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ABSTRACT 

OBJECT RIVALRY: COMPETITION BETWEEN INCOMPATIBLE  

REPRESENTATIONS OF THE SAME OBJECT 

 

Nicholas C. Hindy 

 

 

Sharon L. Thompson-Schill 

 

 

To understand that an object has changed state during an event, we must represent the 

‘before’ and ‘after’ states of that object. Because a physical object cannot be in multiple 

states at any one moment in time, these ‘before’ and ‘after’ object states are mutually 

exclusive. In the same way that alternative states of a physical object are mutually 

exclusive, are cognitive representations of alternative object states also incompatible? If 

so, comprehension of an object state-change involves interference between the 

constituent object states. Through a series of functional magnetic resonance imaging 

experiments, we test the hypothesis that comprehension of object state-change requires 

the cognitive system to resolve conflict between representationally distinct brain states. 

We discover that (1) comprehension of an object state-change evokes a neural response in 

prefrontal cortex that is the same as that found for known forms of conflict, (2) the degree 

to which an object is described as changing in state predicts the strength of the prefrontal 

cortex conflict response, (3) the dissimilarity of object states predicts the pattern 

dissimilarity of visual cortex brain states, and (4) visual cortex pattern dissimilarity 

predicts the strength of the prefrontal cortex conflict response. Results from these 

experiments suggest that distinct and incompatible representations of an object compete 

when representing object state-change. The greater the dissimilarity between described 
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object states, the greater the dissimilarity between rival brain states, and the greater the 

conflict. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

 

 

When the identical fact recurs, we must think of it in a fresh manner, see it under a 

somewhat different angle, apprehend it in different relations from those in which 

it last appeared. 

– The Principles of Psychology (William James, 1890) 

 

 Recall a pumpkin that you purchased for Halloween. Focus on how the pumpkin 

looked before you bought it. Now think of how the same pumpkin looked once it was 

carved and on display. Finally, refocus on how this pumpkin looked in its original 

uncarved state.  

 In performing this exercise, many people report difficulty in “letting go” of their 

strong visual memory of the pumpkin as a decoration, as they attempt to refocus their 

attention on the image of the same pumpkin in its original state. To guide intuition about 

this apparent interference between alternative representations of the pumpkin, it may be 

useful to consider a few observations about this object, as it existed in the world. The first 

observation is that the pumpkin was in distinct states at distinct points in time; at one 

point in time the pumpkin was in an uncarved state, while at another point in time the 

pumpkin was in a carved state. The second observation is that the pumpkin was never in 

distinct states at a single point in time; at no point in time was the pumpkin in both an 

uncarved state and a carved state.  

 Observations about mutually exclusive states of a pumpkin are not far from the 

popular metaphor of Schrödinger’s cat (Schrödinger, 1935). Certainly, Schrödinger’s 
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thought experiment was not intended to inform our understanding of the behavior of cats, 

but instead to inform our understanding of the behavior of electrons. In a similar way, the 

experiments described here are not intended to inform our understanding of the 

relationship between incompatible object states, but instead to inform our understanding 

of the relationship between incompatible brain states. As James’ quote suggests, the 

internal representation of a described object such as a pumpkin has an existence that is 

distinct from that of the physical object in the world. We take as self-evident that an 

observable object such as a pumpkin cannot be in multiple states at any one moment in 

time. We ask whether the brain states which correspond to those alternative object states 

are similarly incompatible, and if so, whether comprehension of an object state-change 

thus requires the cognitive system to resolve conflict among representationally distinct 

brain states. 

In the empirical chapters that follow, we use functional magnetic resonance 

imaging (fMRI) to measure the extent to which alternative object representations 

compete when an object is changed from its original state. However, we recognize that 

any productive investigation of a neural system must begin with a description of the 

system’s purpose, as well as a mechanistic framework of cognitive processes through 

which the neural system achieves this purpose (Marr & Poggio, 1979; Marr, 1982). 

Therefore, in the remainder of this chapter, we will review literature on how the cognitive 

system maintains information in working memory, detects conflict between incompatible 

items of information, and resolves conflict among those items. These concepts will both 

motivate the forthcoming experiments and guide the interpretation of data in Chapters 2 

and 3.  
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Ambiguity in Language and in the World 

 Ambiguity is not unique to pumpkins, Schrödinger cats, or electrons. It is present 

anytime a single object, symbol, or idea maps onto to multiple distinct referents. This 

correspondence problem is particularly salient in language comprehension. Many words 

do not have a one-to-one mapping between form and meaning. A long history of 

psycholinguistic research has demonstrated the presence of ambiguity at nearly every 

level of linguistic processing. At the most basic levels of speech and text comprehension, 

multiple phonemes are simultaneously activated when the voice onset time of a stimulus 

does not strongly cohere to a particular phonetic category (Blumstein, Cooper, Zurif, & 

Caramazza, 1977; Blumstein, Myers, & Rissman, 2005), and the facility and time course 

of visual word recognition depends on orthographic neighborhood of the particular word 

(Coltheart, Davelaar, Jonasson, & Besner, 1977; Seidenberg & McClelland, 1989). 

Anytime we see a homograph or hear a homonym, we temporarily activate its multiple 

meanings (Duffy, Morris, & Rayner, 1988; Kintsch, 1988). Likewise, in reading 

polysemous words such as “fan,” both a summer appliance and an arm-waving admirer 

may come to mind and compete for attention (Bedny, McGill, & Thompson-Schill, 2008; 

Klein & Murphy, 2001, 2002). In computational models of lexical ambiguity of 

polysemous words, distinct mental representations of word senses are viewed as stable 

states within a semantic space that is shaped by the general frequency of the word sense 

as well as the specific context in which the word is encountered (Gernsbacher & St John, 

2001; Rodd, Gaskell, & Marslen-Wilson, 2004). Context plays an important role in 

presenting and constraining interpretations of not only homonyms and polysemous 

words, but also those of language and discourse more generally.  
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 The power of context to produce competition and interference between distinct 

objects in a visual scene during sentence comprehension has been extensively examined 

using the Visual World Paradigm (Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard, 

& Sedivy, 1995). In most uses of this paradigm, eye movements are monitored as 

subjects view scenes while listening to a description of an event in which objects in the 

scene take part. Depending on the objects displayed in the scene, subjects predictively 

pursue incorrect interpretations of a sentence before it is finished, leading to interference 

between syntactic interpretations, and also between displayed objects (Novick, Trueswell, 

& Thompson-Schill, 2005). Interference between similar but discrete objects is also 

reflected in computer-mouse trajectories as subjects click and drag objects on a computer 

screen during sentence comprehension (Farmer, Cargill, Hindy, Dale, & Spivey, 2007). 

The possibility that multiple instances of the same object in different states 

compete and potentially interfere with one another during sentence comprehension has 

recently been investigated with location change. In a series of eye-tracking experiments, 

Altmann and Kamide (2009) had subjects view a scene depicting various objects as they 

listened to a story about the objects in the scene. The story described an event in which 

the critical object first moved from one location to another, and then that same object was 

referred to again (e.g., “the woman will move the glass onto the table … then, she will 

pour the wine into the glass”). When an object was described as being moved, subjects 

were slightly more likely, when the object was named again, to fixate its presumed 

destination (e.g., the table) than when the described event left the object unmoved. And 

when the visual scene was removed before the language unfolded (such that subjects first 

viewed the scene, and then heard the sentences while looking at a blank screen), 
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sentential context fully determined where the eyes were directed. Altmann and Kamide 

argued that this was because removing the visual depiction of the object eliminated the 

competition between that depiction and the mental event-based representation of the 

object. Is there a competitive cost to maintaining multiple representations of an object in 

the different states through which it has passed? If so, the demands to resolve competition 

between incompatible interpretations of a linguistic stimulus referring to that object will 

likely require similar conflict resolution mechanisms studied using other cognitive 

control tasks, and will likely recruit top-down cognitive control processes mediated by 

prefrontal cortex. 

 

Ambiguity as a Form of Conflict 

 The demand to resolve competition between incompatible interpretations of a 

linguistic stimulus requires us to select relevant information from clutter, and should 

therefore recruit specific top-down cognitive control processes that are mediated by the 

prefrontal cortex (Miller & Cohen, 2001; Fuster, 2008). Cognitive control is the ability to 

override impulses, ignore distractions, and intentionally guide thoughts and actions in the 

pursuit of internal goals (Miller, 2000). A fundamental aspect of cognitive control is the 

ability to select a weakly activated representation instead of a stronger representation. 

Within a distribution-based competition framework for semantic comprehension (e.g, 

Thompson-Schill & Botvinick, 2006), semantic ambiguity can be understood as a form of 

conflict. Resolution of semantic conflict may require similar cognitive control 

mechanisms as do other forms of conflict such as the competition between incompatible 
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task sets, motor responses, and color representations which is induced by the Stroop 

color-word interference task. 

 The Stroop interference task is a classic paradigm used to experimentally induce 

conflict (Stroop, 1935; MacLeod, 1991). For each trial of the Stroop task, subjects are 

presented with a single color word for which the typeface may not necessarily match the 

definition of the word (e.g., the word “green” in red typeface). Subjects must indicate the 

typeface color of the word, and ignore the linguistic meaning of the word. Because word 

reading is generally fast and automatic, most subjects experience interference between 

alternative representations of the stimulus word. The Stroop task has been extensively 

studied at cognitive, neural, and computational levels, and has been shown to involve 

conflict at multiple levels of representation (MacLeod & MacDonald, 2000; MacLeod, 

2005). Manipulations to increase or dampen various forms of conflict in the Stroop task 

demonstrate conflict that is specific to the selection of semantic alternatives (e.g., Carter, 

Mintun, & Cohen, 1995; van Veen & Carter, 2005), the selection of motor response (e.g., 

Pardo, Pardo, Janer, & Raichle, 1990; Zysset, Müller, Lohmann, & Von Cramon, 2001), 

and the selection of task set (Allport, Styles, & Hsieh, 1994). For instance, to dampen 

conflict at the level of motor response in a button-press Stroop task, investigators may 

include “response-ineligible” trials, in which the color term mismatches the typeface 

color, but the color term is not one of the possible response options (e.g., Milham, 

Banich, & Barad, 2003). To increase conflict at the level of task representation, 

investigators may require subjects to switch between color naming and word reading 

(e.g., Bub, Masson, & Lalonde, 2006). Changes in behavioral performance due to each of 

these task manipulations are captured in computational models of the Stroop task (e.g., 
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Cohen, Dunbar, & McClelland, 1990; Cohen & Huston, 1994). For instance, by 

beginning each trial with residual activation of the task-demand units from the previous 

trial, neural network models simulate the carryover effects when switching between 

word-reading and color-naming (Gilbert & Shallice, 2002).  

 Shifting attention from one stimulus dimension to another in the Stroop task may 

be analogous to the need to shift attention from one object instantiation to another 

comprehension of an object state-change. Using the functional localization method in 

fMRI, we may infer the presence of shared conflict-specific neural processes across tasks, 

based on co-localization of signal change during conflict trials of a Stroop task and state-

change trials of an event comprehension task (cf. Saxe, Brett, & Kanwisher, 2006; 

Fedorenko & Kanwisher, 2009; January, Trueswell, & Thompson-Schill, 2009). 

However, because the Stroop task involves multiple forms of conflict, the Stroop task by 

itself is not specific enough to confidently localize the neural response to conflict at a 

particular processing level. Because we are specifically interested in conflict at the level 

of semantic representation, we leverage our prior knowledge about the functional 

anatomy in making inferences about cognitive processes (Henson, 2005; Poldrack, 2006). 

In particular, we constrain analysis to a relatively well studied area of prefrontal cortex, 

left posterior ventrolateral prefrontal cortex (pVLPFC). 

  

Left pVLPFC Responds Specifically to Semantic Conflict 

 Thompson-Schill and colleagues were among the first researchers to use fMRI to 

extend the field of cognitive control to the domain of semantic retrieval. Thompson-

Schill, D’Esposito, Aguirre, and Farah (1997) demonstrated that activity in the left 
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pVLPFC during semantic retrieval is modulated by the cognitive control demand of the 

task. When generating verbs related to presented nouns, classifying object pictures by 

their attributes, and comparing words along specific semantic dimensions, the semantic 

conflict and demand for cognitive control was greater for trials with multiple competing 

responses than for trials in which there was a single dominant response. Each task and 

contrast had a unique pattern of activation, but increased percent signal change for all 

three conflict manipulations overlapped specifically in left pVLPFC. In a follow-up 

study, patients with damage to left pVLPFC made increased errors in generating verbs for 

“high conflict” nouns with many associated verbs relative to “low conflict” nouns that 

had just one strongly associated verb (Thompson-Schill et al., 1998). Moreover, the 

magnitude of this impairment depended on the extent of damage specific to left pVLPFC. 

Since then, neuroimaging, patient lesion, and transcranial magnetic stimulation (TMS) 

studies converge to demonstrate that left pVLPFC is activated during and is necessary for 

resolving competition amongst incompatible semantic representations (Thompson-Schill, 

Bedny, & Goldberg, 2005; Badre & Wagner, 2007) 

 In particular, numerous studies demonstrate an important role for left pVLPFC in 

selecting context-appropriate meanings of ambiguous words (Metzler, 2001; Bedny, 

McGill, & Thompson-Schill, 2008). For instance, through measuring subjects’ computer-

mouse movements during TMS, we demonstrated the necessity of left pVLPFC for 

contextual disambiguation involving alternative weakly associated targets (Hindy, 

Hamilton, Houghtling, Coslett, & Thompson-Schill, 2009). For each trial, subjects were 

displayed two target words. Many of these target words were homonymous or 

polysemous, such that interpretation depended on the semantic context in which the target 
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appeared. Upon presentation of a stimulus cue, subjects indicated which of the targets 

was most strongly associated with the cue word. When the target was a strong associate, 

its ambiguity did not matter, but when the target was a weak associate, contextual 

disambiguation was important. For instance, the target “cards” is associated with the cue 

“queen,” but only in the context of playing cards, not in the context of greeting cards and 

postcards. Upon TMS disruption of left pVLPFC following presentation of a stimulus 

cue, subjects' mouse-movement trajectories revealed greater deviation toward a distractor 

when the target and cue had an ambiguous semantic relationship, than when the 

associative relationship was unambiguous. This ambiguity effect was extinguished when 

subjects were simultaneously shown both target and cue stimuli, which allowed them to 

correctly interpret the context of the associative relationship. These results suggest that 

TMS disrupted the process of contextual disambiguation of the target word, and that left 

pVLPFC is necessary to resolve semantic competition among stimulus interpretations 

when the interpretive context of a stimulus is ambiguous, and the appropriate meaning is 

underdetermined. 

 Left pVLPFC is also necessary for resolving working memory interference in 

item recognition tasks such as the recent probes task (Monsell, 1978; Sternberg, 1966). In 

the recent probes task, subjects are presented with a “target set” of items (e.g., digits, 

letters, faces, shapes, color patches) followed by a brief delay period during which the 

subject sees a blank screen and must maintain the target items in working memory. 

Subsequently, a single “probe” item appears, and the subject must indicate whether the 

probe item was in the corresponding target set. Interference is induced specifically on 

“recent negative” trials, in which the probe was not in the target set of the current trial, 



 
 

10 
 

but was in the target set of the previous trial. For recent negative trials, the subject must 

ignore the memory of the previous trial to accurately indicate that the probe was not part 

of the current trial’s target set. Evidence from patient lesion deficits, neuroimaging, and 

TMS appears to converge on the role of the prefrontral cortex in controlling working-

memory interference of prior items for recent negative trials (Jonides, Smith, Marshuetz, 

Koeppe, & Reuter-Lorenz, 1998; D’Esposito, Postle, Jonides, & Smith, 1999; Thompson-

Schill et al., 2002; Feredoes, Tononi, & Postle, 2006; Feredoes & Postle, 2010).  

 In addition to generating verbs with many semantic competitors, selecting 

context-appropriate meanings of ambiguous words, and resolving working memory 

interference in item recognition, left pVLPFC has been shown to be critical for overriding 

misinterpretations of syntactically ambiguous sentences in the Visual World Paradigm 

discussed above (Novick et al., 2005; January, Trueswell, & Thompson-Schill, 2009and 

for completing sentences that have multiple alternative responses (Robinson, Blair, & 

Cipolotti, 1998; Robinson, Shallice, & Cipolotti, 2005). The mountain of evidence 

suggesting that left pVLPFC resolves competition between semantic representations, 

makes this brain area a useful marker of semantic conflict in the current studies on the 

comprehension of object state-change. 

 

Current Studies 

  Chapter 2 describes two experiments that seek to test whether the same brain 

regions were activated selectively by sentences referring to an object undergoing state 

change. In the first experiment, the same object was described as being changed either 

substantially or minimally by one of two actions (e.g., "the squirrel will sniff/crack the 
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acorn"). In the second experiment, the same action was described as either substantially 

or minimally changing one of two objects (e.g., “the girl will stomp on the penny/egg”). 

In each of these experiments, we separately vary the degree to which an object is changed 

in state by the described action, as well as the imageability of that described action, and 

measure dissociable components of the neural network that supports event 

comprehension and object representation. Across the experimental manipulations of 

action and object, we observe a consistent pattern of results across functionally-defined 

brain regions suggesting that multiple incompatible representations of an object are in 

conflict with one another when representing object state-change. Most notably, the 

greater the difference between the initial state and the end state of an object, the stronger 

the response in areas of left pVLPFC that are most sensitive to conflict on the individual-

subject level.  

 Based on the conflict-specific response in left pVLPFC we infer the presence of 

multiple object-state representations in each of the experiments described in Chapter 2. 

Yet we suspect that the neural substrate of multiple competing object representations 

includes patterns of distributed activation throughout ventral temporal cortex. 

Neuroimaging studies of semantic retrieval suggest that knowledge about individual 

concepts is distributed across networks of overlapping semantic representations in visual 

and temporal cortices. Many of the same cortical regions that are activated when people 

see pictures are also activated when they read words. Because the experiments described 

in Chapter 2 did not permit careful examination of visual object representations, we took 

a different approach for the experiment described in Chapter 3.   
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 Chapter 3 describes an fMRI experiment for which we used the “information-

based” approach of multi-voxel similarity analysis (Weber, Thompson-Schill, Osherson, 

Haxby, & Parsons, 2009; Kriegeskorte, Mur, & Bandettini, 2008) to measure the 

distributed neural representations of brain states induced by imagining an object before 

and after a described action. We find that the physical similarity of incompatible object 

states before and after a described action predicts not only the strength of the conflict 

response in left pVLPFC, but also the multi-voxel pattern similarity of the corresponding 

brain states in feature-selective areas of early visual cortex. Moreover, distributed neural 

similarity in early visual cortex predicts the strength of the prefrontal cortex conflict 

response even better than separately collected similarity ratings of the incompatible 

object states. Results suggest that alternative states of an object correspond to distinct 

visual cortex representations, and that conflict measured in left pVLPFC is mediated by 

the similarity of distributed representations in visual cortex. 
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CHAPTER 2: THE EFFECT OF OBJECT STATE-CHANGES ON EVENT 

PROCESSING: DO OBJECTS COMPETE WITH THEMSELVES? 

 

 

 

 A microscopic psychology has arisen . . . carried on by experimental methods, 

 asking of course every moment for introspective data, but eliminating their 

 uncertainty by operating on a large scale and taking statistical means.  

 

– The Principles of Psychology (William James, 1890) 

 

 

Abstract 

When an object is described as changing state during an event, do the representations of 

those states compete? The distinct states they represent cannot co-exist at any one 

moment in time, yet each representation must be retrievable at the cost of suppressing the 

other possible object states. We used functional magnetic resonance imaging of human 

subjects to test whether such competition does occur, and whether this competition 

between object states recruits brain areas sensitive to other forms of conflict. In 

Experiment 1, the same object was changed either substantially or minimally by one of 

two actions. In Experiment 2, the same action either substantially or minimally changed 

one of two objects. On a subject-specific basis, we identified voxels most responsive to 

conflict in a Stroop color-word interference task. Voxels in left posterior ventrolateral 

prefrontal cortex most responsive to Stroop conflict were also responsive to our object 

state-change manipulation, and were not responsive to the imageability of the described 

action. In contrast, voxels in left middle frontal gyrus responsive to Stroop conflict were 
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not responsive even to language, and voxels in left middle temporal gyrus that were 

responsive to language and imageability were not responsive to object state-change. 

Results suggest that, when representing object state-change, multiple incompatible 

representations of an object compete, and the greater the difference between the initial 

state and the end state of an object, the greater the conflict. 
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Introduction  

 Event comprehension requires the ability to keep track of multiple representations 

of an object as it is altered in state or location. Recent work on language-mediated eye-

movements suggests that the mental representation of a described object is dissociable 

from the perceived object in a concurrently presented visual scene, and suggests further 

that multiple representations of (all or parts of) the same object in different states may 

compete and interfere with one another during event processing (Altmann & Kamide, 

2009). 

 On reading “The squirrel will crack the acorn,” we must represent that the acorn 

existed in distinct states: cracked and intact. If an immediately succeeding sentence reads 

“And then, it will lick the acorn,” the cracked state must be retrieved; if, instead, that 

sentence reads “But first, it will lick the acorn,” the intact state must be retrieved. Now 

consider replacing “The squirrel will crack the acorn” with “The squirrel will sniff the 

acorn.” Regardless of the “but first” or “and then,” there is no conflict regarding the 

representation to be retrieved. We hypothesize that reading about the cracked acorn will 

recruit brain regions usually associated with conflict resolution, whereas reading about 

the sniffed acorn will not.  

 Here, we test the proposal that selecting from amongst distinct states of the same 

object will selectively recruit prefrontal cortex regions sensitive to semantic conflict, and 

that this increased activation will overlap on a subject-specific basis with conflict-

dependent activation in a standard interference task. Event comprehension trials for each 

experiment varied in the degree to which a described object was changed in state. In 

Experiment 1, the same object was changed either substantially or minimally by one of 
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two actions (“crack” or “sniff”). In Experiment 2, the same action (“stomp on”) either 

substantially or minimally changed one of two objects (an egg or a penny). Conflict-

dependent fMRI data collected during a Stroop color-word interference task was used to 

create subject-specific regions of interest (ROIs) in left posterior ventrolateral prefrontal 

cortex (pVLPFC), a brain area responsive to semantic conflict (Thompson-Schill, Bedny, 

& Goldberg, 2005; Thompson-Schill et al., 2005). We additionally examined activation in 

two other ROIs: 1) voxels in left middle frontal gyrus (MFG) that were responsive to 

Stroop conflict but unresponsive to sentence comprehension; 2) voxels in left middle 

temporal gyrus (MTG) responsive to sentence comprehension but unresponsive to Stroop 

conflict. 

 In each experiment, the rated degree to which an object changed in state during an 

event, but not the rated imageability of the described action, parametrically predicted the 

amplitude of the BOLD response in left pVLPFC voxels most responsive to Stroop 

conflict. In contrast, object state-change did not predict activation in either left MFG or 

left MTG; in left MTG we instead observed an effect of action imageability. Across 

complementary manipulations of action (Expt. 1) and object (Expt. 2), the consistent 

linear effect of object state-change on conflict-responsive areas of left pVLPFC indicates 

that multiple states of an object do compete during event processing when the object is 

changed from its original state. 
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Materials and Methods 

Subjects. Sixteen right-handed native English speakers (9 female), aged 18-28 years, 

participated in Experiment 1, and a separate sample of 16 right-handed native English 

speakers (8 female), aged 19-33 years, participated in Experiment 2. Two additional 

subjects from Experiment 2 were excluded from data analysis and replaced due to 

unusually poor performance on the event comprehension task; one subject correctly 

identified fewer than half the catch trials; the other subject had a false-alarm rate that was 

10 times the average of all Experiment 2 subjects. All fMRI subjects were paid $20 per 

hour and were recruited from within the University of Pennsylvania community. Subjects 

gave informed consent as approved by the University of Pennsylvania Institutional 

Review Board. Additionally, 522 University of Pennsylvania undergraduate students 

participated for course credit in an online task used for stimulus norming (273 subjects in 

Experiment 1; 249 subjects in Experiment 2). All subjects spoke English as a first 

language. 

 

Event stimuli. Event comprehension items for each experiment consisted of two sentences 

describing a person or an animal acting upon a single object. Across conditions in each 

experiment, the object acted upon was either minimally or substantially changed in the 

first-sentence event. In Experiment 1, we varied the first-sentence action to induce the 

state-change manipulation; the object acted upon was identical for both “substantial state-

change” and “minimal state-change” conditions (e.g., “The squirrel will crack/sniff the 

acorn”). In Experiment 2, we held the action constant across conditions, and varied the 

object to induce the state-change manipulation (e.g., “The girl will stomp on the 
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penny/egg”). By separately varying the described action and the described object across 

Experiments 1 and 2, we avoid changes in pVLPFC activation being due to changes in 

the verb alone (Expt. 1) or the object alone (Expt. 2; that is, we test whether object state-

change drives conflict-dependent pVLPFC activation independent of variations in either 

action or object. Table 2.1 shows example items from each experiment, along with the 

object state-change and action imageability ratings corresponding to those items.  
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Table 2.1. Example stimuli from Experiments 1 and 2. Object state-change and 

action imageability for each sentence of each item was rated on a 7-point scale. 

fMRI subjects read each item in only one condition. The object state-change and 

action imageability ratings in the rightmost columns are specific to the first sentence 

of each item shown. 
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 The first-sentence verb for each item in Experiment 1 was matched across 

conditions on lexical ambiguity, measured as the number of distinct meanings (t(238) = 

0.75, p = .45; Burke, 2009), and on frequency of use (Brysbaert & New, 2009). The 

object referred to in each item in Experiment 2 was similarly matched across conditions 

on both lexical ambiguity (t(198) = 0.30, p = .77), and frequency (t(198) =  -0.89, p 

= .37). The action described in the second sentence was identical across conditions in 

both experiments, and always minimally affected the object. In Experiment 1, the 

temporal phrase at the beginning of each second sentence was either “but first” or “and 

then.” We included this manipulation to test the additional hypothesis that the 

“crack…but first” cases would engender increased activity compared to the “crack…and 

then” cases because of the need to switch the focus from the newly changed state to the 

previous (unchanged) state. However, we observed the same pattern of neural activity for 

both the “and then” and “but first” conditions in Experiment 1. (Though not reliable after 

correcting for multiple comparisons, the largest cluster of increased activation for 

conditions that required temporal resequencing was in left posterior superior temporal 

sulcus, an area often linked to speech processing as well as to theory of mind; cf. Hein & 

Knight, 2008.) In Experiment 2, we therefore kept temporal context constant across items 

by always beginning the second sentence with “and then.” For both experiments, subjects 

were exposed to all stimuli and all conditions in a fully factorial repeated measures 

design, but never saw more than one version of each stimulus.  

   

Event ratings. Object state-change and action imageability ratings for the first and second 

sentence of each item in each experiment were collected through online surveys. Each 
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survey subject rated only one alternative sentence of each item. For object state-change 

ratings, subjects rated “the degree to which the depicted object will be at all different 

after the action occurs that it had been before the action occurred.” Subjects rated each 

item on a 7-point scale ranging from “just the same” to “completely changed.” For action 

imageability, subjects rated “how much a sentence brings to mind a clear mental image of 

a particular action.” Subjects rated each item on a 7-point scale ranging from “not 

imageable at all” to “extremely imageable.”  

 Object state-change and action imageability ratings for the first-sentence events 

included data from 85 subjects for Experiment 1, and 101 subjects for Experiment 2. The 

first-sentence event in the “minimal state-change” condition received an average object 

state-change rating of 1.97 (SD = 0.57) in Experiment 1, and 2.78 (SD = 0.79) in 

Experiment 2. The first-sentence event in the “substantial state-change” condition 

received an average object state-change rating of 4.64 (SD = 0.84) in Experiment 1, and 

4.96 (SD = 0.74) in Experiment 2. Object state-change ratings varied broadly within the 

“minimal state-change” and “substantial state-change” conditions (Figure 2.1; the overall 

difference in object state-change between conditions was reliable in each experiment (p’s 

< .001). The average first-sentence action imageability rating for the “minimal state-

change” condition was 4.89 (SD = 0.64) in Experiment 1, and 5.57 (SD = 0.42) in 

Experiment 2. For the “substantial state-change” condition, the average first-sentence 

action imageability rating was 5.46 (SD = 0.41) in Experiment 1, and 5.59 (SD = 0.47) in 

Experiment 2. The difference in action imageability between conditions was reliable in 

Experiment 1 (p < .001), but was not reliable for Experiment 2 (p = .18). For both 
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experiments, object state-change correlated with neither frequency nor lexical ambiguity 

(see above; p’s > .4). 

 Object state-change and action imageability ratings for the second-sentence events 

included data from 95 subjects for Experiment 1, and 98 subjects for Experiment 2. The 

second-sentence events of all items in both experiments were designed to involve 

minimal object state-change. To confirm that there were no differences between 

conditions, we used a separate online survey to collect object state-change and action 

imageability ratings for these events. In Experiment 1, the second sentence of each item 

was identical across conditions, and had an average object state-change rating of 1.90 

(SD = 0.47), and an average action imageability rating of 4.52 (SD = 0.69). For the 

second sentence in Experiment 2, which had a different object in the “minimal” and 

“substantial” state-change conditions, the average object state-change rating was 1.69 

(SD = 0.44) for “minimal state-change” items and 1.74 (SD = 0.49) for “substantial state-

change” items, while the average action imageability rating was 4.23 (SD = 0.83) for 

“minimal state-change” items, and 4.13 (SD = 0.84) for “substantial state-change” items. 

Experiment 2 items did not reliably differ across conditions in either the object state-

change or the action imageability of the second-sentence event (p’s > .3).  

 For each experiment, we additionally collected ratings for the likelihood that the 

second sentence of each item would follow the first sentence of that item (if that first 

sentence had been read, for example, in a magazine or newspaper). We used separate 

online surveys to collect data from 93 subjects for Experiment 1 (which included 4 

conditions), and 50 subjects for Experiment 2 (which included 2 conditions). The average 

likelihood rating across “minimal state-change” event sequences was 4.06 (SD = 0.78) in 
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Experiment 1, and 4.12 (SD = 0.90) in Experiment 2. The average likelihood rating for 

“substantial state-change” event sequences was 4.08 (SD = 0.78) in Experiment 1, and 

4.28 (SD = 0.95) in Experiment 2. There was no statistical difference between state-

change conditions of either experiment in the rated likelihood of the event sequences 

(p’s > .2). 

 

 

 

Figure 2.1. Object state-change ratings for the first sentence of each item in the 

event comprehension task for Experiments 1 and 2. (A) Experiment 1 items, 

including each item’s “minimal state-change” condition and “substantial state-

change” condition, ranked by object state-change. (B) Experiment 2 items ranked 

by object state-change. 

 

 

Event comprehension task. The event comprehension task in each fMRI experiment was 

separated into five runs, with an equal number of trials of each condition in each run. 

Experiment 1 included 120 experimental trials split across four conditions. Experiment 2 

included 100 experimental trials split across two conditions. Additionally, subjects in 
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each experiment read 15 “catch trials” in which the second-sentence event of the trial was 

implausible given the first-sentence event (e.g., “The mother will eat the sandwich. And 

then, she will serve the sandwich.”). The trial structure was identical in the two 

experiments. Each trial lasted six seconds, during which the first sentence was presented 

for three seconds, followed by the second sentence for three seconds. Subjects pressed 

the two outer buttons of a keypad when the second-sentence event was implausible given 

the first-sentence event. Trials were separated by 3 to 15 seconds of jittered fixation, 

optimized for statistical power using the OptSeq algorithm 

(http://surfer.nmr.mgh.harvard.edu/optseq/). Stimuli were presented using E-Prime 

(Psychology Software Tools).  

 

Stroop color-word interference task. After the event comprehension task, subjects in each 

experiment performed a 10-minute button-press Stroop color identification task, based on 

previously described procedures (M. P. Milham et al., 2001; January et al., 2009). The 

response box for this task was restricted to three buttons: yellow, green, and blue. Stimuli 

included four trial types: response-eligible conflict, response-ineligible conflict, and two 

groups of neutral trials. Subjects were presented with a single word for each trial, and 

instructed to press the button corresponding to the typeface color of each word. Conflict 

trials could be either response-eligible or response-ineligible. For response-eligible 

conflict trials, the color term matched one of the subject’s possible responses (i.e., yellow, 

green, or blue), but always mismatched the typeface color. For response-ineligible 

conflict trials, the color term (orange, brown, or red) mismatched the typeface color, and 

but was not a possible response. Separate sets of non-color neutral trials (e.g., farmer, 
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stage, tax) were intermixed with either response-eligible conflict trials or response-

ineligible conflict trials. Both response-eligible and response-ineligible conflict trial types 

have previously been demonstrated to induce conflict at non-response levels, while 

response-eligible conflict trials additionally induce conflict at the level of motor response 

(M. P. Milham et al., 2001). To optimize power for identifying subject-specific conflict-

responsive subregions of left pVLPFC and left MFG, we considered only the main effect 

of conflict trials versus neutral trials. 

 

Imaging procedure. Structural and functional data were collected on a 3-T Siemens Trio 

system and an eight-channel array head coil. Structural data included axial T1-weighted 

localizer images with 160 slices and 1 mm isotropic voxels (TR = 1620 ms, TE = 3.87 

ms, TI = 950 ms). Functional data included echo-planar fMRI performed in 44 axial 

slices and 3 mm isotropic voxels (TR = 3000 ms, TE = 30 ms). Twelve seconds preceded 

data acquisition in each functional run to approach steady-state magnetization. 

 

Data analysis. Image preprocessing and statistical analyses were performed using AFNI 

(Cox, 1996). Functional data were sinc interpolated to correct for slice timing, and 

aligned to the mean of all functional images using a six parameter iterated least squares 

procedure. The functional data were then registered with each subject’s high-resolution 

anatomical data set, and normalized to a standard template in Talairach space. Finally, 

functional data were smoothed with an 8 mm FWHM Gaussian kernel, and scaled to 

percent signal change. Each two-sentence trial was modeled as a six-second boxcar 

function convolved with a canonical hemodynamic response function, with an additional 
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covariate in the subject-wise parametric analysis to model the degree of object state-

change (or action imageability) of the item for each trial. Beta coefficients were estimated 

using a modified general linear model that included a restricted maximum likelihood 

estimation of the temporal auto-correlation structure, a polynomial baseline fit, and the 

motion parameters and global signal as covariates of no interest.  

 Our analyses are focused on three ROIs, one (pVLPFC) that is our primary region 

of interest and two (left MFG and left MTG) that serve as controls for our purposes. 

Stroop-conflict ROIs in both left pVLPFC and left MFG were functionally defined 

separately for each subject using data obtained during the Stroop color-word interference 

task. Additionally, each Stroop-conflict ROI was anatomically constrained based on 

probabilistic anatomical atlases (Eickhoff et al., 2005) transformed into Talairach space. 

Left pVLPFC was defined as the combination of pars triangularis (Brodmann area 45), 

pars opercularis (Brodmann area 44), and the anterior half of the inferior frontal sulcus. 

Across subjects from both experiments, the anatomical definition of left pVLPFC 

included an average of 784 voxels (SD = 35). Left MFG included portions of Brodmann 

areas 6, 9, 10, and 46. Across subjects from both experiments, the anatomical definition 

of left MFG included an average of 962 voxels (SD = 40). Across subjects from both 

experiments, the anatomical definition of left MTG included an average of 644 voxels 

(SD = 33). Within these broad anatomical boundaries, each Stroop-conflict ROI 

comprised the 50 voxels with the highest t-statistics in a within-subject contrast of 

conflict trials versus neutral trials in the Stroop color-word interference task, while the 

sentence-comprehension ROI comprised the 50 left MTG voxels with the highest t-

statistics in a within-subject contrast of all event comprehension trials (averaged across 
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conditions) versus baseline. Although analyses are reported for ROIs of 50 voxels, the 

same statistical patterns were consistently observed across a broad range of ROI sizes. All 

statistical tests for each ROI were evaluated at the two-tailed .05 level of significance. 

Finally, we assessed the object state-change effect in each voxel across the whole brain, 

corrected for multiple comparisons, which we report at the end of the Results. 

 

Results 

Stroop color-word interference task  

Across Experiments 1 and 2, subjects correctly answered 98% of all trials. The average 

response time was 706 ms for conflict trials and 656 ms for neutral trials (t(31) = 6.60, p 

< .001). In a group-level contrast that included all subjects from both experiments, the 

most reliable cluster of voxels with an activation difference between conflict trials and 

neutral trials was centered between the inferior frontal gyrus (pars triangularis) and the 

inferior frontal sulcus of left pVLPFC (Figure 2A). Additional clusters of increased 

activation for conflict trials relative to neutral trials were observed in left MFG and left 

intraparietal sulcus. 

 

Stroop-conflict ROI in left pVLPFC 

To determine voxels most responsive to conflict on an individual subject level, we 

identified for each subject the 50 left pVLPFC voxels with the highest t-statistics in a 

contrast of conflict trials versus neutral trials in the Stroop interference task. The location 

of the top 50 conflict-responsive voxels varied widely across subjects, with slightly more 

cross-subject overlap in the most posterior area of left pVLPFC, at the junction of pars 
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triangularis, pars opercularis, and the inferior frontal sulcus (Figure 2B). Within each 

subject-specific Stroop-conflict ROI in left pVLPFC, we examined the effect of object 

state-change on the amplitude of the BOLD signal. 

 

 

 

 

Figure 2.2. Stroop-conflict ROI in left pVLPFC. (A) Whole-brain group-level 

contrast of conflict trials versus neutral trials in the Stroop color-word interference 

task, thresholded at a corrected alpha of p < .01, and displayed on a partially 

inflated Talairach surface; left pVLPFC is outlined in white. (B) Probabilistic 

overlap map of the subject-specific Stroop-conflict ROIs in left pVLPFC. Each 

subject-specific ROI included the 50 left pVLPFC with the highest within-subject t-

statistics for the Stroop contrast. The left pVLPFC voxel with the greatest overlap 

across subjects included 7 of the 32 total subjects from both Experiment 1 and 

Experiment 2. 

 

 

Experiment 1 event comprehension (object fixed, action varied) 

Subjects correctly identified 97% of catch trials in the Experiment 1 event comprehension 

task, and committed false alarms (i.e., classifying a non-catch trial as implausible) on 

fewer than 2% of experimental trials. There was a slightly but reliably greater number of 

false alarms for the substantial state-change trials (2%) than for the minimal state-change 
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trials (1%; t(15) = 2.46, p = .03). Due to the small numbers involved, this difference was 

also tested in a chi-square test, and was also found to be significant (χ-square = 9.62, p 

= .002). False alarm trials, along with catch trials, were coded separately for all fMRI 

analyses. 

 The average signal change across all sentence conditions was reliably above 

baseline in the left pVLPFC Stroop-conflict ROI (t(15) = 8.59, p < .001), indicating that 

this ROI was generally responsive during sentence comprehension. Because action 

imageability ratings were correlated with object state-change (r = .50), we removed 

variance predicted by the action imageability ratings before comparing the “substantial 

state-change” and “minimal state-change” conditions, though including action 

imageability as a covariate did not influence the reliability of any effects. A significant 

main effect of object state-change emerged within the left pVLPFC Stroop-conflict ROI 

(t(15) = 2.50, p = .02; Figure 2.3A), but there was no effect of temporal order (“and then” 

versus “but first”) and no interaction (p’s > .4). Next, we used the data from ratings of 

object state-change and action imageability to examine the relationship between these 

stimulus dimensions and signal change within the left pVLPFC Stroop-conflict ROI. 

Analyses separately tested the reliability of object state-change and action imageability 

effects across subjects and across items. Because we did not find an effect of the temporal 

context of the second sentence (either “but first” or “and then”), we averaged across these 

temporal conditions in each Experiment 1 parametric analysis that used the object state-

change or action imageability ratings. 
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Figure 2.3. Experiment 1 left pVLPFC Stroop-conflict ROI analysis. (A) Percent 

signal change plots from a categorical analysis of the “minimal state-change” and 

“substantial state-change” conditions. (B) Beta coefficients across a broad range of 

ROI sizes from a subject-wise parametric analysis of voxel activation predicted by 

object state-change and action imageability stimulus ratings. A vertical line indicates 

the 50-voxel threshold for each subject’s left pVLPFC Stroop-conflict ROI. Error 

bars indicate ± 1 standard error of the mean. (C) Binned quartile visualization of 

the subject-wise parametric analysis. (D) Item analysis of stimulus ratings and voxel 

activation. Item-specific activation, averaged across subjects, in the left pVLPFC 

Stroop-conflict ROI is plotted against the object state-change and action 

imageability stimulus ratings.  
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 In a subject-wise parametric analysis, we measured the extent to which, for each 

subject, the BOLD signal amplitude within the left pVLPFC Stroop-conflict ROI varied 

in proportion to either object state-change or action imageability. Data were separately 

modeled for each subject, using one covariate to model each trial presentation, and a 

second covariate to model the degree of object state-change (or action imageability) of 

the item for each trial. Estimation of these beta coefficients converged with results from 

the categorical analyses above, as object state-change stimulus ratings reliably predicted 

left pVLPFC signal amplitude (t(15) = 3.44, p = .004). In contrast, action imageability 

ratings did not reliably predict left pVLPFC signal amplitude (t(15) = -0.27, p = .79). 

Moreover, across a broad range of ROI sizes, object state-change reliably predicted signal 

amplitude within the left pVLPFC Stroop-conflict ROI, while action imageability did not 

reliably predict activation (Figure 2.3B). Interestingly, while object state-change 

consistently predicted left pVLPFC signal amplitude, both across subjects and across ROI 

sizes, there was much greater variance across subjects in the degree to which the action 

imageability ratings predicted signal. This may reflect individual experiential differences 

across subjects. To further visualize this dissociation, we binned the items into quartiles 

according to either the object state-change or the action imageability ratings of the stimuli 

(Figure 2.3C).  

 In an item-wise analysis, we measured the extent to which, for each item averaged 

across subjects, BOLD signal amplitude within the left pVLPFC Stroop-conflict ROI 

could be predicted by the stimulus ratings. Data were separately modeled for each trial, 

and then individual beta coefficients were binned by item across subjects. Because each 

of the 120 items included 2 state-change versions (i.e., "substantial state-change" and 
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"minimal state-change"), and because each subject read only one version of each item, 

there were 238 degrees of freedom in the Experiment 1 item analysis, and the average 

percent signal change of each item was composed of data from 8 of the 16 subjects. 

Object state-change ratings correlated with percent signal change in the left pVLPFC 

Stroop-conflict ROI (r(238) = .15, p = .02), while action imageability ratings did not 

predict signal (r(238) = .01, p = .82; Figure 2.3D).  

 

Experiment 2 event comprehension (object varied, action fixed) 

Subjects correctly identified 92% of catch trials in the Experiment 2 event comprehension 

task, and committed false alarms on 2% of experimental trials, with an equal number of 

false alarms for the substantial state-change and minimal state-change conditions (t(15) = 

1.21, p = .25; χ-square = 1.87, p = .17). As in Experiment 1, false alarm trials were coded 

separately, along with catch trials, for all fMRI analyses. 

 All Experiment 1 effects of object state-change on activation in the left pVLPFC 

Stroop-conflict ROI replicated in Experiment 2. As in Experiment 1, the average percent 

signal change across conditions was reliably different from baseline (t(15) = 6.65, p 

< .001). With action imageability covaried out, there was a reliable categorical effect of 

the “substantial state-change” condition versus the “minimal state-change” condition 

(t(15) = 3.03, p = .008; Figure 2.4A). In the subject-wise parametric analysis, object 

state-change reliably predicted ROI activation (t(15) = 2.98, p = .009), while action 

imageability did not (t(15) = -0.37, p = .71). As in Experiment 1, this pattern was reliable 

across a broad range of ROI sizes, with greater variance across subjects in the action 

imageability parameter estimate than in the object state-change parameter estimate 
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(Figure 2.4B). In the item-wise analysis, object state-change ratings reliably predicted 

percent signal change in the left pVLPFC Stroop-conflict ROI (r(198) = .24, p < .001), 

while action imageablity did not predict signal change (r(198) = .00, p = .98; Figure 

2.4D). 

 

 

 

Figure 2.4. Experiment 2 left pVLPFC Stroop-conflict ROI analysis. (A) Categorical 

analysis. (B) Subject-wise parametric analysis beta coefficients across a broad range 

of ROI sizes. (C) Binned quartile visualizations of the subject-wise parametric 

analysis. (D) Item analysis of stimulus ratings and voxel activation. 
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 Though the same verb was used across conditions in the first sentence of each 

Experiment 2 item, individual verbs may have multiple action connotations. To control 

for the potential variability of action connotation, a large subset of the Experiment 2 

stimuli (60 of the 100 total items) were matched as nearly as possible on the specific 

action connotation of the first-sentence verb. In the item-level analysis, the pattern of 

results in the left pVLPFC Stroop-conflict ROI for this subset of the stimuli was identical 

to that of the full Experiment 2 stimulus set of 100 items for object state-change (r(58) 

= .27, p < .001), and for action imageability (r(58) = .00, p =. 99).  

 

Comparisons across ROIs  

As is evident in Figure 2A, the group-level analysis of the Stroop color-word interference 

task revealed a separate cluster of conflict-responsive voxels outside of left pVLPFC, in 

left MFG. Likewise, brain areas other than left pVLPFC, including left MTG, were 

generally active during sentence reading. We analyzed data from the left MTG region in 

particular, because of its putative involvement in semantic memory (cf. Martin, 2007)). 

To examine task-related effects in conflict-responsive MFG regions and language-

responsive MTG regions, we identified for each subject the 50 left MFG voxels with the 

highest t-statistics in a contrast of conflict trials versus neutral trials in the Stroop task, 

and the 50 left MTG voxels with the highest t-statistics in a contrast of all event 

comprehension trials (averaged across conditions) versus baseline (Figure 5A). As was 

the case in left pVLPFC, the location of the top 50 conflict-responsive voxels in left 
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MFG, and the top 50 language-responsive voxels in left MTG, varied widely across 

subjects (Figure 5A).  

  

 

Figure 2.5. Left MFG and left MTG ROI analysis for Experiments 1 and 2. (A) 

Probabilistic overlap maps of the subject-specific Stroop-conflict ROI in left MFG 

and the subject-specific sentence-comprehension ROI in left MTG. (B) Subject-wise 

parametric analysis beta coefficients across a broad range of Stroop-conflict ROI 

sizes for each experiment in left MFG. (C) Subject-wise beta coefficients across a 

broad range of sentence-comprehension ROI sizes for each experiment in left MTG. 

 

 

 Unlike the pVLPFC region described earlier, these two control regions each 

responded to only one of our two functional localizers: The Stroop-conflict ROI in left 

MFG was not on average responsive during sentence reading, while the sentence-

comprehension ROI in left MTG was not responsive to Stroop conflict. The average left 

MFG signal change across all sentential conditions was not reliably different from 

baseline in either Experiment 1 (t(15) = -0.02, p = .98) or Experiment 2 (t(15) = -1.10, p 

= .29). Likewise, left MTG signal change was not reliably different between Stroop 

conflict trials and neutral trials in either Experiment 1 (t(15) = 0.55, p = .59) or 

Experiment 2 (t(15) = -1.29, p = .22). Within these subject-specific ROIs, we repeated for 
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each experiment the subject-wise and item-wise analyses described above for object 

state-change and action imageability.  

 For each experiment, we used an ANOVA to test for the interaction between 

region (pVLPFC, MFG, and MTG) and the degree to which the object state-change 

ratings predicted BOLD response amplitude. Object state-change beta coefficients 

differed significantly across ROIs for both Experiment 1 (F(2,30) = 3.98, p = .03) and 

Experiment 2 (F(2,30) = 3.74, p = .04). Planned comparisons further revealed that object 

state-change did not reliably predict signal amplitude in either the left MFG Stroop-

conflict ROI (Figure 5B) or the left MTG sentence-comprehension ROI (Figure 5C). For 

Experiment 1, beta coefficients for object state-change were reliably different between 

left MTG and left pVLPFC ROIs (t(15) = 3.43, p = .004), while the difference between 

left MFG and left pVLPFC beta coefficients did not reach significance (t(15) = 1.17, p 

= .26). For Experiment 2, object state-change beta coefficients in both left MTG (t(15) = 

2.36, p = .03) and left MFG (t(15) = 2.44, p = .03) were reliably different from pVLPFC. 

Object state-change beta coefficients were not reliably different between left MTG and 

left MFG in either experiment (p’s > .1). 

 We conducted a similar set of analyses in order to examine interactions between 

region and imageability. The action imageability beta coefficients did not reliably differ 

across ROIs for either Experiment 1 (F(2,30) = 1.97, p = .16) or Experiment 2 (F(2,30) = 

1.31, p = .28). Experiment 1 planned comparisons, however, revealed a negative 

correlation between action imageability ratings and left MTG response amplitude (t(15) = 

-2.2, p = .04), while the difference between action imageability beta coefficients in left 

MTG and left pVLPFC was marginally reliable (t(15) = 1.77, p = .10). In Experiment 2, 
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in which the variance of the action imageability ratings was more constrained (σ2 = 0.37 

for Experiment 1; σ2 = 0.18 for Experiment 2), MTG beta coefficients for action 

imageability did not reliably differ either from baseline or from any other ROI (p’s > .1). 

 

Whole-brain conjunction analysis of Experiments 1 and 2 

To compare the influence of object state-change on neural activity across the two 

experiments, we first co-varied out activation predicted by the action imageability ratings 

for each experiment, and then measured the extent to which activation of each voxel was 

predicted by the object state-change ratings (correcting for multiple comparisons). Both 

experiments showed extensive change-related activity in left pVLPFC (Figure 6A; Table 

2.2). Additionally, there was an interaction between Experiment and the object state-

change effect in the right inferior parietal lobule, an area specifically implicated in studies 

of gesture recognition and body schema, in which action understanding is independent of 

objects (Hermsdörfer et al., 2001; Chaminade, Meltzoff, & Decety, 2005). Right 

supramarginal gyrus was significantly more responsive to object state-change in 

Experiment 1, in which the described action varied across “substantial state-change” and 

“minimal state-change” conditions, than in Experiment 2, in which the described action 

was identical across conditions (Figure 6B).  
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Figure 2.6. Whole-brain conjunction analysis of Experiments 1 and 2. (A) Overlap 

of Experiment 1 and Experiment 2 voxels reliably predicted by the object state-

change ratings, after removing variance predicted by the action imageability 

ratings. (B) Between-experiment differences in object state-change responsive 

voxels. Each contrast is thresholded at p < .05, corrected for multiple comparisons. 
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Table 2.2. Whole-brain analysis for Experiments 1 and 2. Clusters of voxels reliably 

predicted by the object state-change ratings, after removing variance predicted by 

the action imageability ratings. Each contrast is thresholded at of p < .05, corrected 

for multiple comparisons. There were no statistically reliable voxel clusters with 

Experiment 2 > Experiment 1. Talairach coordinates and anatomical labels indicate 

the location of the peak voxel of each cluster. DMPFC = dorsomedial prefrontal 

cortex. 

 

 

Discussion 

 Tracking objects across events requires maintaining multiple representations of 

the same object in different states. We demonstrate that this component of event cognition 

elicits a neural response in left pVLPFC that overlaps with increased activation for 

conflict trials in a Stroop color-word interference task. Through analysis of rated stimulus 

norms, we further observe that the degree to which an object is changed during an event 
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parametrically predicts the BOLD response amplitude in left pVLPFC voxels most 

sensitive to Stroop conflict; the rated imageability of the action does not. In Experiment 

1, the described object was identical for the “substantial state-change” and “minimal 

state-change” conditions; the state-change manipulation was thus driven by the described 

action. In Experiment 2, the described action was identical across conditions; this state-

change manipulation was driven instead by the affordances of the described object. 

 Convergence across experiments demonstrates the generalizability of the effects 

of object state-change on semantic conflict. By varying the number of voxels included in 

the left pVLPFC Stroop-conflict ROI, we demonstrate that this effect is robust within 

subjects across a wide range of ROI sizes. Moreover, the reliable item-wise correlations 

between object state-change ratings and BOLD response amplitude in the left pVLPFC 

Stroop-conflict ROI suggest that the effects generalize across a diverse stimulus 

population of actions, objects, and events, and highlights the utility of item analysis of 

fMRI data (Bedny et al., 2007).  

 In each experiment we observe a dissociation among three sets of voxels: 1) 

voxels in left pVLPFC that are sensitive to Stroop conflict and are activated above 

baseline during sentence comprehension, 2) voxels in left MFG that are sensitive to 

Stroop conflict but are not activated above baseline during sentence comprehension, and 

3) voxels in left MTG that are not sensitive to Stroop conflict but are activated above 

baseline during sentence comprehension. In each experiment, object state-change ratings 

parametrically predicted BOLD amplitude in the left pVLPFC Stroop-conflict ROI, while 

action imageability ratings did not. This functional dissociation within the left pVLPFC 
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Stroop-conflict ROI is in stark contrast to patterns of results in both left MFG and left 

MTG. 

  In the left MFG Stroop-conflict ROI, which was responsive to Stroop conflict but 

not to sentence reading, neither object state-change nor action imageability reliably 

predicted BOLD amplitude. While left MFG has been shown to be responsive to Stroop 

conflict beyond the level of motor response (Milham et al., 2001), it is generally not 

associated with semantic conflict (Binder et al., 2009), and dissociates from left pVLPFC 

with respect to item-specific memory interference, as evidenced by neuroimaging 

(D’Esposito et al., 1999), patient lesion (Thompson-Schill et al., 2002), and transcranial 

magnetic stimulation (Feredoes & Postle, 2010) studies. Instead, posterior-most areas of 

left MFG, where we observe the greatest cross-subject overlap of this ROI, may be 

specifically involved in maintaining task representations (Derrfuss, Brass, Neumann, & 

Von Cramon, 2005).  

 In the left MTG sentence-comprehension ROI, which was not responsive to 

Stroop conflict but was responsive during sentence reading, object state-change did not 

predict BOLD amplitude in either experiment. However, in Experiment 1, the rated 

imageability of the described action negatively correlated with MTG signal. Because 

event comprehension places a stronger demand on semantic retrieval processes when it is 

more difficult to bring to mind a clear mental image of the described action, the negative 

correlation of action imageability ratings with left MTG activation is concordant with 

studies of left MTG responsiveness to difficulty manipulations in semantic retrieval tasks 

(e.g., Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 2011). The absence of an 

action imageability effect in Experiment 2 is predicted by reduced variance of the action 
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imageability ratings (the described action was fixed across state-change conditions). The 

modulation of left pVLPFC and left MTG response by object state-change and action 

imageability respectively, replicates previous dissociations between these regions (e.g., 

Thompson-Schill, D’Esposito, & Kan, 1999; M. Bedny et al., 2008), indicating 

functionally distinct contributions of these regions to event comprehension. 

 In contrast to left MTG and left MFG, left pVLPFC is consistently shown to be 

central in resolving competition amongst incompatible semantic representations 

(Thompson-Schill, Bedny, & Goldberg, 2005). Neuroimaging, patient lesion, and 

transcranial magnetic stimulation studies demonstrate that left pVLPFC is activated 

during and is necessary for overriding misinterpretations of syntactically ambiguous 

sentences (January et al., 2009), selecting context-appropriate meanings of ambiguous 

words (Metzler, 2001; Hindy, Hamilton, Houghtling, Coslett, & Thompson-Schill, 2009), 

completing sentences that have multiple alternative responses (Robinson et al., 1998; 

Robinson et al., 2005), generating verbs with many semantic competitors (Thompson-

Schill et al., 1997), and resolving working memory interference in item recognition 

(Feredoes et al., 2006; Feredoes & Postle, 2010). 

 Stepping back from the ROIs, and examining activation across the entire brain, 

we see that voxels sensitive to the object state-change manipulation overlapped across 

experiments in left pVLPFC. In contrast, areas of the inferior parietal lobe that were 

sensitive to the state-change manipulation in Experiment 1 were not sensitive to this 

manipulation in Experiment 2. Because the described action varied across conditions in 

Experiment 1, but was fixed across conditions in Experiment 2, this dissociation is 
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consistent with literature that associates these inferior parietal lobe areas with action 

representation independent of the objects acted upon (Glover, 2004). 

 Stepping back further, and considering the theoretical implications of these data, 

correlations between rated degree of object state-change and BOLD response in the left 

pVLPFC Stroop-conflict ROI may at first seem consistent with an account that the more 

an object is changed in state during the first sentence of a trial, the more information must 

be inferred to derive the context-appropriate representation of the same object in the 

second sentence. This would predict, however, an interaction with temporal context in 

Experiment 1, because in the ‘and then’ case, the state computed at the end of the first 

sentence is identical to that referred to at the end of the second (but would be different in 

the ‘but first’ case). There was no such interaction. Additionally, Experiment 2 subjects 

only ever read “and then” versions of the stimuli, encouraging maintenance of only the 

changed instantiation, yet we still observed evidence of conflict. Alternatively, one might 

suppose that the more an object is changed in state, the more information must be kept in 

memory. This would not predict any interaction with temporal context. However, the left 

pVLPFC has elsewhere been shown to be associated with resolving interference in 

working memory independently of working memory itself (Thompson-Schill et al., 

2002). Thus, the location in which we observe sensitivity to object state-change, as well 

as the functional specificity of the ROI to Stroop conflict, suggests that our data do not 

reflect memory load. 

 We conjecture instead that multiple instantiations of the same object (whether of 

the object representation in its entirety, or of components of the object representation) 

must be represented when the object is described as changing in state, and that there is 
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interference between these instantiations. This could include interference between the 

sensorimotor instantiations of the different affordances associated with distinct object 

states, mediated by the event representations within which multiple object instantiations 

are distinguished (cf. Zwaan & Radvansky, 1998). Because objects were generally 

changed from a canonical state to a marked state, the strength of the initially activated 

object representation may modulate the extent to which this initial representation remains 

active even after the contextually appropriate object representation has been computed. 

And while language and memory research (Bower, 2000; Van Dyke & McElree, 2006) 

has shown evidence of similarity-based interference between actively maintained object 

representations, we find that the more dissimilar the ‘before’ and ‘after’ instantiations of 

an object, the greater the interference. This difference between distinct objects 

(similarity-based interference) and distinct instantiations of a single object (dissimilarity-

based interference) may have its roots in the fact that the distinct instantiations of an 

object across event-time (i.e., the ‘before’ and ‘after’) are mutually exclusive—they 

cannot co-exist. Distinct objects, on the other hand, can co-exist no matter how similar; 

the greater the overlap between the objects’ representations, the greater the interference, 

but differences between the objects do not have consequences for co-existence and are 

not inhibitory. When we need to categorize distinct representations as instantiations of a 

single object, left pVLPFC may act as a top-down modulatory signal to bias candidate 

representations—and the neural patterns that instantiate them—toward the context-

appropriate representation of the object, performing a similar interference resolution 

process as described for other forms of ambiguity resolution (Thompson-Schill & 

Botvinick, 2006).  
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 Our ability to comprehend, represent, recall, and narrate events is a 

quintessentially human ability. Yet the representation of multiple instantiations of the 

same object across “event time” (i.e., before, during, and after the event occurs), and how 

these may compete with one another, is a topic that has not received attention in cognitive 

psychology. Taken together, data reported here suggest that the need to represent the same 

object in different states comes at a competitive cost. The work reported here is a step 

toward identifying these representational mechanisms, and speaks to future cognitive 

models of object and event representation, allowing more detailed exploration of the 

representations over which the human cognitive system operates. 
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CHAPTER 3: DISTRIBUTED NEURAL SIMILARITY OF OBJECT STATES 

PREDICTS PREFRONTAL CONFLICT RESPONSE 

 

  The sense of our meaning is an entirely peculiar element of the thought . . . whose 

 neural counterpart is undoubtedly a lot of dawning and dying processes too faint 

 and complex to be traced. 

 – The Principles of Psychology (William James, 1890) 

 

Abstract 

Prefrontal cortex is thought to exert executive control over posterior brain regions that 

store and maintain information. Previous work demonstrates that comprehension of an 

object state-change involves interference between incompatible representations of the 

same object, and evokes a neural response in prefrontal cortex that is the same as for 

other forms of conflict. Using fMRI and multivariate pattern analysis, we find that the 

physical similarity of incompatible object states before and after a described event 

predicts both the strength of the conflict response in left ventrolateral prefrontal cortex, as 

well as the multivariate pattern-similarity of the corresponding brain states in early 

ventral visual cortex. Moreover, visual cortex multivariate pattern-similarity predicts the 

strength of the prefrontal cortex conflict response even better than the rated similarity of 

the object states. Results suggest that alternative states of an object correspond to distinct 

visual cortex representations, and that conflict measured in prefrontal cortex is mediated 

by the similarity of distributed representations in visual cortex. 
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Introduction 

 Tracking multiple representations of the same object as it undergoes a state-

change engenders conflict due to the need to distinguish the ‘before’ and ‘after’ states of 

the object. This source of conflict is suggested by recent eye-tracking and neuroimaging 

studies, which also reveal that this conflict evokes a neural response in left posterior 

ventrolateral prefrontal cortex (pVLPFC) that is the same as for other known forms of 

conflict (Altmann & Kamide, 2009; Hindy, Altmann, Kalenik, & Thompson-Schill, 

2012). This left pVLPFC conflict response suggests that the internal representations of 

alternative object states may be incompatible and distinct from one another. We 

hypothesize that the degree to which internal representations of object states are in fact 

distinct will be reflected in the similarity between distributed patterns of neural activation 

that underlie object-specific brain states. 

 Using functional magnetic resonance imaging (fMRI) and a combination of 

multivariate and univariate data analysis, we test (1) whether comprehension of an object 

state-change causes a distinct distributed pattern of the BOLD response in ventral visual 

cortex (VVC) as well as left pVLPFC, (2) whether comprehension of an object state-

change causes a univariate amplitude-modulation of the average BOLD response in VVC 

and in left pVLPFC, and (3) whether there is a predictive relationship between 

multivariate pattern-similarity in VVC and univariate amplitude-modulation in left 

pVLPFC. Through an initial multivariate pattern-similarity searchlight analysis 

(Kriegeskorte, Goebel, & Bandettini, 2006), we identified subregions of VVC for which 

object state-change best predicted multivariate pattern-similarity, and measured the extent 

to which these VVC subregions overlapped with areas of VVC that were most responsive 
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to either feature-scrambled objects or intact objects (Kourtzi & Kanwisher, 2001; Grill-

Spector & Malach, 2004). For a subsequent ROI analysis, we identified separately for 

each subject the feature-sensitive (early visual) and object-sensitive (late visual) visual 

areas, and areas of left pVLPFC most responsive to conflict trials in a Stroop color-word 

interference task (Milham et al., 2001; Liu, Banich, Jacobson, & Tanabe, 2006). Within 

each ROI, we measured multivariate pattern-similarity (Pearson correlation) and 

univariate amplitude-modulation (difference in the average BOLD response amplitude) 

across within-trial time points of an fMRI variant of a traditional pretest-posttest 

experimental design. 

 Direct comparison of object-specific brain states before and after a described 

action was afforded by a pre-action/post-action fMRI design. Each experiment trial began 

with a briefly presented object photograph, followed by a sequence of three visual 

imagery task instructions separated by fixation: imagine the object, then imagine a 

specified action involving the object, and finally imagine the object in its final state after 

the action. Across trials, we varied whether a described action minimally changed the 

depicted object (e.g., "pick up the balloon"; Figure 3.1A), or substantially changed the 

object (e.g., "inflate the balloon"; Figure 3.1B). To compare subjects’ brain states before 

and after the object state-change, we separately modeled the BOLD response for each 

trial component before comparing the multivariate pattern-similarity and the univariate 

amplitude-modulation across the pre-action and post-action time points (Figure 3.2). 
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Figure 3.1. Pre-action/post-action fMRI design. Each experiment trial began with a 

briefly presented object photograph, followed by a sequence of three visual imagery 

task instructions separated by fixation: imagine the object, then imagine a specified 

action involving the object, and finally imagine the object in its final state after the 

action. Subsequent to the three visual imagery segments, a retrieval cue instructed 

subjects to indicate which of two clipart images is most similar to the object at either 

the beginning or end of the trial. One of the clipart images depicted the object in its 

original state, while the other clipart image depicted the object in the altered state 

that resulted in the substantial state-change condition. Each slide was four seconds 

in duration, with six seconds of fixation between slides. The BOLD response was 

separately modeled for each trial component. 
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Figure 3.2. Pattern-similarity and amplitude-modulation measurements. To examine 

the effects of object state-change on across-time multivariate pattern-similarity and 

univariate amplitude-modulation, we separately modeled the BOLD response for 

each trial component, and compared the time point in which subject imagined the 

initial state of the object (pre-action state) to the time point in which subjects 

imagined the end state of the object (post-action state). Plot on the far right shows 

the object state-change rating for each item in the state-change comprehension task, 

ranked by object state-change, and color-coded according to condition (i.e., 

“minimal state-change” or “substantial state-change”).  

 

 

 

Results 

Behavioral Data 

Subjects correctly identified the indicated object on the subsequent-retrieval slide for 

87.0% (SD = 8.1%) of minimal state-change trials, and 94.6% (SD = 5.7%) of substantial 

state-change trials (t(13) = 2.68, p = .02). Overall high accuracy on the subsequent-

retrieval task indicates consistent attention to the task throughout the scan. Slightly lower 

accuracy for the minimal state-change trials than for the substantial state-change trials is 

not surprising given that subjects were never exposed to the alternative object state for 

minimal state-change trials, thus making the clipart images less distinguishable from one 

another. On the Stroop color-word interference task, subjects correctly answered 98.3% 

(SD = 2.4%) of all trials. The average response time was 790 ms (SD = 165 ms) for 
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conflict trials and 755 ms (SD = 184 ms) for neutral trials (t(13) = 2.64, p = .02). For the 

perceptual localizer, in which subjects performed a one-back repeated-image detection 

task, subjects correctly identified 79.3% (SD = 24.6%) of repeated intact objects, and 

72.1% (SD = 26.9%) of repeated feature-scrambled objects (t(13) = 2.54, p = .02). Lower 

detection accuracy for feature-scrambled repeats than for intact-object repeats may 

indicate a difference between conditions regarding the perceptual difficulty of the 

detection task. 

 

Multivariate Pattern-Similarity Searchlight Analysis 

We used a multivariate searchlight analysis (Kriegeskorte, Goebel, & Bandettini, 2006) 

to examine the effect of object state-change on the visual cortex multivariate pattern-

similarity between time points before and after the imagined action. We constrained 

searchlight analyses to bilateral VVC, which included inferior occipital cortex, lingual 

gyrus, and the posterior aspects of fusiform gyrus and inferior temporal gyrus. We passed 

a three-dimensional searchlight with a 3-voxel radius over every voxel within this VVC 

mask. Unless constrained by a boundary on the outermost edge of the VVC mask, each 

spherical searchlight comprised 123 voxels. Within each searchlight, we made three 

separate comparisons for each subject, and assigned the resulting measurements to the 

central voxel of the searchlight. The first comparison was univariate, and based on a 

perceptual localizer in which subjects viewed alternating 16-second blocks of intact and 

feature-scrambled objects. In this perceptual localizer, we measured the relative 

amplitude of the BOLD response at time points when subjects were viewing either intact 

or feature-scrambled objects. The second two comparisons were multivariate and based 
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on data from the state-change comprehension task. For each of the multivariate analyses, 

we measured the Pearson correlation between time points in which subjects imagined 

each object in its initial form, and then imagined the same object in its new form after a 

minimal or substantial state-change action. Once these pre-action/post-action similarity 

scores were computed, we measured the extent to which this similarity score could be 

predicted by either state-change rating (continuous searchlight analysis) or state-change 

condition (categorical searchlight analysis). 

 

Continuous Multivariate Searchlight Analysis 

For the continuous multivariate searchlight analysis, we used the data from ratings of 

object state-change to examine the extent to which pre-action/post-action multivariate 

pattern-similarity varied in proportion to the rated degree of object state-change. The 250 

searchlight spheres for which pre-action/post-action multivariate pattern-similarity most 

negatively correlated with the rated object state-change of the items are plotted in yellow 

in Figure 3.3A. As is evident in Figure 3.3A, the 250 searchlights for which the object 

state-change ratings best predicted multivariate pattern-similarity were almost exclusively 

in lingual and inferior occipital gyri. Moreover, these ratings-predicted searchlights 

overlapped extensively (105 of the 250 searchlights) with the feature localizer (colored in 

blue in Figure 3.3), and did not overlap at all with the object localizer (colored in red). 

 

Categorical Multivariate Searchlight Analysis 

For the categorical searchlight analysis, we split each subject’s dataset into minimal state-

change and substantial state-change conditions, and computed the average pre-
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action/post-action similarity across all items in each condition. This resulted in two 

statistical maps of VVC for each subject: one statistical map that reflected the average 

pre-action/post-action multi-voxel similarity for the minimal state-change condition, and 

one statistical map that reflected the average pre-action/post-action multi-voxel similarity 

for the substantial state-change condition. These statistical maps were compared across 

all subjects using repeated-measures t-tests that measured the reliability of pre-

action/post-action similarity differences between substantial state-change and minimal 

state-change conditions for each VVC searchlight. As in the continuous multivariate 

searchlight analysis, searchlight spheres that were most sensitive to object state-change 

when treated as a categorical variable tended to be in lingual and inferior occipital gyri, 

and overlapped exclusively with the feature localizer (130 of the 250 searchlights; Figure 

3.3B). 
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Figure 3.3. Multivariate pattern-similarity searchlight analysis. (A) Overlap of the 

visual cortex functional localizers and the 250 most reliable VVC searchlights in 

which similarity across time points negatively correlated with the degree of object 

state-change (continuous multivariate searchlight analysis). (B) Overlap of the 

visual cortex functional localizers and the 250 most reliable VVC searchlights in 

which patterns for the substantial state-change condition were less similar across 

time points than were patterns for the minimal state-change condition (categorical 

multivariate searchlight analysis). In both A and B, early visual is in blue, and 

includes the 250 VVC voxels that were most responsive to feature-scrambled objects 

in a perceptual localizer. Late visual is in red, and includes the 250 VVC voxels that 

were most responsive to intact objects in the perceptual localizer. Brain regions that 

are shaded in white in the images above were not included in the VVC anatomical 

mask. 

 

 

 

ROI Analysis 

We examined the effect of object state-change on both the multivariate pattern-similarity 

and the univariate amplitude-modulation of the BOLD response in three ROIs: early 

visual cortex, late visual cortex, and left pVLPFC. Each ROI was anatomically 

constrained and functionally defined on the individual-subject level. Within each subject-

specific visual cortex and pVLPFC ROI, we examined the effect of object state-change 
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on the across-time multivariate pattern-similarity and univariate amplitude-modulation 

during the object comprehension task. For each ROI analysis, we used an ANOVA to test 

for the interaction across ROIs (early visual, late visual, and left pVLPFC; Figure 3.3) 

and the degree to which the object state-change ratings predicted either across-time 

multivariate pattern-similarity or across-time activation difference in the BOLD response. 

 

 

 
 

 

Figure 3.4. Visual cortex ROIs. (A) Frequency overlap map across subjects for the 

early visual ROI. The early visual ROI was defined separately for each subject as 

the 250 VVC voxels most responsive to feature-scrambled images compared to 

intact objects in a perceptual localizer. (B) Frequency overlap across subjects map 

for the late visual ROI. The late visual ROI was defined as the 250 VVC voxels most 

responsive to intact objects compared to feature-scrambled objects. The maximum 

frequency overlap for the early visual ROI was 13/14 subjects, while the maximum 

frequency overlap for the late visual ROI was 10/14 subjects. Brain regions that are 

shaded in white in the images above were not included in the VVC anatomical mask. 
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Visual Cortex ROIs 

Functional ROIs for early visual cortex and late visual cortex were defined using a 

perceptual localizer task in which subjects viewed alternating blocks of intact and 

feature-scrambled objects while performing a one-back detection task. Late visual cortex 

was defined as the 250 VVC voxels most responsive to intact objects compared to 

feature-scrambled objects, while early visual cortex was defined as the 250 VVC voxels 

most response to feature-scrambled images compared to intact objects. The location of 

the top 250 object-responsive and feature-responsive voxels was quite stereotyped across 

subjects, such that object responsive voxels (late visual cortex) tended to be in lateral 

occipital and fusiform gyri, while feature-responsive voxels (early visual cortex) tended 

to be in inferior occipital and lingual gyri (Figure 3.4). 

 

Stroop-Conflict ROI in left pVLPFC 

Previous studies indicate that left pVLPFC is responsive to conflict at the level of 

semantic representation, and also that the Stroop color-word interference task is a useful 

tool to localize conflict-responsive voxels on an individual-subject basis (January et al., 

2009; Hindy, Altmann, Kalenik, & Thompson-Schill, 2012). To determine voxels most 

responsive to conflict on an individual subject level, we identified for each subject the 

250 left pVLPFC voxels with the highest t-statistics in a contrast of conflict trials versus 

neutral trials in a Stroop interference task. In a group-level contrast, left pVLPFC was 

generally more responsive to Stroop conflict than surrounding cortex (Figure 3.5A), 

though the location of the top 250 conflict-responsive voxels varied widely across 

subjects (Figure 3.5B). 
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Figure 3.5. Stroop-conflict ROI in left pVLPFC. (A) Whole-brain group-level 

contrast of conflict trials versus neutral trials in the Stroop color-word interference 

task, thresholded at a corrected alpha of p < .01, and displayed on a partially 

inflated Talairach surface; left pVLPFC is outlined in white. (B) Frequency overlap 

map of the subject-specific Stroop-conflict ROI in left pVLPFC. Each subject-

specific ROI included the 250 voxels in left pVLPFC with the highest within-subject 

t-statistics for the Stroop contrast. The left pVLPFC voxel that had the greatest 

overlap across subjects included 9/14 subjects. 

 

 

Multivariate Pattern-Similarity ROI Analysis 

The extent to which object state-change ratings predicted multivariate pattern-similarity 

reliably varied across the three ROIs (F(2,26) = 5.92, p = .02; Figure 3.5A). Planned 

comparisons further revealed that object state-change reliably predicted multivariate 

pattern-similarity in early visual cortex (t(13) = -2.36, p = .03), but did not reliably 

predict multivariate pattern-similarity in either late visual cortex or left pVLPFC 

(p’s > .1), with a reliable interaction between early visual cortex and left pVLPFC (t(13) 

= 3.57, p = .003). An identical pattern of results was found for the condition-wise 

similarity analysis: object state-change ratings reliably predicted across-time multivariate 

pattern-similarity in early visual cortex (t(13) = -2.19, p = .05), and did not predict 
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multivariate pattern-similarity in either late visual cortex or left pVLPFC (p’s > .4; Figure 

3.5B).  

 

 
 

Fig 3.6. Multivariate pattern-similarity ROI analysis. (A) Degree to which object 

state-change ratings (a continuous variable) predicted pre-action/post-action 

multivariate pattern-similarity in each ROI. (B) Difference between the substantial 

state-change and minimal state-change conditions in pre-action/post-action 

multivariate pattern-similarity for each ROI.  

 

 

Univariate Amplitude-Modulation ROI Analysis 

Continuous object state-change ratings reliably predicted across-time amplitude-

modulation in left pVLPFC, such that greater state-change ratings corresponded with 

greater across-time amplitude differences (t(13) = 2.27, p = .04; Figure 3.6A). 

Additionally, the categorical difference between substantial state-change and minimal 

state-change conditions was reliable in left pVLPFC (t(13) = 2.62, p = .02). In both early 
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and late visual cortex, there were no univariate amplitude-modulation differences 

between conditions, and state-change ratings did not reliably predict univariate 

amplitude-modulation in either visual cortex ROI (p’s > .2). Interactions across ROIs in 

univariate amplitude-modulation did not reach significance (p’s > .1). 

 

 

 

 

 

Fig 3.7. Univariate amplitude-modulation ROI analysis. (A) Degree to which object 

state-change ratings (a categorical variable) predicted pre-action/post-action 

univariate amplitude-modulation in each ROI. (B) Difference between the 

substantial state-change and minimal state-change conditions in pre-action/post-

action univariate amplitude-modulation for each ROI.  
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VVC-Predicted Univariate Amplitude-Modulation Analysis 

Object state-change ratings and conditions predicted multivariate pattern-similarity in 

early visual cortex, as well as univariate amplitude-modulation in left pVLPFC. This 

suggests that multivariate pattern-similarity in early visual cortex may predict univariate 

amplitude-modulation in left pVLPFC. To test this possibility, we measured for each 

subject the Pearson correlation between multivariate pattern-similarity in both early and 

late visual cortex, and univariate amplitude-modulation in left pVLPFC. Pattern-

similarity in early visual cortex reliably predicted amplitude-modulation in pVLPFC 

(t(13) = -3.35, p = .005; Figure 3.8), while pattern-similarity in late visual cortex failed to 

reliably predict pVLPFC amplitude-modulation (t(13) = -1.42, p = .18). Moreover, 

though not reliably different (t(13) = -1.14, p = .28), the statistical relationship between 

early visual multivariate pattern-similarity and left pVLPFC amplitude-modulation (p 

= .005) appears to be even stronger than the relationship between the object state-change 

ratings and pVLPFC amplitude-modulation (p = .03). 
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Figure 3.8. VVC-predicted univariate amplitude-modulation of pVLPFC. A separate 

regression model was calculated for each subject to measure the extent to which 

multivariate pattern-similarity in the early visual ROI predicted univariate 

amplitude-modulation in the left pVLPFC ROI. Data for each subject is plotted in a 

single color, and includes all trials for that subject. For 13/14 subjects, univariate 

amplitude-modulation in left pVLPFC negatively correlated with multivariate 

pattern-similarity in early visual. The displayed trend line is across data points from 

all subjects. 
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 To test the anatomical specificity of VVC-predicted univariate amplitude-

modulation of left pVLPFC, and also to identify additional cortical region for which pre-

action/post-action univariate amplitude-modulation varied with visual cortex pattern-

similarity, we conducted a whole-brain functional connectivity analysis. For every voxel 

in the brain, we measured the correlation between univariate amplitude-modulation of 

that voxel, and multivariate pattern-similarity in early visual (Figure 3.8B). Multivariate 

pattern-similarity in early visual cortex reliably predicted univariate amplitude-

modulation of voxels in left pVLPFC. The only additional cortical region in which 

univariate amplitude-modulation scaled with early-visual multivariate pattern-similarity 

was the left angular gyrus of the parietal lobe (Figure 3.9; Table 3.1).   

 

 

 

 
 

 

Figure 3.9. Whole-brain VVC-predicted univariate amplitude-modulation. Clusters 

of voxels for which univariate amplitude-modulation positive correlated with 

multivariate pattern-similarity in the early visual ROI. This statistical contrast is 

thresholded at p < .01, corrected for multiple comparisons. There were no 

statistically reliable voxel clusters for which univariate amplitude-modulation 

positive correlated with early visual multivariate pattern-similarity. Talairach 

coordinates and anatomical labels indicate the location of the peak voxel of each 

cluster. 
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Table 3.1. Whole-brain VVC-predicted univariate amplitude-modulation. Clusters 

of voxels for which univariate amplitude-modulation positive correlated with early 

visual multivariate pattern-similarity. Contrast is thresholded at p < .01, corrected 

for multiple comparisons. There were no statistically reliable voxel clusters for 

which univariate amplitude-modulation positive correlated with early visual 

multivariate pattern-similarity. Talairach coordinates and anatomical labels indicate 

the location of the peak voxel of each cluster.  

 

 

Discussion 

 Prefrontal cortex is thought to exert executive control over more posterior brain 

regions that store and maintain perceptual information (Miller & Cohen, 2001), and yet 

cognitive control processes in prefrontal cortex are generally studied independently of 

perceptual areas (Fuster, 2008). Using a paradigm in which both perceptual similarity and 

cognitive control demand are precisely manipulated, we simultaneously measured 

competition between a stimulus-driven visual representation of an object and a cognitive 

representation of the same object that subjects constructed based on a described action. 

Through a multivariate pattern-similarity searchlight analysis (Kriegeskorte et al., 2006), 

we discovered a striking dissociation between early and late areas of VVC. Searchlight 

spheres that were most sensitive to object state-change tended to be in lingual and inferior 

occipital gyri, overlapped extensively with voxels that responded more strongly to intact 

objects than to feature-scrambled objects in a perceptual localizer, and did not overlap at 
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all with voxels that responded more strongly to feature-scrambled objects than to intact 

objects. 

 In comparing the pre-action and post-action brain states, we found that 

multivariate pattern-similarity and univariate amplitude-modulation double-dissociate 

across three ROIs. In early visual cortex, multivariate pattern-similarity across time 

points was significantly reduced when an object was substantially changed in state, 

compared to when the same object was minimally changed. Moreover, multivariate 

pattern-similarity in early visual cortex varied parametrically with the rated degree to 

which the object was changed in state by the described action. In late visual cortex as 

well as left pVLPFC, multivariate pattern-similarity was invariant to both categorical and 

continuous state-change manipulations. In the ROIs for both early and late visual cortex, 

the univariate amplitude-modulation across pre-action and post-action object states was 

nearly identical across conditions, and was not reliably predicted by the object state-

change ratings.  

 Left pVLPFC dissociated from visual areas in both univariate amplitude-

modulation and multivariate pattern-similarity. In areas of left pVLPFC that were most 

sensitive to conflict in a Stroop color-word identification task, the extent of the univariate 

amplitude-modulation of the BOLD response depended on the degree of object state-

change. Left pVLPFC signal amplitude was greater when subjects imagined an object 

that was substantially different from the immediately preceding photograph, as opposed 

to when they imagined that object in the same state as in the photograph. This left 

pVLPFC univariate amplitude-modulation effect replicates a recent study of object state-

change during event comprehension (Hindy, Altmann, Kalenik, & Thompson-Schill, 
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2012), and suggests a specific role for left pVLPFC in representing object state-change 

that involves similar interference resolution mechanisms as described for verb generation, 

control of proactive interference (Thompson-Schill et al., 2002; Jonides & Nee, 2006), 

and resolution of lexical (Rodd et al., 2004; M. Bedny et al., 2008; Hindy et al., 2009) 

and syntactic (Novick et al., 2005; January et al., 2009) ambiguity. However, multivariate 

pattern-similarity in left pVLPFC was invariant to the object state-change manipulation. 

This suggests that neural representations in left pVLPFC are not specific to stimulus 

features that vary across object states. However, since the task was identical for every 

item (i.e., focus on the end state of the object), these data are consistent with an active-

maintenance model of left pVLPFC in which  patterns of neural activation are task-

specific, and not item-specific (e.g., Miller & Cohen, 2001; Rougier, Noelle, Braver, 

Cohen, & O’Reilly, 2005; O’Reilly, Herd, & Pauli, 2010).  

 Multivariate pattern-similarity in early visual cortex predicted the strength of the 

conflict response in left pVLPFC even better than separately-collected ratings of the 

similarity between object states. This predictive relationship between early visual 

multivariate pattern-similarity and left pVLPFC univariate amplitude-modulation is 

among the first examples of functional connectivity between distributed representations 

in posterior brain areas and signal change in frontal cortex.  Multivariate pattern-

similarity effects in early visual cortex build upon mounting evidence for distributed 

object representations in VVC (Haxby et al., 2001; Norman, Polyn, Detre, & Haxby, 

2006), and informs neural models for the “refreshing” of visual memories (e.g., Johnson, 

1992). Previous studies demonstrate that bringing to mind the visual memory of a 

previously viewed image activates the same areas of visual cortex that were activated 



 
 

66 
 

during image perception (Johnson, Mitchell, Raye, D’Esposito, & Johnson, 2007; Park, 

Chun, & Johnson, 2010). Additionally, the act of refreshing an image that was presented 

just once during encoding enhances repetition attenuation effects to the same extent as 

having viewed the same image twice during encoding (Yi, Turk-Browne, Chun, & 

Johnson, 2008). Recent work has shown that competitive remembering is associated both 

with more ambiguous patterns of VVC reactivation, and with increased activation in 

prefrontal areas (Kuhl, Rissman, Chun, & Wagner, 2011). The VVC-predicted univariate 

amplitude-modulation approach introduced here combines similarity-based fMRI 

analysis of the BOLD response in visual cortex (e.g., Kriegeskorte et al., 2008; Weber et 

al., 2009) with parametric univariate analysis of the BOLD response in prefrontal cortex 

(e.g., Hindy et al., 2012). 

  The anatomical specificity of the VVC-predicted univariate amplitude-modulation 

to left pVLPFC is remarkable (see Figure 3.9 and Table 3.1). Indeed, the only additional 

cortical region in which univariate amplitude-modulation scaled with early visual 

multivariate pattern-similarity was the left angular gyrus of the parietal lobe. Though we 

did not have an a priori hypothesis about parietal cortex involvement in the state-change 

comprehension task, numerous neuroimaging, patient deficit, and transcranial magnetic 

stimulation studies implicate left angular gyrus in the shifting of spatial attention, 

independent of conflict (e.g., Mort et al., 2003; Wager, Jonides, & Reading, 2004; 

Chambers, Payne, Stokes, & Mattingley, 2004). In addition to conflict between 

alternative object representations, it is possible that the substantial state-change items 

required greater shifts of internal spatial attention. The possibility that the VVP-predicted 

amplitude-modulation in angular gyrus reflects internal spatial attention processes is 
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particularly noteworthy in the context of recent evidence and discussions of the 

overlapping neural systems underlying internal and external attention (Kan & Thompson-

Schill, 2004; Chun, Golomb, & Turk-Browne, 2011; Carrasco, 2011). 

 Data presented here informs our understanding of the mnemonic mechanisms that 

support our ability to juggle representations of mutually exclusive states of the world 

during event processing. We show that representation of object states involves the 

interaction of multiple brain areas, including areas of ventral visual processing pathway 

that are central to visual perception (Ullman, 2000), and areas of prefrontal cortex that are 

necessary for performance of any task which require cognitive control (Fuster, 2008).   

VVC-predicted univariate amplitude-modulation effects suggest that left pVLPFC thus 

appears to exert executive control over posterior brain regions that store and activate 

information, and that biased competition is an integral part of event cognition, enabling 

selection of the context-appropriate representation among competing instantiations of the 

same object as it undergoes change. In this way top-down projections from the prefrontal 

cortex may bias visual and semantic representations in the retrieval of conceptual 

knowledge and maintenance of visual imagery. When the comprehender must resolve the 

interference caused by alternative states of a single object, left pVLPFC may act as a top-

down modulatory signal to bias candidate representations (and the neural patterns that 

instantiate them) toward the context-appropriate representation of the object. 
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Methods 

Subjects 

Fourteen right-handed native English speakers (8 female), aged 22-33 years, participated 

in the study. Subjects were paid $20 per hour and were recruited from within the 

University of Pennsylvania community. All fMRI subjects gave informed consent as 

approved by the University of Pennsylvania Institutional Review Board. Additionally, 

204 native English speakers participated online in a task used for stimulus norming. 

 

Stimuli 

fMRI subjects read 20 items from each of the two conditions. Two 

counterbalanced lists were created in which each experimental item occurred in only one 

condition in a list, and across lists every item occurred in all conditions. The only 

difference between the substantial state-change and minimal state-change conditions was 

the described action. Each subject saw each item in only one of the two conditions. (See 

Appendix C for full stimulus set.) 

 Object state-change ratings for each item were collected through an online survey 

(N = 106). The 80 total items were randomly split into two lists, with the constraint that 

each subject rated only one action for each item. For each item, survey subjects were 

presented with the object photograph and just below the photograph, either the minimal 

state-change action or the substantial state-change action. Subjects were asked, “Upon the 

event, will the object stay just the same as it had been before, or will it be changed at 

all?” Subjects rated each item on a 7-point scale ranging from “just the same” to 

“completely changed.” The average state-change rating was 5.28 (SD = 0.77) for 
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substantial state-change items, and 1.39 (SD = 0.77) for minimal state-change items. The 

difference in rated state-change between the substantial state-change and minimal state-

change conditions was reliable (p < .001). Figure 3.1 displays the object state-change 

ratings for each item in the state-change comprehension task, ranked according to its 

object state-change rating, and color-coded by condition (i.e., “substantial state-change” 

or “minimal state-change”). 

 Because we were concerned that conflict effects in left pVLPFC may be 

influenced by the semantic association between objects and actions (e.g., “inflate” and 

“balloon” may be more strongly associated than “pick up” and “balloon”), we also 

collected ratings of the associative strength between each photographed object and 

described action through a separate online survey (N = 98). As in the state-change survey, 

subjects viewed each object photograph individually, with either the minimal state-

change action or the substantial action printed below the photograph. Subjects were 

asked, “How strongly is the following action associated with the depicted object?” 

Subjects rated each item on a 7-point scale ranging from “action not all associated with 

object” to “action extremely associated with object.” The average association-strength 

rating was 5.41 (SD = 1.10) for substantial state-change items, and 3.23 (SD = 0.80) for 

minimal state-change items. This associative-strength difference between conditions was 

reliable (p < .001). Notably, insofar as minimal state-change actions were less associated 

with objects than substantial state-change actions, there should be greater conflict for the 

minimal state-change items than for substantial state-change items. Hypotheses based on 

the associative strength of objects and actions predict the opposite pattern of results from 

hypothesis based on the level of object state-change, as well as from those actually 
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observed for the left pVLPFC conflict ROI. That is, object state-change condition 

predicted univariate amplitude-modulation in the left pVLPFC ROI, despite any 

differences across conditions in the associative of objects and actions. Moreover, 

associative strength did not reliably predict pVLPFC univariate amplitude-modulation 

when treated as a continuous variable (t(13) = 1.00, p = .34). 

 

Procedure 

State-Change Comprehension Task 

The event comprehension portion of the experiment consisted of 40 trials (20 trials of 

each condition), separated across five six-minute runs. Each trial lasted six seconds, 

during which the first sentence was presented for three seconds, followed by the second 

sentence for three seconds. Subjects pressed the two outer buttons of the keypad when the 

second sentence was implausible given the first sentence (e.g., “The man will cook the 

pizza. But first, he will eat the pizza.”). Trials were separated by 3 to 15 seconds of 

jittered fixation, optimized for statistical power by optseq 

(http://surfer.nmr.mgh.harvard.edu/optseq/). Stimuli for the event comprehension task, as 

well as for the two functional localizers, were presented using E-Prime (Psychology 

Software Tools, Pittsburgh, PA).  

 

Stroop Interference Localizer 

After the event comprehension runs, subjects performed one run of a Stroop color 

identification task, based on previously described procedures. The Stroop task was just 

over 5 minutes in total duration, and the response box was restricted to three buttons: 
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yellow, green, and blue. Stimuli included four trial types: response-eligible conflict, 

response-ineligible conflict, and two groups of neutral trials. Subjects were presented 

with a single word for each trial, and instructed to press the button corresponding to the 

typeface color of each word. Conflict trials could be either response-eligible or response-

ineligible. For response-eligible conflict trials, the color term matched one of the 

subject’s possible responses (i.e., yellow, green, or blue), but always mismatched the 

typeface color. The color terms for response-ineligible conflict trials (orange, brown, or 

red) also mismatched the typeface color, but were not possible responses. Separate sets of 

non-color neutral trials (e.g., farmer, stage, tax) were intermixed with the response-

eligible and response-ineligible conflict trials. 

 

Perceptual Localizer 

The final run of scanning was a 6-minute functional localizer to identify object-selective 

regions of interest (ROIs) in lateral occipital and posterior fusiform areas of visual cortex. 

During the localizer run, subjects viewed intact and feature-scrambled objects while 

performing a one-back task.  

 

fMRI Image Acquisition 

Structural and functional data were collected on a 3-T Siemens Trio system and a 32-

channel array head coil. Structural data included axial T1-weighted localizer images with 

160 slices and 1mm isotropic voxels (TR = 1620 ms, TE = 3.87 ms, TI = 950 ms). 

Functional data included echo-planar fMRI performed in 44 axial slices and 3 mm 

isotropic voxels (TR = 3000 ms, TE = 30 ms). Twelve seconds preceded data acquisition 
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in each functional run to approach steady-state magnetization. 

 

Image Processing & Analysis 

Image preprocessing and statistical analyses were performed using AFNI (Cox, 1996) 

and visualized in SUMA. Functional data were sinc interpolated to correct for slice 

timing, and aligned to the mean of all functional images using a six parameter iterated 

least squares procedure. The functional data were then registered with the subject’s 

anatomical dataset, normalized to a standard template in Talairach space, and smoothed 

with a 4 mm FWHM Gaussian kernel. Finally, all time-series data were z-normalized 

within each run. Each condition was modeled with a canonical hemodynamic response 

function, and beta coefficients were estimated using a modified general linear model that 

included a restricted maximum likelihood estimation of the temporal auto-correlation 

structure, with a polynomial baseline fit and six motion parameters as covariates of no 

interest. 

Regions of interest were defined both anatomically and functionally. Anatomical 

ROIs were defined in Talairach space using probabilistic cytoarchitectonic probabilistic 

maps provided in the SPM Anatomy Toolbox (Eickhoff et al., 2005). VVC was 

anatomically constrained to bilateral ventral occipitotemporal cortex, including included 

inferior occipital cortex, lingual gyrus, and the posterior aspects of fusiform gyrus and 

inferior temporal gyrus. Across all subjects, the anatomical definition of VVC included 

an average of 4059 voxels (SD = 77). Across all subjects, the anatomical definition of 

VVC included an average of 801 voxels (SD = 33). Within the broad anatomical 

constraints of bilateral VVC and left pVLPFC, ROIs were functionally defined separately 
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for each subject using the perceptual localizer (blocks of intact and feature-scrambled 

objects) and the Stroop color-word interference task. The late visual ROI was defined as 

the 250 VVC voxels most responsive to intact objects compared to feature-scrambled 

objects, while the early visual ROI was defined as the 250 VVC voxels most response to 

feature-scrambled images compared to intact objects. Left pVLPFC was anatomically 

constrained to BA 44 (pars opercularis), BA 45 (pars triangularis), and inferior frontal 

sulcus. The pVLPFC conflict ROI comprised the 250 voxels with the highest t-statistics 

in a contrast of conflict trials (either response-eligible or response-ineligible) vs. neutral 

trials during the Stroop interference task. Statistical tests were based either on the mean 

amplitude difference (univariate amplitude-modulation) or Pearson correlation 

(multivariate pattern-similarity) across time points of the 250 voxels of each ROI, and 

were evaluated at the two-tailed .05 level of significance.  
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CHAPTER 4: GENERAL DISCUSSION 

 

But facts are facts, and if we only get enough of them they are sure to combine. 

– The Principles of Psychology (William James, 1890) 

 

 Event comprehension requires the ability to represent, recall, and imagine 

individual objects in multiple distinct states. We begin with the observation that physical 

object state-changes, as they occur in the world, involve distinct and mutually exclusive 

states of the same object at different times. The experiments described in Chapters 2 and 

3 test the hypothesis that incompatible physical object states correspond to incompatible 

brain states, and that the cognitive system must therefore resolve conflict among 

incompatible representations. In other words, comprehension of an object state-change 

comes at a competitive cost. We tested this hypothesis by measuring univariate 

amplitude-modulation and multivariate pattern-similarity of the fMRI BOLD response 

within specific brain areas while subjects performed state-change comprehension tasks. 

These measured brain areas were functionally and anatomically defined as either 

specifically sensitive to semantic conflict (left pVLPFC) or to underlie the visual 

representation of objects and their features (early and late VVC).  

 In Chapter 2, we described a pair of fMRI experiments that test whether 

comprehension of object state-change described through language evokes a neural 

response in prefrontal cortex that is the same as for known forms of conflict. Specific 

manipulations of object state-change in these two experiments complement one another. 

In the first experiment, the same object was described as being changed either 
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substantially or minimally by one of two actions. In the second experiment, the same 

action was described as either substantially or minimally changing one of two objects. By 

separately varying the described action and the described object across experiments, we 

avoid differences in pVLPFC activation being due to changes in the verb alone or the 

object alone. On a subject-specific basis, we identified voxels most responsive to conflict 

in a Stroop color-word interference task, and discovered a triple dissociation across ROIs 

in left pVLPFC, left MFG, and left MTG. Voxels in left pVLPFC most responsive to 

Stroop conflict were also responsive to the object state-change manipulation, yet were not 

responsive to the imageability of described events; voxels in left MFG responsive to 

Stroop conflict were not responsive even to language; and voxels in left MTG that were 

responsive to language and imageability were not responsive to object-change. Results 

from the experiments in Chapter 2 suggest that, when representing object state-change, 

incompatible representations of an object compete in working memory, and the greater 

the difference between the initial and end states of an object, the greater the conflict.  

 In Chapter 3, we went beyond inferring the maintenance of multiple incompatible 

object state representations based on the need for control from frontal cortex. At the same 

time that we measured the prefrontal conflict response, we used multi-voxel pattern 

analysis to directly measure distributed object representations in ventral visual cortex 

when an initially depicted object was imagined to be minimally or substantially changed 

by a described action. We found that the similarity of object states before and after a 

described event predicts not only the strength of the prefrontal cortex conflict response, 

but also the multivariate pattern-similarity of brain states in early visual cortex. In early 

visual cortex, multivariate pattern-similarity across time points before and after a 
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described action was reliably reduced when the object was substantially changed, 

compared to when the object was minimally changed. In late visual cortex, multivariate 

pattern-similarity across time points was invariant to object state-change. Moreover, 

multivariate pattern-similarity in early visual cortex predicts the strength of prefrontal 

cortex conflict response even better than do the stimulus ratings of object state-change. 

Results suggest that distinct states of an object correspond to distinct visual cortex 

representations, and that the greater the dissimilarity between object states, the greater the 

dissimilarity between brain states, and the greater the conflict. 

 Considered together, the three fMRI experiments reported here suggest that 

distinct and incompatible representations of an object compete when representing object 

state-change. Below, we first address specific questions regarding the nature of 

competing object representations and the mechanisms involved in resolving this conflict. 

We then relate our present findings to object-based research in the field of visual 

attention, which we find to synergistically inform and be informed by our understanding 

of object state-change and semantic conflict.  

 

Simulation versus Interference 

 Because the left pVLPFC Stroop-conflict ROI in each of the three experiments 

was functionally and anatomically constrained to include only voxels most responsive to 

semantic conflict, we interpret the observed effect of object state-change on signal 

amplitude in this ROI as reflecting conflict between incompatible object states. However, 

a statistical relationship between any independent variable and the signal amplitude of an 

ROI does not by itself allow a strong inference about the presence of a particular 
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cognitive process (Friston & Price, 2003; Henson, 2005; Poldrack, 2006). Indeed, an 

alternative account of the observed parametric effects is that signal amplitude in left 

pVLPFC is driven by mental simulation of object state-change, as opposed to conflict 

between object-state representations (cf. Barsalou, 1999; Barsalou, Simmons, Barbey, & 

Wilson, 2003). According to the proposed conflict account of signal amplitude in left 

pVLPFC, state-change comprehension requires the cognitive system to maintain multiple 

incompatible representations of an object (changed and unchanged), and signal amplitude 

in left pVLPFC depends on the amount conflict between these incompatible object 

representations. According to a simulation account of left pVLPFC signal amplitude, the 

cognitive system would maintain only a single representation of acorn, and serially 

transform this representation as needed. The more an object is changed in state during an 

event, the more information must be inferred to derive the context-appropriate 

representation of the same object in its new state. In this case, signal change in left 

pVLPFC would depend on the amount of simulation required to comprehend the event 

sequence. We can, however, rule out a simulation account of the data by considering (1) 

the temporal-sequence manipulation in Experiment 1 of Chapter 2, and (2) the univariate 

amplitude-modulation effect described in Chapter 3 for left pVLPFC.  

 The temporal-sequence manipulation in Experiment 1 of Chapter 2 particularly is 

useful for distinguishing between a conflict account and a simulation account of the 

object state-change effects in left pVLPFC. In that experiment, multiple distinct 

representations of an object were introduced in the first sentence of substantial state-

change items. For instance, an intact acorn and a cracked acorn are each implied by the 

first sentence “The squirrel will crack the acorn.” In the second sentence of these items, a 



 
 

78 
 

temporal connective (‘and then’ or ‘but first’), determined whether the object-state in 

focus is the changed state of the object or its original state. For instance, the temporal 

connective determines whether the acorn in focus is cracked or intact in the sentence 

“And then / But first the squirrel will lick the acorn.” Conflict and simulation accounts 

make different predictions regarding the temporal context manipulation in Experiment 1. 

The conflict account predicts that there will always be greater pVLPFC activation when 

an object is changed in state, regardless of the temporal sequence. The simulation account 

predicts an interaction with temporal context in Experiment 1, because in the ‘and then’ 

case, the state computed at the end of the first sentence is identical to that referred to at 

the end of the second (but would be different in the ‘but first’ case). Insofar as the data 

from Experiment 1 revealed a main effect for state-change and no interaction with 

temporal sequence, a conflict account fits the data better than a simulation account, 

suggesting that the single-instantiation account is unlikely. 

 Data from Chapter 3 are also useful in distinguishing between conflict and 

simulation accounts of left pVLPFC activation. The design of the experiment in Chapter 

3 permitted us to separately model each trial component: the object before state-change, 

the object during state-change, and the object after state-change. A simulation account 

predicts that, though substantial state-changes will correspond to increased pVLPFC 

signal amplitude during the state-change, there should be no difference between minimal 

and substantial state-change conditions in the pVLPFC amplitude-modulation measure 

(i.e., no difference in signal amplitude between the pre-action and post-action trial 

components). However, as predicted by the proposed conflict account, we found that the 

extent of pVLPFC amplitude-modulation was predicted by both the rated state-change of 



 
 

79 
 

the item and the corresponding pattern-similarity in visual cortex. Thus, both the 

temporal-sequence data in Chapter 2 and the amplitude-modulation data in Chapter 3 

strengthen the inference made here that condition-wise and item-wise differences in left 

pVLPFC signal amplitude are driven by conflict between incompatible representations of 

an object.  

 

Typicality of Object States 

 Typicality may affect the saliency of the object-state representations. In many of 

the experimental items in Chapter 2, the described object begins in a very typical or 

canonical state (e.g., an intact acorn) and is altered to a more unusual state (e.g., a 

cracked acorn). Literature on typicality effects in language comprehension suggest that 

the strength of the initially activated object representation may partially determine the 

extent to which this initial representation remains active even after the contextually 

appropriate object representation has been computed (e.g., Rosch, 1978; Nosofsky, 1988; 

Southgate & Meints, 2000). Also, in computational models of lexical ambiguity in the 

comprehension of polysemous words, mental representations of word meanings are 

viewed as stable states within a semantic space that is shaped not only by context, but 

also by the relative frequency of word interpretations (Gernsbacher & St John, 2001; 

Klein & Murphy, 2001; Rodd, Gaskell, & Marslen-Wilson, 2004). Thus, though both the 

cracked and intact acorn representations are available to the cognitive system in the 

example above, the intact acorn representation may be more salient because it is closer to 

the prototypical acorn. Interestingly, these models of word typicality suggest that there 

should be less conflict for state-change for item such as “the musician will tune the 
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piano,” in which in the object goes from a less typical state (an out-of-tune piano) to a 

more typical state (a tuned piano).  

 While questions about the effects of object-state typicality on state-change 

comprehension promise an interesting avenue for future research, they are difficult to 

address within the data sets described in Chapters 2 and 3. In Chapter 2, the initial object 

state is unconstrained for minimal state-change items in each experiment. For instance, in 

the event “the squirrel will crack the acorn,” it is implied that the initial state of the acorn 

is intact. However, in the event “the squirrel will sniff the acorn,” it is not necessary or 

even implied that the initial state of the acorn is intact; the squirrel could just as likely 

sniff a cracked acorn. Thus, though we can measure object-state typicality for substantial 

state-change items in the Chapter 2 experiments, we cannot (without strong assumptions) 

measure object-state typicality for the minimal state-change items. The Chapter 3 

experiment does not have this indeterminacy problem, as subjects are shown a 

photograph of the initial object state before each trial. However, in that experiment, the 

strength of the initial visual representation would likely mask any typicality effects of 

object states. In order to systematically vary the relative typicality of the initial state and 

end state of both substantially and minimally changed objects, future experiments will 

include an adjective that specifies the original state of each object. This adjective will 

constrain the initial object state for minimal state-change items as well as substantial 

state-change items, without visual memory processes masking possible typicality effects. 

In such an experiment, we may find that the relative typicality of the initial and end states 

of the object interacts with state-change. Such a pattern of results may suggest a two-

factor conflict model (cf. Botvinick et al., 2001; Botvinick, Cohen, & Carter, 2004) for 
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left pVLPFC, in which conflict and pVLPFC amplitude depend on the combined 

influence of the relative strength of incompatible object-state representations, and the 

similarity of the incompatible object-state representations to one another. 

 

Object Rivalry 

 Similarity-based interference between distinct items in memory is not a new 

concept. Effects of semantic, syntactic, and phonological overlap among items has been 

observed in short-term memory (Baddeley & Dale, 1966; Shulman, 1971), long-term 

memory (Postman & Underwood, 1973; Anderson, Green, & McCulloch, 2000), and 

sentence comprehension (Gordon, Hendrick, Johnson, & Lee, 2006; Van Dyke & 

McElree, 2006). In each of these instances, greater similarity among items (i.e., semantic, 

syntactic, or phonological overlap) leads to greater interference. But this is precisely 

opposite to the interference effects that we observed in each fMRI experiment described 

in Chapters 2 and 3. In all three experiments, the amount of change that the object 

underwent positively correlated with the amplitude of the BOLD response in those 

Stroop-responsive voxels. That is, the more dissimilar alternative object representations 

were to one another, the greater the semantic conflict. Thus, it was not similarity-based 

interference that we found, but dissimilarity-based interference. This may be because 

greater change in object state corresponds to a greater the number of semantic features in 

conflict between object instantiations. We conjecture that this difference between distinct 

objects (similarity-based interference) and distinct instantiations of a single object 

(dissimilarity-based interference) has its roots in the fact that the distinct instantiations of 

an object across event-time (i.e., before and after state-change) are mutually exclusive – 
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they cannot co-exist. This mutual exclusivity must manifest in inhibition stemming from 

the non-overlapping elements of the instantiations (and hence the greater the difference 

between the two, the greater the mutual inhibition). Distinct objects, on the other hand, 

can co-exist no matter how similar; the greater the overlap between the objects’ 

representations, the greater the interference, but differences between the objects do not 

have consequences for coexistence and are not inhibitory. This may be analogous to a 

percept that alternates between incompatible retinal inputs during binocular rivalry 

(Logothetis, Leopold, & Sheinberg, 1996; Tong, Nakayama, Vaughan, & Kanwisher, 

1998), or a percept that alternates between mutually exclusive interpretations of an 

ambiguous figure during multistable perception (Sterzer, Kleinschmidt, & Rees, 2009; 

Long & Toppino, 2004). 

 An interesting avenue for future research will be to examine the difference 

between representing distinct objects versus representing distinct states of the same 

object. For instance, using a paradigm similar to that described in Chapter 3, a subject 

may see a photograph of a blue balloon, then follow task instructions to “remember the 

blue balloon” and then “inflate the blue balloon” and finally “look at the red balloon.” In 

this case, the “before” and “after” object representations would be distinct objects that are 

visually similar and within the same category. If late visual cortex (which responds more 

strongly to intact objects than to feature-scrambled objects) codes for object identity (e.g., 

DiCarlo & Cox, 2007; Cichy, Chen, & Haynes, 2011) patterns of neural activation in this 

ROI may appear more dynamic than in the experiment described in Chapter 3. However, 

if late visual cortex codes for object category (e.g, Haxby et al., 2001; Kourtzi & Connor, 

2011), multivariate pattern-similarity in this area may be invariant to this identity 
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manipulation, just as it was to the state-change manipulation. To additionally manipulate 

object category within the same experimental paradigm, visual imagery instructions may 

proceed as “remember the balloon,” followed by “inflate the balloon,” followed by “look 

at the basketball.” In addition to VVC multivariate pattern-similarity, such manipulations 

of object identity and object category may also affect the observed functional 

connectivity relationship (i.e., VVC-predicted univariate amplitude-modulation) between 

early visual cortex and left pVLPFC. 

 

Bridging Constructs: Object Files & Biased Competition 

 In the same way that functional connectivity can relate multivariate pattern-

similarity in visual cortex to signal amplitude in prefrontal cortex, considerations of 

object state-change link models of object representation (e.g., Kahneman, Treisman, & 

Gibbs, 1992; Scholl, Pylyshyn, & Feldman, 2001) with models of the top-down control 

of attention (e.g., Desimone & Duncan, 1995; Desimone, 1998). Although these 

frameworks have been considered primarily in the context of visual perception, 

increasing evidence points to the cognitive and neural overlap of the cognitive and neural 

systems that guide “external attention” to perceptual representations, and “internal 

attention” to mental representations (Nobre et al., 2004; Chun et al., 2011). 

 The “object files” construct in visual attention is particularly useful for 

considering the cognitive mechanisms that might link object states to one another. In this 

construct, object files are mid-level representations for identifying and tracking objects 

through time and space (Kahneman et al., 1992; Xu & Chun, 2009). When a visual 

stimulus is attended, the observer must determine whether this stimulus is novel or 
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belongs to an existing object file. If the stimulus is novel, a new object file is established, 

and is maintained even after the stimulus is out of sight (e.g., behind an occluder). If a 

stimulus includes features that match those of an existing object file, the observer 

automatically retrieves that object's past characteristics, which in turn influence the 

perceptual experience of the stimulus. Importantly, though the visual system typically 

prioritizes spatiotemporal information in assigning object files (e.g., two different-

looking objects are treated as the same when one transitions smoothly to the other, while 

two similar-looking objects are treated as different when they appear over time 

discontinuously), semantic knowledge can influence and override spatiotemporal 

information. Whether the visual system tolerates interruptions of spatiotemporal 

continuity depends both on general knowledge, such as naïve physics, and specific 

semantic and episodic memories for the action affordances and potential states of each 

object (Carey & Xu, 2001). Two object instantiations (e.g., an egg that is broken, or a 

frog that turns into a prince) can be perceived as the same object despite discontinuities, 

if the initial object state and an intervening action together suggest a state-change.  

 Biased competition refers to the process through which top-down signals guide 

competitive interactions between mutually inhibitory ensembles of interconnected 

neurons (Desimone & Duncan, 1995; Kastner & Ungerleider, 2001). In this model, the 

prefrontal cortex influences attention through excitatory pathways that increase the firing 

rate within neural populations of low-level visual cortex that code for specific task-

relevant features. In turn, increased firing rate of these feature-specific neural populations 

inhibits the firing rate of other surrounding neural populations. Kan & Thompson-Schill 

(2004) extended the biased competition model beyond perception, to semantic retrieval. 
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Attention to competing internal representations (e.g., incompatible object states) is 

described a two-component process of lateral inhibition and top-down constraint.  

 Data reported here suggest that competition between object states is a necessary 

component of event cognition, and that the visual attention frameworks of object files and 

biased competition are together useful in modeling state-change comprehension. Through 

the lens of object files, we can better understand how the cognitive system can treat two 

completely dissimilar neural representations as a single object. And through the lens of 

biased competition, we can better understand how alternative states of the same object 

compete in ventral visual cortex, at the same that task-specific neural patterns in 

prefrontal cortex bias these feature-based neural patterns toward the context-appropriate 

representation of an object. 

 

Conclusions 

Event comprehension often requires us to represent states of the world that are 

necessarily mutually exclusive from one another. Through a series of functional magnetic 

resonance imaging experiments, we test the hypothesis that, when an object is described 

as changing state during an event, the cognitive system must resolve conflict between the 

resulting incompatible brain states. In Chapter 2, we show that the degree of object state-

change entailed by a described event predicts fMRI signal amplitude in left pVLPFC, an 

area known to be sensitive to semantic conflict, and that this neural response specifically 

overlaps with conflict-dependent signal on a Stroop interference task. By separately 

varying the described action and the described object across Experiments 1 and 2, we 

avoid changes in left pVLPFC activation being due to changes in the verb alone (Expt. 1) 
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or the object alone (Expt. 2). In Chapter 3, we show that degree of object state-change 

also predicts the similarity of distributed patterns of fMRI activation in ventral visual 

cortex, and that this multivariate pattern-similarity of incompatible brain states in visual 

cortex is an even stronger predictor of pVLPFC activation than the rated degree of object 

state-change. Specific recruitment of pVLPFC during state-change comprehension 

suggests conflict at the level of semantic representations. Results from these experiments 

suggest that distinct and incompatible representations of an object compete when 

representing object state-change, that alternative states of an object correspond to distinct 

visual cortex representations, and that conflict measured in prefrontal cortex is mediated 

by the similarity of distributed representations in visual cortex. 
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APPENDIX A 

 

Experiment 1 event comprehension items (object fixed, action varied). Full stimulus 

set of 120 items. Each subject saw each item in only one of the four conditions. All 

items contain the same object in all conditions. 

 

A and B = action minimally changes object 

C and D = action substantially changes object 

 

1. 

A) The lumberjack will point at the tree branch. But first, he will reach for the tree 

branch. 

B) The lumberjack will point at the tree branch. And then, he will reach for the tree 

branch. 

C) The lumberjack will saw off the tree branch. But first, he will reach for the tree 

branch. 

D) The lumberjack will saw off the tree branch. And then, he will reach for the tree 

branch. 

 

2. 

A) The girl will gaze through the window. But first, she will kneel beside the window. 

B) The girl will gaze through the window. And then, she will kneel beside the window. 

C) The girl will open up the window. But first, she will kneel beside the window. 

D) The girl will open up the window. And then, she will kneel beside the window. 

 

3. 

A) The boy will yell at the jack-in-the-box. But first, he will frown at the jack-in-the-box. 

B) The boy will yell at the jack-in-the-box. And then, he will frown at the jack-in-the-

box. 

C) The boy will pop open the jack-in-the-box. But first, he will frown at the jack-in-the-

box. 

D) The boy will pop open the jack-in-the-box. And then, he will frown at the jack-in-the-

box. 

 

4.   

A) The woman will pick out the apple. But first, she will talk about the apple. 

B) The woman will pick out the apple. And then, she will talk about the apple. 

C) The woman will bite into the apple. But first, she will talk about the apple. 

D) The woman will bite into the apple. And then, she will talk about the apple. 

 

5.   

A) The child will lick the Popsicle. But first, she will grin at the Popsicle. 

B) The child will lick the Popsicle. And then, she will grin at the Popsicle. 

C) The child will unwrap the Popsicle. But first, she will grin at the Popsicle. 

D) The child will unwrap the Popsicle. And then, she will grin at the Popsicle. 
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6. 

A) The expert will examine the Rubik’s Cube. But first, he will explain the Rubik’s Cube. 

B) The expert will examine the Rubik’s Cube. And then, he will explain the Rubik’s 

Cube. 

C) The expert will solve the Rubik’s Cube. But first, he will explain the Rubik’s Cube. 

D) The expert will solve the Rubik’s Cube. And then, he will explain the Rubik’s Cube. 

 

7.   

A) The boy will inspect the broken zipper. But first, he will complain about the zipper. 

B) The boy will inspect the broken zipper. And then, he will complain about the zipper. 

C) The boy will fix the broken zipper. But first, he will complain about the zipper 

D) The boy will fix the broken zipper. And then, he will complain about the zipper. 

 

8. 

A) The child will tap the ketchup bottle. But first, he will comment on the ketchup bottle. 

B) The child will tap the ketchup bottle. And then, he will comment on the ketchup 

bottle. 

C) The child will open the ketchup bottle. But first, he will comment on the ketchup 

bottle. 

D) The child will open the ketchup bottle. And then, he will comment on the ketchup 

bottle. 

 

9. 

A) The fireman will grip the fire hose. But first, he will ask about the hose. 

B) The fireman will grip the fire hose. And then, he will ask about the hose. 

C) The fireman will unravel the fire hose. But first, he will ask about the hose. 

D) The fireman will unravel the fire hose. And then, he will ask about the hose. 

 

10. 

A) The grouch will curse at the alarm clock. But first, he will hit the alarm clock. 

B) The grouch will curse at the alarm clock. And then, he will hit the alarm clock. 

C) The grouch will turn off the alarm clock. But first, he will hit the alarm clock. 

D) The grouch will turn off the alarm clock. And then, he will hit the alarm clock. 

 

11. 

A) The teenager will bang on the trashcan. But first, he will walk around the trashcan. 

B) The teenager will bang on the trashcan. And then, he will walk around the trashcan. 

C) The teenager will tip over the trashcan. But first, he will walk around the trashcan. 

D) The teenager will tip over the trashcan. And then, he will walk around the trashcan. 

 

12. 

A) The mother will select the egg. But first, she will talk about the egg. 

B) The mother will select the egg. And then, she will talk about the egg. 

C) The mother will crack the egg. But first, she will talk about the egg. 

D) The mother will crack the egg. And then, she will talk about the egg. 
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13. 

A) The groomer will pet the dog. But first, he will feed the dog. 

B) The groomer will pet the dog. And then, he will feed the dog. 

C) The groomer will shave the dog. But first he will feed the dog. 

D) The groomer will shave the dog. And then, he will feed the dog. 

 

14. 

A) The artist will stare at the blank canvas. But first, he will ponder the canvas. 

B) The artist will stare at the blank canvas. And then, he will ponder the canvas. 

C) The artist will paint on the blank canvas. But first, he will ponder the canvas. 

D) The artist will paint on the blank canvas. And then, he will ponder the canvas. 

 

15. 

A) The boy will shake the empty water gun. But first, he will giggle about the water gun. 

B) The boy will shake the empty water gun. And then, he will giggle about the water gun. 

C) The boy will fill the empty water gun. But first, he will giggle about the water gun. 

D) The boy will fill the empty water gun. And then, he will giggle about the water gun. 

 

16. 

A) The plumber will examine the pipe. But first, he will frown at the pipe. 

B) The plumber will examine the pipe. And then, he will frown at the pipe. 

C) The plumber will bend the pipe. But first, he will frown at the pipe. 

D) The plumber will bend the pipe. And then, he will frown at the pipe. 

 

17. 

A) The bride will accept the gift. But first, she will give thanks for the gift. 

B) The bride will accept the gift. And then, she will give thanks for the gift. 

C) The bride will unwrap the gift. But first, she will give thanks for the gift. 

D) The bride will unwrap the gift. And then, she will give thanks for the gift. 

 

18.   

A) The bartender will select the tequila bottle. But first, he will talk about the tequila 

bottle. 

B) The bartender will select the tequila bottle. And then, he will talk about the tequila 

bottle. 

C) The bartender will empty the tequila bottle. But first, he will talk about the tequila 

bottle. 

D) The bartender will empty the tequila bottle. And then, he will talk about the tequila 

bottle. 

 

19. 

A) The sailor will hold onto the sail. But first, he will scowl at the sail. 

B) The sailor will hold onto the sail. And then, he will scowl at the sail. 

C) The sailor will take down the sail. But first, he will scowl at the sail. 

D) The sailor will take down the sail. And then, he will scowl at the sail. 
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20. 

A) The office worker will type on the keyboard. But first, he will complain about the 

keyboard. 

B) The office worker will type on the keyboard. And then, he will complain about the 

keyboard. 

C) The office worker will plug in the keyboard. But first, he will complain about the 

keyboard. 

D) The office worker will plug in the keyboard. And then, he will complain about the 

keyboard. 

 

21. 

A) The squirrel will sniff the acorn. But first, it will lick the acorn. 

B) The squirrel will sniff the acorn. And then, it will lick the acorn. 

C) The squirrel will crack the acorn. But first, it will lick the acorn. 

D) The squirrel will crack the acorn. And then, it will lick the acorn. 

 

22. 

A) The carpenter will sift through the toolbox. But first, he will frown at the toolbox. 

B) The carpenter will sift through the toolbox. And then, he will frown at the toolbox. 

C) The carpenter will open up the toolbox. But first, he will frown at the toolbox. 

D) The carpenter will open up the toolbox. And then, he will frown at the toolbox. 

 

23. 

A) The gorilla will inspect the banana. But first, he will grunt at the banana. 

B) The gorilla will inspect the banana. And then, he will grunt at the banana. 

C) The gorilla will peel the banana. But first, he will grunt at the banana. 

D) The gorilla will peel the banana. And then, he will grunt at the banana. 

 

24. 

A) The construction worker will bang on the wall. But first, he will frown at the wall. 

B) The construction worker will bang on the wall. And then, he will frown at the wall. 

C) The construction worker will knock down the wall. But first, he will frown at the wall. 

D) The construction worker will knock down the wall. And then, he will frown at the 

wall. 

 

25. 

A) The boy will rub the coin. But first, he will grin at the coin. 

B) The boy will rub the coin. And then, he will grin at the coin. 

C) The boy will spin the coin. But first, he will grin at the coin. 

D) The boy will spin the coin. And then, he will grin at the coin. 

 

26.   

A) The boy will examine his shoes. But first, he will brag about his shoes. 

B) The boy will examine his shoes. And then, he will brag about his shoes. 

C) The boy will untie his shoes. But first, he will brag about his shoes. 

D) The boy will untie his shoes. And then, he will brag about his shoes. 
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27. 

A) The teacher will point at the blackboard. But first, she will read from the blackboard. 

B) The teacher will point at the blackboard. And then, she will read from the blackboard. 

C) The teacher will draw on the blackboard. But first, she will read from the blackboard. 

D) The teacher will draw on the blackboard. And then, she will read from the blackboard. 

 

28. 

A) The girl will pose behind the shirt. But first, she will ask about the shirt. 

B) The girl will pose behind the shirt. And then, she will ask about the shirt. 

C) The girl will hang up the shirt. But first, she will ask about the shirt. 

D) The girl will hang up the shirt. And then, she will ask about the shirt. 

  

29. 

A) The tour guide will inspect the umbrella. But first, she will clench the umbrella. 

B) The tour guide will inspect the umbrella. And then, she will clench the umbrella. 

C) The tour guide will open the umbrella. But first, she will clench the umbrella. 

D) The tour guide will open the umbrella. And then, she will clench the umbrella. 

  

30. 

A) The gymnast will examine the jump rope. But first, she will complain about the jump 

rope. 

B) The gymnast will examine the jump rope. And then, she will complain about the jump 

rope. 

C) The gymnast will cut the jump rope. But first, she will complain about the jump rope. 

D) The gymnast will cut the jump rope. And then, she will complain about the jump rope. 

 

31. 

A) The airline pilot will admire his hat. But first, he will chat about his hat. 

B) The airline pilot will admire his hat. And then, he will chat about his hat. 

C) The airline pilot will remove his hat. But first, he will chat about his hat. 

D) The airline pilot will remove his hat. And then, he will chat about his hat. 

 

32. 

A) The zookeeper will count the animals. But first, he will chat about the animals. 

B) The zookeeper will count the animals. And then, he will chat about the animals. 

C) The zookeeper will release the animals. But first, he will chat about the animals. 

D) The zookeeper will release the animals. And then, he will chat about the animals. 

 

33. 

A) The teacher will glare at the paper. But first, she will reread the paper. 

B) The teacher will glare at the paper. And then, she will reread the paper. 

C) The teacher will mark up the paper. But first, she will reread the paper. 

D) The teacher will mark up the paper. And then, she will reread the paper. 

 

34.   
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A) The babysitter will trip over the toy truck. But first, she will grumble about the truck. 

B) The babysitter will trip over the toy truck. And then, she will grumble about the truck. 

C) The babysitter will put away the toy truck. But first, she will grumble about the truck. 

D) The babysitter will put away the toy truck. And then, she will grumble about the truck. 

 

35. 

A) The secretary will search the files. But first, she will gripe about the files. 

B) The secretary will search the files. And then, she will gripe about the files. 

C) The secretary will shred the files. But first, she will gripe about the files. 

D) The secretary will shred the files. And then, she will gripe about the files. 

 

36.   

A) The dog will nudge his food bowl. But first, he will smell his food bowl. 

B) The dog will nudge his food bowl. And then, he will smell his food bowl. 

C) The dog will empty his food bowl. But first, he will smell his food bowl. 

D) The dog will empty his food bowl. And then, he will smell his food bowl. 

 

37. 

A) The boxer will step toward his opponent. But first, he will taunt his opponent. 

B) The boxer will step toward his opponent. And then, he will taunt his opponent. 

C) The boxer will knock out his opponent. But first, he will taunt his opponent. 

D) The boxer will knock out his opponent. And then, he will taunt his opponent. 

 

38. 

A) The little girl will kiss her teddy bear. But first, she will talk to her teddy bear. 

B) The little girl will kiss her teddy bear. And then, she will talk to her teddy bear. 

C) The little girl will dress her teddy bear. But first, she will talk to her teddy bear. 

D) The little girl will dress her teddy bear. And then, she will talk to her teddy bear. 

  

39. 

A) The aunt will count up the leftover Halloween candy. But first, she will grimace at the 

candy. 

B) The aunt will count up the leftover Halloween candy. And then, she will grimace at the 

candy. 

C) The aunt will dump out the leftover Halloween candy. But first, she will grimace at the 

candy. 

D) The aunt will dump out the leftover Halloween candy. And then, she will grimace at 

the candy. 

 

40. 

A) The teenager will interpret the Magic 8-Ball. But first, she will chat about the Magic 

8-Ball. 

B) The teenager will interpret the Magic 8-Ball. And then, she will chat about the Magic 

8-Ball. 

C) The teenager will shake the Magic 8-Ball. But first, she will chat about the Magic 8-

Ball. 
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D) The teenager will shake the Magic 8-Ball. And then, she will chat about the Magic 8-

Ball. 

 

41. 

A) The maid will sit upon the messy bed. But first, she will complain about the bed. 

B) The maid will sit upon the messy bed. And then, she will complain about the bed. 

C) The maid will make up the messy bed. But first, she will complain about the bed. 

D) The maid will make up the messy bed. And then, she will complain about the bed. 

 

42. 

A) The beaver will circle around the tree. But first, he will push against the tree. 

B) The beaver will circle around the tree. And then, he will push against the tree. 

C) The beaver will chew through the tree. But first, he will push against the tree. 

D) The beaver will chew through the tree. And then, he will push against the tree. 

  

43. 

A) The farmer will select the pumpkin. But first, he will chat about the pumpkin 

B) The farmer will select the pumpkin. And then, he will chat about the pumpkin. 

C) The farmer will carve the pumpkin. But first, he will chat about the pumpkin. 

D) The farmer will carve the pumpkin. And then, he will chat about the pumpkin. 

 

44. 

A) The boy will smile at the candle. But first, he will reach for the candle. 

B) The boy will smile at the candle. And then, he will reach for the candle. 

C) The boy will blow out the candle. But first, he will reach for the candle. 

D) The boy will blow out the candle. And then, he will reach for the candle. 

  

45. 

A) The clown will rub the balloon. But first, he will laugh at the balloon. 

B) The clown will rub the balloon. And then, he will laugh at the balloon. 

C) The clown will inflate the balloon. But first, he will laugh at the balloon. 

D) The clown will inflate the balloon. And then, he will laugh at the balloon. 

  

46. 

A) The student will write with the pencil. But first, she will clench the pencil. 

B) The student will write with the pencil. And then, she will clench the pencil. 

C) The student will sharpen up the pencil. But first, she will clench the pencil. 

D) The student will sharpen up the pencil. And then, she will clench the pencil. 

  

47. 

A) The child will hide behind the plant. But first, he will jump over the plant. 

B) The child will hide behind the plant. And then, he will jump over the plant. 

C) The child will knock down the plant. But first, he will jump over the plant. 

D) The child will knock down the plant. And then, he will jump over the plant. 

  

48. 
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A) The musician will play the piano. But first, he will rave about the piano. 

B) The musician will play the piano. And then, he will rave about the piano. 

C) The musician will tune the piano. But first, he will rave about the piano. 

D) The musician will tune the piano. And then, he will rave about the piano. 

  

49. 

A) The alley cat will follow the mouse. But first, she will hiss at the mouse. 

B) The alley cat will follow the mouse. And then, she will hiss at the mouse. 

C) The alley cat will injure the mouse. But first, she will hiss at the mouse. 

D) The alley cat will injure the mouse. And then, she will hiss at the mouse. 

  

50. 

A) The toddler will look over the puzzle. But first, he will marvel at the puzzle. 

B) The toddler will look over the puzzle. And then, he will marvel at the puzzle. 

C) The toddler will break apart the puzzle. But first, he will marvel at the puzzle. 

D) The toddler will break apart the puzzle. And then, he will marvel at the puzzle. 

  

51. 

A) The passerby will watch the bird. But first, she will call to the bird. 

B) The passerby will watch the bird. And then, she will call to the bird. 

C) The passerby will frighten the bird. But first, she will call to the bird. 

D) The passerby will frighten the bird. And then, she will call to the bird. 

  

52.   

A) The girl will lie beside the diary. But first, she will read the diary. 

B) The girl will lie beside the diary. And then, she will read the diary. 

C) The girl will write in the diary. But first, she will read the diary. 

D) The girl will write in the diary. And then, she will read the diary. 

 

53. 

A) The housepainter will check the ladder. But first, he will walk around the ladder. 

B) The housepainter will check the ladder. And then, he will walk around the ladder. 

C) The housepainter will extend the ladder. But first, he will walk around the ladder. 

D) The housepainter will extend the ladder. And then, he will walk around the ladder. 

 

54. 

A) The ventriloquist will address the dummy. But first, he will make fun of the dummy. 

B) The ventriloquist will address the dummy. And then, he will make fun of the dummy. 

C) The ventriloquist will seat the dummy.  But first, he will make fun of the dummy. 

D) The ventriloquist will seat the dummy. And then, he will make fun of the dummy. 

 

55. 

A) The employee will stand beside the mannequin. But first, she will laugh at the 

mannequin. 

B) The employee will stand beside the mannequin. And then, she will laugh at the 

mannequin. 
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C) The employee will dress up the mannequin. But first, she will laugh at the mannequin. 

D) The employee will dress up the mannequin. And then, she will laugh at the 

mannequin. 

 

56. 

A) The customer will pick out the sunglasses.  But first, she will ask about the sunglasses. 

B) The customer will pick out the sunglasses. And then, she will ask about the sunglasses. 

C) The customer will fold up the sunglasses. But first, she will ask about the sunglasses. 

D) The customer will fold up the sunglasses. And then, she will ask about the sunglasses. 

 

57. 

A) The traveler will lay on the sleeping bag. But first, he will complain about the sleeping 

bag. 

B) The traveler will lay on the sleeping bag. And then, he will complain about the 

sleeping bag. 

C) The traveler will roll up the sleeping bag. But first, he will complain about the 

sleeping bag. 

D) The traveler will roll up the sleeping bag. And then, he will complain about the 

sleeping bag. 

 

58. 

A) The young woman will admire the jewelry box. But first, she will comment on the 

jewelry box. 

B) The young woman will admire the jewelry box. And then, she will comment on the 

jewelry box. 

C) The young woman will open the jewelry box. But first, she will comment on the 

jewelry box. 

D) The young woman will open the jewelry box. And then, she will comment on the 

jewelry box. 

 

59. 

A) The chef will weigh the onion. But first, she will smell the onion. 

B) The chef will weigh the onion. And then, she will smell the onion. 

C) The chef will chop the onion. But first, she will smell the onion. 

D) The chef will chop the onion. And then, she will smell the onion. 

 

60. 

A) The woman will inspect the cello. But first, she will kneel beside the cello. 

B) The woman will inspect the cello. And then, she will kneel beside the cello. 

C) The woman will restring the cello. But first, she will kneel beside the cello. 

D) The woman will restring the cello. And then, she will kneel beside the cello. 

 

61. 

A) The bully will pick on the boy. But first, he will shout at the boy. 

B) The bully will pick on the boy. And then, he will shout at the boy. 

C) The bully will knock down the boy. But first, he will shout at the boy. 
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D) The bully will knock down the boy. And then, he will shout at the boy. 

  

62.   

A) The passenger will clutch the seatbelt. But first, she will tug on the seatbelt. 

B) The passenger will clutch the seatbelt. And then, she will tug on the seatbelt. 

C) The passenger will buckle the seatbelt. But first, she will tug on the seatbelt. 

D) The passenger will buckle the seatbelt. And then, she will tug on the seatbelt. 

 

63. 

A) The grandmother will look toward the lamp. But first, she will ask about the lamp. 

B) The grandmother will look toward the lamp. And then, she will ask about the lamp. 

C) The grandmother will turn on the lamp. But first, she will ask about the lamp. 

D) The grandmother will turn on the lamp. And then, she will ask about the lamp. 

  

64. 

A) The child will poke at the rubber band. But first, he will grin at the rubber band. 

B) The child will poke at the rubber band. And then, he will grin at the rubber band. 

C) The child will stretch out the rubber band. But first, he will grin at the rubber band. 

D) The child will stretch out the rubber band. And then, he will grin at the rubber band. 

  

65. 

A) The butler will praise the rug. But first, he will step over the rug. 

B) The butler will praise the rug. And then, he will step over the rug. 

C) The butler will unroll the rug. But first, he will step over the rug. 

D) The butler will unroll the rug. And then, he will step over the rug. 

   

66. 

A) The student will sniff the pizza. But first, he will blow on the pizza. 

B) The student will sniff the pizza. And then, he will blow on the pizza. 

C) The student will slice the pizza. But first, he will blow on the pizza. 

D) The student will slice the pizza. And then, he will blow on the pizza. 

  

67. 

A) The escaped parrot will screech at the birdcage. But first, he will climb the birdcage. 

B) The escaped parrot will screech at the birdcage. And then, he will climb the birdcage. 

C) The escaped parrot will knock down the birdcage. But first, he will climb the birdcage. 

D) The escaped parrot will knock down the birdcage. And then, he will climb the 

birdcage. 

  

68. 

A) The athlete will sit beside the fan. But first, he will comment on the fan. 

B) The athlete will sit beside the fan. And then, he will comment on the fan. 

C) The athlete will turn on the fan. But first, he will comment on the fan. 

D) The athlete will turn on the fan. And then, he will comment on the fan. 

 

69. 



 
 

111 
 

A) The woman will peer behind the shower curtain. But first, she will frown at the 

shower curtain. 

B) The woman will peer behind the shower curtain. And then, she will frown at the 

shower curtain. 

C) The woman will hang up the shower curtain. But first, she will frown at the shower 

curtain. 

D) The woman will hang up the shower curtain. And then, she will frown at the shower 

curtain. 

  

70. 

A) The child will poke the gingerbread man. But first, she will laugh at the gingerbread 

man. 

B) The child will poke the gingerbread man. And then, she will laugh at the gingerbread 

man. 

C) The child will decorate the gingerbread man. But first, she will laugh at the 

gingerbread man. 

D) The child will decorate the gingerbread man. And then, she will laugh at the 

gingerbread man. 

 

71. 

A) The boy will inspect the kite. But first, he will compliment the kite. 

B) The boy will inspect the kite. And then, he will compliment the kite. 

C) The boy will unfold the kite. But first, he will compliment the kite. 

D) The boy will unfold the kite. And then, he will compliment the kite. 

  

72. 

A) The musician will look over the saxophone. But first, she will ask about the 

saxophone. 

B) The musician will look over the saxophone. And then, she will ask about the 

saxophone. 

C) The musician will strap on the saxophone. But first, she will ask about the saxophone. 

D) The musician will strap on the saxophone. And then, she will ask about the 

saxophone. 

 

73. 

A) The librarian will look at the book. But first, he will check out the book. 

B) The librarian will look at the book. And then, he will check out the book. 

C) The librarian will open up the book. But first, he will check out the book. 

D) The librarian will open up the book. And then, he will check out the book. 

 

74. 

A) The ninja will grip the sword. But first, he will grin at the sword. 

B) The ninja will grip the sword. And then, he will grin at the sword. 

C) The ninja will unsheathe the sword. But first, he will grin at the sword. 

D) The ninja will unsheathe the sword. And then, he will grin at the sword. 
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75. 

A) The barista will point to the latte. But first, she will ring up the latte. 

B) The barista will point to the latte. And then, she will ring up the latte. 

C) The barista will top off the latte. But first, she will ring up the latte. 

D) The barista will top off the latte. And then, she will ring up the latte. 

 

76. 

A) The artist will study the sculpture. But first, she will chat about the sculpture. 

B) The artist will study the sculpture. And then, she will chat about the sculpture. 

C) The artist will finish the sculpture. But first, she will chat about the sculpture. 

D) The artist will finish the sculpture. And then, she will chat about the sculpture. 

 

77. 

A) The traffic cop will follow the speeding motorist. But first, he will recognize the 

motorist. 

B) The traffic cop will follow the speeding motorist. And then, he will recognize the 

motorist. 

C) The traffic cop will stop the speeding motorist. But first, he will recognize the 

motorist. 

D) The traffic cop will stop the speeding motorist. And then, he will recognize the 

motorist. 

 

78. 

A) The flight attendant will locate the can of soda. But first, she will offer the can of 

soda. 

B) The flight attendant will locate the can of soda. And then, she will offer the can of 

soda. 

C) The flight attendant will open the can of soda. But first, she will offer the can of soda. 

D) The flight attendant will open the can of soda. And then, she will offer the can of soda. 

 

79. 

A) The food critic will taste the coffee. But first, he will ask about the coffee. 

B) The food critic will taste the coffee. And then, he will ask about the coffee. 

C) The food critic will finish the coffee. But first, he will ask about the coffee. 

D) The food critic will finish the coffee. And then, he will ask about the coffee. 

 

80. 

A) The carpenter will assess the floor. But first, he will step on the floor. 

B) The carpenter will assess the floor. And then, he will step on the floor. 

C) The carpenter will tile the floor. But first, he will step on the floor. 

D) The carpenter will tile the floor. And then, he will step on the floor. 

 

81. 

A) The man will lean on the dishwasher. But first, he will comment on the dishwasher. 

B) The man will lean on the dishwasher. And then, he will comment on the dishwasher. 

C) The man will take apart the dishwasher. But first, he will comment on the dishwasher. 
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D) The man will take apart the dishwasher. And then, he will comment on the dishwasher. 

 

82. 

A) The hairdresser will caress the wig. But first, he will compliment the wig. 

B) The hairdresser will caress the wig. And then, he will compliment the wig. 

C) The hairdresser will braid the wig. But first, he will compliment the wig. 

D) The hairdresser will braid the wig. And then, he will compliment the wig. 

 

83. 

A) The welder will clutch the blowtorch. But first, he will fiddle with the blowtorch. 

B) The welder will clutch the blowtorch. And then, he will fiddle with the blowtorch. 

C) The welder will light the blowtorch. But first, he will fiddle with the blowtorch. 

D) The welder will light the blowtorch. And then, he will fiddle with the blowtorch. 

 

84. 

A) The girl will admire the flower. But first, she will sniff the flower. 

B) The girl will admire the flower. And then, she will sniff the flower. 

C) The girl will pluck the flower. But first, she will sniff the flower. 

D) The girl will pluck the flower. And then, she will sniff the flower. 

 

85. 

A) The man will kick the gate. But first, he will lean on the gate. 

B) The man will kick the gate. And then, he will lean on the gate. 

C) The man will shut the gate. But first, he will lean on the gate. 

D) The man will shut the gate. And then, he will lean on the gate. 

 

86. 

A) The paleontologist will dig around the fossil. But first, he will talk about the fossil. 

B) The paleontologist will dig around the fossil. And then, he will talk about the fossil. 

C) The paleontologist will dig up the fossil. But first, he will talk about the fossil. 

D) The paleontologist will dig up the fossil. And then, he will talk about the fossil. 

 

87. 

A) The parking attendant will check the parking meter. But first, she will rest against the 

parking meter. 

B) The parking attendant will check the parking meter. And then, she will rest against the 

parking meter. 

C) The parking attendant will empty the parking meter. But first, she will rest against the 

parking meter. 

D) The parking attendant will empty the parking meter. And then, she will rest against the 

parking meter. 

 

88. 

A) The owl will swoop toward the field mouse. But first, it will hoot at the field mouse. 

B) The owl will swoop toward the field mouse. And then, it will hoot at the field mouse. 

C) The owl will scare away the field mouse. But first, it will hoot at the field mouse. 
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D) The owl will scare away the field mouse. And then, it will hoot at the field mouse. 

 

89. 

A) The camper will look into the tent. But first, he will chat about the tent. 

B) The camper will look into the tent. And then, he will chat about the tent. 

C) The camper will put together the tent. But first, he will chat about the tent. 

D) The camper will put together the tent. And then, he will chat about the tent. 

 

90. 

A) The exterminator will spot the cockroach. But first, he will talk about the cockroach. 

B) The exterminator will spot the cockroach. And then, he will talk about the cockroach. 

C) The exterminator will poison the cockroach. But first, he will talk about the 

cockroach. 

D) The exterminator will poison the cockroach. And then, he will talk about the 

cockroach. 

 

91. 

A) The scuba diver will peer through the diving mask. But first, he will tug at the diving 

mask. 

B) The scuba diver will peer through the diving mask. And then, he will tug at the diving 

mask. 

C) The scuba diver will wipe clear the diving mask. But first, he will tug at the diving 

mask. 

D) The scuba diver will wipe clear the diving mask. And then, he will tug at the diving 

mask. 

 

92. 

A) The dentist will prod the tooth. But first, he will talk about the tooth. 

B) The dentist will prod the tooth. And then, he will talk about the tooth. 

C) The dentist will remove the tooth. But first, he will talk about the tooth. 

D) The dentist will remove the tooth. And then, he will talk about the tooth. 

 

93. 

A) The airline pilot will steer the airplane. But first, he will talk about the airplane. 

B) The airline pilot will steer the airplane. And then, he will talk about the airplane. 

C) The airline pilot will land the airplane. But first, he will talk about the airplane. 

D) The airline pilot will land the airplane. And then, he will talk about the airplane. 

 

94. 

A) The mechanic will examine the car engine. But first, he will ask about the car engine. 

B) The mechanic will examine the car engine. And then, he will ask about the car engine. 

C) The mechanic will disassemble the car engine. But first, he will ask about the car 

engine. 

D) The mechanic will disassemble the car engine. And then, he will ask about the car 

engine. 
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95. 

A) The tailor will measure the pants. But first, he will ask about the pants. 

B) The tailor will measure the pants. And then, he will ask about the pants. 

C) The tailor will shorten the pants. But first, he will ask about the pants. 

D) The tailor will shorten the pants. And then, he will ask about the pants. 

 

96. 

A) The new employee will stare at the cash register. But first, he will ask about the cash 

register. 

B) The new employee will stare at the cash register. And then, he will ask about the cash 

register. 

C) The new employee will open up the cash register. But first, he will ask about the cash 

register. 

D) The new employee will open up the cash register. And then, he will ask about the cash 

register. 

 

97. 

A) The bicyclist will discover the flat tire. But first, she will complain about the tire. 

B) The bicyclist will discover the flat tire. And then, she will complain about the tire. 

C) The bicyclist will repair the flat tire. But first, she will complain about the tire. 

D) The bicyclist will repair the flat tire. And then, she will complain about the tire. 

 

98. 

A) The angry music conductor will squeeze the baton. But first, he will complain about 

the baton. 

B) The angry music conductor will squeeze the baton. And then, he will complain about 

the baton. 

C) The angry music conductor will snap the baton. But first, he will complain about the 

baton. 

D) The angry music conductor will snap the baton. And then, he will complain about the 

baton. 

 

99.   

A) The man will criticize the brochure. But first, he will read the brochure. 

B) The man will criticize the brochure. And then, he will read the brochure. 

C) The man will fold the brochure. But first, he will read the brochure. 

D) The man will fold the brochure. And then, he will read the brochure. 

 

100. 

A) The illustrator will copy the cartoon. But first, he will display the cartoon. 

B) The illustrator will copy the cartoon. And then, he will display the cartoon. 

C) The illustrator will color the cartoon. But first, he will display the cartoon. 

D) The illustrator will color the cartoon. And then, he will display the cartoon. 

 

101. 

A) The hunter will inspect the rifle. But first, he will frown at the rifle. 
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B) The hunter will inspect the rifle. And then, he will frown at the rifle. 

C) The hunter will load the rifle. But first, he will frown at the rifle. 

D) The hunter will load the rifle. And then, he will frown at the rifle. 

 

102. 

A) The woman will tap the table. But first, she will walk around the table. 

B) The woman will tap the table. And then, she will walk around the table. 

C) The woman will set the table. But first, she will walk around the table. 

D) The woman will set the table. And then, she will walk around the table. 

 

103. 

A) The grocer will weigh the blueberries. But first, he will smell the blueberries. 

B) The grocer will weigh the blueberries. And then, he will smell the blueberries. 

C) The grocer will blend the blueberries. But first, he will smell the blueberries. 

D) The grocer will blend the blueberries. And then, he will smell the blueberries. 

 

104. 

A) The man will touch the label. But first, he will read the label. 

B) The man will touch the label. And then, he will read the label. 

C) The man will remove the label. But first, he will read the label. 

D) The man will remove the label. And then, he will read the label. 

 

105. 

A) The gym teacher will slap the basketball. But first, he will comment on the basketball. 

B) The gym teacher will slap the basketball. And then, he will comment on the 

basketball. 

C) The gym teacher will inflate the basketball. But first, he will comment on the 

basketball. 

D) The gym teacher will inflate the basketball. And then, he will comment on the 

basketball. 

 

106. 

A) The contractor will measure the swimming pool. But first, he will walk around the 

pool. 

B) The contractor will measure the swimming pool. And then, he will walk around the 

pool. 

C) The contractor will drain the swimming pool. But first, he will walk around the pool. 

D) The contractor will drain the swimming pool. And then, he will walk around the pool. 

 

107. 

A) The dog will lie beside the homework. But first, he will smell the homework. 

B) The dog will lie beside the homework. And then, he will smell the homework. 

C) The dog will tear up the homework. But first, he will smell the homework. 

D) The dog will tear up the homework. And then, he will smell the homework. 

 

108. 
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A) The boy will swing at the piñata. But first, he will laugh at the piñata. 

B) The boy will swing at the piñata. And then, he will laugh at the piñata. 

C) The boy will knock down the piñata. But first, he will laugh at the piñata. 

D) The boy will knock down the piñata. And then, he will laugh at the piñata. 

 

109. 

A) The boy will show off the sand castle. But first, he will guard the sand castle. 

B) The boy will show off the sand castle. And then, he will guard the sand castle. 

C) The boy will finish up the sand castle. But first, he will guard the sand castle. 

D) The boy will finish up the sand castle. And then, he will guard the sand castle. 

 

110. 

A) The hyena will creep behind the wildebeest. But first, it will growl at the wildebeest. 

B) The hyena will creep behind the wildebeest. And then, it will growl at the wildebeest. 

C) The hyena will run down the wildebeest. But first, it will growl at the wildebeest. 

D) The hyena will run down the wildebeest. And then, it will growl at the wildebeest. 

 

111. 

A) The botanist will examine the plant. But first, he will document the plant. 

B) The botanist will examine the plant. And then, he will document the plant. 

C) The botanist will dissect the plant. But first, he will document the plant. 

D) The botanist will dissect the plant. And then, he will document the plant. 

 

112. 

A) The man will choose the bagel. But first, he will smell the bagel. 

B) The man will choose the bagel. And then, he will smell the bagel. 

C) The man will slice the bagel. But first, he will smell the bagel. 

D) The man will slice the bagel. And then, he will smell the bagel. 

 

113.   

A) The girl will inspect the stick of gum. But first, she will complain about the gum. 

B) The girl will inspect the stick of gum. And then, she will complain about the gum. 

C) The girl will chew the stick of gum. But first, she will complain about the gum. 

D) The girl will chew the stick of gum. And then, she will complain about the gum. 

 

114. 

A) The trainer will pat the horse. But first, he will feed the horse. 

B) The trainer will pat the horse. And then, he will feed the horse. 

C) The trainer will saddle the horse. But first, he will feed the horse. 

D) The trainer will saddle the horse. And then, he will feed the horse. 

 

115. 

A) The woman will look into the baby carriage. But first, she will kneel beside the baby 

carriage. 

B) The woman will look into the baby carriage. And then, she will kneel beside the baby 

carriage. 
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C) The woman will fold up the baby carriage. But first, she will kneel beside the baby 

carriage. 

D) The woman will fold up the baby carriage. And then, she will kneel beside the baby 

carriage. 

 

116. 

A) The man will check the wristwatch. But first, he will brag about the wristwatch. 

B) The man will check the wristwatch. And then, he will brag about the wristwatch. 

C) The man will reset the wristwatch. But first, he will brag about the wristwatch. 

D) The man will reset the wristwatch. And then, he will brag about the wristwatch. 

 

117. 

A) The man will look for the cell phone. But first, he will gripe about the cell phone. 

B) The man will look for the cell phone. And then, he will gripe about the cell phone. 

C) The man will put away the cell phone. But first, he will gripe about the cell phone. 

D) The man will put away the cell phone. And then, he will gripe about the cell phone. 

 

118. 

A) The boy will wait beside the Halloween costume. But first, he will ask for the 

costume. 

B) The boy will wait beside the Halloween costume. And then, he will ask for the 

costume. 

C) The boy will try on the Halloween costume. But first, he will ask for the costume. 

D) The boy will try on the Halloween costume. And then, he will ask for the costume. 

 

119. 

A) The grandfather will look at the Thanksgiving turkey. But first, he will walk around 

the turkey. 

B) The grandfather will look at the Thanksgiving turkey. And then, he will walk around 

the turkey. 

C) The grandfather will cut up the Thanksgiving turkey. But first, he will walk around the 

turkey. 

D) The grandfather will cut up the Thanksgiving turkey. And then, he will walk around 

the turkey. 

 

120. 

A) The woman will count the potatoes. But first, she will talk about the potatoes. 

B) The woman will count the potatoes. And then, she will talk about the potatoes. 

C) The woman will mash the potatoes. But first, she will talk about the potatoes. 

D) The woman will mash the potatoes. And then, she will talk about the potatoes. 
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APPENDIX B 

 

Experiment 2 event comprehension items (object varied, action fixed.. Full stimulus 

set of 100 items. Each subject saw each item in only one of the two conditions. All 

items contain the same verb in both conditions. Items 1-60 are matched across 

conditions as closely as possible on the specific action connotation of the verb. 

 

A = action minimally changes object 

B = action substantially changes object 

 

1. 

A) The girl will stomp on the penny. And then, she will look down at the penny. 

B) The girl will stomp on the egg. And then, she will look down at the egg. 

 

2. 

A) The girl will jump on the soft grass. And then, she will ask about the grass. 

B) The girl will jump on the cardboard box. And then, she will ask about the box. 

 

3. 

A) The teenager will drop the beach ball. And then, she will run away from the beach 

ball. 

B) The teenager will drop the mayonnaise jar. And then, she will run away from the 

mayonnaise jar. 

 

4.  

A) The marksman will shoot at the old worn-out target. And then, he will point at the 

target. 

B) The marksman will shoot at the brand new target. And then, he will point at the target. 

 

5. 

A) The girl will lick the heart-shaped lollipop. And then, she will put down the lollipop. 

B) The girl will lick the postage stamp. And then, she will put down the stamp. 

 

6. 

A) The maid will scrub the pristine bathtub. And then, she will admire the bathtub. 

B) The maid will scrub the grimy bathtub. And then, she will admire the bathtub. 

 

7. 

A) The angry boxer will punch the training bag. And then, he will glare at the training 

bag. 

B) The angry boxer will punch the fatigued opponent. And then, he will glare at the 

fatigued opponent. 

 

8. 

A) The girl will pinch the Beanie Baby. And then, she will inspect the Beanie Baby. 

B) The girl will pinch the Silly Putty. And then, she will inspect the Silly Putty. 
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9. 

A) The man will squeeze the tennis ball. And then, he will frown at the tennis ball. 

B) The man will squeeze the lemon wedge. And then, he will frown at the lemon wedge. 

 

10. 

A) The woman will sit on the leather couch cushion. And then, she will ask about the 

couch cushion. 

B) The woman will sit on the inflated whoopee cushion. And then, she will ask about the 

whoopee cushion. 

 

11. 

A) The boy will step on the heavily trodden snow. And then, he will enjoy the snow. 

B) The boy will step on the newly fallen snow. And then, he will enjoy the snow. 

 

12. 

A) The girl will stick her finger through the doughnut. And then, she will grin at the 

doughnut. 

B) The girl will stick her finger through the cupcake. And then, she will grin at the 

cupcake. 

 

13. 

A) The woman will soak the damp washcloth. And then, she will inspect the washcloth. 

B) The woman will soak the dry sponge. And then, she will inspect the sponge. 

 

14. 

A) The woman will heat up the frying pan. And then, she will wait beside the frying pan. 

B) The woman will heat up the chocolate fondue. And then, she will wait beside the 

fondue. 

 

15. 

A) The groomer will brush the horse’s shiny coat. And then, she will comment on the 

horse’s coat. 

B) The groomer will brush the horse’s tangled mane. And then, she will comment on the 

horse’s mane. 

 

16. 

A) The man will shake the empty champagne bottle. And then, he will joke about the 

champagne bottle. 

B) The man will shake the unopened champagne bottle. And then, he will joke about the 

champagne bottle. 

 

17. 

A) The girl will kick the wall. And then, she will yell at the wall. 

B) The girl will kick the football. And then, she will yell at the football. 
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18. 

A) The girl will push on the granite statue. And then, she will walk away from the granite 

statue. 

B) The girl will push on the desk chair. And then, she will walk away from the desk chair. 

 

19. 

A) The teenager will tip over the empty pudding container. And then, she will reach for 

the container. 

B) The teenager will tip over the bowl of oatmeal. And then, she will reach for the 

oatmeal. 

 

20. 

A) The dog will chomp on the durable rawhide. And then, it will spit out the rawhide. 

B) The dog will chomp on the soft treat. And then, it will spit out the treat. 

 

21. 

A) The girl will drop the deflated birthday balloon. And then, she will laugh about the 

birthday balloon. 

B) The girl will drop the giant water balloon. And then, she will laugh about the water 

balloon. 

 

22. 

A) The dog will tug on the leather leash. And then, it will look back at the leash. 

B) The dog will tug on the retractable leash. And then, it will look back at the leash. 

 

23. 

A) The farmer will prod the cow carcass. And then, he will complain about the carcass. 

B) The farmer will prod the sleeping rooster. And then, he will complain about the 

rooster. 

 

24. 

A) The student will lie on the firm mattress. And then, she will get off of the mattress. 

B) The student will lie on the new waterbed. And then, she will get off of the waterbed. 

 

25. 

A) The trainer will splash the dolphin. And then, she will watch the dolphin. 

B) The trainer will splash the cat. And then, she will watch the cat. 

 

26. 

A) The toddler will poke the action figure. And then, he will inspect the action figure. 

B) The toddler will poke the bobble-head doll. And then, he will inspect the bobble-head 

doll. 

 

27. 

A) The child will knock over the hard plastic cup. And then, he will run away from the 

cup. 
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B) The child will knock over the delicate flower vase. And then, he will run away from 

the vase. 

 

28. 

A) The child will squeeze the stress ball. And then, he will talk about the ball. 

B) The child will squeeze the dried-up leaf. And then, he will talk about the leaf. 

 

29. 

A) The child will drop the soccer ball. And then, he will stand over the ball. 

B) The child will drop the fragile ornament. And then, he will stand over the ornament. 

 

30. 

A) The girl will plug the empty bathtub. And then, she will walk away from the bathtub. 

B) The girl will plug the draining bathtub. And then, she will walk away from the 

bathtub. 

 

31. 

A) The waiter will wipe the clean wine glass. And then, he will put down the wine glass. 

B) The waiter will wipe the dirty wine glass. And then, he will put down the wine glass. 

 

32. 

A) The kitten will claw the scratching post. And then, it will hiss at the post. 

B) The kitten will claw the new curtains. And then, it will hiss at the curtains. 

 

33. 

A) The teenager will drive over the speed bump. And then, she will look back at the 

speed bump. 

B) The teenager will drive over the new skateboard. And then, she will look back at the 

skateboard. 

 

34. 

A) The man will lean on the sturdy fence. And then, he will grumble about the fence. 

B) The man will lean on the precarious ladder. And then, he will grumble about the 

ladder. 

 

35. 

A) The toddler will splash the rubber ducky. And then, she will pick up the rubber ducky.  

B) The toddler will splash the paper towel. And then, she will pick up the paper towel. 

 

36. 

A) The karate instructor will kick the foam pad. And then, he will hold up the pad. 

B) The karate instructor will kick the wooden board. And then, he will hold up the board. 

 

37. 

A) The boy will pound the wooden table. And then, he will walk away from the table. 

B) The boy will pound the wet clay. And then, he will walk away from the clay. 
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38. 

A) The servant will fan the queen. And then, he will wait by the queen. 

B) The servant will fan the fire. And then, he will wait by the fire. 

 

39. 

A) The toddler will squeeze the Barbie doll. And then, she will laugh at the Barbie doll. 

B) The toddler will squeeze the frosting tube. And then, she will laugh at the frosting 

tube. 

 

40. 

A) The dog will lick its large furry paw. And then, it will sniff its paw. 

B) The dog will lick the ice cream sundae. And then, it will sniff the sundae. 

 

41. 

A) The student will tap the wooden desk. And then, she will sit behind the desk. 

B) The student will tap her sleeping friend. And then, she will sit behind her friend. 

 

42. 

A) The boy will shake the empty ketchup bottle. And then, he will hold the ketchup 

bottle. 

B) The boy will shake the carbonated soft drink. And then, he will hold the soft drink. 

 

43. 

A) The waves will crash on the rock. And then, they will recede away from the rock. 

B) The waves will crash on the sandcastle. And then, they will recede away from the 

sandcastle. 

 

44. 

A) The boy will stomp on the hardwood floor. And then, he will look down at the floor. 

B) The boy will stomp on the cheap sunglasses. And then, he will look down at the 

sunglasses. 

 

45. 

A) The boy will bite down on the hard plastic mouthguard. And then, he will complain 

about the mouthguard. 

B) The boy will bite down on the dental impression putty. And then, he will complain 

about the putty. 

 

46. 

A) The chef will boil the silverware. And then, she will complain about the silverware. 

B) The chef will boil the spaghetti. And then, she will complain about the spaghetti. 

 

47. 

A) The hornet will sting the scarecrow. And then, it will circle around the scarecrow. 

B) The hornet will sting the person. And then, it will circle around the person. 
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48. 

A) The man will bump into the sofa. And then, he will stand beside the sofa. 

B) The man will bump into the chandelier. And then, he will stand beside the chandelier. 

 

49. 

A) The hiker will drop the metal canteen. And then, she will reach for the canteen. 

B) The hiker will drop the delicate camera. And then, she will reach for the camera. 

 

50. 

A) The girl will blow on the dice. And then, she will smile about the dice. 

B) The girl will blow on the dandelion. And then, she will smile about the dandelion. 

 

51. 

A) The girl will step on the pebble. And then, she will notice the pebble. 

B) The girl will step on the spider. And then, she will notice the spider. 

 

52. 

A) The man will microwave the coffee. And then, he will smell the coffee. 

B) The man will microwave the popcorn. And then, he will smell the popcorn. 

 

53. 

A) The girl will drop the binder. And then, she will frown at the binder. 

B) The girl will drop the laptop. And then, she will frown at the laptop. 

 

54. 

A) The puppy will gnaw on the lamb bone. And then, it will carry the lamb bone. 

B) The puppy will gnaw on the stuffed animal. And then, it will carry the stuffed animal. 

 

55. 

A) The boy will shake up the empty water bottle. And then, he will put down the bottle. 

B) The boy will shake up the settled orange juice. And then, he will put down the juice. 

 

56. 

A) The squirrel will hang on to the branch. And then, it will scamper away from the 

branch. 

B) The squirrel will hang on to the clothesline. And then, it will scamper away from the 

clothesline. 

 

57. 

A) The bank robber will shoot at the armored vehicle. And then, he will run away from 

the vehicle. 

B) The bank robber will shoot at the glass window. And then, he will run away from the 

window. 

 

58. 
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A) The man will step on the cloth doormat. And then, he will look down at the doormat. 

B) The man will step on the beer can. And then, he will look down at the can. 

 

59. 

A) The girl will poke the teddy bear. And then, she will laugh about the teddy bear. 

B) The girl will poke the card tower. And then, she will laugh about the card tower. 

 

60. 

A) The maid will sweep the spotless floor. And then, she will stand on the floor. 

B) The maid will sweep the dusty floor. And then, she will stand on the floor. 

 

61. 

A) The man will let go of the empty shopping cart. And then, he will look at the cart. 

B) The man will let go of the compressed metal spring. And then, he will look at the 

spring. 

 

62. 

A) The boy will suck on the soup spoon. And then, he will spit out the soup spoon. 

B) The boy will suck on the ice cube. And then, he will spit out the ice cube. 

 

63. 

A) The woman will heat up the plates. And then, she will chat about the plates. 

B) The woman will heat up the water. And then, she will chat about the water. 

 

64. 

A) The horse will flick its tail. And then, it will look toward its tail. 

B) The horse will flick the mosquito. And then, it will look toward the mosquito. 

 

65. 

A) The woman will beat the rug. And then, she will look closely at the rug. 

B) The woman will beat the egg. And then, she will look closely at the egg. 

 

66. 

A) The girl will pluck the guitar. And then, she will hold on to the guitar. 

B) The girl will pluck the flower. And then, she will hold on to the flower. 

 

67. 

A) The boy will push the closed bathroom door. And then, he will frown at the door. 

B) The boy will push the lined up dominoes. And then, he will frown at the dominoes. 

 

68. 

A) The girl will poke the bunny rabbit doll. And then, she will laugh about the doll. 

B) The girl will poke the chewing gum bubble. And then, she will laugh about the bubble. 

 

69. 
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A) The man will chew the old mechanical pencil. And then, he will complain about the 

pencil. 

B) The man will chew the piece of chicken. And then, he will complain about the 

chicken. 

 

70. 

A) The boy will bite his nails. And then, he will examine his nails. 

B) The boy will bite the plum. And then, he will examine the plum. 

 

71. 

A) The chef will warm up the broccoli. And then, he will wait beside the broccoli. 

B) The chef will warm up the butter. And then, he will wait beside the butter. 

 

72. 

A) The teenager will drive through the giant tunnel. And then, she will look back at the 

tunnel. 

B) The teenager will drive through the giant puddle. And then, she will look back at the 

puddle. 

 

73. 

A) The boy will pull on the stuck window. And then, he will complain about the stuck 

window. 

B) The boy will pull on the elastic band. And then, he will complain about the elastic 

band.  

 

74. 

A) The boy will crash the bumper car. And then, he will complain about the bumper car. 

B) The boy will crash the remote-controlled car. And then, he will complain about the 

remote-controlled car. 

 

75. 

A) The woman will press the broken piano key. And then, she will ask about the piano 

key. 

B) The woman will press the wrinkled dress shirt. And then, she will ask about the dress 

shirt. 

 

76. 

A) The woman will crush the pillow. And then, she will pick up the pillow. 

B) The woman will crush the ice. And then, she will pick up the ice. 

 

77. 

A) The girl will bend her knees. And then, she will complain about her knees. 

B) The girl will bend the paperclip. And then, she will complain about the paperclip. 

 

78. 

A) The boy will jiggle the bathroom door handle. And then, he will frown at the handle. 
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B) The boy will jiggle the stacked soda cans. And then, he will frown at the cans. 

 

79. 

A) The boy will step on to the tennis court. And then, he will walk off the court. 

B) The boy will step on to the wet cement. And then, he will walk off the cement. 

 

80. 

A) The man will smoke the pipe. And then, he will comment on the pipe. 

B) The man will smoke the cigar. And then, he will comment on the cigar. 

 

81. 

A) The girl will spin the colorful globe. And then, she will display the colorful globe. 

B) The girl will spin the cotton candy. And then, she will display the cotton candy. 

 

82. 

A) The girl will squeeze her boyfriend’s arm. And then, she will hold on to her 

boyfriend’s arm. 

B) The girl will squeeze the tube of toothpaste. And then, she will hold on to the tube of 

toothpaste. 

 

83. 

A) The man will flip the silver coin. And then, he will look closely at the coin. 

B) The man will flip the half-done pancake. And then, he will look closely at the pancake. 

 

84. 

A) The girl will roll her eyes. And then, she will ask about her eyes. 

B) The girl will roll the burrito. And then, she will ask about the burrito. 

 

85. 

A) The man will grill the suspect. And then, he will frown at the suspect. 

B) The man will grill the pork. And then, he will frown at the pork. 

 

86. 

A) The boy will scratch his head. And then, he will complain about his head. 

B) The boy will scratch the CD) And then, he will complain about the CD. 

 

87. 

A) The man will wind up the broken toy car. And then, he will complain about the toy 

car. 

B) The man will wind up the knotted fishing line. And then, he will complain about the 

fishing line. 

 

88. 

A) The boy will scrape the pavement. And then, he will frown at the pavement. 

B) The boy will scrape his knee. And then, he will frown at his knee. 
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89. 

A) The boy will yank the rope swing. And then, he will comment on the swing. 

B) The boy will yank the loose tooth. And then, he will comment on the tooth. 

 

90. 

A) The man will type on the new computer. And then, he will complain about the 

computer. 

B) The man will type on the tax form. And then, he will complain about the form. 

 

91. 

A) The gymnast will curl the large heavy weight. And then, she will stare at the weight. 

B) The gymnast will curl her long straight hair. And then, she will stare at her hair. 

 

92. 

A) The woman will roll her tongue. And then, she will admire her tongue. 

B) The woman will roll the sushi. And then, she will admire the sushi. 

 

93. 

A) The woman will scratch the mosquito bite. And then, she will frown at the mosquito 

bite. 

B) The woman will scratch the lottery ticket. And then, she will frown at the lottery 

ticket. 

 

94. 

A) The boy will pick his nose. And then, he will complain about his nose. 

B) The boy will pick the scab. And then, he will complain about the scab. 

 

95. 

A) The man will snap the leather whip. And then, he will examine the whip. 

B) The man will snap the plastic ruler. And then, he will examine the ruler. 

 

96. 

A) The boy will slap the basketball. And then, he will look at the basketball. 

B) The boy will slap the grasshopper. And then, he will look at the grasshopper. 

 

97. 

A) The woman will check the parking meter. And then, she will ask about the parking 

meter. 

B) The woman will check the answer box. And then, she will ask about the answer box. 

 

98. 

A) The man will chew on the plastic toothpick. And then, he will comment on the plastic 

toothpick. 

B) The man will chew on the carrot stick. And then, he will comment on the carrot stick. 

 

99. 
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A) The woman will deliver the mail. And then, she will talk about the mail. 

B) The woman will deliver the baby. And then, she will talk about the baby. 

 

100. 

A) The woman will grind her teeth. And then, she will talk about her teeth. 

B) The woman will grind the pepper. And then, she will talk about the pepper. 
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APPENDIX C 

 

Experiment 3 state-change comprehension items Each subject saw each item in only 

one of the two conditions.  
 

A = action minimally changes object 

B = action substantially changes object 

 

1. A) sniff the flower   B) pluck the flower 

    

2. A) yell at the jack-in-the-box  B) pop open the jack-in-the-box 

    

3. A) reach for the apple   B) bite into the apple 

  

4. A) smile at the candy bar  B) unwrap the candy bar 

       

5. A) feel the egg    B) crack open the egg 

     

6. A) grip the hose   B) unravel the hose 

    

7. A) ask about the banana  B) peel the banana 

    

8. A) reach for the shoe   B) tie the shoe 

    

9. A) tap on the blackboard  B) draw on the blackboard 

    

10. A) comment on the umbrella  B) open the umbrella 

                  

11. A) measure the jump rope  B) cut up the jump rope 

     

12. A) skim through the essay  B) mark up the essay 

    

13. A) laugh at the cartoon  B) color in the cartoon 

    

14. A) count the potatoes   B) mash the potatoes 

   

15. A) ask about the book   B) open up the book 

     

16. A) gripe about the bed   B) make up the bed 

    

17. A) weigh the pumpkin   B) carve the pumpkin 

    

18. A) sit in front of the candle  B) blow out the candle 

             

19. A) pick up the balloon   B) inflate the balloon 
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20. A) marvel at the puzzle  B) break apart the puzzle 

    

21. A) stand beside the mannequin B) dress up the mannequin 

    

22. A) step over the sleeping bag  B) roll up the sleeping bag 

    

23. A) touch the jewelry box  B) open the jewelry box  

     

24. A) sniff the onion   B) chop the onion 

    

25. A) sit next to the lamp   B) turn off the lamp 

    

26. A) step over the rug   B) unroll the rug 

     

27. A) blow on the pizza   B) slice the pizza 

    

28. A) touch the gingerbread man  B) decorate the gingerbread man 

    

29. A) tap the wine glass   B) crack the wine glass 

    

30. A) point at the tree   B) chop down the tree 

    

31. A) peer into the tent   B) take apart the tent 

    

32. A) bang on the cash register  B) open up the cash register 

    

33. A) touch the canvas   B) paint on the canvas 

    

34. A) tap on the table   B) set the table 

    

35. A) kneel beside the window  B) open up the window 

    

36. A) walk around the pool  B) drain the pool 

    

37. A) point at the piñata   B) knock down the piñata 

    

38. A) smell the bagel   B) slice the bagel 

       

39. A) kneel beside the baby carriage B) fold up the baby carriage 

   

40. A) poke at the turkey   B) cut up the turkey 
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