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Abstract
Search engine query data, which provide information on individuals’ attention allocation, have been proven
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and China by extracting search volume data from their respective dominant search engines – Google and
Baidu. On the overall market level, this paper investigates how search terms about financial markets relate to
weekly returns of important market indices in each country; on the individual stock level, search volumes of
selected company names in each country’s stock market are used to study fluctuations in stock prices. Finally,
a set of trading strategies are recommended after combining research results in this paper with search-based
strategies proposed in previous studies.

Keywords
search volumes, investor attention, stock market returns, U.S.-China comparison, search-based trading
strategies

Disciplines
Portfolio and Security Analysis

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/spur/10

http://repository.upenn.edu/spur/10?utm_source=repository.upenn.edu%2Fspur%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

STOCK MARKET VALUATION USING INTERNET SEARCH VOLUMES: 
U.S.-CHINA COMPARISON 

 
 

                                 Wan Jiang 
 

Candidate for Bachelor of Science in Economics | Class of 2019 
The Wharton School, University of Pennsylvania 

E-mail: wanjiang@wharton.upenn.edu 
 
 

Faculty Advisor: Lynn Wu 
 

Assistant Professor of Operations, Information and Decisions 
The Wharton School, University of Pennsylvania 

E-mail: wulynn@wharton.upenn.edu 
 

 
 

Research discipline: Business – Portfolio and Security Analysis 
 
 
 

Acknowledgements: The author would like to acknowledge additional help and suggestions 
from Xiao Qian, Elliot Oblander, and Prof. Catherine Schrand 

  



2 
 

ABSTRACT 

Search engine query data, which provide information on individuals’ attention allocation, have 

been proven by scholars to be useful in interpreting financial market performance. This paper 

explores the use of search volumes in stock market valuation and seeks to identify underlying 

stock market differences between the U.S. and China by extracting search volume data from 

their respective dominant search engines – Google and Baidu. On the overall market level, this 

paper investigates how search terms about financial markets relate to weekly returns of 

important market indices in each country; on the individual stock level, search volumes of 

selected company names in each country’s stock market are used to study fluctuations in stock 

prices. Finally, a set of trading strategies are recommended after combining research results in 

this paper with search-based strategies proposed in previous studies. 

 

Keywords: search volumes, investor attention, stock market returns, U.S.-China comparison, 

search-based trading strategies 
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INTRODUCTION 

The advent of the "big data" age has allowed scientists to explain various phenomena and 

predict the future using huge volumes of easily accessible data. However, the financial market 

has always been characterized with a high degree of volatility, which presents significant 

challenges for scientists to accurately model the market behavior. Empirical inquiries in stock 

market volatility have centered on using the theory of power-law distributions to explain large 

fluctuations in stock prices, trading volumes, and frequency of trades (Gabaix et al. 2003; 

Plerou et al. 2004). It was not until the 2010s that scholars proposed a new perspective in 

evaluating financial market performance - using Internet search query data to generate more 

useful and accurate results. The demonstration that query data from search engines such as 

Google and Baidu are correlated with financial market performance has shed new light on the 

studies of behavioral finance and financial modeling.  

Google Trends vs. Baidu Index   

Thanks to the convenience and popularity of search engines in today's Internet era, scientists 

have been able to inspect individuals' interest in specific queries and topics through examining 

search volume data. Not long before research on their financial applications emerged, search 

volumes had been used to analyze disease trends (Ginsberg et al. 2008) and economic 

conditions such as unemployment rates (Askitas and Zimmermann 2009). Preis, Reith, and 

Stanley (2010) conducted a pioneering investigation in the link between search volumes and 

trading volumes of listed companies. Most of these inquiries have shown that search volume 

movements offer insight on current statuses and future trends of various aspects in human life.   
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Most research on search engine query data has been devoted to the analysis of Google Trends, 

which is a Google service providing search volumes of terms that Internet users enter into 

Google. According to comScore, Google is by far the most popular web search engine around 

the globe. It leads the search engine market in the United States, with a market share of 63.8% 

in January 2016. Nevertheless, in some areas of the world, Google tends to have negligible 

usage due to different Internet policies in different countries. The Chinese equivalent of Google 

is Baidu, which dominates the Mainland China search engine market with a share of 74.4% in 

January 2016, according to AJPR's data. Like Google, Baidu offers a similar service for search 

volumes named Baidu Index, which records searches by Baidu users. Although both services 

measure search interest, there are certain differences between the two in terms of specific 

features and calculation algorithms.  

Vaughan and Chen (2015) conducted a comprehensive comparison of Google Trends and Baidu 

Index. While both services report search volumes based on specific time periods and provide 

volume comparison of a group of terms, only Google Trends can limit to specific search-term 

categories. Google Trends collects search volumes in different countries, while Baidu Index 

only shows search interest in China as Baidu is predominantly used by Chinese users. While 

Google Trends generates relative search volumes, that is, values scaled from 0 to 100 based on 

relevant time and location parameters, Baidu Index reports absolute search data that do not 

change with the time and location specified. In terms of matching algorithm, Google Trends is 

able to accomplish partial match, a Beta feature that counts different search queries relating to 

the same topic; however, Baidu Index only uses complete matching due to linguistic difficulties 

in breaking Chinese phrases into meaningful parts. These differences between Google Trends 
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and Baidu Index suggest that inquiries on the same subject matter using different services might 

generate different results.  

Since search engine query statistics were proven to have significant relationship with trading 

behavior (Preis, Reith, and Stanley 2010), there has been a surge of interest in this field and 

scholars have made noticeable progress in both Google Trends based and Baidu Index based 

stock market investigations. As it is generally believed that stock investors are more attracted 

to domestic markets than foreign markets (Preis, Moat, and Stanley 2013), most scholars 

analyzing the U.S. stock market have used Google Trends data restricted to U.S. Internet users, 

while scholars studying the Chinese market use Baidu Index. This paper also follows this 

principle.   

Explaining and Forecasting Stock Market Movements     

Initial research on stock market valuation using search volumes focused on assessing whether 

there is a significant correlation between search volumes and financial market fluctuations, 

specifically movements in trading volumes and stock prices of listed companies. The 

pioneering paper of Preis, Reith, and Stanley (2010) provides evidence that there is statistically 

significant relationship between weekly Google search volumes of S&P 500 companies and 

weekly transaction volumes of corresponding stocks. Moreover, present stock prices are found 

to affect search volumes of respective companies in the following weeks.  

The research of Preis, Reith, and Stanley (2010) opened up investigations in financial market 

valuation using search engine query data. Scholars have expanded the scope of research by not 

only studying the underlying relationship between searches and stocks, but also exploring the 
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use of search volumes in forecasting future stock movements through both an individual stock 

approach and a market approach. Scholars that take an individual stock perspective derive stock 

market patterns by analyzing search data for specific stock names or tickers. Inspired by the 

research of Mondria, Wu, and Zhang (2010) which is believed to be the first paper that uses 

search engine query data to measure attention allocation, Da, Engelberg, and Gao (2011) 

propose that search engine volumes serve as a direct proxy for investor attention, which 

influences stock market volatility to a great deal. After analyzing Russell 3000 stocks from 

2004 to 2008, Da, Engelberg, and Gao (2011) conclude that increases in Google search volumes 

lead to higher stock returns for the following two weeks, but the trend will then reverse. Joseph, 

Wintoki, and Zhang (2011) also use Google search volumes as a proxy for investor attention, 

discovering that search volumes can be used to predict stock returns and trading volumes, 

especially abnormal movements due to significant correlation between investor sentiment and 

the market risk factor. Building upon previous research findings, Bijl et al. (2016) employ a 

more recent search query dataset spanning from 2008 to 2013 and demonstrate that high 

Google search volumes result in negative returns. The reason for the difference in findings 

proposed by Da, Engelberg, and Gao (2011) and Bijl et al. (2016) might be that they cover data 

from different time periods. This suggests that the predictive nature of search engine query data 

might change over time, resulting in different kinds of correlation observed between searches 

and stock returns as time progresses.  

In addition to research at the individual stock level, scholars have also looked at correlation 

between search volumes and stock market changes by taking a market-level approach. Instead 

of collecting search volumes of individual stocks, Preis, Moat, and Stanley (2013) analyze 
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movements in Google search data for keywords related to stock markets such as "portfolio", 

"investment", and "hedge". They propose that increasing amounts of investor attention 

generally precede declining stock market conditions. This indicates that large-scale collective 

attention of investors can be a valuable measure of stock market strength and can lead to more 

profitable trading decisions.  

On the side of Baidu search volumes, there have been fewer research projects conducted than 

on Google searches. Research on Baidu Index and stock market performance has also 

discovered significant relationship between the two. Yu and Zhang (2012) use daily Baidu 

search volumes of companies in the Growth Enterprise Market of Shenzhen Stock Exchange 

to measure the limited attention of Chinese investors due to Baidu's dominance in the China 

search engine market. Similar to the findings of Da, Engelberg, and Gao (2011), studies 

conducted by Yu and Zhang (2012) reveal that an increase in Baidu Index forecasts rise in stock 

price on the same day and reversal in the next few days. They also show that investor attention 

on non-trading days is correlated with stock price movements on the next trading day.  

Deriving Trading Strategies from Search Volume Data   

Because search engine query volumes and stock market performance are demonstrated to be 

correlated, some scholars have recommended specific trading strategies based on this 

relationship. To test the robustness of search-volume-based prediction, Challet and Bel Hadj 

Ayed (2013) confirm the predictive power of Google Trends data, proving the intuition of Preis, 

Moat, and Stanley (2013) that financial market downturns are preceded by rising investor 

concern. As a result, trading strategies that take a "short" position when search engine query 
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volumes increase tend to generate profitable outcomes.  

Search engine query data can also provide insight on stock portfolio diversification, as is 

suggested by Kristoufek (2013). Because investor sentiment on a stock is strongly correlated 

with its risk factor, a potentially profitable strategy is to assign popularly searched stocks with 

lower portfolio weights and those less popular with higher weights. According to Kristoufek 

(2013), this strategy decreases the total riskiness of the portfolio and tends to perform better 

than uniformly weighted portfolios.  

Employing similar principles as adopted by Kristoufek (2013), Bijl et al. (2016) propose selling 

stocks with high Google search volumes and buying those with low search popularity. This 

trading strategy is shown to generate profits if the transaction cost is not considered. 

Nevertheless, according to Bijl et al. (2016), high transaction costs might erode profits brought 

by the strategy.  

Research Scope and Methodology of This Paper  

Although Google searches and Baidu searches have been found to correlate with stock market 

performance in the U.S. and China respectively, there are fundamental differences between the 

two countries in terms of market system and investor demographics. Through search engine 

query data, one could potentially understand these differences that characterize each particular 

network of trading activities and interactions. In addition, most of previous studies on analyzing 

stock movements with search volumes only considered companies that belong to certain market 

indices such as S&P 500 (Preis, Reith, and Stanley 2010; Bijl et al. 2016). However, these 

companies are relatively popular corporations that tend to draw the attention of not only stock 
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investors but also many non-investors who may simply be interested in learning about their 

senior management or their products. Bijl et al. (2016), who use S&P 500 companies for their 

analysis, point out that the search data have a large amount of noise. As a result, although 

overall search attention can contribute to a company's financial performance and subsequently 

influence stock movements, the large noise in search volumes of popular companies should 

make the data unable to serve as a valid proxy for investor attention.   

This paper seeks to effectively compare stock market performance in the U.S. and in China 

through the lens of search engine query volumes while reducing the effect of search noise. The 

research consists of three parts. First, this paper uses a penalized linear regression method - 

LASSO - to investigate how search terms about financial markets relate to weekly returns of 

important market indices in the U.S. and China. This is a market-level approach to 

understanding stock market trends. Next, this paper tries to capture market movements through 

analyzing individual stock data as studying the influence of search volumes and stock trading 

volumes on stock returns. Believing that search volumes of large and popular companies are 

not reliable, this paper selects companies that are small and undervalued but continuously 

growing for both the U.S. stock market and the Chinese stock market, since attention involving 

this type of companies can better represent interest in stock as opposed to other miscellaneous 

effects. A panel data set covering 261 weeks of observations for 374 U.S. equities and 134 

Chinese equities is prepared and an autoregressive linear panel model is then built for each 

market to assess how search volumes correlate with stock returns. Finally, a set of trading 

strategies are recommended after combining research results in this paper with search-volume-

based strategies proposed in previous studies.   
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SEARCH VOLUMES AND MARKET PERFORMANCE 

Data 

Stock investors' attention to financial phenomena and events can be considered a key driver of 

market performance, in that it reflects their confidence with the market and subsequently 

influences their trading decisions which characterize the stock market landscape. Nowadays, 

the financial world is so dynamic and ever-changing that investors are constantly gathering up-

to-date information in order to keep up with the changes. According to Preis, Moat, and Stanley 

(2013), search engines offer a convenient way to obtain important financial information, and 

search query data thus become a great proxy for capturing investor attention.  

To study how search engine query data can reveal performance of the entire stock market, this 

paper analyzes the relationship between return rates of key market indices and search volumes 

of terms related to the financial environment. Google search volumes of 98 terms are collected 

from Google Trends for the U.S. market. These terms are derived from the work of Preis, Moat, 

and Stanley (2013) who use search volumes of these terms to evaluate trading decisions. Table 

1 lists the 98 search terms. For the Chinese market, Baidu Index volumes are gathered for 

mostly the same terms in Chinese version but minor adjustments are made to several terms to 

make them suitable for the Chinese language and the Chinese market. Specifically, the phrase 

"dow jones" is changed to "china securities index", "nasdaq" to "Hong Kong Stock exchange", 

and "nyse" to "Shanghai Stock Exchange". The words "return", "gain", "returns", and "gains" 

are combined because they are the same in Chinese; the same treatment applies to "short 

selling" and "short sell", "investment" and "invest", "housing" and "house", and "consume" and 
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"consumption". As a result, there are 91 search terms after adjustments for the Chinese market.  

 

The data set covers a time period of 5 years (261 weeks) from June 05, 2011 to June 04, 2016. 

Search volumes for each term are standardized in order to transform all predictors to 

comparable scales and equalize the range and variability across them. The standardization 

formula used is as follows (SVi,t represents the search volume of term i during week t; SSVi,t 

represents the standardized search volume of term i during week t): 

 

Next, weekly closing prices (week ending Friday) of key market indices are collected over the 

same time period. For the U.S. market, three important indices are selected- Standard & Poor's 

500 (SP 500), Dow Jones Industrial Average (DJIA), and NASDAQ Composite 
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(NASDAQCOM). Data sets of weekly closing prices of these indices are obtained from the 

Federal Reserve Bank of St. Louis Research Database. For the Chinese market, this paper looks 

at two essential indices - China Securities Index 300 (CSI 300) and Hang Seng Index (HSI). 

Data sets for Chinese market indices are acquired from Investing.com. Weekly rates of return 

in percentage point are then calculated for each index as shown below (Rt represents index 

return and Pt represents closing price for week t).     

 

LASSO Regression 

Because the number of search terms is very large and each of them influences returns of 

different indices to different degrees, one needs to identify among all 98 (or 91) terms a set of 

terms that are most important for each market index. Therefore, this paper chooses to 

implement a penalized linear regression method - LASSO regression to analyze the effect of 

search volumes on index returns. LASSO (least absolute shrinkage and selection operator) 

performs variable selection and regularization in order to increase prediction accuracy while 

making the resulting statistical model easier to interpret. LASSO regression has the effect of 

shrinking coefficients towards zero. In ordinary least squares (OLS) regression, one only 

needs to minimize the residual sum of squares, whereas in LASSO, one also minimizes

, which is a shrinkage penalty. The degree of penalty depends on the size of λ. As λ 

increases, the effect of the shrinkage increases, bringing the coefficients towards zero. As a 

result, the estimated coefficients in the LASSO regression are generally smaller but more 

reliable than the coefficients in the original least squares (OLS) regression. This paper uses 
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the glmnet package in R to conduct LASSO regression (Friedman, Hastie, and Tibshirani 

2010).  

To generate LASSO regression on each market index, one first needs to determine the values 

of two parameters: α and λ. α=1 indicates the use of LASSO method. To select a λ for each 

LASSO fit, this paper runs a 10-fold cross-validation, which is a model validation technique 

for estimating prediction accuracy, and then chooses a λ value that not only leads to small 

prediction error but also directs LASSO method to select a reasonable number of predictors.  

Results 

Table 2 shows coefficients from LASSO regression on SP 500, DJIA, and NASDAQCOM, 

and Table 3 shows coefficients from LASSO regression on CSI 300 and HSI. Blank entries in 

the two tables indicate that the term is not selected when performing LASSO regression on the 

corresponding index, but is considered significant for other index/indices in the table. The 

values in parentheses represent coefficient standard errors, which are obtained using the 

Bootstrap method by replicating the LASSO procedure 1000 times. In Table 2, terms suggested 

by LASSO regression to be most important in influencing returns of U.S. market indices 

include "debt", "housing", "money", "headlines", "stock market", "nasdaq", "house", "bubble", 

"rare earths", "freedom", and "dividend". "Debt", "house", "freedom", and "dividend" are 

shown to be positively correlated with index returns. Although frequently associated with 

financial crisis, the word "debt" has positive effect in the analysis of the U.S. market, possibly 

because more "debt" can also indicate higher repaying capacity and may increase firm value 

so long as the firm is not at too large of a bankruptcy risk. "House" is directly related to the real 
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estate market; construction and acquisition activities tend to boost economic growth and hence 

stock market growth. Although the coefficient of "housing", a close term to "house", is negative, 

the net effect of "house" and "housing" is still positive. "Freedom", despite having political 

meaning, can signify people's overall satisfaction with their lives and more confidence in the 

stock market. More "dividends" means more earnings and also increases investor confidence. 

On the other side, in addition to "housing", "money", "headlines", "stock market", "nasdaq", 

"bubble", and "rare earths" show negative impact. It makes immediate sense that "bubble" 

signifies investor concern and "rare earths" mining will bring environmental damage, so 

increases in their search volumes relate to market downturn. The reason that the effect of 

"headlines" is negative might be that widely searched pieces of news are most likely to be 

events that cause significant worry and concern in the society. It is unusual that "money", "stock 

market" and "nasdaq" also carry negative coefficients; a plausible interpretation may be that 

increases in attention on these terms can result from financial issues or high market volatility 

which prompt investors to investigate what is going on.  
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  Notes:  
1. “SP 500” stands for Standard & Poor’s 500; “DJIA” stands for 

Dow Jones Industrial Average; “NASDAQCOM” stands for 
NASDAQ Composite.  

2. Each entry gives the coefficient of the corresponding variable 
and includes the coefficient standard error in parenthesis.  

3. Coefficient “0.0597” signifies that, controlling for other 
variables, a 1-unit increase in standardized Google search 
volume of the word “debt” corresponds to an increase of 0.0597 
units in the return of SP 500. 
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In Table 3, it can be seen that important search terms on Chinese market indices are "debt", 

"color", "stocks", "derivatives", "economics", "headlines", "society", "fine", "bank of china", 

"travel", "holiday", "water", "opportunity", "success", "war", "forex", "transaction", health", 

"culture", "tourism", and "labor". Only two terms overlap with results on U.S. indices - "debt" 

and "headlines", but their coefficients carry different signs. The word "debt" has positive effect 

on U.S. indices, while on both CSI 300 and HSI it is negative. In China where the economy is 

still in a developing stage, investors tend to associate "debt" with bad debts rather than an 

indication of firm value; the fear of bad debt expenses thwarts people from making investments. 

The word "headline" becomes positive in China, as opposed to negative in the U.S. This may 

arise from the Chinese regulatory agencies controlling the spread of news and requiring the 

press to only report positive events. Similar to U.S. results on "money", "stock market", and 

"nasdaq", words like "stocks", "economics", "bank of china", "society", and "forex" which 

represent the big picture display negative influences. "Derivatives", "transaction", and 

"opportunity" are positive possibly because these financial activities boost market growth. 

Moreover, negative "color" might be related to superstitions in Chinese culture as red color 

usually represents growth while green color is downturn. Another three notable terms are 

"travel", "holiday", and "tourism". As is widely recognized, tourism is a big industry in China 

and is most profitable during holidays. Chinese investors generally are vigilant about holidays 

because they fear that a long holiday might cause stock prices to fall, so they will short-sell 

stocks before holidays as a safe investment strategy, thereafter causing "holiday" and "tourism" 

to be negatively correlated with index returns. Nevertheless, "travel" is still positive since it is 

closely related to transportation which leads to GDP growth.   
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Notes:  
1. “CSI 300” stands for China Securities Index 300; “Hang 

Seng” stands for Hang Seng Index.  
2. Each entry gives the coefficient of the corresponding variable 

and includes the coefficient standard error in parenthesis.  
3. Coefficient “-0.2691” signifies that, controlling for other 

variables, a 1-unit increase in standardized Baidu search 
volume of the word “debt” corresponds to a decrease of 
0.269 units in the return of CSI 300. 
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Comparing Table 2 and Table 3, one can see that there are noticeable differences in the terms 

selected by LASSO regression. While important terms for U.S. indices are very close to the 

concept of stock market, terms for Chinese indices have more diversity and include words such 

as "tourism", "water", and "culture" that are more related to the general economic landscape 

rather than to the stock market specifically. This shows that U.S. investors tend to focus most 

of their attention on stock-market-specific inquiries. On the other hand, Chinese investors make 

estimations about the stock market based on overall economic strength. In addition, the 

regression results can also signal that the U.S. stock market is more institutionalized than the 

Chinese market. According to Reuters and Investopedia, 85 percent of trades in China's stock 

markets are implemented by retail investors and over two-thirds of China's newest retail 

investors have no high school degree. As a result, Chinese investors tend to base their trading 

strategies on overall economic trends and rough estimations rather than conduct market and 

industry analyses or corporate valuations and therefore have less exposure to stock market 

terminologies. In the U.S., institutional investors dominate the stock market, managing a 

proportion of equities with 67 percent of market capitalization as of 2010. Professional research 

analysts working for these institutional investors tend to focus on more advanced terms in order 

to gather useful information for building financial models.  

Moreover, coefficients of selected terms for Chinese indices are generally higher in magnitude. 

For instance, the magnitude of coefficient for "debt" on HSI is 0.3931, whereas coefficients for 

the U.S. market are mostly below 0.1 in magnitude. Nevertheless, the coefficient standard 

errors are also larger in the China model, especially for CSI 300. Therefore, there is no 

sufficient evidence to determine the statistical significance of the larger coefficient magnitudes.    
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SEARCH VOLUMES AND STOCK RETURNS 

Data 

Screening Companies 

As was discussed before, search volumes of large and popular companies contain large noise 

from non-investors' searches and are therefore not a reliable proxy for investor attention. To 

effectively examine the relationship between search volumes and stock market movements at 

the individual stock level, this paper chooses small and undervalued but continuously growing 

companies as attention involving these companies can better represent interest in stock as 

opposed to other miscellaneous effects. The following 4 criteria are used in company selection. 

The first criterion is a must; for the next three criteria, a company only needs to satisfy two of 

them to be considered.  

• Companies that are small-sized, i.e., those with market capitalization under USD 10 billion 

on U.S. stock exchanges, under CNY 30 billion on Shanghai and Shenzhen Stock 

Exchanges, and under HKD 35 billion on Hong Kong Stock Exchange. 

• Companies that maintain competitive advantage, i.e., those having consistently above 12% 

return on equity (ROE) over the past 5 years. In the long-run the ROE will become the 

average return investors get from holding the stock. 

• Companies that are undervalued, i.e., those with PEG ratios (price/earnings divided by 

earnings-per-share growth rate) that are less than 1. 

• Companies that bear low debt, i.e., those with debt to equity (D/E) ratios that are 

consistently under 25% over the past 5 years. 
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This paper uses the Equity Screening function on Bloomberg Terminal to run the selection 

process for U.S. stocks and Chinese stocks respectively. Stocks from all U.S. exchanges and 

all Chinese exchanges are included in the selection pool. There are 459 U.S. stocks and 497 

Chinese stocks qualified based on the above 4 criteria. 

Obtaining Stock Data 

Next, using the Bloomberg Add-in tool in Excel, this paper imports weekly closing prices 

(week ending Friday) and weekly total trading volumes of stocks that passed the screening tests 

from June 05, 2011 to June 04, 2016, covering a period of 5 years (261 weeks). The rates of 

return for all remaining stocks are calculated as shown below (ri,t represents return of stock i 

in week t).  

 

In addition, this paper detaches the trend in trading volume data for each stock by transforming 

original trading volumes into detrended log volumes (DL_Volume). The formula used in 

calculating detrended log volumes is derived from the work of Bijl et al. (2016), in which the 

removed trend is a rolling average of past 12 weeks of log volumes. 

 

Collecting Google and Baidu search volumes 

To measure investor attention on U.S. stocks, this paper collects Google search volumes of 

respective company names from Google Trends. Since Preis, Moat, and Stanley (2013) 
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discover that search volumes of U.S. Internet users are more representative of the U.S. stock 

market than global search volumes, this paper restricts search data collections to the U.S. only. 

Names of companies are used as the query terms as this paper assumes that the majority of 

investors tend to search the names they are interested in rather than tickers as tickers are usually 

difficult to remember; also, some tickers such as "SAVE" for Spirit Airlines Incorporated refer 

to subject matters unrelated to the company or the stock. In getting search volume data, this 

paper omits parts such as "Inc." and "ADR" at the end of company names as it is reasonable 

assumption that investors do not include these parts in a company name when running the 

searches. In addition, this paper also takes advantage of the Beta feature of Google Trends 

which provides accurate measurements of overall search interest on "topics". When measuring 

a company name as a "topic", the Google Trends algorithms count many search queries that 

relate to the same company so that variations of the company name will be considered 

collectively.   

For Chinese stocks, Baidu search volumes of their company names are collected. The list of 

Chinese stocks includes those from the three stock exchanges in China – Shanghai Stock 

Exchange, Shenzhen Stock Exchange, and Hong Kong Stock Exchange. Because Google 

search engine is largely inaccessible in Mainland China, Baidu is the main source of Mainland 

China investors to research Shanghai and Shenzhen listed. In Hong Kong, investors use various 

types of search engines due to diversity in investor demographics. This paper chooses to use 

Baidu Index as well for Hong Kong stocks because of their close connections with Mainland 

China. Due to the proximity of HK to Mainland China, most stocks listed in Hong Kong are 

mainland companies or have significant portion of operations in Mainland China. Mainland 
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investors have long been trading Hong Kong stocks or watching them closely because of how 

the Mainland and Hong Kong markets can impact each other. The Shanghai-Hong Kong Stock 

Connect program initiated in November 2014 further expanded mainland investors' 

participation in Hong Kong stock market. Moreover, most of the web attention on HK stocks 

should have been coming from the mainland due to the sheer number of mainland china internet 

users. According to Internet World States, China has the largest web user population in the 

world, contributing 41.6% of users while Hon Kong only uses 0.4%. Therefore, even though 

google is the dominant search engine in Hong Kong, considering the close connection between 

Hong Kong and Chinese markets, Baidu Index should be the most reliable in capturing investor 

attention. The search volume data sets cover the same 5-year period (261 weeks). 

To transform search data into comparable scales, this paper standardizes search volume data as 

follows (SVi,t represents search volume of company i in week t; SSVi,t represents standardized 

search volume of company i in week t). 

 

Afterwards, the data sets are cleaned up by keeping only companies that have complete and 

reasonable (no missing or irregular) stock performance data and search volume data, resulting 

in 374 U.S. stocks and 134 Chinese stocks.  

Autoregressive Linear Panel Model 

To build stock valuation models, this paper puts all data sets collected above together into a 
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panel data with 261 weeks of observation for 374 U.S. stocks and another panel data also with 

261 weeks of observation for 134 Chinese stocks. Panel data, also called cross-sectional time 

series data, involve measurements of individuals over time. In other words, each row of the 

data set represents a specific individual at a specific time. According to Croissant and Millo 

(2008), a linear panel data model can be described using the following general formula. 

 

where i is the individual index (in this case the stock), t is the time index (in this case the week 

number) and μi,t a random disturbance term of mean 0. 

The linear panel models are built using the plm package in R (Croissant and Millo 2008). The 

modeling procedure follows Bijl et al. (2016). Current Stock Return is used as the dependent 

variable. This paper not only seeks to analyze current effects but also looks at how previous 

weeks' data influence current performance. Thus for predictors, this paper uses five lags of 

Stock Return (stocks returns in previous five weeks), current and five lags each for 

Standardized Google/Baidu Search Volumes (SGSV/SBSV) and Detrended Log Volumes 

(DL_Volume), current and five lags for the interaction between Standardized Google/Baidu 

Search Volumes and Detrended Log Volumes, as well as five lags for the interaction between 

Standardized Google/Baidu Search Volumes and previous weeks' Stock Return. The interaction 

variables are determined based on the conclusion of Preis, Reith, and Stanley (2010) that 

current search volumes are correlated with current trading volumes, and that present stock 

prices influence search volumes of the corresponding company names in the following weeks.  

For the linear panel regression, this paper builds a Two-ways Effects Within Model. "Two-
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ways" means that the model takes into account both individual and time effects. The "Within" 

model, also called "fixed effects" model, specifies that the individual component of the error 

term μi.t is correlated with the predictors. Using fixed effects, coefficients are estimated by 

Ordinary Least Squares (OLS) on transformed data, giving consistent estimates for β. The 

"within" specification is selected over "random" specification (when the individual component 

of error is uncorrelated with predictors) through Hausman Test (Hausman 1978).  

As a result, the model for U.S. stocks can be shown as follows.  

 

where L denotes the lag operator, denotes five most recent lags, and  denotes current 

and five most recent lags.  

Results 

Table 4 shows the summary results of linear panel model using Google search volumes for 

U.S. stocks, and Table 5 shows summary results of linear panel model using Baidu search 

volumes for Chinese stocks. In each table, Column (1) shows the estimated coefficients after 

fitting the regression using all predictors listed on the left of the table, while Column (2) are 

results after eliminating predictors one at a time until all predictors left are significant at an α 

level of 0.1. The stars next to some coefficients represent p-value ranges. One star indicates a 

p-value less than 0.1, two stars less than 0.05, and three stars less than 0.01. The values in 

parantheses are standard errors of the corresponding coefficients.   



25 
 

 

  

Notes:  
1. “Stock_Return” denotes the percentage change in stock price; “SGSV” denotes 

standardized Google search volume; “DL_Volume” denotes detrended log 
trading volume; “SGSV:DL_Volume” denotes the interaction between 
standardized Google search volume and detrended log trading volume; “lag(Var, 
x)” denotes the xth lag of variable Var. 

2. Each entry gives the coefficient of the corresponding variable and includes the 
coefficient standard error in parenthesis.  

3. *p-value<0.1; **p-value<0.05; ***p-value<0.01  
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Notes:  
1. “Stock_Return” denotes the percentage change in stock price; “SBSV” denotes 

standardized Baidu search volume; “DL_Volume” denotes detrended log trading 
volume; “SBSV:DL_Volume” denotes the interaction between standardized 
Baidu search volume and detrended log trading volume; “lag(Var, x)” denotes the 
xth lag of variable Var. 

2. Each entry gives the coefficient of the corresponding variable and includes the 
coefficient standard error in parenthesis.  

3. *p-value<0.1; **p-value<0.05; ***p-value<0.01  
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Examining Table 4 for the U.S. stock market, the following findings can be obtained. 

• Current and previous week's Google search volumes have significant relationship with 

current stock return.  

• Current Google search volumes are positively correlated with current stock return, while 

Google search volumes of previous 4 weeks have negative impact. This resonates with the 

findings of Bijl et al. (2016) that high Google search volumes are followed by negative 

returns, confirming that information in Google searches is assimilated into the U.S. stock 

market faster and hence, although higher searches can lead to higher returns in the current 

week, they forecast lower returns in the future.  

• Current trading volumes are positively correlated with current stock return, and show high 

statistical significance (p-value less than 0.01) and the highest coefficient estimate among 

all coefficient values (0.823). This makes sense because high trading volumes indicate that 

investors are incentivized to buy the stock because of its high current return. Trading 

volumes in previous two weeks are negatively correlated with current stock return, 

suggesting that investor expectations for high return lead to large-scale buying activities, 

which can subsequently bring returns down.  

• Stock returns in previous 4 weeks are significantly negatively correlated with current return 

due to the autoregressive nature of the stock return time series. Also, high returns in the 

current week inflate investor expectations and buying activities which may fade away in 

following weeks. 

• The interaction between search volumes and trading volumes in the previous week has 

significant negative correlation with current stock return. Both search volumes and trading 
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volumes of the previous week separately have negative impact on current return, and the 

interaction shows that their collective effect is also significantly negative. 

• The interaction between current search volumes and previous week's stock return is 

positively related to current return with high significance, suggesting that their collective 

effect leads to higher stock return.  

 

Examining Table 5 for the Chinese stock market, the following results are derived. 

• Baidu search volumes do not seem to have significant relationship with stock return, which 

contradicts the conclusions in Yu and Zhang (2012). Although search volumes in the 4th 

and 5th weeks prior show some significance after variable selection, the significance is only 

slight (p-value less than 0.1 but larger than 0.05). The different results might have arisen 

from the fact that Yu and Zhang (2012) use only companies in the Growth Enterprise 

Market of Shenzhen Stock Exchange in their analysis, whereas this paper considers all 

China-listed companies, selecting small and undervalued but continuously growing 

companies. This paper also uses a more recent data set covering a period from June 05, 

2011 to June 04, 2016 while Yu and Zhang (2012) use one-year data from April 01, 2011 

to March 31, 2012.  

The lack of significance of Baidu search volumes in this paper might also result from the 

less institutionalized nature of the Chinese market. Since all China-listed companies in the 

model are small in market capitalization, they are less popular compared to larger ones. 

While U.S. institutional investors are generally skilled at identifying potentially profitable 
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investments regardless of popularity, most retail investors in China are not likely to focus 

on undervalued yet continuously growing companies except really experienced investing 

professionals. As a result, a relatively small group of investors only generate limited 

transactions and the attention contributed by them is not enough to trigger significant 

fluctuations in stock prices. 

• Similar to U.S. results, current trading volumes are positively correlated with current stock 

return, and show high statistical significance (p-value less than 0.01) and the highest 

coefficient estimate among all coefficient values (1.536). Trading volumes in previous two 

weeks are also negatively correlated with current stock return.  

• Similar to U.S. results, stock returns in previous 4 weeks are significantly negatively 

correlated with current return. 

• While in the U.S. model the interaction between search volumes and trading volumes in 

the previous week has significant negative correlation with current stock return, in the 

China model it is the interaction between current search volumes and trading volumes that 

is significant. Although search volumes are insignificant as a separate variable, the 

collective effect of current search volumes and trading volumes is significant and positive.  

• The effect of interaction between search volumes and previous weeks' stock return is more 

outstanding in the China model than in the U.S. model.  
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TRADING STRATEGY RECOMMENDATIONS 

Based on research results in the above sections and search-based trading strategies proposed in 

previous studies, this paper provides the following recommendations for stock investors: 

• To estimate strength of the entire stock market in either the U.S. or China, one could use 

search volumes of the important terms found in Section 2 to gauge if the returns of key 

stock market indices will increase or decrease. 

• To forecast stock returns for U.S.-listed companies, one can follow the trend that higher 

Google search volumes in the current week lead to lower stock returns in following weeks. 

• As is evidenced in the model results for the U.S., increased search volumes and trading 

volumes have negative impact on future stock returns as they tend to boost investor 

expectations and trading activities but this positiveness will eventually reverse. Moreover, 

previous studies have also noted that market downturns are preceded by rising investor 

attention (Preis, Moat, and Stanley 2013), and that stocks with high searches suggest high 

riskiness (Kristoufek 2013; Bijl et al. 2016). Therefore, one can take the recommendation 

of Kristoufek (2013) to assign lower portfolio weights to stocks with high Google searches 

and higher weights for less popular stocks, or take the recommended action of Bijl et al. 

(2016) to sell stocks with high Google searches and buy those with low searches.  

• For China-listed companies, however, it would be hard to forecast future returns using 

Baidu search volumes, but one may look at previous weeks' stock returns which should be 

negatively correlated with current returns. Moreover, higher trading volumes in the 

previous week do lead to negative stock returns in the current week. This is also an 

indication that high investor expectations drive down stock returns, and one could capitalize 

on this trend in developing trading strategies.   
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CONCLUSION 

This paper takes both a market level approach and an individual stock level approach to 

examine how Internet search activity’s influence on stock market performance differs between 

the U.S. and China by treating search volumes of markets-related terms and company names 

as proxy for investor attention. On the market level, LASSO regression is used to select the 

most influential terms to stock market indices for both countries. The composition of selected 

terms turns out to be different between the two countries. While terms strictly related to the 

stock market are found to be most important to the U.S., terms selected for China tend to be 

biased toward more general financial and economic concepts, suggesting that the U.S. stock 

market is more institutionalized than its Chinese counterpart.  

On the individual stock level, small and undervalued but continuously growing companies are 

chosen for each country to reduce the amount of noise in search data. Search volumes of 

company names are discovered to be significantly correlated with stock returns in the U.S. 

stock market, whereas search volumes do not appear significant to stock returns in China. This 

indicates that Chinese stock investors are less likely to discover undervalued yet potentially 

profitable investments, confirming the less institutionalized nature of the Chinese stock market. 

This paper also provides recommendations on search-based trading strategies by integrating 

research results with findings in previous studies. U.S. investors could make investing 

decisions by noting that increased search volumes and trading volumes have negative 

correlation with future stock returns; Chinese investors may look at previous weeks’ stock 

returns and trading volumes which should be negatively related to current week’s stock return.   
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