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Abnormal Smooth Muscle Contraction Alters Gut Motility and
Propagates Epithelial invasion in the Larval Zebrafish Intestine

Abstract
Coordinated smooth muscle contraction is critical for force production and proper functioning of numerous
organ systems. Activation at the myosin motor domain via phosphorylated myosin light chain (phospho-
MLC) remains the primary signal to initiate contraction, but it is now appreciated that there are additional
force modulators also present in smooth muscle. One particularly well studied modulatory protein is
Caldesmon (CaD), which has been implicated in controlling contractile force in vascular smooth muscle,
however little is known of CaD's physiological role in vivo. Studies in vitro have shown that CaD inhibits
actomyosin interactions and that this effect is reversed after phosphorylation, allowing for greater force
propagation. Since a number of gastrointestinal (GI) tract and vascular disorders are known to be a result of
aberrant force production, closely monitoring CaD's functional properties may provide insight into common
contractile defects. We took advantage of the transparent nature of the intestine in larval zebrafish to study
CaD's effect on smooth muscle contraction in a vertebrate model. We initiated these studies by examining
propulsive peristalsis in the larval intestine after knockdown of endogenous smooth muscle CaD protein. We
next measured the role of CaD in the absence of phospho-MLC to better understand its function in disease
states where myosin activation is perturbed. Using extensive live imaging analysis, we show that disrupting
CaD function within intestinal smooth muscle can significantly increase GI motility, with and without
phospho-MLC, highlighting CaD's ability to independently modulate contractile force. In addition, previous
work on a mutant, meltdown (mlt), in our lab has uncovered a smooth muscle myosin (myh11) mutation
leading to increased contractile force and premature CaD phosphorylation. Interestingly, in the mlt mutant
intestinal epithelial invasion was observed pointing to the unique role for force propagation in initiating cell
invasion. We show that CaD is necessary for mlt epithelial invasion to occur, as knockdown of CaD causes the
invasive phenotype in heterozygous mlt, which otherwise appear wild type. To gain a better understanding of
the crosstalk between muscle contraction and epithelial invasion, we performed a genetic screen for modifier
mutants of the mlt phenotype. From the screen, we discovered two enhancer mutants of mlt that contained
missense mutations in unique protein domains of MYH11 that alter the contractile function of smooth
muscle. These mutations (S237Y and L1287M) occur in both the motor domain and helical tail domain of the
protein, suggesting that alterations in distinct regions of myosin can result in abnormal contraction and
potentially lead to invasion in underlying cells. Since a number of myosin mutations have been implicated in
vascular disease and colon cancer, these studies provide insight into the diversity and mechanistic
consequences of mutated myosin in altering smooth muscle contraction and epithelial cell invasion.
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ABSTRACT 

ABNORMAL SMOOTH MUSCLE CONTRACTION ALTERS GUT 

MOTILITY AND PROPAGATES EPITHELIAL INVASION IN THE 

LARVAL ZEBRAFISH INTESTINE 

Joshua M. Abrams 

Michael A. Pack 

Coordinated smooth muscle contraction is critical for force production and proper functioning of numerous 

organ systems.  Activation at the myosin motor domain via phosphorylated myosin light chain (phospho-

MLC) remains the primary signal to initiate contraction, but it is now appreciated that there are additional 

force modulators also present in smooth muscle.  One particularly well studied modulatory protein is 

Caldesmon (CaD), which has been implicated in controlling contractile force in vascular smooth muscle, 

however little is known of CaD’s physiological role in vivo.  Studies in vitro have shown that CaD inhibits 

actomyosin interactions and that this effect is reversed after phosphorylation, allowing for greater force 

propagation.   Since a number of gastrointestinal (GI) tract and vascular disorders are known to be a result 

of aberrant force production, closely monitoring CaD’s functional properties may provide insight into 

common contractile defects.  We took advantage of the transparent nature of the intestine in larval zebrafish 

to study CaD’s effect on smooth muscle contraction in a vertebrate model.  We initiated these studies by 

examining propulsive peristalsis in the larval intestine after knockdown of endogenous smooth muscle CaD 

protein.  We next measured the role of CaD in the absence of phospho-MLC to better understand its 

function in disease states where myosin activation is perturbed.  Using extensive live imaging analysis, we 

show that disrupting CaD function within intestinal smooth muscle can significantly increase GI motility, 

with and without phospho-MLC, highlighting CaD’s ability to independently modulate contractile force.  In 

addition, previous work on a mutant, meltdown (mlt), in our lab has uncovered a smooth muscle myosin 

(myh11) mutation leading to increased contractile force and premature CaD phosphorylation.  Interestingly, 

in the mlt mutant intestinal epithelial invasion was observed pointing to the unique role for force 
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propagation in initiating cell invasion.  We show that CaD is necessary for mlt epithelial invasion to occur, 

as knockdown of CaD causes the invasive phenotype in heterozygous mlt, which otherwise appear wild 

type.  To gain a better understanding of the crosstalk between muscle contraction and epithelial invasion, 

we performed a genetic screen for modifier mutants of the mlt phenotype.  From the screen, we discovered 

two enhancer mutants of mlt that contained missense mutations in unique protein domains of MYH11 that 

alter the contractile function of smooth muscle.  These mutations (S237Y and L1287M) occur in both the 

motor domain and helical tail domain of the protein, suggesting that alterations in distinct regions of 

myosin can result in abnormal contraction and potentially lead to invasion in underlying cells.  Since a 

number of myosin mutations have been implicated in vascular disease and colon cancer, these studies 

provide insight into the diversity and mechanistic consequences of mutated myosin in altering smooth 

muscle contraction and epithelial cell invasion.                            
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Chapter 1:  Introduction 

1.1: Summary 

 Coordinated smooth muscle contraction serves a critical role in both visceral 

tissues and in the vasculature where it contracts rhythmically and functions to maintain 

muscle tone.  Signaling at the myosin filament initiates ATP hydrolysis leading to actin 

filament sliding and ultimately force production from the smooth muscle.  The 

modulation of force output from contraction has been studied in vascular tissues, where 

actin bound regulatory elements have been identified as key mediators of muscle tone 

(Wang 2001, Smolock et al. 2009, Katsuyama et al. 1992).  In particular, the actin 

binding protein Caldesmon (CaD) has shown a unique ability to fine-tune contractile 

force in smooth muscle tissue.  CaD’s role in force modulation has been well documented 

at the level of actomyosin interactions, but its functional relevance in coordinating 

contraction and tissue maintenance in vivo remains unknown.  Our lab has previously 

shown that when endogenous myosin activation is perturbed, through inhibition of light 

chain (MLC) phosphorylation, intrinsic actomyosin interactions persist raising the 

question of whether CaD is able to modulate contraction independently of MLC 

phosphorylation.  We therefore hypothesize that CaD is capable of controlling contractile 

tone irrespective of myosin activation and to test this we have devised an in vivo assay to 

monitor smooth muscle tone within the larval zebrafish intestine.  

In addition to the many key regulatory elements that initiate or fine-tune smooth 

muscle contraction, specific domains within the myosin protein also have profound 
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effects on contractile output.  At the myosin head, the motor domain tightly coordinates 

actin binding, ATP hydrolysis and the release of ADP/Pi.  Each ATP-dependent 

movement by a myosin dimer along actin requires orchestrated changes in critical 

structural domains and mutations in certain protein regions can affect contraction in 

unique ways.  Both activating and loss-of-function mutations of myosin have been 

implicated in human vascular disease and cardiomyopathies, but the mechanism of 

smooth muscle dysfunction remains unclear.  We have previously characterized a unique 

gain-of-function mutation of smooth muscle myosin (myh11) in a zebrafish mutant, 

meltdown (mlt).  The myh11 mutation resulted in constitutive ATPase activity of the 

protein and a striking cellular invasion phenotype was observed in the intestinal epithelia 

of mutant larvae, leading to the question:  How can altered contraction dramatically 

change the cell behavior in an underlying tissue? 

Additional evidence from mlt, including abnormal CaD function, has led us to 

hypothesize that the myosin mutation leads to increased contractile force and alters the 

stiffness of the underlying stromal layer.  According to this model, the altered tissue 

stiffness in mlt provides a mechanical cue to epithelial cells, which then respond by 

initiating cellular invasion.  To address this we have examined the crosstalk between the 

smooth muscle and epithelial layer in mlt mutants and have performed biomechanical 

assays to better understand the link between the contractile defect and epithelial invasion.  

In addition to biomechanical signaling, mlt also raises the question of how specific 

myosin mutations elicit altered contractile force and if abnormal contraction is a common 

defect in human disorders caused by myosin variants.  We further hypothesize that 
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multiple myosin protein domains are capable of regulating contractile force output 

through altered ATPase activity, and that these changes can lead to physiological effects 

similar to what we have observed in mlt.  To test these hypotheses, we performed a 

genetic modifier screen in the mlt background where we set out to shed light on the 

signals that link the contractile defect with epithelial invasion.  Ultimately, we discovered 

additional regions of MYH11 that are also able to propagate the invasive phenotype and 

this enabled us to further our understanding of myosin domains in both contractile force 

modulation and their potential link to disease states.  

1.2 Smooth Muscle Contraction 

 The proper functioning of diverse tissue types ranging from the vasculature and 

respiratory system to the digestive tract and reproductive organs all rely on coordinated 

smooth muscle contraction.  Depending on the tissue type the nature of this contraction 

can be quite different.  In the vasculature for example, smooth muscle contracts tonically 

permitting slow, sustained contraction during the modulation of vascular tone.  Tonic 

contraction specifically allows smooth muscle to maintain constant force for a prolonged 

period of time with little energy utilization.  In contrast, intestinal contraction occurs 

phasically with rapid contraction and relaxation to enable food to be propulsed through 

the gut at a steady rate allowing for nutrient absorption and expulsion of waste.  In each 

of these types of contraction, subtle differences occur in the myosin heavy chain and light 

chain resulting in distinct contractile patterns and kinetics.  The changes that occur on 

myosin and its regulatory components have long been appreciated and additional 

modulatory factors have been identified that act at the myosin or actin filament to further 
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regulate smooth muscle contraction.  However, given the diverse functional properties of 

each smooth muscle tissue the precise coordination between myosin, actin, and their 

regulatory elements remains poorly understood in vivo.         

1.2.1 Initiating Contraction at Myosin 

In smooth muscle, force is generated by coordinated interactions between actin 

and myosin, where cross-bridge formation and cycling is a tightly regulated process. This 

is largely due to the N-terminal ends of myosin heavy chains as they form globular heads 

that hydrolyze ATP and enable binding to smooth muscle actin.  As a result of myosin’s 

enzymatic ability to hydrolyze ATP it serves as the primary force generating protein in 

smooth muscle.  Smooth muscle myosin is made up of two heavy chains and two 

corresponding light chains that are physically associated to the head domain. The primary, 

regulatory MLC is considered the central activator of smooth muscle myosin, and if MLC 

phosphorylation is blocked through inhibition of its kinase (MLCK) normal contraction 

cannot proceed.  A second light chain protein, the essential light chain, is also directly 

bound to the myosin heavy chain, but its role in regulating protein function is less clear 

and therefore the regulatory light chain is generally considered the primary regulatory 

protein of smooth muscle contraction.    

In smooth muscle, contraction initiates in response to Ca2+-dependent MLCK 

activity, with additional Ca2+-independent kinases contributing as well.  As the primary 

initiator of contraction, MLCK becomes active in response to its interaction with the 

calcium-binding protein Calmodulin following an influx of cytoplasmic Ca2+.  These 
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signaling events lead to MLC phosphorylation, which initiates cross-bridge cycling 

between myosin and actin leading to contractile force production.  In order to maintain 

contractile tone in smooth muscle, the phosphatase of MLC counteracts MLCK activity, 

providing a balance of MLC phosphorylation and dephosphorylation between individual 

myosin heads.  This balance of phospho-MLC is especially critical for tissues such as the 

vasculature where small changes in contractile tone can ultimately lead to severe 

consequences, such as hypertension due to altered smooth muscle contraction. 

There are four isoforms of mammalian smooth muscle myosin (Myh11); two C-

terminal splice isoforms (SM1 and SM2) and two head domain splice isoforms (SM-A, 

SM-B) and different combinations have distinct expression in smooth muscle tissues.  A 

mouse mutant of SM-B has normal physiology and survival but displays a significant 

decrease in maximal force generation and velocity of smooth muscle shortening (Babu et 

al. 2001).  Relative to SM-A, SM-B contains an extra seven-residue insert that resides in 

a domain adjacent to the ATP-binding pocket of the myosin head and its expression is 

specific to the intestine, small arteries, and bladder smooth muscles.  In vitro motility 

experiments have shown that the seven-residue insert can alter the kinetics of the cross-

bridge cycle and generate higher ATPase activity.  Interestingly, knock out mice in which 

all myh11 isoforms are deleted display low levels of contraction during early gut 

development due to a compensatory effect of non-muscle myosins, an effect dependent 

upon developmental timing as the myosin knockout is eventually lethal (Morano et al. 

2000).  Although smooth muscle myosin is well understood for its importance during 
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contractile force production, the specific contributions of each protein domain as well as 

interacting, modulatory factors in diverse smooth muscle tissues remains elusive.     

1.2.2 Modulating Contraction at Caldesmon 

As the primary regulation of contraction, MLC is physically associated with the 

neck domain of individual myosin heads (Kamm and Stull 1985, Murphy 1989) and 

MLCK phosphorylation induces a conformational change in myosin that activates its 

ATPase. ATP hydrolysis induces cross-bridge cycling within the actomyosin complex 

and ultimately the generation of contractile force.  Interestingly, in ex vivo tissues and 

culture cells where phospho-MLC levels are greatly reduced, endogenous actomyosin 

interactions are able to generate and sustain low-level smooth muscle contractile force 

(Siegman et al. 1984, Haeberle et al. 1985, Gerthoffer 1987, Moreland and Moreland 

1987).  To account for this, it has been proposed that contraction is also regulated by 

actin binding proteins that alter actomyosin interactions independently of phospho-MLC 

(Gusev 2001).  

One actin binding protein that has been extensively studied for its regulatory role 

in smooth muscle is Caldesmon (CaD) (Sobue et al. 1981).  CaD exists as two 

predominant isoforms that are generated by alternative splicing of a single mRNA 

transcript (Kordowska et al. 2006).  The low molecular weight isoform (l-CaD) is 

expressed in most cell types, including at low levels in smooth muscle, where it mediates 

actin and non-muscle myosin interaction in the cortical cytoskeleton (Helfman et al. 

1999).  The high molecular weight isoform (h-CaD) is expressed specifically in smooth 
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muscle and is distinguished from l-CaD by the presence of a peptide spacer domain that 

is functionally not well understood, but is thought to facilitate structural rearrangements 

of h-CaD (Wang et al. 1991).  Interestingly, in an h-CaD knockout mouse it was observed 

that l-CaD expression levels increased in intestinal and bladder smooth muscle pointing 

to a compensatory mechanism by the light isoform in certain smooth muscle tissues 

(Morano et al. 2000).   

Binding of h-CaD to the phosphorylated actomyosin complex reduces contractile 

force by inhibiting myosin ATPase activity (Szpacenko et al. 1985, Horiuchi et al. 1986, 

Earley et al. 1998), possibly by restricting myosin binding to actin or by stabilizing a less 

active configuration of the actin filament (Ansari et al. 2008) (Figure 2.1A, based on 

prior model (Wang 2001)).  h-CaD’s inhibition of the smooth muscle actomyosin 

complex can be reversed by Erk-mediated phosphorylation or through its interaction with 

Calmodulin in the presence of calcium (Smith and Marston 1985, Ikebe and Reardon 

1990, Childs et al. 1992).  This results in increased contractile force by enhancing myosin 

binding to actin (Katsuyama et al. 1992) (Figure 2.1B) which in turn may stabilize an 

active configuration of the actin filament (Ansari et al. 2008).  In smooth muscle with 

low levels of phospho-MLC, phospho-h-CaD is thought to promote the interaction 

between non-phosphorylated myosin heads and actin (Horiuchi and Chacko 1989) 

(Figure 2.1C, D).  Taken together, h-CaD provides an additional mode of contractile tone 

regulation in smooth muscle in the presence or absence of the primary signaling event at 

MLC.     
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1.2.3 Contractile Regulation of Gut Motility 

Myosin activation relies on neural signaling that results in MLC phosphorylation, 

and in the gastrointestinal tract (GI tract) the enteric nervous system (ENS) provides this 

initial stimulus.  The way in which ENS stimulation initiates smooth muscle contraction 

is through a Ca2+-mediated signaling cascade that activates Calmodulin, which then 

triggers MLCK, culminating in increased phospho-MLC.  In the GI tract ENS-dependent, 

coordinated contraction is critical in order to process food, absorb water and nutrients, 

and expel waste.  The smooth muscle tissue layers of the gut are innervated allowing for 

coordinated contraction that causes intestinal contents to be mixed and eventually moved 

through the intestine.  GI smooth muscles are autonomous in that they possess an ability 

to generate low-level spontaneous rhythmicity and contraction that can be driven by 

intrinsic pacemakers called interstitial cells of Cajal (ICC).  Therefore, smooth muscle 

cells (SMCs) in the GI tract have the ability to independently contract, though without 

electrical and mechanical coupling between cells coordinated contraction and peristalsis 

cannot occur (Sanders et al. 2012).  Additional inputs from enteric motor neurons are 

required in the GI tract to generate coordinated and rhythmic contractions.  There are also 

two types of muscle cells in the GI tract, circular and longitudinal, each providing 

contractile force in different directions and thus requiring fine coordination to produce 

rhythmic movements.  Coordinated motility in the GI tract is required for efficient 

digestion and absorption of food and relies on the interplay between each of the factors 

listed above as well as the intrinsic activity of individual muscle cells. 
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One example of the autonomous activity of SMCs is highlighted in the small 

intestine.  In this region of the GI tract, pacemaker activity organizes the spontaneous 

contraction of individual cells into phasic contraction, a process that does not depend on 

neural inputs.  Although this basal activity within SMCs is able to generate low 

amplitude spontaneous contraction, neural inputs are required to heighten the strength 

and rhythmicity of contractions.  In smooth muscle cells, the primary regulators of such 

spontaneous contraction are the ICC.  In cardiac smooth muscle, pacemaker cells are only 

detected in distinct sites, however in the GI tract they form networks of cells throughout 

the entire tissue suggesting a more prominent role.  The importance of the ICC was 

underscored in experiments on cultured gastrointestinal SMCs that alone do not generate 

electrical rhythmicity, but upon adding ICC exogenously spontaneous rhythmicity occurs 

that resembles intact smooth muscle.  Additional studies determined that slow wave, 

basal electrical rhythm originates in ICC and that they are coupled to SMCs, allowing the 

signal to be transmitted (Dickens and Morris 1998, Cousins et al. 2003, Kito and Suzuki 

2003). These observations are consistent with ICC expression throughout the GI tract 

where they are able to coordinate contraction and are key in regulating gut motility 

patterns. Physiological studies have shown that mice with defective c-Kit signaling, 

which is critical for ICC rhythmicity, have a reduced contractile response after neural 

stimulation and GI motility defects (Ward et al. 1994, Burns et al. 1997, Beckett et al. 

2007).  The ENS and ICC represent two well-studied examples of the tight coordination 

required across multiple cell types to produce rhythmic GI motility.  In addition to 

understanding the interplay between neural and pacemaker cells within smooth muscle, it 

is essential to comprehend how these inputs translate at the level of actomyosin 
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interactions and contractile force.  By improving our understanding of myosin motor 

function and smooth muscle modulators in vivo, we can begin to comprehend the 

complex nature of physiological events such as GI motility in greater detail.   

1.3 Motor Mechanism of Myosin 

In all forms of myosin, the primary site of activation is the myosin head domain.  

Each head can be divided into two regions: the motor domain (i.e. actin activated 

ATPase), and the lever arm, an extended helix containing calmodulin-binding sites.  

Adjacent to the head domain is a large coiled-coil region that is important for 

dimerization and folding of myosin.  More than 35 classes of myosins have been 

discovered, each with subtle variations of each domain that dictate subtle differences in 

protein function.  Additionally, myosin proteins may have either one or two heads, 

depending on the specific interactions that occur with the binding partners of each type of 

myosin.   

In the absence of actin, myosin heads retain the ability to rapidly hydrolyze ATP, 

but product release requires actin interaction.  After inorganic phosphate (Pi) and ADP 

are released, ATP rapidly rebinds to the actin-bound myosin, causing dissociation from 

actin.  All types of myosins maintain this same basic kinetic cycle, but the rate of 

transition between each state is highly variable allowing for kinetic tuning of myosin.  

Kinetic tuning occurs by altering the rate at which myosin proceeds through the ATPase 

cycle and also the relative amount of the cycle that myosin spends in force-generating 

states (strong actin binding) (De La Cruz and Ostap 2004).  The ratio of myosin’s 
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occupancy of the strong states to that of the weak+dissociated+strong states is known as 

the ‘duty ratio’ and is often used as a metric of force production from myosin.  Since the 

rates of Pi and ADP release dictate myosin ATPase cycling, they ultimately determine the 

duty ratio also.  In the example of skeletal muscle myosin, which functions in large 

clusters, a low duty ratio is maintained to maximize the shortening velocity and power 

output.  The low duty ratio allows this particular myosin to spend most of the cycle 

weakly attached or completely detached from actin to prevent drag when strongly bound 

heads slide the actin filament.  In other types of muscle and in different tissues the 

myosin duty ratio can be vastly different depending on the force requirements in each 

setting. 

Additional features of the myosin protein were revealed after the high-resolution 

structure of the myosin head was elucidated in chicken fast skeletal myosin (Rayment et 

al. 1993, Rayment et al. 1993).  An initial observation of the structure revealed the 

presence of a large cleft in the middle of the myosin head which was thought to close 

when myosin discards Pi and ADP upon strong binding to actin (Yengo et al. 1998, 

Coureux et al. 2003, Volkmann et al. 2003).  Another feature of the initial myosin 

structure was the location of the myosin light chains, which were bound to the C-terminal 

portion of the motor domain.  This region is also thought to form a lever arm that can 

amplify small movements within the rest of the myosin head.  This idea is referred to as 

the ‘swinging lever arm’ hypothesis and has been shown to be important in myosin’s 

function (Furch et al. 1999, Tyska and Warshaw 2002, Huxley 2007).  This hypothesis 

adds a level of complexity to how myosin head movements produce contractile force and 
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highlights how alterations in each myosin protein domain indeed has the potential to 

change the force output.      

1.3.1 Phosphate (Pi) Release 

As mentioned above, the initial interaction between myosin and actin triggers the 

release of Pi and in the absence of actin this release is quite slow.  For actin-activated Pi 

release to proceed, a ‘back door’ mechanism was first proposed whereby a Pi escape 

route could be created through a conformational change of myosin.  Though the specific 

conformation of this back door is disputed, it is clear that in order for the Pi to dissociate 

there must be re-arrangement of either the Switch I or Switch II domain which, along 

with ADP, block dissociation of Pi.  It is still unclear exactly how each Switch element 

can be induced to move after actin binding of myosin, but a mechanism in which Switch I 

shifts aside to create the back door is currently favored.  Multiple studies have observed 

movements of the upper portion of the myosin motor domain, and this has been 

interpreted as evidence for Switch I movement being responsible for these movements 

(Rosenfeld and Sweeney 2004, Kintses et al. 2007).  The concept of Switch I movement 

creating the back door is also derived from previous work confirming that Switch II 

movement is coupled to movement of the lever arm and thus is an unlikely candidate for 

controlling Pi release.  Evidence has also implicated Switch I in controlling the position 

of the lever arm, suggesting it is able to rearrange and create the Pi release pocket without 

altering myosin conformation.  
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1.3.2 Myosin Dimers 

As an additional layer of complexity with myosin activity, heads of the same 

dimer are able to communicate with one another in a process known as ‘gating.’  When 

the heads communicate they can coordinate events such as the number of steps a dimer 

takes along an actin filament before dissociating.  The communication is a response to 

strain that occurs when the leading head binds to actin and begins its powerstroke, but is 

then prevented from completing the powerstroke due to its connection with the lagging 

head.  Once the rear head releases ADP, it binds ATP and dissociates from actin to 

become the new leading head.  While the new leading head searches for a binding site on 

actin, the new rear head transitions from strong ADP-binding to weak binding, the 

slowest step in the ATPase cycle.  This allows time for the leading head to bind, release 

Pi, and establish strong binding to actin in order to continue the movement along the 

filament.     

It is clear that both myosin heads do not bind simultaneously during force 

generation, though the second head can increase the displacement or powerstroke of the 

engaged head (Tyska and Warshaw 2002).  It has been shown in the case of myosin II 

that additional myosin heads rapidly attach in response to stretch activation and it is 

thought that these heads are indeed the lagging, unattached heads.  The stretch 

presumably creates a type of physical distortion of attached myosin II molecules that 

positions the second head for rapid attachment to actin.  This could provide an 

explanation of how stretched muscle can rapidly increase its force to resist the stretch 

(Brunello et al. 2006).  In addition, the force-velocity relationship of muscle can be better 
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understood because as the velocity of shortening increases, fewer myosin heads are 

attached to actin in a force generating state (Piazzesi et al. 2007).  Interestingly, it has 

been demonstrated that the force per attached myosin head remains constant irrespective 

of velocity.  Therefore, one explanation for a decrease in force with increasing velocity 

would be a corresponding decrease in myosin heads attached to actin.  It has also been 

appreciated that phosphorylation at MLC is only required for activation when the myosin 

dimer is in tact as a single head of myosin can contract independently of MLC 

phosphorylation.  In considering myosin function, it is necessary to take into account the 

complexity of the individual movements as well as their interaction with neighboring 

heads.     

1.3.3 Myosin Mutations In Disease 

Mutations in smooth muscle myosin have been linked to a number of vascular 

diseases, and thus far the most studied of these is the aneurysm and dissection of the 

thoracic aorta. Thoracic aortic aneurysms tend to be asymptomatic and often are not 

diagnosed before an aortic dissection occurs.  However, thoracic aortic aneurysms 

leading to acute ascending aortic dissections (TAAD) can be very serious and often cause 

premature deaths.  A subset of patients with TAAD present with the disease and do not 

have an identified genetic syndrome but have relatives similarly affected, and this is 

known as familial TAAD.  In both sporadic and familial forms of TAAD, mutations in 

smooth muscle components have been identified and are implicated in the progression of 

the disease.  Although both smooth muscle actin and myosin mutations have been 
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identified in patients with TAAD, the implications of these mutations on contraction 

remains an outstanding question.  

By contracting in response to blood flow, smooth muscle cells (SMCs) regulate 

both flow and pressure in the vasculature.  Heterozygous mutations of smooth muscle 

actin (ACTA2) and myosin (MYH11) are together responsible for TAAD disease in 10-

14% of families (Guo et al. 2007, Pannu et al. 2007, Zhu et al. 2007).  A large French 

family with TAAD associated with patient ductus arteriousus (PDA) was used to identify 

the defective gene as MYH11 (Khau Van Kien et al. 2005), and subsequent analysis from 

three unrelated families with TAAD associated with PDA identified MYH11 mutations in 

two of the three families (Pannu et al. 2007).  The MYH11 mutations identified for the 

familial TAAD/PDA phenotype are limited to four mutations: a small deletion, a splice 

site mutation, and two missense mutations.  Individuals with ACTA2 or MYH11 

mutations can also present with occlusive vascular disease of the aorta due to increased 

numbers of SMCs (Pannu et al. 2007).   

1.4 Meltdown Mutant and Mechanotransduction 

1.4.1 Meltdown Mutant and Smooth Muscle Myosin 

 Previous work in our lab characterized mlt as a gain-of-function mutation of 

MYH11 that results in constitutive ATPase activity at the myosin motor domain.  The mlt 

missense mutation, W512R, occurs at the rigid relay loop domain that has previously 

been implicated in motor activity due to its proximity to critical myosin domains 

(Wallace et al. 2005).  Physiologically, the constitutive ATPase activity in mlt leads to 



	
  

	
   	
   	
  16	
  

abnormal, tonic contraction as time-lapse imaging revealed intestinal contraction 

beginning, but not rhythmically resting and constricting as is seen in wild type larvae 

(Seiler et al. 2012).  Tonic contraction of this nature could indeed be responsible for 

increased force production by the smooth muscle layer upon the surrounding stroma, and 

our previous work showed the blocking contraction, by actin knockdown, was sufficient 

to rescue the epithelial invasion in mlt.  Epithelial invasion can also be induced in 

heterozygous mlt, which are otherwise wild type and survive to adulthood, by treatment 

with a contractile agonist suggesting that contractile force is the primary driver of the 

phenotype.  Finally, premature phosphorylation of h-CaD was detected by Western blot 

in mlt mutants just prior to the onset of the phenotype (Seiler et al. 2012).  h-CaD has 

been studied in detail for its ability to alter contractile tone, and at an early time when the 

larval zebrafish intestine has very little contractility, h-CaD could certainly cause 

substantial changes in force output.  Taken together, myosin-induced contractile 

abnormalities have the potential of triggering mechanical signals between the muscle and 

stromal layer and a better understanding of how this occurs remains and outstanding 

question.            

1.4.2 Mechanotransduction 

The structural framework in SMCs is composed of the contractile unit along with 

cytoskeleton (made up of nonmuscle actin and intermediate filaments), which links to the 

cell surface through a protein called filamin A (Small and Gimona 1998).  Interestingly, 

filamin A mutations lead to a syndrome of joint laxity and aortic dissections, suggesting 

that it may provide a link between SMC contraction and disease. Filamin A enables the 
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actin filaments of the contractile unit to interface with the cytoskeleton at the cell surface, 

which contain integrin receptors.  Integrins provide the primary signaling to the ECM and 

serve as a transmembrane link between the matrix, the actin cytoskeleton, and contractile 

units (Moiseeva 2001).  This cellular complex, termed the ‘mechanotransduction 

complex,’ provides the interface between the contractile machinery on the interior of the 

SMC and the ECM on the exterior, to which force is transmitted.     

In the vasculature, electron microscopy of the mouse aorta has revealed that SMC 

contractile filaments link to microfibrils in the ECM early in development and these 

contacts are maintained up through adulthood (Davis 1993).  Fibrillin-1 (FBN1) is the 

major protein component of these microfibrils, raising the possibility that the integrin 

receptors of the ECM may interact with fibrillin-1.  Hence, FBN1 mutations may also 

disrupt SMC contraction by interfering with the SMC mechanotransduction complex.  

Interestingly, in FBN1 mouse mutants the first ultrastructural abnormality noted is an 

unusually smooth surface of the elastic laminae, likely due to the loss of cell attachments 

that are normally mediated by FBN1 (Bunton et al. 2001).   

Taken together, these components link SMC contraction to ECM components that 

can alter the stiffness of tissue.  Tissue stiffness has been appreciated during tumor 

progression where it can predict the presence of a tumor or the development of pathology 

with a heightened risk of malignant transformation, yet the relevance of tissue rigidity to 

tumor pathogenesis has been largely ignored (Khaled et al. 2004).  Though breast cancer 

patients with fibrotic “stiff” lesions have a poor prognosis (Colpaert et al. 2001), the 

relationship between tissue rigidity and tumor behavior at the molecular level is unclear.  
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Tumor rigidity likely reflects an elevation in interstitial tissue pressure due to matrix 

stiffening linked to fibrosis (Paszek and Weaver 2004).  However, it is not understood if 

and how tissue stiffness can actively promote malignant transformation as many current 

models rely upon three-dimensional culture assays and physiological forces are likely 

quite different from these substrates.  

1.5: Research Summary 

 Our previous work on the mlt mutant has revealed clear roles for increased 

contractile force, from myosin and h-CaD, in signaling to the epithelium to initiate 

invasion.  However, there is a limited understanding of how contractile force production 

and epithelial invasion occur in vivo.  h-CaD has been studied in great detail in vitro and 

in dissected vascular tissue, but a greater understanding of its role in vivo remains to be 

seen.  Studies on vascular smooth muscle disorders have revealed that diverse myosin 

domains can lead to disease progression, and in some instances this is due to altered 

motor function.  Though mouse models of these vascular disorders have been studied, the 

specific contribution of these myosin mutations on altered contraction and the 

propagation of the vascular phenotype remains an open question.  Cell invasion has also 

been linked to altered tissue stiffness, but such studies have relied on advanced three-

dimensional culturing methods and there is a paucity of in vivo studies on invasion.  

 In order to model the role of myosin and h-CaD during a normal physiological 

process, we utilized the larval zebrafish intestine to observe smooth muscle contraction in 

real-time.  This allowed us to assay the specific contributions of each contractile protein 
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in a live vertebrate.  Since h-CaD has been strongly associated with force production 

from smooth muscle, we hypothesized that altering h-CaD’s normal function would result 

in changes in propulsive peristalsis within the intestine.  In Chapter 2, I describe the 

consequences of h-CaD knockdown in both wild type larvae and a mutant that lacks 

endogenous smooth muscle signaling at MLC.  As MLC phosphorylation is the primary 

activating signal in smooth muscle, this study was important in understanding h-CaD’s 

potential independent role in the process.  In Chapter 3, I describe our efforts to 

characterize the role, in both smooth muscle contraction and epithelial invasion, of two 

myosin mutations that we identified from a genetic modifier screen of mlt. 
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Chapter 2:  Smooth Muscle Caldesmon Modulates Peristalsis In Vivo 
and is Required to Induce Epithelial Invasion in meltdown∗  

 

2.1:  Introduction 

Previous work from our lab identified a potential role for smooth muscle 

Caldesmon in the progression of the epithelial invasion we observed in meltdown (mlt) 

mutants.  To better understand the contractility of smooth muscle in mlt, Western blot 

analysis was conducted on regulatory proteins involved in contraction (Seiler et al. 2012).  

Initially, phosphorylated myosin light chain (p-MLC) expression was assayed and found 

to similar between wild type and mlt suggesting that this mode of signaling was intact in 

mutants.  This is consistent with the previous observation that there is unregulated, 

constitutive ATPase activity in the mutant Myh11 protein, in that it does not respond to 

MLC phosphorylation (Wallace et al. 2005).  However, when regulation of the h-CaD 

protein was assayed, Western blots indicated that premature phosphorylation of h-CaD 

was occurring in mlt.  The phosphorylated h-CaD was detected at 72 hpf in mutants, 

which is a stage prior to the onset of peristaltic contractions and also when epithelial 

invasion initiates in mlt.  These observations are consistent with the hypothesis that 

resting smooth muscle tone is increased in the intestine of mutant larvae.  Outside of its 

role in propagating the phenotype in mlt, we also wanted to gain insight into h-CaD’s 
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  The text of this chapter has been published (Abrams et al. Smooth muscle caldesmon modulates peristalsis 
in the wild type and non-innervated zebrafish intestine.  Neurogastroenterol Motil (2012) vol. 24(3) pp.288-
99.  Protein data presented in Figure 2.3, 2.7, and 2.9 was provided by co-author Gangarao Davuluri and 
transgenic larvae in Figure 2.6 were generated by co-author Christoph Seiler.  Model in Figure 2.1 was 
generated by Kristen Lorent. 
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physiological role in vivo as prior studies of this protein have focused on isolated smooth 

muscle tissue and individual cells.           

By measuring contractile force changes in cultured aortic smooth muscle cells, 

multiple studies have shown that the inhibitory activity of h-CaD can indeed modulate 

resting tone of individual cells (Lee et al. 2000).  These observations were extended to 

whole tissue studies of contractile force in dissected aortic tissue after h-CaD siRNA 

knockdown (Smolock et al. 2009).  These groups reported the reversal of h-CaD 

inhibition after knockdown resulting in a net increase in contractile force.  These findings 

point to h-CaD as a critical mediator of contractile force independent of primary myosin 

activation (via MLC phosphorylation), but analysis of h-CaD during physiological 

processes in vivo have yet to be elucidated.  Our lab has previously shown similarities 

between the zebrafish and mammalian intestinal smooth muscle and enteric nerve 

patterning (Wallace et al. 2005, Seiler et al. 2010).  These conserved aspects of the 

zebrafish intestine along with its optical clarity during gut development allowed us to 

directly test the role of h-CaD in vivo during a physiological process: intestinal peristalsis.  

The high molecular weight isoform of the Caldesmon (h-CaD) regulates smooth 

muscle contractile function by binding actin and modulating cross-bridge cycling of 

myosin heads.  Though the primary regulatory mechanism in smooth muscle occurs 

through myosin light chain (MLC), h-CaD may have the ability to enhance contractile 

tone independently of MLC regulation.  Upon phosphorylation, h-CaD undergoes a 

conformational shift allowing myosin binding to occur in a ‘higher energy’ or ‘poised’ 

state (Figure 2.1).  In homozygous meltdown (mlt) mutants, premature phosphorylation of 
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h-CaD occurs during a time in intestinal development where phospho-MLC levels remain 

low.  We hypothesized that phosphorylated h-CaD was responsible for an increase in 

smooth muscle contractile tone in mlt and was required for inducing epithelial invasion.  

To test this hypothesis we further investigated the role of h-CaD in mlt mutants and in 

addition examined its more general role in vivo during intestinal peristalsis.  We 

performed morpholino knockdown in viable heterozygous mlt larvae and determined that 

perturbing h-CaD could induce epithelial invasion in these larvae.  To determine whether 

h-CaD knockdown could alter intestinal peristalsis we examined live larvae using a 

fluorescent gut motility assay.  Analysis of these larvae determined that h-CaD protein 

was indeed modulating contractile tone in smooth muscle, as had been suggested from 

previous work in vitro.   
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Figure 2.1: Simplified Model of h-CaD Function.  Smooth muscle contraction depicted 

by sliding of actin (green) on myosin (red) filaments following ATP hydrolysis, derived 

from previous model (Wang 2001). (A) In smooth muscle with high levels of phospho-

Mlc (p-Mlc), non-phosphorylated h-CaD restricts binding of myosin heads to the actin 

filament such that force generation is inhibited. (B) When h-CaD is phosphorylated the 

myosin heads are able to bind the actin filament in a manner that enhances actomyosin 

interaction (b).  This leads to increased force generation (distance b > distance a).  (C) In 

smooth muscle with low p-Mlc, non-phosphorylated h-CaD prevents binding of non-

phosphorylated myosin heads to actin.  (D) phospho-h-CaD promotes binding of the non-

phosphorylated myosin heads to actin, thereby enhancing contraction; (distance d > 

distance c).  Distances a, b and c, d are not drawn to scale. 
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2.2:  Results 

2.2.1: Altered h-CaD Function Induces Epithelial Invasion in mlt 

At the onset of epithelial invasion in homozygous meltdown (mlt) mutants, 

smooth muscle signaling via p-Mlc is just beginning in the developing intestine at 3 dpf 

(Seiler et al. 2012).  Interestingly, we have detected high expression of total CaD protein 

at this early timepoint with markedly low levels of p-CaD expression.  This observation 

suggests a role for endogenous CaD as a contractile ‘brake’ within the nascent intestinal 

smooth muscle (Figure 2.1C, D).   Phosphorylation of CaD reverses its inhibition and 

enables propagation of contractile force, and interestingly we found that this 

phosphorylation occurred prematurely in mlt (Seiler et al. 2012).   It is important to note 

that low levels of p-MLC expression were also detected at this stage of development, 

which implies that coordinated contractions have not yet initiated in the intestine.  Since 

contraction is just beginning in 3 dpf mlt larvae, the effects of altered CaD function could 

become more evident in the absence of mature, coordinated contraction.  We postulated 

that since phosphorylation of CaD reverses its inhibitory function then morpholino 

knockdown of total CaD protein would mimic this block of inhibition by removing the 

protein completely.  

To investigate the role of h-CaD on the mlt phenotype, we utilized a splice 

blocking morpholino (Cald1a-i4e5 MO, refer to Figure 2.7) that enabled us to reverse h-

CaD inhibition in smooth muscle.  Using heterozygous mlt larvae, we injected Cald1a-

i4e5 MO into one-cell embryos and assayed for intestinal abnormalities that resembled 
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the mlt phenotype beginning at 3 dpf.  We observed a phenotype in the mid-intestine of 

Cald1a-i4e5 MO injected heterozygous mlt larvae that resembled abnormal ruffling of the 

intestinal folds (typical of homozygous mlt) compared to normal morphology in Cald1a-

i4e5 MO injected wild type larvae (Figure 2.2A,C).  Age matched Cald1a-i4e5 MO 

injected wild type larvae displayed normal intestinal morphology, though they had 

decreased gut motility as described later in this chapter.  To determine if the phenotype in 

mlt heterozygotes induced epithelial cell remodeling and basement membrane 

degradation, we performed histological analysis using antibody labeling of basement 

membrane (anti-laminin) and epithelial cell junctions (anti-cytokeratin).  After antibody 

labeling of whole mount larvae at 6 dpf, we embedded and prepared serial sections of 

heterozygous mlt with an observable phenotype.  Histological analysis revealed 

abnormalities that resembled homozygous mlt whereby intestinal epithelial cells were 

observed invading into the surrounding stromal layer after basement membrane 

degradation (Figure 2.2D).  Morpholino injected wild type larvae never displayed 

abnormal epithelial morphology and this was also true of heterozygous mlt injected with 

a control morpholino (Figure 2.2B).   

As h-CaD has previously been described in vitro to modulate contractile force, 

these results implicate a role for increased force from the muscle layer to which epithelia 

are sensitive.  We have shown previously that the mutated Myh11 protein in mlt has 

constitutive ATPase activity that is thought to contribute to an increase in contractile 

force (Wallace et al. 2005).  Our current results show that heterozygous mlt are also 

sensitive to increased contractile force, suggesting that there may be a biological 
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threshold of force that intestinal epithelial cells are sensitive to.  In other words, by 

removing h-CaD inhibition in mlt heterozygotes the overall output of contractile force 

becomes large enough to induce epithelial invasion (for model, see Figure 3.1). 
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Figure 2.2: h-CaD Disruption in Heterozygous mlt Induces Epithelial Invasion.  (A) 

Live image of 74 hpf wild type (WT) larvae after injection with a morpholino targeting 

the large isoform of Caldesmon (Cald1a-i4e5 MO).  Cald1a-i4e5 MO has no affect on 

WT intestinal morphology other than mild developmental delay (B) Histological cross-

sections through the intestine of larvae immunostained for laminin (green) and 

cytokeratin (red) show normal epithelial architecture in WT. (C) Heterozygous mlt larvae 

display abnormal intestinal morphology in the mid-intestinal region after Caldesmon 

knockdown. (D) Epithelial invasion (arrowhead) and stratification (asterisk) are observed 

in the mid-intestinal region of the mlt heterozygote by histological analysis.   
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2.2.2: The Zebrafish Contains Two Caldesmon Gene Paralogs with High Sequence 

Homology to Human CALD1 

To identify a zebrafish h-CaD ortholog we first performed BLAST analyses of the 

zebrafish genome assembly using human CALD1 coding sequence.  Two loci encoding 

genes with relatively high sequence homology to CALD1 were identified on chromosome 

4 and chromosome 25 (cald1a and cald1b, respectively).  The predicted protein encoded 

by the cald1a locus had the greatest degree of homology to human CALD1, particularly 

in the actin and myosin binding domains (Figure 2.3A).  

We also compared syntenic relationships surrounding the cald1a and cald1b loci 

with human CALD1.  We first identified the map positions of the zebrafish orthologs of 

65 genes immediately surrounding human CALD1 (Figures 2.3B and 2.4).  Of 34 genes 

located 5’ of CALD1, 26 were located in a comparable position with respect to the cald1a 

locus, whereas only 6 mapped to a comparable position with respect to cald1b.  For 31 

genes 3’ of CALD1, 14 were located surrounding cald1a whereas none were located 

adjacent to cald1b.  Next, we performed the reciprocal experiment and mapped the 

position of the human orthologs of genes surrounding the two zebrafish cald1 loci.  12 of 

40 genes 5’ of cald1a but only 7 of 38 genes 5’ of cald1b mapped to comparable regions 

of CALD1.  Similarly, 9 of 43 genes 3’ of cald1a but only 3 of 38 genes 3’ of cald1b 

mapped nearby CALD1.  Paralogs for 17 zebrafish genes were identified in the region 

surrounding the two cald1 loci (Figure 2.4).   

All together, these findings argue that cald1a and cald1b are gene paralogs that 

arose from a whole genome duplication that occurred in an ancestral species of ray-
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finned fish (Amores et al. 1998).  We predicted that the Cald1a protein was likely a 

functional ortholog of human CALD1 protein based on amino acid sequence homology, 

and due to more highly conserved gene synteny surrounding the cald1a locus. 
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Figure 2.3: Zebrafish Smooth Muscle Caldesmon (h-CaD).  (A) Schematic 

representation of the human, chicken and zebrafish h-CaD orthologs.  Conserved protein 

domains and percent amino acid homology are indicated.  (B) Conserved syntenic 

relationships surrounding the human CALD1 locus on chromosome 7 and the zebrafish 

cald1a locus on chromosome 4.  (C) RT-PCR showing amplification of the full-length 

cDNA corresponding to the high and low molecular  weight zebrafish cald1a isoforms 

from intestinal cDNA.  A correctly sized transcript for the predicted low molecular 

weight cald1b isoform is also detected.  (D) Western blot showing intestinal levels of 

CaD isoforms.  Molecular weight standards indicated.  Mb - megabase; Kb – kilobase; 

dpf – days post-fertilization. 

 

 

 

 

 

 

Figure 2.4: Conserved Gene Synteny Surrounding the Human CALD1 and 

Zebrafish cald1a and cald1b Loci.  Schematic depicts the genes surrounding the CALD1 

locus on human chromosome 7.  Genes with zebrafish orthologs in a comparable location 

surrounding the cald1a or cald1b loci are depicted in green and orange, respectively.  

Gene paralogs surrounding both the cald1a and cald1b loci are listed below. 
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2.2.3: Cald1a Encodes High and Low Molecular Weight Isoforms Generated By 

Alternative Splicing 

The cald1b locus encodes an l-CaD-like ortholog that was previously reported to 

play a role in cardiovascular development (Zheng et al. 2009).  Genomic sequence 

analysis of this locus did not identify a potential h-CaD transcript nor did BLAST 

analysis of the zebrafish EST database. To determine whether an alternatively spliced h-

CaD mRNA transcript was encoded by cald1a, we amplified its full-length cDNA from 

whole 5 day post-fertilization (dpf) larvae that have functional intestinal smooth muscle. 

Our primers amplified only a fragment corresponding to the predicted low molecular 

weight cald1a isoform (data not shown).  When the same primers were used to amplify 

RNA recovered from dissected intestines (that were enriched for smooth muscle) a higher 

molecular weight band was recovered in addition to the low molecular weight band 

(Figure 2.3C).  By contrast, amplification of intestinal cDNA using comparable primers 

from the cald1b ortholog only amplified low levels of a corresponding low molecular 

weight band (Figure 2.3C).  DNA sequence analysis showed that the larger band 

amplified from cald1a encoded a predicted h-CaD ortholog that included an 86 amino 

acid spacer domain.  Genomic DNA analyses indicated that the spacer was encoded by 

two short exons, 36 and 225 base pairs (bp), respectively.  We observed only limited 

amino acid homology with spacer domains from other vertebrate h-CaD proteins (Figure 

2.3A and 2.5).  This was expected, as the spacer sequence of h-CaD is not highly 

conserved across species.  Outside of the spacer domain, the h-CaD cDNA sequence was 

identical to the full-length cald1a cDNA, although a splice variant involving the terminal 



	
  

	
   	
   	
  32	
  

exon was infrequently detected (Figure 2.6).  These findings show that the cald1a locus 

encodes two alternatively spliced transcripts that are orthologs of the mammalian l-CaD 

and h-CaD isoforms. 

To determine whether the h-CaD transcript encoded a functional protein we 

performed Western blot analysis of 5 dpf intestinal extracts using an antibody directed 

against mouse CaD protein. This antibody detected both high and low molecular weight 

bands (Figure 2.3D).  The high molecular weight band was first detected around the onset 

of peristaltic contractions (~ 78 hours post-fertilization; data not shown) when only 

circular smooth muscle is present (Wallace et al. 2005) and CaD protein levels increased 

between 4 dpf and 6 dpf.  At these later stages longitudinal smooth muscle develops and 

peristaltic contractions are more pronounced.  The estimated molecular mass of the high 

molecular weight band (125kD) was notably greater than the predicted h-CaD molecular 

mass (70kD).  However, a comparable discrepancy between predicted and observed 

molecular mass of mammalian h-CaD proteins has been reported and attributed to its 

large number of acidic amino acids (Bryan 1989).  The molecular weight of the 

presumptive l-CaD protein was similarly affected.    
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Figure 2.5: High Homology at Function Domains in Vertebrate h-CaD Proteins.  

Note high degree of conservation in the actin and myosin binding domains (blue lines and 

green lines, respectively). H_sapiens – Human; G_gallus – Chicken; cald1b – zebrafish 

paralog (chromosome 25); cald1a – zebrafish paralog (chromosome 4). 

 

 

2.2.4: h-CaD Expression in the Zebrafish Intestine is Restricted to Smooth Muscle      

h-CaD expression has been shown in other vertebrates to be restricted to smooth 

muscle, whereas l-CaD is ubiquitously expressed.  RNA in situ hybridization using an 

isoform specific zebrafish h-CaD probe showed only low level background staining in 5 

dpf larvae (data not shown).  Therefore, to assay h-CaD expression in intestinal smooth 

muscle, we recovered epithelial cell and smooth muscle cell RNAs from bigenic larvae 

that express cell type specific fluorescent reporters (Figure 2.7A).   These larvae express 

GFP from the smooth muscle sm22a promoter beginning at 72 hours post-fertilization 

(Seiler et al. 2010) and mCherry from a miR194 promoter fragment that is activated in the 

epithelium at nearly the same time.  RT-PCR amplification of established epithelial 

(fabp2, vil11, and fabp6) and smooth muscle (acta2, myh11) markers confirmed purity of 

the sorted cell populations (Figure 2.7B).  The RT-PCR experiments also confirmed that 

zebrafish h-CaD expression was restricted to smooth muscle while l-CaD was expressed 

in both smooth muscle and epithelial cells (Figure 2.7C).  
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Figure 2.6: Schematic of a Carboxy-Terminal Splice Variant of cald1a.  Based on 

sequencing analysis, the most common cald1a isoform was comprised of 15 exons (top) 

while a minority splice variant isoform contained an additional exon containing a 

premature stop codon (bottom). 

 

Figure 2.7: Expression of the Zebrafish h-CaD Ortholog in Intestinal Smooth 

Muscle.  (A) Scheme to isolate intestinal smooth muscle (green) and epithelial (red) cells 
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from Tg(sm22a:GFP; miR194:mCherry) larvae.  Fluorescent image of a 5 dpf bigenic 

larval intestine is shown. (B) RT-PCR amplification showing expression of intestinal 

smooth muscle and epithelial markers in sorted cells.  The myh11 primers amplify a band 

(*) from contaminating genomic DNA (confirmed by sequencing).  (C) Expression of the 

high molecular weight cald1a transcript is restricted to smooth muscle.  Infrequently an 

additional band was amplified from smooth muscle that migrated near the low molecular 

weight cald1 transcript (^), however this was detected in only a minority of experiments.  

Schematic indicates the location of PCR primers (arrows) in exon 3 and exon 6 that were 

used to amplify the cald1a isoforms.  e - epithelial; m - smooth muscle. 

 

 

 

2.2.5: h-CaD Modulates Propulsive Intestinal Peristalsis in the Larval Zebrafish 

To investigate zebrafish h-CaD function in vivo, we generated a cald1a splice 

blocking morpholino (Cald1a-i4e5 MO) that enabled us to specifically disrupt h-CaD 

translation without affecting translation of the l-CaD isoform.  The specificity of Cald1a-

i4e5 MO also prevented any disruption of the normal function of cald1b.  It was crucial 

not to disrupt l-CaD function as this isoform is predicted to be essential for a wide range 

of non-muscle phenotypes.  For this study, we designed a morpholino complementary to 

the exon 5 splice acceptor of the h-CaD pre-mRNA (Figure 2.8A).  This was predicted to 

generate a novel Caldesmon transcript that encoded only 12 of 87 h-CaD spacer region 

amino acids. 



	
  

	
   	
   	
  37	
  

Zebrafish embryos and larvae injected with Cald1a-i4e5 MO had normal 

morphology other than mild developmental delay that was also seen in control larvae 

(Figure 2.8B).  In RT-PCR experiments using intestinal RNA and primers surrounding 

exons 4 and 5, a fragment of the truncated h-CaD transcript that lacked exon 5 but 

retained exon 4, and the fragment corresponding to l-CaD were both amplified (Figure 

2.8C).  The truncated h-CaD transcript, which was 36 bp larger than endogenous l-CaD 

transcript, encoded 12 amino acids in-frame with exon 6.  Successful inhibition of 

translation of the h-CaD transcript was confirmed by Western blot (Figure 2.8D).  This 

showed reduced intensity of the band corresponding to h-CaD with increased intensity of 

a band corresponding to l-CaD.  The apparent increase in l-CaD protein detected by this 

blot is likely due to the presence of the truncated h-CaD protein generated by the Cald1a-

i5e5 MO (as it is only 12 amino acids longer than endogenous l-CaD).   

To determine if h-CaD knockdown affected smooth muscle contraction we 

assayed propulsive peristalsis in the intestine of larvae injected with Cald1a-i5e5 MO that 

were then fed fluorescent microspheres (Figure 2.8E).  Following their ingestion, the 

microspheres form an aggregate in the intestinal bulb as a result of mixing peristalsis.  

This aggregate is then transported into the mid and posterior intestine via propulsive 

peristalsis, and eventually expelled.  We measured peristalsis beginning at 4 dpf in 

Cald1a-i5e5 MO injected larvae by monitoring fluorosphere movement 2 hours after 

ingestion.  As shown in Figure 2.8E, Cald1a-i5e5 MO larvae had an increase in intestinal 

transit as more larvae in this group had moved fluorospheres into the mid-posterior 

intestine and/or expelled them.  To confirm that contractile rate was unchanged in these 
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larvae, video recordings of morpholino injected larvae showed that the rate of peristaltic 

contractions was unaffected by h-CaD knockdown (Figure 2.9, top).  The affect on 

peristalsis was less pronounced at 5 dpf than at 4 dpf, most likely due to the transient 

nature of the morpholino knockdown.  In addition, because levels of phospho-h-CaD 

have increased by 5 dpf (Davuluri et al. 2010), the overall level of inhibition imparted by 

endogenous h-CaD is likely to be reduced.  Together these data indicate that the normal 

function of h-CaD is to negatively regulate the force of phasic intestinal smooth muscle 

contraction, as gut transit is accelerated in the larvae injected with Cald1a-i5e5 MO 

without a concomitant effect on contractile rate.   
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Figure 2.8: h-CaD Deficiency Enhances Intestinal Peristalsis in Zebrafish Larvae.  

(A) Schematic depicting isoform specific targeting of the high molecular weight cald1a 

transcript by a splice blocking morpholino (Cald1a-i4e5 MO).  The exon 5 splice 

acceptor is targeted (*).  (B) Normal morphology of 4 dpf larvae injected with Cald1a-

i4e5 MO and a control morpholino.  (C) RT-PCR of intestinal cDNA from Cald1a-i4e5 

MO larvae using exon 3 and 6 primers (arrows in panel 3A) shows reduced expression of 

the high molecular weight cald1a transcript.  (D) Western blot using intestinal protein 

from Cald1a-i4e5 MO larvae shows reduced levels of h-CaD with slightly increased l-

CaD levels.  Increased l-CaD expression likely reflects an additional protein translated 

from a modified transcript only 12 amino acids larger than l-CaD.  (E) Images of live 5 

dpf larvae that ingested fluorescent microspheres located in anterior and mid – posterior 

intestine, respectively.  Color scheme in bar graph depicts bead location indicated in 

lateral image of larva (lower panel).  Cald1a-i4e5 MO larvae show increased propulsive 

peristalsis at 4dpf (chi-square test, *** - p<.001).  5dpf p-value = .08, likely due to 

transient effect of morpholino knockdown. 
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Figure 2.9: Contractile Rate Remains Unchanged in Larvae After h-CaD Disruption. 

Cald1a-i4e5 MO and Tg(sm22a:CaDDK51-GFP) larvae in wild type and colourless 

backgrounds.  Contractions were counted using live video imaging, t = 2.5 min.  Number 

of larvae assayed and age (dpf) is indicated for each group.  Error bars indicate standard 

deviation.  Tg - Tg(sm22a:CaDDK51-GFP); wt – wild type.   
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2.2.6: Interference with h-CaD Binding to Smooth Muscle Myosin and Actin Enhances 

Intestinal Peristalsis 

h-CaD tethers myosin and actin filaments through interactions with its N- and C-

terminal domains, respectively (Ikebe and Reardon 1990, Wang et al. 1997).  The h-CaD 

- smooth muscle myosin interaction can be disrupted in vitro by expression of a peptide 

fragment from the myosin-binding domain common to l-CaD and h-CaD (Lee et al. 

2000).  By inhibiting endogenous h-CaD binding to myosin, actin-myosin interactions are 

enhanced, thereby increasing basal contractile tone (refer to Figure 2.1).  A comparable 

effect has been reported with a peptide derived from the CaD actin binding domain (Zhan 

et al. 1991, Katsuyama et al. 1992). 

We generated a transgenic line, Tg(sm22a:CADDK51-GFP), with stable smooth 

muscle expression of a zebrafish ortholog of the mammalian myosin binding peptide 

(CADDK51).  By generating a transgenic line, it enabled us to assay h-CaD function in 

older zebrafish larvae that have a developed enteric neuromuscular system with robust 

signaling via p-Mlc.  This was not possible in larvae injected with Cald1a-i5e5 MO as its 

inhibitory effect on translation is transient.  In addition to the cDNA encoding the peptide, 

the expression vector used to generate the transgenic line encoded GFP downstream of a 

viral 2A recognition motif (Provost et al. 2007).  This allowed us to identify fluorescent 

smooth muscle cells expressing the CADDK51 peptide following its cleavage from GFP.  

F0 larvae that had mosaic smooth muscle expression of CADDK51 under control of the 

zebrafish sm22a promoter and F1 germline transgenic progeny with ubiquitous intestinal 

smooth muscle GFP expression were both viable (Figure 2.10A).  Variable transgene 
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expression was detected in F1 larvae, most likely resulting from position effects due to 

the independent insertion sites of the transgene into the F0 germline. F1 transgenic larvae 

were used to further investigate the in vivo function of h-CaD in intestinal smooth muscle 

during later developmental stages.  

The effect of CADDK51 on h-CaD - myosin filament interaction was examined 

by measuring levels of h-CaD bound to smooth muscle myosin protein (Myh11) in the 

transgenic larvae (Figure 2.10B).  Because h-CaD remains bound to Acta2 in the 

actomyosin complex, transgenic larvae were injected with a morpholino targeting smooth 

muscle actin protein (Acta2) for this immunoprecipitation experiment.  This allowed us 

to determine the effect of CADDK51 on h-CaD - myosin interaction independent of 

Acta2 interaction.  Indeed, Western blot analysis revealed that significantly less h-CaD 

bound to Myh11 in Acta2 deficient larvae compared with control transgenic larvae.  This 

observation supports binding of CADDK51 to Myh11 and subsequent displacement of 

endogenous h-CaD.   

To determine the effect of CADDK51 peptide on smooth muscle contraction in 

vivo we assayed intestinal peristalsis in the transgenic larvae.  Using the intestinal 

fluorosphere assay (4 hour feeding; assay 4 hours later), we found a significant increase 

in the propulsive peristalsis of 6 dpf transgenic larvae compared to non-transgenic 

siblings.  This increased peristalsis was determined by transport of fluorospheres to the 

mid-posterior intestine and their expulsion (Figure 2.10C).  When larvae were sorted 

prior to bead feeding based upon the intensity of GFP expression, we were able to show 

that increased propulsion was dose dependent as GFP expression levels, which are a 
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surrogate for the level of CADDK51, correlated with changes in intestinal propulsion 

(Figure 2.10D).  Importantly, increased intestinal propulsion in transgenic larvae was not 

related to altered contractile rate (Figure 2.9, middle).  To confirm this affect we also 

disrupted actin binding and generated a second transgenic line, Tg(sm22a:CaDMG101-

GFP), with smooth muscle expression of an inhibitory peptide derived from the h-CaD 

actin binding domain (Zhan et al. 1991).  The CaDMG101-GFP peptide also had a 

pronounced enhancing effect on intestinal motility similar to the CADDK51 peptide 

(Figure 2.10C).   
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Figure 2.10: Expression of a Peptide Blocking h-CaD - Myh11 Interaction Increases 

Intestinal Propulsive Peristalsis.  (A) Lateral images of live 5 dpf F0 and F1 Tg(sm22a: 

CaDDK51-GFP) larvae showing mosaic and widespread smooth muscle GFP expression, 

respectively.  (B) IP-Western blot confirms that CaDDK51 myosin binding domain 

peptide blocks interaction of h-CaD with Myh11.  Total intestinal protein was IP’ed with 

Myh11 antibody and blotted as indicated.  (C) Bar graph shows increased propulsive 

peristalsis in unsorted Tg(sm22a: CaDDK51 -GFP) larvae and Tg(sm22a: CaDMG101 -
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GFP) larvae, in which peptides block h-CaD interaction with myosin and actin, 

respectively (chi-square test, *** - p<.001).  (D) Enhanced peristalsis in Tg(sm22a: 

CaDDK51 -GFP) larvae correlates with the level of transgene expression (determined by 

GFP fluorescence).  Images show larvae with strong, medium and weak GFP expression 

(Fisher’s exact test, ** - p<.05).  -MO – control larvae; Acta2-MO – larvae injected with 

smooth muscle actin morpholino; -ab - control IP without antibody; Myh11 - smooth 

muscle myosin. 

 

 

2.2.7: h-CaD Modulates Endogenous Smooth Muscle Contraction Independent of 

phospho-Mlc 

To address the role of thin filament regulation of intestinal peristalsis independent 

of phospho-Mlc, we utilized a zebrafish mutant, sox10 colourless (cls), that lacks enteric 

nerves (Kelsh and Eisen 2000, Dutton et al. 2001).  In previous work, we showed that cls 

mutants have nearly undetectable levels of intestinal phospho-Mlc and phospho-h-CaD, 

but normal total h-CaD levels.  Surprisingly, though cls larvae had little if any intestinal 

phospho-Mlc, they had a significant amount of residual peristaltic activity (Davuluri et al. 

2010).  This suggested that peristalsis was driven by smooth muscle contraction arising 

from intrinsic actomyosin interactions.  Also, low phospho-h-CaD levels in cls suggested 

that baseline peristalsis was inhibited and may be enhanced by h-CaD disruption.  To 

determine if the lack of phospho-h-CaD inhibited peristalsis in the absence of neuronal 

input, we repeated the Cald1a-i4e5 MO experiments in cls mutant larvae (Figure 2.11A).  

As in the Cald1a-i4e5 MO wild type larvae, intestinal motility in cls was assayed at 5 dpf 
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because of the transient effects of the morpholino knockdown.  Because of reduced 

feeding by the mutants, they were exposed to the fluorospheres for approximately 14 

hours and assayed 6 hours later.  Indeed, we observed enhanced propulsive peristalsis in 

h-CaD deficient cls larvae (Figure 2.11A).  While fewer of the Cald1a-i4e5 MO cls 

larvae expelled the beads (2%, compared to 21% of wild type larvae), many more had 

transported the beads to the mid-posterior intestine compared with control cls larvae (68% 

vs. 15%, respectively). 

Next, we assayed peristalsis in older (7 and 9 dpf) cls larvae that express the 

myosin binding peptide in intestinal smooth muscle.  Because these larvae were older 

than the morpholino injected larvae, an 8 hour feeding was sufficient.  Peristalsis was 

assayed 20 hours after feeding because the larvae had ingested a larger amount of beads.  

Fluorosphere analysis of these larvae showed that both transport of the fluorescent beads 

to the mid-posterior intestine and their expulsion was significantly greater in the 

transgenic cls larvae (Figure 2.11B).  The increased propulsion in transgenic cls larvae 

was not related to altered contractile rate (Figure 2.9, bottom).  The peristaltic defect in 

cls was not fully rescued by h-CaD disruption, as wild type control larvae at both stages 

completely cleared all ingested beads (data not shown).  This was expected given that the 

enteric nervous system is the primary stimulus for smooth muscle contraction.  However, 

these findings do show that h-CaD mediated inhibition of intrinsic actomyosin 

interactions contributes to reduced intestinal motility in the non-innervated intestine of 

zebrafish larvae. 
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Figure 2.11: Intestinal Peristalsis is Increased in h-CaD Deficient colourless (cls) 

Larvae.  (A) Bar graph shows partial rescue of intestinal peristalsis in h-CaD deficient 5 

dpf cls larvae.  (B) Tg(sm22a: CaDDK51 -GFP) cls larvae show partial rescue of 

propulsive peristalsis at 7 dpf and 9 dpf (chi-square test, ***p<.001). 
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2.3:  Discussion 

Although regulation of smooth muscle contraction principally occurs at the 

myosin (thick) filament through phosphorylation of regulatory Mlc, a potentially 

important role for regulation of contraction at the actin (thin) filament has long been 

recognized.  However, the physiological importance of this mode of regulation has never 

been directly assayed in vivo.  Here we show that the smooth muscle actin binding 

protein h-CaD regulates intestinal peristalsis in the wild type and non-innervated intestine 

of zebrafish larvae.   We also provide evidence for h-Cad’s critical role in the epithelial 

phenotype in meltdown; where we have observed h-CaD modulates contractile tone in 

heterozygous mlt leading to epithelial invasion. 

2.3.1: Zebrafish h-CaD Paralogs 

The h-CaD isoform we identified arises from alternative splicing of a pre-mRNA 

transcribed from cald1a, one of two cald1 paralogs we show are present in the zebrafish 

genome.  The cald1a locus also encodes an l-CaD isoform expressed in intestinal smooth 

muscle.  Predicted translation of the h-CaD protein showed high sequence homology of 

the actin and myosin binding domains compared with other vertebrate h-CaD proteins.  

By contrast, there is less sequence homology between the various spacer domains, 

possibly because of its proposed structural role as a charged single α-helix (Mabuchi and 

Wang 1991, Suveges et al. 2009). The cald1b locus encodes an l-CaD isoform expressed 

at low levels in intestinal smooth muscle that was previously reported to play a role in 

vascular development (Zheng et al. 2009).  Expression of a cald1b h-CaD ortholog was 



	
  

	
   	
   	
  49	
  

not detected.  Together with functional analyses described below, these findings showed 

that cald1a encodes the zebrafish ortholog of the h-CaD isoform expressed in mammalian 

intestinal smooth muscle.  These findings also argue that cald1a and cald1b have non-

overlapping functions in smooth muscle, similar to other zebrafish gene paralogs that 

arose from genome duplication events. 

2.3.2: Caldesmon’s Role in Intestinal Peristalsis and Vascular Tone 

We examined the role of h-CaD in intestinal peristalsis and smooth muscle 

contraction using a previously described simple in vivo assay.  Propulsive peristalsis was 

increased in h-CaD deficient wild type larvae generated via isoform specific antisense 

targeting.  Similarly, peristalsis was increased in larvae that express peptide transgenes 

designed to interfere with h-CaD binding to either the myosin or actin filament.  Because 

the rate of smooth muscle contraction was not increased in transgenic larvae, our findings 

argue that h-CaD normally functions to inhibit the force of smooth muscle contraction, as 

previously reported (Smolock et al. 2009).  Whether h-CaD affects contraction velocity 

or the distance of contraction in the intestine could not be determined using our methods.  

Although these results are consistent with the predicted role of h-CaD in modulating 

smooth muscle contractile force from phosphorylated cross-bridges, to our knowledge 

they are the first evidence for this phenomenon in vivo.  h-CaD deficient mice have been 

generated through gene targeting, however the effect of h-CaD disruption on intestinal 

motility has not been reported (Guo and Wang 2005).  Given the similarities of intestinal 

anatomy and physiology in zebrafish and other vertebrates, we would predict a 
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comparable effect of h-CaD deficiency on mammalian intestinal motility (Rich et al. 

2007, Shepherd and Eisen 2011).   

h-CaD function has been studied extensively in vascular (tonic) smooth muscle.  

Besides functioning as a brake on contraction arising from phosphorylated myosin heads, 

h-CaD is also thought to sustain contractile force generated by non- or de-phosphorylated 

myosin heads, thus accounting for force generation at low levels of phospho-Mlc.  The 

mechanism of this aspect of h-CaD function is not known but it has been postulated to 

occur through either physical stabilization of the actomyosin complex, or the cooperative 

activation of non-phosphorylated and phosphorylated myosin heads (Albrecht et al. 1997).  

This presumably occurs when h-CaD itself has been inhibited, such as occurs with 

phosphorylation.   

2.3.3: Role of h-CaD Independent of Light Chain Phosphorylation 

Whether h-CaD functions comparably in the phasic smooth muscle of the 

intestine and colon is not known.  Analyses of cls larvae allowed this question to be 

addressed in vivo, as cls have nearly undetectable levels of intestinal phospho-Mlc 

(Davuluri et al. 2010).  Surprisingly, cls larvae retain a significant degree of peristaltic 

function, presumably from ENS-independent smooth muscle contraction, which has been 

observed in the embryonic mouse and zebrafish intestine (Holmberg et al. 2007, Roberts 

et al. 2007, Roberts et al. 2010).  In addition to very low phospho-Mlc levels, cls larvae 

also have undetectable levels of phosphorylated h-CaD.  A low ratio of phospho-h-CaD 

to total h-CaD in cls suggests that the basal level of smooth muscle contraction is 
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inhibited.  Our observations indicate that this is indeed the case as both Cald1a-i4e5 MO 

injection and transgenic expression of the CADDK51 inhibitory peptide enhanced 

propulsive peristalsis in cls.  Although it is difficult to make mechanistic inferences 

regarding h-CaD function from this study, our findings are consistent with the idea that h-

CaD restricts binding of non-phosphorylated myosin heads to actin (Figure 1C), as h-

CaD knockdown enhances peristalsis in cls mutants that have low levels of p-Mlc.  The 

knockdown experiments in wild type larvae (high levels of p-Mlc) argue that h-CaD 

restricts binding of phosphorylated myosin heads to their preferred site on the actin 

filament (Figure 1A) and that this constraint is relieved in the absence of h-CaD.   

2.3.4: h-CaD and Human Intestinal Disorders 

h-CaD is widely expressed in human smooth muscle and has also been used 

extensively as a tumor marker (Miettinen et al. 1999, McCluggage 2004).  Its best 

characterized physiological role is during pregnancy when total h-CaD levels increase 

(Word et al. 1993), thus inhibiting premature stretch induced uterine contraction (Li et al. 

2009).  At the time of delivery, phospho-h-CaD levels increase dramatically and this is 

thought to enhance the force of uterine contractions.  A role for premature 

phosphorylation of h-CaD in a rodent model of pre-term labor has also been reported (Li 

et al. 2004).   In addition, recent findings have also implicated CaD (via Sox4 interaction) 

in skeletal muscle myoblast differentiation (Jang et al. 2013).  In this study, siRNA was 

used to reduce CaD expression in myoblasts resulting in decreased cell spreading and 

differentiation.  Their findings suggested a unique role for CaD where, through its 
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interaction with Sox4, it becomes involved in actomyosin organization in myofibrils 

during skeletal muscle development.   

Relatively little is known about the regulation or function of h-CaD in the human 

intestine.  In rabbit colonic smooth muscle, h-CaD serine-789 is phosphorylated upon 

exposure to the enteric neurotransmitter acetylcholine, which also drives phosphorylation 

of Mlc (Somara and Bitar 2006).  h-CaD phosphorylation by acetylcholine argues that its 

normal function is to enhance ENS-mediated smooth muscle contraction.  This further 

suggests that in the setting of ENS dysfunction, levels of both phospho-Mlc and phospho-

h-CaD are reduced, as occurs in zebrafish cls mutants.  Surprisingly, cls larvae retain 

peristaltic activity, which is likely a function of smooth muscle physiology and intestinal 

anatomy at larval stages.  ENS disruption in the adult human intestine, as modeled by 

conditional Mlck disruption in mice (He et al. 2008), is predicted to cause irreversible 

intestinal motility defects.  However, with only a modest reduction in ENS function it is 

conceivable that modulation of h-CaD could be used to enhance motility in humans.  

Targeting h-CaD could therefore be a therapeutic strategy to treat hypomotility caused by 

enteric neuropathies and disorders associated with reduced phospho-Mlc.  These 

disorders are likely to occur with aging and also related to Cajal pacemaker cells defects 

(Somara et al. 2007, Farrugia 2008).    
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Chapter 3:  Altered Myosin Motor Activity and h-CaD Dysfunction 

Propagate Contractile Force and Cause Epithelial Invasion in mlt 

3.1:  Introduction 

An outstanding question remains during the process of cell invasion as to what 

signals are responsible for initiating invasion and how such a signal is transmitted from 

the surrounding stroma to the cell to trigger invadapodia formation and cell motility.  

From our laboratories previous work on the meltdown (mlt) mutant we have mounting 

evidence that increased contractile force in the intestinal smooth muscle could initiate 

invasion of the underlying epithelial cells (Wallace et al. 2005, Seiler et al. 2012).  As the 

process of cell invasion had yet to be studied in vivo using a genetic model, we aimed to 

utilize mlt as a means to better understand how physical signaling can induce invasion.  

To elucidate the molecular signaling occurring in mlt mutants between the smooth muscle 

and the underlying epithelial layer our laboratory previously performed microarray 

transcriptional profiling. We found a significant increase in the expression of reactive 

oxygen species (ROS)-responsive genes and in particular glutathione peroxidase (gpx), a 

protective enzyme of oxidative damage was upregulated in the intestinal epithelium.   

ROS signaling has been studied extensively for its role in cancer cell invasion 

where it can activate both metalloproteinases and epithelial-to-mesenchymal transition 

(EMT) genes.  To test the importance of oxidative stress in the progression of the mlt 

mutant, heterozygous larvae were treated with menadione, an intracellular ROS generator, 

and were found to develop an epithelial phenotype comparable to mlt mutant larvae 
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(Seiler et al. 2012).   Interestingly, the treated heterozygotes did not develop cysts or 

epithelial expansion; features which are indicative of the late mlt phenotype.  In addition, 

ROS treated heterozygotes had increased expression of phosphorylated h-CaD, 

comparable to that seen in mlt mutants.  Taken together, these observations point to a 

crosstalk between the intestinal epithelium (where ROS is produced) and the smooth 

muscle, resulting in the propagation of contraction and ultimately epithelial invasion 

(Figure 3.1).  To test this, we investigated the possibility of a physical signal occurring at 

the level of the intestinal tissue by measuring tissue stiffness directly.  To shed light on 

the interplay between smooth muscle contraction and epithelial invasion, we performed 

cell dissociation experiments to establish if crosstalk between the muscle layer and 

epithelium is indeed necessary in the progression of the mlt phenotype.  The mechanical 

signal in mlt was found to be independent of overall tissue stiffness, an observation that 

we ascribe to local alterations between the stroma and the basal surface of epithelia.  We 

also found that it is necessary for each cell type to remain adjacent to one another, as in 

the organized intestine, as dissociation of the tissue is sufficient to diminish the signaling 

between them. 

We have also investigated the importance of myosin motor activity on smooth 

muscle contraction and the propagation of the mlt phenotype.  The mlt myosin mutation 

(W512R) occurs at a conserved region of the motor domain called the rigid relay loop, 

and the missense mutation results in constitutive ATPase activity of myosin (Wallace et 

al. 2005).  A number of unique smooth muscle myosin mutations have been described in 

vascular disease, suggesting that altering myosin’s motor function can have widespread 
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outcomes in vivo.  We therefore performed a genetic modifier screen in zebrafish to 

identify additional myosin mutations that can contribute the invasive phenotype in mlt.  

Two dominant enhancers of mlt were identified harboring unique mutations in vastly 

different myosin domains, the motor region and C-terminal helix.  These mutant proteins 

work in concert with the mlt mutation to initiate epithelial invasion, presumably by 

increasing contractile tone.  We therefore provide the first in vivo evidence for these three 

distinct myosin mutations sensitizing the intestinal epithelium for invasion, and provide 

an initial analysis of additional oncogenic signals and ROS responsiveness in each 

genetic background.  
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Figure 3.1 Amplification Feedback Signaling Loop Controls Smooth Muscle 

Contraction and Invasion in mlt  (A) In mlt heterozygotes the expression of mutant 

Myh11 protein does not generate sufficient smooth muscle tension to induce epithelial 

invasion or stratification (0). Menadione treatment induces ROS production in the 

epithelium (1). Epithelial ROS signaling leads to premature phosphorylation of 

Caldesmon in heterozygous smooth muscle cells (2). The resulting increase in smooth 

muscle tone (3) leads to an amplified ROS response in the epithelium (4), establishing a 

feed forward loop causing additional h-CaD phosphorylation and increased smooth 

muscle tension. Together these stimuli induce invasive remodeling of the epithelium (5). 

(B) Endogenous smooth muscle tone in mlt homozygous larvae (0) induces epithelial 

ROS (1) and h-CaD phosphorylation via epithelial signaling (2, 3). Ultimately, this 

culminates in epithelial invasion (4), as in menadione treated mlt heterozygotes.  Figure 

provided by Christoph Seiler and published in Seiler et al. 2012. 



	
  

	
   	
   	
  57	
  

3.2:  Results      

3.2.1: Smooth Muscle Tension Activates a Feed Forward Signaling Loop That Amplifies 

Epithelial Redox Signaling 

In homozygous mlt, the activation of redox signaling in the intestinal epithelium 

along with the premature phosphorylation of h-CaD during the onset of the phenotype 

suggest that there could be crosstalk between the smooth muscle and epithelial tissue.  

We have previously tested the nature of this crosstalk by assaying for phosphorylated h-

CaD in heterozygous mlt larvae that were treated with menadione, an ROS generating 

compound (Seiler et al. 2012).  These experiments revealed that redox signaling was 

indeed altering contractile force through h-CaD, but it was not clear whether it was 

signaling from the epithelium or if the menadione treatment had a direct effect upon the 

smooth muscle.  Initial in situ hybridization experiments suggested that redox signaling 

was restricted to the epithelial layer as ROS-responsive genes, such as gpx, were 

expressed exclusively in epithelial cells after menadione treatment.  These observations 

led us to hypothesize that h-CaD phosphorylation in menadione-treated heterozygotes 

was triggered by an epithelial signal rather than by a direct effect on the smooth muscle. 

To test this hypothesis, we asked whether menadione could induce h-CaD 

phosphorylation in dissociated smooth muscle cells from heterozygous mlt, as crosstalk 

with the epithelium would presumably be lost after tissue dissociation.  Intestines were 

dissected from 3 dpf heterozygous mlt and wild type larvae then promptly treated with 

trypsin to dissociate the tissue into a suspension of epithelial and smooth muscle cells. 

The dissociated cells were then treated with menadione and immediately prepared for 
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Western blot analysis.  A control group consisting of dissected intestines that were treated 

with menadione was used to ensure that redox signaling affected ex vivo tissue in the 

same manner as we observed in live larvae.  Western blots revealed that indeed h-CaD 

phosphorylation occurred in the non-dissociated heterozygous intestines after menadione 

treatment, whereas untreated intestines lacked any phosphorylation (Figure 3.2A).  In 

contrast, phosphorylated h-CaD was not detected in dissociated smooth muscle cells from 

heterozygous mlt that were treated with menadione (Figure 3.2B, n = 3 independent 

experiments).  Importantly, phosphorylated h-CaD was present in dissociated 

homozygous mlt smooth muscle cells showing that this form of the protein was not 

degraded during the incubation period of the assay (Figure 3.2B, lane 3).  These 

observations point to crosstalk from the smooth muscle to the epithelium as being an 

essential component of the phenotype and thus we next wanted to better understand if 

physical signals were being transmitted from the smooth muscle.  
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Figure 3.2:  Crosstalk Between Smooth Muscle and Epithelium.  (A) Western blot 

showing premature h-CaD phosphorylation (pCad) in dissected intestines from 

menadione treated heterozygotes but not homozygous WT larvae (lane 4 versus lane 3; 

ratio phospho-h-CaD WT:mlt = 0.02/1, relative to total h-CaD; CaD; in six experiments 

the ratio averaged 0.016/1; p<.001). h-CaD is prematurely phosphorylated in intestines 

dissected from 74 hpf mlt homozygotes versus mlt heterozygotes (lane 1 versus lane 2). 

(B) Western blot showing h-CaD phosphorylation (pCad) in the menadione treated 

heterozygous intestines prior to dissociation (lane 2) but not after dissociation into free 

cell populations (lane 5). Phospho-h-CaD persists in dissociated cells from homozygous 

intestines (lane 3), but is not detected in control intestines dissected from mlt 

heterozygotes, before (lane 1) or after (lane 4) dissociation into free cell populations. No 

phospho-h-CaD was detected in any dissociated samples in three independent 

experiments. Loading control, phospho-Myosin light chain (pMlc). 
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3.2.2: Distinct Mechanosensory Mechanisms Are Activated in Invasive Cells in Response 

to Smooth Muscle Tension  

One conceivable outcome of increased contractile force from the smooth muscle 

is the stiffening of the extracellular matrix surrounding the intestinal epithelial cells.  

Matrix stiffening promotes cell invasion in breast cancer models, in part through 

activation of focal adhesion kinase (FAK) (Paszek et al. 2005, Levental et al. 2009) and 

we therefore hypothesized that we were observing a similar biomechanical phenomenon 

in mlt mutants.  To determine whether a comparable mechanical signaling mechanism 

was activated in mlt we initially dissociated intestinal tissue and cultured the smooth 

muscle cells.  Using atomic force microscopy (AFM) we aimed to measure the stiffness 

of individual cells, however AFM measurements yielded variable results that were 

difficult to interpret (data not shown).  We therefore proceeded with whole tissue 

elasticity measurements of mutant larvae using a force displacement assay (Levental et al. 

2010).  For this assay, we utilized freshly dissected intestines and plated tissues on Cell-

Tak™, a biological adhesive, to prevent shifting during the measurements.  Before 

invasive remodeling is detected in mlt (70 hpf), tissue compliance was nearly identical in 

mutant larvae and their wild type siblings throughout the range of tissue indentations 

tested (Figure 3.3A, n = 6 mlt and 21 wild type larvae). When remodeling is first detected 

at 74 hpf, this compliance was slightly increased at the surface of the mlt intestine but 

similar to wild type controls at greater tissue depths, the measured difference is 

potentially due to the basement membrane degradation that occurs at this stage (Figure 

3.3B; n = 7 mlt and 12 wild type larvae examined).  Although small changes were 
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observed at 74 hpf, force values indicative of significant intestinal stiffening, as would be 

predicted from models of breast cancer invasion, were not detected in dissected mlt 

intestines. 

To assay for changes in extracellular matrix stiffness at the molecular level, 

previous work in our laboratory examined the phosphorylation of a known 

mechanotransducer, FAK, in mlt using immunohistochemistry (Snow and Henry 2009) 

and Western blot analyses. However, neither method detected elevated p-FAK in mlt 

(Seiler et al. 2012). Western blots also showed that levels of Collagen-1 and Fibronectin, 

additional markers of matrix stiffening, were not significantly elevated in the mlt intestine. 

All together, these data argue that mechanical force triggers epithelial invasion in mlt 

independently of changes in matrix composition or increases in tissue rigidity.  One 

possible interpretation is that focal changes in force within the intestinal lumen occur 

without a corresponding change in total tissue stiffness.  Altered blood pressure has been 

observed in smooth muscle disorders within the vasculature, but without available 

methods to detect altered force within the intestinal lumen of the larval zebrafish we 

cannot know definitively. 

Together with the h-CaD morpholino data from chapter 2, these findings support 

a model in which h-CaD phosphorylation in mlt smooth muscle cells arises from a ROS-

activated epithelial signal (Figure 3.1).  Phosphorylation of h-CaD then enhances smooth 

muscle tone, thereby generating additional oxidative stress within the epithelium.  This 

establishes a feed-forward signaling loop with the adjacent smooth muscle that further 

enhances contractile tone, amplifies epithelial ROS production, and culminates in 
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epithelial invasion.  In heterozygous mlt, activating redox signaling allows the epithelium 

to increase contractile tone in the smooth muscle through the phosphorylation of h-CaD 

that leads to further ROS production and culminates in cell invasion.  Removing h-CaD 

inhibition directly by morpholino knockdown also increases contractile tone and drives 

the epithelial phenotype, further emphasizing the importance of this protein as a 

modulator of smooth muscle contraction.  These observations raised two important 

question that we aimed to address:  1) Since the epithelia in mlt mutants are responding to 

altered contractile tone, how can this tone be altered to initiate invasion? 2) How is the 

specific myosin mutation in mlt (W512R) contributing to increased contractile tone and 

can mutations in different domains of the myosin protein produce a similar affect?    
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Figure 3.3:  Mechanical Signaling in mlt and Wild Type Intestines.   (A) Force 

displacement measurements show identical compliance of intestines dissected from mlt 

and WT larvae before the phenotype develops at 70 hpf, and a modest decrease in 

compliance at the outer surface of the intestine (<4 micron indentation) when invasion is 

present at 74 hpf. (B) Compliance is indicated by Young's modulus, which is proportional 

to the slope of the Force versus Tissue indentation curve.   

 

3.2.3: Dominant Modifier Screen Identified Two Enhancer Mutants of meltdown 

 We next sought to gain additional insight into the potential mechanosensory cues 

and smooth muscle contractile dynamics that are responsible for the increased force in 

the mlt intestine.  From our h-CaD and ROS observations, we hypothesized that epithelial 

cells in mlt initiate redox signaling in response to changes in the overall force output by 

the smooth muscle tissue.  If this hypothesis were true we should in principal be able to 

find additional mutations within the smooth muscle that alter force output or in epithelial 
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components that are sensitive to ROS and mechanical signaling, and to test this we 

performed a forward genetic screen for modifier mutants.    

We chose to perform a modifier screen due to a number of advantages that 

allowed us to better elucidate the critical signaling occurring in mlt.  Traditional forward 

genetic screens in zebrafish have identified numerous mutants that affect conserved 

developmental pathways (Driever et al. 1996) as well as mutants with human disease 

phenotypes, however many of the underlying mechanisms are not well understood.  

Modifier screens are a useful way to address this and have been used extensively in other 

organisms where they have aided in the understanding of major developmental and 

regulatory pathways (Jorgensen and Mango 2002, St Johnston 2002).  In addition, 

traditional genetic screens, from which mlt was initially characterized, relies on 

incrossing of the second generation (F2) to produce homozygotes where recessive 

mutations are scored by phenotype, but in a modifier setup you can screen one generation 

earlier.  As a powerful approach to elucidate the mechanisms of know recessive mutants, 

modifier screens identify second-site mutations that specifically enhance (worsen) or 

suppress (ameliorate) the phenotype of a given mutant (Bai et al. 2011).  Traditionally, 

the screen is performed in a sensitized genetic background in which the function of a 

particular pathway is only partially disrupted and therefore viability of the mutant animal 

is not affected.  Such a genetic background can be achieved by using a heterozygous 

mutant with a haploinsufficient phenotype or a homozygous mutant of a weak allele.  

However, due to embryonic lethality and a lack of heterozygous phenotypes most 

existing zebrafish mutants are not suitable for modifier screens.  Fortunately, from our 
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laboratory’s previous work on the mlt mutant we have discovered an inducible 

heterozygous phenotype that allows us to use this background for modifier genetics.   

From our previous work we know that although heterozygous mlt survive 

normally through adulthood, they can develop epithelial invasion as larvae under certain 

conditions where ROS is abundant or when gut contraction is exogenously increased 

(Seiler et al. 2012).  This sensitized heterozygous background in mlt makes it an 

attractive mutant for a modifier genetic screen.  We first generated our founder (F0) 

population by treating adult males in the long-fin wild type background (TLF) with the 

chemical mutagen, ENU.  Due to the toxicity of ENU, we had two surviving, fertile male 

founders out of 50 that were mutagenized from which we derived our screen.   

Importantly, we crossed our F0 population with heterozygous mlt adults to 

generate an F1 generation consisting of 50% trans-heterozygotes (mlt/ENU mutations) 

and 50% heterozygotes for only the ENU induced mutations (Figure 3.4). To screen for 

mutants that enhance or suppress epithelial invasion in mlt, we performed a modifier 

screen by initially carrying out a genetic cross in the F1 generation between the 

mutagenized founder generation and heterozygous mlt adults (Figure 3.4, F1).  The 

resulting F2 generation contains trans-heterozygote individuals that carry a single mlt 

allele combined with the allele carrying the new mutation induced by ENU mutagenesis.  

By randomly crossing together F2 trans-heterozygotes, screening can be performed on 

two unique mutations in each cross.  This crossing scheme also allows for screening of 

both enhancers of heterozygotes and suppressors of homozygous mlt (Figure 3.4, F2).  

Using this method, screening was performed on more than 1000 unique F1 genomes and 
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from this two enhancer mutants were identified that induced a phenotype in the 

heterozygous mlt larvae.   

3.2.4: Characterization and Sequencing of Dominant Enhancer Mutants 

Both modifier mutants caused a generally similar phenotype in the mlt 

heterozygote epithelium whereby invasive epithelial cells were observed in the mid-

intestine at 6 dpf.  In one mutant we identified, S237Y, the mlt trans-heterozygote 

phenotype was observed in a higher percentage of larvae compared to the second mutant, 

L1287M.  In addition, a subset of S237Y mutants displayed a more severe phenotype in 

the mid-intestine (Figure 3.5B).  Histological evaluation of trans-heterozygote larvae 

from both enhancer mutant backgrounds revealed the hallmarks of epithelial invasion 

occurring at 6 dpf, whereby basement membrane degradation coincided with abnormal 

epithelial cell motility (Figure 3.5C). 

To determine the chromosomal location of each mutation, map crosses were 

carried out by mating each F1 mutant adult with a polymorphic wild type background 

(WIK).  This crossing scheme typically enables large numbers of mapping markers to be 

identified due to the presence of a high number of SNPs between the two wild type 

strains.  However, while performing F2 crosses between adult modifier heterozygotes and 

mlt heterozygotes we observed a very strong linkage, where no instances of 

recombination were seen in over 400 individuals screened.  In other words, we never 

observed the mlt mutation and the modifier mutation in the same individual suggesting 

tight linkage and a very low recombination frequency.   
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Figure 3.4:  Dominant Modifier Screen to Identify Enhancers and Suppressors of 

mlt. The male parent is mutagenized, such that a subset of its sperm contains a mutant 

allele.  The mutagenized male is then mated with a heterozygous mlt female.  The F1 

progeny of this mating were genotyped for heterozygous mlt and mated randomly with 

additional mutant progeny.  Each F1 contains a unique mutation (i.e. ‘mut1’, ‘mut2’, etc.) 

and incrossing these adults allows for multiple mutations to be screened in a single clutch 

of F2 larvae.  The low number of modifier mutants identified reflects the specificity of the 

intestinal phenotype that was screened for.  In addition, F1 larvae with a modifier 

phenotype may not have survived to adulthood due to the intestinal defects observed. 
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From this observation it was reasoned that the mlt mutation and new mutation 

(S237Y or L1287M) were either a very small difference apart in their chromosomal 

location or were indeed new alleles of myh11. In combination with both modifier 

phenotypes being similar in appearance to mlt epithelial invasion, we reasoned that there 

was a high likelihood that these mutations were indeed two additional mutant alleles of 

myh11.  To validate the new mutations and because of their tight linkage with mlt, the 

5922 basepair coding region of zebrafish myh11a was sequenced from intestinal cDNA in 

each modified trans-heterozygote.  Sequence data was analyzed manually and instances 

of double peaks were recorded (one peak corresponding to mlt, the other to the new 

mutation).  Each short nucleotide polymorphism (SNP) identified was compared to the 

translated sequence to determine if it resulted in an amino acid substitution or in-frame 

STOP codon.  From this analysis, we confirmed that both mutants were new myh11 

alleles and that both were missense mutations (Figure 3.5E-H).  Interestingly, each 

mutation occurred in vastly different domains of the Myh11 protein; one at the N-

terminal motor domain (S237Y), and the other at the C-terminal coiled-coil tail domain 

(L1287M)(Figure 3.5G-H).  Given that the mlt mutation, W512R, occurs in a unique 

protein domain of MYH11 compared to these two modifier mutants, the new alleles 

presented us the opportunity to tease apart myosin function in vivo. 
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Figure 3.5: Two Dominant Enhancer Mutants Contain Unique Missense Mutations 

on MYH11.  (A) Wild type larvae at 6dpf, arrow depicts mid-intestine connecting 

anterior and posterior regions (B) mlt mutant larvae at 6dpf, arrow depicts cyst-like 

expansion of mid and posterior intestine (C) S237Y/mlt trans-heterozygous larvae at 6dpf, 

arrow depicts partial phenotype in mid-intestine.  Note normal appearance of anterior and 

posterior intestine at this stage.  Severe phenotype was observed in a fraction of 

S237Y/mlt trans-heterozygotes.  Arrows indicated sites of cyst-like expansion that was 

only observed in larvae with severe phenotype.  (D) L1287M/mlt trans-heterozygotes, 

arrows indicate partial phenotype in mid-intestine that was similar to S237Y/mlt.  (E+F)  
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Sequencing of the myh11 exome in S237Y/mlt larvae identifies distinct mutations.  

Asterisk indicates the location of each mutation where double peak represents the mutant 

and mlt alleles at a given locus.  (G+H)  Both mutations result in missense amino acid 

substitutions in Myh11.  Arrow indicates affected amino acid on Myh11 for each mutant. 

 

Since we initially observed the trans-heterozygote phenotypes of the modifier 

mutants at 6 dpf, where invasion was present in the mid-intestine, we wanted to 

determine if epithelial cells initiated a response earlier in development.  Smooth muscle 

contraction begins to organize at 3 dpf, and this is when the phenotype in homozygous 

mlt is first observed, therefore we wanted to assay for invasion at this timepoint in the 

trans-heterozygotes.  As no morphological changes were observed in the intestine at this 

stage, we utilized a transgenic line, Tg(miR194:Lifeact-GFP), in which a GFP-labeled 

peptide that binds F-actin (Lifeact-GFP) is expressed in the intestine (Seiler et al. 2012).  

By crossing Tg(miR194:Lifeact-GFP) into the modifier mutant background we could 

visually score for invadopodia in these larvae by cross-section analysis.  To do this we 

immunostained wild type and trans-heterozygous larvae with antibodies against laminin 

and GFP and found that protrusions localized to sites of extracellular matrix degradation, 

and that epithelial cells invade the surrounding stroma through sites of degraded 

basement membrane (Figure 3.6C,D).  Whereas in wild type Tg(miR194:Lifeact-GFP) 

the basement membrane remains in tact and no actin-rich protrusion were observed 

(Figure 3.6A,B). 
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3.2.5: S237Y, A Myosin Switch I Mutant Affecting Motor Function  

Recent work on myosin V has determined that a protein domain termed ‘switch II’ 

plays a critical role in stabilizing the conformation of the nucleotide-binding pocket in the 

presence of actin (Trivedi et al. 2012).  The same group also demonstrated, by mutation 

analysis of the switch II domain, that the region is essential for communication between 

the active site on myosin and the actin-binding region, which is required for ATP-induced 

dissociation from actin.  A proximal domain, ‘switch I’, has been shown to cooperate 

with switch II to maintain the proper structural alignment that enables release of Pi 

through the ‘back door’ of the myosin active site (Lawson et al. 2004).  Mutagenesis of 

amino acids within the switch I region generally had little affect on ATPase activity, 

though certain side chains were able to alter the ATPase binding pocket (Shimada et al. 

1997).  A neighboring serine was also mutated in myosin II (S237C) in Dictyostelium 

discoideum that was shown to cause defective ATP hydrolysis upon binding to actin 

(Cochran et al. 2013).  The homologous serine in myosin V was mutated (S217A) and 

shown to slow both actin-activated ATP hydrolysis and reduce the duty ratio, a measure 

of how long myosin spends in strong actin-bound states (Forgacs et al. 2009).  Switch II 

was also shown to be critical in mediating a key conformational change in the nucleotide-

binding pocket that leads to the release of ADP.  Additional mutations in the switch I 

domain of smooth muscle myosin (F344W and F248W) showed increased basal ATPase 

activity (Robertson et al. 2005, Decarreau et al. 2011).  A hearing loss-associated 

mutation in myo1c was also found to be located at the start of the switch I domain 

(R156W).  This mutation was shown to inhibit actin-activated ATP hydrolysis and had a 
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lower duty ratio that was attributed to a slowed rate of phosphate release (Lin et al. 2011).  

Structural changes in switch I are also thought to be tightly coupled to the strength of 

actin-myosin interaction (Kintses et al. 2007).  Interestingly, the homologous tryptophan 

(W501) in Dictyostelium discoideum to that which is mutated in mlt (W512) has been 

implicated in probing the movements in the switch I and switch II domains and the 

interplay between these domains may very well alter ATP hydrolysis or ADP and Pi 

release (Zeng et al. 2004, Malnasi-Csizmadia et al. 2005).  Taken together, this myosin 

domain has a strong link to myosin’s motor function and has structural implications that 

would enable it to interact with the helix loop helix domain in mlt.  
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Figure 3.6:  Invadopodia Formation in the Invasive Epithelial Cells of the S237Y/mlt 

Trans-Heterozygotes.  (A,B) Histological cross-sections through the intestine of 74 hpf 

immunostained wild type larvae.  Basement membrane is labeled in red (laminin 

immunostain) and actin labeled green (GFP immunostain in Lifeact-GFP transgenics).  

Nuclei labeled by DAPI (blue).  In wild type no actin-rich regions are observed adjacent 

to the basement membrane.  (C) Actin rich protrusions, indicating invadopodia formation, 

in S237Y/mlt co-localize with sites of basal lamina degradation (arrow). (D) During 

progression of the phenotype epithelial cells invade the tissue stroma through degraded 

regions of the basal lamina (arrow).    
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 The mutation that we identified in the myosin motor domain, a serine to tyrosine 

substitution occurring at amino acid 237, was located within the switch I domain of 

Myh11.  As noted earlier, this specific region of Myh11 has been shown to play a critical 

role in the ATPase function of myosin.  The domain forms a pocket out of which ADP 

can be efficiently released during ATP hydrolysis, and changes in the amino acid make 

up of the switch I or switch II domain can slow the release of ADP during contraction.  

Delaying the release of ADP slows the uncoupling of myosin and actin during 

contraction, and thus allows the myosin head to remain bound to actin longer.  This has 

been described previously in Dictyostelium discoideum, as mutation of the homologous 

serine, S236, resulted in slowed ADP release and altered ATPase function (Cochran et al. 

2013). To test if the MYH11 S237Y mutation altered ATPase function similarly to S236, 

in vitro ATPase measurements were performed.  For this assay, it was necessary to 

introduce the S237Y mutation into a truncated form of the human MYH11 protein 

(HMM), as full-length myosins form large filaments in vitro that disrupt ATPase 

measurements.  The S237Y HMM was transfected into insect cells and exposed to an 

increasing concentration of smooth muscle actin to measure ATPase hydrolysis as 

described previously (Sweeney et al. 1998). Strikingly, unphosphorylated S237Y HMM 

protein displayed a significant increase in ATPase activity when compared to wild type 

HMM that only had low, baseline activity due to the lack of pMLC (Figure 3.7A).  This 

increased ATPase activity was not due generalized activation of the mutant protein, as 

phosphorylated S237Y HMM returned to normal levels of ATPase activity comparable to 

wild type (Figure 3.7A, phosphorylated).   
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In addition to ATPase function, the rate of inorganic phosphate (Pi) release was 

examined for the S237Y mutant.  This step is considered rate-limiting for the ATPase 

cycle and has been shown to be the entry point into force generating states (Sweeney and 

Houdusse 2010).   Pi release was faster in S237Y and this increase was not affected by 

MLC phosphorylation (Figure 3.7D,E).  Additionally, the release of ADP can be 

measured as a readout for myosin detachment from actin, as its release limits detachment.  

The rate of ADP release was decreased nearly 2-fold in S237Y and also was not affected 

by MLC phosphorylation (Figure 3.7B,C).  Using these measurements, the duty ratio can 

be determined which determines the relative amount of the cycle myosin spends in strong 

actin-binding (force-generating) states.  As shown in Table 1, S237Y maintains a higher 

duty ratio when compared to wild type in the phosphorylated and unphosphorylated states 

of myosin.  Taken together, these results suggest that MYH11 S237Y protein exits 

nonforce generating states faster (higher Pi release) while maintaining force-generating 

states longer (slower ADP release) and that the overall force output will increase in the 

mutant.   
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Figure 3.7:  S237Y Mutation Causes Aberrant ATP Hydrolysis In Vitro.  (A) Myosin 

ATPase assay of heavy meromyosin protein (HMM) harboring the homologous S237Y 

mutation in human myosin.  Unregulated ATPase activity is detected in 

unphosphorylated S237Y mutant protein compared to wild type protein that only shows 

baseline activity (compare ⦁ to ▼).  Changes in S237Y mutant ATPase activity after 

MLC phosphorylation were not detected (compare ▲ to ■). (B-C) Myosin ADP release 

assay of S237Y mutant HMM where time is represented on the horizontal axis and 

overall fluorescence is depicted on the vertical axis.  The release of ADP from 

actomyosin is measured using a fluorescently labeled nucleotide and quantifying the rate 

at which fluorescence is lost to determine the rate of dissociation.  In both phosphorylated 
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and unphosphorylated S237Y protein the rate of dissociation was slower (required more 

time to decrease fluorescence, also see Table 1). (D-E)  The release of Pi from myosin 

was measured using a fluorescent probe for Pi based on a phosphate binding protein 

(White et al. 1997, De La Cruz et al. 1999) (also see Table 1).          

 

3.2.6: Myh11L1287M, A Myosin Tail Domain Mutant  

While the domains within the myosin motor unit have been characterized in some 

detail for their role in ATP hydrolysis and actin binding, the coiled-coil tail of myosin is 

far less understood.  It is known, however, that the charge along the coiled-coil is 

important in assembling thick filaments and for structural modification.  Myosin tail 

mutations have been described in cardiac smooth muscle (MYH7) as being implicated in 

dilated cardiomyopathy, but the functional consequences of these mutations are less clear 

than those occurring on the motor domain.  One possibility is that altered coiled-coil 

structure could affect myosin incorporation into thick filaments and indirectly affect force 

output over the longer term (Wolny et al. 2013).  Wolny et al. tested 6 different MYH7 

tail mutations that had been implicated in cardiac disease, and looked at their ability to 

form filaments and contract normally using a cell culture assay.  They found that 

mutations that disrupted α -helical content of peptides also had reduced thick filament 

formation in culture, but no changes in contraction were observed.  One particular MYH7 

mutation at a highly conserved amino acid, E1356K, was found to be thermodynamically 

instable, hindering its ability to form filaments (Armel and Leinwand 2010).  Two unique 

mutations at the same tail domain amino acid (R1500P and R1500W) have been shown to 

cause dilated cardiomyopathy, but both cause decreased thermodynamic stability and 
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overall filament self-assembly (Armel and Leinwand 2010).  These observations suggest 

that alterations at the myosin tail domain and its corresponding helical structure can have 

the potential to alter motor function indirectly.  Importantly, these structural changes at 

the myosin rod can lead to tissue-wide defects as it has been demonstrated in cardiac 

smooth muscle and is likely the case in other smooth muscle tissues as well.     

The C-terminal modifier mutant, a leucine to methionine substitution which 

occurred at amino acid 1287, was located in the tail region of Myh11, a protein domain 

critical for myosin dimerization and filament formation.  The domain forms a coiled-coil, 

bringing together individual myosin proteins to form functional dimers, a process 

required for actin shortening and thus the production of contractile force.  Though we 

cannot directly measure myosin dimerization in this context, mutations in this region 

have been previously described and altered myosin contractility has been reported.  

Myosin tail domain mutations are also known to alter filament assembly of neighboring 

myosin dimers, which affects muscle contractility.  To determine if the L1287M mutant 

had a defect in motor function we aimed to perform an in vitro ATPase assay, however 

for this we needed to utilize the full length Myh11 protein as the mutation occurred in the 

tail domain.  The full length protein has been generated, however these measurements are 

currently ongoing.   
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Table 1:  Increased Myosin Duty Ratio in S237Y Mutant.  Values presented are taken 

from same experiment shown in graphical form in Figure 3.7  

 

3.2.7: Redox Signaling in L1287M but Not S237Y  

Meltdown mutants have increased expression of ROS responsive genes and 

heterozygous mlt larvae develop invasive epithelia in response to treatment with ROS 

compounds.  We therefore wanted to examine redox signaling in the two modifier 

mutants.  As neither S237Y nor L1287M develop a visible phenotype as homozygotes, 

we reasoned that ROS treatment could potentially induce epithelial invasion similarly to 

our previous observations in heterozygous mlt.  To examine this question, we treated 

homozygous S237Y and L1287M mutant larvae with 1.5uM menadione to activate ROS 

in the epithelium as previously described (Seiler et al. 2012).  Interestingly, we observed 

invasive epithelia in 3 dpf homozygous L1287M mutants, this phenotype was similar to 

the response seen previously in heterozygous mlt larvae (Figure 3.8).  This observation 

suggests that two very disparate mutations occurring in Myh11 (W512R and L1287M) 

can sensitize the intestinal epithelium to redox signaling, likely through the overall 
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contractile output produced by the smooth muscle.  Surprisingly, S237Y homozygotes 

failed to respond to menadione treatment (data not shown, 3 independent experiments) 

pointing to the possibility of subtle differences in force output occurring at each myosin 

domain.  Age matched heterozygous mlt larvae were included in all menadione 

treatments to confirm that redox signaling was active in these experiments and the 

developmental timing was correct (Figure 3.8C), as the staging for treatment is crucial to 

initiating invasion in mlt.  To determine if menadione treatment of homozygous S237Y 

larvae initiated intestinal protrusions without cell invasion, we repeated the menadione 

treatment experiment in Tg(miR194:Lifeact-GFP).  As we have previously reported 

instances where invadopodia protrude the surrounding basement membrane without 

causing epithelial cell invasion, we postulated a similar phenomenon could be occurring 

in menadione treated homozygous S237Y mutant.  However, we observed normal Lifeact 

GFP expression comparable to that of wild type larvae suggesting that S237Y 

homozygous mutants were not even mildly responsive to redox signaling (data not shown, 

2 independent experiments).   
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Figure 3.8:  Oxidative Stress Induces Epithelial Invasion in Homozygous L1287M 

Mutant Larvae. (A-C)  Lateral images of live homozygous L1287M (A), wild type (B), 

and mlt heterozygous larvae (C).  Larvae were treated with Menadione for 3 h beginning 

at 73 hpf.  Menadione treated L1287M homozygous larvae have an intestinal phenotype 

(arrows) that resembles an untreated mlt homozygous larvae (Wallace et al. 2005).  No 

observable phenotype was detected in wild type larvae, and heterozygous mlt were used 

as a positive control.        
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3.2.8: Normal Intestinal Motility and Survival of Homozygous Modifier Mutants             

Homozygous mlt mutants begin developing an intestinal epithelial phenotype at 

74 hpf and the cells gradually expand into a cyst-like malformation of the entire gut 

preventing the larvae from processing food and hindering their survival.  However, since 

this lethality is due in large part to the severe epithelial phenotype that disrupts overall 

gut architecture rescue experiments were conducted to determine if survival could be 

improved.  As the mlt mutation is a gain-of-function in Myh11, rescuing the phenotype is 

achieved by morpholino knockdown of MYH11 protein (Wallace et al. 2005).  

Morpholino knockdown in zebrafish is transient with normal protein expression typically 

returning between 5 dpf and 7 dpf.  Therefore, contractile function of the mutant Myh11 

protein can be monitored in the larval intestine at 7 dpf along with general survival 

resulting from the smooth muscle defect, independent of epithelial disorganization.  In 

rescued mlt mutants, a significant deficit in gut motility was observed when assayed 

using a fluorescent bead feeding method.  Most rescued homozygous mlt mutants 

retained a fluorescent bolus in the anterior gut after being left overnight, whereas nearly 

90% of wild type injected larvae had expelled all beads at that time (Fig. 3.9).  This result 

suggests that the mutant Myh11 protein, a constitutively active ATPase, was unable to 

generate rhythmic contractions necessary for gut motility in the developed intestine.  

Moreover, time-lapse movies confirmed that only mild contraction was occurring in 

rescued mlt, supporting the idea of an unregulated mutant protein lacking coordinated 

contraction.  When compared to the contractile deficit we see in cls mutants (see chapter 

2), rescued mlt show similarly slowed gut motility but contraction is not visually evident 
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as it is in cls, highlighting the importance of endogenous actomyosin interactions which 

can occur independent of phospho-MLC in cls (Davuluri et al. 2010).  The lack of visible 

contraction in rescued mlt suggests that the mutant myosin not only cannot respond to 

phospho-MLC, but also that endogenous actomyosin interactions cannot contract 

normally in the mutant.  Not surprisingly, rescued mlt individuals are not highly 

successful at surviving into adulthood, as only 2 out of 100 rescued individuals were 

viable, but showed decreased body size and small swellings along their ventral side.   

To assess contractility in the Myh11 modifier mutants, gut motility was assayed 

in homozygous larvae from S237Y and L1287M. Incrossing heterozygous carriers of 

each mutant allele never yielded a visible phenotype in the homozygous progeny, so 

fluorescent bead feeding assays were performed to monitor any subtle changes in gut 

contraction.  These assays were performed on all larvae from an incross to assess motility 

in both homozygous and heterozygous larvae.  In both S237Y and L1287M, we observed 

normal gut motility at 6dpf when larvae were assayed 4 hours after removing the beads 

and also after an overnight incubation while feeding on paramecia (Figure 3.9).  Time-

lapse imaging of S237Y homozygotes revealed no detectable changes in rhythmic 

contractions occurring at 6dpf (data not shown), thus confirming that the ATPase 

dysfunction in this mutant was not as physiologically severe as in mlt with regard to 

contraction.  Additionally, both homozygous modifier mutants are viable throughout 

adulthood.  It should be noted, however, that a subset of L1287M homozygous adults 

display signs of infertility and can become lethal as adults.  The near normal survival and 

lack of visible contractile defects in homozygous modifier mutants supports the notion 
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that mlt heterozygotes remain highly sensitive to modest changes in contractile force and 

redox signaling, as single allele of S237Y or L1287M will suffice to induce epithelial 

invasion. 

 

 

Figure 3.9:  Normal Intestinal Motility in S237Y and L1287M MYH11 Mutants.  (A) 

Bar graph represents cumulative results from pooled clutches of S237Y larvae that were 
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fed fluorospheres at 6 dpf and assayed for intestinal motility the following day.  The 

pooled larvae were derived from a heterozygous incross and contain 25% wild type, 50% 

heterozygous, and 25% homozygous S237Y mutant larvae.  These graphs represent the 

combined data from 3 independent experiments (chi-squared test, *P > .05, not 

significant)  (B) L1287M larvae pool has a small decrease in intestinal motility at 6 dpf 

(chi-squared test, **P < .05).  Compare this to WT sibling and rescued mlt -/- bar graphs. 

mlt larvae were rescued by injecting myh11 morpholino as described previously (Wallace 

et al. 2005).  These larvae show nearly 25% having no intestinal motility and serve as a 

positive control group (chi-squared test, ***P < .001). 

 

3.2.9: Modifier Mutants are Sensitive to Oncogenic Signaling             

Heterozygous mlt and homozygous L1287M mutants respond to menadione treatment at 

74 hpf, but at later stages of development this response to ROS signaling is lost.  At 5 dpf, 

invasion is not observed after menadione treatment in S237Y and L1287M homozygous 

mutant larvae (data not shown) and this lack of a response was likely due to a change in 

the epithelial redox signaling and smooth muscle contractile dynamics compared to 74 

hpf.  In heterozygous mlt larvae, our lab previously reported a response to menadione in 

older larvae when oncogenic signaling was enhanced (Seiler et al. 2012).  Using a 

transgenic strain that expresses an activated human KRAS allele in the intestinal 

epithelium (Tg(miR194:eGFP-KRASG12V), intestinal epithelial cell hyperplasia was 

induced in 5 dpf zebrafish larvae. In addition, these KRAS transgenic larvae were bred 

into an axin1 loss-of-function mutant background, which disrupts Wnt signaling and 

leads to added intestinal hyperplasia, as described previously (Heisenberg et al. 2001).  

The intestinal epithelial cells in these ‘KRAS-axin’ larvae are similar to those in 
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colorectal cancers where activated KRAS and defective Wnt signaling both occur.  In the 

KRAS-axin larvae that were also heterozygous for mlt, menadione treatment at 5 dpf 

generated a dramatic invasive response, whereas siblings that were wild type at the 

myh11 allele showed no response to menadione (Seiler et al. 2012).  To determine if 

S237Y and L1287M were sensitized to oncogenic signaling in a similar manner to mlt, 

we crossed each mutant into the KRAS-axin background and performed menadione 

treatment experiments at 5 dpf.  After 5 hours of menadione treatment, both homozygous 

myh11 mutants displayed epithelial invasion while heterozygous larvae resembled wild 

type (Figure XX).  Importantly, invasion was not detected after menadione treatment of 5 

dpf homozygous myh11 mutants that lacked KRAS-axin, suggesting that the observed 

response was indeed due to oncogenic signaling in these mutants.  
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Figure 3.10:  Activation of Oncogenic Signaling Enhances Sensitivity of S237Y and 

L1287M to Oxidative Stress.  (A) Lateral views of live, menadione treated 5 dpf axin 

mutant larvae that express mutant KRAS in the intestinal epithelium (Kras-axin).  

Hypertrophy of the intestinal epithelium in Kras-axin larva is unchanged by treatment 

with menadione.  (B) Menadione treatment causes pronounced cystic expansion of the 

intestinal epithelium of the Kras-axin S237Y homozygote (arrows).  (C-D) Histological 

cross-sections through the intestine of immunostained larvae show invasive cells in 

menadione treated Kras-axin S237Y homozygotes (arrows).  Invasion is not detected in 

menadione-treated Kras-axin wild type siblings.  (E-F) Similar cystic expansion is 

observed in Kras-axin L1287M homozygotes larvae after treatment with menadione 

compared to wild type sibling controls.   
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3.2.10: Altered Vascular Flow Rate After Smooth Muscle Actin Disruption 

          In many of the human diseases associated with myosin mutations as well 

phenotypes described in mouse models for thoracic aneurysm and cardiomyopathy, 

vascular abnormalities remain a common feature.  Our findings in the intestinal smooth 

muscle show that altered contractility can result in striking features such as epithelial 

invasion, and lastly we sought to determine if smooth muscle abnormalities could lead to 

vascular phenotypes in zebrafish.  We utilized the smooth muscle actin (acta2) 

morpholino that we described above in chapter 2 and injected into wild type embryos.  

We raised these larvae to 5 dpf, when vascular smooth muscle expression is first detected 

in zebrafish and compared the vascular flow rate to age-matched, control injected wild 

type larvae.  We found a significant increase in both arterial and venous flow in acta2 

morphant larvae when compared to control injected wild type (Figure 3.11A).  Consistent 

with this, the measured artery and vein width was increased in acta2 MO injected larvae 

also (Figure 3.11B).  Indeed we expect that altered smooth muscle actin function would 

decrease contraction in the vasculature allowing for the vessels to widen and pass blood 

faster.  This proof-of-principle experiment shows that contractile disruptions can indeed 

be detected in the vasculature of larval stage zebrafish, presenting this method as a 

potential way in which to study smooth muscle contraction in addition to the intestine.    
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Figure 3.11:  Increased Vascular Flow After Smooth Muscle Actin Disruption. (A) 

Artery and vein flow rate was measured in 5 dpf larvae that were injected with a 

morpholino targeted to smooth muscle actin (acta2, n=10 larvae) or a mismatched control 

morpholino (n=8 larvae). (B) Widening of arterial and venous blood vessels using images 

obtained from the same set of larvae assayed in (A).  Values are presented as an average 

flow rate or average width of all the larvae tested.  t-test  * P < .05, *** P < .005    
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Discussion 

 Studies of myosin missense mutations in vascular disease and in vitro analyses of 

specific protein domains have provided important links between myosin during 

contractile modulation and its potential to cause severe disruptions within certain tissues.  

However, the connection between the specific function of myosin and its tissue-wide 

effects cannot be realized through these analyses.  Our results provide an in vivo analysis 

of the role for S237Y, L1287M, and W512R myosin mutations in both smooth muscle 

contraction and the propagation of epithelial invasion within the intestine.  In our model, 

each of these mutations alters myosin contractility in a unique way through the dynamic 

process of ATP hydrolysis and each mutant is different in their response to redox and 

oncogenic signaling.  These results provide a unique avenue with which to study smooth 

muscle contractility and they lead to a number of additional questions requiring further 

investigation.  For one, it would certainly be interesting to determine the precise nature of 

the L1287M mutation with regard to its ATPase function and this is something we hope 

to gain further insight on in the near future.  Overall, our data implicate myosin mutations 

and h-CaD in the tuning of contractile tone and alterations in the function of these 

proteins can result in striking and biologically interesting disruptions in the GI tract.  In 

the future, applying these observations to vascular abnormalities in the larval zebrafish 

would provide an interesting connection with known human vascular diseases where 

Myh11 is mutated.        
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Chapter 4:  Conclusions and Future Directions 

In this work, we have addressed how smooth muscle contractile force can be 

modulated as well as the consequences of abnormal contractility in the intestine.  We 

have revealed an important in vivo role for h-CaD during gut motility, which illustrates a 

modulatory function for this protein during contractile force production.  In a previously 

studied h-CaD knockout mouse, smooth muscle tissues appeared to function normally 

and this was attributed to a compensatory role of l-CaD in this context.  Thus the ability 

to re-examine h-CaD function using the live imaging capability of zebrafish allowed us to 

monitor its affect on smooth muscle contraction in the gut.  Because of the established 

role in vitro for h-CaD in regulating vascular tone, our findings in the zebrafish intestine 

may potentially be extended to the vasculature and other smooth muscle tissues as well.  

We have also characterized a novel mutation in the myh11 motor domain that leads to 

altered ATP hydrolysis and initiates epithelial invasion in heterozygous mlt, a previously 

characterized myh11 mutant.  A second mutation in the helical tail domain of myosin was 

also found to cause invasion in heterozygous mlt and was responsive to redox signaling, 

its role in ATP hydrolysis is currently under investigation.  Although the tail domain 

mutant only responded to redox signaling when homozygous, this observation remains 

clinically relevant as our assay is conducted with a fairly short exposure to reactive 

oxygen.  In heterozygous human carriers, for example, a longer time period of exposure 

to reactive oxygen could allow a response to manifest gradually.  Taken together, this 

work suggests that alterations of specific MYH11 domains and smooth muscle regulatory 

elements, such as h-CaD, can have profound effects on both physiological functions and 
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biomechanical signaling leading to cellular invasion.  In the following section, these 

conclusions will be investigated in more detail and additional experiments will be 

proposed to further this work in the future.      

4.1:  Implications of h-CaD as Force Modulator During Contraction 

During smooth muscle contraction, a number of contributing factors work in 

concert to produce coordinated rhythmicity or maintain muscle tone.  The 

phosphorylation of MLC has been thoroughly described as the regulatory event initiating 

contraction, but to better understand the diverse roles that smooth muscle plays in each 

tissue its critical to consider each of the modulatory events which fine tune contraction. It 

is now appreciated that clear differences exist between longitudinal and circular smooth 

muscle layers as well as their specific neural inputs and these differences can lead to vast 

changes in contraction and force output.  Prior work from our lab has shown that in a 

zebrafish mutant lacking enteric nerves and with no phospho-MLC GI motility persists, 

albeit extremely slowly (Davuluri et al. 2010).  These observations point to other 

contributing factors such as ICC pacemaker activity, hormonal stimulation, intrinsic 

actomyosin interactions and modulatory proteins, such as h-CaD being critical in tuning 

the force output and rhythm of smooth muscle contraction.  We have used a simplified, 

readily observable vertebrate system in the larval zebrafish intestine to determine the 

roles of h-CaD, phospho-MLC, and enteric nerve input in vivo.  However, our analysis 

has not determined that these regulatory factors maintain similar importance later in 

development or in complex mammalian tissues where additional inputs need to be 

considered.  Thus, it will be critical to evaluate whether targeting h-CaD in mature tissues 
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can generate the same response that we have seen with our observations, as this will shed 

light on the potential for modulating smooth muscle contraction in human GI and 

vascular disorders.     

Additional evidence of CaD’s importance in the regulation of smooth muscle 

contraction was recently demonstrated using a mouse model of bladder contraction.  

Mice were generated that carried mutations within the CaD ATPase inhibitory domains 

and though homozygotes were embryonic lethal, heterozygous mice could produce more 

contractile force during bladder smooth muscle contractions (Deng et al. 2013).  These 

observations point to CaD’s role within diverse smooth muscle tissues as well as the 

physiological sensitivity to CaD disruption, as contraction was enhanced in heterozygotes. 

Enteric nerve and smooth muscle tissue grafting are widely utilized procedures in cases 

where gut motility is disrupted, and both present a number of limitations.  CaD and 

related smooth muscle regulatory proteins present an alternative mode of contractile 

regulation that has the potential to be fine-tuned using targeted strategies. 

Both the inhibitory role of h-CaD and the molecular signaling pathways that 

regulate its activity have been characterized in smooth muscle cells from the digestive 

tract and other mammalian tissues (Gerthoffer and Pohl 1994, Earley et al. 1998, Chacko 

et al. 2004, Lu et al. 2006, Zhang and Zhang 2007, Smolock et al. 2009).  Despite these 

advances in understanding h-CaD function and regulation, its role during complex 

physiological responses, such as intestinal peristalsis, has not been directly examined in 

vivo.  Isoform specific knockout of h-CaD in mice has been reported, however visceral 

smooth muscle function was not perturbed due to a compensatory increase in l-CaD in 
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phasic smooth muscle tissues (Guo and Wang 2005).  A more recent follow up study 

found that arterial smooth muscle in h-CaD null mice was abnormally slow at relaxing, 

supporting the role of h-CaD in controlling vascular tone (Guo et al. 2013).  This 

observation suggested that unphosphorylated crossbridges did not properly detach and 

importantly, there was no difference in MLC phosphorylation in these mutants indicating 

that this change in relaxation is only attributed to the loss of h-CaD.  One possible 

explanation of the altered relaxation in the mutants is the slow release of ADP during the 

myosin ATPase cycle, allowing the dephosphorylated heads to remain attached to actin 

longer in the absence of h-CaD before they progressively detach. 

4.1.1 Smooth Muscle Contraction and Gastrointestinal Disorders 

As discussed in Chapter 2, a potential role of h-CaD in mammalian intestinal 

motility could be to compensate for disruptions in enteric nerve signaling where limited 

contraction persists, as it would be unlikely to offset a complete loss of MLC 

phosphorylation.  One context where this would be important is in tissue regeneration and 

transplantation efforts where coordinating contraction remains a major hurdle.  Initial 

tissue engineering approaches of the small intestine that have used transplanted tissue in 

rat and canine models of severe bowel resection have shown improvement in the basic 

physiology and enteric nerve regeneration (Chen and Badylak 2001, Grikscheit et al. 

2004).  However, these tissues did not produce the proper coordination of circular and 

longitudinal smooth muscle that is crucial to generate appropriate force for gut motility.  

Similar challenges have been encountered with stomach and colonic smooth muscle, as 

regenerated tissue demonstrated an absorptive capacity but did not respond to stimulation 
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by acetylcholine treatment (Hori et al. 2002).  Lastly, three-dimensional in vitro models 

have demonstrated that alignment of circular smooth muscle can be achieved around the 

colonic lumen and rhythmic contraction can occur, but these findings have yet to be 

validated in vivo (Hecker et al. 2005).   

One promising study by Pan et al. used neural crest progenitor cells for 

transplantation into a rat model for colonic dysfunction.  In this study, the authors were 

able to demonstrate a partial rescue of neuronal mediated gut motility in the diseased 

colon after transplantation (Pan et al. 2011) and previous work has shown that human 

enteric progenitor cells can repopulate segments of an aganglionic colon (Metzger et al. 

2009).  In this example, the results are similar to what we have observed with h-CaD’s 

ability to partially rescue motility in colourless mutant larvae that lack enteric nerves.  It 

would certainly be compelling to analyze h-CaD function in these transplantation studies.  

Limited success has also been achieved in studies with engineered sphincteric smooth 

muscle, as this region of the GI tract is less complex and therefore easier to induce 

motility.  Engineered sphincteric smooth muscle tissues grown in culture and grafted into 

animals displayed low levels of contractile tone as well as a response to neural input 

(Raghavan et al. 2010, Raghavan et al. 2012).  However, restoring gut motility has not 

been demonstrated in these studies and regenerating smooth muscle layers with proper 

orientation and functionality remains a challenge.   

As current efforts are focused primarily on enteric nerve replacement or smooth 

muscle tissue grafting, targeting regulatory elements in these tissues may allow finer 

manipulations of contraction and possibly better muscle coordination.  A number of these 
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challenges could be addressed in vivo using the zebrafish model of intestinal contraction 

that we have established.  For example, by using small molecules one could foreseeably 

screen for factors that improve or reduce gut motility in the larval intestine.  Not only 

would such an approach carry the potential to uncover targeted compounds to treat 

motility disorders, but also by understanding the target and mechanism of action such 

small molecules could provide valuable insight into the regulatory complex guiding 

smooth muscle contraction.  By furthering our understanding of both actomyosin 

interactions and mediators of force production such as h-CaD, and combining this insight 

with the current tissue engineering methods, the potential exists to improve coordinated 

contraction in GI motility disorders and after tissue replacement therapies.  

In summary, smooth muscle contraction and gut motility results from coordinated 

behavior of multiple cell types and modulatory factors at the contractile apparatus. 

Although much has been elucidated about the function and molecular mechanism of these 

different cell types, highly specific therapeutics for GI motility disorders remain elusive. 

In each disorder or region of the GI tract, the regulation of contractile force and the 

mechanisms that regulate smooth muscle excitability seem to differ considerably.  There 

are also differences between the GI tracts of mice, humans, and zebrafish although 

understanding the specifics of human smooth muscle regulation will start with modeling 

the process in other vertebrates.  It is also important to consider that motility disorders 

may not be manifested throughout the entire GI tract.  For example, if constipation results 

from hypomotility in the colon that does not imply that other regions of the GI tract will 

contract abnormally, and thus treatments devised to increase contraction in one area may 
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negatively affect motility in a neighboring region.  Importantly, there are many 

similarities between the GI tract and other organs (i.e. the vasculature) with regard to 

smooth muscle and its regulatory components, and manipulating molecular targets in the 

gut could alter contraction of other critical organs.  Currently, there are very few gut 

specific smooth muscle targets and a limited number of efficacious compounds to treat 

motility disorders.  Therefore, there is a need to identify additional regulatory elements at 

the molecular level that can modulate smooth muscle contraction and GI motility, as 

these discoveries would allow for more targeted therapies.  

Additionally, in studies of c-kit mutants where ICC are absent contractile 

responses could be elicited in the stomach and lower esophageal sphincter after repetitive 

stimulation, suggesting that transmitter overflow can elicit a response without ICC 

(Sivarao et al. 2001, Huizinga and White 2008).  Other inputs from purine interstitial 

neurotransmission (PDGFRa) generate an electrically coupled complex that allows SMCs 

to become stimulated after activation of any cells within the complex.  Layers of 

regulation also exist in circulating hormones, paracrine substances and inflammatory 

mediators.  Altering any of these regulatory inputs can change the response of SMCs 

leading to gut paralysis or hypermotility disorders that affect the movements of food, 

absorption of nutrients, and waste transit.  A greater understanding of the basic 

contractile apparatus in gut smooth muscle would provide a foundation for improving 

occurrences where upstream signaling has been disrupted.   GI motility disorders 

commonly arise from developmental defects and disease processes that compromise 

function, and regenerative medicine has the potential to correct motility problems through 
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engineering of functional GI smooth muscle and enteric nerves.  However, the complex 

organization and contraction of smooth muscle has presented a challenge in coordinating 

tissue-wide contraction.  Extensive work on vascular smooth muscle, where differentiated 

SMCs have been used to engineer functional tissue, has shed light on the challenges of 

providing normal contraction in synthetic tissue.  Though fairly successful in vascular 

tissue, engineering GI smooth muscle has presented several challenges due to the many 

cell types and neural inputs that regulate carefully orchestrated rhythmic contractions 

(Bitar and Raghavan 2012).  Further studies of both h-CaD and myosin within GI smooth 

muscle could aid in avoiding some of the setbacks in transplanting tissue when motility is 

disrupted.  With the great strides that have been made in tissue engineering and 

transplantation, studying contractile modulators could complement this approach when 

addressing therapeutic validity for motility disorders.   

4.2:  Muscle Contraction and Increased Force 

Mutations of Myh11 have been implicated previously in vascular disease and in 

our studies we have found a connection between smooth muscle mutations and epithelial 

invasion in an underlying tissue.  In both vasculature disease and in our work in the 

intestine, Myh11 mutations alter the motor function that ultimately leads to the abnormal 

physiology observed.  This observation suggests that smooth muscle contractility has the 

capability to dictate the morphology of neighboring cells and underlying tissues.  Indeed, 

muscle contraction has been shown to order tissue morphology in the skeletal system and 

during embryogenesis.  Using both a mouse and zebrafish model, Shwartz et al. showed 

that chondrocyte morphology during skeletal development was impaired when muscle 
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contraction was chemically or genetically reduced (Shwartz et al. 2012).  They observed 

rounded, rather than elongated, cells in paralyzed zebrafish and in ‘muscle-less’ mouse 

mutants impaired chondrocyte intercalation was noted.  Contractile force has also been 

shown to regulate bone growth earlier during embryogenesis, as mutant mice that lack 

muscle contraction harbor offspring with abnormally developed bone structures (Sharir et 

al. 2011).  In these ‘muscular dysgenesis’ mutant mice it was also observed that 

osteoblasts were improperly distributed due to the altered mechanical load from the 

muscle layer.  While these examples occur in a skeletal muscle system that varies 

considerably from smooth muscle, they do point to the importance of muscle contractile 

force output in shaping individual cells or even entire tissues.  This raises the question of 

how altered contractile force can lead to the diversity of phenotypes that have been 

reported and epithelial invasion that we have described from our observations.  In the 

following section I will discuss the described role of myosin in certain disease states and 

consider how specific regions of the proteins contributes to certain conditions.        

4.2.1: Consequences of Myosin Mutations in Disease 

Myosin missense mutations have been well characterized in cardiac smooth 

muscle where they are known to cause both dilated and hypertrophic cardiomyopathies, 

the two most common forms of genetic heart disease.  More than 300 distinct myosin 

mutations have been identified in these diseases and are distributed throughout the 

protein, though most mutations occurred in the head domain (Buvoli et al. 2008, Walsh et 

al. 2010).  More detailed analysis determined that regions of the motor domain adjacent 

to the ATPase site had a greater frequency of mutations (Moore et al. 2012).  Although 
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the number of mutations linked to cardiomyopathy is large, only a small subset of these 

mutations have been studied for their effect on myosin mechanics.   

Though rare, the MYH11 mutations identified in FTAAD families are deletions 

and missense mutations primarily located in the coiled-coil domain of the protein (Pannu 

et al. 2007, Zhu et al. 2007).  Identification of many of these mutations has proven to be 

difficult due to the fact that rare, nonsynonymous variants occur in MYH11 in the general 

population (0.6% according to the exome rare variant database, Kuang et al. 2012).  

However, a recurrent MYH11 rare variant, R247C, is located in the motor domain of the 

myosin heavy chain and disrupts an arginine that is completely conserved across species.  

Also, a mutation in the corresponding amino residue in cardiac myosin (MYH7), R249Q, 

causes familial hypertrophic cardiomyopathy.  The mutation in both the cardiac and 

smooth muscle isoforms lies near the ATP binding domain, and in vitro assays of MYH7 

R249Q have confirmed decreased ATPase activity and filament velocity (Sata and Ikebe 

1996, Roopnarine and Leinwand 1998).   

To quantify altered motor function of the R247C MYH11 mutation, Kuang et al. 

used a fragment containing the myosin motor domain (HMM) and found a decrease in 

actin-activated ATPase activity after phosphorylation of the MLC.  In the absence of 

MLC phosphorylation, regulation was not altered in the mutant and no ATPase activity 

was detected, as is seen in wild type myosin (Kuang et al. 2012).  They also measured the 

rate of Pi release after the R247C MYH11 was allowed to bind and hydrolyze ATP and 

then mixed with actin.  As noted earlier, this step is rate-limiting for the overall ATPase 

cycle in smooth muscle and initiates the force generating states on actin (Sweeney and 
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Houdusse 2010).  Pi release was found to be slower for the mutant myosin and was 

notably only slightly faster than the overall ATPase cycle rate for both mutant and WT 

proteins, consistent with it being the rate-limiting step.  Lastly, they measured the release 

of ADP, an event that limits both the rate of myosin detachment from actin and maximal 

shortening velocity.  The rate of ADP release was slower in the R247C mutant, as was 

the rate of actin filament sliding in an in vitro motility assay.   

To reconcile the kinetic findings on R247C it is important to consider the total 

time that myosin spends bound strongly to actin during the ATPase cycle (i.e. duty ratio) 

as this will be a major determinant of the total force that myosin produces.  In the context 

of net force, the rate of Pi release controls exit from the weakly bound (i.e. non-force 

generating) states and ADP release controls exit from the strongly bound (i.e. force 

generating) states.  The calculated duty ratio of the R247C mutant was nearly half that of 

the WT protein, and thus force production and shortening velocity are both likely 

decreased in vivo due to the mutation.  To determine the affect of this mutation in vivo, 

mice carrying the R247C mutation were generated and assayed for aortic force 

development.  These mutant mice were found to have decreased contractile force 

compared to controls, and importantly had no change in MLC phosphorylation 

suggesting the changes were indeed due to intrinsic properties of the mutated myosin.  

This decreased aortic contractility did not cause aortic pathology in these mice, 

suggesting that contractility alone may not be sufficient to cause TAAD.  SMCs 

explanted from the mutant mice also displayed increased proliferation and 

dedifferentiation.  In contrast to R247C mutants, Myh11 deficient mice die shortly after 
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birth due to vascular complications, and from dysfunction of the bladder and intestine 

(Morano et al. 2000).  R247C mutant mice do not display any deficiencies in visceral 

smooth muscle, which could be due to compensation by the nervous system, hormones, 

or other type II myosin motors that are sufficient to maintain tissue functionality.   

Though the specific role of this mutation in TAAD remains to be seen, R247C 

can alter duty ratio and contractile force in vivo and this suggests that missense motor 

domain mutations have dramatic affects on smooth muscle contraction.  Work has also 

been described in MYH7, the cardiac beta-myosin heavy chain, showing that mutations 

typically cluster in the functional subdomains of the myosin motor head domain, 

specifically in the ATP-binding and actin binding clefts, these mutations are correlated 

with human vascular disease but their specific functional consequences are not known 

(Buvoli et al. 2008).  Aside from R247C, TAAD mutations do not often occur in the head 

domain, but rather in the coiled-coil rod domain.  One additional exception to this is a 

missense mutation at amino acid 712 near the converter domain, which transduces force 

from the ATPase motor and allow the flexible movement of the myosin head along actin.  

However, as more mutations in both the motor and helix domains are studied we will be 

able to better grasp how these missense mutations can alter the in vivo function of smooth 

muscle tissues and vascular disease.   

In the airway smooth muscle of the lung, contraction must be tightly coordinated 

to maintain a constant force output upon the tissue.  The mechanical strain that is placed 

upon the smooth muscle during lung inflation perturbs the binding of myosin to actin due 

to the mechanical force acting upon the actomyosin interaction (Seow and Fredberg 
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2001).  This response by the major contractile components allows the tissue to be more 

amenable to stretch and is required for normal breathing to take place.  In situations 

where more actomyosin bridges are formed the tissue becomes less compliant as the 

muscle stiffens.  When in the so-called ‘statically equilibrated’ state, the myosin cycling 

and rate of ATP utilization becomes greatly decreased (Fredberg et al. 1999), and an 

asthma-associated condition termed airway hyperresponsiveness can occur.  This 

condition occurs in airways that narrow too readily and too much in response to treatment 

with nonspecific contractile agonists, it is also the feature underlying excessive airway 

narrowing seen in asthma, but the specific mechanism remains unknown (Woolcock and 

Peat 1989, King et al. 1999).  In the smooth muscle myosin mutants that we have 

identified, unregulated ATPase activity has been observed in two cases where it is highly 

likely that additional actomyosin bridges are being formed between unphosphorylated 

myosin heads and actin.  This could have the similar affect seen in the airway and thus 

generate less compliant intestinal tissue.  Although the intestine does not experience the 

same degree of strain as the lungs do, the tightly coordinated contractile waves are vital 

for its function.  In addition, we have previously demonstrated that increasing gut 

contraction in heterozygous mlt larvae after treatment with L-NAME, a general 

contractile agonist, can induce epithelial invasion suggesting that a similar 

‘hyperresponsive’ state is achieved in these larvae similar to what has been described in 

the airway.   
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4.3:  Myosin Domains and Contractile Force Output 

4.3.1: The Importance of the Myosin Switch I Domain 

Within the myosin motor domain, there are multiple subdomains that are linked 

through highly conserved ‘connector’ domains.  One domain, the converter, has a high 

potential for movement due to its connection with two deformable joints, the relay and 

SH1 helix.  It is this conformation that allows small movements at the motor domain to 

be amplified during contraction.  A critical connector, known as the Switch I domain, 

allows coupling between the actin and nucleotide binding sites.  Briefly, during the 

‘prepowerstroke’ state partial closure of the large cleft involves the inner part of the cleft, 

a domain adjacent to Switch I, trapping the Pi.  As has been shown in myosin V, the 

nucleotide-free rigor-like state causes the outer and inner cleft to close and generates a 

new actin-binding interface that has a strong affinity to myosin (Fisher et al. 1995, Yount 

et al. 1995, Coureux et al. 2003).  Interestingly, it was reported that the polarity of the 

amino acid side chain located at S236 in Myh11 impacted the affect each mutation had 

on ATPase function, suggesting that this serine is critical for myosin motor function (Li 

et al. 1998, Frye et al. 2010).  From what we have found with the S237Y mutant, where 

ATPase activity persists when myosin in unphosphorylated, it seems clear that this 

domain of myosin has critical functional implications for ATP hydrolysis.  At the level of 

the intestinal tissue, our in vivo assays reveal that this mutation alters the coordination of 

muscle contraction and production of force.  With what is known about Switch I’s 

structural role within the myosin head, it is apparent that small structural changes in 

myosin can lead to significant changes in contraction as we have observed with S237Y. 



	
  

	
   	
   	
  105	
  

4.3.2: Regulatory implications of myosin tail domain 

The assembly of myosin dimers and their proper orientation is directed by an 

alternating 28-residue pseudo repeat of the α-helical coiled-coil domain of the tail domain 

and this forms the core of the thick filament.  The coiled-coil domain of the myosin tail 

directs both dimerization and the overall conformation of myosin structure.  Smooth 

muscle myosin in particular has been shown to be more prone to bent conformations, but 

it is still unknown exactly which domains along the helical tail are responsible for the 

increased bending (Trybus et al. 1982).  The physiological relevance of a more bent 

myosin confirmation is also unknown, though it has been long appreciated that changes 

in the head domain after phosphorylation of MLC can alter filament assembly at the tail.  

Additional studies of the importance of the tail domain used various chimeric constructs 

to determine how each domain of the tail altered actin-activated ATPase function in vitro 

(Trybus et al. 1997).  They tested the role of dimerization in the regulation of ATPase 

activity by the myosin head and determined that a tail domain was required, and needed 

to be at least the same length as the head domain in order to allow for proper function.  

Interestingly, the tail domain was shown to be crucially important for myosin to achieve 

its ‘off’ state, a state that is absolutely necessary for normal contractile regulation.  The 

role of the tail therefore mediates specific interactions with the myosin head, and if these 

interactions are obstructed then unphosphorylated crossbridges can slowly continue to 

cycle.   

These observations could be of critical importance when considering L1287M, 

the tail domain mutant that we have described above.  In L1287M/mlt trans-
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heterozygotes we observe epithelial invasion characteristic of homozygous mlt, and we 

have previously shown that the mlt mutation (W512R) results in active cycling of 

unphosphorylated crossbridges.  Therefore, the unphosphorylated heads are likely of 

critical importance in propagating the epithelial phenotype in mlt and in the modifier 

trans-heterozygotes.  We have already shown that activation of unphosphorylated heads 

occurs in the S237Y mutant and this is likely to be the case in L1287M as well.  Further, 

the L1287M mutant presents us the unique opportunity to better understand how a 

myosin tail domain mutation can regulate both ATPase activity and smooth muscle 

contraction in vivo.          

4.3.3: Trans-heterozygotes:  A Potential Interaction Between Mutated Myosin Heads? 

At the level of individual myosin heads, each can maximize their duty ratio when 

actin concentration is high.  The higher duty ratio ensures that when one head detaches 

from actin upon ATP rebinding, the second head in the dimer will be in a strong binding 

state and remain in this state until the detached head hydrolyzes ATP and rebinds at a 

distal actin-binding site.  In this manner, certain myosins can processively walk along an 

actin filament in hand-overhand fashion through the cycling of only a single head (Yildiz 

et al. 2003, Yildiz et al. 2004), a phenomenon that has been seen in vitro and in living 

cells (Nelson et al. 2009, Pierobon et al. 2009).  A well-studied example of this is myosin 

V, where a high duty ratio is required to support its processive movements and actin-

activated Pi release (De La Cruz et al. 1999).  Myosin V simultaneously decreases the 

rate of ADP release such that the strongly attached myosin head becomes the 

predominant steady-state intermediate of the cycle.  The coordinated regulation of ATP 
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hydrolysis at individual myosin heads can be attributed in part to regulatory mechanisms 

leading to MLC phosphorylation but the role of the regulatory domains of each myosin 

protein has been shown to be of critical importance as well.   

The double-headed structure of myosin is not necessary for actin binding or ATP 

hydrolysis, in fact a single-headed molecule can alone move actin filament, albeit less 

effectively than a two-headed myosin (Margossian and Lowey 1973, Toyoshima et al. 

1987, Waller et al. 1995).  More recently, it was determined that the step size was twice 

as large in a two headed myosin when compared to single-headed molecules (Tyska et al. 

1999) suggesting that two heads are more effective than one and that they may work 

together to coordinate contraction.   Additionally, the strain produced at the junction 

between the two heads has been shown to influence actin binding ability, an effect more 

striking in smooth muscle myosin (Whittaker et al. 1995, Conibear and Geeves 1998, 

Conibear 1999).  Taken together, these observations highlight the complexity of double-

headed molecules rather than simply being two kinetically independent heads.  In work 

by Rovner et al., the performance of homo- and heterodimeric double-headed myosins 

was tested to shed light on the complex nature of their interactions.  This study 

determined that heterodimers with one mutant head only bind actin weakly, but were 

more efficient than single heads or mutant homodimers.  This suggests that the weak 

binding of the mutant head optimally orients the working head so that it can achieve 

maximal performance.  A second interpretation is that the second head simply maintains 

the structure of the dimer allowing more efficient movement by the working head, which 

suggests that actin binding would not be required (Kad et al. 2003, Rovner et al. 2003).   
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If we extend these findings to our observations in S237Y or L1287M/mlt trans-

heterozygotes, it suggests that the modifier mutant head binds weakly to actin allowing 

the mlt head to produce maximal force and drive the phenotype.  Consistent with this is 

the observation that heterozygous mlt do not develop a phenotype, likely due to the wild 

type myosin head providing the primary mode of contraction while the mlt head serves a 

structural role.  Additionally, this would explain why we do not observe epithelial 

invasion in S237Y and L1287M homozygotes, as these mutant homodimers can only 

bind weakly and are not able to reach the contractile force threshold required for 

epithelial invasion.  It is not clear precisely what ratio of homo- and heterodimers exist in 

each heterozygous state discussed above, but the overall number and specific types of 

dimers in each context are likely indicators of the contractile force output.  Therefore, in 

addition to the specific myosin mutation with respect its location within the protein, 

altered dimer function is an important consideration when determining the net effect on 

muscle contraction.               

4.4:  Triggering and Responding to Mechanotransduction 

In a number of different tissues, the role of force signaling has been shown to 

cause diverse responses by the neighboring cells.  For instance, in kidney epithelial cells 

respond to levels of fluid shear similar to those produced by urine flow in collecting ducts 

by increasing calcium influx.  Also, changes in gene expression and growth of bladder 

smooth muscle cells that are triggered by outlet obstruction appear to result from 

mechanical stretch secondary to overfilling of the bladder (Park et al. 1999).  During 

pregnancy, the onset of labor is triggered by distension of the uterus imposed by the 
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growing fetus, and pulmonary epithelial cells increase secretion of surfactant when 

stretched in vitro, just as they do in a newborn taking its first breath (Wirtz and Dobbs 

1990, Oldenhof et al. 2002).  Pulmonary hypertension, urinary frequency, and irritable 

bowel syndrome have each been associated with muscle cell hypercontractility, though 

additional factors likely play a role as well.  Recent studies suggest that genetic mutations 

or malfunction of cytoskeletal proteins, ECM molecules or integrins that alter cell and 

tissue mechanics can lead to impaired vascular smooth muscle and cardiac muscle 

contractility (Balogh et al. 2002, Loufrani et al. 2002).  In contrast, decreased smooth 

muscle cell contractility results in urinary stress incontinence, as well as defects in male 

and female sexual function (Italiano et al. 1998, Levin 2002).  Abnormal muscle tone 

also can lead to destabilization of the skeleton and contribute to skeletal and joint 

diseases. For example, axial muscular dysfunction has been implicated in the 

development of joint pathology in ankylosing spondylitis (Masi and Walsh 2003).  

Abnormal fibrillin deposition in patients with Marfan’s syndrome alters the vascular 

endothelial cell response to hemodynamic stresses and results in aortic dissection due to 

local weakness of the vascular wall (Westaby 1999).  Changes in ECM structure that alter 

tissue mechanics and provide a constitutive stimulus for cell growth may even contribute 

to cancer initiation and progression (Ingber et al. 1981, Sternlicht et al. 2000, Ingber 

2002).  For example, overexpression of an ECM-degrading enzyme in transgenic mice 

results in formation of malignant tumors (Sternlicht et al. 1999).  Though each of these 

examples is quite different, they emphasize the widespread effect that altered mechanical 

signaling can have and additional examples of this are still being characterized.   
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Tensional forces are resisted and balanced by external adhesions to ECM and 

neighboring cells, and by other molecular filaments that locally resist inward-directed 

tensional forces inside the cytoskeleton.  This type of force balance is a hallmark of an 

architectural system known as ‘tensegrity’ (Ingber 2003) and the viscoelastic behavior of 

living cells results from collective mechanical interactions within the tensed molecular 

cytoskeleton.  Cytoskeletal forces are harnessed in muscle to generate tensional forces 

that are important for cell contractility and movement.  The effects of applied stresses on 

cell shape and mechanics depend on the material properties of the cytoskeletal filaments 

and the level of isometric tension in the cell.  This occurs similarly to the mechanical 

responsiveness of whole muscle, which is governed by its structural organization and by 

its contractile tone. 

Recognition of the importance of mechanics and cellular mechanotransduction for 

tissue development also may help to explain the focal incidence of disease.  Although 

high cholesterol and LDL promote atherosclerotic plaque formation, these plaques 

preferentially form in regions of disturbed blood flow (e.g. near vessel branches) (Davies 

1995).  Local changes in tissue structure also may explain why genetic diseases, 

including cancer, often present focally.  Mechanical therapies have been used to alter 

tension using engineered devices that act through alterations in microscale forces (e.g. 

cell stretching) that activate cellular signal transduction (Langevin et al. 2001, Webb 

2002).  The therapeutic value of physical therapy, massage, and muscle stimulation is 

also well known, and even acupuncture therapy appears to result from ECM distortion as 

associated integrin-dependent changes in mechanotransduction (Langevin et al. 2001).  In 
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our observations of the phenotype in mlt we have observed focal regions of invasion 

occurring, suggesting that forces are also applied locally but currently our assays do not 

have the resolution to detect these changes.       

In smooth muscle cells, mechanical stresses can alter receptor or protein 

conformation (Shaw and Xu 2003) and also potentially influence the mechanical output 

of the cells.  A number of studies have observed differences in the biomechanical 

properties of smooth muscle cells in the vasculature (VanDijk et al. 1984), bladder (Yu et 

al. 2003) and the airway (Smith et al. 2005).  Within the GI tract, it has been indicated 

that smooth muscle strips that lacked enteric nerves could contract in response to stretch, 

suggesting that mechanosensitivity can occur intrinsically at the level of the smooth 

muscle cell (Farrugia et al. 1999).  In addition to the direct implication of GI smooth 

muscle contractility, a study by Risse et al. found altered smooth muscle contraction in a 

mouse model for cystic fibrosis.  In this report, it was shown that dissected intestinal 

muscle strips exhibited higher contractility in mutant mice with cystic fibrosis than in 

wild type controls (Risse et al. 2012).  Mechanical measurements of isolated GI smooth 

muscle cells were consistent with measurements in other smooth muscle tissues, which 

overall are notably softer than other cell types (i.e. blood, endothelial cells, and 

chondrocytes) (Liao et al. 2006).  In addition, smooth muscle cells in the GI tract are 

constantly being deformed due to forces generated by the muscle cells themselves or by 

the surroundings (Tanaka et al. 2000, Gregersen et al. 2002).  Therefore, the intestine 

represents an environment where local contractile force alterations could certainly reside 
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and result in focally applied mechanical signals, as we believe is the case in early mlt 

mutants. 

4.4.1: Tissue Stiffness and Cancer Invasion     

 Aside from the genetic and biochemical events that proceed during tumor 

development, recent findings lend support to the role of biomechanical factors in tissue 

development and maintenance (Paszek and Weaver 2004).  During early tumor expansion, 

the surrounding tissue becomes compressed and interstitial pressure increases, altering 

the tissue tension within the stroma.  Additional stiffening also happens at the cell contact 

level, where actomyosin contractions and Rho GTPase activity compromise cell junctions 

and alter cell polarity, while ECM stiffening drives focal adhesion formation.  Force-

induced effects can also widely vary based up the direction the force is being applied and 

its duration.  One example of this is TGF- β1 signaling in smooth muscle cells, where 

transient forces increase its expression but if a constant force is applied both TGF-β1 and 

collagen I become upregulated (Gutierrez and Perr 1999).  This has also been observed in 

fibroblasts where dynamic forces increase MMP-9 but static force upregulates MMP-2 

(Prajapati et al. 2000).  An outstanding question remains as to how each applied force can 

induce different cellular responses that can often occur in the complex environment 

surrounding a tumor.         

Extracellular matrix (ECM) orientation mediates tension-dependent cell migration 

to orchestrate developmental processes such as gastrulation (Keller et al. 2003), and 

matrix rigidity influences cell growth, differentiation, and motility (Lo et al. 2000, Engler 
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et al. 2004, Yeung et al. 2005).  Matrix compliance influences Rho activity and ERK-

dependent growth (Wang and Bitar 1998, Wozniak et al. 2003), and cytoskeleton tension 

promotes growth (Roovers and Assoian 2003) and focal adhesion (FA) assembly 

(Burridge and Wennerberg 2004).  It has also been postulated that tissue stiffness could 

drive transformation by increasing Rho-generated cytoskeletal tension via integrin 

signaling.  Integrins are transmembrane ECM receptors that can function as 

mechanotransducers (Bershadsky et al. 2003), integrins regulate Rho- and ERK-

dependent growth (Lee and Juliano 2004).  Integrin expression is higher in epithelia on 

rigid substrates than complaint surfaces (Delcommenne and Streuli 1995), and matrix 

rigidity increases integrin expression (Yeung et al. 2005).  Thus, tissue stiffness could 

drive expression of a malignant phenotype through force-dependent regulation of integrin 

activity.  Indeed, integrin levels and signaling are altered in ‘stiff’ tumors (Guo and 

Giancotti 2004).     

Paszek et al. found that even small increases in matrix rigidity will perturb tissue 

architecture and enhance growth by inducing Rho-generated cytoskeletal tension to 

promote FA assembly and increase ERK activation.  Their data suggests a 

mechanoregulatory circuit that functions to integrate physical cues from the ECM (i.e. 

exogenous force) with FA assembly through ERK- and Rho-dependent cytoskeletal 

contractility to regulate cell and tissue phenotype (Paszek et al. 2005).  Thus, tensional 

homeostasis may be essential for normal tissue growth and differentiation, and increasing 

tissue rigidity by stiffening the matrix (fibrosis) or by elevating Rho signaling through, 

for example, oncogene (Ras)-driven ERK activation, could induce cytoskeletal 
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contractility to enhance integrin-dependent growth and destabilize tissue architecture 

(Zhong et al. 1997).  

4.4.2: ECM Signaling in Response to Stiffness:  A Clue From Tissue Development? 

Cell growth, differentiation, and motility can all be influenced by physical 

distortion of cells through their ECM adhesions.  Mammary and retinal epithelium can be 

switched from growth to differentiation by decreasing the stiffness or adhesivity of the 

ECM, and thereby promoting cell retraction and rounding (Opas 1989).  Varying the 

mechanical compliance (flexibility) of the ECM also influences the rate of cell migration 

and the direction of motility can be affected by geometric cues from the ECM (Lo et al. 

2000, Parker et al. 2002).  Changing vascular smooth muscle cell shape through 

modulation of cell-ECM adhesion or alteration of ECM compliance also regulates its 

contractile response to vasoagonists (Lee et al. 1998). 

Cell shape-dependent changes in the sensitivity of the contractile machinery may 

ensure ‘compliance matching’ in muscle cells of the gastrointestinal tract, blood vessels, 

as well as in epithelial and connective tissues, so that the level of tension exerted by the 

cell precisely balances the mechanical stress transmitted through the surrounding ECM in 

response to tissue distortion.  During tissue development, local alterations in ECM 

structure that influence cell shape and mechanics, such as thinning of basement 

membrane produced by increased ECM turnover (e.g. metalloproteinase activities), also 

appear to drive regional changes in cell growth and motility.  Skin epithelium, bone cells, 

and embryonic heart muscle cells all increase their growth rates when they experience 
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mechanical strain (Miller et al. 2000, Hatton et al. 2003).  Endothelium sense fluid shear 

stress and respond by altering expression of proteins involved in handling oxidative stress.  

Mechanical forces have also been shown to be important in the developing vasculature 

where pressure and shear stress from pumping blood affects the morphology of the heart 

and vasculature.  Bones are also shaped by forces produced by muscle contraction during 

development and lungs rely on airway contractions to regulate their physiology.  

 Mechanotransduction during early development has been proposed from 

observing the effects of stretching embryos in vitro and altering mechanical forces in 

vivo (Beloussov et al. 1988, Beloussov 1990).  Morphogenetic movements during 

development can be regulated by physical force as well as the coordinated growth of 

individual tissues (Orr et al. 2006).  In Drosophila, there is evidence suggesting 

mechanical activation of the transcription factor Twist (Farge 2003).  In this system, 

Twist expression in the anterior foregut and stomodeal primordial appears to be initiated 

by a force applied onto these tissues by germ band extension.  The authors also applied 

force experimentally and were able to ectopically express Twist.  Mechanical tension in 

Drosophila has also been proposed to regulate transcription in migrating border cells 

(Somogyi and Rorth 2004).  They observed that MAL-D, an SRF cofactor, requires the 

force from stretch in order to translocate from the cytoplasm to the nucleus and they 

could block this translocation by preventing cellular elongation.  

 With the large number of diverse processes being controlled by mechanical 

signaling or abnormal muscle contraction, there is clearly a number of emerging 

questions as to how tissues are responding to these stimuli.  These questions can be 
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addressed, in part, by assessing myosins role in force propagation as well as its ability to 

cooperate with neighboring heads or modulatory proteins such as h-CaD.  Understanding 

smooth muscle contraction in vivo as well as its effect on underlying epithelial cells will 

begin to shed light on biological processes that transmit mechanical signals between 

neighboring tissues.  However, it remains to be determined how widespread mechanical 

signaling is in disease states and during development.  If the underlying mechanistic 

properties are similar in each context then understanding the modulation of smooth 

muscle contraction could provide insight into the nature of force propagation in muscle 

and between cells.      
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Appendix:  Materials and Methods 

Morpholino Knockdown 

All morpholinos were injected into 1- to 4-cell stage fertilized embryos.  Injection 

of 620 pg of a morpholino directed against the 5’ region of the zebrafish smooth muscle 

myosin heavy chain cDNA that overlapped the predicted translation initiation site 

rescued mlt mutants (5’-ATCATCGCTCAAGCCTTTCTTCGTC-3’).  Injection of lower 

doses generated partially rescued mlt mutants that were discarded from further analyses.  

Fully rescued mutants were identified using Kompetitive Allele Specific PCR (KASP).    

For smooth muscle Caldesmon knockdown, fertilized embryos were injected at 

one cell stage with 20 pg of cald1 morpholino. Zebrafish embryos were microinjected 

with a morpholino targeting the splice acceptor site of exon 5 of zebrafish cald1 (5’-

TTATTCCCCTACAAACAGAACTGCA-3’; Gene-Tools, Corvallis, OR, USA).  

Morpholinos were injected as described. The sequence of the control morpholino is 

TGCGCGCCAGACAGGGTGATGAC. The h-CaD morpholino was designed against the 

smooth-muscle-specific exon of Caldesmon (based on acc. # BC158175), which was 

identified from intestinal smooth muscle cDNA. Injection of ~20 pg caused an in-frame 

deletion of this exon but had no effect on transcript of the low molecular weight isoform 

(Abrams et al. 2012).  
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RT-PCR 

Intestines manually dissected from 5 day post-fertilization embryos were 

homogenized in Trizol (Sigma Aldrich, St. Louis, MO, USA) and total RNA was 

collected following the manufacturer's protocol.  First strand cDNA was synthesized 

using the SuperScript™ III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s procedure.    When necessary for sequencing, amplified 

cDNA fragments were cloned into the pGEM®-T Easy Vector (Promega, Madison, WI 

USA).  Primer sequences are listed in table below.  

 

Generation of CALD1 Myosin- and Actin-binding Peptide Transgenic Fish  

Primers corresponding to the human CALD1 myosin binding peptide (Lee et al. 

2000) were identified in the zebrafish cald1cDNA.  Transgenic constructs were generated 

with the peptide fragment by Tol2kit site-specific recombination-based cloning.  A 162 

bp fragment was amplified from zebrafish intestinal cDNA and cloned in frame into an 

expression construct encoding a cDNA for the viral 2A recognition peptide (Provost et al. 

2007) upstream of the green fluorescent protein cDNA.  The expression construct also 

included a previously reported promoter fragment from the zebrafish sm22a gene (Seiler 

et al. 2010) and Tol2 inverted repeats at each end.  20ng µL-1 of DNA encoding the 

expression construct was injected into newly fertilized embryos along with 20ng µL-1 in 
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vitro transcribed mRNA for the Tol2 transposase as previously reported.  All fragments 

were cloned using the multisite gateway system (Kwan et al. 2007, Villefranc et al. 2007).   

Peristalsis Assay 

Wild type, transgenic, morpholino injected, and mutant larvae were fed paramecia 

in media containing fluorescent latex beads (FluoresbriteTM YG2.0; Polysciences, 

Warrington, PA, USA; 5 µL beads per 2 mL of embryo media) for 2 hours - 6 hours. 

Larvae were then screened for fluorescence in the anterior intestine, placed in media 

containing only paramecia, and monitored for bead expulsion using a fluorescent 

dissecting microscope (Olympus, MVX-10).  For time-lapse movies of intestinal 

contraction, larvae were anesthetized with equal amounts of tricaine (64 mg L-1) and 

mounted in 3% methylcellulose.  Images were obtained at 5 second – 15 second intervals 

for 2 minutes – 6 minutes using an RGB Vision digital camera (Roper Scientific 

Photometrics, Tucson, AZ, USA) and Image-Pro Plus Version 6.0 software (Media 

Cybernetics, Bethesda, MD, USA). 

Cell Dissociation and FACS 

Intestines dissected from 3dpf Tg(sm22a:GFP; miR194:mCherry) larvae were 

collected in DMEM (Gibco) and dissociated in 0.25% trypsin EDTA by pipetting.  Cells 

were collected by centrifugation for 10 minutes at 620 g at 4°C and resuspended in 

5%FCS/DMEM.  Cells were labeled with 0.2µg mL-1 DAPI to determine cell survival 

and sorted using FACSVantage™ SE with FACSDiva™ Software (BD Biosciences, San 

Jose, CA, USA).  Sorted cells were promptly collected by centrifugation and frozen in 
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liquid N2.  Total RNA was purified using RNAqueous®-Micro Kit (Applied 

Biosystems/Ambion, Austin, TX, USA) and used as a template for cDNA synthesis.   

Western Blot/ Immunoprecipitation 

Dissected intestines from 30 larvae at 4 dpf and 6 dpf were homogenized in 1x 

sample buffer, protein was recovered and used for Western analysis using standard 

methods (Davuluri et al.).  Western blots were probed with anti-human beta-actin 

(Sigma-Aldrich); anti-mouse Caldesmon (a generous gift of Albert Wang); and anti-

rabbit phospho-Caldesmon (serine 789; Upstate Biotechnology) using standard 

procedures. 

For immunoprecipitation, intestines dissected from morpholino injected and 

uninjected Tg(sm22a:CaDDK51-GFP) larvae were fixed in 1% formaldehyde for 15 min 

at room temperature.  Proteins were isolated by adding cell lysis buffer (50mM Tris-Cl, 

10mM EDTA, 1%SDS and protease inhibitors), incubated on ice for 10 min and then 

centrifuged at 14000rpm for 10 min at 4°C.  Supernatant was removed and the pellet 

diluted to 200ml in IP dilution buffer (0.01% SDS, 1.1% Triton X100, 1.2mM EDTA, 

16.7mM Tris-Cl, 167mM NaCl).  1ug of rabbit anti-Caldesmon (Albert Wang) or smooth 

myosin antibody (Sigma Aldrich) was added and the mixture incubated overnight at 4°C.  

10ml of Protein A/G Agarose (Santa Cruz Biotechnology) was added to the samples and 

incubated for 2hr at 4°C.  The samples were then washed 3 times with PBST and the 

pellet was dissolved in 50ml of sample buffer. 25ul of samples were run on a 10% SDS-

PAGE gel for western analysis.   
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Zebrafish Husbandry and Mutagenesis 

Maintenance and breeding were performed as previously described (Wallace et al. 

2005).  colourless mutants were purchased from the Zebrafish International Resource 

Center (Eugene, OR, USA).  Larvae were raised at 28°C in E3 medium and were staged 

by age and morphological criteria (size of yolk extension and pigment pattern around 

yolk extension). Expression of mCherry, Lifeact-GFP (Riedl et al. 2008), and GFP-

KRASG12V (a generous gift from Steven Leach) in the intestinal epithelium was driven by 

a 2 kb promoter fragment from the zebrafish miR194 gene (Seiler et al. 2012). Expression 

of GFP in smooth muscle was driven by a promoter fragment from the zebrafish sm22-

alpha gene (Seiler et al. 2010).  Zebrafish axin1 mutants were obtained from the 

Zebrafish International Resource Center.   Mutagenesis was performed on males of Tu 

and AB strains according to the scheme outlined by Dosch et al. (Dosch et al. 2004).   

Immunostaining 

3 dpf old larvae were anesthetized with 0.1 mg/ml Tricaine, fixed in 4% PFA/PBS, 

washed in PBST (PBS+0.1% Tween), dehydrated in methanol, and stored at −20°C. For 

whole mount staining with anti-laminin and anti-cytokeratin antibodies, larvae were 

washed in PBST and permeabilized by a 15-min Proteinase K digestion (100 ug/ml in 

PBST). They were then rinsed in PBST and postfixed in 4% PFA/PBST. The skin above 

the trunk and intestine was removed using fine forceps. Larvae were stained with 

antibody in 10% goat serum/PBST. The laminin antibody (Sigma #L-9393) was used at 

1:50 or 1:200 dilution; the cytokeratin antibody (Thermo Scientific clone AE1/AE3, MS-
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343-PO) was used at 1:100 dilution.  Secondary antibodies were labeled with Alexa 568 

or 488 (Molecular Probes/Invitrogen). Histological analyses of the mounted specimens 

were performed as described (Wallace et al. 2005). 

Drug Treatments 

Larvae were bathed in 1.5 µM Menadione (MP biomedicals) in E3 media for 3 h 

(3 dpf larvae) or 5 h (5 dpf larvae).  

Construction of Human Smooth Muscle Myosin II (MYH11) 

The cDNA for human MYH11 (SM1A isoform) was truncated at the codon for 

threonine 1775 (creates a soluble ‘HMM’ construct), after which a glycine plus FLAG 

peptide (DYKDDDDK) was appended to facilitate purification.  Site-directed 

mutagenesis was performed using Quickchange XLII kit (Stratagene) to introduce the 

S237Y mutation into the same construct.  The constructs were subcloned into the 

baculovirus transfer vector, p2Bac (Invitrogen).  Protein expression and purification were 

as previously described (Sweeney et al. 1998).  The HMM construct had been previously 

subcloned into the baculovirus transfer vector, pVL 1393 (Invitrogen).  Baculovirus 

expression was used to produce HMM fragments of smooth muscle myosin after 

infection of an insect cell line (Sf9) with recombinant baculovirus (described in detail in 

Sweeney at al. 1998 (Sweeney et al. 1998)).   

 Myosin ATPase Assay and Transient Kinetic Assays 

As described previously in Kuang et al. 2012 (Kuang et al. 2012), the actin-
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activated ATPase activity assay was performed at 25°C in buffer 20/20 (KCl 20 mM, 

Mg2+ 5 mM, EGTA 1 mM, MOPS 20 mM pH 7.0), ATP 1 mM final concentration and 

actin concentration ranging from 0 to 150 µM. Actin was purified from rabbit skeletal 

muscle and stabilized by phalloidin. Phosphorylation of HMM WT and mutant constructs 

was performed as previously described 10.  Both unphosphorylated and phosphorylated 

forms of WT and mutant human smooth myosin 2 HMM constructs were assayed at 0.2 

nM final concentration.  Curves were fitted with Kaleidagraph software TM. Triplicate 

assays were performed with three different preparations of each protein. Transient kinetic 

measurements (Pi release from myosin and ADP release from actomyosin) were made in 

buffer 20/20 at 25°C with an Applied Photophysics SX.18MV stopped-flow instrument 

following previously published protocols (De La Cruz et al. 1999). Assays were 

performed with three different preparations of each protein. 

Tissue Tension Measurements 

The elastic moduli (Young's modulus) of intestines isolated from wild type and 

mlt larvae were measured using a microprobe indenter device (Levental et al. 2010). This 

assay measures the upward force generated by the intestine in response to indentation of 

the probe applied to the outer (serosal) surface. Tissue compliance (Young's modulus) is 

the slope of the force versus probe indentation curve. Briefly, a tensiometer probe 

(Kibron, Inc., Helsinki) with a 100 µm radius flat-bottom needle was mounted on a 3-D 

micromanipulator with 160 nm step size (Eppendorf, Inc.) attached to an inverted 

microscope. The tissue was adhered to the bottom of a plastic dish filled with DMEM and 

imaged by bright field illumination. The bottom of the probe was brought through the air-
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water interface until it rested at the surface of the cylindrical tissue with a diameter of 

approximately 80 microns. The probe was calibrated using the known surface tension of a 

pure water/air interface, and the stress applied by the tissue to the probe as it was lowered 

was measured as a function of indentation depth. In principle, this deformation geometry 

is that of an infinite plane compressing a cylindrical object, and the absolute values of 

elastic modulus can be calculated from appropriate models that require assumptions 

about the adherence of the tissue to the probe and the glass slide, whether the sample is 

modeled as a uniform cylinder or an elastic shell, and other structural factors that 

confound calculation of the absolute value of elastic modulus from the force-indentation 

data.  

In this study the primary interest is in the relative stiffness of wild type and 

mutant tissue, and therefore we present only the primary data, which consists of the 

elastic resistance of the tissues as a function of indentation depth. Indentations (≥13 per 

intestine) spanned the range from 160 nm, which would measure small strain reflecting 

linear elasticity to indentations, up to 20 microns, which would reveal differences in large 

strain deformation or rupture. After the largest indentations, measurements were repeated 

at small strains to confirm that the deformations were recoverable. For statistical analyses, 

a one-tailed Student's t test for data sets with unequal variance was performed to 

determine the significance of differences between Young's moduli of wild type and mlt 

intestines samples. 
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Vascular Recordings 

5 dpf larval zebrafish were anesthetized with equal amounts of tricaine (64 mg L-1) 

and mounted in 3% methyl cellulose.  All larval vascular flow was recorded for 5 seconds 

using a high-speed camera (Motionpro 2000; Redlake, Tuscon, AZ) at 250 fps with a 640 

x 480 resolution.  Heart rate imaging was recorded for 5 seconds at 125 fps with a 512 x 

512 resolution.  Quantification of blood flow rate was performed by tracking individual 

cells (5/larvae) over a fixed distance within both the artery and vein.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
   	
   	
  126	
  

Bibliography 

 

Abrams, J., G. Davuluri, C. Seiler and M. Pack (2012). "Smooth muscle caldesmon modulates peristalsis in 
the wild type and non-innervated zebrafish intestine." Neurogastroenterol Motil 24(3): 288-299. 

Albrecht, K., A. Schneider, C. Liebetrau, J. C. Ruegg and G. Pfitzer (1997). "Exogenous caldesmon 
promotes relaxation of guinea-pig skinned taenia coli smooth muscles: inhibition of cooperative 
reattachment of latch bridges?" Pflugers Arch 434(5): 534-542. 

Amores, A., A. Force, Y. L. Yan, L. Joly, C. Amemiya, A. Fritz, R. K. Ho, J. Langeland, V. Prince, Y. L. 
Wang, M. Westerfield, M. Ekker and J. H. Postlethwait (1998). "Zebrafish hox clusters and vertebrate 
genome evolution." Science 282(5394): 1711-1714. 

Ansari, S., M. Alahyan, S. B. Marston and M. El-Mezgueldi (2008). "Role of caldesmon in the Ca2+ 
regulation of smooth muscle thin filaments: evidence for a cooperative switching mechanism." J Biol Chem 
283(1): 47-56. 

Armel, T. Z. and L. A. Leinwand (2010). "A mutation in the beta-myosin rod associated with hypertrophic 
cardiomyopathy has an unexpected molecular phenotype." Biochem Biophys Res Commun 391(1): 352-
356. 

Armel, T. Z. and L. A. Leinwand (2010). "Mutations at the same amino acid in myosin that cause either 
skeletal or cardiac myopathy have distinct molecular phenotypes." J Mol Cell Cardiol 48(5): 1007-1013. 

Babu, G. J., E. Loukianov, T. Loukianova, G. J. Pyne, S. Huke, G. Osol, R. B. Low, R. J. Paul and M. 
Periasamy (2001). "Loss of SM-B myosin affects muscle shortening velocity and maximal force 
development." Nat Cell Biol 3(11): 1025-1029. 

Bai, X., Z. Yang, H. Jiang, S. Lin and L. I. Zon (2011). "Genetic suppressor screens in haploids." Methods 
Cell Biol 104: 129-136. 

Balogh, J., M. Merisckay, Z. Li, D. Paulin and A. Arner (2002). "Hearts from mice lacking desmin have a 
myopathy with impaired active force generation and unaltered wall compliance." Cardiovasc Res 53(2): 
439-450. 

Beckett, E. A., S. Ro, Y. Bayguinov, K. M. Sanders and S. M. Ward (2007). "Kit signaling is essential for 
development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic 
gastrointestinal tract." Dev Dyn 236(1): 60-72. 

Beloussov, L. V. (1990). "Mechanics of animal development." Riv Biol 83(2-3): 303-322, 227-345. 

Beloussov, L. V., A. V. Lakirev and Naumidi, II (1988). "The role of external tensions in differentiation of 
Xenopus laevis embryonic tissues." Cell Differ Dev 25(3): 165-176. 

Bershadsky, A. D., N. Q. Balaban and B. Geiger (2003). "Adhesion-dependent cell mechanosensitivity." 
Annu Rev Cell Dev Biol 19: 677-695. 

Bitar, K. N. and S. Raghavan (2012). "Intestinal tissue engineering: current concepts and future vision of 
regenerative medicine in the gut." Neurogastroenterol Motil 24(1): 7-19. 



	
  

	
   	
   	
  127	
  

Brunello, E., P. Bianco, G. Piazzesi, M. Linari, M. Reconditi, P. Panine, T. Narayanan, W. I. Helsby, M. 
Irving and V. Lombardi (2006). "Structural changes in the myosin filament and cross-bridges during active 
force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements." J 
Physiol 577(Pt 3): 971-984. 

Bryan, J. (1989). "Caldesmon, acidic amino acids and molecular weight determinations." J Muscle Res Cell 
Motil 10(2): 95-96. 

Bunton, T. E., N. J. Biery, L. Myers, B. Gayraud, F. Ramirez and H. C. Dietz (2001). "Phenotypic 
alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome." 
Circ Res 88(1): 37-43. 

Burns, A. J., T. M. Herbert, S. M. Ward and K. M. Sanders (1997). "Interstitial cells of Cajal in the guinea-
pig gastrointestinal tract as revealed by c-Kit immunohistochemistry." Cell Tissue Res 290(1): 11-20. 

Burridge, K. and K. Wennerberg (2004). "Rho and Rac take center stage." Cell 116(2): 167-179. 

Buvoli, M., M. Hamady, L. A. Leinwand and R. Knight (2008). "Bioinformatics assessment of beta-myosin 
mutations reveals myosin's high sensitivity to mutations." Trends Cardiovasc Med 18(4): 141-149. 

Chacko, S., S. Chang, J. Hypolite, M. Disanto and A. Wein (2004). "Alteration of contractile and 
regulatory proteins following partial bladder outlet obstruction." Scand J Urol Nephrol Suppl 215(215): 26-
36. 

Chen, M. K. and S. F. Badylak (2001). "Small bowel tissue engineering using small intestinal submucosa 
as a scaffold." J Surg Res 99(2): 352-358. 

Childs, T. J., M. H. Watson, J. S. Sanghera, D. L. Campbell, S. L. Pelech and A. S. Mak (1992). 
"Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and expression 
of MAP kinase in differentiated smooth muscle cells." J Biol Chem 267(32): 22853-22859. 

Chin-Sang, I. D., S. E. George, M. Ding, S. L. Moseley, A. S. Lynch and A. D. Chisholm (1999). "The 
ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans." 
Cell 99(7): 781-790. 

Cochran, J. C., M. E. Thompson and F. J. Kull (2013). "Metal Switch-controlled Myosin II from 
Dictyostelium discoideum Supports Closure of Nucleotide Pocket during ATP Binding Coupled to 
Detachment from Actin Filaments." J Biol Chem 288(39): 28312-28323. 

Colpaert, C., P. Vermeulen, E. Van Marck and L. Dirix (2001). "The presence of a fibrotic focus is an 
independent predictor of early metastasis in lymph node-negative breast cancer patients." Am J Surg Pathol 
25(12): 1557-1558. 

Conibear, P. B. (1999). "Kinetic studies on the effects of ADP and ionic strength on the interaction between 
myosin subfragment-1 and actin: implications for load-sensitivity and regulation of the crossbridge cycle." 
J Muscle Res Cell Motil 20(8): 727-742. 

Conibear, P. B. and M. A. Geeves (1998). "Cooperativity between the two heads of rabbit skeletal muscle 
heavy meromyosin in binding to actin." Biophys J 75(2): 926-937. 

Coureux, P. D., A. L. Wells, J. Menetrey, C. M. Yengo, C. A. Morris, H. L. Sweeney and A. Houdusse 
(2003). "A structural state of the myosin V motor without bound nucleotide." Nature 425(6956): 419-423. 



	
  

	
   	
   	
  128	
  

Cousins, H. M., F. R. Edwards, H. Hickey, C. E. Hill and G. D. Hirst (2003). "Electrical coupling between 
the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum." J 
Physiol 550(Pt 3): 829-844. 

Davies, M. J. (1995). "Acute coronary thrombosis--the role of plaque disruption and its initiation and 
prevention." Eur Heart J 16 Suppl L: 3-7. 

Davis, E. C. (1993). "Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in 
aortic medial organization." Lab Invest 68(1): 89-99. 

Davuluri, G., C. Seiler, J. Abrams, A. J. Soriano and M. Pack "Differential effects of thin and thick 
filament disruption on zebrafish smooth muscle regulatory proteins." Neurogastroenterol Motil 22(10): 
1100-e1285. 

Davuluri, G., C. Seiler, J. Abrams, A. J. Soriano and M. Pack (2010). "Differential effects of thin and thick 
filament disruption on zebrafish smooth muscle regulatory proteins." Neurogastroenterol Motil 22(10): 
1100-e1285. 

De La Cruz, E. M. and E. M. Ostap (2004). "Relating biochemistry and function in the myosin 
superfamily." Curr Opin Cell Biol 16(1): 61-67. 

De La Cruz, E. M., A. L. Wells, S. S. Rosenfeld, E. M. Ostap and H. L. Sweeney (1999). "The kinetic 
mechanism of myosin V." Proc Natl Acad Sci U S A 96(24): 13726-13731. 

Decarreau, J. A., N. G. James, L. R. Chrin and C. L. Berger (2011). "Switch I closure simultaneously 
promotes strong binding to actin and ADP in smooth muscle myosin." J Biol Chem 286(25): 22300-22307. 

Delcommenne, M. and C. H. Streuli (1995). "Control of integrin expression by extracellular matrix." J Biol 
Chem 270(45): 26794-26801. 

Deng, M., E. Boopathi, J. A. Hypolite, T. Raabe, S. Chang, S. A. Zderic, A. J. Wein and S. Chacko (2013). 
"Amino acid mutations in the caldesmon C-terminal functional domain increases force generation in 
bladder smooth muscle." Am J Physiol Renal Physiol. 

Dickens, G. R. and P. E. Morris (1998). "Cyclosporine-induced beta-adrenergic receptor down-regulation 
in bovine pulmonary artery smooth muscle cells: a pilot study." Pharmacotherapy 18(2): 341-344. 

Dosch, R., D. S. Wagner, K. A. Mintzer, G. Runke, A. P. Wiemelt and M. C. Mullins (2004). "Maternal 
control of vertebrate development before the midblastula transition: mutants from the zebrafish I." Dev Cell 
6(6): 771-780. 

Driever, W., L. Solnica-Krezel, A. F. Schier, S. C. Neuhauss, J. Malicki, D. L. Stemple, D. Y. Stainier, F. 
Zwartkruis, S. Abdelilah, Z. Rangini, J. Belak and C. Boggs (1996). "A genetic screen for mutations 
affecting embryogenesis in zebrafish." Development 123: 37-46. 

Dutton, K. A., A. Pauliny, S. S. Lopes, S. Elworthy, T. J. Carney, J. Rauch, R. Geisler, P. Haffter and R. N. 
Kelsh (2001). "Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates." 
Development 128(21): 4113-4125. 

Earley, J. J., X. Su and R. S. Moreland (1998). "Caldesmon inhibits active crossbridges in unstimulated 
vascular smooth muscle: an antisense oligodeoxynucleotide approach." Circ Res 83(6): 661-667. 



	
  

	
   	
   	
  129	
  

Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin and D. Discher (2004). "Substrate 
compliance versus ligand density in cell on gel responses." Biophys J 86(1 Pt 1): 617-628. 

Farge, E. (2003). "Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium." Curr 
Biol 13(16): 1365-1377. 

Farrugia, G. (2008). "Interstitial cells of Cajal in health and disease." Neurogastroenterol Motil 20 Suppl 1: 
54-63. 

Farrugia, G., A. N. Holm, A. Rich, M. G. Sarr, J. H. Szurszewski and J. L. Rae (1999). "A 
mechanosensitive calcium channel in human intestinal smooth muscle cells." Gastroenterology 117(4): 
900-905. 

Fisher, A. J., C. A. Smith, J. Thoden, R. Smith, K. Sutoh, H. M. Holden and I. Rayment (1995). "Structural 
studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction." 
Biophys J 68(4 Suppl): 19S-26S; discussion 27S-28S. 

Forgacs, E., T. Sakamoto, S. Cartwright, B. Belknap, M. Kovacs, J. Toth, M. R. Webb, J. R. Sellers and H. 
D. White (2009). "Switch 1 mutation S217A converts myosin V into a low duty ratio motor." J Biol Chem 
284(4): 2138-2149. 

Fredberg, J. J., D. S. Inouye, S. M. Mijailovich and J. P. Butler (1999). "Perturbed equilibrium of myosin 
binding in airway smooth muscle and its implications in bronchospasm." Am J Respir Crit Care Med 
159(3): 959-967. 

Frye, J. J., V. A. Klenchin, C. R. Bagshaw and I. Rayment (2010). "Insights into the importance of 
hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of 
serine 236." Biochemistry 49(23): 4897-4907. 

Furch, M., S. Fujita-Becker, M. A. Geeves, K. C. Holmes and D. J. Manstein (1999). "Role of the salt-
bridge between switch-1 and switch-2 of Dictyostelium myosin." J Mol Biol 290(3): 797-809. 

George, S. E., K. Simokat, J. Hardin and A. D. Chisholm (1998). "The VAB-1 Eph receptor tyrosine kinase 
functions in neural and epithelial morphogenesis in C. elegans." Cell 92(5): 633-643. 

Gerthoffer, W. T. (1987). "Dissociation of myosin phosphorylation and active tension during muscarinic 
stimulation of tracheal smooth muscle." J Pharmacol Exp Ther 240(1): 8-15. 

Gerthoffer, W. T. and J. Pohl (1994). "Caldesmon and calponin phosphorylation in regulation of smooth 
muscle contraction." Can J Physiol Pharmacol 72(11): 1410-1414. 

Gregersen, H., O. H. Gilja, T. Hausken, A. Heimdal, C. Gao, K. Matre, S. Odegaard and A. Berstad (2002). 
"Mechanical properties in the human gastric antrum using B-mode ultrasonography and antral distension." 
Am J Physiol Gastrointest Liver Physiol 283(2): G368-375. 

Grikscheit, T. C., A. Siddique, E. R. Ochoa, A. Srinivasan, E. Alsberg, R. A. Hodin and J. P. Vacanti 
(2004). "Tissue-engineered small intestine improves recovery after massive small bowel resection." Ann 
Surg 240(5): 748-754. 

Guo, D. C., H. Pannu, V. Tran-Fadulu, C. L. Papke, R. K. Yu, N. Avidan, S. Bourgeois, A. L. Estrera, H. J. 
Safi, E. Sparks, D. Amor, L. Ades, V. McConnell, C. E. Willoughby, D. Abuelo, M. Willing, R. A. Lewis, 
D. H. Kim, S. Scherer, P. P. Tung, C. Ahn, L. M. Buja, C. S. Raman, S. S. Shete and D. M. Milewicz 



	
  

	
   	
   	
  130	
  

(2007). "Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and 
dissections." Nat Genet 39(12): 1488-1493. 

Guo, H., R. Huang, S. Semba, J. Kordowska, Y. H. Huh, Y. Khalina-Stackpole, K. Mabuchi, T. Kitazawa 
and C. L. Wang (2013). "Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial 
muscle." Pflugers Arch 465(2): 283-294. 

Guo, H. and C. L. Wang (2005). "Specific disruption of smooth muscle caldesmon expression in mice." 
Biochem Biophys Res Commun 330(4): 1132-1137. 

Guo, W. and F. G. Giancotti (2004). "Integrin signalling during tumour progression." Nat Rev Mol Cell 
Biol 5(10): 816-826. 

Gusev, N. B. (2001). "Some properties of caldesmon and calponin and the participation of these proteins in 
regulation of smooth muscle contraction and cytoskeleton formation." Biochemistry 66(10): 1112-1121. 

Gutierrez, J. A. and H. A. Perr (1999). "Mechanical stretch modulates TGF-beta1 and alpha1(I) collagen 
expression in fetal human intestinal smooth muscle cells." Am J Physiol 277(5 Pt 1): G1074-1080. 

Haeberle, J. R., J. W. Hott and D. R. Hathaway (1985). "Regulation of isometric force and isotonic 
shortening velocity by phosphorylation of the 20,000 dalton myosin light chain of rat uterine smooth 
muscle." Pflugers Arch 403(2): 215-219. 

Hatton, J. P., M. Pooran, C. F. Li, C. Luzzio and M. Hughes-Fulford (2003). "A short pulse of mechanical 
force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway." J Bone 
Miner Res 18(1): 58-66. 

He, W. Q., Y. J. Peng, W. C. Zhang, N. Lv, J. Tang, C. Chen, C. H. Zhang, S. Gao, H. Q. Chen, G. Zhi, R. 
Feil, K. E. Kamm, J. T. Stull, X. Gao and M. S. Zhu (2008). "Myosin light chain kinase is central to smooth 
muscle contraction and required for gastrointestinal motility in mice." Gastroenterology 135(2): 610-620. 

Hecker, L., K. Baar, R. G. Dennis and K. N. Bitar (2005). "Development of a three-dimensional 
physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle 
cells." Am J Physiol Gastrointest Liver Physiol 289(2): G188-196. 

Heisenberg, C. P., C. Houart, M. Take-Uchi, G. J. Rauch, N. Young, P. Coutinho, I. Masai, L. Caneparo, M. 
L. Concha, R. Geisler, T. C. Dale, S. W. Wilson and D. L. Stemple (2001). "A mutation in the Gsk3-
binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to 
diencephalon." Genes Dev 15(11): 1427-1434. 

Helfman, D. M., E. T. Levy, C. Berthier, M. Shtutman, D. Riveline, I. Grosheva, A. Lachish-Zalait, M. 
Elbaum and A. D. Bershadsky (1999). "Caldesmon inhibits nonmuscle cell contractility and interferes with 
the formation of focal adhesions." Mol Biol Cell 10(10): 3097-3112. 

Holmberg, A., C. Olsson and G. W. Hennig (2007). "TTX-sensitive and TTX-insensitive control of 
spontaneous gut motility in the developing zebrafish (Danio rerio) larvae." J Exp Biol 210(Pt 6): 1084-1091. 

Hori, Y., T. Nakamura, D. Kimura, K. Kaino, Y. Kurokawa, S. Satomi and Y. Shimizu (2002). "Functional 
analysis of the tissue-engineered stomach wall." Artif Organs 26(10): 868-872. 

Horiuchi, K. Y. and S. Chacko (1989). "Caldesmon inhibits the cooperative turning-on of the smooth 
muscle heavy meromyosin by tropomyosin-actin." Biochemistry 28(23): 9111-9116. 



	
  

	
   	
   	
  131	
  

Horiuchi, K. Y., H. Miyata and S. Chacko (1986). "Modulation of smooth muscle actomyosin ATPase by 
thin filament associated proteins." Biochem Biophys Res Commun 136(3): 962-968. 

Huizinga, J. D. and E. J. White (2008). "Progenitor cells of interstitial cells of Cajal: on the road to tissue 
repair." Gastroenterology 134(4): 1252-1254. 

Hurd, T. R., M. G. Leblanc, L. N. Jones, M. DeGennaro and R. Lehmann (2013). "Genetic modifier screens 
to identify components of a redox-regulated cell adhesion and migration pathway." Methods Enzymol 528: 
197-215. 

Huxley, H. E. (2007). "Evidence about the structural behaviour of myosin crossbridges during muscle 
contraction." Adv Exp Med Biol 592: 315-326. 

Ikebe, M. and S. Reardon (1990). "Phosphorylation of smooth muscle caldesmon by calmodulin-dependent 
protein kinase II. Identification of the phosphorylation sites." J Biol Chem 265(29): 17607-17612. 

Ingber, D. E. (2002). "Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix 
regulation." Differentiation 70(9-10): 547-560. 

Ingber, D. E. (2003). "Mechanobiology and diseases of mechanotransduction." Ann Med 35(8): 564-577. 

Ingber, D. E., J. A. Madri and J. D. Jamieson (1981). "Role of basal lamina in neoplastic disorganization of 
tissue architecture." Proc Natl Acad Sci U S A 78(6): 3901-3905. 

Italiano, G., A. Calabro, S. Spini, E. Ragazzi and F. Pagano (1998). "Functional response of cavernosal 
tissue to distension." Urol Res 26(1): 39-44. 

Jang, S. M., J. W. Kim, D. Kim, C. H. Kim, J. H. An, K. H. Choi and S. Rhee (2013). "Sox4-mediated 
caldesmon expression facilitates skeletal myoblast differentiation." J Cell Sci. 

Jorgensen, E. M. and S. E. Mango (2002). "The art and design of genetic screens: caenorhabditis elegans." 
Nat Rev Genet 3(5): 356-369. 

Kad, N. M., A. S. Rovner, P. M. Fagnant, P. B. Joel, G. G. Kennedy, J. B. Patlak, D. M. Warshaw and K. 
M. Trybus (2003). "A mutant heterodimeric myosin with one inactive head generates maximal 
displacement." J Cell Biol 162(3): 481-488. 

Kamm, K. E. and J. T. Stull (1985). "The function of myosin and myosin light chain kinase 
phosphorylation in smooth muscle." Annu Rev Pharmacol Toxicol 25: 593-620. 

Katsuyama, H., C. L. Wang and K. G. Morgan (1992). "Regulation of vascular smooth muscle tone by 
caldesmon." J Biol Chem 267(21): 14555-14558. 

Keller, R., L. A. Davidson and D. R. Shook (2003). "How we are shaped: the biomechanics of 
gastrulation." Differentiation 71(3): 171-205. 

Kelsh, R. N. and J. S. Eisen (2000). "The zebrafish colourless gene regulates development of non-
ectomesenchymal neural crest derivatives." Development 127(3): 515-525. 

Khaled, W., S. Reichling, O. T. Bruhns, H. Boese, M. Baumann, G. Monkman, S. Egersdoerfer, D. Klein, 
A. Tunayar, H. Freimuth, A. Lorenz, A. Pessavento and H. Ermert (2004). "Palpation imaging using a 
haptic system for virtual reality applications in medicine." Stud Health Technol Inform 98: 147-153. 



	
  

	
   	
   	
  132	
  

Khau Van Kien, P., F. Mathieu, L. Zhu, A. Lalande, C. Betard, M. Lathrop, F. Brunotte, J. E. Wolf and X. 
Jeunemaitre (2005). "Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus 
to 16p12.2-p13.13." Circulation 112(2): 200-206. 

King, G. G., P. D. Pare and C. Y. Seow (1999). "The mechanics of exaggerated airway narrowing in 
asthma: the role of smooth muscle." Respir Physiol 118(1): 1-13. 

Kintses, B., M. Gyimesi, D. S. Pearson, M. A. Geeves, W. Zeng, C. R. Bagshaw and A. Malnasi-Csizmadia 
(2007). "Reversible movement of switch 1 loop of myosin determines actin interaction." EMBO J 26(1): 
265-274. 

Kito, Y. and H. Suzuki (2003). "Modulation of slow waves by hyperpolarization with potassium channel 
openers in antral smooth muscle of the guinea-pig stomach." J Physiol 548(Pt 1): 175-189. 

Klein, R. D. and B. J. Meyer (1993). "Independent domains of the Sdc-3 protein control sex determination 
and dosage compensation in C. elegans." Cell 72(3): 349-364. 

Kordowska, J., R. Huang and C. L. Wang (2006). "Phosphorylation of caldesmon during smooth muscle 
contraction and cell migration or proliferation." J Biomed Sci 13(2): 159-172. 

Kuang, S. Q., C. S. Kwartler, K. L. Byanova, J. Pham, L. Gong, S. K. Prakash, J. Huang, K. E. Kamm, J. T. 
Stull, H. L. Sweeney and D. M. Milewicz (2012). "Rare, nonsynonymous variant in the smooth muscle-
specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and 
phenotype of smooth muscle cells." Circ Res 110(11): 1411-1422. 

Kwan, K. M., E. Fujimoto, C. Grabher, B. D. Mangum, M. E. Hardy, D. S. Campbell, J. M. Parant, H. J. 
Yost, J. P. Kanki and C. B. Chien (2007). "The Tol2kit: a multisite gateway-based construction kit for Tol2 
transposon transgenesis constructs." Dev Dyn 236(11): 3088-3099. 

Langevin, H. M., D. L. Churchill and M. J. Cipolla (2001). "Mechanical signaling through connective 
tissue: a mechanism for the therapeutic effect of acupuncture." FASEB J 15(12): 2275-2282. 

Langevin, H. M., D. L. Churchill, J. R. Fox, G. J. Badger, B. S. Garra and M. H. Krag (2001). 
"Biomechanical response to acupuncture needling in humans." J Appl Physiol (1985) 91(6): 2471-2478. 

Lawson, J. D., E. Pate, I. Rayment and R. G. Yount (2004). "Molecular dynamics analysis of structural 
factors influencing back door pi release in myosin." Biophys J 86(6): 3794-3803. 

Lee, J. W. and R. Juliano (2004). "Mitogenic signal transduction by integrin- and growth factor receptor-
mediated pathways." Mol Cells 17(2): 188-202. 

Lee, K. M., K. Y. Tsai, N. Wang and D. E. Ingber (1998). "Extracellular matrix and pulmonary 
hypertension: control of vascular smooth muscle cell contractility." Am J Physiol 274(1 Pt 2): H76-82. 

Lee, Y. H., C. Gallant, H. Guo, Y. Li, C. A. Wang and K. G. Morgan (2000). "Regulation of vascular 
smooth muscle tone by N-terminal region of caldesmon. Possible role of tethering actin to myosin." J Biol 
Chem 275(5): 3213-3220. 

Levental, I., K. R. Levental, E. A. Klein, R. Assoian, R. T. Miller, R. G. Wells and P. A. Janmey (2010). 
"A simple indentation device for measuring micrometer-scale tissue stiffness." J Phys Condens Matter 
22(19): 194120. 



	
  

	
   	
   	
  133	
  

Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. 
Weninger, M. Yamauchi, D. L. Gasser and V. M. Weaver (2009). "Matrix crosslinking forces tumor 
progression by enhancing integrin signaling." Cell 139(5): 891-906. 

Levin, R. J. (2002). "The physiology of sexual arousal in the human female: a recreational and 
procreational synthesis." Arch Sex Behav 31(5): 405-411. 

Li, X. D., T. E. Rhodes, R. Ikebe, T. Kambara, H. D. White and M. Ikebe (1998). "Effects of mutations in 
the gamma-phosphate binding site of myosin on its motor function." J Biol Chem 273(42): 27404-27411. 

Li, Y., H. D. Je, S. Malek and K. G. Morgan (2004). "Role of ERK1/2 in uterine contractility and preterm 
labor in rats." Am J Physiol Regul Integr Comp Physiol 287(2): R328-335. 

Li, Y., M. Reznichenko, R. M. Tribe, P. E. Hess, M. Taggart, H. Kim, J. P. DeGnore, S. Gangopadhyay 
and K. G. Morgan (2009). "Stretch activates human myometrium via ERK, caldesmon and focal adhesion 
signaling." PLoS One 4(10): e7489. 

Liao, D., C. Sevcencu, K. Yoshida and H. Gregersen (2006). "Viscoelastic properties of isolated rat colon 
smooth muscle cells." Cell Biol Int 30(10): 854-858. 

Lin, T., M. J. Greenberg, J. R. Moore and E. M. Ostap (2011). "A hearing loss-associated myo1c mutation 
(R156W) decreases the myosin duty ratio and force sensitivity." Biochemistry 50(11): 1831-1838. 

Lo, C. M., H. B. Wang, M. Dembo and Y. L. Wang (2000). "Cell movement is guided by the rigidity of the 
substrate." Biophys J 79(1): 144-152. 

Loufrani, L., B. I. Levy and D. Henrion (2002). "Defect in microvascular adaptation to chronic changes in 
blood flow in mice lacking the gene encoding for dystrophin." Circ Res 91(12): 1183-1189. 

Lu, C., Y. Liu, X. Tang, H. Ye and D. Zhu (2006). "Role of 15-hydroxyeicosatetraenoic acid in 
phosphorylation of ERK1/2 and caldesmon in pulmonary arterial smooth muscle cells." Can J Physiol 
Pharmacol 84(10): 1061-1069. 

Mabuchi, K. and C. L. Wang (1991). "Electron microscopic studies of chicken gizzard caldesmon and its 
complex with calmodulin." J Muscle Res Cell Motil 12(2): 145-151. 

Malnasi-Csizmadia, A., J. L. Dickens, W. Zeng and C. R. Bagshaw (2005). "Switch movements and the 
myosin crossbridge stroke." J Muscle Res Cell Motil 26(1): 31-37. 

Margossian, S. S. and S. Lowey (1973). "Substructure of the myosin molecule. 3. Preparation of single-
headed derivatives of myosin." J Mol Biol 74(3): 301-311. 

Masi, A. T. and E. G. Walsh (2003). "Ankylosing spondylitis: integrated clinical and physiological 
perspectives." Clin Exp Rheumatol 21(1): 1-8. 

McCluggage, W. G. (2004). "A critical appraisal of the value of immunohistochemistry in diagnosis of 
uterine neoplasms." Adv Anat Pathol 11(3): 162-171. 

Metzger, M., C. Caldwell, A. J. Barlow, A. J. Burns and N. Thapar (2009). "Enteric nervous system stem 
cells derived from human gut mucosa for the treatment of aganglionic gut disorders." Gastroenterology 
136(7): 2214-2225 e2211-2213. 



	
  

	
   	
   	
  134	
  

Miettinen, M. M., M. Sarlomo-Rikala, A. J. Kovatich and J. Lasota (1999). "Calponin and h-caldesmon in 
soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates 
traits of smooth muscle differentiation." Mod Pathol 12(8): 756-762. 

Miller, C. E., K. J. Donlon, L. Toia, C. L. Wong and P. R. Chess (2000). "Cyclic strain induces 
proliferation of cultured embryonic heart cells." In Vitro Cell Dev Biol Anim 36(10): 633-639. 

Moiseeva, E. P. (2001). "Adhesion receptors of vascular smooth muscle cells and their functions." 
Cardiovasc Res 52(3): 372-386. 

Moore, J. R., L. Leinwand and D. M. Warshaw (2012). "Understanding cardiomyopathy phenotypes based 
on the functional impact of mutations in the myosin motor." Circ Res 111(3): 375-385. 

Morano, I., G. X. Chai, L. G. Baltas, V. Lamounier-Zepter, G. Lutsch, M. Kott, H. Haase and M. Bader 
(2000). "Smooth-muscle contraction without smooth-muscle myosin." Nat Cell Biol 2(6): 371-375. 

Moreland, S. and R. S. Moreland (1987). "Effects of dihydropyridines on stress, myosin phosphorylation, 
and V0 in smooth muscle." Am J Physiol 252(6 Pt 2): H1049-1058. 

Murphy, R. A. (1989). "Contraction in smooth muscle cells." Annu Rev Physiol 51: 275-283. 

Nelson, S. R., M. Y. Ali, K. M. Trybus and D. M. Warshaw (2009). "Random walk of processive, quantum 
dot-labeled myosin Va molecules within the actin cortex of COS-7 cells." Biophys J 97(2): 509-518. 

Oldenhof, A. D., O. P. Shynlova, M. Liu, B. L. Langille and S. J. Lye (2002). "Mitogen-activated protein 
kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells." Am J 
Physiol Cell Physiol 283(5): C1530-1539. 

Opas, M. (1989). "Expression of the differentiated phenotype by epithelial cells in vitro is regulated by 
both biochemistry and mechanics of the substratum." Dev Biol 131(2): 281-293. 

Orr, A. W., B. P. Helmke, B. R. Blackman and M. A. Schwartz (2006). "Mechanisms of 
mechanotransduction." Dev Cell 10(1): 11-20. 

Pan, W. K., B. J. Zheng, Y. Gao, H. Qin and Y. Liu (2011). "Transplantation of neonatal gut neural crest 
progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon." J Surg 
Res 167(2): e221-230. 

Pannu, H., V. Tran-Fadulu, C. L. Papke, S. Scherer, Y. Liu, C. Presley, D. Guo, A. L. Estrera, H. J. Safi, A. 
R. Brasier, G. W. Vick, A. J. Marian, C. S. Raman, L. M. Buja and D. M. Milewicz (2007). "MYH11 
mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II." 
Hum Mol Genet 16(20): 2453-2462. 

Park, J. M., T. Yang, L. J. Arend, J. B. Schnermann, C. A. Peters, M. R. Freeman and J. P. Briggs (1999). 
"Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical 
stretch." Am J Physiol 276(1 Pt 2): F129-136. 

Parker, K. K., A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, N. A. Geisse, J. C. Adams, 
G. M. Whitesides and D. E. Ingber (2002). "Directional control of lamellipodia extension by constraining 
cell shape and orienting cell tractional forces." FASEB J 16(10): 1195-1204. 

Paszek, M. J. and V. M. Weaver (2004). "The tension mounts: mechanics meets morphogenesis and 
malignancy." J Mammary Gland Biol Neoplasia 9(4): 325-342. 



	
  

	
   	
   	
  135	
  

Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. 
Margulies, M. Dembo, D. Boettiger, D. A. Hammer and V. M. Weaver (2005). "Tensional homeostasis and 
the malignant phenotype." Cancer Cell 8(3): 241-254. 

Piazzesi, G., M. Reconditi, M. Linari, L. Lucii, P. Bianco, E. Brunello, V. Decostre, A. Stewart, D. B. Gore, 
T. C. Irving, M. Irving and V. Lombardi (2007). "Skeletal muscle performance determined by modulation 
of number of myosin motors rather than motor force or stroke size." Cell 131(4): 784-795. 

Pierobon, P., S. Achouri, S. Courty, A. R. Dunn, J. A. Spudich, M. Dahan and G. Cappello (2009). 
"Velocity, processivity, and individual steps of single myosin V molecules in live cells." Biophys J 96(10): 
4268-4275. 

Prajapati, R. T., M. Eastwood and R. A. Brown (2000). "Duration and orientation of mechanical loads 
determine fibroblast cyto-mechanical activation: monitored by protease release." Wound Repair Regen 8(3): 
238-246. 

Provost, E., J. Rhee and S. D. Leach (2007). "Viral 2A peptides allow expression of multiple proteins from 
a single ORF in transgenic zebrafish embryos." Genesis 45(10): 625-629. 

Raghavan, A., G. Zhou, Q. Zhou, J. C. Ibe, R. Ramchandran, Q. Yang, H. Racherla, P. Raychaudhuri and J. 
U. Raj (2012). "Hypoxia-induced pulmonary arterial smooth muscle cell proliferation is controlled by 
forkhead box M1." Am J Respir Cell Mol Biol 46(4): 431-436. 

Raghavan, S., M. T. Lam, L. L. Foster, R. R. Gilmont, S. Somara, S. Takayama and K. N. Bitar (2010). 
"Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro." 
Tissue Eng Part C Methods 16(5): 999-1009. 

Rayment, I., H. M. Holden, M. Whittaker, C. B. Yohn, M. Lorenz, K. C. Holmes and R. A. Milligan (1993). 
"Structure of the actin-myosin complex and its implications for muscle contraction." Science 261(5117): 
58-65. 

Rayment, I., W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchick, M. M. Benning, D. A. 
Winkelmann, G. Wesenberg and H. M. Holden (1993). "Three-dimensional structure of myosin 
subfragment-1: a molecular motor." Science 261(5117): 50-58. 

Rich, A., S. A. Leddon, S. L. Hess, S. J. Gibbons, S. Miller, X. Xu and G. Farrugia (2007). "Kit-like 
immunoreactivity in the zebrafish gastrointestinal tract reveals putative ICC." Dev Dyn 236(3): 903-911. 

Riedl, J., A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. 
Holak, Z. Werb, M. Sixt and R. Wedlich-Soldner (2008). "Lifeact: a versatile marker to visualize F-actin." 
Nat Methods 5(7): 605-607. 

Risse, P. A., L. Kachmar, O. S. Matusovsky, M. Novali, F. R. Gil, S. Javeshghani, R. Keary, C. K. Haston, 
M. C. Michoud, J. G. Martin and A. M. Lauzon (2012). "Ileal smooth muscle dysfunction and remodeling 
in cystic fibrosis." Am J Physiol Gastrointest Liver Physiol 303(1): G1-8. 

Roberts, R. R., M. Ellis, R. M. Gwynne, A. J. Bergner, M. D. Lewis, E. A. Beckett, J. C. Bornstein and H. 
M. Young (2010). "The first intestinal motility patterns in fetal mice are not mediated by neurons or 
interstitial cells of Cajal." J Physiol 588(Pt 7): 1153-1169. 

Roberts, R. R., J. F. Murphy, H. M. Young and J. C. Bornstein (2007). "Development of colonic motility in 
the neonatal mouse-studies using spatiotemporal maps." Am J Physiol Gastrointest Liver Physiol 292(3): 
G930-938. 



	
  

	
   	
   	
  136	
  

Robertson, C. I., D. P. Gaffney, 2nd, L. R. Chrin and C. L. Berger (2005). "Structural rearrangements in the 
active site of smooth-muscle myosin." Biophys J 89(3): 1882-1892. 

Roopnarine, O. and L. A. Leinwand (1998). "Functional analysis of myosin mutations that cause familial 
hypertrophic cardiomyopathy." Biophys J 75(6): 3023-3030. 

Roovers, K. and R. K. Assoian (2003). "Effects of rho kinase and actin stress fibers on sustained 
extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases." Mol 
Cell Biol 23(12): 4283-4294. 

Rosenfeld, S. S. and H. L. Sweeney (2004). "A model of myosin V processivity." J Biol Chem 279(38): 
40100-40111. 

Rovner, A. S., P. M. Fagnant and K. M. Trybus (2003). "The two heads of smooth muscle myosin are 
enzymatically independent but mechanically interactive." J Biol Chem 278(29): 26938-26945. 

Sanders, K. M., S. D. Koh, S. Ro and S. M. Ward (2012). "Regulation of gastrointestinal motility--insights 
from smooth muscle biology." Nat Rev Gastroenterol Hepatol 9(11): 633-645. 

Sata, M. and M. Ikebe (1996). "Functional analysis of the mutations in the human cardiac beta-myosin that 
are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome." J Clin 
Invest 98(12): 2866-2873. 

Seiler, C., J. Abrams and M. Pack (2010). "Characterization of zebrafish intestinal smooth muscle 
development using a novel sm22alpha-b promoter." Dev Dyn 239(11): 2806-2812. 

Seiler, C., G. Davuluri, J. Abrams, F. J. Byfield, P. A. Janmey and M. Pack (2012). "Smooth muscle 
tension induces invasive remodeling of the zebrafish intestine." PLoS Biol 10(9): e1001386. 

Seow, C. Y. and J. J. Fredberg (2001). "Historical perspective on airway smooth muscle: the saga of a 
frustrated cell." J Appl Physiol (1985) 91(2): 938-952. 

Sharir, A., T. Stern, C. Rot, R. Shahar and E. Zelzer (2011). "Muscle force regulates bone shaping for 
optimal load-bearing capacity during embryogenesis." Development 138(15): 3247-3259. 

Shaw, A. and Q. Xu (2003). "Biomechanical stress-induced signaling in smooth muscle cells: an update." 
Curr Vasc Pharmacol 1(1): 41-58. 

Shepherd, I. and J. Eisen (2011). "Development of the zebrafish enteric nervous system." Methods Cell 
Biol 101: 143-160. 

Shimada, T., N. Sasaki, R. Ohkura and K. Sutoh (1997). "Alanine scanning mutagenesis of the switch I 
region in the ATPase site of Dictyostelium discoideum myosin II." Biochemistry 36(46): 14037-14043. 

Shwartz, Y., Z. Farkas, T. Stern, A. Aszodi and E. Zelzer (2012). "Muscle contraction controls skeletal 
morphogenesis through regulation of chondrocyte convergent extension." Dev Biol 370(1): 154-163. 

Siegman, M. J., T. M. Butler, S. U. Mooers and A. Michalek (1984). "Ca2+ can affect Vmax without 
changes in myosin light chain phosphorylation in smooth muscle." Pflugers Arch 401(4): 385-390. 

Sivarao, D. V., H. L. Mashimo, H. S. Thatte and R. K. Goyal (2001). "Lower esophageal sphincter is 
achalasic in nNOS(-/-) and hypotensive in W/W(v) mutant mice." Gastroenterology 121(1): 34-42. 



	
  

	
   	
   	
  137	
  

Small, J. V. and M. Gimona (1998). "The cytoskeleton of the vertebrate smooth muscle cell." Acta Physiol 
Scand 164(4): 341-348. 

Smith, B. A., B. Tolloczko, J. G. Martin and P. Grutter (2005). "Probing the viscoelastic behavior of 
cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile 
agonist." Biophys J 88(4): 2994-3007. 

Smith, C. W. and S. B. Marston (1985). "Disassembly and reconstitution of the Ca2+-sensitive thin 
filaments of vascular smooth muscle." FEBS Lett 184(1): 115-119. 

Smolock, E. M., D. M. Trappanese, S. Chang, T. Wang, P. Titchenell and R. S. Moreland (2009). "siRNA-
mediated knockdown of h-caldesmon in vascular smooth muscle." Am J Physiol Heart Circ Physiol 297(5): 
H1930-1939. 

Snow, C. J. and C. A. Henry (2009). "Dynamic formation of microenvironments at the myotendinous 
junction correlates with muscle fiber morphogenesis in zebrafish." Gene Expr Patterns 9(1): 37-42. 

Sobue, K., Y. Muramoto, M. Fujita and S. Kakiuchi (1981). "Purification of a calmodulin-binding protein 
from chicken gizzard that interacts with F-actin." Proc Natl Acad Sci 78(9): 5652-5655. 

Somara, S. and K. N. Bitar (2006). "Phosphorylated HSP27 modulates the association of phosphorylated 
caldesmon with tropomyosin in colonic smooth muscle." Am J Physiol Gastrointest Liver Physiol 291(4): 
G630-639. 

Somara, S., R. R. Gilmont, J. R. Martens and K. N. Bitar (2007). "Ectopic expression of caveolin-1 restores 
physiological contractile response of aged colonic smooth muscle." Am J Physiol Gastrointest Liver 
Physiol 293(1): G240-249. 

Somogyi, K. and P. Rorth (2004). "Evidence for tension-based regulation of Drosophila MAL and SRF 
during invasive cell migration." Dev Cell 7(1): 85-93. 

St Johnston, D. (2002). "The art and design of genetic screens: Drosophila melanogaster." Nat Rev Genet 
3(3): 176-188. 

Sternlicht, M. D., M. J. Bissell and Z. Werb (2000). "The matrix metalloproteinase stromelysin-1 acts as a 
natural mammary tumor promoter." Oncogene 19(8): 1102-1113. 

Sternlicht, M. D., A. Lochter, C. J. Sympson, B. Huey, J. P. Rougier, J. W. Gray, D. Pinkel, M. J. Bissell 
and Z. Werb (1999). "The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis." 
Cell 98(2): 137-146. 

Suveges, D., Z. Gaspari, G. Toth and L. Nyitray (2009). "Charged single alpha-helix: a versatile protein 
structural motif." Proteins 74(4): 905-916. 

Sweeney, H. L. and A. Houdusse (2010). "Structural and functional insights into the Myosin motor 
mechanism." Annu Rev Biophys 39: 539-557. 

Sweeney, H. L., S. S. Rosenfeld, F. Brown, L. Faust, J. Smith, J. Xing, L. A. Stein and J. R. Sellers (1998). 
"Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket." J Biol Chem 
273(11): 6262-6270. 



	
  

	
   	
   	
  138	
  

Szpacenko, A., J. Wagner, R. Dabrowska and J. C. Ruegg (1985). "Caldesmon-induced inhibition of 
ATPase activity of actomyosin and contraction of skinned fibres of chicken gizzard smooth muscle." FEBS 
Lett 192(1): 9-12. 

Tanaka, H., M. Hirose, T. Osada, H. Miwa, S. Watanabe and N. Sato (2000). "Implications of mechanical 
stretch on wound repair of gastric smooth muscle cells in vitro." Dig Dis Sci 45(12): 2470-2477. 

Toyoshima, Y. Y., S. J. Kron, E. M. McNally, K. R. Niebling, C. Toyoshima and J. A. Spudich (1987). 
"Myosin subfragment-1 is sufficient to move actin filaments in vitro." Nature 328(6130): 536-539. 

Trivedi, D. V., C. David, D. J. Jacobs and C. M. Yengo (2012). "Switch II mutants reveal coupling between 
the nucleotide- and actin-binding regions in myosin V." Biophys J 102(11): 2545-2555. 

Trybus, K. M., Y. Freyzon, L. Z. Faust and H. L. Sweeney (1997). "Spare the rod, spoil the regulation: 
necessity for a myosin rod." Proc Natl Acad Sci U S A 94(1): 48-52. 

Trybus, K. M., T. W. Huiatt and S. Lowey (1982). "A bent monomeric conformation of myosin from 
smooth muscle." Proc Natl Acad Sci U S A 79(20): 6151-6155. 

Tyska, M. J., D. E. Dupuis, W. H. Guilford, J. B. Patlak, G. S. Waller, K. M. Trybus, D. M. Warshaw and S. 
Lowey (1999). "Two heads of myosin are better than one for generating force and motion." Proc Natl Acad 
Sci U S A 96(8): 4402-4407. 

Tyska, M. J. and D. M. Warshaw (2002). "The myosin power stroke." Cell Motil Cytoskeleton 51(1): 1-15. 

VanDijk, A. M., P. A. Wieringa, M. van der Meer and J. D. Laird (1984). "Mechanics of resting isolated 
single vascular smooth muscle cells from bovine coronary artery." Am J Physiol 246(3 Pt 1): C277-287. 

Villefranc, J. A., J. Amigo and N. D. Lawson (2007). "Gateway compatible vectors for analysis of gene 
function in the zebrafish." Dev Dyn 236(11): 3077-3087. 

Volkmann, N., G. Ouyang, K. M. Trybus, D. J. DeRosier, S. Lowey and D. Hanein (2003). "Myosin 
isoforms show unique conformations in the actin-bound state." Proc Natl Acad Sci U S A 100(6): 3227-
3232. 

Wallace, K. N., S. Akhter, E. M. Smith, K. Lorent and M. Pack (2005). "Intestinal growth and 
differentiation in zebrafish." Mech Dev 122(2): 157-173. 

Wallace, K. N., A. C. Dolan, C. Seiler, E. M. Smith, S. Yusuff, L. Chaille-Arnold, B. Judson, R. Sierk, C. 
Yengo, H. L. Sweeney and M. Pack (2005). "Mutation of smooth muscle myosin causes epithelial invasion 
and cystic expansion of the zebrafish intestine." Dev Cell 8(5): 717-726. 

Waller, G. S., G. Ouyang, J. Swafford, P. Vibert and S. Lowey (1995). "A minimal motor domain from 
chicken skeletal muscle myosin." J Biol Chem 270(25): 15348-15352. 

Walsh, R., C. Rutland, R. Thomas and S. Loughna (2010). "Cardiomyopathy: a systematic review of 
disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations." Cardiology 
115(1): 49-60. 

Wang, C. L. (2001). "Caldesmon and smooth-muscle regulation." Cell Biochem Biophys 35(3): 275-288. 

Wang, C. L., J. M. Chalovich, P. Graceffa, R. C. Lu, K. Mabuchi and W. F. Stafford (1991). "A long helix 
from the central region of smooth muscle caldesmon." J Biol Chem 266(21): 13958-13963. 



	
  

	
   	
   	
  139	
  

Wang, P. and K. N. Bitar (1998). "Rho A regulates sustained smooth muscle contraction through 
cytoskeletal reorganization of HSP27." Am J Physiol 275(6 Pt 1): G1454-1462. 

Wang, Z., H. Jiang, Z. Q. Yang and S. Chacko (1997). "Both N-terminal myosin-binding and C-terminal 
actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin 
filament velocity." Proc Natl Acad Sci U S A 94(22): 11899-11904. 

Ward, S. M., A. J. Burns, S. Torihashi and K. M. Sanders (1994). "Mutation of the proto-oncogene c-kit 
blocks development of interstitial cells and electrical rhythmicity in murine intestine." J Physiol 480 ( Pt 1): 
91-97. 

Webb, L. X. (2002). "New techniques in wound management: vacuum-assisted wound closure." J Am 
Acad Orthop Surg 10(5): 303-311. 

Westaby, S. (1999). "Aortic dissection in Marfan's syndrome." Ann Thorac Surg 67(6): 1861-1863; 
discussion 1868-1870. 

White, H. D., B. Belknap and M. R. Webb (1997). "Kinetics of nucleoside triphosphate cleavage and 
phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe 
for phosphate." Biochemistry 36(39): 11828-11836. 

Whittaker, M., E. M. Wilson-Kubalek, J. E. Smith, L. Faust, R. A. Milligan and H. L. Sweeney (1995). "A 
35-A movement of smooth muscle myosin on ADP release." Nature 378(6558): 748-751. 

Wirtz, H. R. and L. G. Dobbs (1990). "Calcium mobilization and exocytosis after one mechanical stretch of 
lung epithelial cells." Science 250(4985): 1266-1269. 

Wolny, M., M. Colegrave, L. Colman, E. White, P. Knight and M. Peckham (2013). "Cardiomyopathy 
mutations in the tail of beta cardiac myosin modify the coiled-coil structure and affect integration into thick 
filaments in muscle sarcomeres in adult cardiomyocytes." J Biol Chem. 

Woolcock, A. J. and J. K. Peat (1989). "Epidemiology of bronchial hyperresponsiveness." Clin Rev Allergy 
7(3): 245-256. 

Word, R. A., J. T. Stull, M. L. Casey and K. E. Kamm (1993). "Contractile elements and myosin light 
chain phosphorylation in myometrial tissue from nonpregnant and pregnant women." J Clin Invest 92(1): 
29-37. 

Wozniak, M. A., R. Desai, P. A. Solski, C. J. Der and P. J. Keely (2003). "ROCK-generated contractility 
regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional 
collagen matrix." J Cell Biol 163(3): 583-595. 

Yengo, C. M., P. M. Fagnant, L. Chrin, A. S. Rovner and C. L. Berger (1998). "Smooth muscle myosin 
mutants containing a single tryptophan reveal molecular interactions at the actin-binding interface." Proc 
Natl Acad Sci U S A 95(22): 12944-12949. 

Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver 
and P. A. Janmey (2005). "Effects of substrate stiffness on cell morphology, cytoskeletal structure, and 
adhesion." Cell Motil Cytoskeleton 60(1): 24-34. 

Yildiz, A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman and P. R. Selvin (2003). "Myosin V walks 
hand-over-hand: single fluorophore imaging with 1.5-nm localization." Science 300(5628): 2061-2065. 



	
  

	
   	
   	
  140	
  

Yildiz, A., H. Park, D. Safer, Z. Yang, L. Q. Chen, P. R. Selvin and H. L. Sweeney (2004). "Myosin VI 
steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin." J 
Biol Chem 279(36): 37223-37226. 

Yount, R. G., D. Lawson and I. Rayment (1995). "Is myosin a "back door" enzyme?" Biophys J 68(4 
Suppl): 44S-47S; discussion 47S-49S. 

Yu, G., S. Bo, J. Xiyu and X. Enqing (2003). "Effect of bladder outlet obstruction on detrusor smooth 
muscle cell: an in vitro study." J Surg Res 114(2): 202-209. 

Zeng, W., P. B. Conibear, J. L. Dickens, R. A. Cowie, S. Wakelin, A. Malnasi-Csizmadia and C. R. 
Bagshaw (2004). "Dynamics of actomyosin interactions in relation to the cross-bridge cycle." Philos Trans 
R Soc Lond B Biol Sci 359(1452): 1843-1855. 

Zhan, Q. Q., S. S. Wong and C. L. Wang (1991). "A calmodulin-binding peptide of caldesmon." J Biol 
Chem 266(32): 21810-21814. 

Zhang, H. and L. Zhang (2007). "Regulation of alpha1-adrenoceptor-mediated contractions of the uterine 
artery by protein kinase C: role of the thick- and thin-filament regulatory pathways." J Pharmacol Exp Ther 
322(3): 1253-1260. 

Zheng, P. P., L. A. Severijnen, R. Willemsen and J. M. Kros (2009). "Caldesmon is essential for cardiac 
morphogenesis and function: in vivo study using a zebrafish model." Biochem Biophys Res Commun 
378(1): 37-40. 

Zhong, C., M. S. Kinch and K. Burridge (1997). "Rho-stimulated contractility contributes to the 
fibroblastic phenotype of Ras-transformed epithelial cells." Mol Biol Cell 8(11): 2329-2344. 

Zhu, L., D. Bonnet, M. Boussion, B. Vedie, D. Sidi and X. Jeunemaitre (2007). "Investigation of the 
MYH11 gene in sporadic patients with an isolated persistently patent arterial duct." Cardiol Young 17(6): 
666-672. 

 


	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Abnormal Smooth Muscle Contraction Alters Gut Motility and Propagates Epithelial invasion in the Larval Zebrafish Intestine
	Joshua Abrams
	Recommended Citation

	Abnormal Smooth Muscle Contraction Alters Gut Motility and Propagates Epithelial invasion in the Larval Zebrafish Intestine
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Microsoft Word - Thesisref (after MPedits).docx

