This allows us to monitor properties on multiple time
scales and levels of criticality.

Related work. MaC(Monitoring and Checking) [4] is an architecture for
asynchronous runtime monitoring. A distributed version of MaC, DMaC [5],
is proposed mainly for monitoring the properties of network protocols. MOP
(Monitoring Oriented Programming) [6] is a generic framework for properties
specification and the checking of the properties at runtime. Based on the work
of MOP, RV-Monitor [7] can monitor hundreds of properties of Java API specifi-
cations at the same time. Using the concepts of AOP [8] and MOP, MOVEC [9]
is compiler supporting the parametric runtime verification for systems written
in C. [10] proposes an architecture allowing for switching between synchronous
and asynchronous monitoring but it is not clear how to use synchronous and
asynchronous monitoring simultaneously. [11] proposed PT-DTL, a temporal
logical to describe the temporal properties of distributed system, and a decen-
tralized monitoring algorithm for PT-DTL. However, the proposed tool, DIANA,
only supports the asynchronous monitoring for distributed program with a fixed
architecture. [12] presents a method for monitoring multi-threaded component-
based systems described in BIP but it is not suitable for distributed systems. [13]
proposes a primitive condition rule-based system RuleR which supports the hi-
erarchy architecture of monitors but asynchronous monitoring is not supported.
Thus, despite the variety of available tools, there is presently no support for
combining synchronous and asynchronous monitoring.

The paper is organized as follows. Section 2 gives a overview of SMEDL.
Section 3 introduces the implementation of the SMEDL tool. Section 4 uses the
case study of simple robot simulator to evaluate the performance of the tool.
Section 5 concludes the paper and presents the future work.

2 Overview of SMEDL

2.1 SMEDL concepts

A SMEDL monitoring system can be divided as four parts: target system, moni-
toring specification, SMEDL code generator and runtime checkers, as illustrated
in Fig. 1. Target system is the system to be monitored and checked. The SMEDL
specification contains a set of monitoring objects and an architecture that cap-
tures patterns of communication between them. A monitoring object can be an
abstraction of a system object or an abstract entity that represents interactions
between multiple system objects. Objects can include a set of parameters whose
values are fixed when the object is instantiated. Internal state can be maintained
in an object to reflect the history of its evolution. SMEDL events are instanta-
neous occurrences that ultimately originate from observations of the execution
of target system. Events can also be raised by monitors in response to other



events. Raised events can be delivered to other monitors for checking or serve as
alarms. A SMEDL specification is independent from the system implementation
so that the monitoring specification does not need to be changed as long as the
specification remains the same, even if the implementation has been changed.
Instead, the definition of events in terms of observations on the target system is
modified. Each monitoring object is converted to executable code by the SMEDL
code generator and can be instantiated multiple times with different parameters,
either statically during the target system startup or dynamically at run time,
in response to system events such as the creation of a new thread in the target
system.

Fig. 1. SMEDL overview

2.2 Brief description of the language

The SMEDL specification contains two parts: a definition for each monitor object
and a description of the monitor network that specifies monitor instances and
connections between them.

Monitoring objects. A SMEDL monitoring object is a collection of ex-
tended finite state machines (EFSMs) sharing a set of internal state variables and
events. More precisely, a monitoring object is a tuple 〈interface, implementation〉,
where interface contains the name, unchangeable identity parameters and event
declarations; implementation contains state variables and state machines of the
monitor. In SMEDL syntax, illustrated in the case study, state machines are rep-
resented as scenarios. Three kinds of events, imported, exported and internal,
can be specified in the event declaration. Imported events of a monitor can
be received and used to trigger the execution of the monitor; exported events
are raised in the monitor and are sent to other monitors; internal events are
processed within the monitor instance. State machines are used to define the
behavior of the monitor. Transitions of the state machines are labelled with
events that trigger the transition. In addition to an event, each transition may
also be labeled by a guard, which is a predicate over state variables and event
attributes, and a set of actions, each action is either an assignment to a local
variable, or a statement that raises an event. Semantics for single monitors deter-
mines macro-steps, that is, synchronous compositions of individual transitions



of state machines (referred to as micro-steps) in response to an imported event
from delivered from the environment. After finishing all enabled transitions, the
monitor will output the exported events raised during the macro-step and wait
for the next imported environment. Formal description of the semantics can be
found in [14].

Architecture. A monitor network is a directed tree G = 〈V,E〉 where V
contains the target system and a set of monitor instances which can receive or
raise events; E is a set of directed edges connecting event ports from the tar-
get system to the monitors or between monitors. Monitors may receive events
either from the target system or from other monitors. Monitors directly connect-
ing with the target system will execute synchronously with the target system,
while all others have their own execution threads and can be deployed locally
or over a network. Events are delivered to monitor instances based on the val-
ues of instance parameters or event attributes. Thus, an architecture description
language is provided for specifying event connection patterns between monitor
instances. Apart from the source and target monitoring objects and events, con-
nection patterns also specify matching rules between source and target monitor
instances according to instance parameters or attributes of the event. [15] gives
a detailed description of the language.

3 Tool Implementation

We have developed a toolchain for deploying monitors based on SMEDL speci-
fications, shown in Fig. 2. The tool contains two parts: monitor generator and
configurator. The monitor generator generates the code for a single monitor ob-
ject, while the configurator is responsible for integrating monitor instances and
target program, based on the SMEDL architecture specification.

Fig. 2. SMEDL Toolchain



The monitor generator produces C code for the monitor object. The monitor
API consists of a set of function calls corresponding to imported events of the
monitor object. Calls to event functions trigger execution of the monitor state
machines. To support the asynchronous communication between monitors, we
use the publish-subscribe mechanism of the RabbitMQ middleware [16]. Each
event in the architecture specification is represented as a topic. Events raised by
a monitor are published to a topic according to the architecture specification.
Topic names include information about names of parameters of raising monitors
and event attributes. We rely on filtering provided in RabbitMQ subscriptions:
monitor instances subscribing to an event can specify values of parameters and
attributes that are relevant for them, according to the architecture specification.

We have developed a prototype of SMEDL toolchain which can generate the
C code of single monitors. The toolchain and the case study used in this paper
is available for downloading.1

4 Explorer: a Case Study

Explorer is a multi-threaded program for simulating robots locating and retriev-
ing targets on a two-dimensional map. Each robot, running in its own thread,
will start in a specified position on the map and has to retrieve a number of
targets in a limited number of moves across the map. The goal of monitoring for
this program is twofold. First, we want to check that each robot is following the
search-and-retrieve protocol and, second, we collect statistics about the number
of moves needed to retrieve the target. We thus define two monitor objects: one
checks behavior of each robot thread and another is a statistic monitor that col-
lects events from all behavior checking monitors. The behavior checking monitor
is deployed synchronously with each new thread, while the statistic monitor is
asynchronous.

Monitor specification. ExplorerMon, defined in Listing 1.1, directly con-
nects to each robot for synchronous checking. The monitor has three scenarios
Main, Explore and Count. Main is used to check whether robot has found
the target in its view and begun to retrieve it. Explore is used to describe the
behavior of robots. Count is used to count the number of moves of robots. There
are four imported events, view, drive, turn and count. Event view will be sent
to the monitor whenever the view of the robot has been updated. If the target
is in the robot’s view, the monitor will raise the internal event found indicating
that the robot has found the target. Event turn is used to check the current
heading direction of the robot and update the state variable mon heading ac-
cordingly. Event drive is triggered whenever the robot is trying to move. If the
helper function check retrieved returns true, the exported event retrieved will
be raised carrying the number of moves that the robot has taken to retrieve this
target. Event count is used to count the number of robots having taken so far.
Every time count is triggered, the state variable move count is increased by 1.
Once a target has been retrieved, move count will be reset.

1 https://gitlab.precise.seas.upenn.edu/tengz/SMEDLTool



Listing 1.1. SMEDL specification for ExplorerMon

ob j e c t ExplorerMon
i d en t i t y

opaque id ;
s t a t e

i n t mon x , mon y , mon heading , move count ;
events
imported view ( po in te r ) , d r ive ( int , int , i n t ) , turn ( i n t ) , count ( ) ;
i n t e r n a l found ( ) ;
exported r e t r i e v ed ( i n t ) ;

s c ena r i o s
Main :

Explore −> found ( ) −> Retr i eve
Retr i eve −> r e t r i e v ed ( cnt ) −> Explore

Explore :
Look−>view ( v i ew po in te r ) when con t a i n s ob j e c t ( v i ew po in te r ){ r a i s e found();}−>Move

e l s e −> Move
Move −> turn ( f a c i ng ) when f a c i ng != heading{mon heading = fa c i ng ;} −> Look

e l s e −> Move
Move −> dr ive (x , y , heading , map) when che ck r e t r i e v ed (map , x , y )
{ r a i s e r e t r i e v ed (move count ) ; mon x = x ; mon y = y ; move count = 0 ; } −> Look

e l s e {mon x = x ; mon y = y ;} −> Look
Count :

Star t −> count (){move count=move count+1;}−>Start
}

To check if all robots retrieve all targets in the map and calculate the average
number of moves the robots have used, asynchronous monitor ExplorerStat is
defined in Listing 1.2. In the system, there is only one instance of ExplorerStat
which will receive events retrieved from instances of ExplorerMon. Whenever
retrieved is delivered into the monitor, state variable sum will be increased by 1
and the number of moves will also be added to the variable count. If the sum is
equal to the overall number of targets, the exported event output will be raised
with the average number of moves of a robot as an attribute.

Listing 1.2. SMEDL specification for ExplorerStat

ob j e c t ExplorerStat
s t a t e

i n t sum , count , targetNum ;
events

imported r e t r i e v ed ( i n t ) ;
i n t e r n a l reachNum ( ) ;
exported output ( f l o a t ) ;

s c ena r i o s
s t a t :

Star t −> r e t r i e v ed (move count ){sum=sum+1; count=count+move count
; r a i s e reachNum();}−> Start

check :
CheckSum −> reachNum () when (sum < targetNum ) −> CheckSum

e l s e { r a i s e output ( count/sum ) ; sum=0; count=0;}−>CheckSum

Fig. 3, a, shows the corresponding runtime architecture. The two moni-
toring objects communicate via a single event retrieved. Fig. 3, b, shows a
runtime view of the architecture, where ex mon 1, . . . , ex mon k are instances
of ExplorerMon associated with threads robot 1, ldots, robot k simulating k
robots. The single instance of ExplorerMon receive events from all instances
ex mon i. The implementation introduces an additional thread sender that pub-
lishes events from all instances to the broker of RabbitMQ.

Performance evaluation. The experiment is done on a single core virtual
machine with CPU of speed 2.5GHz and memory of 4GB. The operating system
is Ubuntu 14.04LTS and RabbitMQ is used as the communication middleware
API. Overhead is one of the most important measurements that can show the
performance of the monitoring system. There are three sources of overhead for
synchronous monitoring: instantiation of monitors, checking of observations, and
communication. Communication overhead is incurred only when asynchronous



Fig. 3. Monitor Network of Explorer

monitors are present and events need to be sent to the asynchronous monitors
via the middleware. The overhead of publishing events depends on the choice
of middleware. Note that the initialization of connection in the main thread
is incorporated into the communication overhead. Checking overhead increases
with the number of observations produced by the target system. In our case
study, the number of observations depend on two tunable factors: the number
of robot threads in the system and the size of the map. We expect overhead to
increase linearly with the number of threads, since the number of observations
from each thread is independent of others. Increasing the size of the map tends
to reduce overhead, since robots tend to move straight over longer distances on
a larger map, without generating observations. This reduces the frequency of
events, on average. In this experiment, the size of map is fixed to 40 × 80 and
there are 5 targets in the map.

We describe two experiments that consider these factors separately. The first
experiment varies the number of threads, with the size of map is fixed to 40×80
and 5 targets on the map. Fig. 4 shows that the overhead is approximately linear
with the number of threads. The overall relative overhead of monitor instanti-
ation and synchronous checking is about 2%, while communication overhead
is approximately 3%, respectively. In absolute terms, processing of an average
event with and without communication overhead is 2.11µs vs. 1.93 µs.

Fig. 4. Execution time vs. number of threads

The second experiment considers the overhead as a function of the map size.
Table 1 shows that overhead quickly becomes negligible with the size of map



increasing. However, communication overhead remains about twice as high as
checking overhead.

Table 1. Relation between input size and overhead

input size # avg moves checking communication

30× 60 43306 3.2% 6%

40× 80 75205 1.9% 3.3%

50× 100 112943 < 1% 2%

60× 120 161918 < 1% 2%

We discuss results of the case study in the next section.

5 Discussion and Conclusions

We presented a tool to support generation and deployment of hybrid, i.e., syn-
chronous and asynchronous, monitors specified in the language SMEDL. The
SMEDL specification describes a network of monitors. Within the single mon-
itor, the execution is synchronous while the communication between monitors
is asynchronous. A prototype of the tool has been implemented. The paper de-
scribes evaluation of the tool using the case study of a robot simulator.

We first discuss some of our design decisions. We implement asynchronous
communication using middleware, which allows us to exchange events across the
network. This restricts synchronous monitoring to a single computing node. It is
possible that some security-critical applications may require synchronous mon-
itoring of multiple nodes. However, in our experience, such configurations are
subject to high overhead and should be avoided when possible. In our tool, ex-
tension to synchronous monitoring over a network would be a simple extension
to consider in the future. We assume that each monitor object in the architecture
is deployed either synchronously or asynchronously. That is, either all imported
events are supplied by the target system, or all are supplied by other moni-
tors through the middleware. Potentially, deployments could be mixed, however
implementation of the monitor becomes substantially more complicated.

From the case study, we note the choice balance between synchronous and
asynchronous monitors in an architecture is not straightforward. The most sur-
prising lesson from the case study, for us, was that the overhead of sending
an event to a separate monitor can be larger than checking the event syn-
chronously within the same monitor. Thus, intuitively, delegating checking to
an asynchronous monitor makes sense only if it involves complex computation.

The presented toolset remains in active development. We are working on au-
tomatic instrumentation of C code, using an approach similar to [9]. We are also
improving automatic deployment of asynchronous monitors, as well as reducing
both checking and communication overheads.
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