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complex. In this setting, waves are seen to be generated by topological defects with a nontrivial degree (or
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ABSTRACT

CYCLIC CELLULAR AUTOMATA ON NETWORKS AND

COHOMOLOGICAL WAVES

Yiqing Cai

Robert Ghrist

A dynamic coverage problem for sensor networks that are sufficiently dense but

not localized is considered. By maintaining only a small fraction of sensors on at

any time, we are aimed to find a decentralized protocol for establishing dynamic,

sweeping barriers of awake-state sensors. Network cyclic cellular automata is used

to generate waves. By rigorously analyzing network-based cyclic cellular automata

in the context of a system of narrow hallways, it shows that waves of awake-state

nodes turn corners and automatically solve pusuit/evasion-type problems without

centralized coordination. As a corollary of this work, we unearth some interest-

ing topological interpretations of features previously observed in cyclic cellular au-

tomata (CCA). By considering CCA over networks and completing to simplicial

complexes, we induce dynamics on the higher-dimensional complex. In this setting,

waves are seen to be generated by topological defects with a nontrivial degree (or

winding number). The simplicial complex has the topological type of the underlying

map of the workspace (a subset of the plane), and the resulting waves can be clas-

sified cohomologically. This allows one to “program” pulses in the sensor network

according to cohomology class. We give a realization theorem for such pulse waves.
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Chapter 1

Introduction

1.1 Wireless Sensor Network and Coverage Prob-

lems

A wireless sensor network (WSN) consists of a collection of sensors networked

via wireless communications, with every sensor being a device collecting data of

the environment with respect to one or more features, and returning with a signal

[36, 2]. There are usually a few components built in a sensor: a signal receiver

and/or a transmitter with an internal antenna or connection to an external an-

tenna, a microcontroller, an electronic circuit for interfacing with the sensors and

an energy source, usually a battery (today’s sensors more often come with energy

harvesting equipments, e.g., a solar system). Sensors can read, inter alia, temper-

ature, pressure, sound, target presence, range, and identification, by dealing with
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all kinds of signals. This makes the sensing function of a sensor. Communications

between individual sensors, and between system controller and sensors are carried

out by signal receivers and transmitters, making the sensors talking “wireless”.

Battery life is usually a big concern when designing sensors for a specific function,

because in practice, when sensors are deployed, it is not expected to charge them

from time to time, and different functions could have energy consumption differing

by millions of times. Besides, once a sensor is out of energy, it immediately loses

connection to the system, which may cause problems. Current-generation smart

sensors, increasingly smaller in size, can perform data processing and computation,

albeit with very limited memory and computation capability. However, constrained

by the locality of sensors’ sensing function, networks of sensors have many more

applications in monitoring larger domains than a single sensor, which by network

we mean the collection of sensors together with the connections among them. Local

information is collected and aggregated globally through the communication among

sensors and between sensors and the controller. With sensors already chosen, we

only worry about the topology and the protocols when designing such WSNs.

However powerful a sensor is, it has limitation in its sensing ability. We say the

coverage region of a sensor, is the region in which a physical quality could be

measured or an event triggered could be detected by the sensor. The Coverage

problem in sensor networks has been studied for a long time. It considers whether

a domain is always fully covered by the union of sensing regions of sensors, static

2



or mobile. Classical solutions for coverage problems [26, 22, 23] with techniques

from graph theory and computational geometry, usually require detailed geometric

information of every sensor, which is possible when equipped with GPS, however,

is high energy consuming and low fault-tolerant: a global control for the whole

system with every sensor’s position is needed, which requires information exchange

at a high frequency, and brings energy cost; besides, GPS is sensitive to environment

conditions, especially when at indoor locations. Other aspects focus on providing

a specific degree of coverage, while keeping the connectivity of the network [31].

Current approaches to coverage problems are applications of algebraic topology

[11, 10]. Coverage quality is determined automatically without strong (geometric)

information requirements, by only requiring local (neighboring) information, by

computing homology.

A very common application of coverage problem is intrusion-detection: the net-

work monitors an area, and reports the existence of intruders when they are detected

by at least one sensor in the network. Video surveillance provides one such exam-

ple. Whenever an intruder is detected by at least one of the cameras, system will

be alerted. There is considerable activity in this field, focusing on different fea-

tures and goals, “optimizing” networks in various senses. What concerns us most

in the present work is the minimization of energy consumption, keeping in mind

that sensors are almost always battery-driven. One of the most intuitive ways is

constructing a sleep-wake protocol for the network, allowing sensors to alternate be-
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tween higher and lower energy cost states (respectively corresponds with wake and

sleep states) [3]. Usually a waking sensor is fully functional, and a sleeping sensor

is either totally shut off or minor functioning, such as only receiving signals. For

example, PEAS[35] provides a protocol by forcing a node who has an active neigh-

bor to sleep for period according to exponential distribution. It is robust against

node failure, however, could not guarantee, or measure the coverage with the rapid

change of active sensors. The CDSWS [27] protocol uses a clustering technique

to divide the sensors into multiple clusters, and selects a few sensors from each

cluster to work, while maintaining nearly full coverage. ASCENT[7] allows sensors

to measure their connectivity in the network in order to activate their neighbors

based on those measurements. But it never allows working sensors to go back to

sleep again, which ends up consuming more energy as time goes by. Compared

to those works, our protocol provides the “user” a chance to determine how much

energy they would allow to be consumed, as balanced against the probability for

the system to succeed. Another advantage over the other protocols is it guarantees

the failure of any evader following continuous path in the domain. Although our

scheme requires synchronization ahead of time, and has not taken into account node

and link failure yet, it provides a new approach to designing distributed sleep-wake

WSN with energy constraints.
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1.2 Cellular Automata

A cellular automata, (CA), is a lattice-space and discrete-time dynamical sys-

tem. Spatial coordinates in the lattice (could be of any dimension) are called cells

or nodes. For each node, a specific collection of nodes in the space is called its

neighborhood, and every node in its neighborhood is its neighbor. Usually, it

is the case that neighboring is a symmetric relation, which means if a node x is a

neighbor of node y, then y is also a neighbor of x. For example, in Z2 lattice, the von

Neumann neighborhood of a node with coordinate (i, j) is defined as the set of nodes

attached to it, vertically or horizontally, i.e., {(i−1, j), (i, j−1), (i+1, j), (i, j+1)}.

The dynamics generally take values in a finite alphabet A, which we call a state

space, with A = Z2 = {0, 1} being the most common choice. The dynamics are for

local, in that the update rule for a node is a function of its state and the states of

its spatial neighbors. An initial state (time t = 0) is selected by assigning a state

for each node, typically at random. A new generation is created (advancing t by

1), according to some fixed rule that universally determines the new state of each

node in terms of the current states of the node and its neighborhood. Typically,

the updating rule is the same for each node and does not change over time, and is

applied to the whole space simultaneously (but see asynchronous cellular automata

[3] for one exception).

The history of Cellular automata goes back to 1940s, when John von Neumann

was involved in the design of the first digital computers [6, 34]. By trying to design
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self-control and self-repair mechanisms for a machine that works like human brain,

he came up with a framework of a fully discrete universe made up of cells, following

the suggestions of Stanislaw Ulam. Each cell in the discrete space is characterized

by an internal state. The system of cells evolves in discrete time steps, and the rule

of evolution, which is a function of the internal states of the cell and its neighbors,

is universal for all the cells, and updates simultaneously. The first self-replicating

CA by von Neumann was on a two dimensional square lattice [28]. The state space

contains 29 states. Updating rule for the CA requires each cell to add the states of

itself and its all four neighbors (with von Neumann neighborhood).

A very famous but simple example of CA that has been widely studied is named

Game of Life by John Conway. The set up is on a two dimensional square lattice,

with Moore neighborhood (the cells that are attached to the cell vertically, hori-

zontally, and diagonally, which are in total 8 cells). The automata is equipped with

the most simple state space, {0, 1}, with 0 standing for being dead and 1 for being

alive. The updating rule is as follows:

1. A dead cell with exact three living neighbors comes back to life.

2. A dead cell with less or greater than three living neighbors keeps dead.

3. A living cell with less than two living neighbors dies of isolation.

4. A living cell with exact two or three living neighbors keeps alive.

5. A living cell with more than three living neighbors dies of overcrowding.
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Although the rule is simple, the diversity of behavior turns out to be fairly rich,

with enormous initial states. Gliders, one of the most common patterns in game

of life, are arrangements of cells that essentially move themselves across the grid.

Still life is another kind of pattern which does not change along time. Oscillators,

different from those above two patterns, are periodic structures, which are periodic

in time.

Our work focuses exclusively on cyclic cellular automata (CCA). The alphabet

is defined to be A = Zn = {0, 1, . . . , n− 1} under modular arithmetic. One denotes

the (discrete) collection of nodes as X and denotes a state at time t as ut : X → Zn.

The updating scheme for a general CCA is increments states in Zn, assuming that

some excitation threshold is exceeded (typically when there is at least one neighbor

in the advanced state). More specifically, ut+1(x) = ut(x) + 1 if certain criteria

concerning the states of the immediate neighbors of x, N (x), are met. Such systems

tend to cause periodic or cyclic behavior, spatially distributed and organizing into

waves.

In [15], waves (periodic structures) are observed. According to their explanation

of dynamics, there are four stages in the evolution of a cyclic cellular automata with

14 states under any initial state, quoted as follows:

1. The vast majority of creatures have nothing to eat initially or quickly run out

of food, i.e., within a short time there are only a very few types that have a

neighbor they can eat. However, the rare remaining active areas form critical

7



droplets.

2. These critical droplets remain active and, by generating wave activity, expand

at a linear rate until they overrun all of the inactive debris that was present

in the initial state.

3. Defects are formed, leading to the emergence of periodic spiral structures.

Spirals overtake the Stage 2 wave activity at a linear rate, competing with

one another for all of the available space.

4. Certain minimal defects, which we call clocks, give rise to optimally efficient

demons. These demons displace less efficient spirals until every state in the

lattice is regulated by a local, periodic structure of period N .

and illustrated in Figure 1.1. We notice that the dynamics gradually evolves into a

periodic structure, which is evoked and kept by the spiral centers, i.e., the defects

(with formal definition in Chapter 3). We also have noticed that one defect is

missing by comparing the 3rd and 4th picture. It is because the missing defect

originally has period 16, which is larger than the neighboring defect with period 14,

and got eaten up and became 14 periodic later. This is our first example of the role

a defect is playing in a cyclic cellular automata.

Our second example of a CCA is called Belousov-zhabotinsky reaction, which is

a classical example of non-equilibrium thermodynamics, resulting in the establish-

ment of a nonlinear chemical oscillator. The way BZ reactions are modeled is as a

8



Figure 1.1: The 14 colored CCA with random initial state at time 100, 150, 300,

3000 [15].
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cellular automata. The BZ medium can be seen as a massively parallel processor,

where every elementary processor is a micro-volume of the medium: each micro-

volume takes one of three distinguishable states corresponding to a resting, excited

or refractory state of a primary component of the BZ reaction [1]. The state space

and updating rule, by A.K. Dewdney in [12] is as follows: the state space is Zn. A

state of zero is considered healthy (resting); a state of n is considered ill (excited);

and a state from 1 to n− 1 is considered infected (refractory).

1. If a cell is healthy (0) then the new state is given by: a/k1 + b/k2

2. If a cell is ill (n) then the new state of the cell is healthy.

3. And if the cell is infected (1 to n− 1) the state given by: s/(a+ b+ 1) + g

where a is the number of infected neighbors, b is the number of ill neighbors, k1, k2,

and g are constants, and s is the sum of states of the cell and all of its neighbors.

This is indeed a variation of CCA, if we reinterpret this mechanism with only

three states: ill, healthy and infected. An ill cell automatically becomes healthy at

the next step; a healthy cell gets infected to the extend depending on how ill its

neighbors are; an infected cell moves towards illness, by some formula depending

on its neighbors’ states. Therefore, waves propagation in BZ reactions are well

explained, modeled and simulated.

By comparing the waves generated by CA (§1.2) and from real experiments

(§1.3), we are again confirmed that something happen in the center of spirals (de-

10



Figure 1.2: BZ reaction modeled by cellular automata with k1 = 2, k2 = 3, g = 35

[21].
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Figure 1.3: BZ reaction experiment shots by Zaikin and Zhabotinsky (1971) [37].
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Figure 1.4: A closed loop enclosing a spiral center intersect with wavefronts for

odd times (in red), and a closed loop not enclosing any spiral center intersect with

wavefronts for even times (in blue).

fect), is deciding the behavior of all the cells (or the chemicals). These concentric

waves are inclined to expend in size, unless there is a collision between waves and

then annihilate. We also observed the existence of one defect would make the

random initial state into an ordered periodic system.

Another observation worth thinking about is that, whenever enclosing a spiral

center in a closed loop, the loop always intersects with wavefronts for odd times.

However, a closed loop outside any spiral center will intersect with wavefronts for

13



even times (see Figure 1.4 for illustration). This classification seems not as satisfying

since it is not capable of differentiating closed loops enclosing different number of

spiral centers. Therefore, we count the directions of intersections in to consideration.

As in Figure 1.5, we give each loop a direction. If the wave’s direction agrees with

the direction of the loop (within an angle of 90 degrees), we count that as a +1,

otherwise it is counted as a −1. By summing up those numbers with signs along

the loop, we get a number that identifies the number of defects enclosed in the loop

with sign (spirals of different orientations are treated with opposite signs). This is

where we get our intuition of “degree”, which is defined in Chapter 3.

In our scenario, we will focus on one specific variation of CCA. Greenberg-

Hastings Model (GHM) is a CCA first invented to study the spatial patterns

in excitable media [19]. In this model, special significance is given to a single state

(state 0), interpreted as an excitation state. The update rule for GHM is as follows:

ut+1(x) =































ut(x) + 1 : ut(x) 6= 0

1 : ut(x) = 0 ; ut(y) = 1 for some y ∈ N (x)

0 : else

This updating scheme is interpreted as the result of two mechanisms combined,

excitation and diffusion. It is therefore no surprise that there is a strong resemblance

between the behavior of GHM on the plane and solutions to reaction-diffusion PDEs

on planar domains [18], with both generating spiral-type waves. The states of

the nodes are uniquely determined by the initial state, because the GHM is a

14
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Figure 1.5: A closed loop with orientation has intersections with wavefronts being

numbered ±1. −1 means the loop’s orientation agrees with the propagation direc-

tion of that wavefront, and +1 means they are opposite. Summing these number

up along the loop gives the number of spiral centers enclosed with sign.
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deterministic model. Denote by G the evolution operator G : ZXn → ZXn .

This Greenberg-Hastings automata on lattices has been frequently investigated

in the literature as follows. Some rigorous statistical results have been proved for

GHM with state space Z3 [14]. For general state space Zn, experiments have been

carried out in [15], and specific features or patterns that would keep and ergodic

behaviors have been studied in [17, 16, 13].

1.3 Cyclic Network Automata and Simulations

For a network graph with nodes set X , we automatically have the definition of

neighborhood: two nodes in X are neighbors if and only if they are connected by

an edge. Therefore, a network automata taking values in A is defined by evolution

operator G : AX → AX . We applied Greenberg-Hastings automata on a network

randomly sampled in a 200×200 square with two blocks as forbidden areas, following

[3]. Starting with a random initial state, we have Figure 1.6 after 200 steps.

An interesting and useful fact is, the automata on lattice and network are of no

difference in dynamic. Figure 1.6 is a good example for this: spiral wave pattern is

the same as them in lattice space in [19], although the underlying structure (cellular

or network structure) has changed. Therefore we propose the statement, that the

behavior of such an automata is not determined by the cellular structure, but the

topology of the underlying space. As a result of the statement, we can extend the

concept of cellular automata to network automata.
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Figure 1.6: Greenberg-Hastings model in a square with blocks: black blocks are

regions where no sensors are located, waves behave the same as with no blocks.
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The inventive paper [3] applied the Greenberg-Hastings automata on a two di-

mensional plane to generate “waves” of on-state sensors for intruder detection. In

general, this specific automata assigns to each sensor the state space Zn (the cyclic

group on n elements), and the sensors update their states by advancing one auto-

matically, except in state 0, in which case update to state 1 is induced by contact

with at least one neighbor in state 1. A few authors have considered what happens

on a graph as opposed to a lattice [25]; this is the starting point for the application

in [3] to sensor networks. The main features and results of Baryshnikov-Coffman-

Kwak include:

1. The CCA runs on a random graph instead of a lattice, where nodes represent

sensors and edges communication links.

2. The network is completely non-localized and coordinate-free.

3. The CCA with random initial conditions generates the familiar spiral-like

wavefronts that sweep the whole domain with on-state sensors, giving a

decentralized scheme for low-power dynamic barrier coverage.

4. Parameters such as wavelengths are controllable.

5. For planar domains with small obstacles, the wavefronts behave as if there

are no obstacles at all (see Figure 1.6): waves propagate through, making the

problem of undersampling ignorable.
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Our research begins where [3] ends, by investigating what happens when this

protocol is adapted to an indoor network where the geometry and topology are not

those of an open plane (perhaps dotted with obstacles), but rather a system of fairly

narrow hallways connected with a non-trivial topology: a “fat” planar graph.

Figure 1.7 illustrates the dynamics of the GHM on a specific indoor network. The

network is built on narrow hallways modeled as a metric space with Euclidean

metric; the neighborhood of a node is defined as the collection of nodes within

distance r. We parameterize the system of 16250 nodes inside a 200×200 square with

n = 20 (recall, the size of state space Zn) and r = 1.5. The colors are representing

states, with dark blue representing state 0. At time=0, it is in an unordered initial

state. During the first several time steps, generally until time 25, the ratio of nodes

with states 0 grows, as a result of the fact that states grow steadily until they reach 0

and wait for a stimulation from its neighborhood. At around time 45, spiral patterns

become clearer visually, from top left, bottom and middle right. Those spiral “seeds”

propagate waves along hallways. Wavefronts, consisting of the nodes with state

0, sweep through the domain, traveling “intelligently,” turning corners, etc. When

wavefronts coming from different directions meet, they annihilate. After enough

steps (about 250), wavefronts starts periodically sweeping the whole space.

This protocol of “going to sleep by contact and waking up after a fix amount of

time” has some properties that make it ideal as a intruder detection sensor network.

1. The system has tunable energy efficiency. Set state 0 to be the waking state,
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Figure 1.7: Greenberg-Hastings Model for Narrow hallways space at time 0, 20, 45,

90, 150, 200, 250, 350.
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with all other states 2, 3, . . . , n − 1 denoting sleep mode. Those sleep-mode

sensors are doing nothing but advancing their states by 1 for every time step.

This could be done with very low energy consumption because they only have

to follow clock clicks with no computing, sensing, or transmitting. Intrusion-

detection is performed by the wake-state 0 nodes. After a sufficient time

elapse, only a fraction (about 1/n) of the total sensors will be in wake mode

at any given time: the larger n, the less energy consumed.

2. The wave length is generally fixed no matter which source it is from, assuming

the nodes are uniformly distributed: it appears to depend linearly on n. For

bigger n, longer wave length is generated, but seeds are generated with smaller

probability and longer generation time. This makes a trade-off between energy

consumption and system success.

3. If we are given some specific sensors, say, with a big enough sensing radius ε,

then we will see that nodes in wavefronts form barriers, cutting the hallway

into disconnected pieces. We notice that the wavefronts efficiently sweep the

corridors. Any intruder between two barriers has to follow the direction wave-

fronts propagate in order not to be detected immediately, but still is not able

to survive for all the time because it will be detected by a coming wavefront

in the opposite direction.

4. Since the wave length depends linearly on n, then for a static evader, the
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time it takes to catch the evader also depends linearly on n. However, for a

mobile evader, the longest time it is possible to survive does not depend on

the wavelength, thus the state number n at all. This proposition is concluded

from the observations: an evader between two consecutive wavefronts has to

follow the propagation of these wavefronts in order not to be detected. The

survival could last until an upcoming wavefront annihilate with the wavefront

behind the evader. Therefore, when measuring the quality of such systems

by considering the longest time an evader could survive, only the network

structure need to be investigated, because the wavefront annihilating location

only depends on the network. Furthermore, for a randomly generated net-

work on a fixed domain, the annihilating location depends only on the spiral

centers’ locations, therefore, the surviving time actually only depends on the

underlying space and the locations of spiral centers.

1.4 Contributions

Questions arise with the observations, such as: Is there any invariant associated

with the initial state, since the system always evolves into a time-periodic scenario?

Why are small obstacles ignorable in the wave traveling but large obstacles (walls)

changing the directions of wave propagation? What role is the topology, or geometry

of the underlying space playing in the system? We will first introduce a few technical

terms from algebraic topology in Chapter 2, then use them to find the invariants in
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Chapter 3, officially build the mathematical model and study it as well in Chapter

4, and finally conclude in Chapter 5.

We conclude our contributions of this thesis as following:

1. In our model, we analyze a cyclic network automata applied on narrow hallway

spaces with nontrivial topology, instead of 2-d squares, with trivial topology.

2. We give a detailed classification of the equilibrium of cyclic network automata,

according to the existence of defects in Chapter 3.

3. Defects are classified into two different types, local and global, according to

their supports’ homological classes in Chapter 3.

4. Continuous states are affiliated with cohomology classes. A theorem explain-

ing every cohomology class is realizable is given in Chapter 3.

5. We build an evasion game model in Chapter 4, and provide a main theorem,

Theorem 4.2.13, discussing the conditions for an evader always losing the

evasion game.
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Chapter 2

Background

In this chapter, preliminaries from algebraic topology will be introduced. Basic ge-

ometry and topology concepts are assumed as known, such as manifolds, homotopy,

homotopy type, and fundamental group. We will start from all kinds of complicies,

which is the topological objects we build for networks, and then go to (co)homology

group and degree since they are the tools we use later.

2.1 Flag Complex, Rips Complex and Nerve

Complex is one topological object we will use frequently. It has a very simple

structure (built combinatorially), therefore easy to count, manipulate, and do com-

putation on. And for the most important reason, network graph is in spirit a

1-complex, with higher dimensional complex structures based on it improving our

understanding about the network. Now we get our hands on simplex and complex.
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Definition 2.1.1. A k-simplex is a k dimensional polyhedron which is the convex

hall of its k + 1 vertices. A simplex with orientation is denoted as [v0, v1, . . . , vk],

whose vertex set is {v0, v1, . . . , vk}. Notice that the orientation of a simplex depends

on the sign of permutation on vertices, i.e., for a permutation (i0, i1, . . . , ik) of

{0, 1, . . . , k}, [vi0 , vi1 , . . . , vik ] = sgn(vi0 , vi1 , . . . , vik)[v0, v1, . . . , vk].

Definition 2.1.2. A simplicial complex is the union of simplices by gluing them

together along faces of same dimension. The dimension of a simplical complex is

the highest dimension of its simplices.

Definition 2.1.3. A subcomplex of a complex C is a complex whose simplices

are all simplicies of C. And a simplicial subcomplex of a simplicial complex C is a

subcomplex of C which is also a simplicial complex.

For a simplicial complex, its k-skeleton is its subcomplex with all its simplices

of dimension k. For example, the 1-skeleton of a simplicial complex C is the graph

with every vertex and every edge included, as in Figure 2.1.

Definition 2.1.4. For a simplical complex C, and a vertex x, define the open star

of x, as the union of x and all open simplices with x as one vertex. Denote this as

St x.

As opposed to the operation from a simplicial complex to its 1-skeleton, where

the dimension of complex decreases to 1, we have an inverse procedure that makes

a 1-complex to higher dimensional.

25



Figure 2.1: A simplicial complex and its 1-skeleton in black

x

Figure 2.2: Open star of the node x in center: red regions(open faces, open edges,

and nodes) is the open star of the node in the center
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Definition 2.1.5. Given an undirected graph G, with vertex set V and edge set

E, the flag complex Cf , of G is the abstract simplicial complex whose k-simplices

correspond to unordered (k+1)-tuples of vertices in V which are pairwise connected

by edges in E.

Figure 2.1 also illustrated a graph (in black) and its flag complex, which is a

3-complex.

Definition 2.1.6. Given a set of points X in a metric space and a fixed parameter

r > 0, the Vietoris-Rips complex (Rips complex for short) of X , Rr(X), is the

abstract simplicial complex whose k-simplices correspond to unordered (k+1)-tuples

of points in X which are pairwise within distance r.

Both flag complex and Rips complex are simplicial complicies. But compared

to a flag complex, the Rips complex requires metric information about the space.

For a Rips complex of point set X , its 1-skeleton has the flag complex exactly the

same as the Rips complex.

These two kinds of simplicial complicies are frequently borrowed in order to

study coverage problems for sensor networks. The topological property of them are

closely related to the covering quality. However, by themselves, it is not enough to

tell whether the coverage is satisfying or not, because the coverage information is

not incorporated yet. Therefore, we refer to another simplicial complex, the nerve,

for help.
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Figure 2.3: Nerve lemma: the union of patches (in light green) has the same homo-

topy type as the nerve (in dark green).

Definition 2.1.7. For a collection of open sets in topological space X indexed by

I, U = {Ui|i ∈ I}, the nerve, N(U), is defined as the simplicial complex whose

k-simplices correspond to nonempty intersections of k + 1 open sets in U .

In other words, the nerve of an open covering is the information about how the

open sets intersect with each other. We have a lemma about the quality of coverage

through investigating the nerve.

Theorem 2.1.8. (Nerve lemma). For an open cover U of X, if every nonempty

intersection of a sub collection of U is contractible, then the union of elements of U

has the same homotopy type as N(U).

See Figure 2.3 as an illustration of the nerve lemma. The nerve lemma has an

important condition about the intersections of sub collections of the open sets: each
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Figure 2.4: A counter example of the nerve lemma: the two open sets (in light green)

has a nonempty intersection but not contractible (has two connected componets).

Their union (has the homotopy type of a circle) does not has the same homotopy

as the nerve, which is contractible.

should be contractible. Refer to the following example in Figure 2.4 as an counter

example.

Nerve lemma has extensive applications in coverage problems of sensor network.

For a sensor network such that the coverage is a collection of open sets, which

satisfying the conditions of nerve lemma, whether the total coverage has a hole

or not depends absolutely on the nerve, which could be examined with much less

effort.
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2.2 Homology, Cohomology and Degree

In last section we have explored some varieties of complicies, which is the object

we are going to study instead of graphs. And the tools we are going to use is

(co)homology.

For here, we will define simplicial (co)homology for convenience. If other forms

(singular, cellular, Cěch) of (co)homology are desirable, please refer to [20].

For a simplicial complex X , the k-chain Ck, with coefficients in Z (assumed for

simplicity), is a vector space over Z with basis as the collection of all n-simplices

of X . The boundary map ∂k : Ck → Ck−1 is a linear transformation taking

every k-simplex [v0, v1, . . . , vk] to its boundary
∑k

i=0(−1)i[v0, . . . , v̂i, . . . , vk], where

v̂i means omitting the vertex vi in the sequence.

Here we have the following very important lemma:

Lemma 2.2.1. The composition of two successive boundary maps is zero: ∂k−1 ◦

∂k = 0 for all k.

Remark 2.2.2. The proof of Lemma 2.2.1 is purely combinatorics, by applying the

linear map on each simplex. But itself is deep.

Now we have chain complex as a sequence of graded chains with boundary

maps as transformations:

· · · → Ck+1
∂k+1−−→ Ck

∂k−→ . . .
∂1−→ C0

∂0−→ 0 (2.2.1)

, where ∂k ◦ ∂k−1 = 0. We call a k-chain a k-cycle if it is in Zk = ker ∂k. A k-cycle

30



is a boundary if it is in Bk = im ∂k+1 (keep in mind that Bk ⊂ Zk because of

Lemma 2.2.1).

Definition 2.2.3. Given a chain complex, the kth homology group is defined as

Hk = ker ∂k/ im ∂k+1. Elements of Hk are called homology classes. Two cycles

representing the same homology class are said to be homologous.

Remark 2.2.4. Simplicial homology is defined in Definition 2.2.3. For definition

of singular homology, we only need to change the way we define simplex. A

singular simplex of dimension k in space X is a map σ : ∆k → X , where

∆k = {(t0, . . . , tk) ∈ Rk+1|∑i ti = 1, ti ≥ 0 ∀i} is a standard k-simplex. Ac-

cordingly the k-chain Ck(X) is defined as vector space over Z with the collection

of singular simplices as basis, and boundary map ∂k : Ck(X) → Ck−1(X) is de-

fined as: ∂k(σ) =
∑k

i=0(−1)iσ|[v0, . . . , v̂i, . . . , vk]. Homology defined in both way

are equivalent.

For a space X , and a subspace A ⊂ X , the relative chain of dimension k,

denoted as Ck(X,A), is defined as the quotient group Ck(X)/Ck(A). Boundary map

∂k induces a quotient boundary map from Ck(X,A) to Ck−1(X,A). relative cycle

and relative boundary are defined respectively as ker ∂ and im ∂. Accordingly

the kth relative homology group is the kth homology group of chain complex

· · · → Ck(X,A)
∂k−→ Ck−1(X,A) → . . .

∂1−→ C0(X,A) → 0.

If f : X → Y is a map between two spaces, then it would induce a homomor-

phism from Ck(X) to Ck(Y ) for all k. This homomorphism (still denoted as f) is a
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chain map, which communicates with boundary map, therefore induces a homo-

morphism from Hk(X) to Hk(Y ), which is called the induced map of f , denoted

as f∗.

Cohomology is the dual of homology with the homomorphisms going in the

opposite direction.

Consider a chain complex (C∗, ∂), its dual is defined as a cochain complex,

(C∗, d), with Ck the cochain, which is the dual of Ck, Hom(Ck,Z), and dk : C
k →

Ck+1 the coboundary map, which is the dual of ∂k+1. By Lemma 2.2.1, d◦d = 0.

In simplicial case, Ck is the dual vector space of Ck with a basis B, therefore is also

a vector space over Z with a basis {φβ|φβ(β) = 0;φβ(α) = 1, ∀α 6= β, α, β ∈ B}.

Accordingly, a boundary map applied on a cochain φ is as dkφ([v0, . . . , vk+1]) =

φ(∂k+1([v0, . . . , vk+1])) =
∑

i=1 k + 1(−1)iφ([v0, . . . , v̂i, . . . , vk+1]). Similar as the

definitions for cycle and boundary, a cochain is a cocylce if in ker d, and a cobound-

ary if in im d.

Definition 2.2.5. Given a cochain complex, the kth cohomology group Hk =

ker dk/ im dk−1. Elements of Hk are called cohomology classes, and two cocycle

in the same class are said to be cohomologous.

The following paragraphs are contributed to the concept of topological degree,

as which we are going to develop a similar tool in Chapter 3.

Definition 2.2.6. For a continuous map f : Sn → Sn, it induces a homomorphism

f∗ : Hn(S
n) → Hn(S

n), where Hn(S
n) = Z. Therefore, f must be of the form
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f∗(α) = dα for some fixed integer d only depending on f , this integer d is called the

degree of f , denoted as deg f .

Remark 2.2.7. In the case of n = 1, degree is also called winding number, rep-

resenting how many rounds the image goes around a circle as it goes around the

circle once in the domain. For example, a map f : S1 → S1 (S1 ⊂ C2) where a

complex number s is mapped to s2 is a map of degree 2.

Proposition 2.2.8. Degree is a homotopy invariant, which means if f ' g are two

homotopic maps, then deg f = deg g.

Degree could be generalized to topological spaces whose nth homology is a free

abelian group (compact oriented manifolds).

Definition 2.2.9. For a topological space X , and non-negative integer n, if Hn(X)

is a free abelian group with a homological class [α] ∈ Hn(X), then for any continuous

map f : X → Sn, with a chosen generator β forHn(S
n), the degree of f on subgroup

generated by [α] is defined as the integer d such that f∗(α) = dβ. Denote this as

deg(f, α).

Remark 2.2.10. The generalized degree is well-defined: if α1, α2 are homologous

elements in Hn(X), then deg(f, α1) = deg(f, α2), because they generate the same

subgroup.

Lemma 2.2.11. Degree is additive: for two homology classes [α1] and [α2] in

Hn(X), deg(f, α1 + α2) = deg(f, α1) + deg(f, α2).
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Proof. Since f∗ is a homomorphism, f∗([α1]+ [α2]) = f∗([α1])+ f∗([α2]). Therefore,

deg(f, α1 + α2) = deg(f, α1) + deg(f, α2).
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Chapter 3

Dynamic Features of

Greenberg-Hastings Automata

This chapter analyzes the dynamics of GHA on networks, by focusing on states of

nontrivial degree, which generate spiral waves patterns. Degree is later proved to

have one to one correspondence with the cohomology of the underlying space, which

allows us to manipulate the waves.

3.1 Degree and Defect

We reprove certain results from the CCA literature [15, 14] in the more general

setting of network (as opposed to lattice) systems. Our perspective is that a CCA is

a discrete-time network-based dynamical system. From observation, the interesting

dynamical features associated with the GHM are time-periodic. We therefore focus
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our efforts on understanding time-periodic states.

First of all, we give notations: D is the underlying domain. X is the collection

of nodes in D. The network graph is denoted as G.

Definition 3.1.1. An orbit of a node x ∈ X under GHM with an initial state u0

is the time-sequence of states (ut(x))
∞
t=0. A node x is said to be K-periodic if its

orbit satisfies ut+K(x) = ut(x) for some integer K > 0 and all t. A node x is said

to be eventually periodic if its orbit satisfies ut+K(x) = ut(x) for some K > 0

and all sufficiently large t.

We notice from the simulations that after the dynamics are organized into waves,

the nodes supporting the waves are with a smooth structure, in that the colors

(states) of neighbors are close. Therefore, we brings up with the concept of conti-

nuity.

Definition 3.1.2. A state u on a subgraph G′ of G is continuous if for every pair

of neighbors x, y in G′, |u(x)− u(y)| ≤ 1.

Definition 3.1.3. A node x is subordinate to a neighbor y at time t if their

states at that time satisfy ut(y) = ut(x) + 1 (where, recall, all addition is in Zn).

Lemma 3.1.4. Subordinate nodes will remain continuous for all future time.

Proof. It suffices to assume a subgraph consisting of a single edge with nodes x

and y. Assume that |ut(x) − ut(y)| = 1. Consider the set S = {z ∈ X|ut+1(z) =
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ut(z)} ⊂ u−1
t (0). Depending on membership in S,

(ut+1(x)− ut+1(y))− (ut(x)− ut(y)) =







































0 x, y ∈ S or x, y /∈ S

1 x /∈ S and y ∈ S

−1 x ∈ S and y /∈ S

(3.1.1)

So |ut+1(x)−ut+1(y)| will exceed 1 only if ut(x)−ut(y) = 1, ((G(u))(x)−(G(u))(y))−

(u(x)−u(y)) = 1 or u(x)−u(y) = −1, ((G(u))(x)−(G(u))(y))−(u(x)−u(y)) = −1.

The first case is equivalent to u(x) = 1, u(y) = 0 and x /∈ S, y ∈ S, which is

impossible because y has neighbor x in state 1, and will not stay in state 0 for the

next step, thus not in S; the second case is the symmetric case which by the same

argument is not possible either. Then |(G(u))(x) − (G(u))(y))| ≤ 1, which makes

G(u) also continuous.

Corollary 3.1.5. If a node x is subordinate to a neighbor y that is n-periodic at

time t, then node x is n-periodic ever since t. Any node subordinate to an eventually

periodic node is eventually periodic.

Proof. Suppose x reaches 0 for the first time (after t) at time t0. By the scheme

of G, ut0(y) = 1. Therefore, all we need to prove is for any non-negative integer k,

ut0+kn+1(x) = 1. We have already proved ut0+1(x) = 1 because it has a neighbor y

in state 1 at that moment. Suppose the statement holds for a particular k0, i.e.,

ut0+k0n+1(x) = 1, then ut0+(k0+1)n(x) = 0. By periodicity, ut0+(k0+1)n(y) = 1, thus

ut0+(k0+1)n+1(x) = 1, which makes the statement hold at k0 + 1. By induction, the

statement holds for all k.
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Figure 3.1: Counter example: non-continuous state for all time.

Corollary 3.1.6. Continuity is forward-invariant: continuous states remain con-

tinuous in time.

Proof. According to Corollary 3.1.5, two neighbors that are subordination will re-

main continuous. For one step forward, two neighbors that are of the same state will

either remain the same state, or be offset by state 1, which means subordination,

thus also continuous.

However, it is not necessarily the case that all initial conditions converge to a

continuous state (even in a connected compact network). See, for example, Figure

3.1: every node has period n, and the two nodes on the right end have states always

differ by 3. Thus this is never a continuous network.

In order to define the network version of degree, we have to first of all give a

definition of cycle. The concept of 1-cycle is borrowed from topology to describe an

end connecting 1-d path.

Definition 3.1.7. We call a formal linear combination α of edges αi = [ai, bi], i =
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Figure 3.2: A seed (left) and a defect (right) for n = 8 on cycles in light red.

1, . . . , K a cycle if the boundary of α, ∂α =
∑K

i=1(bi − ai) is 0. A cycle is called a

loop if bi = ai + 1 for i = 1, . . . , K − 1, and bK = a1.

As a remark, a loop is a cycle, and a cycle is the sum of one or more loops. We

also remark that the set of cycles Z has the structure of an abelian group: one can

add cycles and scale them by (integer) coefficients.

The following definition is a network-theoretic version of the lattice-based ana-

logue from, e.g., [15].

Definition 3.1.8. A state u : X → Zn contains a seed if the network contains a

loop
∑K−1

i=0 [xi, xi+1] (x0 = xK), for which u(xi) = i mod n.

By definition, the length K of a loop that makes a seed has to be a nonzero

multiple of n, because u(x0) = u(xK), K = 0 mod n. Every node on a seed has

period n, because it always has a neighbor of state 1 on the seed when it reaches

state 0.

Lemma 3.1.9. If an initial condition u0 on a connected compact network X con-
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tains at least one seed, then all nodes are eventually n-periodic.

Proof. Let the set of n-periodic nodes in X be Pt, and state at time t be ut. Suppose

the loop
∑K−1

i=0 [xi, xi+1], x0 = xK makes a seed in initial condition, then P0 is

nonempty, with (xi)
k−1
0 as a subset. Pt is non-descending with respect to time t,

P0 ⊂ P1 ⊂ · · · ⊂ Pt ⊂ Pt+1 ⊂ . . . . For a node x that is not n-periodic that has

at least one neighbor that is n-periodic at time t0, if x never gets to be n-periodic,

it means for any t positive, there exists some s ≥ t such that us+1(x) 6= us(x) + 1

mod n. It will induce that us+1(x) = us(x) = 0, which is saying x gets to stay in

state 0 for a while from time to time. But the neighbors of x that are n-periodic

are advancing their states by 1 at every time step, this will make the face difference

between them and x bigger and bigger until it reaches 1 mod n. When such an

offset by 1 appears, a subordination between x and one of its n-periodic neighbors is

built up, which makes x periodic ever since as a result of corollary 3.1.5. Therefore

every node which as at least one neighbor that is periodic n will be periodic n after

a finite amount of time (no longer than n). By the above argument and the fact

that the network is connected, for any t, if Pt 6= X , then Pt ( Pt+n. On the other

hand side, since X is compact, there exists a time T , such that

∞
⋃

t=0

Pt = PT

Therefore, the whole system is in n-periodic state since time T .

We see in the above arguments that a loop which makes a seed at one moment

will support a seed forever with the dynamics. The key feature that is invariant
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under the dynamics is the concept of “winding number”, which records how many

rounds it goes through while chasing continuously on a loop. We will define this as

degree and extend the concept to all cycles.

Definition 3.1.10. For a given network X and a state u ∈ ZXn , if u is continuous

on a cycle α =
∑K

i=1[ai, bi], then the degree of u on this cycle is defined as

deg(u, α) := 1/n
k−1
∑

i=0

(u(bi)− u(ai))

where the summands are forced to be −1, 0, or 1, and the sum is ordinary addition

(not mod n).

Definition 3.1.11. We call a cycle α =
∑K

i=1[ai, bi] in the network X a defect for

some state u ∈ ZXn if the degree of u on this cycle is nonzero.

An example of a defect is as in Figure 3.2. The concept of a defect is a gen-

eralization of a seed, in the sense that it has nonzero degree. The term “degree”

defined here is consistant with the use of degree in topology, which is a homotopy

invariant [20]. Here, it is the discrete version of “winding number” for continuous

self-maps of the circle S1 [14], describing how many times it wraps around with

direction. Similar to Lemma 5 in [14], we will prove the R2 version instead of the

lattice Z2 version, presenting a necessary and sufficient condition for a continuous

system not dying out.

Lemma 3.1.12. For two cycles α and β, if a state u is continuous on both cycles,

then it is also continuous on their sum α + β, and deg(u, α + β) = deg(u, α) +
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deg(u, β).

Proof. Let α =
∑K

i=1[ai, bi] and β =
∑L

i=1[ci, di], then

deg(u, α+ β) (3.1.2)

=1/n(

k−1
∑

i=0

(u(bi)− u(ai)) +

k−1
∑

i=0

(u(di)− u(ci))) (3.1.3)

=1/n
k−1
∑

i=0

(u(bi)− u(ai)) + 1/n
k−1
∑

i=0

(u(di)− u(ci)) (3.1.4)

= deg(u, α) + deg(u, β) (3.1.5)

Lemma 3.1.13. For a cycle α and a continuous state u, the degree of u on this

cycle is invariant under the GHM updating rule G, i.e.,

1/n
k−1
∑

i=0

((G(u))(xi+1)− (G(u))(xi)) = 1/n
k−1
∑

i=0

(u(xi+1)− u(xi)) (3.1.6)

Proof. We first prove that degree on a loop
∑K−1

i=0 [xi, xi+1], x0 = xK is invariant. As

before, equation 3.1.1 holds for every pair of neighbors xi+1 and xi. Since the number

of pairs (xi+1, xi) with xi ∈ S, xi+1 /∈ S is the same as the number of pairs with

xi /∈ S, xi+1 ∈ S, the summation of ((G(u))(xi+1)− (G(u))(xi))− (u(xi+1)− u(xi))

is 0, which makes Equation 3.1.6 hold. Since every cycle is the sum of one or more

loops, and degree is additive by Lemma 3.1.12, then it is also invariant on cycles.

For a state u on a loop that forms a defect, if the loop bounds a region V in

R2 that belongs to D, we can discuss the continuity of the subnetwork in V . If the
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Figure 3.3: In the region bounded by a defect, the state is discontinuous.

subnetwork in V is sufficiently dense (e.g., Rips complex has shadow containing V ,

for definition of shadow, please refer to Definition 4.2.1), we observe that the sub-

network could never reach continuity, with at least one singularity (a discontinuity)

forced, as in Figure 3.3. This could be understood intuitively as a discrete version

of the theorem in complex analysis, which says a holomorphic function on a domain

always has integration 0 on the boundary. It would also contradict the fact that a

continuous map from a contractible space to S1 has degree 0 restricted on any loop.

Lemma 3.1.14. Consider a state u on X with n > 3, and a loop l =
∑K−1

i=0 [xi, xi+1],

x0 = xK in X. If the loop l is null homologous in the 2-complex built on X, and u

on l makes a defect, then u is discontinuous on X. For n ≤ 3 any state on X is

continuous.
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Proof. Since l is null homologous in 2-complex built onX , l = ∂β where β =
∑m

i=1 βi

is a 2-chain in the 2-complex and βi are 2-simplices. l can be deformed to a single 2-

simplex through a sequence of homologous loops in X ,
∑m−j

i=1 ∂βi, j = 1, . . . , m− 1,

while the successive two loops only differ by the boundary of one 2-simplex. Suppose

u is continuous on X , such operation could not change the degree at all, since at

most three of the summands u(xi+1)−u(xi) have been changed value up to 1. Thus

the summation is at most changed by 3, which makes the degree changed by at

most 3/n, which has to be zero when n > 3. Thus the nonzero degree remains

the same for the sequence of homologous loops, which can not be true because the

degree on the boundary of a single 2-simplex has to be zero. Therefore the state on

X could not be continuous.

It is trivial to see the continuity when n ≤ 3, because any two elements in Zn

differ by at most 1.

3.2 Asymptotic behavior

Since we have defined degree and defect, we are now ready to reason the correspon-

dence between defects and the dynamics.

Theorem 3.2.1. For a continuous state u on a connected compact network X, the

system eventually turns to all-0 state (dies out) if and only if u does not contain a

defect.
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Proof. Suppose u contains a defect on cycle α =
∑K

i=1[ai, bi]. By lemma 3.1.13, the

degree is invariant under G, so it will never be 0, thus the system will never turn to

all-0 state.

For the converse, we need to show for a continuous state u not dying out even-

tually, it has to contain a defect at the beginning of time. Firstly, it is obvious

that after long enough time, in such system ut, every node in state i must have a

neighbor in state i+ 1, for all i 6= 0, since ut = Gi(ut−i). So if we start from a node

x0, such that ut(x0) = 1, we can find a neighbor of x0, x1, such that ut(x1) = 2.

Following the process, we get a sequence of nodes x0, x1, . . . , xn−1, such that xi and

xi+1 are neighbors and ut(xi) = i + 1 mod n. If from every state 0 node, a state

1 node could be reached by jumping along neighbors which are in state 0, then

following the process, we will finally reach a node has been visited before, as X is

compact. In this way, we have obtained a defect in ut, which is also a defect in u,

by Lemma 3.1.13 and the fact that u is continuous.

To see that a node with state 1 could always be reached from a node with state

0 by jumping along neighbors in state 0, all we need to prove is there is no such set

A of nodes with state 0, that their neighbors not in A could only be in state n− 1.

If such A exists in ut, then there is a proper subset of A with state 0, and state n−1

on the complement in ut−1. Following these procedure, we should finally obtain a

set A0 of state 0 nodes, each has at least one neighbor with state n − 1 and other

neighbors with state 0 in us. Then in us−1, nodes in A0 have to be in state n − 1

45



(by continuity), and their neighbors not in A0 must all be in state n− 2, and for n

steps back, in us−n, nodes in A0 have to be in state 0, and their neighbors not in

A0 must all be in state n− 1. But such a us−n could not produce us−n+1 under G,

because those state 0 nodes have no neighbors in state 1. Therefore such a set A

does not exist, which makes the statement in the beginning true.

Since degree is invariant under the update rule G, Theorem 3.2.1 can be in-

terpreted as saying that a continuous state dies out eventually if and only if it is

cohomologically trivial (see §3.3 for details on how to define the cohomology class

of a state).

However, Theorem 3.2.1 itself is not enough for deciding the long term dynamics,

especially when we are given a random initial state, for most of the time is not

continuous. Therefore, we have the following theorem, with weaker conditions.

Theorem 3.2.2. For an initial state u0 on a connected compact network X, the

system eventually turns to all-0 state (die out) if and only if there exist a moment

t such that ut contains at least one defect.

Proof. Suppose there exists a time t, such that ut contains a defect on cycle α. By

Lemma 3.1.13, the degree is invariant under G, so it will never be 0, thus the system

will never turn to all-0 state.

For the converse, we need to show for a system not dying out eventually, it

has to contain a defect at some moment t. Following the argument used in proof

of Theorem 3.2.1, we could find a moment t0 (big enough) and a node x0, such
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that ut0(x0) = 1 mod n. Since 1 step ago, ut0−1(x0) = 0 mod n, there has to

be a neighbor of x0, x1, such that ut0−1(x1) = 1 mod n. And following that

argument, we could find a sequence of nodes, x0, x1, . . . , xn−1, such that xi and xi+1

are neighbors and ut0(xi) = i+ 1 mod n. For node xn−1, it has a neighbor was in

state 1 when it was in state 0 for the last round, and this neighbor is currently in

state 0 or 1. Let this neighbor be xn. Suppose ut0(xn) = 1, the above arguments

automatically finds another sequence xn, xn+1, . . . , x2n−1 of length n that is starting

from xn and have states in sequence 1, 2, . . . , n−1, 0. Otherwise, ut0(xn) = 0 and xn

has a neighbor xn+1 which was in state 1 when xn was in state 0 for last round, and is

currently in state 0 or 1 (continuity is forward invariant by Corollary 3.1.6), and we

are back at the previous argument. Therefore, following this construction, we can

have a long sequence of nodes x0, x1, . . . with states on neighbors are continuous,

and states along the sequence non-decreasing. Because this network is compact, it

has to end at some node in this sequence, which makes a defect.

Although we now have a classification of the dynamic equilibrium according to

the existence of defects, it is still not crystal clear how the system evolves into

equilibrium. Therefore, we develop the following theorem.

Theorem 3.2.3. There exists a directed subgraph F of the network that is a span-

ning forest rooted at seeds, with directed edges in the direction of subordination.

Proof. Every node that is not originally a seed node will become periodic by building

up a subordination with some periodic neighbor. For every non-seed node, choose
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one from its neighbors via subordination and use a directed edge with itself as head

to represent the relationship. This forms a directed subgraph of the network. From

any non-seed node, following those directed edges with inverse directions, it has to

end in a seed node, because it is a compact network. We argue that the subgraph

is a tree because it contains no loop: if it did contain a loop, then the loop is

comprised of non-seed nodes, but for any directed edge, the head node becomes

periodic later than the tail node, which is a contradiction with being in a loop.

And furthermore, we can treat the forests as rooted at seeds, which makes every

edge in the direction that goes deeper in a branch to the leaves. Such structure

gives the nodes a hierarchy, and since for every edge, the two end nodes have states

offset by 1, we can induce the state after the system reaches equilibrium.

According to the above proof, we have made a point in that the growth of the

forest is at most one level at a time, which means in every time step, there could

not be more than one node from a same branch that becomes subordinated.

Definition 3.2.4. The depth of a node in a tree is the number of hops between

the node and the root of the tree.

Starting from a uniformly randomly generated initial condition (a reasonable if

idealized statistical model), the system is not guaranteed to converge to a periodic

system, not including all-zero states. One sufficient condition is the existence of a

seed, which we prove to be of high probability with certain reasonable assumptions

(Lemma 3.2.5). It is possible that the system became messy with no wavefront ob-
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servable (too many defects all around in the space, for instance). We would require

those nodes that are far away (in the hop-metric) from the defects to be in state 0

at one moment (in our case, larger than the number of states is already enough).

This assumption is proved later to be of high probability (Lemma 3.2.6). Under

the above two assumptions, continuity in the acquired region will be guaranteed.

Therefore, from now on, we limit discussion to the region far away from defects.

Lemma 3.2.5. For a uniformly sampled network with communication radius r and

fixed n on a domain consisting of fixed narrow hallways, the probability of at least

one seed existing in the initial condition generated according to uniform distribution

approaches 1 as the number of nodes grows.

Proof. Divide the space into square shaped pieces Di indexed by I, with side length

smaller or equal to r/
√
2. As the network size |X| approaches infinity, the proba-

bility of there to be no less than n nodes in each Di approaches 1. For a Di with

n or more nodes, the sub-network in this sub domain makes a complete graph.

Therefore, there is no seed in the initial condition, if and only if the nodes do not

cover all the states, which means there is at least one state missing in the initial
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condition. Thus

P (no seed in initial condition in Di with mi nodes)

≤ n(n− 1)mi

nmi

= n(1− 1/n)mi

(3.2.1)

and

P (no seed in initial condition in D)

≤
|I|
∏

i=1

P (no seed in initial condition in Di with mi nodes)

≤
|I|
∏

i=1

n(1− 1/n)mi

= n|I|(1− 1/n)|X|

(3.2.2)

which approaches 0 as |X| approaches infinity.

Lemma 3.2.6. Starting with a fixed network and uniformly distributed initial con-

ditions, with probability approaching 1 as the state number n grows, nodes with hop

distance to all defects bigger than 2n will turn to state 0 after 2n− 2 time steps.

Proof. Suppose there is no state 1 node in un−1 in the region n hops away from

any defect, then there could be no state 1 or 2 node in un in the region n+ 1 hops

away from any defect, and with the same reason, there could only be state 0 node
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in u2n−2 in the region 2n hops away from any defect. Therefore the probability that

every node at least 2n hops away from defects are state 0 in u2n−2 is no smaller

than that of no state 1 node at least n hops away from defects in un−1.

Now suppose there is a node x at least n hops away from any defect, and

un−1(x1) = 1. Such x1 must have at least one neighbor of state 2, named x2,

otherwise in one step before, it would not be able to update from 0 to 1. Via the

same argument, there exists a sequence of nodes: xj , j = 1, 2, . . . , n− 1, such that

xj and xj+1 are neighbors, and un−1(xj) = j. For one step ago, un−2(xj) = j − 1

for j 6= n, and two steps ago, un−3(xj) = j − 2 for j = 2, . . . , n− 1 and un−3(x1) ∈

{0, n− 1}. Following such argument, back at time 0, u0(xj) ∈ {0, n− 1, . . . , j + 1}

for j = 1, . . . , n− 2 and u0(xn−1) = 0 with at least one neighbor of state 1.

Let Ij = {0, n− 1, . . . , j + 1}. For a fixed node x,

P (at least one of x’s neighbor have a state in Ij at time 0)

= 1− (1− j/n)|N (x)|

(3.2.3)

where |N (x)| is the number of neighbors of node x. Suppose Ñ is a universal upper
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bound on |N (x)|, then

P (un−1(x) = 1 for some x at least n hops away from any seed)

≤ |X|
n−1
∏

j=1

(1− (1− j/n)|N (x)|)

≤ |X|
n−1
∏

j=1

(1− (1− j/n)Ñ )

≤ |X|(1− (1/2)Ñ)(n−1)/2

(3.2.4)

which approaches 0 as n approaches infinity.

For example, in a 40000 nodes network, where every node could have up to 6

neighbors and n = 20, the probability of a seed existing is bounded below by 0.9656,

which validates the observation that in previous simulations, most of the time at

least one seed was observed. As per the above two lemmas, we will always assume

that at least one seed exists in initial condition, and the nodes at least 2n hops

away from any defect will turn to state 0 after 2n− 2 step. These two assumptions

guarantee not only the system not dying out (turn into an all-zero state), but also

the continuity of the system in acquired region, e.g., the region far away from seeds

that are once all in state 0.
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3.3 Controlling the Cohomology

We have observed in simulation that sometimes there is no “local defect” contin-

uously generating wavefronts, but the system still reaches a nonzero equilibrium,

with the remaining wavefronts propagating along hallways in periodic way (see Fig-

ure 3.4 as an example). This phenomenon contributes to the existence of a “global

defect”, which differs from the “local defect” in that the cycle on which the defect

is supported is in a non-zero class in first homology of the Rips complex Rr(X),

instead of a trivial one. Such an equilibrium presents a much higher portion of

nodes in state 0 than those with local defects. We will try to manually generate

such patterns in GHM by turning off local defects.

Such protocol is not energy efficient unless we shift state 0 to sleep state as

follows: the new interpolation lets state 1 be waking state, state 2 be broadcasting

state, and state 3 till 0 be sleeping state. Then most of the nodes will be sleeping

after they are eventually periodic.

Recall from Definition 3.1.10, the degree (or winding number) of a continuous

state on a cycle is an index measuring how many times the states cycle through

the alphabet on the cycle. Therefore, after local defects are turned off by breaking

the links between state 0 and state 1 nodes, the degree of a cycle which makes a

nonzero class in first homology of the Rips complex Rr(X) is determined by the

number of wavefronts already generated and their directions of propagation. In

other words, degree for all cycles is determined absolutely by local defects’ location
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Figure 3.4: An example of GHM in equilibrium with no local defect at time 250,

300, 350, 400, 450, 500, 550, 600.
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and the number of wavefronts they have sent out in the hallways. Note that the

degree is invariant in time for a continuous state. Thus counting the degree for

a cycle after local defects are turned off is not a difficult problem: following the

direction of this cycle, the number of wavefronts in the same direction minus the

number of wavefronts in the opposite direction determines the degree.

Definition 3.3.1. For a class [α] in H1(Rr(X)) (or H1(C2(X)), the first homology

of the 2-complex), define the degree of a continuous state u on [α] as the degree

of u on cycle α. If the projection π : Rr(X) → D induces an isomorphism π∗ :

H1(Rr(X)) → H1(D), then define the degree of u on π∗([α]) as the degree of u on

α.

As a remark, the degree on a first homology class is well-defined, if for homolo-

gous cycles α and β, degree of u restricted on both are the same. By Lemma 3.1.14,

degree of u restricted on α − β, which is a null-homologous cycle, has to be zero.

Thus, the degrees on α and β have to be the same. By abuse of notation, deg(u, [α])

will be used for [α] as a first homology class in either Rr(X) or D.

Definition 3.3.2. Let Cont(X) represent the set of continuous states on X . Define

a cohomologizing map h : Cont(X) → H1(Rr(X)) = Hom(H1(Rr(X)),Z), such

that h(u)([α]) = deg(u, [α]).

As a remark, the first cohomology H1(Rr(X)) defined here is a simplicial coho-

mology. The homology of Rr(X) is torsion free and therefore H1(Rr(X)) can be

treated as Hom(H1(Rr(X)),Z).
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Figure 3.5: Single wave: state space is Z4, with white, light green, red, dark blue

respectively representing states 0,3,2,1, other nodes not shown are all in state 0.

Definition 3.3.3. A single wave is a continuous state u on X , such that

1. there exists a barrier (see Definition 4.2.6) on which u is supported,

2. there exists a cycle α on which the degree of u is 1.

Refer to Figure 3.5 for an example.

By the definition of a wave, the degree is zero on those cycles that do not

intersect the wave’s support. The waves move (changing supports in time) in a way

that degrees are invariant. They are even additive under some circumstances, by

next lemma, which allows for algebraic manipulations.

Lemma 3.3.4. Let φ1 and φ2 be two continuous states on X with supports X1 and
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X2, with no two nodes from X1 and X2 being neighbors. Let φ = φ1 + φ2 be a state

on X, then φ is a continuous state on X, which satisfies h(φ) = h(φ1) + h(φ2).

Proof. The continuity of φ inside X1 and X2 is inherited form the continuity of

φ1 and φ2. If x1 ∈ X1 and x2 6∈ X1 are neighbors, then x2 6∈ X2. This means

φ(x2) = 0, which makes φ on the pair (x1, x2) continuous. The same argument

works for a pair of neighbors in and out of X2. For two neighbors both outside

X1 and X2, on which φ is 0, the continuity also holds since the values have to be

both 0. Let α =
∑K

i=1[ai, bi] be a cycle in X , then α ∩X1 and α ∩X2 are two non

neighboring subsets, and:

h(φ) = 1/n
K
∑

i=1

(φ(bi)− φ(ai))

For these pairs of neighbors ai and bi, there could be at least one in X1, which sum

up to be h(φ1), or at least one in X2, which sum up to be h(φ2), otherwise, both

are in neither X1 or X2, which sum up to 0. Therefore, h(φ) = h(φ1) + h(φ2).

Corollary 3.3.5. If states φ1, . . . , φk have distinct and non-neighboring supports,

then h(
∑

φi) =
∑

h(φi).

An important property of the narrow hallways D is it has the topological type

of a planar graph G; specifically, G is a deformation retraction of D, with retrac-

tion map r : D → G and injection map i : G → D. Suppose H1(Rr(X)) =

H1(D) =
⊕

g Z (a graph’s first homology is always a free abelian group), and

{[α1], . . . , [αg]} is a basis for H1(Rr(X)), accordingly, {π∗([α1]), . . . , π∗([αg])} is a
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basis for H1(D). Since the degree of u on a cycle in Rr(X) is totally determined

by integers deg(u, α1), . . . , deg(u, αg) by Lemma 3.1.12, we only need to focus on

controlling the degree on a basis.

One problem we care about is whether one can realize every possible degree. In

other words, the question could be reformed as whether the map h is surjective.

Specifically, is it possible to realize a continuous state u, such that deg(u, [α]) =

f([α]), where f : H1(Rr(X)) → R is any integer valued linear map satisfying

f([α + β]) = f([α]) + f([β])?

Our last theorem in this chapter concerns this ability to program pulses in the

network for customizing the response.

Theorem 3.3.6. The map h is surjective: if [f ] ∈ H1(Rr(X)), then there exist a

continues state u on X, such that h(u) = [f ].

Proof. We start by selecting a specific basis for H1(G), using the standard basis

of the complement of a spanning tree T : each remaining edge corresponds with

an element in a basis of H1(G). Let this basis be {[α′
1], . . . , [α

′
g]}, and the edges in

corresponding sequence be e1, . . . , eg, where each ei is contained in only one element

α′
i. For each i, there exists at least one single wave φi that is supported only on a

subnetwork in r−1(ei), and satisfies h(φi)([αj]) = δij. From the density assumption

on the network X , those waves can be supported on non-neighboring subnetworks

and therefore we can sum [f ]([α]) times of them up to obtain a continuous state

φ′
i such that h(φ′

i)([α]) = [f ]([α])δij by Corallary 3.3.5. From the same argument,
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∑

φ′
i is a continuous state which maps to [f ] under h.
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Chapter 4

Evasion game

We propose a sensor-network based “Evasion Game” formally, and then use the

model to verify the system: why the wavefronts sweep the entire domain; how to

interpret the phenomenon that wavefronts are dividing their neighborhoods and

how to prove that an intruder will always fail to evade detection; what are the

parameters that control the system and how they are changing the behaviors of

those wavefronts.

Definition 4.0.7. Let the domain where the evader and sensors are located be

denoted D ⊂ R2, and the sensor network with node set X . For each sensor x ∈ X ,

its coverage is a subset Ux ⊂ D. Denote by X(t) the set of sensors in wake-state

(0) at time t. We define the Evasion Game as follows: the strategy for the pursuer

is to control the network following GHM, and the strategy for the evader is to

pick a moment t0 to come into the domain, and follow a continuous path in D:
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f : [t0,∞) → D. The pursuer wins if and only if ∃ τ ∈ [t0,∞), such that

f(τ) ∈
⋃

x∈X(bτc)

Ux.

Otherwise, the evader wins.

We note that the only requirement on the evader is its trajectory being con-

tinuous: there are no constraints on the velocity or acceleration. Even with such

minimal constraints, the evader is not able to win.

4.1 Limiting Case with 1-d Hallways

We begin our analysis with the limiting case where every hallway is sufficiently

narrow compared to the walls, so that the domain D can be approximated as a

(topologically equivalent) one-dimensional space. We assume those sensors are lo-

cated in D with each node having a coverage which is a one dimensional convex set

around itself, and the convex hull of two neighbors is covered by the union of their

coverage. We also assume the union of convex hulls of neighbors (subspace of D)

is good enough to cover D, in which case the whole space is covered when every

sensor is turned on. If we run GHM on this network, with at least one defect in

initial condition, then every evader (not near the defects) loses the evasion game.

Theorem 4.1.1. For GHM on network X with communication distance r in a

compact and connected 1-d complex D, if the initial condition contains at least one

defect, and there exists a subnetwork X ′ covering a sub-domain D′, such that the
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state on X ′ is eventually continuous and contains no defect, an evader will always

lose the evasion game on D′.

Proof. For any time t0 when the evader comes into the domain, consider the product

space D′× [t0,∞) with the second coordinate representing time. Treat the coverage

of the sensors also as a subspace Pc of D′ × [t0,∞), which is

∞
⋃

t=dt0e,t∈Z

⋃

x∈X′(t)

Ux × [t, t+ 1) .

Let p be the projection map: p : D′× [t0,∞) → D′, p(a, t) = a. Then p : Pc → D′ is

onto, because D′ is fully covered when every node in X ′ is on. If we could prove that

there exists a subspace in Pc homeomorphic to D′, with map p as homeomorphism,

then D′ × [t0,∞)\Pc contains no continuous path from top D′ × {t0} to bottom

D′ × {T} for T big enough, because they are dual to each other. Therefore no

evader could survive forever. The construction of the subspace in Pc is as follows

in Lemma 4.1.2, below.

As a remark, a good example of an eventually continuous state on subnetwork

X ′ which contains no defect, is an all-0 state at one moment, which is observed

most of the time in simulations.

Lemma 4.1.2. Under the conditions of Theorem 4.1.1, there exists a subspace

S ∈ Pc, such that p induces a homeomorphism from S to D′.

Proof. First, reduce to a subnetwork X ′′ of X ′ such that within X ′′ the convex hulls

of neighbors is still enough to cover D′, but any two distinct convex hulls intersect
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in at most one node. We then construct S inductively from the empty set as follows:

1. Select a big enough integer time t which is no earlier than t0, such that every

node in X ′′ has already been periodic for a long enough time. Pick a node

x ∈ X ′′(t) and add (x, t) to S.

2. For any neighbor of x in X ′′, say y, there exists a continuous path lying in Pc,

between (x, t) and (y, ty), where y ∈ X ′′(ty) and |t− ty| ≤ 1 (ty is an integer

time), which is mapped homeomorphically to the convex hull of x and y in

D′, because continuity holds on edge [x, y], and Ux× [t, t+1)∪Uy× [ty , ty+1)

is a path connected set. For any x’s neighbors y that has not been visited,

add (y, ty) with the continuous paths between (x, t) and (y, ty) to S.

3. Repeat step 2 for every newly visited node, until every node in a connected

component of X ′′ has been visited.

Such procedure could not be realized only if there is a cycle in X ′′, such that the

continuous lift of the path to Pc is not a loop, which means the state restricted on

the cycle is a defect. However there is no defect in ut(X
′′) when t is big enough,

by Lemma 3.1.13. Therefore the procedure is well-defined. Start above procedures

until every node in X ′′ has been visited.

Such an S is mapped onto D′ by p, because every convex hall of two neighbors,

say x and y, is mapped onto from the path between (x, tx) and (y, ty). The restric-

tion of p to S is also injective, because every node and edge is only visited once, and
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p restricted on every continuous path between (x, tx) and (y, ty) is homeomorphism.

The only thing left to be proved is that there exists a continuous inverse of p|S.

Let f be a map from D′ to S, such that f maps every node x in X ′′ to (x, tx) in S,

and maps every edge between node x and y to the continuous path between (x, tx)

and (y, ty). Such f is an inverse of p|S, and is continuous: for a point in D′ that is

not a node, it’s covered by a convex hull of two neighboring nodes in X ′′, thus its

small neighborhood maps to the lift of the the convex hall in S continuously; for

a node point x in X ′′, its neighborhood maps to a neighborhood of the lift (x, tx)

homeomorphically, by the procedure of constructing S. Thus f is a continuous

inverse of p restricted on S, which validates that p induces a homeomorphism from

S to D′.

4.2 Main Theorem and Proofs

4.2.1 Assumptions

We restate the goal here: we want to prove the connected and compact network X

following the GHA to be able to win the evasion game on narrow hallways under

certain assumptions about the density of the network, the coverage of each sensor,

and the cohomological class of the states.

The main theorem, Theorem 4.2.13, shows that any evader in the evasion game

on a narrow hallway space D ⊂ R2 will lose, given the following assumptions:

64



t

Figure 4.1: Product space and S: space D′ on top, time increases from top to

bottom. State space is Z4, with white for state 0, light green for state 3, red for

state 2, and dark blue for state 1. Gray curve represent S. S ∼= D′ by p. Continuous

curves connecting top and bottom without intersecting S̄ do not exist.
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1. the projection from Rips complex Rr(X) to D preserves homotopy type;

2. each sensor x ∈ X covers a convex set Ux ⊂ D around its location;

3. the convex hull of sensors that are pairwise neighbors is covered by the union

of coverage of those sensors;

4. the union of all sensors’ coverage is able to cover the whole domain;

5. there is one moment such that the state contains at least one defect (this is

the same as saying the system never die out by Theorem 3.2.2).

The following definition explains the shadow and projection map.

Definition 4.2.1. For an abstract simplicial complex C whose 0-simplices are lo-

cated in a d-dimensional Euclidean space Ed, the shadow of C in Ed, S(C), is the

union of convex hulls of 0-simplices forming a simplex in C. The projection map

p : C → Ed maps a simplex [v0, v1, . . . , vK ] in C to the convex hall of {v0, v1, . . . , vK}

in Ed.

According to a theorem of [9], we will be able to build the correspondence

between the Rips complex Rr(X) of a planar point set and its shadow S(Rr(X))

in R2.

Theorem 4.2.2. [9] For any set of points in R2, π1(Rr(X)) → π1(S(Rr(X))) is

an isomorphism.
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Definition 4.2.3. A local hole in the Rips complex is a non zero element of

π1(Rr(X)) that has trivial image under the projection map in π1(D).

In the sense of local holes, Theorem 4.2.2 is saying that in our case, the Rips

complex Rr(X) has no local hole if and only if its shadow S(Rr(X)) has no local

hole.

Another useful fact is that with very high probability, when the network is dense

enough, the Rips complex Rr(X) has no local holes [29]. Therefore, with enough

sensors uniformly distributed in the domain and with high probability, the Rips

complex Rr(X), and its shadow S(Rr(X)) both have no local hole.

4.2.2 Wave propagation

Definition 4.2.4. A boundary path along a boundary component, is defined

as a simple path such that every node on the path has a coverage that intersects

with the corresponding boundary, and the intersection of the coverage of every

two neighbors, x and y on the path, also intersects the boundary nontrivially. A

boundary of a network X , ∂X on D is a collection of boundary paths, one with

each component of ∂D. Refer to Figure 4.3 for illustration.

Definition 4.2.5. For positive integer set A, define the depth A node set, XA, as

the set of all the nodes that are with depth k ∈ A in the directed forest F built on

the network.
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Figure 4.2: A piece of hallway with a subnetwork that is a barrier.

Definition 4.2.6. A connected sub network X ′ of X makes a barrier, if there

exists a piece of hallway D̃, which intersects ∂D at ∂D̃, and the composition ∂ ◦ i∗ :

H1(D̃, ∂D̃) → H0(∂D) of i∗ : H1(D̃, ∂D̃) → H1(D, ∂D) and ∂ : H1(D, ∂D) →

H0(∂D) is an injection, such that X ′’s coverage contains at least one element in

a nonzero class of H1(D̃, ∂D̃). In other words, it covers a region that divides the

hallway locally and transversally as in Figure 4.2.

Theorem 4.2.7. Let X be a connected and compact network on a narrow hallway

space D, running under GHM, which never die out; if there is a moment after

equilibrium that the state in subnetwork X ′ in a sub domain D′ is continuous, and

boundary paths ∂X ′ exists, then if at time t, there is a wavefront that makes a

barrier, which is not supported on any end leaves of the forest F , then there would

be a wavefront also makes a barrier at time t + 1.

Proof. If there is a wavefront of nodes with depth k at that makes a barrier, then we

68



want to prove that a wavefront of nodes with depth k+1 exists which also makes a

barrier. Let A denote the sub complex on subnetwork X≤k+1, and let B denote the

sub complex on subnetwork X≥k+1. Then A ∩ B is precisely the sub complex with

nodes with depth k + 1. On the other hand, A ∪ B is the whole complex, because

for every simplex in the whole complex, their vertices are pairwise neighbors, so by

continuity of states on X ′, their depths could only differ at most by 1, by Corollary

3.1.6, which means the simplex is either in A or in B. The Mayer-Vietoris sequence

for A and B gives:

H1(A ∩ B, ∂X ′)
φ−→ H1(A, ∂X

′)⊕H1(B, ∂X
′)

ψ−→ H1(A ∪B, ∂X ′)

(4.2.1)

Let [α] ∈ H1(A, ∂X
′), [β] ∈ H1(B, ∂X

′), where α and β are both connecting bound-

ary nodes of different sides. Such an α exists because of the existence of a previous

wavefront of depth k, and β exists because the network is sufficiently dense in D,

and α is not supported on any end leaves of F . Then ψ([α], [β]) = 0 (if not, let β

be of opposite orientation) in H1(A ∪ B, ∂X ′), because first homology of A ∪ B is

trivial. Therefore ψ([α], [0]) and ψ([0], [β]) are homologous. Thus ([α], [β]) ∈ kerψ.

By exactness, kerψ = im φ, thus there exists a γ, such that φ([γ]) = ([α], [β]). As

φ is induced by inclusion maps, γ has to be a path connecting boundaries of two

sides, which is a wavefront of depth k + 1, cf. Figure 4.3. Therefore, by induction,

barrier-inducing wavefronts of every depth exist.

The above wave propagation theorem presents how waves travel along the hall-
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Figure 4.3: Wavefronts propagation: light green nodes are with depth k − 1, red

nodes are with depth k − 1, dark blue nodes are with depth k + 1; Boundaries of

the domain are covered by boundary paths.

ways, but did not mention the generation of waves. The following proposition would

explain how a first wave is generated under same assumptions.

Proposition 4.2.8. With the assumptions of Theorem 4.2.7, at least one wavefront

that is a barrier and intersects with boundary paths on both sides must be generated.

Proof. Let X≤k be the set of nodes with depth less than or equal to k. Then there

is a filtration of Rips complexes:

Rr(X{0}) ⊂ Rr(X≤1) ⊂ · · · ⊂ Rr(X≤k) ⊂ . . .Rr(X)

Since they grow by attaching nodes within communication distance as k increases,

therefore, as Rr(X) is connected, there has to be a k0, such that Rr(X≤k) are
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all connected for k ≥ k0. For two boundary nodes of X{k0}, if they belong to

boundary paths near different boundaries, since they are connected, and for the

same argument from Theorem 4.2.7 by using the Mayer-Vietoris sequence, they are

connected by a path with nodes from X{k0}. This path generates a wavefront that

is a barrier.

The above results explain well the behaviors of the wavefronts seen in simula-

tions. After the first several steps, the nodes far away from the seed are all turned

on, until wavefronts generated by the seeds reach them. The movements of wave-

fronts are verified to be moving away from local defects, and they provide locally

separating barriers, as observed. Another significant property we observe from sim-

ulations is that the wavefronts make turns when reaching a corner, as shown in

Figure 4.4. This reminds again that the behavior of the system does only depend

on topology, not geometry, of the underlying space.

4.2.3 Main theorem

For now, we will start arguing that under assumptions made in §4.2.1, evader will

always lose the evasion game.

Lemma 4.2.9. Let σ be a d-simplex in Rr(X). If there is a continuous function

f : [t1, t2) → S(σ), such that f(t) /∈ ⋃

x∈X(t)∩σ Ux, ∀t ∈ [t1, t2), then there exists a

continuous function f̃ : [t1, t2) → σ, such that f̃(t) /∈ ⋃

x∈X(t)∩σ Stx, ∀t ∈ [t1, t2).
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Figure 4.4: Corner of a hallway: with state space Z4, white for state 0, light green

for state 3, red for state 2, and dark blue for state 1. The outer side boundary path

have more nodes than the inner boundary path, but more nodes stay in the same

states: four in light green and three in red. Thus the wavefronts propagate from

vertically to horizontally.
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Proof. It suffices to prove the lemma for a 2-simplex, because the shadow of Rr(X)

in D is the shadow of the 2-skeleton of Rr(X). For a 2-simplex σ = [x0, x1, x2].

There exists a homotopy equivalence h from S(σ) to itself, such that the interior of

⋂

i=0,1,2 Uxi∩S(σ) is mapped onto the interior of S(σ), which is
⋂

i=0,1,2 St xi, and the

inverse image of every open edge S([xi, xj ]) belongs to Uxi ∩Uxj ∩S(σ). Therefore,

we can construct f̃ as h ◦ f , with the property that h−1(
⋂

i∈A St xi) ⊂ ⋂

i∈A Uxi ,

which induces f̃(t) /∈ ⋃

x∈X(t)∩σ St x, ∀t ∈ [t1, t2).

Lemma 4.2.10. For the Rips complex Rr(X), if there exists a continuous function

f : [t0,∞) → S(Rr(X)), such that f(t) /∈ ⋃

x∈X(t) Ux, ∀t ∈ [t0,∞), then there exists

a continuous function f̃ : [t0,∞) → Rr(X), such that f̃(t) /∈ ⋃

x∈X(t) St x, ∀t ∈

[t0,∞).

Proof. The 2-complex of Rr(X), C2(X), as a sub complex, has the same shadow as

the Rips complex Rr(X). Lift the path f from the shadow S(C2(X)) to the complex

C2(X), then apply Lemma 4.2.9 on every simplex it goes through. This will give a

lift f̃ : [t0,∞) → C2(X) ⊂ Rr(X), such that f̃(t) /∈ ⋃

x∈X(t) St x, ∀t ∈ [t0,∞).

Theorem 4.2.11. For a network X with coverage regions U and Rips complex

Rr(X) with the shadow the whole D. Then if the state on X is eventually continuous

and contains no defect, then the evader loses the evasion game.

Proof. Suppose there is a continuous path f for the evader to follow in order to

win the evasion game, f : [t0,∞) → S(Rr(X)) = D, then by Lemma 4.2.10, there
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exists a lift of f , f̃ : [t0,∞) → Rr(X), such that following f̃ , the evader could

win the evasion game with coverage regions {St x|x ∈ X}. Furthermore, since

f̃(t) /∈ ⋃

x∈X(t) St x, ∀t ∈ [0,∞), and by the fact that a 1-simplex is covered by a

subset of sensors that covers the simplex containing it, we can construct a continuous

path f ′ that travels only on the 1-skeleton of Rr(X) and still is safe, never being

detected. However, by the same argument as in Theorem 4.1.1, since there is no

defect in initial condition, such a strategy does not exist: any such evader would

lose the game.

If may not be the case that S(Rr(X)) ⊃ D. Our approach for solving this

problem is by adding sensors to the network without changing the coverage, but

enlarge the Rips complex such that it projects onto the whole domain.

Lemma 4.2.12. If a boundary path exists within distance
√
3/2r to each boundary

component of ∂D, then there is a new sensor network X̃ by adding sensors to X,

with the same coverage at every moment, such that the shadow of Rr(X̃) is D.

Proof. For every node x in the boundary path, add a node x′ in Ux∩∂D to the new

network X̃ , and for every edge on the path [x, y], add a node z′ in Ux ∩ Uy ∩ ∂D

to X ′. For a quadrangle with vertices x, y, x′, y′, it is covered by union of Ux and

Uy. Let x′ and z′ have same coverage and states as x, and y′ has the same as y

after equilibrium, then the coverage of X̃ is exactly the same as that of X at every

moment. Another property worth noticing is Rr(X̃) now has its shadow same as D,

because [x, x′], [x′, z′], [x, z′], [y, z′], [z′, y′], [y′, y] are all 1-simplices in Rr(X̃), which
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Add new nodes x′, y′, z′ to the network, with x′ and z′ have same state and

coverage as x, and y′ has same state and coverage as y

makes the shadow exactly D.

Theorem 4.2.13 (Main Theorem). With all the assumptions from §4.2.1, and the

existence of boundary paths within distance
√
3/2r to boundary of hallways, the

evader will always lose the evasion game in the sub domain D′ ⊂ D on which the

states is eventually continuous and contains no defect.

Proof. By Theorem 4.2.11 and Lemma 4.2.12.
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4.3 Link Failure Analysis

Reliability of links is a serious issue for achieving stability of WSN [2, 36]; in practice,

stability is not guaranteed, as wireless communication quality is unpredictable under

different environmental and other physical conditions [38]. For our GHM system,

it is important to keep communication stable, especially the links between sensors

of state 0 and state 1, since they will determine those nodes’ state at the next time

step.

In this section, we will assume that every link works well with a fixed probability

ps, as a more practical GHM system. By modifying our simulation accordingly, we

observe that most of the nodes goes to state 0 after the first several steps, as before.

Afterwards, either the system dies out if there is no defect (either local or global

defects), or wavefronts are generated around local defects. But these defects do

not guarantee the system’s periodicity, since link failure might result in their dying,

with a probability associated with ps.

For a fixed network X , if given an initial state u with at least one local defect,

the probability that one local defect dies after T time steps is a function f of X , u,

T and ps. The smaller ps is, the bigger the probability of defect dying. Meanwhile,

f(X, u, T, ps) is an increasing function of T , which approaches 1 as T goes to infinity.

Although local defects die eventually almost surely, it does not affect pattern

propagation. For a continuous state of waves with no local defect, which are what

remain in the network after all local defects die, it could either be in a trivial co-
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homology class, which will die out after a while, or has at least one global defect.

As in the latter case, wave propagation is not necessarily the same as in the de-

terministic model, since a state 0 wavefront may not turn into a state 1 wavefront.

However, even this wavefront does not update to state 1 as a whole piece , it is of

great chance that at least one of the nodes on the wavefront successfully updates

to state 1 (which still makes a global defect), and therefore will gradually correct

the neighbors states by contact.
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Chapter 5

Conclusion and Future Plans

We provide a decentralized, coordinate-free, energy-efficient intruder-detection pro-

tocol based on the Greenberg-Hastings cyclic cellular automata. The system could

easily be adapted to real indoor environment if using sensing devices functioned

with communication and proper sensing ranges. It displays coherence in the sense

that it is a self-assembling system with random initial conditions; its efficiency

comes from low power-consuming property inherited from the scheme of the CCA.

Demonstrations in §1.3 are evidence that the system behaves as intended, and this

thesis gives both intuition and rigor about how and why the system works:

• Wave patterns are explained as a topological phenomenon, determined and

described by the existence of defects with nonzero degree.

• Assigning to waves a cohomology class reveals the qualitative structure of

the wave patterns, greatly clarifying certain classical results about CCA on
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lattices.

• A non zero restriction of a cohomology class to a sub domain corresponds with

a set of strategies with which the evader could win the evasion game; mean-

while, a zero restriction stands for the failure of the evader: the cohomology

class is the obstruction for the pursuer to win.

We also formally answer those questions arose at the beginning:

• Is there any invariant associated with the states?

Yes, degree is such an invariant.

• What role is the topology, or geometry of the underlying space playing in the

system?

For a dense network built on the underlying domain, the only thing that

affects the wave propagation is the topology, not the geometry. (There is

an exception for homology class of very small geometrical scale, which are

ignorable when computing the topology).

• Why are small obstacles ignorable in the wave traveling but large obstacles

changing directions of wave propagation?

The scale of obstacles matters because the length of a cycle that supports

a defect could be no smaller than n. Small scaled obstacles are ignorable

(e.g., example in Figure 1.6) because its scale is even smaller compared to the

smallest cycle that a defect could be built on. Therefore two cycles differed
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by the boundary of such a small obstacle (they are not homological cycles)

have to be of the same degree, and thus observed as they belong to the same

homology class.

5.1 GHM on various domains

GHM on narrow hallways is studied in previous chapters, one natural following up

question to ask is, what if the underlying space is some other topological space. In

this section, we would explore various possible domains as the underlying space for

the network.

Recall that narrow hallways space is a subspace of 2-d Euclidean plane. For

other subspaces of E2, we have concluded that GHM mostly depends on the topol-

ogy (except the cases with homology classes of small scale). A natural generalization

is a 2-manifold (with or without boundary). Intuitively, a 2-manifold is a topolog-

ical space such that near each point, it locally looks like a 2-d Euclidean space.

Therefore, instead of embedding network in 2-d plane, we will sample the network

in a 2-manifold.

A good example of network in 2-manifold is given by indoor network within a

building. Floor plan of a multi-storied building with staircases connecting different

levels is a 2-manifold with boundary, but not a subspace of 2-d plane (see Figure

5.1).

We find that the theory applies to the narrow hallways case also applies to the
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Figure 5.1: Floor plan of a building that is not a subspace of 2-d plane
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2-manifold case. The main theorem is rewritten as follows.

Theorem 5.1.1. (As a corollary of Theorem 4.2.13) With the same assumptions

from §4.2.1, and the existence of boundary paths within distance
√
3/2r to boundary

∂M of a 2-manifold with boundary M , the evader will always lose the evasion game

in the sub domainM ′ ⊂M on which the states is eventually continuous and contains

no defect.

We look back at the previous example of multi-storied building. Assume the

network embedded in this 2-manifold with boundaryMB meets all the assumptions

about density and coverage. If starting with an initial state with at least one defect,

the system will evolve to a none dying out periodic state with great probability as

before. Wavefronts propogation has the exact same properties as the 2-d case: they

make turns when coming to a corner, and two opposite wavefronts annihilate when

meeting each other. Take a subspace M ′
B of MB such that the state restricted on

M ′
B is continuous, then the intruder could win the evasion game in M ′

B if and only

if there exists a nontrivial first homology class of M ′
B, and for any cycle in this

class, the degree is non zero. More specifically, we could even write down the path

following which the intruder could survive for all the time, which is a cycle restricted

on which the state is has a nontrivial image under the cohomologizing map.

Other 2-manifolds such as 2-sphere and torus follow the same arguments. See

Figure 5.2 for illustrations. We notice that for a 2-sphere S2, since H1(S
2) =

H1(S2) = {0}, therefore, there is no nontrivial first homology class of the space
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that could allow a defect to live in, and in the meanwhile keep the state continuous.

In other words, there is no nontrivial first cohomology class of the space that is

the image of cohomologizing map h. To classify the possible defects on S2, there

could only be local defects, but no global defects. With exact one local defect

around north pole of a 2-sphere, wavefronts propogate downwards to the bottom

and finally annihilate. Because of the symmetry of S2, we can figure out all the

cases in which only one local defect exists.

In a torus T = S1 × S1 case, the classification of defects is more complicated.

Besides local defects, there could be global defects living in the 2-d vector space

H1(T ) = Z ⊕ Z. Suppose α and β are generators for a basis of H1(T ), where α

is a cycle representing one S1, and β representing the other S1. Then wavefronts

propagating along α and β respectively are dual to α and β, the single waves

respectively propagating along α and β are two generators of H1(T ).

The further question we are about to ask is, what if the underlying space is not a

2-manifold, but a higher dimensional structure. For example, a natural extension is

a 3-d subspace in R3. Although no full view has been made available in simulations

of our 3-d case, because the nodes are not transparent, we could still take a look

at the wavefronts from different angles, and try to imagine what they look like

in 3-d. Figure 5.3 is a moment of GHM in a 3-d cube. We take a viewpoint

from different angles, and observe that the wavefronts propagation is like a growing

bubble around the defect. We could also imagine the wavefronts near the defect,
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Figure 5.2: The top left figure is a two sphere with wavefronts propagating verti-

cally. Following figures are various wavefronts propagation in a torus generated by

revolving a small circle by a big circle. The top right figure is a torus space with

wavefronts propagating vertically, all cycles going around the small circle none zero

times make defects. The bottom left figure has circular propagating wavefronts, all

cycles go around the big circle none zero times make defects. The bottom right fig-

ure has tilted propagating wavefronts, it has none zero degree on both two generator

of the first homology of the torus, the small circle and the large circle.

84



which are spirals on every slice of 2-d plane. Furthermore, as we go around the

defect in direction with positive degree, the nodes of state 0 are farther away from

the defect, which make the wavefronts looking like a revolution of a circle which

grows bigger. Therefore, we have the picture of the wavefronts around defect as in

Figure 5.4. Even though, this is still the least complicated case in our minds, we

could have many more various domains for the GHM worth looking into.

5.2 Various defects

One variation of the system is as in §5.1, by considering domains of various topology

(or geometry). In this section, we will focus on exploring different kinds of defects.

Recall from Definition 3.1.11, a state u makes a defect on a cycle α if deg(u, α) 6=

0. Since this has no requirement on the shape of the cycle, we could make the

problem more interesting by using a complicated knot instead of a simple cycle to

generate a defect, e.g., a trefoil knot in Figure 5.5.

Starting in a 3-d domain with a defect on a trefoil knot of degree 1, it is not hard

to imagine the wavefronts around this defect, by knotting the wavefronts in Figure

5.4, the same way as knotting a unknot to a trefoil knot. However, imagining how

those wavefronts propagate to the whole space is not that easy. As they move away

from the cycle, it is inevitable that they will intersect with each other, and according

to the rule, annihilate. There are multiple wavefronts with various directions of

propagation, therefore, after they have traveled long, and have interacted with each
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Figure 5.3: 3 shots with different viewpoints from a 3-d GHM in a 3-d cube: the

first one takes the picture from above, second taken from the front, and last one

taken from the left.
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Figure 5.4: A wavefront around a defect in 3-d space: the defect is a cycle in red,

and the wavefront is represented by the surface wrapping around it.

Figure 5.5: A trefoil knot
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Figure 5.6: Defects in sequence: different colors represent different states: orange,

yellow, green, blue, purple, pink are respectively 0,1,2,3,4,6, in a GHMwith alphabet

Z7. Duplicated defects are shifted and arranged in sequence, and connected as

neighbors

other for multiple times, it is not easy to tell what the wavefronts look like.

Another variation could be made by coupling multiple defects’ behavior. A

simple example is arranging multiple defects in a line, with the same orientation

and states, as in Figure 5.6. This defect structure does not make too much sense

in a 2-d space, because the group of defects itself is a 2-d structure. Therefore,

we consider embedding this into a 3-d space. Since each defect in sequence can

produce spiral waves, we may combine them together and believe that by looking

in the direction of the axis of the defects, we will observe spirals around each defect,

and those spirals together make the wavefronts in Figure 5.7.

Consider manipulating the defects in the above example, by identifying the two

cycles at two ends of the sequence, without tilting the arrangement of states (see

Figure 5.8). And consequently, the wavefronts as in Figure 5.7 are also identified

at both ends, therefore have the shape in Figure 5.9.
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Figure 5.7: Wavefronts from a sequence of defects in Figure 5.6.

Figure 5.8: Defects in a circular sequence: different colors represent different states:

orange, yellow, green, blue, purple, pink are respectively 0,1,2,3,4,6, in a GHM

with alphabet Z7. Duplicated defects are shifted and arranged in sequence, and

connected as neighbors.
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Figure 5.9: Wavefronts from a sequence of defects in Figure 5.8.

What is a more interesting case is when identifying the two ends of the defects

sequence, the arrangement in sequence is tilted as well, such that following the

sequence, the nodes are not of the same states, but advancing 1 in the sequence,

and therefore making a defect itself (see Figure 5.10). We call such structure a

scroll ring, following the naming in [33]. We believe a scroll ring would produce

wavefronts in the way that attach spirals at both ends as in last example, but with

a degree of multiple of 2π tilted, as in Figure 5.11. Although, it is hard to observe

this with a random initial state, because it is fairly rare for a scroll ring type of

defects to be generated randomly.

All those above defect groups seem to have a 2-d structure, but they are indeed

collection of 1-d defects. We wonder what a real 2-d defect looks like. Since a defect

is a continuous state with nontrivial degree, we need to look back into the definition

of degree.

A topological degree is a a homotopy invariant describing a continuous map
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Figure 5.10: Defects in sequence of a scroll ring: different colors represent different

states: orange, yellow, green, blue, purple, pink are respectively 0,1,2,3,4,6, in a

GHM with alphabet Z7. Duplicated defects are shifted, rotated and arranged in

sequence (along the cycle, the defects is rotated by 2π in total), and connected as

neighbors.
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...

Figure 5.11: Wavefronts generated by the scroll ring defects in 5.10.

between spheres of the same dimension. In cellular automata, degree is borrowed

to describe the map from a sub network homeomorphic to S1 to the image Zn. The

reason why this discretization works seems mysterious. One reasonable guess is that

it is a result of the automata with directions on group Zn has the same structure as

S1 with orientation. One thing worth thinking about is how the directions between

elements in Zn are affecting the whole structure (for example, if there exists a state

in Zn only has arrows towards it, the automata will not allow any defect).

A difficulty comes in when trying to extend the descretized defect to a higher

dimension: from S2 to S2. A sub network with a flag complex homeomorphic to

S2 seems a good choice for the discretization. But we still need to come up with a

good group structure as the image and the automata as the directions of arrows.
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5.3 Applications

There are extensive applications of CCA beyond sensor networks, even beyond

engineering. Some of the applications could be extended to the context of network

automata, instead of cellular automata, with more freedom of the space and cells.

One famous CCA application in biology is the model of cardiac pacemaker [24].

One could program, by controlling of the parameters, the rhythmic of pacemaker,

which is periodically pulse generating.

Some other applications in biology involve modeling bacterial colony pattern.

Observations have been made that some varieties of bacteria have the colony grow

as nested rings, with the size of rings enlarging along time. One guess is this could

be modeled as a CCA, where within each site the bacteria grow and die. We try

to understand the dynamic happening in each site, as an empty site is taken if

a neighboring site has a productive bacteria; A productive bacteria will lose its

productivity after a while, and then dies. This cyclic structure in each cell gives

the whole space a wave-like structure.

The above models could be improved to three dimensional, if CCA and defects

in 3-d are fully understood.

It is also interesting to look into models with various types of networks, such as

the neural network.

People have been trying to understand the neural networks in visual cortex for

decades. It is already known that visual perception of orientation of edges and
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their directions of motions is through neurons, each with a preferred orientation.

The preferred orientation is changing along time, by excitatory connections (with

positive feedback) and inhibitory connections (with negative feedback) to its neigh-

bors, and stimuli from retinal receptors. Neurons in adjacent columns in cortical

surface inclined to have similar but slightly shifted preferred orientations. We have

observed some cyclic structure in the orientations in measured experimentally in

animals [32, 30], and in computational simulations [4], which are nontrivial in de-

gree. Specifically, if we treat the orientations as elements in S1, then for a cycle of

neurons, each taking a specific orientation, we could induce a map f : S1 → S1.

Such maps with nontrivial degrees are observed. The question one naturally would

ask is what roles those cyclic structures with nontrivial degrees are playing in the

dynamics over the neural network. Are these phenomenons just happen by chance,

or do they persist some patterns for the network? Is the degree also invariant under

some constraints? What is the connection between the self-organization pattern

of neural networks and the topology of cortical surface where the neurons live? If

these questions could be answered, it helps a lot to understand to what extend of

neuron failures in visual cortex are associated with vision problems, because in the

cyclic network automata context, small scales of nodes failure does not infect the

wave propagation.

Network automata is also used in epidemic models [5]. For example, the SIRS

model has three possible states for each individual, namely, the susceptible state, the
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infective state, and the removed state. The state space is cyclic in that a removed

(recovered) individual will be susceptible again, since the immunity does not go on

forever. The state space, again, could be modeled as cyclic group Z3, where each

individual has to be in one state among the three, and could only stay in the state

or move forward by 1, as in a discrete time dynamic. This is quite similar to the

sensor network case. The only difference is that an excitement (from susceptible

to infective) is triggered with probability. Therefore, this is a probabilistic network

automata model instead of a deterministic one. We would like to study this as our

first attempt in probabilistic CCA. We guess the disease propagation is again in

the waves, and the propagation has some connection with the underlying space,

which in our case is the earth. Since the continents where human beings live is

connected, mostly by airplanes between major airports, it would well explain why

diseases usually explode in metropolitan areas, because the airlines between them

are the “narrow hallways” connecting continents. It is also a possible explanation to

the fact that some kind of diseases attack at a fixed pace, because the propagation

of the disease may go around a cycle and come back to its origin, as in a “global

defect”.

In social network studies, people are trying to understand how innovations

spread among individuals. More focus is put on individuals with a lot of connec-

tions, in other words, those nodes in the social network that have more neighbors

than others. It makes a lot of senses to study those greatly influential nodes, be-
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cause the network is much more dense around them. But our research infer some

extra attention to “narrow hallways”, which in social networks, are the people in a

sequence, connecting big components of the network.
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