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ABSTRACT

q-HIT POLYNOMIALS HAVE ONLY REAL ROOTS

Li-Ping Mo

James Haglund

We prove that Garsia and Remmel’s q-hit polynomials for Ferrers boards have

only real roots for fixed q > 0. This generalizes previous results by Haglund, Wagner

and Ono [4] and Savage and Visontai [5]. We also extend the main recursion in [5]

to hit polynomials for certain classes of Ferrers boards, which include the multiset

Eulerian polynomials.
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Chapter 1

Introduction

A board is any subset of the n-by-n array, {(i, j)}1≤i,j≤n, of cells ; here we use the

“matrix coordinates”, so (i, j) is on the ith row from top and the jth column from

the left. A placement C of k (non-attacking) rooks on a board B is a subset of B

with cardinality k such that no two cells in C share a row or a column, and we denote

the set of all such placements by Pk(B). The kth rook number of B, rk(B), is the

cardinality of Pk(B), or in other words, the number of ways of placing k non-attacking

rooks on B.

Let Pn be the set of all n! placements of n rooks on the entire n-by-n array. For

any placement C ∈ Pn, we set hB(C) = #B ∩C = number of rooks in C that are on

B. The hit polynomial HB
n (x) is the generating function of the statistic hB on Pn:

HB
n (x) =

∑
C∈Pn

xhB(C). (1.1)

The coefficient of xk in HB
n (x) is called the kth hit number of B, and it is the number
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of ways of placing n rooks on the n-by-n array such that there are exactly k rooks on

B.

There is a basic relation between rook numbers and hit polynomials (see for ex-

ample [1], Section 2):

Theorem 1.1. For any board B,

HB
n (x) =

n∑
k=0

rk(B)(n− k)!(x− 1)k. (1.2)

A Ferrers board is a board B such that any cell above or to the right of a cell in B is

also in B. Any Ferrers board is uniquely determined by its weakly increasing sequence

of column lengths (c1, ..., cn). See Figure 1.1 for the Ferrers board corresponding to

the sequence (0, 1, 1, 2, 3). For a Ferrers board, there is a direct relation between its

sequence of column lengths and its rook numbers.

Theorem 1.2. Given Ferrers board B with column lengths c1 ≤ ... ≤ cn, we have

n∑
k=0

rk(B)x(x− 1)...(x− n+ k + 1) =
n∏
i=1

(x+ ci − i+ 1). (1.3)

A combinatorial proof of this theorem can be found in Sec. 2.4 of [6]. The idea of

the proof is to consider Bx, the Ferrers board with column lengths (c1 +x, ..., cn +x).

1 Both sides of the equation count rn(Bx).

Since 1, x, x(x − 1), ..., x(x − 1)...(x − n + 1) are linearly independent, it follows

from (1.3) that two Ferrers boards with column lengths (c1, ..., cn) and (c′1, ..., c
′
n) have

1Rook numbers do not depend on n; hence we do not require cn + x ≤ n here. The stricter

definition of a Ferrers board we use (where the longest column is at most n) is usually referred to

as an admissible Ferrers board in the literature.
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Figure 1.1: Ferrers board corresponding to (0, 1, 1, 2, 3).

identical rook numbers (and hence identical hit polynomials because of (1.2)) iff the

two multisets {ci− i+ 1}i=1,..,n and {c′i− i+ 1}i=1,..,n are the same. For example, the

two boards (0, 1, 1, 2, 3) and (0, 0, 1, 2, 4) have identical rook and hit polynomials

since they both give the multiset {02, (−1)3}. We say such two Ferrers boards are

Ferrers equivalent. (See also [6], Sec. 2.4). For two boards in general, we say they are

equivalent if they have the same hit polynomial. For example, permuting the rows

(or columns) of a board results in an equivalent board.

In their paper [3], Garsia and Remmel developed q-analogs of the rook numbers

and hit polynomials for Ferrers boards. These reduce to the usual rook numbers and

hit polynomials when q is set to 1. The q-rook numbers are defined as rk(B, q) =∑
C∈Pk(B)

qinv(C), where inv(C) is the number of cells on B that do not hold a rook, is

not directly above a rook in C, and is not to the right of a rook in C. (See Figure 1.2)

They were then able to prove a q-version of Theorem 1.2 for their q-rook numbers:

Theorem 1.3. Given Ferrers board B with column lengths c1 ≤ ... ≤ cn, we have for
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Figure 1.2: Computation of invB(C). From each rook (represented by the plus sign),

we cross off all cells above it and all cells to the right of it. There are two cells of B

remaining, so invB(C) = 2.

x ∈ N,
n∑
k=0

rk(B, q)[x][x− 1]...[x− n+ k + 1] =
n∏
i=1

[x+ ci − i+ 1] (1.4)

where [a] denotes 1 + q + ...+ qa−1.

This is Equation 1.3 in [3], and the proof uses the same technique as the proof of

Theorem 1.2. The two sides of the equation now count rn(Bx, q).

The following version of q-hit polynomial appears in [3]:

QB(x, q) =
n∑
k=0

rn−k(B, q)x
k[k]!(1− xqk+1)...(1− xqn), (1.5)

for any Ferrers board B. As in [1], we will reverse the order of coefficients of QB(x, q)

as a polynomial in x and define

HB
n (x, q) =

n∑
k=0

rk(B, q)[n− k]!(x− qn−k+1)...(x− qn) = xnQB(x−1, q). (1.6)

Note that (1.6) reduces to (1.2) when q = 1.
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Corollary 1.4. The q-rook numbers rk(B, q) and the q-hit polynomial HB
n (x, q) of a

Ferrers board B are uniquely determined by the column lengths c1, ..., cn of B. Conse-

quently, equivalent Ferrers boards have identical q-rook numbers and q-hit polynomial.

Proof. The rk(B, q) part follows from (1.3) and that 1, [x], [x][x − 1], ... are linearly

independent. (See Section 1, [3].) The HB
n (x, q) part then follows from (1.6).

In the same paper [3], Garsia and Remmel derived the following identity for the

q-hit polynomials:

∑
k≥0

xk[k + c1]...[k + cn − n+ 1] =
QB(x, q)

(1− x)(1− xq)...(1− xqn)
(1.7)

There are combinatorial interpretations of HB
n (x, q), for example via the ξ statistic

in [1]. This statistic will be defined in Chapter 4.

The first main result of this paper, whose proof will be given in Chapter 3, is

Theorem 1.5. Let B be a Ferrers board in the n-by-n array, and let q > 0. Then

QB(x, q) and HB
n (x, q) have only real roots.

The q = 1 case states that the ordinary hit polynomials HB
n (x, 1) have only real

roots for any Ferrers board B; this was known (see [4], Theorem 1).

The hit polynomials have a natural interpretation in terms of permutations. We

identify Sn with Pn by sending the permutation σ = σ1σ2...σn ∈ Sn to the place-

ment C(σ) = {(1, σ1), (2, σ2), ..., (n, σn)}. Then we can also talk about hB(σ) =

hB(C(σ)) = #{i|(i, σi) ∈ B}. We then have HB
n (x) =

∑
σ∈Sn

xhB(σ). In particular,
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when the board B is the upper triangular board with column lengths (0, 1, .., n− 1),

we get hB(σ) = exc(σ) := #{i ∈ [1, n]|σi > i}, the excedance statistic.

The Eulerian polynomials are defined as

En(x) =
∑
σ∈Sn

xdes(σ), (1.8)

where if σ = σ1...σn, des(σ) := #{i ∈ [1, n − 1]|σi > σi+1}. There is a well-known

bijection φ : Sn → Sn that takes des to exc; see for example [6], Sec 1.3. Given

σ = σ1σ2...σn ∈ Sn, we mark any element that is larger than all elements to its left.

We insert left parentheses before these elements, and right parentheses as appropriate,

and then view it as a new permutation σ′ ∈ Sn in cycle notation. We set φ(σ) = (σ′)−1.

For example, if σ = 41352 ∈ S5, then σ′ = (413)(52), and so φ(σ) = (431)(52) =

45132. One property of φ is that for any i such that σi > σi+1, we have φ(σ)j = σi

where j := σi+1. In particular we have des(σ) = exc(φ(σ)), so

En(x) =
∑
σ∈Sn

xexc(σ) (1.9)

is also the generating function for exc. Hence Eulerian polynomials are a special case

of hit polynomials:

Theorem 1.6. Let B be the upper triangular board. Then En(x) = HB
n (x).

Proposition 1.7. For any Ferrers board B contained in the upper triangular board,

we have

HB
n (x) =

∑
σ∈Sn

xdesB(σ), (1.10)

where desB(σ) := #{i ∈ [1, n− 1]|(σi+1, σi) ∈ B}.

6



b1

n

a1

b2 a2

b3

bk

ak

Figure 1.3: The board Bn(b1, a1; b2, a2; ...; bk, ak).

There are many generalizations of the Eulerian polynomials. For any r ≥ 1, we

define the r-Eulerian polynomials Er
n(x) =

∑
σ∈Sn

xdesr(σ), where desr(σ) := #{i ∈

[1, n − 1]|σi ≥ σi+1 + r}. We also define the multiset Eulerian polynomial EM(x) =∑
σ∈SM

xdes(σ) for any multiset M = {1a1 , ..., kak}. Here SM is the set of multiset per-

mutations, i.e. distinct ways of writing a1 1’s, ..., and ak k’s in a row.

Definition 1.8. For
∑k

i=1 bi =
∑k

i=1 ai = n, let Bn(b1, a1; b2, a2; ...; bk, ak) be the

board shown in Figure 1.3. When we want to focus on the board itself without

mentioning n, we also write the above as B(−, a1; b2, a2; ...; bk−1, ak−1; bk,−).

Remark 1.9. Any Ferrers board can be expressed as Bn(b1, a1; ...; bk, ak) for some k

and some b2, ..., bk ≥ 1 and a1, ..., ak−1 ≥ 1, and we will assume this to be the case

7



n

r

r

Figure 1.4: Board associated with the r-Eulerian polynomials.

whenever we write specify an arbitrary Ferrers board as Bn(b1, a1; ...; bk, ak). When a

board is expressed this way, it contains (n, n) iff ak = 0.

By Proposition 1.7, the r-Eulerian polynomial is the hit polynomial for the board

B(r, 1; 1, 1; ...1, 1; 1, r). (See Figure 1.4)

Definition 1.10. Suppose M = {1a1 , .., kak} and n = #M = a1 + ...+ ak. We define

B(M) = Bn(a1, a1; a2, a2; ...; ak, ak).

Proposition 1.11. EM(x) = 1
a1!...ak!

H
B(M)
n (x).

Proof. Given σ = σ1...σn ∈ Sn, for each i ∈ [1, n], there is a unique j = j(i) ∈ [1, k]

such that σi ∈ [a1 + ...+ aj−1 + 1, a1 + ...+ aj]. Set Φ(σ) = j(1)j(2)...j(n) ∈ SM . The

map Φ is a1!...ak! to one, and desB(M)(σ) = des(Φ(σ)). We sum over all σ ∈ Sn to

obtain H
B(M)
n (x) = a1!...ak!EM(x).

In Savage and Visontai’s paper [5], they defined the s-Eulerian polynomials E
(s)
n (x)
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for any sequence of positive integers s = (s̃1, s̃2, ...). Let Jn(s) = [0, s̃1−1]×...×[0, s̃n−

1], and for any element (e1, ..., en) ∈ Jn(s) (such an element is called an s-inversion

sequence), its ascent statistic is defined as asc(e1, ..., en) = {i ∈ [0, n − 1]| ei
s̃i
< ei+1

s̃i+1
}.

In particular, Jn(1, ..., n) can be identified with Sn in such a way that asc corresponds

to des; namely, for σ = σ1...σn ∈ Sn, we associate with it (e1, ..., en) ∈ Jn(1, ..., n)

where ei = #{j < i such that σj > σi}. The s-Eulerian polynomials are defined

as E
(s)
n (x) =

∑
e∈Jn(s)

xasc(e), and they include the usual Eulerian polynomials as the

s = (1, ..., n) case. Savage and Visontai showed that many Eulerian-like polynomials

are special cases of the s-Eulerian polynomial.

Definition 1.12. We set E
(s)
n,i(x) =

∑
e∈Jn(s)
en=i

xasc(s), and let E
(s)
n be the row vector

[E
(s)
n,0(x), E

(s)
n,1(x)..., E

(s)
n,s̃n−1(x)].

Theorem 1.13 (Lemma 2.1 in [5]). E
(s)
n (x) = E

(s)
n−1(x)A(x), where A = A(x) is the

s̃n−1-by-s̃n matrix whose ith column starts with d (i−1)s̃n−1

s̃n
e copies of x from the top,

and all 1’s below them.

Definition 1.14. A (1, x)-Ferrers matrix of shape B is a matrix whose entries are

x and 1, and the x’s in which form the Ferrers board B in the top right corner. We

also write (a, b)-Ferrers matrix, where the expressions a and b take the place of 1 and

x respectively.

It is clear that the transition matrices A(x) in Theorem 1.13 are all (1, x)-Ferrers

matrices.
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Theorem 1.15. Let A1, A2, ..., be 1-by-m1,m1-by-m2, ..., (1, x)-Ferrers matrices.

Then the sum of entries in the row vector A1A2...An is a polynomial with only real

roots.

We will give a brief proof of Theorem 1.15 in Chapter 2 using results from [5]

and [2]. In particular, when the transition matrices A1, A2, ... have shapes as in

Theorem 1.13, we obtain that the s-Eulerian polynomials have only real roots. This

is [5], Theorem 1.1.

The following two definitions are hit polynomial versions of Definition 1.12. In

particular, Definition 1.17 reduces to the s = (1, 2, 3, ...) case of Definition 1.12 when

B is the upper triagular board. (See Remark 1.18)

Definition 1.16. For any Ferrers board B in the n× n array, let

HB
n,i(x) =

∑
C∈Pn

(i,n)∈C

xhB(C). (1.11)

If cn is the length of the longest column of B, we define

HB
n (x) = [HB

n,cn+1(x), ..., HB
n,n(x), HB

n,1(x), ..., HB
n,cn(x)]. (1.12)

Definition 1.17. For any Ferrers board B in the n× n array, let

H̃B
n,j(x) =

∑
C∈Pn

(n,j)∈C

xhB(C), (1.13)

and let H̃B
n (x) = [H̃B

n,n(x), ..., H̃B
n,1(x)].

Remark 1.18. The φ map before Theorem 1.6 satisfies the following:
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• If i follows n in σ, then φ(σ)i = n.

• If σn = i, then φ(σ)n = i.

In view of Proposition 1.7, when B is contained in the triangular board, we have

HB
n,i(x) =

∑
σ∈Sn

i follows n in σ

xdesB(σ) for i = 1, ..., n− 1

HB
n,n(x) =

∑
σ∈Sn
σn=n

xdesB(σ)

H̃B
n,i(x) =

∑
σ∈Sn
σn=i

xdesB(σ) for i = 1, ..., n.

(1.14)

We will adopt the following shorthand throughout the paper:

Definition 1.19. For any Ferrers board B = Bn(b1, a1; b2, a2; ...; bk, ak), we set si =

a1 + ...+ ai and ti = b1 + ...+ bi for i ∈ [0, k]. In particular s0 = t0 = 0, sk = tk = n.

The board of size n− 1 we obtain from B by removing its last row and last column

will be denoted B0.

The following two theorems mirror Theorem 1.13, and will be proved in Chapters 4

and 5 using a Ferrers equivalence argument. The transition matrices A and Ã are

shown in Figure 1.5.

Theorem 1.20. Suppose B = Bn(b1, a1; b2, a2; ...; bk, ak) is a Ferrers board with

bk, ak ≥ 1. If either

bk > 1 and si−1 ≤ ti − ak + 1 ≤ si for all i ∈ [1, k − 1];

or

bk = 1 and si−1 ≤ ti − ak−1 − ak + 1 ≤ si for all i ∈ [1, k − 1],

11



b1

n

a1

ak-1

ak-1

bk-1

bk

x

1

b1

n

a1

bk-1
n-1 ak-1

bk-1 

ak

x

1

A A~

Figure 1.5: The (n − 1)-by-n (1, x)-Ferrers matrices A and Ã in Theorems 1.20 and

1.21, respectively. The shapes of the Ferrers boards in A and Ã are flipped versions

of each other.

then HB
n (x) = HB0

n−1(x)A, where A is the (n− 1)-by-n (1, x)-Ferrers matrix of shape

B(−, b1; a1, b2; ...; ak−2, bk−1; ak−1,−).

Theorem 1.21. Let B be the Ferrers board Bn(b1, a1; ...; bk, ak). Suppose either

bk, ak > 1, or both bk = 1 and ak ≥ 1. Suppose further that ti−1 ≤ si−1 + ak − 1 ≤ ti

for all i ∈ [1, k − 1]. Then H̃B
n = H̃B0

n−1Ã, where Ã is the (n − 1)-by-n (1, x)-Ferrers

matrix with shape B(−, ak−1; bk−1, ak−2; ...; b2, a1; b1,−).

There are versions of Theorems 1.20 and 1.21 for q-hit polynomials, and we will

state and prove them in Chapters 4 and 5.

A Ferrers board B contained in the upper triangular board can be associated with

the Dyck path forming its boundary (See Figure 1.6).

Proposition 1.22. If B is contained in the upper triangular board, and when viewed

as a Dyck path, B0 has weakly decreasing peaks, and the heights of the valleys of B0

12



Figure 1.6: A board contained in the upper triangular board and its associated Dyck

path.

(in order: v1, ..., vl) satisfy vi ≤ vi′ + 1 for all i < i′, we can apply Theorem 1.20 (and

its q-version Theorem 4.2) recursively and write HB
n (x) as a product of (1, x)-Ferrers

matrices.

Proposition 1.23. If B is contained in the upper triangular board, and when viewed

as a Dyck path, B has weakly increasing valleys, and the heights of the peaks of B (in

order: p1, ..., pk) satisfy pi ≥ pi′ − 1 for all i < i′, we can apply Theorem 1.21 (and

its q-version Theorem 5.2) recursively and write H̃B
n (x) as a product of (1, x)-Ferrers

matrices.

Boards that satisfy both Dyck path criteria in Propositions 1.22 and 1.23 in-

clude B(r, 1; 1, 1; ...; 1, r), the boards associated with the r-Eulerian polynomials, and

B(a1, a1; a2, a2; ...; ak, ak) when a1 ≥ ... ≥ ak, associated with the multiset Eulerian

polynomials. We will look at these special cases in Chapter 6.

13



Chapter 2

Properties of interlacing

polynomials

We will use material from Fisk’s book [2] on interlacing polynomial. First we start

with some notation:

Definition 2.1 ([2], Equation 1.1.1). For polynomials f(x), g(x) with only real roots,

let a1 ≤ ... ≤ an be the roots of f , and b1 ≤ ... ≤ bm be the roots of g. We write

g � f if m = n and a1 ≤ b1 ≤ a2 ≤ b2 ≤ ... ≤ an ≤ bn

g l f if m = n+ 1 and b1 ≤ a1 ≤ b2 ≤ ... ≤ an ≤ bn+1.

We always list multiple roots that many times. Whenever we write g � f or glf , we

are assuming f and g have only real roots. The two relations� and l are interlacing

relations. We write g ← f if g � f or g l f .

The following proposition from [2] gives us a way to locate the roots of a linear

14



combination of two interlacing polynomials, and will form the core of the proof of

Theorem 1.5:

Proposition 2.2 ([2], Corollary 1.30). Suppose F � G, both F and G are monic,

and α, β, α + β are non-zero. Let H = αF + βG. Then

H � F if β and α + β have the same sign;

H � F if β and α + β have opposite signs;

H � G if α and α + β have the same sign; and

H � G if α and α + β have opposite signs.

Suppose instead that F l G (with no restriction on leading coefficients). Then F ←

H ← G if α and β have the same sign, and F → H ← G if they have opposite signs.

Remark 2.3. Since multiplying a polynomial by a constant does not alter its roots,

the condition that both F and G are monic can be relaxed to that they have the same

leading coefficient.

Corollary 2.4. If F ← G, then F ← F +G← G.

A stronger form of interlacing can be defined for row vectors of polynomials.

Definition 2.5 (Compare [2] Def. 3.3). A row vector of polynomials in R[x] with

positive coefficients, v(x) = [f1(x), ..., fm(x)], is saided to be mutually interlacing if

fi → fj for all i < j. In other words, each fi has only real roots (ordered 0 ≥ αi1 ≥

αi2 ≥ ...), and the roots of all m polynomials are ordered as follows:

0 ≥ αm1 ≥ ... ≥ α11 ≥ αm2 ≥ ... ≥ α12 ≥ αm3 ≥ ... ≥ α13 ≥ ...

15



This sequence is cut off at some point, and all roots after that point are nonexis-

tent.

Proposition 2.6. If A is an m-by-n (1, x)-Ferrers matrix and v is a mutually inter-

lacing row vector of length m, then w(x) := v(x)A(x) is also a mutually interlacing

row vector. In other words, (1, x)-Ferrers matrices preserve mutual interlacing.

Proof. A proof appears in Section 2 of [5], and the proof below is very similar to it.

This is also a special case of [2], Proposition 3.72.

Suppose v(x) = [f1(x), ..., fm(x)]. For any 0 ≤ k ≤ l ≤ m, it suffices to show that

xF1 + F2 + F3 → xF1 + xF2 + F3,

where F1 = f1 + ... + fk, F2 = fk+1 + ... + fl, and F3 = fl+1 + ... + fm. Repeated

application of Corollary 2.4 gives us f1 → F1 → fk, fk+1 → F2 → fl, and fl+1 →

F3 → fm. Looking at the ordering of the roots, we find that [F1, F2, F3] is a mutually

interlacing row vector. 2

Suppose the jth largest root of Fi is rij for i = 1, 2, 3. Then we have

0 ≥ r3
1 ≥ r2

1 ≥ r1
1 ≥ r3

2 ≥ ...

Since F1 → F3, we have xF1 ← F3. Let ρ1 ≥ ρ2 ≥ ... be the roots of xF1 + F3. By

Corollary 2.4, we have

0 ≥ ρ1 ≥ r3
1 ≥ r2

1 ≥ r1
1 ≥ ρ2 ≥ r3

2 ≥ ...

2This assumes 0 < k < l < m. The case k = l is trivial; the cases k = 0 and/or l = m must be

dealt with separately, but the same argument works so we will omit them.
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From here we see F2 → xF1 + F3 and xF2 ← xF1 + F3. Let r̃1 ≥ r̃2 ≥ ... be the

roots of xF1 + F2 + F3, and r̃′1 ≥ r̃′2 ≥ ... be the roots of xF1 + xF2 + F3. Two more

applications of Corollary 2.4 yield

0 ≥ r̃′1 ≥ ρ1 ≥ r̃1 ≥ r2
1 ≥ r̃′2 ≥ ρ2 ≥ r̃2 ≥ r2

2 ≥ ...

Now it is clear that xF1 + F2 + F3 → xF1 + xF2 + F3.

Proposition 2.7 ([2], Lemma 3.5). Let v(x) = [f1(x), ..., fm(x)] be a mutually inter-

lacing row vector. Then f1(x) + ...+ fn(x) has only real roots. In fact, the same can

be said for any nonnegative linear combination of f1, ..., and fm, i.e. c1f1(x) + ... +

cmfm(x) for any ci ≥ 0.

Proof of Theorem 1.15. The first term A1 is a 1-by-m1 (1, x)-Ferrers matrix, which

is a mutually interlacing row vector. Since A2, A3, ... are (1, x)-Ferrers matrices, by

Proposition 2.6 A1A2...An is a mutually interlacing row vecter. By Proposition 2.7,

the sum of the entries in A1A2...An is a polynomial with only real roots.
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Chapter 3

Proof of Theorem 1.5

We will start with one of the recursions for QB(x, q) in [3] that tells us how to add a

column to B. They proved the following result by noting that the summand in the

left-hand side of (1.7) vanishes for any k < n− cn:

Proposition 3.1 (Lemma 2.7 in [3]). Let B = (c1, ..., cn) be the Ferrers board with

column lengths 0 ≤ c1 ≤ ... ≤ cn ≤ n− 1, and let B0 = (c1, ..., cn−1). Then

QB(x, q)

(1− x)...(1− xqn)
= xn−cnδ

(
xcn−n+1QB0(x, q)

(1− x)..(1− xqn−1)

)
, (3.1)

where δ = δq is the q-derivative operator:

δF (x) =
F (qx)− F (x)

qx− x
. (3.2)

The q-derivative is linear and satisfies δxn = [n]xn−1. It also has a product rule:

Proposition 3.2. For u = u(x), v = v(x), we have δ(uv) = vδu+ u(qx)δv.
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Notation. In this chapter, we will often omit the q argument from polynomials.

We will sometimes omit x as well. Hence QB = QB(x) = QB(x, q).

Suppose q > 1. Let B and B′ be as in Lemma 3.1. Set R(x, q) = xcn−n+1QB0(x, q)

and R̃ = xcn−nQB. We can then rewrite (3.1) as

R̃

(1− x)...(1− xqn)
= δ

R

(1− x)..(1− xqn−1)
. (3.3)

We can compute directly that

δ
1

(1− x)...(1− xqn−1)
=

[n]

(1− x)...(1− xqn)
. (3.4)

Using Proposition 3.2 with u = 1
(1−x)...(1−xqn−1)

, v = R, we get

δ
R

(1− x)...(1− xqn−1)
=

(1− x)δR + [n]R

(1− x)...(1− xqn)
. (3.5)

Hence

R̃ = [n]R− (x− 1)δR. (3.6)

Lemma 3.3. Let B be as in Proposition 3.1, and R and R̃ be as above. Suppose

R(qx)� R(x). Then R̃(qx)� R̃(x). Equivalently, suppose QB0(qx)� QB0(x); then

QB(qx)� QB(x).

Proof. Let m = degx(R). If m = 0, then R̃ = [n]R; neither R or R̃ has any root and

the Lemma holds. Hence we may assume m > 0.

Suppose the roots of R are rm ≤ rm−1 ≤ ... ≤ r1. Then R(qx)� R(x) implies

rm ≤
rm
q
≤ ... ≤ r1 ≤

r1

q
.
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Since q > 1, r1 ≤ r1
q

implies r1 ≤ 0. By defintion of δ,

x(q − 1)δR = R(qx)−R(x). (3.7)

We apply Proposition 2.2 with G = R,F = R(qx)
qm

, β = −1, α = qm and obtain

xδR� R and xδR� R(qx). (This is [2], Theorem 8.8)

Suppose the roots of δR are ρm−1 ≤ ... ≤ ρ1. Then the roots of R,R(qx), and δR

(all negative) are ordered weakly from smallest to largest as follows.

rm,
rm
q
, ρm−1, rm−1,

rm−1

q
, ..., ρ2, r2,

r2

q
, ρ1, r1,

r1

q

In particular, we see that (x− 1)δR� R.

Let axm be the leading term of R̃. Then a[m]xm is the leading term of (x− 1)δR.

We apply Proposition 2.2 to (3.6) with F = (x−1)δR
[m]

, G = R,α = −[m], β = [n] and

obtain R � R̃ and (x − 1)δR � R̃. 3 Let r̃m ≤ ... ≤ r̃1 be the roots of R̃. These

roots fit into the picture as follows:

r̃m, rm,
rm
q
, ρm−1, r̃m−1, rm−1,

rm−1

q
, ..., ρ2, r̃2, r2,

r2

q
, ρ1, r̃1, r1,

r1

q

We have r̃i+1 ≤ ri+1 ≤ ri+1

q
≤ r̃i ≤ 0 for i = 1, ...,m−1. This implies r̃i+1 ≤ r̃i+1

q
≤

r̃i ≤ 0, and hence R̃(qx) � R̃(x). This proof is inspired by Chapter 8 of [2] (and

the first half of this proof appears in it), where the set of polynomials f satisfying

f(x)� f(qx) and the q-derivative are studied.

3Here m < n because m = deg(R) ≤ deg(QB0) ≤ n− 1.
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Proposition 3.4. Fix q > 1. For any Ferrers board B, we have QB(qx) � QB(x).

Both QB(x, q) and HB
n (x, q) have only real roots.

Proof. The proof is by induction. If the board is empty in an n-by-n array, then QB

is a constant times xn, and the assertions are true. Given a Ferrers board B in n-by-n

array, we suppose that for all boards B′ in an array smaller than n-by-n, and for all

boards B′ in the n-by-n array with less cells than B, we have QB′(qx)� QB′(x). Let

B = (c1, ..., cn). If cn ≤ n − 1, let B′ = B0 = (c1, ..., cn−1). By Lemma 3.3 and the

induction hypothesis, we obtain QB(qx)� QB(x). If cn = n, set B′ = (0, c1, ..., cn−1).

Since QB = 1
x
QB′ (we can get this from Lemmas 2.1 and 2.3 in [3]), the induction

hypothesis implies QB(qx)� QB(x).

We have proved QB(qx) � QB(x), and in particular QB(x) has only real roots.

Since HB
n (x) = xnQB(x−1), the nonzero roots of HB

n and QB are inverses of each

other. Hence HB
n also has only real roots.

Now suppose 0 < q < 1.We start with (3.3), but this time we apply Proposition 3.2

with u = R, v = 1
(1−x)...(1−xqn−1)

. We get

R̃ = [n]R(qx)− (qnx− 1)δR. (3.8)

Lemma 3.5. If R(qx)� R(x). Then R̃(qx)� R̃(x)

Proof. Let m = deg(R). As in the q > 1 case, we may assume m > 0. Suppose the

roots of R are rm ≤ rm−1 ≤ ... ≤ r1. Then R(qx)� R(x) implies

rm
q
≤ rm ≤ ... ≤ r1

q
≤ r1.
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Since q < 1, r1
q
≤ r1 implies r1 ≤ 0. We apply Proposition 2.2 to (3.7) with F =

R,G = R(qx)
qm

, α = −1, β = qm and obtain xδR� R and xδR� R(qx).

Let ρm−1 ≤ ... ≤ ρ1 be the roots of δR. Then the roots of R,R(qx), and (1−xqn)δR

(all negative) are as follows, from smallest to largest:

rm
q
, rm, ρm−1, ..., ρ2,

r2

q
, r2, ρ1,

r1

q
, r1

In particular (qnx − 1)δR � R(qx). If R has leading term axm, then R(qx) has

leading term aqmxm and (qnx − 1)δR has leading term aqn[m]xm. Therefore R(qx)

and qm−n

[m]
(qnx− 1)δR have the same leading coefficient. We apply Proposition 2.2 to

(3.8) with G = R(qx), F = qm−n

[m]
(qnx− 1)δR, β = [n], α = −[m]qn−m = [n−m]− [n]

and obtain R̃ � (qnx − 1)δR and R̃ � R(qx). Let r̃1 ≤ ... ≤ r̃m be the roots of R̃.

We then have

r̃m,
rm
q
, rm, ρm−1, r̃m−1, ..., ρ2, r̃2,

r2

q
, r2, ρ1, r̃1,

r1

q
, r1

In particular r̃i+1 ≤ ri+1

q
≤ ri+1 ≤ r̃i for i = 1, ...,m− 1. Hence r̃i+1 ≤ r̃i

q
≤ r̃i and so

R̃(qx)� R̃(x).

The rest of the argument is identical to the q > 1 case, except that � is replaced

with �. We get

Proposition 3.6. Fix 0 < q < 1. For any Ferrers board B, we have QB(qx) �

QB(x). Both QB and HB
n have only real roots.

Combine Propositions 3.4 and 3.6 and we have proved Theorem 1.5. As stated in

the introduction, the q = 1 case was known; we can also obtain the q = 1 case from
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the q > 1 case using that limits of real-rooted polynomials have only real roots ([2],

Lemma 1.40).

When B is the upper triangular board (0, 1, ..., n − 1), we have QB(x, q) =∑
σ∈Sn

xdes(σ)+1qmaj(σ), the MacMahon-Carlitz q-Eulerian polynomials. To obtain

this, we can combine Equations I.2, I.9, I.10, and I.12 from [3]. It was shown in

[5], Theorem 5.4 that the q-Eulerian polynomials have only real roots for q > 0.
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Chapter 4

Proof of Theorem 1.20

In Dworkin’s paper [1], they found an explicit statistic ξB defined on Pn, and showed

that HB
n (x, q) =

∑
C∈Pn

xhB(C)qξB(C), which is a refinement of (1.1). Here B is any

skyline board B, which is obtained from a Ferrers board via a permutation on the

columns. Given a placement C ∈ Pn, we compute ξB(C) as follows. We say a cell is

canceled if either there is a rook on it, or it is to the right of a rook. Put a circle on

any uncanceled cell on B below a rook (on B); on any uncanceled cell on B above a

rook off B; and on any uncanceled cell off B below a rook off B. We define ξB(σ) to

be the number of circles we get this way. See Figure 4.1 for an example.

Definition 4.1. Let HB
n,i(x, q) =

∑
C∈Pn

(i,n)∈C

xhB(C)qξB(C). We define HB
n (x, q) the same

way we defined HB
n (x) in Definition 1.16.

We will prove the following q-version of Theorem 1.20 in this chapter:
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Figure 4.1: Computation of ξB. Here ξB(σ) = 6.

Theorem 4.2. Let B be as in Theorem 1.20, and let si, ti and B0 be as in Defini-

tion 1.19. Then

HB
n (x, q) = HB0

n−1(
x

q
, q)A(

x

q
)D, (4.1)

where A(x
q
) is the (n− 1)-by-n (1, x

q
)-Ferrers matrix of shape

B(−, b1; a1, b2; a2, b3; ...; ak−1,−),

and D is the diagonal matrix with qsk−1 , ..., qn−1, q−t1+n, ..., q−t1+s1+n−1,

q−t2+s1+n, ..., q−t2+s2+n−1, ..., q−tk−1+sk−2+n, ..., q−tk−1+sk−1+n−1 down the diagonal.

Let I0 = [sk−1 + 1, n], and let Ii = [si−1 + 1, si] for i ∈ [1, k − 1].

Definition 4.3. For i ∈ [1, k − 1], let

Bi = Bn−1(b1, a1; ...; bi−1, ai−1; bi, ai − 1; bi+1, ai+1; ...; bk−1, ak−1; bk − 1, ak)

be the board we obtain by removing the jth row and the nth column from B for any

j ∈ Ii. Let Bi be the board obtained by removing the leftmost cell from each of the
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bottommost n − 1 − ti rows of the board B0. See Figure 4.2 for the board Bi when

bk > 1 and si−1 ≤ ti − ak + 1 ≤ si.

Lemma 4.4. If B satisfies the conditions in Theorem 1.20, then Bi and Bi are

Ferrers equivalent for i = 1, ..., k − 1.

Proof. We will combine equal column lengths and write, for example, (35) for five

consecutive columns of length 3.

The column lengths of Bi are (c1, ..., cn−1) =

(0b1 , sb21 , s
b3
2 , ..., s

bi
i−1, (si − 1)bi+1 , (si+1 − 1)bi+2 , ..., (sk−2 − 1)bk−1 , (sk−1 − 1)bk−1).

Suppose bk > 1 and si−1 ≤ ti − ak + 1 ≤ si. From Figure 4.2, the column lengths

of Bi are (c′1, ..., c
′
n−1) :=

(0b1 , sb21 , s
b3
2 , ..., s

bi
i−1, ti − ak + 1, s

bi+1

i , s
bi+2

i+1 , ..., s
bk−1

k−2 , s
bk−2
k−1 ).

Comparing the two sequences, we see that
cl − l + 1 = c′l − l + 1 for l ∈ [1, ti]

cl − l + 1 = c′l+1 − (l + 1) + 1 for l ∈ [ti + 1, n− 2].

(4.2)

Finally,

cn−1 − (n− 1) + 1 = −ak = ti − ak + 1− (ti + 1) + 1 = cti+1 − (ti + 1) + 1.

Hence the multisets {ci− i+ 1}i=1,..,n−1 and {c′i− i+ 1}i=1,..,n−1 are the same, and so

Bi and Bi are Ferrers equivalent.
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b1
a1

b2

bk-2

ak-1

ak-1

bk-1

bi

ai

bi+1

n-1-ti

Figure 4.2: The board Bi in the bk > 1 case. The condition si−1 ≤ ti − ak + 1 ≤ si is

necessary for this to be an accurate depiction of Bi, namely the odd column (in gray)

appears between the two horizontal segments of lengths bi and bi+1. To obtain B̄i

from Bi, we permute the columns of Bi so the gray column becomes the last column,

with the ordering of all other columns unchanged.
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On the other hand, suppose bk = 1 and si−1 ≤ ti−ak−1 +ak +1 ≤ si. The column

lengths of Bi are now

(0b1 , sb21 , s
b3
2 , ..., s

bi
i−1, ti − ak−1 − ak + 1, s

bi+1

i , s
bi+2

i+1 , ..., s
bk−1−1
k−2 ).

One can check similarly that this gives the same multiset as the one for Bi.

Let i ∈ [0, k − 1] and j ∈ Ii. Let Pn,j ⊂ Pn be the subset of placements that

have a rook at (j, n). There is a bijection between C̃ ∈ Pn,j and C ∈ Pn−1 simply via

removing the jth row and the nth column from C̃.

Lemma 4.5. With j ∈ Ii and C, C̃ as above, we have


hB(C̃) = hB0(C) for i = 0

hB(C̃) = hBi
(C) + 1 for i ∈ [1, k − 1]

(4.3)

and
ξB(C̃) = ξB0(C) + j − 1− hB0(C) for i = 0

ξB(C̃) = ξBi
(C)− ti + j − 1 + n− 1− hBi

(C) for i ∈ [1, k − 1]

(4.4)

In other words,
HB
n,j(x, q) = qj−1HB0

n−1(x
q
, q) for j ∈ I0

HB
n,j(x, q) = xq−ti+j−1+n−1HBi

n−1(x
q
, q) for j ∈ Ii, i ∈ [1, k − 1]

(4.5)

Proof. The first part is clear, since hB(C̃) = hBi
(C) + 1 if (j, n) is on B, otherwise

hB(C̃) = hBi
(C).
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n-1

ti

j-1

(j,n)

I II

III

IV

Figure 4.3: Regions I, II, III and IV. The vertical line that seperates I from II, and

III from IV, contains the vertical segment of the boundary of B inside the jth row.

Regions I and III lie outside the board B.

Now we look at ξ. We assume i ∈ [1, k − 1] for now. Define the regions I, II, III,

IV as in Figure 4.3. We also define I’ as the rectangular region that is above the jth

row and to the left of II.

The contribution to ξB(C̃) outside the jth row and the nth column is exactly

ξBi
(C). Furthermore, the nth column contributes nothing to ξB(C̃), since all cells on

that column get canceled when we compute ξB. Hence ξB(C̃) = ξBi
(C) + number

of circles on the jth row.

By defintion of ξ, the number of circles on the jth row = #I + #II + #III, here
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we abbreviate the number of rooks of C̃ in I as #I, and so on. But since each row

and column has exactly one rook, we have #II = j − 1−#I’= j − 1− (ti −#IV) =

#IV−ti + j − 1. Hence

the number of circles on jth row = #I + #III + #IV− ti + j − 1

= n− 1− hBi
(C)− ti + j − 1.

(4.6)

Hence ξB(C̃) = ξBi
(C)− ti + j − 1 + n− 1− hBi

(C).

Now suppose instead i = 0. The regions II and III disappear. Now the number

of circles on the jth row = #I = j − 1 − hB0(C). Hence ξB(C̃) = ξB0(C) + j − 1 −

hB0(C).

For i ∈ [1, k − 1], let B̄i be the skyline board obtained from B0 by removing the

bottommost n− 1− ti cells from the rightmost (i.e. (n− 1)th) column. Since Bi and

B̄i differ by a column permutation (See description under Figure 4.2), Bi, B
i and B̄i

are all equivalent boards. By Corollary 1.4, we have HBi
n−1(x, q) = HB̄i

n−1(x, q).

Hence (4.5) can be rewritten as
HB
n,j(x, q) = qj−1HB0

n−1(x
q
, q) for j ∈ I0

HB
n,j(x, q) = xq−ti+j−1+n−1HB̄i

n−1(x
q
, q) for j ∈ Ii, i ∈ [1, k − 1]

(4.7)

We still need to express HB̄i

n−1(x, q) in terms of HB0
n−1,l(x, q). To combine the bk > 1

and bk = 1 cases, let c = cn−1(B0) = the length of the longest column of B0. In other

words, c = sk−1 if bk > 1, and c = sk−2 if bk = 1.

Lemma 4.6. For i ∈ [1, k − 1], we have HB̄i

n−1(x, q)

=
n−1∑
l=c+1

HB0
n−1,l(x, q) +

c−(n−1−ti)∑
l=1

HB0
n−1,l(x, q) + 1

x

[
c∑

l=c−(n−1−ti)+1

HB0
n−1,l(x, q)

]
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Proof. Since we get B̄i by removing the cells {(l, n− 1)}l∈[c−(n−1−ti)+1,c] from B0, we

have for any C ∈ Pn−1 such that (l, n− 1) ∈ C,
hB0(C) = hB̄i(C) + 1 if l ∈ [c− (n− 1− ti) + 1, c]

hB0(C) = hB̄i(C) otherwise.

(4.8)

Also, ξB0(C) = ξB̄i(C) for all C. This implies

HB̄i

n−1,l(x, q) =


1
x
HB0
n−1,l(x, q) for l ∈ [c− (n− 1− ti) + 1, c]

HB0
n−1,l(x, q) for l ∈ [c+ 1, n− 1] or l ∈ [1, c− (n− 1− ti)]

(4.9)

The lemma then follows from HB̄i

n−1(x, q) =
n−1∑
l=1

HB̄i

n−1,l.

It follows from (4.7) and Lemma 4.6 that

HB
n,j(x) = qj−1

[ n−1∑
l=c+1

HB0
n−1,l(

x
q
) +

c∑
l=1

HB0
n−1,l(

x
q
)
]

for j ∈ I0

HB
n,j(x) = q−ti+j+n−1

[
x
q
[
n−1∑
l=c+1

HB0
n−1,l(

x
q
) +

c−(n−1−ti)∑
l=1

HB0
n−1,l(

x
q
)]

+
c∑

l=c−(n−1−ti)+1

HB0
n−1,l(

x
q
)
]

for j ∈ Ii, i ∈ [1, k − 1]

(4.10)

This describes a recurrence relation between HB
n (x, q) and HB0

n−1(x
q
, q), which can

be written in the form of a matrix. Referring back to the definition of these row vec-

tors (Definition 1.16), we see that HB
n (x, q) = HB0

n−1(x
q
, q)A(x

q
)D, where the diagonal

matrix D collects the powers qj−1 and q−ti+j+n−1. It can then be checked that the

matrices A(x
q
) and D are as stated in Theorem 4.2.

A subboard of B is the first m rows and m columns of B, considered as a board

in the m-by-m array, for some m < n. To apply Theorem 4.2 recursively to a board
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p

Figure 4.4: Left: the Dyck path B0 and its last peak p. Right: the set of all last

peaks as we progressively truncate B0.

B, we need all the subboards of B to satisfy the conditions in Theorem 1.20 if the

subboard were to replace B.

Suppose B is contained in the upper triangular board. Note that the last peak of

B0 as a Dyck path is at height ak − 1 if bk > 1, and height ak+1 + ak − 1 if bk = 1.

The inequalities ti − si−1 ≥ ak − 1 and ti − si ≤ ak − 1 mean that each peak (of B0)

is at least as high as the last peak, and each valley is at most as high as the last

peak, respectively. When we look at a subboard B′ of B, we truncate the Dyck path,

and the corresponding last peak of (B′)0 moves to the left as we progressively look

at smaller subboards. See Figure 4.4 for all the last peaks we get this way, marked

as red dots. The Dyck path criterion in Proposition 1.22 is the same as saying that

every peak of B0 is at least as high as any red dot to the right of it, and every valley

of B0 is at most as high as any red dot to the right of it. In this case we can express

HB
n (x, q) as a matrix product by applying Theorem 4.2 recursively.

32



Chapter 5

Proof of Theorem 1.21

We define a flipped version of Dworkin’s ξ statistic, denoted ξ̃, for any board B that

can be obtained from a Ferrers board via a permutation on the rows (a row-skyline

board). See Figure 5.1 for the computation of ξ̃; it is simply Figure 4.1 flipped across

the anti-diagonal. Since the transpose of a Ferrers board is equivalent to the board

itself, we have HB
n (x, q) =

∑
C∈Pn

xhB(C)qξ̃B(C). 4

Definition 5.1. Let H̃B
n,i(x, q) =

∑
C∈Pn

(i,n)∈C

xhB(C)qξ̃B(C). We define H̃B
n (x, q) similar to

how we defined H̃B
n (x) in Definition 1.17.

Theorem 5.2. Let B be the Ferrers board Bn(b1, a1; ...; bk, ak), and let si, ti, and B0

be as in Definition 1.19. Suppose either bk, ak > 1, or both bk = 1 and ak ≥ 1.

4In this chapter, we will take this as the definition of HB
n (x, q). This is different from the definition

of HB
n (x, q) in Chapter 4 for skyline boards, but the two definitions coincide when B is a Ferrers

board.
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Figure 5.1: The computation of ξ̃.

Suppose further that ti−1 ≤ si−1 + ak − 1 ≤ ti for all i ∈ [1, k − 1]. Then

H̃B
n (x, q) = H̃B0

n−1ÃD, (5.1)

where Ã is the (n− 1)-by-n (qn−1−ak , xq−ak)-Ferrers matrix with shape

B(−, ak−1; bk−1, ak−2; ...; b2, a1; b1,−),

and D is the n-by-n diagonal matrix with

(qtk−sk−1 , ..., qtk−1+1−sk−1 ; qtk−1−sk−2 , ..., qtk−2+1−sk−2 ; ...; qt1 , ..., q1)

down the diagonal.

Let B′ is B with the jth column and nth row removed. For C ∈ Pn, (n, j) ∈ C, let

C ′ ∈ Pn−1 be C with the jth column and nth row removed. Since ak ≥ 1, the board

B does not reach the nth row. Hence hB(C) = hB′(C
′). When we compute ξ̃B(C),

the entire jth column is canceled, and on the nth row there is a circle in every cell to

the left of (n, j), and no circle to the right of (n, j). Hence ξ̃B(C) = ξ̃B′(C
′) + j − 1,
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which implies

H̃B
n,j(x, q) =

∑
C∈Pn

(n,j)∈C

xhB(C)qξ̃B(C)

= qj−1
∑

C′∈Pn−1

xhB′ (C
′)qξ̃B′ (C

′)

= qj−1HB′

n−1(x, q)

(5.2)

Suppose j ∈ Ĩi, where Ĩi = [ti−1 + 1, ti] for i = 1, ..., k. The board B′ is Ferrers

equivalent to the board

B∗ = Bn−1(b1, a1; ...; bi−1, ai−1; si−1 + ak − ti−1 − 1, 1; ti − si−1 − ak + 1, ai;

bi+1, ai+1; ...; bk−1, ak−1; bk − 1, ak − 2);

see Figure 5.2. (In the bk = 1, ak ≥ 1 case, B∗ ends in ...; bk−1, ak−1 + ak − 2 instead.)

If bk, ak > 1, then B0 = Bn−1(b1, a1; ...; bk − 1, ak − 1). If bk = 1 and ak ≥ 1, then

B0 = Bn−1(b1, a1; ...; bk−2, ak−2; bk−1, ak−1 + ak − 1). In both cases, The board B∗ is

equivalent to B′′ = B0 ∪ {(n− 1, si−1 + ak), ..., (n− 1, n− 1)} through a permutation

on the rows.

Lemma 5.3. Let C ∈ Pn−1, (n− 1, l) ∈ C. Then if l ≥ si−1 + ak, then
hB′′(C) = hB0(C) + 1

ξ̃B′′(C) = ξ̃B0(C) + 1− ak − si−1

(5.3)

On the other hand if l < si−1 + ak, then
hB′′(C) = hB0(C)

ξ̃B′′(C) = ξ̃B0(C) + n− ak − si−1.

(5.4)
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n-1

I

III

II
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Figure 5.2: The equivalent Ferrers boards B′ and B∗. If we divide B′ (shown on the

left) into three regions as shown, where region II is within a single column, we can

obtain the other board by moving these three pieces around: namely region I does

not move at all, region III moves one step down and one step to the right, and region

II becomes a row of the same length and is placed between the two. The resulting

board B∗ (shown on the right) is a Ferrers board iff the length of region II lies weakly

between the length of the top row of region III and the length of the bottom row of

region I. This condition simplifies to ti−1 ≤ si−1 + ak − 1 ≤ ti. To obtain B′′ from

B∗, move region II all the way down to the (n− 1)th row, and shift region III up one

step. Regions I and III combined in this way is the board B0.
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n-ak-si-1

B0

ak+si-1-1 n-ak-si-1

B0

ak+si-1-1

Figure 5.3: Comparison of ξ̃B′′ and ξ̃B0 .

Proof. See Figure 5.3. The plus sign is the rook at (n− 1, l). If l ≥ si−1 + ak (shown

on the left), the circles in dotted red at (n−1, 1), ..., (n−1, ak+si−1−1) contribute to

ξ̃B0(C) but not ξ̃B′′(C). If j < si−1+ak (shown on the right), the circles in dotted blue

at (n−1, ak +sk−1), ..., (n−1, ak +si−1−1) contribute to ξ̃B′′(C) but not ξ̃B0(C).

This implies

HB′′

n−1 = xq1−ak−si−1

 n−1∑
l=si−1+ak

H̃B0
n−1,l

+ qn−ak−si−1

[
si−1+ak−1∑

l=1

H̃B0
n−1,l

]
. (5.5)

Combining (5.2), (5.5), and the fact that B′ and B′′ have the same q-hit polyno-

mials, we get for any i ∈ [1, k] and j ∈ Ii,

H̃B
n,j(x, q) = xqj−ak−si−1 [H̃B0

n−1,n−1 + ...+ H̃B0
n−1,si−1+ak

]

+ qj−1+n−ak−si−1 [H̃B0
n−1,si−1+ak−1 + ...+ H̃B0

n−1,1].

(5.6)

This agrees with the description of the matrices Ã and D in Theorem 5.2.
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Figure 5.4: The board B as a Dyck path. We place a red dot one step down (and to

the left) from all last peaks we get by truncating B progressively.

Suppose B is contained in the upper triangular board. When we view B as a

Dyck path, ak − 1 is one lower than the height of last peak. The requirement that

ti−1 ≤ si−1 +ak−1 ≤ ti for i ∈ [1, k−1] mean that every peak of B is at least as high

as ak − 1, and every valley of B is at most as high as ak − 1. To apply Theorem 1.21

recursively, every peak of B needs to be as least as high as any red dot to the right

of it (See Figure 5.4), and every valley of B needs to be as most as high as any red

dot to the right of it. This implies Proposition 1.23.
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Chapter 6

Special Cases

We look at some implications of Theorems 1.20, 1.21, and Propositions 1.22, 1.23.

When B = B2k(2, 2; ...; 2, 2), we have

HB
2k(x) =

(
1 1

) 1 x x

1 x x




1 1 x x

1 1 x x

1 1 1 1





1 x x x x

1 x x x x

1 1 1 x x

1 1 1 x x


... (6.1)

Through Proposition 1.11, this product is equivalent to the matrix product asso-

ciated with the s-inversion sequence s = (1, 1, 3, 2, 5, 3, ...), appearing in Section 3.8

of [5]. The partial products, which are row vectors, have two interpretations. By

Theorem 1.20 and Propositon 1.22, they are [HB
2k,2k−1, H

B
2k,2k, H

B
2k,1, ..., H

B
2k,2k−2]. By

Theorem 1.21 and Proposition 1.23, the partial products are also

[H̃B
2k,2k, H̃

B
2k,2k−1, ..., H̃

B
2k,1] = 2k−1[EM

k , E
M
k , E

M
k−1, E

M
k−1, ..., E

M
1 , EM

1 ], (6.2)
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where M = {12, ..., k2} and EM
i =

∑
σ∈SM

σ ends with i

xdes(σ).

Analogous results hold for any multiset M = {1a1 , ..., kak} with a1 ≥ ... ≥ ak,

although H and H̃ give different matrix products in general. Since permuting the

multiplicities (ai)i gives equivalent Ferrers boards, there are matrix product expres-

sions for all multiset Eulerian polynomials.

When B = Bn(2, 1; 1, 1; ...; 1, 1; 1, 2), we have

HB
n (x) =

(
HB
n,n−1 HB

n,n HB
n,1 ... HB

n,n−2

)

=

(
1 1

) 1 1 x

1 1 x




1 1 x x

1 1 x x

1 1 1 x

 ...

(6.3)

where HB
n,j =

∑
σ∈Sn

j follows n

xdes2(σ) for j ∈ [1, n− 1] and HB
n,n =

∑
σ∈Sn
σn=n

xdes2(σ); and

H̃
B

n (x) =

(
H̃B
n,n H̃B

n,n−1 ... H̃B
n,1

)

=

(
1 1

) 1 x x

1 1 1




1 x x x

1 1 x x

1 1 1 1

 ...

(6.4)

where H̃B
n,j =

∑
σ∈Sn
σn=j

xdes2(σ) for j ∈ [1, n]. Analogous results hold for

B = Bn(r, 1; 1, 1; ...; 1, 1; 1, r), for all r ≥ 1.
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