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Abstract
Epstein-Barr Virus (EBV) is a highly prevalent human pathogen infecting over 90% of the population. Much
of the success of the virus is attributed to its ability to maintain latency through different programs in host
cells. MicroRNAs (miRNA) are small, non-coding RNAs capable of post-transcriptionally regulating mRNA
expression. A microarray comparison of EBV type I latency and type III latency infected cells yielded
evidence of differential cellular microRNA expression. I hypothesized that one of these differentially
upregulated type I latency miRNAs, miR-190, is important in maintenance of latency I, and miR-190
upregulation is due to viral gene expression. Lentiviral overexpression systems were used to overexpress
miR-190 and a microarray of gene expression revealed candidate miR-190 targets, including: TP53INP1 and
NR4A3. The modulation of these targets by miR-190 was confirmed through evaluating mRNA and protein
level changes in the presence or absence of miR-190. In the case of TP53INP1, a 3’UTR target site was
identified through mutagenesis. The effect of miR-190 expression was evaluated for markers of cell cycle and
cell death by flow cytometry, western blot and RT-PCR. Measures of viral reactivation were lowered in the
presence of miR-190 after induction by anti-IgG stimulation. I also observed upregulation of miR-190/Talin2
promoter activity or miR-190 expression in the presence of EBERs, Epstein-Barr encoded RNAs.
Interestingly, a panel of type I latency cell lines had higher EBER1 expression compared to their type III
latency counterparts. Work by others has indicated that EBERs activate the double-stranded RNA (dsRNA)
sensor, retinoic acid-inducible gene 1 (RIG-I). Transiently expressed, constitutively activated RIG-I induced
miR-190 expression and promoter activity. Knockdown of RIG-I in the type I latency cells yielded lowered
miR-190 expression levels. To investigate how miR-190 is upregulated I generated miR-190/Talin2 promoter
reporters that lacked YinYang1 (YY1) and Nuclear factor-κB (NF-kB) binding motifs. In the presence of
EBERs, promoters with these deleted binding motifs had lowered activation compared to the full miR-190/
TLN2 promoter. This work describes a mechanism by which EBERs upregulate a cellular miRNA, miR-190,
which aids in type I latency preservation by preventing apoptosis, promoting cell cycle and maintaining virus
in its latent state.
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ABSTRACT 

THE CELLULAR MIRNA, MIR-190, IS UPREGULATED IN TYPE I EBV LATENCY 

BY EBERS AND MODULATES CELLULAR MRNAS INVOLVED IN CELL 

SURVIVAL AND VIRAL REACTIVATION 

Elizabeth M. Cramer 

Yan Yuan 

Epstein-Barr Virus (EBV) is a highly prevalent human pathogen infecting over 90% of 

the population.  Much of the success of the virus is attributed to its ability to maintain 

latency through different programs in host cells. MicroRNAs (miRNA) are small, non-

coding RNAs capable of post-transcriptionally regulating mRNA expression.  A 

microarray comparison of EBV type I latency and type III latency infected cells yielded 

evidence of differential cellular microRNA expression.  I hypothesized that one of these 

differentially upregulated type I latency miRNAs, miR-190, is important in maintenance 

of latency I, and miR-190 upregulation is due to viral gene expression. Lentiviral 

overexpression systems were used to overexpress miR-190 and a microarray of gene 

expression revealed candidate miR-190 targets, including: TP53INP1 and NR4A3. The 

modulation of these targets by miR-190 was confirmed through evaluating mRNA and 

protein level changes in the presence or absence of miR-190. In the case of TP53INP1, a 

3’UTR target site was identified through mutagenesis. The effect of miR-190 expression 

was evaluated for markers of cell cycle and cell death by flow cytometry, western blot 

and RT-PCR. Measures of viral reactivation were lowered in the presence of miR-190 

after induction by anti-IgG stimulation. I also observed upregulation of miR-190/Talin2 
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promoter activity or miR-190 expression in the presence of EBERs, Epstein-Barr 

encoded RNAs. Interestingly, a panel of type I latency cell lines had higher EBER1 

expression compared to their type III latency counterparts. Work by others has indicated 

that EBERs activate the double-stranded RNA (dsRNA) sensor, retinoic acid-inducible 

gene 1 (RIG-I). Transiently expressed, constitutively activated RIG-I induced miR-190 

expression and promoter activity. Knockdown of RIG-I in the type I latency cells yielded 

lowered miR-190 expression levels. To investigate how miR-190 is upregulated I 

generated miR-190/Talin2 promoter reporters that lacked YinYang1 (YY1) and Nuclear 

factor-κB (NF-kB) binding motifs. In the presence of EBERs, promoters with these 

deleted binding motifs had lowered activation compared to the full miR-190/TLN2 

promoter. This work describes a mechanism by which EBERs upregulate a cellular 

miRNA, miR-190, which aids in type I latency preservation by preventing apoptosis, 

promoting cell cycle and maintaining virus in its latent state. 
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CHAPTER 1 INTRODUCTION 

1.1 Discovery of the first human tumor virus, EBV 

Epstein-Barr Virus (EBV) or human herpesvirus 4, is a primate herpesvirus that 

coevolved with humans for millennia, likely migrating out of Africa with the first human 

populations over 100,000 years ago (Kieff et al., 2007). EBV is best known as the 

causative agent of Burkitt’s Lymphoma (BL). Dennis Burkitt, a field surgeon working in 

Uganda, identified a tumor that occurred with alarming frequency in young children. 

Burkitt described lymphomas causing facial swelling of the jaw and accompanying 

lymphomas in other organs. This tumor occurred with alarming frequency in young 

children in parts of Africa. Burkitt coined this area of Africa “the lymphoma belt,” 

although incidences of sporadic BL occurred elsewhere (Kieff et al., 2007).  It was later 

demonstrated that the lymphoma belt and another area with high incidence of BL co-

localized with the habitat of the mosquito vector of the malaria parasite, Plasmodium 

falciparum. Furthermore, the high parasite levels which occurred in the first few years of 

life following parasite exposure were coincident with the appearance of endemic BL in 

affected individuals (Kufuko and Burkitt, 1970).  To date the connection between 

endemic malaria and BL is not fully understood. 

Many researchers sought to identify the causative viral agent of BL. In the 1960s, 

a new technique using electron microscopy allowed for visualization of sub-cellular 

structures, including viruses. Andrew Epstein and his colleagues, Yvonne Barr and Bert 

Achong, were able to first establish a BL derived cell line and then identify a virus in the 
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BL cell line that we now call the Epstein- Barr Virus (Epstein MA et al., 1964).  After its 

discovery, EBV was recognized to be a prevalent human pathogen, infecting 90% of the 

population worldwide, (as measured by seropositivity for IgG antibodies to viral capsid 

antigen (VCA) complex) (Henle et al., 1969). EBV is not only studied for its own 

pathogenic qualities, but also for its ability to immortalize B cells. In addition to being a 

valuable tool for establishing cell lines, EBV-driven transformation of cells also indicates 

the ability EBV may have in vivo to influence cancer cell development.  

1.2 Diseases caused by and associated with EBV 

EBV is spread orally and most individuals are infected within the first few years 

of life due to close contact with family members. This early infection appears to be 

universal and may be clinically silent. Primary infection can be delayed in more 

developed countries with up to 50% of people remaining unexposed in their first 10 years 

(Kieff et al., 2007). In the Western World and parts of Asia, infectious mononucleosis, 

which is directly caused by EBV, is common (Kieff et al., 2007). This disease is 

commonly seen in adolescents and young adults and presents as glandular fever. The 

pathology of the disease is mainly immunopathological and corresponds to CD8+ T cell 

lymphocytosis and pro-inflammatory cytokine release, rather than viral shedding (Kieff 

et al., 2007). 

As a pathogen, the majority of EBV infections do not go on to cause disease in 

human hosts, yet EBV is still considered medically relevant, as it is capable of directly 

causing some diseases in a fraction of hosts and is strongly associated with many others 

where causation is still being investigated. Some diseases directly caused by EBV are due 
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to genetic abornmalities or immunosuppression in the hosts.  X-linked 

lymphoproliferative syndrome and fatal infection mononucleosis (XLP) occur in young 

boys and result in massive proliferation of lymphocytes and if survived, B cell lymphoma 

(Purtilo et al., 1982). Oral hairy leukoplakia results from permissive viral replication in 

immunocompromised carriers and results in thickening of oral epithelium and lesions 

(greenspan et al., 1985).  B cell lymphoproliferative disease can also occur in 

immunocompromised patients, perhaps post organ transplant due to immunosuppressive 

drugs or in AIDS patients, likely due to CD4+ T cell loss and immune system destruction 

(Crawford et al., 1980; Green and Michaels, 2013). 

There are numerous diseases that have no causal association with EBV but have 

links to EBV infection. These include the endemic BL mentioned earlier and its AIDs-

associated BL, but not sporadic BL, which has varying associations with EBV from 

~15% in Europe and the US and ~85% in Brazil and Northern Africa. All three types of 

BL do exhibit hallmark c-myc translocations (Kelly and Rickinson, 2007). While c-myc 

translocations confer BLs with the ability to grow and divide rapidly, the presence of 

EBV in BLs is instrumental in rendering them apoptosis resistant (Komano et al.,1998). 

Nasopharyngeal carcinoma is associated with EBV infection and is common in south-east 

Asia and Inuit populations. Also, Hodgkin’s disease is associated with EBV in latency II 

programs (Kieff et al., 2007). In addition to infecting B cells and epithelial cells, EBV 

has also ben found as a latent infection in upwards of 10 percent of gastric carcinomas 

(Shibata and Weiss, 1992). Many of these EBV associated cancers exhibit EBV infected 

cells that express certain viral genes that fit within the different latency programs of 
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EBV. The EBV latency programs and the viral genes expressed within each program will 

be described in more detail in the following sections. 

With its classification as an omnipresent pathogen, EBV can potentially play a 

role in many diseases. Recently, the role EBV plays in autoimmune disease has come 

under scrutiny. In a prospective study, blood taken from individuals before onset of 

multiple sclerosis (MS) displayed higher levels of anti-EBNA antibodies than blood from 

individuals who did not develop MS (Munger et al., 2011). The link between EBV and 

MS, a chronic and progressive demyelinating disease of the central nervous system 

(CNS), has prompted proposals for EBV therapeutics to treat MS (Pender and Burrows, 

2014). 

1.3 EBV infection and latency establishment 

EBV is primarily a B cell lymphotropic virus, however, it can also infect 

epithelial, natural killer (NK) and T cells. In B cells, infection occurs via the complement 

receptor CD21. After initial exposure, EBV infects oropharyngeal cells, where the virus 

enters the lytic cycle and expresses more than 80 genes. During lytic infection or 

reactivation, production of infectious virus occurs. (Kalla and Hammerschmidt, 2012). 

While the infection of B cells spurs the development of latency, these cells likely also 

enter lytic infection (Macsween and Crawford, 2003). Long-term carriers of EBV 

maintain the virus in memory B cells (IgD- CD27+), while naïve B cells (IgD- CD27-) 

remain virus free (Babcock et al., 1998).  

Two models of B cell infection and latency establishment in vivo prevail. The 

first, referred to as the germinal center (GC) model, involves the EBV driven 
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differentiation of naïve B cells to the GC of lymph nodes.  This theory is mainly based on 

EBV gene expression in vivo and the ability of some of these genes to drive B cell into 

the memory compartment, resembling antigen driven differentiation (Babcock et al., 

2000; Hochberg et al., 2004; Hochberg and Thorley-Lawson, 2005).  A full complement 

of EBV latent gene expression (type III latency) allows for proliferation of infected cells 

and entrance into the GC compartment. Upon entry into the GC, infected cells begin to 

express a more restricted form of latent gene expression (type II latency) and finally the 

infected cells can leave for the blood as memory B cells (type I latency or type 0 latency) 

(Fig. 1). Evidence for this model includes presence of each of these different latency 

stages in vitro and ex vivo (Babcock et al., 1999; Babcock et al., 1998; Babcock et al., 

2000; Laichalk et al., 2002).  

The second model involves the direct infection of memory B cells. Evidence for 

this theory includes the infection of both naïve and memory B cells in vitro and the 

persistence of EBV in X-linked lymphoproliferative disease (XLP), where patients do not 

have germinal centers (Chaganti et al., 2008; Ehlin-henriksson and Klein, 2003). But this 

model does not account for the different observed latency stages in vitro and ex vivo.  

Two genes are pivotal in the transition from latency to lytic infection, BZLF1 and 

BRLF1. Both genes encode transcription factors, with BZLF1 (also known as Zta or 

Zebra) acting as a master regulator, which can spur the induction of lytic entry in latently 

infected cells (Countryman et al., 1987). In the absence of BRLF1, full lytic replication 

cannot occur (Feederle et al., 2000).  In concert with expression of these viral immediate 

early genes, cellular genes are also upregulated. In the case of the cellular immediate 
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early genes, including early growth response 1-3 (EGR1-3) and nuclear receptor 4A3 

(NR4A3), increases in gene expression even precede the upregulation of the master 

regulator, BZLF1 (Ye et al., 2010). The process of reactivation together with the 

spectrum of latency programs allows EBV to spread and maintain infection for the 

lifetime of the human host.  

1.4 Type I latency gene products and their actions 

EBV latency is accompanied by the expression of EBV nuclear antigen (EBNAs) 

or latent membrane proteins (LMPs) along with the expression of non-coding RNAs that 

make up the viral miRNAs and EBERs. Throughout latency, EBNA1 expression along 

with the viral OriP, or origin of replication, allows for the replication and segregation of 

the viral genome, or episome. EBNA1 tethers the episome to the host chromatin and can 

also bind to two clusters within OriP during replication, playing a role in transcriptional 

regulation at all 3 EBNA promoters Wp, Cp and Qp (Kieff et al., 2007). 

 The EBV-encoded small RNAs, EBERs, are highly structured RNAs which are 

transcribed together by pol III and are expressed as EBER1 and EBER2. The EBERs 

were shown to confer apoptosis protection in BL cells, as EBV- BLs with restored 

EBERs expression survived apoptotic stimulation better than BLs which had lost their 

EBV genomes (Komano et al., 1999). EBERs have also been shown to interact with 

components of the innate immune response—both inhibiting through PKR and 

stimulating through RIG-I (McKenna et al., 2007; Nanbo et al., 2002; Samanta et al., 

2006). These actions are further discussed in section 1.6. Despite years of study, the 
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molecular mechanism behind the functions of EBERs and their role in tumorigenesis is 

not completely understood. 

In addition to the EBERs, EBV also expresses its own contingent of miRNAs. 

There are 25 EBV pre-miRNAs, 3 from the BHRF1 rightward open reading frame 

transcript and 22 from the BART transcript. EBV miRNAs are differentially expressed 

during latency, with modest expression of BART miRNAs and no expression of BHRF1 

from the Wp or Cp promoter in latency I. There is higher expression of all EBV miRNAs 

in latency II and III (Forte and Luftig 2011). Both BART and BHRF1 miRNAs are 

expressed during lytic reactivation. Many herpesvirus miRNAs seed sequences are not 

well conserved across the herpesvirus family, yet they often have conserved targets. For 

instance, EBV miR-BART3, human cytomegalovirus UL112-1 and KSHV miR-K7 

target a component of antigen processing and presentation, MICB making it more 

difficult for the immune system to recognize viral infection. EBV viral miRNAs have an 

array of both viral targets (Balf5, lmp1, lmp2a) and cellular targets (CXCL-11 and 

PUMA). (Forte and Luftig 2011). Viral miRNA expression can impact processes like 

apoptosis through miR-BART 1-3p and miR-BART16 targeting of caspase 3 (Vereide et 

al., 2014). EBV uninfected cells may also be influenced by EBV miRNAs, as there is 

evidence they can be transported by exosome to uninfected cells non-B cells (Pegtel et 

al., 2010). A diagram of the EBV latency programs and their corresponding gene 

expression is provided in Fig. 1. 
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1.5 DNA damage and EBV 

During viral infection, EBV promotes genomic instability through numerous 

mechanisms, which results in the activation of the DNA damage response (DDR) 

pathway and ultimately leads to cellular senescence or death. To make the host cell a 

more hospitable environment, many viruses, including EBV, are capable of exploiting or 

bypassing DNA damage checkpoints. (Cayrol et al., 1996; O’nions and Allday, 2004).  

Activation of the ATM pathway may occur during EBV lytic replication, causing viral 

genomes to be recognized as damaged DNA (Kudoh et al., 2005). Although other work 

has suggested that viral latent gene expression (particularly EBNA2 and EBNALP), not 

viral DNA is the source of DDR (Nikitin et al., 2010). Three EBV latency proteins, 

EBNA1, EBNA3C and LMP1 independently promote genomic instability. EBNA-1 

promotes chromosomal abnormalities, genomic instability and the DNA damage response 

by inducing reactive oxygen species (ROS) (Gruhne et al., 2009a, Gruhne et al., 2009b). 

EBNA-1 also induces the expression of the V(D)J recombinases RAG-1 and RAG-2, 

which could result in genomic recombination (Srinivas and Sixbey, 1995; Kuhn-Hallek et 

al., 1995). EBNA3C and LMP1 showed an association with genomic instability assayed 

by DNA damage, chromosomal aberrations and phosphorylated histone H2AX. These 

proteins appear to inactivate DNA repair via LMP1 mediated downregulation of ATM, A 

DNA damage sensing kinase, and EBNA3C mediated downregulation of BubR1 as well 

as the overrunning of the mitotic spindle checkpoint (Gruhne et al., 2009b).  While each 

of these components is expressed throughout latency, DDR may be activated during the 

early proliferative stages of EBV infection, perhaps through expression of EBNA2 targets 
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like c-myc (Nikitin et al., 2010). The end result is an accumulation of DNA damage that 

is later subverted by the virus.  

EBV has numerous mechanisms to promote cell cycle. EBNA2 and EBNALP 

upregulate cyclin D2, a positive regulator of G1 progression (Sinclair et al., 1994) 

LMP2A increases the instability of p27 allowing progression beyond G1 (Fish et al., 

2014). EBV thwarts the DDR response and anti-viral responses by limiting apoptosis as 

well. In type III latency, protection from apoptosis is mediated by the viral proteins LMP-

1, EBNA-LP and EBNA-3C, which modulate levels of anti-apoptotic Bcl2 (LMP1), bind 

or inactivate p53 (EBNA-LP) and interact with and stabilize IRF4 (EBNA-3C)  (Banerjee 

et al., 2013; Thompson and Kurzrock, 2004).  

In contrast to the permissivity of cell cycle in latency, in lytic reactivation, cell 

cycle is arrested at G0/G1. This is conducive to viral replication perhaps because it 

lowers competition for replication resources with cellular DNA (Flemington, 2001).  

BZLF1 expression alone can result in initiation of the lytic cycle. BZLF1 expression in 

EBV positive 293T cells also induces a G0/G1 growth arrest (Cayrol et al., 1996; 

Flemington et al., 2001). Additionally, BZLF1 binds and stabilizes p53 and allows for 

induction of p21 and p27, both cyclin dependent kinase inhibitors necessary for G0/G1 

arrest (Cayrol et al., 1996, Rodriguez et al., 1999).   

EBV encoded miRNAs also have roles in apoptosis resistance and cell cycle 

progression. Recombinant viruses lacking BHRF-1 miRNAs left newly infected cells 

susceptible to cell cycle arrest and apoptosis compared to the parental virus. (Seto et al., 

2010).  Additionally a HITS-CLIP analysis of targeted mRNAs in latency III cell lines 
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revealed that targets of viral miRNAs were significantly enriched for pathways associated 

with the regulation of apoptosis and cell cycle progression (Riley et al., 2012). Cellular 

miRNAs also enhance cell survival in the context of EBV infection. miR-155 promotes 

cell cycle progression and inhibits apoptosis in LCLs (Linnstaedt et al., 2010). 

Additionally, a role for miRNAs in cell cycle progression is enhanced by the fact that 

many miRNAs are regulated by cell cycle master regulators, such as c-myc, E2Fs and 

p53 (Bueno and Malumbres, 2011). Harnessing cellular miRNA allows EBV to 

manipulate cell cycle progression and suppress apoptosis. 

1.6 EBV modulates host immunity 

 The interaction of the host immune system and EBV in healthy hosts seems to be 

fine tuned as more pathogenic aspects of infection are tamped down upon establishment 

of latency with limited viral protein expression and replication. The importance of the 

interplay between the immune system and EBV infection is illustrated in the numerous 

examples of diseases that arise in immunocompromised hosts or the link between 

autoimmunity and EBV infection implying a misregulation by the immune system. While 

innate response to infection likely occurs, there is not much data on how this might 

happen. EBV is thought to modulate innate responses based on data indicating that the 

virus controls pathways that subvert aspects of innate immunity.  

EBV can be detected by innate immune pattern recognition receptors (PRR), 

which recognize pathogen associated molecular patterns or (PAMPs). Among these PRRs 

are RIG-I and multiple Toll-like receptors (TLRs).  These PRRs can be activated within 

the infected B cells themselves or perhaps sensed in the environment by dendritic cells 
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(DCs), which are crucial antigen presenting cells to prime the T cell response (Iwakiri et 

al., 2009; McKenna et al., 2007; Nanbo et al., 2002; Samanta et al., 2006).  

Non-coding RNAs, EBERs are transcribed by RNA polymerase III. EBERs have 

a 5’ tri-phosphate moiety and their stem-loop structure makes them appear double 

stranded, which makes them attractive to the double stranded RNA sensor, retinoic acid-

inducible gene I (Ablasser et al., 2009). In BL cells, RIG-I is activated in the presence of 

EBERs and can induce production of IRF3, IFN-ß, interferon stimulated genes (ISGs) 

and IL-10 (Samanta et al., 2006; Samanta et al., 2008). EBERs can also stimulate 

activation of TLR3, but this has been shown to act mostly in conventional DCs (cDCs), 

after EBERs are released from infected cells in association with La protein. Furthermore, 

EBERs helps induce DC maturation, which can be reduced by knocking down TLR3. 

(Iwakiri et al., 2009).  

 Despite the induction of cytokines, EBV infection or EBERs alone can protect 

cells from IFN- α induced death. EBERs have been shown to bind to protein kinase R 

(PKR), which is interferon-inducible and activated by double stranded RNA. PKR 

induces apoptosis and prevents protein translation through phosphorylation of eukaryotic 

initiation factor 2 α, (eIF2 α). In response to foreign dsRNA, PKR dimerizes and 

autophosphorylates and this self-association is inhibited by EBER1. The downstream 

effect of EBER1 on PKR is inhibition of apoptosis and continued protein translation 

(McKenna et al., 2007; Nanbo et al., EMBO 2002). However, others have refuted the role 

of the PKR-EBERs interaction in limiting IFN- α effects after finding that the levels of 

phosphorylated of nuclear PKR and eIF2 α are similar in EBV positive or negative BL 
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cells (Ruf et al., 2005).  EBV and EBERs do still offer protection from IFN- α induced 

death (Ruf et al., 2005). 

Other PRRs interact with EBV during infection. TLR9, which senses 

unmethylated CpG motifs, detects virions in plasmacytoid DCs (pDCs) (Fiola et al., 

2010). Inactivated virus in naive B cells increases TLR7 expression and decreases TLR9 

expression resulting in increased IRF-5 expression, but the variant of IRF-5 expressed is 

spliced and acts as a dominant negative that is a poor activator of IFN-ß allowing TLR7 

to promote B cell proliferation (Martin et al., 2007).  

1.7 EBV impact on host miRNA and targets 

While EBV expresses its own miRNAs from the BART and BHRF-1 transcripts, 

EBV could potentially utilize any of the over 700 host miRNAs to modulate gene 

expression. Co-opting host miRNAs instead of relying on viral proteins is ideal for EBV 

as it provides a nonimmunogenic mechanism for alteration of gene expression. Studying 

cellular miRNAs is also important as miRNAs have been shown to play roles in 

oncogenesis and EBV has associations with numerous cancers. 

The importance of altering cellular miRNA expression is evident in the viral 

miRNAs themselves. Many of the highly expressed BART miRNAs share seed sequence 

homology with cellular miRNAs at higher percentages than would be predicted by 

chance. (Chen et al., 2010; Forte and Luftig 2011). Numerous studies have explored 

altered cellular miRNA expression during latency (Cameron et al., 2008; Forte et al., 

2012). Among these studies, focus is primarily on latency III, often using LCLs as 

experimental models and exploring the role of cellular miRNAs in transformation. Some 
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commonly identified host miRNAs that are upregulated with transformation or latency III 

are 146a/b, miR-155, and miR-34a. Mrazek, et al. used BL41 EBV negative line vs. 

LCLs and subtractive hybridization to identify differential expression in miR-155, 146a, 

21, 34a, 29b, 23a and 27a (Mrazek et al., 2007). Cameron et al. identified miR-155, 

146a/b, 21, 28, 34a upregulation in LCLs (Cameron et al., 2008). Forte et al. used 

microarray to evaluate differential miRNA expression between isolated B cells compared 

to activated B cells early in EBV infection and LCLs to identify miRNAs associated with 

early infection through transformation. In Forte et al. experiments, LCL formation was 

associated with miR-155 and 146b, but the authors also identified 34a as upregulated 

early in infection and in LCLs (Forte et al., 2012).   

Viral latency genes play a role in cellular miRNA expression. LMP1 is linked to 

expression of several miRNAs, including miR-155, miR-146a and 34a (Cameron et al., 

2008; Forte et al., 2012; Lu et al., 2008a). miR-155 also decreases bone morphogenic 

protein signaling perhaps to reduce EBV reactivation (Yin et al., 2010). miR-146a 

appears to target multiple interferon stimulated genes when overexpressed in latency I 

(Akata EBV positive) cell lines, perhaps to counteract the effect brought on by 

stimulation through LMP-1 and NF-kB (Cameron et la., 2008).  

 Use of PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and 

Immunoprecipitation) and HITS-CLIP (High-throughput sequencing of RNA isolated by 

crosslinking immunoprecipitation) isolation of argonaute with associated miRNAs and 

mRNAs allows for a more nuanced study of cellular miRNA operations during latency. 

In the Steitz lab, HITS-CLIP was used to study both EBV miRNA and cellular miRNA in 
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latency III Jijoye cells that express all of the viral miRNAs. While viral miRNAs have 

cellular targets it is clear that the majority of miRNAs associated with argonaute are 

cellular and that the viral and cellular miRNAs share common targets. In addition to 

targeting cellular genes, cellular miRNAs also target viral mRNAs, including LMP-1 

(miR-17), BHRF1 (miR-17 and miR-142) (Riley et al., 2012). Another group utilized 

PAR-CLIP in LCLs, which lacked most of the BART miRNAs, and identified LMP-1 as 

a target of miR-17 as well as confirming several other immunomodulatory targets of both 

viral and cellular miRNA (Skalsky et al., 2012). 

Additional studies focus on other stages of latency as well as the lytic cycle. In 

one study, miR-127 was upregulated in EBV positive BL isolates but not EBV negative 

BL isolates (Leucci et al., 2010). Later work from this same group implicates EBNA1 in 

upregulated miR-127 expression and further suggested a role for miR-127 in impairing B 

cell differentiation and exit of B cells from the germinal center through targeting BLIMP-

1, XBP-1 and IRF-4 in memory B cells (Onnis et al., 2012). Members of the miR-200 

family, miR-429 and 200b, induce lytic replication in epithelial and B cells by targeting 

ZEB1 and 2 and blocking their repressive activity on the BZLF-1 promoter Zp (Lin et al., 

2010).  Multiple lines of evidence now support EBV’s ability to modulate the cellular 

miRNA network to influence the expression of numerous host pathways. 

1.8 miR-190 Background 

miR-190 is not well studied in connection to EBV compared to other miRNAs, 

including miR-146 and miR-155.  Many of the miRNAs studied in relationship to EBV 

latency also play duel roles as oncomiRs, or oncogenic miRNAs. miR-190 expression has 
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also been examined in relationship to cancer with its expression being high in 

granulocytes from primary myelofibrosis patients compared to granulocytes from normal 

patients (Guglielmelli et al., 2007). In normal pancreatic tissue, miR-190 expression is 

very low, yet the expression of miR-190 increased over 20 fold in pancreatic cancer 

compared to the control normal pancreatic tissues (Zhang et al., 2009). miR-190 is also 

upregulated in B- cell chronic lymphocytic leukemias (CLL) (Calin et al., 2004). Along 

with these observations, miR-190 is also increased in colorectal, bladder, breast and lung 

cancers and some HBV-positive hepatocellular carcinomas (Ichimi et al., 2009; Lowery 

et al., 2009; Navon et al., 2009; Ng et al., 2009; Ura et al., 2009. miR-190 is 

downregulated in some colon carcinoma and melanoma cancer samples (Hao et al., 2014, 

Mueller et al., 2009). While these associations provide some evidence for the growth 

promoting properties of miR-190, further understanding of functional targets, regulation 

and expression patterns are ongoing. 

Like many miRNAs, the effects of miR-190 expression seem to be dependent on 

its cellular or organ environment. In HELA cells, a reduction of miR-190 expression with 

antisense RNAs slowed cell growth (Cheng et al., 2005). miR-190 has also been studied 

in rat brains in connection to addiction. miR-190 was downregulated after treatment with 

synthetic opiod fentanyl. Targeting NeuroD, a key player in repressing neurogenic 

differentiation also reduced miR-190 (Zheng et al., 2010b,c). In clinical glioma samples, 

miR-190 expression decreased with advanced tumor grade. Overexpression of miR-190 

in a fast growing glioma cell injected into mice resulted in an inhibition of tumor growth. 

Furthermore, miR-190 expression in a fast growing osteosarcoma model reverted tumors 

back to dormancy (Almog et al., 2012).  
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miR-190 is also involved in the cellular response to Arsenic. Arsenic treatment of 

a bronchial epithelial cell line results in increased miR-190 expression. This in turn 

enhances tumorigenic potential as assessed by proliferation and soft agar assays. This 

function was attributed to miR-190’s ability to lower PHLPP. PHLPP, an Akt 

phosphatase works as a tumor suppressor by inactivating Akt, leading to decreased cell 

growth and increased apoptosis (Beezhold et al., 2011). Further work by another group 

demonstrated that this Arsenic induced miR-190 upregulation is mediated by p50 (Yu et 

al., 2014). Like most miRNAs, mir-190 appears to have variable roles and expression 

patterns depending upon the disease state and type of cell. 

1.9 miR-190 regulation  

miR-190 is conserved in mice, rats and humans and is located in the intronic 

region of the talin2 (TLN2) gene of each species. In humans, miR-190 lies in the 52nd 

intron of TLN2. miR-190 is regulated by the TLN2 promoter (Zheng et al., 2010a; 

Beezhold et al., 2011). The talins are scaffolding proteins located in the focal adhesions 

of elongated cells (Critchley and Gingras, 2008). The head of the talin molecule binds 

integrin to enhance its affinity for the extracellular matrix (ECM) (Calderwood, 2004). 

For many years only one talin gene was studied, talin1 (TLN1), but expression sequence 

tag databases indicated another protein with a highly homologous C-terminus distinct 

from TLN1—TLN2) (Monkley et al., 2001). TLN2 shares about 74% homology with 

TLN1. The significant sequence homology with TLN1 and the ability of TLN2 to 

functionally rescue some embryonic knockouts of TLN1 suggests that TLN2 may 

functionally overlap with TLN1. Both talins bind vinculin and integrin and play roles in 

cell proliferation, cell migration and homeostasis through these cell-cell and cell–ECM 
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interactions. While initially thought to be the most abundant in the heart, brain and 

skeletal muscle, newer evidence suggest a more widespread expression pattern. 

(Calderwood et al., 2013).  

Given the similarity between the two talins, it is likely that TLN2 binds some of 

the same ligands as TLN1. As a cytoskeletal link, TLN2, like TLN1, mediates 

interactions between ligand bound integrins and actin. It is also necessary for focal 

adhesion formation and focal adhesion kinase (FAK) signaling. In undifferentiated 

embryonic stem cells with a TLN1 knockout, TLN2 restores cellular spreading and 

adherence phenotypes (Zhang et al., 2008). 

While no formal role for TLN2 has been defined in B cells, TLN1 has been 

shown to play a role in the formation of the immunological synapse of T cells 

(Wernimont et al., 2011). Additionally, TLN1 plays a role in the entry of B cells into the 

lymph node and bone marrow and plays a role in activation of VLA-4 and LFA-1 by 

BCR signaling (Manevich-Mendelson et al., 2010). Given the overlapping roles of TLN1 

and TLN2 observed by others, it is possible that TLN2 plays a role in B cells as well.  

The TLN2 promoter, which is responsible for both miR-190 and TLN2 

expression, contains multiple binding motifs for the transcription factor YinYang1. The 

transcription factor YinYang1 (YY1) is a member of the GLI-Küppel gene family and is 

known by the alternative names: δ factor, NF-E1 and UCRBP (Montalvo et al., 1995). 

YY1 has been identified as a regulator of the germinal center specific program in murine 

B cells and its expression was confirmed in human germinal center B cells (Green et al., 

2010).  
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Mutation of a conserved YY1 binding site in the mouse TLN2 promoter 

decreased promoter activation indicating the necessity of YY1 for miR-190 expression. 

Furthermore, the authors concluded that specific changes in mRNA or protein levels of 

YY1 did not correlate with increase in miR-190/TLN2, but phosphorylation of YY1 

increased while miR-190/TLN2 decreased (Zheng JBC 2010a). This indicates that YY1 

promoter binding is regulated by phosphorylation events, where YY1 phosphorylation 

reduces its DNA binding affinity. 

The TLN2 promoter sequence also contains a NF-kB binding sites for both the 

p50 and p65 subunits, the most common NF-kB dimeric partners. YY1 and NF-kB 

interact by working in concert with each other or by affecting each other’s transcription. 

The interaction between NF-kB and YY1 influences target gene expression, perhaps 

because interaction between the transcription factors leads to subsequent interactions with 

enhancer regions, as is the case for IgH chain genes in B cells (Sepulveda et al., 2004, 

Gordon et al., 2006). Alternatively, the binding of NF-kB and YY1 to motifs near each 

other could result in situations where the binding of one inhibits the binding of the other. 

This is the case with the serum amyloid A promoter, where YY1 binding inhibits NF-kB 

binding of the promoter (Lu et al., 1994, Gordon et al., 2006). In skeletal myogenesis, 

subunits subunits of NF-kB, p50 and p65 bind the YY1 promoter and increase its 

expression (Wang et al., 2007). Additionally, the p50 subunit of NF-kB has been 

implicated in enhancing miR-190 expression. (Yu et al., 2013).  
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1.10 Aims and Objectives 

EBV uses multiple mechanisms to modify the cellular environment to suit its 

needs. Previous work identified several cellular miRNAs known to regulate processes in 

EBV infection or latency. Thus far, most of the focus on cellular miRNAs in EBV 

infection has been on LCLs and miRNAs upregulated during uninfected/resting B cell to 

LCL transition (Cameron et al., 2008; Luftig et al., 2012). A limited focus on cellular 

miRNA expression in type I latency has left a hole in the realm of latency research. 

miRNAs are regulators of many cellular processes, like cell cycle and apoptosis, that the 

virus handily modifies during latency. Cellular miRNAs are good candidates for type I 

latency EBV to use during infection to modify cellular processes as many miRNAs have 

redundant targets and each miRNA may have multiple targets in the same pathway—so 

precision is not necessary. Furthermore, miRNAs are nonimmunogenic, so detection of 

viral infection is thwarted. Along with the type I latency EBV genes, a comprehensive 

picture describing the maintenance of an optimal latency environment is not known. The 

goals of my research were to identify the mechanisms by which miR-190 is regulated 

during type I latency and to determine how miR-190 modulates the latency environment.  

 The second chapter focuses on characterizing miR-190 expression in multiple 

type I latency cell lines compared to their type III latency counterparts. Targets for miR-

190 are identified and the effect of miR-190 on cellular processes, like cell cycle and 

apoptosis, and viral mechanisms, such as lytic reactivation, are explored.  Furthermore, 

the role EBV type I latency genes play in modulating miR-190 expression is addressed 

and EBERs are identified as potential modulators. 
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 In the third chapter, the mechanisms that control mir-190 expression during type I 

latency I are explored. RIG-I, which is activated by EBERs, appears to be upstream of 

miR-190 and knockdown studies of RIG-I reduces miR-190 expression (Samanta et al., 

2006). Binding motifs for the transcription factors YY1 and NF-kB (subunits p50 and 

p65) are identified and mutated in the miR-190/TLN2 promoter. Both binding motifs are 

necessary for miR-190/TLN2 promoter activation indicating an activating role for these 

transcription factors in miR-190 upregulation. 

 These findings, while focusing exclusively on one miRNA, provide further 

evidence of EBV in type I latency having far reaching effects on gene expression and 

cellular and viral processes. It also provides impetus for further study of the cellular 

miRNA network in the context of type I latency EBV infection.  
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Figure 1: EBV latency programs and the corresponding latency gene expression 
patterns.  
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CHAPTER 2- miR-190 Is Upregulated in Epstein-Barr Virus Type I Latency and 

Modulates Cellular mRNAs Involved in Cell Survival and Viral Reactivation 

2.1 Summary 

Epstein‐Barr Virus (EBV) is a prevalent human pathogen infecting over 90% of the 

population.  Much of the success of the virus is attributed to its ability to maintain 

latency. The detailed mechanisms underlying the establishment and maintenance of EBV 

latency remain poorly understood. A microRNA profiling study revealed differential 

expression of many cellular miRNAs between types I and III latency cells, suggesting 

cellular miRNAs may play roles in regulating EBV latency.  mir-190 is the most 

differentially up-regulated mRNA in type I latency cells as compared with type III 

latency cells and the up-regulation appears to be attributed to EBERs, EBV-encoded 

RNAs, that are expressed at higher levels in type I latency cells than type III cells. With 

the aide of a lentiviral overexpression system and microarray analysis, several cellular 

mRNAs are identified as potential targets of mir-190. By targeting TP53INP1, miR-190 

enhances cell survival by preventing apoptosis and relieving G0/G1 cell cycle arrest. 

Additionally, miR-190 down-regulates NR4A3, a cellular immediate-early gene for EBV 

reactivation, and inhibits the expression of the viral immediate-early gene bzlf1 and viral 

lytic DNA replication. Taken together, our data revealed a mechanism that EBV utilizes a 

cellular microRNA to promote host cell survival and prevent virus from entering lytic life 

cycle for latency maintenance. 
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2.2 Introduction 

Epstein Barr Virus (EBV) is a gamma-herpesvirus, which primarily infects B 

lymphocytes and establishes latent infection that persists for the life of its human host. 

Even after decades of research, EBV remains important for study, as it is nearly 

ubiquitous in the human population and because the virus is associated with numerous 

human diseases, including Burkitt’s lymphoma (BL), Hodgkin’s disease, nasopharyngeal 

carcinoma (NPC), and posttransplant lymphoproliferative disease (PTLD) (Kieff et al., 

2007).  

In vitro, EBV infects, activates and transforms human B cells into lymphoblastoid 

cell lines (LCLs) (Kieff et al., 2007).  In vivo, the virus physiologically mimics normal B 

cell activation in naïve cells and provides the survival signals necessary for cellular 

differentiation into a resting memory phenotype (Thorley-Lawson, 2001). Several 

different latency programs are associated with this transition.  In LCL where EBV 

establishes type III latency, all nine viral latent proteins (EBNA1, EBNA2, EBNA3A-C, 

EBNA-LP, LMP1, LMP2A and LMP2B) are expressed, which helps to drive 

proliferation and survival of the infected B cell. In vivo, type III lymphoblastoid cells 

have the ability to differentiate to resting memory B cells where the virus has been 

switched to type I latency with limited viral gene expression.  The type I latently infected 

B cells just express one latent protein EBNA-1, two non-coding RNAs, EBER-1 and 

EBER-2 (EBV encoded RNAs), as well as BART microRNAs (miRNAs) (Kieff et al., 

2007; Qiu et al., 2011). The limited type I latency gene expression pattern is beneficial to 

the virus as this allows the virus to escape immune recognition and clearance. Thus, EBV 

takes advantage of the normal biology of B lymphocytes to establish a persistent latent 
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infection in long-lived memory B cells. Although evidence suggests that the expression 

pattern of EBV latency genes is dependent upon the diffentiation stage of the infected-

primary B cells, the mechanisms utilized by the virus for maintaining type I latency have 

not been fully described (Babcock, et al. 2000). 

MicroRNAs have emerged as important regulators of gene expression affecting 

diverse cellular processes. EBV expresses its own contingent of viral miRNAs, which can 

help epithelial or BL cells survive (Marquitz et al., 2011; Seto et al., 2010; Vereide et al., 

2013).  The virus is also capable of using cellular microRNAs to modulate proliferation, 

differentiation, reactivation and survival of infected cells (Cameron et al., 2008; Yin et 

al., 2008, 2010; Forte and Luftig, 2011). miR-155, miR-146a and miR-34a are up-

regulated in type III latency cells and are associated with functions that allow for 

maintenance of latency, including anti-apoptosis, subversion of interferon response and 

growth promotion (Cameron et al., 2008; Forte et al, 2012; Yin et al., 2008).  

Additionally miR-155 has the ability of regulating bone morphogeneic (BMP) signaling, 

thus reducing EBV lytic reactivation in latently infected cells (Yin et al., 2010). Other 

miRNAs, such as miR-200b and miR-429, regulate the latent/ lytic switch in epithelial 

cells inducing lytic replication (Ellis-Connell et al., 2010; Lin et al., 2010). Thus, 

miRNAs contribute to an ideal cellular environment for EBV to establish latency and 

persistence. 

Previous work has focused on the miRNAs that are upregulated in the type III 

latency program or LCLs (Cameron et al., 2008; Forte et al., 2012; Riley et al., 2012, 

Skalsky et al., 2012). To identify the miRNAs that may contribute to the EBV-driven B 
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cell differentiation, switch of EBV latency type and the establishment of type I latency, 

we attempted to search for the miRNAs that are upregulated in type I latency vs. type III 

latency. Toward this regard, we compared the microRNA expression profiles between 

type I and type III latency cells with the aide of miRNA microarray analysis. Among the 

miRNAs differentially expressed, miR-190 was found to be one of the highest 

differentially regulated miRNAs in type I latency cells. Confirmation of miR-190 

upregulation in multiple type I latency cell lines over type III counterparts provided a 

possible mechanism for the cellular miRNA in maintaining type I latency.  While 

implicated in various forms of cancer, tumor dormancy of gliomas and osteosarcomas 

and opiate addiction in neurons (Almog et al., 2013; Calin et al., 2004; Zhang et al., 

2009; Zheng et al., 2010), we found that miR-190 also targets apoptosis and viral 

reactivation pathways, which are critical for maintenance of persistent EBV latent 

infection.  

2.3 Results 

2.3.1 miR-190 is highly expressed in type I latency vs. type III latency cells 

To identify the microRNAs that are differentially upregulated in type I latency 

cells, miRNA expression profiles in a pair of genetically identical cell lines, Sav I and 

Sav III (Jang et al., 2005), representing latency types I and III respectively, were 

evaluated.  RNAs isolated from these cells were subjected to ExiqonTM miRNA array 

analyses and the comparison of the miRNA profiles in the pair of cells identified several 

miRNAs that are up-regulated in Sav I cells and another class that are up-regulated in Sav 

III cells (Fig. 2A). Among the highly differentially expressed miRNAs in Sav I cells was 
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miR-190 (Fig. 2A and B).  The upregulation of miR-190 expression in type I latent cells 

was confirmed via RT-PCR in multiple corresponding type I and type III latency cell 

lines as well as Akata EBV positive and negative cell lines.  miR-190 is consistently 

expressed in higher levels in Sav I, Mutu I and Kem I cell lines in comparison to latency 

III counterparts Sav III, Mutu III and Kem III cells. Additionally, miR-190 is more highly 

expressed in EBV-positive Akata cells vs. EBV-negative cells, including Akata cells that 

have lost the virus and two EBV negative Burkitt lines BJAB and BL41, indicating a 

potential role for type I latent virus in regulating miR-190 expression (Fig. 2C).  Sav I, 

Mutu I, Kem I and EBV-positive Akata cells are derived from BLs and exhibit restricted 

expression of EBV genes, which allows them to be described as type I latency (Jang et 

al., 200; Hughes et al., 2011; Ruf et al., 1999). 

2.3.2 Identification of miR-190 targets in B lymphocytes 

To identify the potential target genes of miR-190, we utilized a mRNA 

microarray to detect miR-190 expression-associated changes in mRNA expression profile 

in the cells that ectopically expressed miR-190.  A lentiviral vector containing miR-190 

(pSIF-mir190) or an empty vector (pSIF) was introduced into two cell lines, namely 

BJAB, a B cell lymphoma line that does not contain the virus, and Sav III, a type III 

latency EBV infected lymphoblastoid cell line.  Both cell lines have low endogenous 

expression of miR-190.  The miR-190 lentiviral vector transduction raised the expression 

levels of this miRNA in both BJAB and Sav III cells, respectively (Fig. 3A and B). Total 

RNA was purified from these cells and subjected to a gene expression profiling analysis 

with Affymatrix® gene array chips.  Using two-way ANOVA, genes were deemed 

possible targets if there was a decrease in expression with the ectopic expression of miR-
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190 in comparison to pSIF and met the criteria of a false discover rate of <0.1 (Table 1).  

A set of genes with down-regulated expression in response to ectopic expression of miR-

190 was identified. Among them, TP53INP1 and NR4A3 were chosen for further studies 

because of their involvement in maintaining cell survival and preventing viral 

reactivation, respectively, implicating their potential roles in EBV latency establishment. 

2.3.3 miR-190 targets TP53INP1 and influences cell apoptosis and cell cycle arrest 

Tumor suppressor p53-inducible nuclear protein 1, TP53INP1, is known to play a 

pivotal role in induction of cell cycle arrest and apoptosis (Tomasini et al., 2005). To 

confirm the down-regulation of TP53INP1 by miR-190, TP53INP1 expression levels in 

miR-190 lentiviral transduced cells and control cells were examined by Western blot 

analyses. The results confirmed that the ectopic miR-190 expression in two type III 

latency cell lines, Sav III and Raji (Fig. 3B and C), resulted in decreases in TP53INP1 

protein levels (Fig. 4A).  Conversely, in Sav I cells, which are type I latency cells with 

high endogenous levels of miR-190, inhibition of miR-190 expression by a specific miR-

190 inhibitor (miR-190 antagomiR) modestly increases TP53INP1 expression. In both 

protein (Fig. 4B) and mRNA levels (Fig. 4C), TP53INP1 expression was higher in the 

absence of miR-190.  

A potential miR-190 recognition sequence was predicted in the 3’UTR of 

TP53INP1 (Fig. 4D).  In order to confirm that TP53INP1 can be targeted by miR-190 

through this site, the 3’UTR of TP53INP1 with the recognition sequence was cloned into 

a luciferase reporter vector (pMiR). Co-transfection of the reporter with miR-190 

expression vector into 293T cells resulted in a significant decrease in luciferase activity 
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in comparison to the control with the empty vector, pSIF.  Furthermore, when the miR-

190 target site was deleted from the TP53INP1 3’UTR reporter vector and cotransfected 

into 293T cells with miR-190 expression vector, the luciferase reporter activity was 

restored and the reporter was no longer responsive to miR-190 expression (Fig. 4D).  

These results suggest that miR-190 indeed targets TP53INP1 mRNA through the 

predicted recognition sequence in the 3’UTR. 

TP53INP1 can be induced with DNA damage through either p53 dependent or 

independent routes (Hershko et al., 2005; Tomasini et al., 2003; Tomasini et al., 2005).  

In conjunction with HIPK2, TP53INP1 induces p53 phosphorylation at serine 46 and 

mediates both G0/G1 arrest of cell cycle and cell death (Okamura et al., 2001; Tomasini 

et al., 2003).  In the absence of DNA damage, ectopic expression of miR-190 in the type 

III latency cell line, Raji, did not result in significant changes to apoptosis. However, 

when DNA damage was induced with doxorubicin over the course of 72 hours in Raji 

cells, the expression of miR-190 was found to be able to reduce the apoptosis of the cells 

in comparison to the control cells with empty vector pSIF as measured by TUNEL (Fig. 

5A).  Additionally, the effect of miR-190 on apoptosis of Raji cells was also evaluated by 

PARP cleavage, a protein that binds to single stranded DNA breaks, cleavage of which 

serves as a marker for apoptosis. The result showed that the cleaved PARP-1 is reduced 

in Raji cells that overexpress miR-190 (Fig. 5B, lane 4). The p53 phosphorylation at 

ser46 was also reduced with miR-190 overexpression in Raji cells, which is consistent 

with the decreased apoptosis in the cells, as TP53INP1 is known to induce p53 

phosphorylation at ser46 (Okamura et al., 2001;Tomasini et al., 2003) (Fig. 5B, lane 4).   
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Cell cycle dysregulation was induced in Raji cells treated with doxorubicin. The 

treatment brought about a massive increase in G0/G1 arrest observed via propodium 

iodide cell cycle flow cytometry (Fig. 5C).  Yet with miR-190 overexpression, the 

doxorubicin treatment did not induce a G0/G1 arrest, but rather moves on to the next 

checkpoint of the cell cycle (Fig. 5C). Consistent with the G0/G1 arrest, p21 mRNA 

expression was increased in doxorubicin-treated Raji cells. However, with miR-190 

overexpression, doxorubicin failed to induce p21 mRNA expression (Fig. 5D), 

suggesting that mir-190 dampens G0/G1 arrest perhaps through targeting TP53INP1 

which in turn regulates p53 transcriptional activity on p21 (Tomasini et al., 2003). 

2.3.4 miR-190 down-regulates NR4A3 expression and attenuates bzlf1 expression  

Another potential target of miR-190 identified by our microarray data is NR4A3 

(nuclear receptor 4, group A, member 3). NR4A3 was recently demonstrated to be one of 

five cellular genes that are induced during EBV reactivation in Akata EBV-positive cells 

triggered by anti-IgG.  Its expression precedes that of the viral transcription factor, bzlf1, 

a viral transcription factor that is responsible for EBV reactivation from latent to lytic 

replication (Ye et al., 2010).   

To confirm if miR-190 indeed down-regulates NR4A3 expression, the miR-190 

expression vector was introduced into two type III latency cell lines, Sav III and Raji, 

both with low endogenous miR-190 expression by lentiviral transduction (Fig. 3B and C).  

The expression levels of NR4A3 in the cells with and without miR-190 over-expression 

were compared by Western blot analysis.  A reduction in NR4A3 protein levels in miR-

190 over-expression samples in both cell lines were observed in comparison to pSIF 
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controls (Fig. 6A).   Conversely, in type I latent Akata EBV-positive cells, when mir-190 

expression was inhibited with hsa-miR-190-specific antagomiRs, there was a modest 

increase in NR4A3 expression, both in protein and mRNA levels (Fig. 6B and C).  These 

data suggest that miR-190 alters NR4A3 expression levels.  However, no sequence that 

perfectly match with the miR-190 seed sequence is found in the 3’UTR region of NR4A3 

by prediction algorithms. It is possible that miR-190 causes NR4A3 translational 

repression through either an imperfect match with a seed sequence (perhaps upstream of 

the 3’UTR) or an indirect targeting.   

As NR4A3 expression precedes the expression of bzlf1 in viral reactivation, the 

down-regulation of NR4A3 expression by miR-190 was hypothesized to be able to 

dampen bzlf1 expression, a precursor to viral reactivation.  To investigate this hypothesis, 

first, viral reactivation was induced in Raji cells that overexpress miR-190 or were 

transduced with pSIF (empty vector) (Fig. 3C) by treatment with 12-O-Tetradecanoyl-

phorbol-13-acetate (TPA) for various time points up to 12 hours. Induction of both 

NR4A3 and bzlf1 mRNA were analyzed via RT-PCR.  In keeping with the identification 

of NR4A3 as an immediate early gene, we saw increases in mRNA expression following 

TPA treatment in Raji cells, yet this expression was decreased in the presence of stable 

miR-190 expression (Fig. 6D). While the TPA stimulus induced bzlf1 expression in the 

absence of miR-190, the induction of bzlff1 expression was attenuated in the cells that 

over-expressed miR-190 expression, significantly so at 8 and 12 hours (Fig. 7A). 

The effect of miR-190 on bzlf1 expression in Akata EBV-positive cells, which 

were originally used to study the role of NR4A3 in bzlf1 induction (Ye et al., 2010), was 
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also investigated. Although there is endogenous miR-190 expression in Akata EBV-

positive cells, we boosted the miR-190 expression by a lentiviral overexpression system. 

The lentiviral transduction resulted in an increase in miR-190 expression in Akata EBV-

positive cells (Fig. 3D). Then Akata EBV-positive cells were treated with anti-IgG for 

induction of reactivation.  Consistent with what was observed previously, the expression 

of NR4A3 was increased with anti-IgG stimulation in Akata EBV-positive cells, but 

expression was attenuated in the presence of miR-190 (Fig. 6E).  Stimulation for up to 

eight hours with anti-IgG resulted in increased bzlf1 mRNA expression in control cells 

(Akata EBV-positive cells transduced with the empty vector.  However, the bzlf1 

expression was attenuated in the cells that overexpressed miR-190, significantly at hours 

3 and 8 (Fig. 7B). In a loss-of-function assay, introduction of miR-190 antagomiRs into 

Akata EBV-positive and Sav I cells led to increased bzlf1 expression in the absence of 

stimulation (Fig. 7C and D).  These data provide evidence that miR-190 acts to attenuate 

bzlf1 expression and perhaps ultimately lytic reactivation through down-regulating 

NR4A3.  As a consequence of down-regulation of bzlf1 expression, the presence of miR-

190 also provided an inhibition of viral DNA replication in Akata EBV+ cells, as 

measured by viral genomic DNA content via quantitative PCR.  Stimulation for up to 24 

hours with anti-IgG resulted in increased EBV intracellular DNA in the presence of 

empty vector (pSIF), yet miR-190 inhibited this accumulation at 24 hours (Fig. 7E). 

2.3.5 miR-190 expression is up-regulated in the presence of EBERs in EBV latently 

infected Cells 

The next question was how miR-190 is regulated in EBV latently infected cells.  

miR-190 is located in an intron of the Talin2 gene and transcribed with it before 
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processing to its mature form (Beezhold et al., 2011).  Using three pairs of types I and III 

cell lines, namely Sav I and Sav III; Mutu I and Mutu III; and Kem I and Kem III, we 

confirmed that Talin2 mRNA expression is higher in type I latency cells than in type III 

cells, consistent with the expression pattern of miR-190 (Fig. 8). To determine if the up-

regulation of miR-190/Talin2 in latency I cell lines was due to an increase in miR-

190/Talin2 promoter transcriptional activity, the promoter was cloned into a luciferase 

reporter.  The promoter construct was modeled after that used previously by Beezhold et 

al., 2011. The promoter reporter was introduced into Sav I (type I latency) and Sav III 

(type III latency) cells and a high luciferase activity was only detected in the Sav I cells 

(p<0.003) (Fig. 9A).  This suggests that miR-190 up-regulation in type I latency cells 

occurs at the transcriptional level and the promoter-reporter provided a tool to study the 

differential expression of miR-190 in EBV latently infected B cells. 

The differential expression of miR-190 in types I and III latency as well as the 

different expression between EBV positive and negative Akata cells suggested that an 

EBV latent component may be responsible for the regulation of miR-190. As in type I 

latency cells, only one viral latent protein, EBNA1 and several noncoding RNAs, 

including the EBERs, are known to be expressed.  We examined the effect of expression 

of EBNA-1 and EBERs, respectively, on miR-190 promoter activity in BJAB cells with 

EBNA-1 and EBER stable expression cell lines.  The expression of EBNA1 and EBERs 

in these stably transfected BJAB cells was confirmed by Western analysis and 

quantitative RT-PCR, respectively (Fig. 9B-D). There was no significant difference in 

miR-190 promoter activity between BJAB cells that stably express EBNA1 and the 

parental BJAB cells (Fig. 9E). However, miR-190 promoter activity was found to be 
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elevated in the BJAB cells that stably express EBER-1 and EBER-2, respectively, in 

comparison to the control parental BJAB cells (Fig. 9E).   

Additionally the miR-190 expression in these stably transfected BJAB cell lines 

were also examined and results showed the miR-190 expression level was not 

significantly altered by the expression of EBNA1, but dramatically elevated in the BJAB 

cells expressing EBERs in comparison to control BJAB cells (Fig. 9F).   

EBERs are expressed in EBV-infected cells of all types of latency. We questioned 

whether the expression levels of EBER RNAs are very different in type I vs. type III 

latent cells and tested this hypothesis by examining the EBER RNA levels in three pairs 

of type I and type III EBV latently infected cells. Interestingly, the expression of EBER-1 

is higher in type I latency cell lines (Sav I, Mutu I, Kem I) compared to their type III 

latency counterparts (Sav III, Mutu III and Kem III) (Fig. 10A). EBER2 expression is 

robustly higher in Sav I and Mutu I vs. Sav III and Mutu III cells (Fig. 10B). Finally, the 

effect of EBERs on the miR-190 promoter was examined in a transient transfection study, 

where the miR-190 / Talin2 promoter-luciferase reporter was introduced into 293T cells 

along with EBER-1, EBER-2, both EBERs, or control expression (pU6) vectors. A higher 

luciferase activity of the miR-190 / Talin2 promoter was observed with expression of 

EBER-1, EBER-2 or EBERs 1 and 2 compared to the control vector (pU6) counterpart 

(Fig. 10C).  Taken together, these results suggest that EBER RNAs have a potential role 

in the regulation of miR-190 expression in type I latency.  



34 

2.4 Discussion  

Through identifying miRNAs that are differentially expressed in type I latency 

cells, we aimed to find miRNAs that play roles in establishing and maintaining EBV 

latent infection and regulation of latency program switch. In the current study, miR-190 

is highly expressed in type I latency cell lines compared to their genetically identical type 

III latency counterparts.  The functions of miR-190 in type I latency cells were explored 

by identifying and studying its target mRNAs. The results showed that through down-

regulating cellular genes TP53INP1 and NR4A3, miR-190 could contribute to evasion of 

cell apoptosis and prevention of viral reactivation, potentially to maintain the latency I 

phenotype.  These results provide insight into how EBV infection modulates host 

processes to its advantage.   

By targeting TP53INP1, miR-190 promotes cell survival and prevents cell cycle 

arrest.  Both apoptosis and cell cycle arrest are barriers that a latently infected cell may 

encounter, perhaps due to cellular sensing of EBV.  Some of the EBV latency proteins, 

such as EBNA1, EBNA3C and LMP1, produce genomic instability by inducing DNA 

damage, inhibiting DNA repair or inactivating checkpoints (Gruhne et al., 2009b). 

EBNA1, the sole type I latency protein, was shown to promote DNA damage through 

reactive oxygen species production (Gruhne et al., 2009a). To ensure the success of 

infection, the virus needs to reduce genomic instability-associated apoptosis at every 

stage of its life cycle. In early infection, BHRF1 prevents the death of the host cell during 

virus production through its homology to the human anti-apoptotic protein Bcl-2, which 

allows BHRF1 binding to the pro-apoptotic protein Bim (Desbien et al., 2009).  In type 

III latency, the viral proteins LMP-1, EBNA-LP and EBNA-3C may provide protection 
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from apoptosis by modulating levels of anti-apoptotic Bcl2 (LMP-1), by binding and 

inactivating p53 (EBNA-LP) and by physically interacting with and stabilizing IRF4 

(EBNA-3C)  (Banerjee et al., 2013; Thompson and Kurzrock, 2004).  In type I latency 

cells where BHRF1, LMP-1, EBNA-LP and EBNA-3C are not expressed, miR-190 could 

contribute to prevention of apoptosis and cell cycle arrest.   This is evident in experiments 

where over-expression of miR-190 in Raji cells resulted in both lowered apoptosis and 

decreased cell cycle arrest in G0/G1. This function can be achieved through miR-190 

targeting the 3’UTR of TP53INP1, which plays a pivotal role in DNA damage 

prevention.  Under the control of p53, p73 or E2F1 (p73 in p53 deficient and E2F1 in p53 

null conditions), TP53INP1 has been shown to induce cell cycle arrest at the G0/G1 

checkpoint and apoptosis (Hershko et al., 2005; Tomasini et al., 2003; Tomasini et al., 

2005).  While the ultimate activity of TP53INP1 is dictated by the tissue type or tumor 

microenvironment, TP53INP1 is downregulated in multiple cancers, including 

pancreatic, gastric and colon cancer (Gironella et al., 2007; Jiang et al., 2006; Shibuya et 

al., 2010).  Additionally, TP53INP1 is a robust target of miRNA regulation. It has been 

known that miR-93, miR-130b (in HTLV-1 transformed T cells) and miR-155 (in 

pancreatic cancer cells) reduce TP53INP1 allowing for survival of the affected cell 

(Gironella et al., 2007; Yueng et al., 2008; Zhang et al., 2013). Kaposi’s Sarcoma 

Herpesvirus, a gamma-herpesvirus closely related to EBV, targets TP53INP1 through a 

viral miRNA, miR-K12-11 (Haecker et al., 2012). In this respect, miR-190 appears to fit 

the role of other miRNAs, both cellular and viral, which target TP53INP1 to limit 

apoptosis and enhance survival.  Thus our model regarding the role of miR-190 in type I 

latency establishment is as follows: in type I latently infected cells, EBNA-1 causes 
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genomic instability that in turn triggers cell cycle arrest or apoptosis.  EBV may 

counteract this adverse effect by inducing miR-190 expression and down-regulating 

TP53INP1, thus preventing cell cycle arrest and apoptosis and providing a clear benefit to 

EBV and its latency establishment. 

miR-190 overexpression in conjunction with an mRNA transcriptome analysis 

helped in identification of numerous potential miR-190 targets not suggested by 

algorithm.  These targets included NR4A3, a cellular immediate early gene for EBV 

reactivation.  EBV latency disruption though stimulation of EBV+ cell with anti-IgG 

resulted in the expression of NR4A3, which preceded viral lytic gene, bzlf1, expression 

(Ye et al., 2010).   miR-190 expression is able to down-regulate NR4A3 and results in 

dampened bzlf1 expression and reduced EBV intracellular DNA expression.  In this 

manner, miR-190 may contribute to maintenance of type I latency by preventing host 

cells from entering the lytic cycle. 

Additionally, our study provided preliminary evidence indicating that EBV-

encoded noncoding RNAs, EBER-1 and EBER-2 may play a role in regulating miR-190 

expression.  The EBERs transcripts, shown here to be more highly expressed in latency I 

cells over their latency III counterparts, have been shown to promote soft agar growth 

and tumorigenicity in nude mice in EBV negative Akata BL cell lines (Komano et al., 

1999). The mechanism for EBERs involvement in higher miR-190 expression has yet to 

be elucidated, but both stable and transient expression of EBER-1 and EBER-2 resulted 

in increases in miR-190 expression and Talin2 activity. Our preliminary data support a 

model that high levels of EBER-1 and EBER-2 in type I latency cells stimulate activity in 



37 

the promoter of miR-190 /Talin2, perhaps through the YY1 transcription factor, which in 

turn activates the promoter of miR-190 /Talin2, resulting in expression of both miR-190 

and Talin2 mRNA (Zheng 2010a). 

In the setting of EBV type I latency with limited viral gene expression, it appears 

that the virus can influence the expression of cellular miRNA to enhance the survival of 

the infected cell and maintain long term latency.   While a direct effect on the virus may 

not always be evident, miRNAs appear to contribute to an ideal cellular environment for 

viral persistence. The current study contributes to revealing the  strategy  that  EBV  

utilizes to manipulate cellular miRNAs and facilitate EBV latent infection. A full 

understanding of the detailed mechanism underlying the  role  of  miR-190  and other 

cellular miRNAs in  EBV  type  I  latency development and maintenance requires 

identification of a whole panel of mRNAs, cellular or viral, that are regulated by miR-190 

and other type I associated cellular miRNAs in type I latently infected B cells. A direct 

and comprehensive identification of all the mRNA target sites bound by miRNAs, such 

as high-throughput sequencing of RNAs, both miRNA and mRNA, isolated by 

crosslinking and immunoprecipitation of argonaute (HITS-CLIP) (Riley et al., 2012), 

could be useful in identifying other miR-190 targeted mRNAs and comprehending the 

role of miR-190 in EBV latency. 

2.5 Materials and Methods  

2.5.1 Cell Culture  

Multiple type I (Sav I, Mutu I, Kem I, Akata EBV-positive) and type III (Sav III, Mutu 

III, Kem III) EBV latently infected cell lines were utilized in this study. Sav I, Kem I 
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Mutu I and Akata EBV-positive cells were derived from BL patients. Sav III and Kem III 

were derived from same BL patients as their counterparts Sav I and Kem III, respectively 

(Jang et al., 2005; Hughes et al., 2011).  Mutu III cells were derived from peripheral 

blood mononuclear cells (PBMCs) infected with EBV from Mutu I BL cells.  Kem I and 

III cells were a gift from Dr. Jeff Sample at Penn State Medical Center. Sav I and III cells 

were provided by Dr. Luwen Zhang at University of Nebraska-Lincoln. BJAB cells 

stably expressing EBNA1 were a gift from Dr. Bill Sugden at University of Wisconsin at 

Madison.  BJAB cells stably expressing EBER-1 and EBER-2 were developed by 

transfecting BJAB cells with EBER-1 and EBER-2 expression vectors followed by 

neomycin selection and cloning from single cells that stably express EBER-1 and EBER-

2 RNA, respectively. These cells along with BJAB, BL41, Raji and Akata cell lines were 

maintained in RPMI-1640 medium supplemented with 10% (v/v) heat-inactivated fetal 

bovine serum (Gibco-Invitrogen Life Technologies, Carlsbad, Ca) and 1% penicillin-

streptomycin-amphotericin (Gibco-Invitrogen). To induce DNA damage, Raji cells were 

treated with 0.2 µg/µl of doxorubicin for up to 72 hours.  To induce bzlf1 expression, Raji 

cells were treated with 20 ng/ml TPA (Sigma) and Akata EBV-positive cells were treated 

with 7.5 µg /ml anti-IgG (Jackson Immuno-Research Labs). 293T cells were maintained 

in Dulbecco’s modified eagle medium (DMEM) medium supplemented with 10% (v/v) 

heat-inactivated fetal bovine serum (FBS), 1% (v/v) penicillin-streptomycin-amphotericin 

and were allowed to grow until 80% confluency before passaging. All cells were 

incubated at 37°C with 5% (v/v) CO2. 
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2.5.2 Plasmids and Reagents 

A pSIF- neo-IRES-GFP plasmid with the miR-190 minigene inserted in the Bam HI and 

ecoRI site and an empty control were provided by Dr. Yong Li of the University of 

Louisville.  The 3’UTR of TP53INP1 was generated by PCR with the primers (5’-

GGACTAGTTTCTGGAACAACCCAAGAGC-3’ and 5’- 

AGCTTTGTTTAAACCTGCACTAATGGGTTAGTTACAGAC-3’) and cloned into a 

pMIR-report miRNA Expression Reporter Vector (Life Technologies) expression 

plasmid.  The suitable mutation was made with oligonucleotides (5’-

CACTTTTTCAGATTATTTCTGGAATTACAGTGTTTGGGGGTGTC-3’ and 

5’GACACCCCCAAACACTGTAATTCCAGAATTATTCTGAAAAAGTG-3’) using 

the Quikchange II XL site-directed mutagenesis kit (Agilent Technologies, Santa Clara, 

California).  The miR-190/talin2 promoter sequence is defined by the region of proximal 

genomic DNA within 1Kb (1095 bp) of the human Talin2 promoter region and was 

amplified by PCR with the primers (5’ 

ATCGGCTAGCCACCATGCCAGGCTAATTTT-3’ and 5’ 

CAGTCTCGAGACTCGACACGCATCGTACAC-3’) and cloned into a pGL3 luciferase 

repoter vector (Promega) (Beezhold et al, 2011). The EBER-1 expression vector was 

generated by cloning a 530 bp Sac I-Sau3A restriction fragment of EBV genomic DNAs 

that contains the EBER-1 genes with the promoter into pGem-3 vector (Promega). The 

EBER-2 expression vector was generated by cloning a 525 bp Sau3A-EcoRI restriction 

fragment of EBV genomic DNAs that contains the EBER-2 genes with the promoter into 

pGem-3 vector (Promega). 
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2.5.3 RNA and DNA preparation for RT-PCR 

RNA was extracted from lymphocyte lines using a modified TRIZOL method 

(Invitrogen). Briefly, 107 cells were suspended in 1 ml Trizol reagent, homogenized and 

incubated for 5 min on ice. 0.2 ml of chloroform was added to each sample followed by 

vigorous vortex for 1 min. The samples were centrifuged for 15 min at 14,000 rpm at 

4oC, and the upper aqueous phase was transferred to fresh tubes. The samples were re-

extracted with an equal volume of phenol/chloroform/isoamyl alcohol (Fisher Scientific, 

Pittsburg, PA) once and an equal volume of isopropyl alcohol once again. RNAs were 

recovered by ethanol precipitation, dissolved in RNase free H20 and stored at 80oC until 

further processing.  For intracellular EBV DNA analysis, DNA was purified using the 

DNeasy Blood and Tissue Kit (Qiagen) according to manufacturer’s protocol. 

2.5.4 Microarray and data analysis 

Total RNA of Sav I and Sav III cells were submitted to the Microarray Core Facility of 

University of Pennsylvania for miRNA expression profiling using Exiqon miRCURY 

LNA™ miRNA array.  Total RNA from cell lines expressing pSIF-miR-190 or pSIF 

were submitted for mRNA expression profiling using the Affymetrix GeneChip Human 

Exon 1.0 ST Array. mRNA array data analysis was performed with the Partek® 

Geneomics Suite 6.4 software.  The microarray probe result files from individual 

hybridizations were normalized using the Robust Multi-Chip Average (RMA) algorithm 

and converted to log values. Data was analyzed by two-way ANOVA with a False 

Discovery Rate corrected p-value (Benjamini Hochberg).  Differentially expressed 

mRNAs with a false discover rate of less than 0.1 and a fold change of less than -1.3 were 



41 

selected for study. TargetScan 5.1 was also used to identify those mRNAs with predicted 

miR-190 interaction sites. 

2.5.6 Real-time RT-PCR for miRNA, mRNA and EBER RNA detection and quantitation 

10 ng of total RNA was reverse transcribed using microRNA reverse transcription kit and 

stem-loop microRNA assay kit specific for miR-190 (Applied Biosystems, Foster City, 

CA). RT-PCR was done on Roche LightCycler® System using the TaqMan® microRNA 

assay kit (Applied Biosystems) and LightCycler® TaqMan® master mix (Roche, 

Mannheim, Germany) following the manufacturer's instructions. Human small nuclear 

RNA U6 (RNU6B) was used to normalize mature miRNA data. For mRNA 

quantification, 1 µg of total RNA was reverse transcribed using SuperscriptTM II reverse 

transcriptase according to manufacture’s instructions (Invitrogen). The resulting cDNA 

was subjected to qPCR using the QuantiTectPrimer Assay SYBR for Talin2 

(Hs_TLN2_2_SG), TP53INP1(Hs_TP53INP1_1_SG), NR4A3 (Hs_NR4A3_2_SG), and 

GAPDH (Hs_GAPDH_2_SG) (Qiagen, Valencia, CA). Custom primers were developed 

for bzlf1 (5’-TACAAGAATCGGGTGGCTTC-3’ and 5’-

GCACATCTGCTTCAACAGGA-3’) with results being normalized to GAPDH (5’-

AGCCACATCGCTCAGACAC-3’ and 5’-GCCCAATACGACCAAATCC-3’). EBER1 

and EBER2 were quantitated by qRT-PCR with reverse transcription primer (EBER-1: 

5’-ACCACCAGCTGGTACTTGACCGA-3’, EBER2: 5’-

CAAGCCGAATACCCTTCTCCCAGA-3’) and custom-designed TaqMan® assay kits 

(Applied Biosystems).  Probes from Qiagen and Life Technologies offer close to 100% 

PCR efficiency for reliable relative quantification of expression. Specifically, the amount 

of relative gene expression of miRNA or mRNA is presented as 2 (−ΔCt), ΔCt=  
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Ct gene of interest - Ct housekeeping gene. 

2.5.7 Analysis of intracellular EBV genomic DNA content 

After induction with anti-IgG, total DNAs were purified from the EBV-positive Akata 

cells (induced and uninduced) using the TaKaRa MiniBEST Universal Genomic DNA 

Extraction Kit (TaKaRa). EBV genomic DNA was quantified by real-time PCR with 

primers for EBNA1 (5’-CATTGAGTCGTCTCCCCTTTGGAAT-3’ and 5’-

TCATAACAAGGTCCTTAATCGCATC-3’) and normalized to GAPDH (5’-

AGCCACATCGCTCAGACAC-3’ and 5’-GCCCAATACGACCAAATCC-3’). 

Quantitative PCR was done on Roche LightCycler® System using the LightCycler® 

FastStart DNA master SYBR green I kit® (Roche, Mannheim, Germany) following the 

manufacturer's instructions. 

2.5.8 Western blot analysis 

Whole cell extract were prepared in lysis buffer [20 mM Na2HPO4 (PH 7.4), 150 mM 

NaCl, 2 mM EDTA, 2 mM EGTA, 0.3% (v/v) Triton X-100, 100 µM PMSF with 

complete protease inhibitor cocktail tablet (Roche). Protein concentrations of the 

supernatant were determined using Bradford protein assay (Bio-Rad, Hercules, CA). 

Samples were diluted with NuPAGE® LDS Sample Buffer (Invitrogen), denatured by 

boiling for 10 min, and loaded on 4-12% Tris-Bis pre-cast gels (Invitrogen). Proteins in 

the gels were transferred to nitrocellulose membrane (manufacturer). The membranes 

were blocked with 5% (w/v) non-fat milk in phosphate buffered saline (PBS) containing 

0.1% (v/v) Tween-20 (PBS-T), followed by overnight incubation of specific primary 

antibodies, including rabbit anti-TP53INP1 (Sigma); rabbit anti -p53Ser46, rabbit anti-
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Poly (ADP-4 ribose) polymerase 1 (PARP- 1), mouse anti-b-actin (Cell Signaling); rabbit 

anti-Nor1/NR4A3 (Novus Biologicals) at varying dilutions in blocking buffer at 4°C. The 

blots were treated with HRP conjugated anti-rabbit or anti-mouse IgG (Pierce, Rockford, 

IL) and detected with Supersignal West Dura Extended Duration Substrate (Pierce).  

2.5.9 Retroviral Transduction 

293T cells were transfected with 4.5 µg of pSIF/pSIF-190 microRNA expression vector, 

4.5 µg of pFIV-34N lentiviral gag-pol packaging vector and 0.57 µg of pVSV-G 

envelope vector using the calcium phosphate method. After 72 hours, lentiviral particles 

were harvested and filtered through a 0.45 micron filter and used to infect 1x 106 

suspension cells (BJAB, SAVIII, Raji, Akata EBV-positive).  Cells were spinoculated at 

2500 rpm for 1 hour in the presence of 8 µg /ml polybrene.  Forty-eight hours post 

infection, cells were selected for vector expression by G418 treatment.  After 10-14 days 

of selection RNA, protein and functional assays were completed. 

2.5.10 DNA and miRNA inhibitor Transfection 

293T cells were transfected for luciferase assays with Lipofectamine 2000 according to 

manufacturer’s recommendations. Plasmids or miRNA inhibitors, miRIDIAN inhibitors 

(ThermoScientific), were introduced into cells with the Amaxa Nucleofector II and Kit V 

(Lonza, Basel, Switzerland). Briefly, 3-5x 106 cells was suspended in 100 µl of 

nucleofector solution and transferred into cuvettes. In the Nucleofector II system (Lonza), 

Program T020 was used for BJAB and Sav III cells, program C009 was used for Sav I 

and program G016 was used for Akata EBV-positive cells. 
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2.5.11 Luciferase reporter assay 

This assay was used in two applications: (i) to assess 3’UTR targeting activities and (ii) 

to measure promoter activities. Cells were cotransfected 1:1 with pSIF-miR190 (or pSIF) 

and 3’UTRs of TP53INP1 reporter (or its seed sequence-deletion mutant) along with 1/20 

total DNA of the Renilla reporter plasmid OR 2 (treatment):1(reporter) pEBERs (or pU6) 

and pmiR-190/TLN2(or pGL3 reporter) along with  1/20 total DNA of the Renilla 

reporter plasmid. After 48 hours cells were lysed and luciferase/renilla activity was 

measured using the Dual-Luciferase® Reporter Assay System (Promega, Madison, WI). 

Firefly luciferase activity was normalized to renilla activity for each transfection.   

2.5.12 Flow Cytometry  

For cell cycle and apoptosis data, cells were washed once in PBS and fixed in 70% (v/v) 

ethanol overnight at -20°C. Staining for DNA content was performed with 50 µg/ml 

propidium iodide and 100 µg/ml RNase A for 60 min in the dark at 37°C. Cell were 

subsequently washed with PBS and re -suspended in 500 ul of PBS for analysis.  TUNEL 

was performed with the In Situ death detection kit (Roche) according to manufacturers 

suggestions for suspension cells. A minimum of 10,000 events were acquired by LSRII 

using FACSDiva (BD biosciences, San Jose, CA). Data was analyzed by WinList –

TUNEL and ModFit— cell cycle  (Verity Software).  

  



45 

 

Figure 2: miR-190 is highly expressed in type I latency vs. type III latency cells.  
Sav I (type I latency) and Sav III (type III latency RNAs were subjected to an ExiqonTM 
microRNA array. (A) The expression levels of each miRNA in Sav I and Sav III cells are 
presented on a scatter plot and (B) a bar graph of fold change in Sav I vs. Sav III cells. 
(C) miR-190 expression levels in three matched type I (Sav I, Mutu I, Kem I) and type III 
(Sav III, Mutu III, Kem III) latency cell lines as well as EBV-positive (Akata EBV+) BL 
and EBV- (Akata EBV-, BJAB and BL41) B cell lines were measured by qRT-PCR with 
a specific TaqMan® kit and normalized to U6 snoRNA. Notable comparisons are in 
dashed boxes. Error bars indicate standard deviations for miR-190 expression in three 
separate culture vessels 
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Figure 3: Overexpression of mir-190 in numerous cell lines with a lentiviral 
expression system.  
Following lentiviral transduction of pSIF or miR-190 and antibiotic selection, miR-190 
expression in BJAB (A), Sav III (B), Raji (C) and Akata EBV+ (D) cells was evaluated 
by qRT- PCR with a specific TaqMan® kit and normalized to U6 snRNA. 
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Table 1:  Summary of targets identified by microarray from Sav III and BJAB miR-
190 lentiviral overexpression. 

 Gene Name Gene 

Symbol 

Predicted targets of miR-190 

and genes down-regulated 

with miR-190 overexpression 

in SAVIII 

Tumor suppressor p53 inducible 

nuclear protein 1 

TP53INP1 

Fibrillin 1 FBN1 

Genes down-regulated with 

miR-190 overexpression in 

both BJAB and SAVIII 

 

n-myc downstream regulated 1 NDRG1 

Nuclear receptor subfamily 4, 

group A, member 3 

NR4A3 

GTP binding protein 

overexpressed in skeletal 

muscle 

GEM 
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Figure 4: miR-190 reduces TP53INP1 expression.   
(A) Lentiviral expression vectors for miR-190 (pSIF-miR-190) and the control empty 
vector (pSIF) were introduced into Sav III and Raji cells via lentiviral transduction. Cell 
extracts were subjected to Western blotting for the detection of TP53INP1 and β-actin as 
a protein loading control. (B) miRNA antagomiR for miR-190 and the control RNA 
targeting C. elegans RNA were introduced into Sav I cells via nucleofection. 24 h 
postnucleofection cell lysates were analyzed by Western blot for TP53INP1 (upper 
panel). RNA was also analyzed for TP53INP1 and GAPDH mRNA expression via RT-
PCR. Data are means and standard deviations for three experimental replicates and 
comparisons are by one-tailed Student׳s t-test. ⁎P≤0.05; ⁎⁎P≤0.01 (lower panel). (C) To 
test if miR-190 directly targets the 3’UTR of TP53INP1, the 3’UTR sequence of 
TP53INP1 (black) or its mutant with the predicted seed sequence deleted (gray) was 
cloned into a pMiR luciferase reporter vector. The wild type 3’UTR or the seed sequence 
deletion reporters were transfected into 293T cells along with miR-190 expression vector 
(or empty vector) and renilla normalization constructs. Data are means and standard 
deviations for three experimental replicates. Comparisons of data are one-way ANOVA 
followed by Tukey׳s test. ⁎⁎P≤0.01. 
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Figure 5: miR-190 protects type III latency cells from cell cycle G1 arrest and 
apoptosis.  
DNA damage was induced in Raji cells overexpressing pSIF-miR-190 or PSIF by 
treating cells with doxorubicin (Dox) for 72 h. (A) Apoptosis was assayed with TUNEL 
assay. Data are means and standard deviations for three experimental replicates and 
comparisons are by Student׳s t-test. ⁎P≤0.05; ⁎⁎P≤0.01. (B) Cell lysates were collected 
to evaluate expression levels of PARP cleavage, p53serine46 phosphorylation and β-actin 
by Western blot. (C) Cells were also collected to assay cell cycle distribution by 
propidium iodide staining. (D) RNA was analyzed for p21 mRNA by RT-PCR and 
results were normalized to GAPDH. Data are means and standard deviations for three 
experimental replicates and comparisons are by Student׳s t-test. ⁎P≤0.05; ⁎⁎P≤0.01. 
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Figure 6: miR-190 reduces NR4A3 expression.  
(A) Lentiviral expression vectors for miR-190 and the control empty vector (pSIF) were 
introduced into Sav III and Raji cells via lentiviral transduction, cell extracts were 
subjected to Western blotting for the detection of NR4A3. β-actin was included as a 
protein loading control. (B and C) miRNA antagomiRs for miR-190 and a control RNA 
targeting C. elegans RNA were introduced into Akata EBV positive cells via 
nucleofection. Forty-eight hours postnucleofection cell lysates were collected and 
analyzed via Western blot for NR4A3and β-actin (B). RNA was analyzed for NR4A3 
mRNA expression via qRT-PCR and normalized to GAPDH (C). (D and E) NR4A3 
mRNA expression was analyzed by RT-PCR in Raji (D) and Akata EBV+ (E) cells 
expressing empty vector (pSIF) or miR-190 following treatment with reactivation stimuli, 
TPA (D) or anti-IgG (E), respectively, over the course of several hours. 

Control
  oligo

  miR190
antagomiR

Re
lat

iv
e e

xp
re

ss
io

n 
of

 N
R4

A3
 

pSIF pSIF-miR190  
Sav III

(kDa)

(kDa)

BA

C

NR4A3

ȕ�DFWLQ

70

55

40

50

0.00E+00
2.00E-06
4.00E-06
6.00E-06
8.00E-06
1.00E-05
1.20E-05
1.40E-05
1.60E-05
1.80E-05

Control
  oligo

  mir-190 
antagomiR

NR4A3

pSIF pSIF-miR190

Raji

ȕ�DFWLQ

70

55

40

50

70

55

40

50

NR4A3

ȕ�DFWLQ

(kDa)

2.00E-05
**

miR-190     -    +            -    +            -    +            -    +

TPA Post Stimulation (hr) Anti-IgG Post Stimulation (hr)

D

0 

0.0005 

0.001 

0.0015 

0.002 

0.0025 

0.003 

0.0035 

0.004 

0 1.5 3 8 0 

0.00005 

0.0001 

0.00015 

0.0002 

0.00025 

0.0003 

0.00035 

0 0.5 8 12 

miR-190    -    +            -    +            -    +            -    +
E

Re
lat

iv
e e

xp
re

ss
io

n 
of

 N
R4

A3
 

Re
lat

iv
e e

xp
re

ss
io

n 
of

 N
R4

A3
 

**



51 

 

miR-190     -    +           -    +            -    +           -    +

R
el

at
iv

e 
ex

pr
es

si
on

 o
f  

B
zl

f1
 

0

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

0 0.5 8 12
TPA Post Stimulation (hr)

Figure 5.

A

0

0.005

0.01

0.015

0.02

0.025

0                   1.5                    3                     8

Anti-IgG Post Stimulation (hr)

0

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

7.00E-07

8.00E-07

9.00E-07

0

0.001

0.002

0.003

0.004

0.005

0.006

Control
  oligo

 miR-190
antagomiR

C

B miR-190     -    +            -    +           -    +            -    +

 R
el

at
iv

e 
ex

pr
es

si
on

 o
f  

B
zl

f1
 

D

 R
ela

tiv
e e

xp
res

sio
n o

f B
zlf

1 

Re
lat

ive
 ex

pr
es

sio
n o

f B
zlf

1 

Control
  oligo

 miR-190
antagomiR

* *

0 

5 

10 

15 

20 

25 

30 

35 

40 

R
el

at
iv

e 
E

B
V

 G
en

om
ic

 D
N

A
 (i

nt
ra

ce
llu

la
r)

 

0                 6                   12                          24
Anti-IgG Post Stimulation (hr)

miR-190      -   +            -   +            -    +           -    +E

*

*

*

*

*



52 

Figure 7: miR-190 reduces bzlf1 expression and EBV DNA replication.   
(A) Viral reactivation was induced in Raji cells overexpressing miR-190 or pSIF (empty 
vector) by treatment with TPA for various time points. RNA was analyzed for bzlf1 and 
GAPDH mRNA expression via qRT-PCR. (B) Viral reactivation was induced in Akata 
EBV-positive cells overexpressing miR-190 or pSIF (empty vector) by treatment with 
anti-IgG for various time points. (C and D) RNA was analyzed for bzlf1 and GAPDH 
mRNA expression via qRT-PCR. RNA was collected from type I latency cell lines, 
Akata EBV-positive (C) and Sav I miR-190 (D) that had been nucleofected with miR-190 
antagomiR or control oligo in the absence of reactivation stimulus and analyzed for bzlf1 
and GAPDH mRNA expression via qRT-PCR. (E) DNA was isolated Akata EBV 
positive cells expressing pSIF or miR-190 after anti-IgG treatment up to 24 h and 
intracellular EBV genomic DNA (normalized to GAPDH) was measured by qPCR. Data 
are means and standard deviations for three experimental replicates and comparisons are 
by Student׳s t-test. ⁎P≤0.05; ⁎⁎P≤0.01. 
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Figure 8: Talin2 expression in type I and type III latency cell lines.   
RNA isolated from cell lines representing type I (Sav I, Mutu I, Kem I) and type III (Sav 
III, Mutu III and Kem III) was analyzed for Talin2 mRNA expression via qRT-PCR and 
normalized to GAPDH. 
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Figure 9: miR-190 promoter activity is upregulated in type I latency and responsive 
to the presence of EBERs. 
(A) The promoter for miR-190/Talin2 was cloned into a luciferase reporter vector. The 
miR-190/Talin2 promoter-reporter or an empty pGL3 vector was nucleofected into either 
Sav I or SavIII cell lines with a renilla nucleofection control. Luciferase activity was 
normalized to transfection and pGL3 controls. Data are means and standard deviations 
for three experimental replicates. ⁎P≤0.05; ⁎⁎P≤0.01. (B–E) The miR-190/Talin2 
promoter-reporter was introduced into BJAB cells that stably transfected with EBNA1, 
EBER-1 and EBER-2. The expression of EBNA1 was confirmed by a Western blotting 
(B) and the expression of EBER-1 and EBER-2 was verified by qRT-PCR (C and D 
respectively). The luciferase activities were normalized to transfection and pGL3 controls 
(E). (F) Total RNA was purified from the BJAB cells stably transfected with EBNA1 and 
EBERs. miR-190 levels in these cells were evaluated by TaqMan® RT-PCR and 
normalized to U6 snRNA. Data are means and standard deviations for three experimental 
replicates. Comparisons of data are one-way ANOVA followed by Tukey׳s test. 
⁎⁎P≤0.01. 
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Figure 10: EBERs are expressed in higher levels in type I latency cells compared to 
type III latency cells and enhance miR-190 promoter activity.   
The levels of EBER-1 (A) and EBER-2 RNA (B) in three pairs of types I (Sav I, Mutu I 
and Kem I) and III (Sav III, Mutu III and Kem III) latency cells were examined using 
qRT-PCR. (C) miR-190/Talin2 promoter-luciferase reporter or pGL3 (empty vector) was 
cotransfected into 293T cells with EBER-1, EBER-2, both EBERs or U6 expression 
vectors. Luciferase activities were normalized to transfection and pGL3 controls. Data 
are means and standard deviations for three experimental replicates. Comparisons of data 
are one-way ANOVA followed by Tukey׳s test. ⁎⁎P≤0.01. 
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Chapter 3- EBERs regulate cellular miRNA expression through triggering RNA 

sensor signaling 

3.1 Summary 

Previously, we observed that the cellular miRNA, mIR-190, is upregulated in type I 

latency. We also observed an increase in miR-190/TLN2 promoter activity in the 

presence of the EBV-encoded small RNAs (EBERs). EBERs are highly expressed during 

latency and are more abundant in type I latency vs type III latency (Cramer et al., 2014). 

This differential expression may have a role in latency maintenance. Here we further 

establish a connection between EBERs and miR-190 expression and promoter activity. 

293-BAC cells expressing WT EBERS exhibit higher miR-190/TLN2 promoter activity 

compared to EBERs null 293-BAC cells. EBERs are known to interact with the dsRNA 

sensor, RIG-I (Samanta et al., 2006). We find that in the presence of activated RIG-I, 

miR-190 expression and promoter activity is increased in a variety of cell backgrounds. 

Analysis of the miR-190/TLN2 promoter indicated potential binding sites for NF-kB, a 

downstream effector of RIG-I, and YY1, a known mediator of miR-190 expression. The 

essential roles of YY1 and NF-kB in miR-190/TLN2 promoter activation are examined 

through deletion of specific binding motifs in the miR-190/TLN2 promoter. 

3.2 Introduction 

Epstein Barr-Virus  (EBV) is a ubiquitous herpesvirus that is the causative agent 

of infectious mononucleosis and is associated with numerous diseases; including cancers, 

like Burkitt’s lymphoma and AIDS-associated lymphomas (Kieff et al. 2007).  The 

latency program of EBV infected cells characterizes many EBV associated diseases, 
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including; endemic Burkitt’s lymphoma (latency I), Hodgkin’s disease (latency II) and 

post-transplant lympoproliferative disease (latency III) (Kieff et al 2007; Thorley-Lawson 

and Gross, 2004). While these programs can be associated with overt disease, EBV 

utilizes these latency programs to propagate and establish a reservoir in B lymphocytes 

(Thorley-Lawson, 2001). There are multiple latency programs utilized by EBV.  Each of 

the latency programs displays unique characteristics, which are due to either viral or 

cellular components. Briefly, these programs are latency III, II, I and 0, listed in order 

from most viral protein expression to least.  Latency III is accompanied by expression of 

nine latent proteins, (EBNA1, EBNA2, EBNA3A-C, and EBNALP and LMP1, LMP2A, 

and LMP2B) and is characterized by viral driven proliferation. Latency I, which typically 

persists in resting mature B cells, has protein expression limited to only EBNA-1 to allow 

for viral episome maintenance (Babcock et al., 2000; Kieff et al 2007; Thorley-Lawson, 

2001). 

In addition to protein expression during latency, non-coding viral RNAs are also 

expressed, including the EBERs (EBV-encoded small RNAs, and upwards of 40 viral 

miRNAs (Qui et al., 2011). Interestingly, EBERs are the most abundant transcript in 

latency, with a reduction in expression during the lytic cycle (Rosa et al., 1981). The viral 

miRNAs also display differential expression during latency, with miRNAs from the 

BHRF1 and BART fragments expressed in latency III while only BART miRNAs, 

particularly miR-BART18-5p, are expressed in latency I/II (Qui et al., 2011, Qui et al., 

2014) Additionally, the viral non-coding RNAs, EBERs 1 and 2, are more highly 

expressed in latency I relative to latency III (Cramer et al., 2014).  This differential 
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expression of EBERs and viral miRNAs could indicate a role in latency maintenance or 

switch. 

In conjunction with higher EBERs expression, latency I cells display a different 

profile of cellular miRNAs than latency III cells. The cellular miRNA, miR-190 is highly 

expressed in latency I. miR-190 is an intragenic miRNA that is transcribed with the gene 

Talin2. Our previous work has indicated that miR-190 expression and miR-190 promoter 

activity increased in the presence of EBERs (Cramer et al., 2014). Modulation of cellular 

miRNAs by viral non-coding RNAs is a strategy employed by other viruses to subtly 

alter their cellular environment. However, the means of this modulation varies for each 

virus and miRNA, 

Other viral non-coding RNAs have been shown to affect cellular miRNAs. The 

primate Herpesvirus Saimiri U RNAs (HSURs) have been shown to bind to the seed 

sequence of mir-27 resulting in upregulation of miR-27 targets like FOXO1 (Cazalla et 

al., 2010). In murine cytomegalovirus, the highly abundant m169 transcript is responsible 

for the degradation of miR-27 and this interaction affected efficiency of viral replication 

in multiple organ sites (Marcinowski et al., 2012). The adenovirus VA RNAs exhibit 

miRNA suppressor activity through a variety of mechanisms, like acting as decoy 

substrates for exportin 5, DICER and RISC, all components necessary for mature miRNA 

formation. (Andersson et al., 2005).   

EBERs have not yet been shown to directly affect cellular miRNA expression. 

However, multiple consequences of EBERs expression and interactions with cellular 

proteins have been identified. The EBERs genes render Akata EBV- cells less susceptible 
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to apoptosis  (Komano et al., 1999). More recently, EBER2 has also been shown to 

localize with Pax5 to the terminal repeats of the EBV genome, and downregulates LMP1, 

-2A and -2B and enhances viral lytic replication (Lee et al., 2015). EBERs form intra-

molecular pairings, which result in stem-loop structures resembling double stranded RNA 

(Glickman et al., 1988; Rosa et al., 1981).  EBERs have been shown to interact with 

numerous innate immunity dsRNA sensors upstream of type I IFN expression. While 

EBERs forms complexes with a number of host proteins, including PKR, L22, and La 

another notable interaction is with innate immune sensors like RIG-I and TLR3. Retinoic 

acid inducible gene, RIG-I, is a cytosolic sensor of foreign 5’ triphosphate double 

stranded RNAs, like EBERs (Iwakiri et al., 2009; Samanta et al., 2006; Samanta et al., 

2008).  

EBERs interaction with each of these innate immune factors has activating effects 

on downstream targets, including the signaling molecules IRF3 and NF-kB (Samanta et 

al., 2006; Samanta et al., 2008).  Ultimate products of this activation include type I IFN 

and IL-10 production. Upon activation, NF-kB becomes phosphorylated and crosses from 

the cytoplasm to the nucleus where it is a transcription factor for immune response genes 

(Yoneyama et al., 2004). The activation of NF-kB in latency I cell lines like Akata EBV+ 

and Mutu I is attributed to RIG-I, as knockdown ablates this activation (Samanta et al., 

2008). Additionally, NF-kB positively regulates the expression of YY1 (Wang et al., 

2007). YY1 is also a transcription factor for miR-190/Talin2 promoter (Zheng et al, 

2010a). This indicates a potential connection from EBERs to miR-190 through the RIG-I- 

NF-kB axis. Here we provide evidence that EBERs modulation of the RIG-I pathway 

upregulates expression of the cellular miRNA, miR-190. We also demonstrate the 
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importance of the transcription factors YY1 and NF-kB in EBERs-induced upregulation 

of miR-190. 

3.3 Results 

3.3.1 Effect of EBER-WT vs. EBER-null BAC-EBV on miR-190 promoter activity in 

293T cells 

The miR-190/Talin2 promoter was activated in the presence of EBERs in BJAB 

cells stably expressing EBERS and in 293T cells transiently transfected with EBERs 

(Cramer et al., 2014). Additionally, 293T-BAC-EBV cell lines with both EBERs, EBER1 

only, EBER2 only or no EBERs (EBER null) were transfected with control or miR-

190/TLN2 promoters (Fig. 11A). Deletion of EBER1 (2-2), EBER2 (1-2) , or both 

EBERs (S-15) was confirmed following BamH1 digestion and gel electrophoresis (Fig. 

11B). EBERs expression levels were also evaluated by RT-PCR to confirm the 293-

BAC-EBV lines expressed both EBER1 and EBER2 (WT), EBER1 only (1-2), EBER2 

only (2-2), or no EBERs (S15) (Fig. 11C). The 293-BAC-EBV EBERs WT or null cells 

were then transfected with a miR-190/talin2 promoter luciferase reporter construct and 

luciferase activity was normalized to renilla activity (Fig. 11D). We saw that consistent 

with what we had seen earlier in 293T cells, the 293-BAC EBERs WT cells had higher 

miR-190/talin2 promoter activity compared to the 293-BAC EBERs null cells. These 

results indicated the need to further examine the upregulation of miR-190 by EBERs. 

3.3.2 RIG-I modulates miR-190 expression 

EBERs activate RIG-I due to their dsRNA nature and 5’ triphosphate ends 

(Ablasser et al., 2009; Samanta et al., 2006). TRANSFAC analysis indicated that the 
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miR-190/Talin2 promoter has a p65/p50 binding site, so it could be responsive to NF-kB, 

one of the downstream effectors of RIG-I activation. We tested the effect of RIG-I 

activation in two EBV negative cell lines, BJAB and Akata EBV negative.  

Nucleofection of BJAB cells with a constitutively active RIG-I (RIG MIII), that contains 

mutation in motif III, results in increased miR-190 expression as well as increases in 

known targets like, IFNß, ISG 56 or IL-10 mRNA expression (Fig. 12A, B, and C). In 

Akata EBV- cells, nucleofection of the miR-190/Talin2 promoter along with RIG MIII 

results in higher luciferase activity compared to the control (Fig. 12D). Nucleofection of 

the synthetic RNA analog, poly I:C, an agonist for RIG-I, results in an increase in miR-

190, IFNß and ISG56 expression in Akata EBV- cells (Fig. 12E and F). This indicates 

that RIG-I activation can increase miR-190 expression. In an EBV+ latency I 

environment, represented by Akata EBV+ cells, knockdown of endogenous RIG-I as 

illustrated by decreased protein expression in western blot correlates with a decrease in 

the known effector IL-10 and decreases miR-190 expression (Fig 13A-C). Thus, RIG-I 

contributes to the increase in miR-190 expression that is evident in latency I cells. 

3.3.3 EBERs expression induces miR-190 promoter activity through YY1 and NF-kB 

binding sites 

miR-190 is an intragenic miRNA which is processed with the TLN2 gene under 

the TLN2 promoter. Within the TLN2 promoter region, 2 kilobases in front of the 

transcriptional start site, there is a binding site for two members of the NF-kB family, 

NfkB1 or p50 and Rel A or p65, and multiple binding sites for YY1(TRANSFAC). We 

wanted to determine whether these transcription factors played a role in miR-190 

expression in the presence of EBERs. To do this we employed a miR-190/Talin2 
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luciferase reporter construct. We selected one YY1 binding site with the strong consensus 

sequence ATCCATGTG to mutate. This sequence is also conserved between rats, mice 

and humans (Zheng et al., 2010a). Additionally, the p50/p65 heterodimer binding site 

could also alter miR-190 expression in a NF-kB dependent manner.  We also deleted this 

binding site within the miR-190/Talin2 reporter.  Another construct containing deleted 

YY1 and NF-kB binding sites was generated as well (Fig. 14A). These luciferase 

constructs were introduced into 293T cells by transfection along with EBER1 or empty 

vector plasmid and readings were normalized to Renilla activity and pGL3 controls. 

EBER1 cotransfection with the miR-190/TLN2 reporter induced higher promoter activity 

than empty vector (pU6) and miR-190/TLN2 reporter. Strikingly, -YY miR-190 

promoter, - NF-kB miR-190 promoter and –YY1/- NF-kB miR-190 promoter did not 

induce similar high levels of reporter activity when cotransfected with EBER1 (Fig. 

14B). Nucleofection of Akata EBV- cells with WT or mutant promoter reporters and 

EBERs or empty vector plasmid (pU6) yielded similar results (Fig. 14C). These results 

indicate not only a role for EBER1 induction of miR-190, but also a role for the 

transcription factors YY1 and NF-kB in EBER1 mediated miR-190 expression. 

3.3.4 miR-190 expression reduced by NF-kB inhibitor Bay-11 7082 in Latency I cells 

and EBV negative cells expressing EBERs 

Previous work has identified EBERs as modulators of higher miR-190 expression 

(Cramer et al., 2014). Deletion of the p65/p50 binding site in the miR-190/Talin2 

promoter reduced promoter activity in the presence of EBER1 compared to wildtype 

miR-190/Talin2 promoter (Fig. 14B and C) Here we treated Sav I and Sav III cell lines 

(Latency I and III, respectively) with the NF-kB inhibitor Bay11-7082. The inhibitor 



64 

functions by keeping NF-kB bound to its inhibitor IκB-α by blocking IκB-α 

phosphorylation. We found that under two different inhibitor concentrations, 2µM and 

6µM, miR-190 expression was steeply suppressed compared to a DMSO control. miR-

190 expression in Sav III cells, which display a very low level of miR-190 expression, 

was unchanged by treatment (Fig 15A).   

In BJAB cells, which are not EBV infected, stable EBERs expression increased 

miR-190 expression (Fig 15B). This expression is again sensitive to Bay11 treatment 

with reductions in miR-190 expression evident at higher (6uM) concentrations in Bay11-

treated BJAB-EBER1 cells and robust reduction in miR-190 expression in Bay11-treated 

BJAB-EBER2 cells compared to DMSO controls.  

LMP1 is a protein essential for B cell transformation. It is functionally 

homologous to CD40 and substitutes signaling for it in the growth and differentiation of 

B cells.  It can activate NF-kB signaling (Hammarskjold et al., 1992). We tested LMP1 

regulation of miR-190 by nucleofecting empty plasmid (pSG5) or LMP-1 (pSG5-LMP1) 

into BJAB or Sav I cells and measuring miR-190 expression by RT-PCR. We found that 

LMP-1 in both of these cellular contexts did not increase miR-190 expression (Fig. 15C). 

3.3.5 YinYang-1, a cellular transcription factor, is more highly expressed in cells with 

EBERs 

Previous work has identified YinYang-1, YY1, as a transcription factor for miR-

190/TLN2 promoter activity (Zheng et al., 2010a). There are multiple potential binding 

motifs for YY1 in the miR-190/TLN2 promoter. Here we confirm the activating nature of 

YY1 on the miR-190/Talin 2 promoter by cotransfecting YY1 and the promoter into 
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293T cells. The combination of YY1 and miR-190/TLN2 promoter results in higher 

luciferase activity than pCMV control and miR-190/TLN2 promoter together. (Fig 16A). 

There is also higher protein expression in both type I cell lines (Sav I and Mutu I) vs. 

type III cell lines (Sav III and Mutu III) (Fig 16B) and higher expression in EBV negative 

background (BJAB) when EBERs is present (Fig 16C). Combined with the data from 

miR-190/TLN2 promoter deletion of the conserved YY1 binding motif, we can conclude 

that YY1 plays a role in inducing miR-190 expression in the presence of EBERs.  

3.4 Discussion 

Previous work from our lab explored the biological consequences of miR-190 

expression in EBV infected cells. We showed that miR-190 expression was tied to 

lowered apoptosis, limiting G0/G1 arrest and attenuating lytic reactivation of the virus 

(Cramer et al., 2014).  Along with these findings we showed that miR-190 expression 

was responsive to EBERs expression in EBV- BJAB cells and that the miR-190/TLN2 

promoter was activated by EBERs expression in 293T cells. With these findings 

regarding miR-190, we wanted to address the mechanism uniting EBERs to miR-190 

expression. In the work above we reached the following conclusions:  (i) miR-190 

expression is increased in the presence of EBERs; (ii) RIG-I activation increases miR-

190 expression; and (iii) NF-kB and YY1 binding increase miR-190 promoter activity.  

EBERs role in EBV pathogenesis are not yet fully defined. EBERs interact with 

numerous cellular factors, including; PKR, La, L22, RIG-I and TLR3 (Fok et al., 2006; 

Lerner et al., 1981; Nanbo et al., 2002; Samanta et al. 2006). We chose to focus on 

interactions that might induce expression of NF-kB and perhaps the transcription factor 
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YY1, because of predicted binding motifs for NF-kB and YY1 within the miR-190/TLN2 

promoter (our data, Zheng et al., 2010). EBER1 and 2, while only sharing 54% 

homology, exhibit very similar stem-loop RNA structures and thus may serve similar 

purposes in the cell. In our hands, miR-190 expression was responsive to both EBER1 

and EBER 2, so we examined previously described interactions that did not discriminate 

between the two (Cramer et al., 2014). For these reasons, RIG-I was a strong candidate 

for upstream modulator. 

We confirmed that RIG-I increases miR-190 expression. Constitutive expression 

of RIG-I in EBV negative cell lines showed that RIG-I alone induces miR-190 expression 

and promoter activation. Additionally a RIG-I agonist, poly(I:C), induced miR-190 

expression. In Akata EBV+ cells, RIG-I knockdown decreased miR-190 expression. 

Along with our previously published data, these data suggest that miR-190 expression in 

EBERs+ cells is downstream of RIG-I activation.  

Deletion of binding motifs for NF-kB and YY1 in the miR-190/TLN2 promoter 

revealed roles for both of these transcription factors in upregulating miR-190 expression. 

Further work could include localization assays to determine if these transcription factors 

are in the nucleus when EBERs is present. Since both transcription factors seem to be 

necessary for miR-190 expression when EBERs is present it would be interesting to see if 

they are working together perhaps through YY1 recruitment to enhancers (Gordon et al., 

2006). Chromatin immunoprecipitation (ChIP) in which protein-protein interactions are 

preserved would be helpful in determining the presence of interaction between the two 

transcription factors or recruitment of other proteins on the miR-190/Talin2 promoter. 
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We also demonstrate that miR-190 is not upregulated in the presence of LMP-1 in BJAB 

and Sav III cells, and although we did not assess NF-kB activation, these results may 

indicate LMP-1 driven NF-kB activation alone is not enough for miR-190 upregulation.  

The benefit for the virus in activating the innate immune response is tied to the 

expression of autocrine growth factors that are expressed after RIG-I activation. In type I 

latency this is IL-10, which promotes infected cell growth and survival (Kitagawa et al., 

2000). Our results demonstrate that EBERs increase miR-190 expression. In conjunction 

with EBERs induced expression of IL-10, miR-190 may permit cells to survive apoptosis 

and divide more readily (Cramer et al., 2014; Samanta et al., 2008). It is also possible that 

miR-190 acts in a mechanism to dampen some of the effects brought on by EBERs 

activation of the innate immune response.  An unpublished analysis of the expression of 

genes following miR-190 overexpression in BJAB (EBV negative) and Sav III (latency 

III) backgrounds revealed that many of the genes downregulated were from categories of 

immune response and activation (Table 2). Perhaps in addition to maintaining latency, 

miR-190, along with many other RIG-I upregulated miRNAs works as a negative 

feedback on EBERs induced response through RIG-I.  

While our work is limited to exploring effects on miR-190 expression, a more 

expansive look at how EBERs affect cellular miRNA expression in latency I is needed. 

With the use of antisense oligonucleotides against EBERs that induce endogenous RNase 

H-mediated degradation, it may be possible to lower EBERs expression sufficiently 

without perturbing the latency I phenotype of the examined cells (Lee et al., 2015). 

Another possible experimental method could be the use of RNA polymerase III inhibitors 
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to lower the expression of EBERs, although this will likely have other effects on the cells 

and may have unintended effects on miRNA expression (Ablasser et al., 2009). 

This study adds yet another layer to this story of EBERs interaction with RIG-I, 

illustrating another strategy through which EBV can influence cellular microRNA 

expression that doesn’t involve expression of many latency genes. In type I latency, a 

limited expression of viral proteins does not preclude the virus from having an effect on 

cellular genes. It is likely RIG-I activation stimulates the expression of many cellular 

miRNAs through its myriad of downstream effectors.  

3.5 Materials and Methods  

3.5.1 Cell Culture  

Type I (Sav I), type III (Sav III) EBV latently infected cell lines and the EBV negative 

cell lines, BJAB and  EBV positive and negative Akata, were utilized in this study. Akata 

EBV negative cells were derived from Akata EBV positive cells (Shimizu J. Virol 1994). 

Sav I and III cells were provided by Dr. Luwen Zhang at University of Nebraska-Lincoln. 

BJAB cells stably expressing EBER-1 and EBER-2 were developed by transfecting 

BJAB cells with EBER-1 and EBER-2 expression vectors followed by neomycin 

selection and cloning from single cells that stably express EBER-1 and EBER-2 RNA, 

respectively. These cells lines were maintained in RPMI-1640 medium supplemented 

with 10% (v/v) heat-inactivated fetal bovine serum (Gibco-Invitrogen Life Technologies, 

Carlsbad, Ca) and 1% penicillin-streptomycin-amphotericin (Gibco-Invitrogen). 293T 

and 293T-BAC-EBV cells generated by Dr. Ronghua Meng were maintained in 

Dulbecco’s modified eagle medium (DMEM) medium supplemented with 10% (v/v) 
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heat-inactivated fetal bovine serum (FBS), 1% (v/v) penicillin-streptomycin-amphotericin 

and were allowed to grow until 80% confluency before passaging. All cells were 

incubated at 37°C with 5% (v/v) CO2. 

3.5.2 Plasmids and Reagents 

The miR-190/talin2 promoter sequence is defined by the region of proximal genomic 

DNA within 1Kb (1095 bp) of the human Talin2 promoter region and was amplified by 

PCR with the primers (5’ ATCGGCTAGCCACCATGCCAGGCTAATTTT-3’ and 5’ 

CAGTCTCGAGACTCGACACGCATCGTACAC-3’) and cloned into a pGL3 luciferase 

repoter vector (Promega) (Beezhold et al, 2011). The suitable deletions were made with 

oligonucleotides for YY1 binding motif at -141 to -133 (5’-

GTACTCTTTATTTGCTGTTTTATTCTCTTAAAGTTGATTTTAAAGTCCAGCACT

TTTT-3’ and 5’-

AAAAAGTGCTGGACTTTAAAATCAACTTTAAGAGAATAAAACAGCAAATAAA

GAGTAC-3’) and the NF-kB binding motif at -499 to -488 (5’- 

AAGAGGAGCACCTGAGGATTCTTCTGTCTCCC-3’ and 

5’GGGACAGAGAAGAATCCTCAGGTGCTCCTCTT3’) using the Quikchange II XL 

site-directed mutagenesis kit (Agilent Technologies, Santa Clara, California). The EBER 

-1 expression vector was generated by cloning a 530 bp Sac I-Sau3A restriction fragment 

of EBV genomic DNAs that contains the EBER-1 genes with the promoter into pGem-3 

vector (Promega). The pSG5-LMP1 plasmid was from Dr. Erle Robertson (University of 

Pennsylvania). The pGL3-IFNbeta plasmid was provided by Dr. Fangxiu Zhu, Florida 

State University. RIG-I motif III mutant, pEF-BOS FLaG RIG, was provided by Dr. 
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Andy Minn, Abramson Family Cancer Research Center-University of Pennsylvania. YY1 

plasmid, pCMV-YY1 was a kind gift from Dr. Yang Shi, Harvard Medical School. 

3.5.3 RNA preparation for RT-PCR 

RNA was extracted from lymphocyte lines using modified TRIZOL method (Invitrogen). 

Briefly, 107 cells were suspended in 1 ml Trizol reagent, homogenized and incubated for 

5 min on ice. 0.2 ml of chloroform was added to each sample followed by vigorous 

vortex for 1 min. The samples were centrifuged for 15 min at 14,000 rpm at 4oC, and the 

upper aqueous phase was transferred to fresh tubes. The samples were re-extracted with 

an equal volume of phenol/chloroform/isoamyl alcohol (Fisher Scientific, Pittsburg, PA) 

once and an equal volume of isopropyl alcohol once again. RNAs were recovered by 

ethanol precipitation, dissolved in RNase free H20 and stored at 80oC until further 

processing.  

3.5.4 Real-time RT-PCR for miRNA, mRNA and EBER RNA detection and quantitation 

10 ng of total RNA was reverse transcribed using microRNA reverse transcription kit and 

stem-loop microRNA assay kit specific for miR-190 (Applied Biosystems, Foster City, 

CA). RT-PCR was done on Roche LightCycler® System using the TaqMan® microRNA 

assay kit (Applied Biosystems) and LightCycler® TaqMan® master mix (Roche, 

Mannheim, Germany) following the manufacturer's instructions. Human small nuclear 

RNA U6 (RNU6B) (Applied Biosystems) was used to normalize mature miRNA and 

EBERs data. For mRNA quantification, 1 µg of total RNA was reverse transcribed using 

SuperscriptTM II reverse transcriptase according to manufacture’s instructions 

(Invitrogen). The resulting cDNA was subjected to qPCR with the SYBR green I kit® 
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(Roche, Mannheim, Germany) following the manufacturer's instructions. Custom primers 

were developed for: IFN-ß (5′-GAT TCA TCG AGC ACT GGC TGG-3’; 5′-CTT CAG 

GTA ATG CAG AAT CC-3’, ISG56 (5′-TAG CCA ACA TGT CCT CAC AGA C-3’; 

5′-TCT TCT ACC ACT GGT TTC ATG C-3’with results being normalized to GAPDH 

(5’-AGCCACATCGCTCAGACAC-3’ and 5’-GCCCAATACGACCAAATCC-3’).  Or 

the resulting cDNA was subjected to qPCR using the QuantiTectPrimer Assay SYBR kit 

for IL-10 (Hs_IL10_1_SG) and GAPDH (Hs_GAPDH_2_SG) (Qiagen, Valencia, CA). 

EBER1 and EBER2 were quantitated by qRT-PCR with reverse transcription primer 

(EBER-1: 5’-ACCACCAGCTGGTACTTGACCGA-3’, EBER2: 5’-

CAAGCCGAATACCCTTCTCCCAGA-3’) and custom-designed TaqMan® assay kits 

(Applied Biosystems).  Probes from Qiagen and Life Technologies offer close to 100% 

PCR efficiency for reliable relative quantification of expression. For other probes 

efficiency of 100% is assumed. Specifically, the amount of relative gene expression of 

miRNA or mRNA is presented as 2 (−ΔCt), ΔCt= Ct gene of interest - Ct housekeeping 

gene. 

3.5.5 Western blot analysis 

Whole cell extract were prepared in lysis buffer [20 mM Na2HPO4 (PH 7.4), 150 mM 

NaCl, 2 mM EDTA, 2 mM EGTA, 0.3% (v/v) Triton X-100, 100 µM PMSF with 

complete protease inhibitor cocktail tablet (Roche). Protein concentrations of the 

supernatant were determined using Bradford protein assay (Bio-Rad, Hercules, CA). 

Samples were diluted with NuPAGE® LDS Sample Buffer (Invitrogen), denatured by 

boiling for 10 min, and loaded on 4-12% Tris-Bis pre-cast gels (Invitrogen). Proteins in 

the gels were transferred to nitrocellulose membrane (manufacturer). The membranes 
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were blocked with 5% (w/v) non-fat milk in phosphate buffered saline (PBS) containing 

0.1% (v/v) Tween-20 (PBS-T), followed by overnight incubation of specific primary 

antibodies, including rabbit anti-RIG-I (Cell Signaling Technologies), rabbit anti-YY1 

(Cell Signaling Technologies) and mouse anti-ß-actin (Cell Signaling) at varying 

dilutions in blocking buffer at 4°C. The blots were treated with HRP conjugated anti-

rabbit or anti-mouse IgG (Pierce, Rockford, IL) and detected with Novex® ECL 

Chemiluminescent Substrate Reagent Kit or Supersignal West Dura Extended Duration 

Substrate (Pierce).  

3.5.6 shRNA-mediated knockdown of RIG-I gene expression 

Mission shRNAs against human RIG-I were purchased from Sigma-Aldrich. There were 

two individual shRNA lentiviral vectors in pLKO.1-puro plasmids against different target 

sites in RIG-I (Clone ID: NM_014314.2-505s1c1 (1) NM_014314.2-2024s1c1 (2). Each 

of the shRNA vectors and a control vector were used to prepare lentiviral stocks by 

cotransfecting 293T cells with the shRNA vector and two packaging vectors (pHR’8.2DR 

and pCMV-VSV-G) at a ratio of 4:3:1 respectively using the calcium phosphate method. 

Three days post-transfection the supernatant medium was harvested. Viral stocks were 

centrifuged (500xg for 10 mins at 4°C) and filtered through a 0.45 um filter (ensuring 

removal of nonadherent cells) and stored at 4°C or immediately used in infection. 

Logarithmic phase BJAB, Akata EBV+ cells were transduced with the shRNA stocks 

(RIG-I/control) in the presence of polybrene (8ug/ml). Transduced cells were selected 

with puromycin (2ug/ml) and tested for effective knockdown of RIG-I by western blot 

performed on whole cell lysates. RNA was also collected for analysis. 
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3.5.7 DNA Transfection 

293T cells were transfected with Lipofectamine 2000 according to manufacturer’s 

recommendations. Plasmids or poly (I:C) were introduced into suspension cell lines with 

the Amaxa Nucleofector II and Kit V (Lonza, Basel, Switzerland). Briefly, 3-5x 106 cells 

was suspended in 100 µl of nucleofector solution and transferred into cuvettes. In the 

Nucleofector II system (Lonza), Program T020 was used for BJAB and Sav III cells and 

Program G016 was used for Akata EBV negative cells. 

3.5.8 Luciferase reporter assay 

Cells were transfected with the full amount of DNA suggested for method 

(Lipofectamine 2000 or Amaxa Kit V), cell number and vessel volume. Luciferase 

reporter plasmid transfection alone was accompanied by 1/20 of the total DNA of renilla 

reporter plasmid. pEBER1/pU6 or pRIG-IMIII/pCR3.1 were cotransfected with 

luciferase reporter in a ratio of 2(treatment):1(reporter) with 1/20 of the total DNA of 

renilla reporter plasmid. After 48 hours cells were lysed and luciferase/renilla activity 

was measured using the Dual-Luciferase® Reporter Assay System (Promega, Madison, 

WI). Firefly luciferase activity was normalized to renilla activity and pGL3 controls for 

each transfection. 

3.5.9 Bay11-7082 treatment 

BJAB background, Sav I or Sav III cells were cocultured with the NF-kB inhibitor, Bay 

11-7082 in DMSO carrier at 2 µM or 6 µM or DMSO control alone for 30 minutes before 

media was refreshed. 24 hours after culture RNA was harvest and analyzed for miR-190 

expression. 
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Figure 11: Effect of EBER-null BACMID on miR-190 promoter activity.  
(A) Schematic structures of EBERs WT or mutant BACMIDs. (B) Electrophoretic 
analysis of viral genomes digested with BamH1, resolved on a 0.8% agarose gel and 
stained with ethidium bromide. (C) EBER2 expression analyzed via RT-PCR in 293-
BAC cell lines and  normalized to U6. (D) EBER1 expression analyzed via RT-PCR in 
293-BAC cell lines and normalized to U6. (E) 293-BAC EBERs WT and null cells were 
transfected with pGL3 or miR-190/Talin2 promoter and luciferase activity was 
normalized to transfection (renilla) controls. 
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Figure 12: RIG-I activation induces miR-190 expression.  
(A, B, and C) In BJAB cell lines, nucleofection of constitutively active RIG-I induces 
miR-190 expression and the expression of IFN response elements like IFNBeta, ISG56 
and IL-10 as measured by RT-PCR. (D) In Akata EBV- cells, constitutively active RIG-I 
increases pmiR-190/TLN2 and IFNbeta expression as measured by luciferase activity 
normalized to renilla and pGL3 controls. (E and F) In Akata EBV- cells nucleofection of 
poly(I:C) increases miR-190, IFNbeta and ISG56 expression over control plasmid (pU6) 
as measured by RT-PCR. Data are means and standard deviations for three experimental 
replicates and comparisons are by Student’s t-test*P< 0.05, **P<0.01
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Figure 13: RIG-I knockdown decreases miR-190 expression in Akata EBV positive 
cells.  
(A) In Akata EBV positive cells, the knockdown of RIG-I with shRNA results in 
reduction of RIG-I protein levels. (B) sh-RNA knockdown of RIG-I reduces expression 
of downstream effectors, like IL-10 as measured by RT-PCR normalized to GAPDH. (C) 
sh-RNA knockdown of RIG-I reduces miR-190 expression normalized to U6 as 
measured by RT-PCR 
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Figure 14: EBERs induces miR-190/TLN2 promoter activity through YY1 and NF-
kB binding sites. 
(A) mutant miR-190/Talin2 promoter luciferase constructs that lack the conserved YY1 
binding site (-YY1), NF-kB heterodimer site (-NF-kB) or both sites (-YY1/-NfkappaB) 
(B) Relative luciferase activity normalized to renilla of reporter constructs (pGL3 control, 
WT, -YY1, - NF-kB or –YY1/- NF-kB miR-190 Talin2 promoter) transfected with empty 
vector or EBER1 plasmid DNA in 293T cells. (C) Relative luciferase activity normalized 
to renilla of reporter constructs (pGL3 control, WT, -YY1, - NF-kB or –YY1/- NF-kB 
miR-190 Talin2 promoter) transfected with empty vector or EBER1 plasmid DNA in 
Akata EBV- cells. 
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Figure 15: Induction of miR-190 expression is inhibited by Bay11 in Type I latency 
and EBERs expressing BJAB cells.  
A) Bay-11 inhibitor of miR-190 expression measured by RT-PCR expression of miR-190 
normalized to small nuclear RNA U6 in Sav I vs Sav III cells (B) and in BJAB cells with 
(EBER1 or EBER2) or without EBERs (BJAB or neo6).  (C) miR-190 expression 
measured by RT-PCR and normalized to U6 in BJAB and Sav I cells nucleofected with 
control plasmid (pSG5) or pSG5-LMP1 
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Figure 16: YY1 expression high in type I latency and EBERs expressing cell lines.  
(A) In a transient transfection of 293T cells, co-transfection of YY1 expression vector 
with the miR-190/Talin2 promoter report enhanced promoter activity. (B) Type I latency 
(Sav I or Mutu I) and type III latency (Sav III and Mutu III) cell lines were examined for 
YY1 expression by western blot. (C) BJAB cells that stably transfected with EBER-1, 
EBER-2 and empty plasmid (Neo) were analyzed for YY1 expression level by Western 
blot. 
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CHAPTER 4 General Discussion 

miRNAs are small non-coding RNAs which can modulate gene expression, by 

either degrading mRNAs or preventing mRNA translation into proteins. Ideally, viruses 

in latency will reside in a cell that successfully proliferates, divides, differentiates and/or 

evades cell death— these processes are heavily regulated by microRNAs. Viruses have 

evolved strategies to harness miRNA-mediated regulation by producing their own 

miRNAs or modulating host miRNAs. EBV employs both strategies—with a host of its 

own miRNAs and by influencing cellular miRNA expression. The microRNAs of viruses 

and EBV, in particular, are well studied as they provide a mechanism whereby the virus 

can modulate host gene expression. For instance, EBV can target the cellular proteins 

PUMA and CXCL-11 through its miRNAs, miR-BART5 and miR-BHRF1-3, 

respectively (Choy et al., 2008; Xia et al., 2008). There are also cellular miRNAs that are 

upregulated during type III latency (Cameron et al., 2008; Forte et al., 2012; Mrazek et al. 

2007). The viral latency protein, LMP1, is a regulator of many cellular miRNAs 

including miR-34a, miR-155 and miR-146a (Forte et al., 2012; Gatto et al., 2008; Motsch 

et al., 2007). 

The physiological status of cells in the various programs of latency are different—

with major differences between type III latency, a more proliferative state driven by the 

virus, and type I latency, a quiescent homeostatic division mostly attributed to cellular 

factors (Hochberg et al., 2004; Hochberg and Thorley-Lawson, 2005). There is 

differential miRNA expression between type III latency and type I latency (Cramer et al. 

2014). This differential expression could be attributed to the difference in B cell 

compartment in which these programs reside or from the different viral gene expression 
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that accompanies each latency program. Given this differential expression, cellular 

miRNAs may play critical roles in regulating latency type determination and switch. 

Little focus has been placed on studying cellular miRNAs in the context of latency I. 

Perhaps this is due to the difficulty of establishing a good base of comparison, while type 

III latency LCLs are easily compared to uninfected B cells before primary infection and 

the greater interest in fully understanding the transformation process (Cameron et al., 

2008; Forte et al., 2012). It is not surprising given the vastly different viral and cellular 

gene expression and phenotypes of the various programs of latency, that there is 

divergent miRNA expression between one or more programs (Cramer et al., 2014). 

Utilizing a miRNA expression comparison between type I latency and type III latency, I 

described the mode of induction and action of one miRNA, miR-190, in latency I 

(Cramer et al., 2014).  While my focus has been trained on understanding the 

upregulation and function of miR-190, it is important to study other cellular miRNAs 

within the latency I program as my broader hypothesis is that latency establishment and 

switch are influenced by many different cellular miRNAs.   

 The primary aims of this thesis were: to identify targets of the latency I 

upregulated miRNA, miR-190, and to examine the mechanisms by which EBV in latency 

I may control miR-190 expression. Several conclusions were reached. First, miR-190 is 

upregulated in latency I compared to latency III. There is upregulation of miR-190 in Sav 

I (type I latency) vs. Sav III (type III latency) cells and these results were confirmed by 

looking in multiple paired type I and type III cells lines (Cramer et al., 2014).  Next, miR-

190 expression results in reduced expression of TP53INP1 and NR4A3. I overexpressed 

miR-190 in low miR-190 background cells and utilized a miR-190 antagomiR in high 
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miR-190 background cells for loss of function and observed changes in mRNA and 

protein levels. A target site in the 3’UTR of TP53INP1 for miR-190 was also described 

and verified. Third, through overexpression experiments, I was able to observe miR-190 

influenced reductions in G0/G1 cell cycle arrest, apoptosis and viral reactivation. Fourth, 

using stable or transient EBERs expression I saw an increase in miR-190 expression in 

the presence of EBERs. Additionally, through constitutively active RIG-I expression, 

RIG-I agonist nucleofection and RIG-I knockdown I determined that RIG-I activation 

increases miR-190 expression and promoter activity. Finally, mutation of predicted NF-

kB and YY1 binding motifs in the miR-190/Talin2 promoter indicated the importance of 

these transcription factors in miR-190 promoter activity. In the following, I address 

questions raised by the experiments in this thesis, discuss the future directions this project 

may take and speculate on the broader implications of this work. 

In the second chapter through use of microarray profiling I identified several 

potential miR-190 targets. This identification was based off of a gene expression analysis 

in two different cell types, BJAB and Sav III following overexpression of miR-190. I 

focused primarily on TP53INP1 and NR4A3 for their potential relevance to latency I 

maintenance and did not investigate the remaining three potential targets; GEM (GTP 

binding protein overexpressed in skeletal muscle), NDRG1 (N-myc downstream 

regulated 1) or FBN1 (fibrillin1) in depth. Of these three, NDRG1 and GEM were 

downregulated in both SAV III and BJAB cells overexpressing miR-190, while FBN1 

was only downregulated in Sav III, but was identified in TargetScan 5.1 as a predicted 

target. (Table 1)  
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All three genes could potentially be important to study as they may contribute to 

the effect exerted by miR-190 in latency I cells. GEM is upregulated following mitogenic 

stimuli in T cells (Maguire et al., 1994) and was a predicted target of miR-190 in the 

miRNA.org database. NDRG1 plays a role in p53-mediated apoptosis and suppresses 

proliferation (Ellen et al., 2008; Stein, et al., 2004). NDRG1 is also targeted by EBV 

BART miRNAs in epithelial cells (Kanda, et al., 2015). FBN1, an extracellular matrix 

glycoprotein, is involved in forming microfibrils and connective tissue. In mice, FBN1 

mutation is associated with increased inflammation (Gerber et al., 2013). I can only 

speculate at this point on what impact miR-190 targeting of these genes would have on 

latency I. NDRG1 seems to serve a similar purpose as TP53INP1 and its targeting by 

miR-190 could contribute to the decrease in cell cycle arrest and death seen with miR-

190 overexpression. It is also possible that these genes are just a few of the targets that 

are grouped within immune response and activation. Potentially, miR-190 could dampen 

immune activation or response—either making EBV infected B cells less attractive to 

cytotoxic T cells, inhibiting proliferation and/or minimizing trafficking to other tissues. 

Furthermore when I analyzed the miR-190 overexpression gene expression data in 

DAVID, which extracts biological meaning from large gene lists and maps those lists to 

associated biological annotation and onotology, miR-190 was predicted to target 

regulators of immune response (including GEM) and activation  (including NDRG1) in 

BJAB cells and immune response (GEM) in Sav III cells (Table 2). 

Through identification of two targets for study, TP53INP1 and NR4A3, I 

questioned what effect miR-190 had on cell cycle and death and viral reactivation. I 

focused on describing the manner in which miR-190 overexpression affected these 
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biological processes.  I chose to focus on the impact that miR-190 had instead of 

specifically knocking down each of these targets in the latency I backgrounds. Though 

this approach makes it impossible to be certain if TP53INP1 or NR4A3 alone are the 

reasons for G0/G1 arrest, and cell death (in the case of TP53INP1) or viral reactivation 

(in the case of NR4A3) the effect could be more readily subscribed to miR-190 through 

my experiments. In the case of viral immediate early genes, it is possible that reductions 

in expression of multiple genes are needed to reduce viral reactivation. In BAC-EBV 

containing 293T cells, introduction of NR4A3 alone had no effect on viral reactivation—

although transfection of another immediate early cellular gene, EGR1, increased both 

BZLF1 and BRLF1 expression (Ye et al., 2010).  

George Miller’s group identified several other immediate early genes, which 

exhibit peaks in expression before the induction of BZLF1 and BRLF1 (Ye et al., 2010). 

The miR-190 overexpression microarray identified decreases in four of these previously 

described immediate early genes, including NR4A3. The other three immediate early 

genes were EGR1, NR4A1 and EGR3 and all exhibited decreases in expression with 

miR-190 overexpression in both Sav III and BJAB cells. I was unable to confirm a direct 

binding site for miR-190 in NR4A3’s 3’UTR, but the decrease in multiple cellular 

immediate early genes in the presence of miR-190 suggests that there may be a master 

regulator of these genes targeted by miR-190. Potentially these genes share a common 

transcription factor that contains a miR-190 target site in its 3’UTR.  Several transcription 

factors, including SMAD2, SMAD4 and IGF-1 were downregulated by miR-190 through 

3’UTR targeting in 293T cells (Hao et al., 2014), In mouse adipocytes, IGF-1 itself 
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induces the expression of several identified cellular immediate early genes, including: 

NR4A1, EGR1 and EGR2 (Boucher et al., 2010).  

As shown in chapter two, the initial observation of higher expression of miR-190 

in latency I vs. latency III cells and in Akata EBV+ vs Akata EBV- cells indicated that a 

viral factor might influence miRNA expression. To my knowledge, this work is the first 

to identify a relative difference in EBERs expression between latency I vs latency III cell 

lines, with latency I lines expressing far more EBERs. It is unclear why this differential 

expression of EBERs exists between type I and type III latency cell lines. It may be 

worthwhile to look at whether type I latency cells exhibit higher levels of the polymerase 

III-specific transcription factors, like TFIIIC and Bdp1 (a subunit of TFIIIB), which have 

been shown to stimulate EBERs transcription, than their type III latency counterparts 

(Felton-Edkins et al., 2006).  It is also possible that EBERs have a longer half-life in type 

I latency cells vs. their type III counterparts. Due to the limited viral gene expression in 

latency I cell lines, I was able to identify EBERs as potential regulators of miR-190 

expression. Further investigation of EBERs and miR-190 expression or miR-190/Talin2 

promoter activity yielded a positive association between the two. This led me to further 

describe the mechanism for EBERs based upregulation of miR-190 in chapter three. 

In the third chapter, our lab was able to utilize 293T cell line transfected with 

BAC-EBV with or without EBERs. This system while providing some data for the 

current study will also be a useful future tool to establishing the role EBERs play in 

upregulating other miRNAs.  Combined with data from chapter two, we were able to 

show that both transient expression of EBERs and BACMID-based expression of EBERs 
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increased miR-190 promoter activity (Cramer et al., 2014). While our work with the 293-

BAC-EBV lines focused on 293-BAC EBERs null vs. 293-BAC EBERs WT cells, we 

also have 293-BAC-EBV cells, which express only EBER1 or only EBER2. My current 

work makes no distinction between EBER1 and EBER2 and often utilizes EBER1 only 

for experiments, but if a differential effect of EBER1 or 2 on miR-190 expression could 

be explored with these cell lines. 

EBERs have numerous associations with cellular proteins, providing multiple 

possible candidates for activators upstream of miR-190. EBERs inhibits IFN- α mediated 

apoptosis, perhaps through its association with and inhibition of PKR, which is a key 

mediator of the IFN- α response to viral dsRNA (Nanbo et al., 2002). Although other 

reports suggest that PKR remains active and phosphorylated in BL cells with EBERs 

expression (Ruf et al., 2005). RIG-I, a RNA sensor molecule, is activated by both EBERs 

in BL cells, La protein also associates with both EBERs, while L22 proteins primarily 

associate with EBER1 and Pax5 is limited to EBER2 interaction (Fok et al., 2006; Lee et 

al., 2015; Lerner et al., 1981; Samanta et al., 2006). Other RNA sensor molecules, like 

TLR3 have been shown to respond to EBERs, but this association is mostly described in 

the context of EBERs released with La extracellularly (Iwakiri et al., 2009).  I established 

that miR-190 is induced with RIG-I activation through experiments in BJAB and Akata 

EBV-positive cells utilizing constitutively active RIG-I, the RIG-I agonist poly (I:C) and 

RIG-I knockdown. Since RIG-I shares downstream signaling with other RNA sensors, 

including MDA5 and TLR3 it would be interesting to see if constitutive activation or 

knockdown of these sensors has any effect on miR-190 expression. Additionally it would 

be interesting to investigate whether other viral RNAs, which activate RIG-I, like 
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Adenovirus virus associated RNA (VA), have an effect on miR-190 expression 

(Minamitani et al., 2011) 

While my work focuses on the consequences of RIG-I activation in the context of 

miR-190 expression, I acknowledge that RIG-I and its resulting downstream activation of 

NF-kB, IFN-ß and ISGs will likely have a robust effect on many other miRNAs. To 

address the role that NF-kB plays in modulating miR-190 expression I deleted a p65/p50 

binding site in the miR-190/Talin2 promoter. This motif deletion did robustly reduce 

miR-190 promoter activity. In Sav I latency I cells and in EBERs expressing BJAB cells, 

treatment with Bay-11 7082 a NF-kB inhibitor also reduced miR-190 expression—

although this method likely has a drastic effect on multiple genes, including many 

miRNAs. In the context of EBV infection alone, NF-kB is identified as a regulator of 

expression in numerous miRNAs. Global analysis of miRNAs modulated during resting 

B lymphocytes to LCL transition revealed a role for NF-kB in both the upregulation and 

downregulation of many miRNAs, with histone modification marks found around the 

transcriptional start sites of these miRNAs (Vento-Tormo et al., 2014). Several miRNAs, 

including the well studied latency III miRNAs, miR-155 and miR-146a are downstream 

of NF-kB (Gatto et al., 2008; Motsch et al., 2007).  

The latency protein, LMP-1 is a robust inducer of NF-kB activity. As such, I have 

also examined if LMP-1 increases miR-190 expression in both BJAB and Sav I cells.  In 

my hands, I saw no significant changes in miR-190 expression in either cell lines. This 

may be an indicator of the importance of having YY1 present in the cell to increase miR-

190 expression. YY1 could perhaps enhance miR-190 expression through interaction 
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with NF-kB. There is evidence of interactions between YY1 and NF-kB in B cells 

(DLBCL), with YY1 binding to the p65 (RelA) subunit and binding to enhancer regions 

of IgH (Sepulveda et al., 2004). There is differential expression of YY1 in the presence or 

absence of EBERs or type I vs type III cells, with YY1 expression higher both in latency 

I cells and in the presence of EBERs. The true importance of YY1 in miR-190 expression 

in BL cells could be described by further experiments. YY1 has multiple binding sites 

within the promoter and this complicates determining the role of YY1 on miR-190 

expression, as different binding sites may have different effects on expression. 

Knockdown of YY1 could potentially indicate the importance of this transcription factor 

in miR-190 expression in the presence of EBERs and in type I latency cells. Although in 

my hands, attempts to knockdown YY1 in type I latency cell lines have yet to be 

successful. Another course of action is through the use of dominant negative mutant 

YY1. Perhaps amino-terminal activation domain deletion mutants, could be utilized to 

address the role of YY1 in miR-190 expression. 

EBERs induced NF-kB activation within an environment where YY1 is prevalent 

could potentially result in higher miR-190 expression. Within germinal center B cells, 

YY1 is known to play an important role in the expression of many genes and is essential 

for pro-B to pre-B cell development (Liu et al., 2007; Green et al., 2011).  Additionally 

higher YY1 protein levels were found in both BL and DLBCL cells (Castellano et al., 

2010). Perhaps the availability of YY1 is the determining factor in the differential 

expression of miR-190 between type I and type III latency cells. Increasing YY1 

expression exogenously in latency III cells and then assaying miR-190 promoter activity 

could address this question. However, it may also be true that phosphorylation state of 
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YY1 is the true indicator of its ability to interact with the miR-190/TLN2 promoter. In 

the case of the miR-190/TLN2 promoter, YY1 phosphorylation reduces its DNA binding 

affinity (Zheng et al, 2010a). YY1 phosphorylation levels in type I and type III latency 

cells and cells expressing EBERs should be investigated as well. Beyond this 

observation, the responsible phosphorylation sites in YY1 would have to be mapped and 

ultimately mutated to determine if YY1 phosphorylation is a key event in miR-190 

regulation. 

EBV has evolved with its human hosts to occupy a cellular niche, which is ideal 

for the virus and in the case of type I latency does not perturb the host immune system.  

Through this evolution, EBV has acquired the means to establish a lifelong infection, 

keep infected cells alive and avoid immunological detection by employing multiple 

programs of latency. EBV latency maintenance is aided by the differential upregulation 

of cellular miRNAs during latency. EBERs upregulated miR-190 may play a small role in 

EBV’s success in type I latency through dampening apoptosis and reactivation and is a 

paradigm for type I latency upregulated miRNAs (Fig. 17). More type I latency miRNAs 

could be identified by utilizing a broader screen of multiple type I latency vs type III 

latency cell lines. Multiple cellular miRNAs may respond to latency I gene expression, 

particularly through the mechanism that I identify in chapter three, and may share effects 

or targets with miR-190. In combination with other upregulated miRNAs, miR-190 may 

have effects that outweigh anti-viral response and promote survival of the virus within 

the type I latency program. 
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Table 2: DAVID gene ontology categories of downregulated genes in BJAB and Sav 
III cells after miR-190 overexpression.  

Gene expression data for genes with a fold changes less than -1.3 and a significance with 
False Discovery rate of less than 0.1 in BJAB and SAVIII lines overexpressing miR-190. 
Genes were normalized to Background for HuGene1_st v1 array to eliminate any existing 
bias. Bolded genes are downregulated with miR-190 overexpression in both BJAB and 
Sav III cells 
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Figure 17 Proposed mechanism for EBERs upregulation of miR-190 and its effects 
in type I latency 
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