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Dynamic Assessment of Cerebral Metabolic Rate of Oxygen (cmro2)
With Magnetic Resonance Imaging

Abstract
The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. As such, the
cerebral metabolic rate of oxygen (CMRO2) is a direct measure of brain energy use. CMRO2 provides insight
into brain functional architecture and has demonstrated potential as a clinical tool for assessing many
common neurological disorders.

Recent developments in magnetic resonance imaging (MRI)-based CMRO2 quantification have shown
promise in spatially resolving CMRO2 in clinically feasible scan times. However, brain energy requirements
are both spatially heterogeneous and temporally dynamic, responding to rapid changes in oxygen supply and
demand in response to physiologic stimuli and neuronal activation.

Methods for dynamic quantification of CMRO2 are lacking, and this dissertation aims to address this gap.
Given the fundamental tradeoff between spatial and temporal resolution in MRI, we focus initially on the
latter. Central to each proposed method is a model-based approach for deriving venous oxygen saturation
(Yv) – the critical parameter for CMRO2 quantification – from MRI signal phase using susceptometry-based
oximetry (SBO).

First, a three-second-temporal-resolution technique for whole-brain quantification of Yv and CMRO2 is
presented. This OxFlow method is applied to measure a small but highly significant increase in CMRO2 in
response to volitional apnea.

Next, OxFlow is combined with a competing approach for Yv quantification based on blood T2 relaxometry
(TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly improves T2-based CMRO2
quantification, while allowing direct, simultaneous comparison of SBO- and T2-based Yv. iTRUST is applied
to assess the CMRO2 response to hypercapnia – a topic of great interest in functional neuroimaging –
demonstrating significant biases between SBO- and T2-derived Yv and CMRO2.

To address the need for dynamic and spatially resolved CMRO2 quantification, we explore blood-oxygen-
level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse sequence
combining OxFlow with standard BOLD/CBF measurement. Preliminary results suggest Ox-BOLD provides
improved calibration “M-maps” for converting BOLD signal to CMRO2.

Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small clinical pilot
study demonstrates OSA-associated reductions in CMRO2 at baseline and in response to apnea, highlighting
the potential utility of dynamic CMRO2 quantification in assessing neuropathology.
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ABSTRACT 

 

DYNAMIC ASSESSMENT OF CEREBRAL METABOLIC RATE OF OXYGEN (CMRO2)  

WITH MAGNETIC RESONANCE IMAGING 

Zachary B. Rodgers 

Felix W. Wehrli, Ph.D. 

The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. 

As such, the cerebral metabolic rate of oxygen (CMRO2) is a direct measure of brain energy use. 

CMRO2 provides insight into brain functional architecture and has demonstrated potential as a 

clinical tool for assessing many common neurological disorders.  

Recent developments in magnetic resonance imaging (MRI)-based CMRO2 quantification have 

shown promise in spatially resolving CMRO2 in clinically feasible scan times. However, brain 

energy requirements are both spatially heterogeneous and temporally dynamic, responding to 

rapid changes in oxygen supply and demand in response to physiologic stimuli and neuronal 

activation. 

Methods for dynamic quantification of CMRO2 are lacking, and this dissertation aims to address 

this gap. Given the fundamental tradeoff between spatial and temporal resolution in MRI, we 

focus initially on the latter. Central to each proposed method is a model-based approach for 

deriving venous oxygen saturation (Yv) – the critical parameter for CMRO2 quantification – from 

MRI signal phase using susceptometry-based oximetry (SBO). 

First, a three-second-temporal-resolution technique for whole-brain quantification of Yv and 

CMRO2 is presented. This OxFlow method is applied to measure a small but highly significant 

increase in CMRO2 in response to volitional apnea.  

Next, OxFlow is combined with a competing approach for Yv quantification based on blood T2 

relaxometry (TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly 
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improves T2-based CMRO2 quantification, while allowing direct, simultaneous comparison of 

SBO- and T2-based Yv. iTRUST is applied to assess the CMRO2 response to hypercapnia – a 

topic of great interest in functional neuroimaging – demonstrating significant biases between 

SBO- and T2-derived Yv and CMRO2. 

To address the need for dynamic and spatially resolved CMRO2 quantification, we explore blood-

oxygen-level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse 

sequence combining OxFlow with standard BOLD/CBF measurement. Preliminary results 

suggest Ox-BOLD provides improved calibration “M-maps” for converting BOLD signal to 

CMRO2. 

Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small 

clinical pilot study demonstrates OSA-associated reductions in CMRO2 at baseline and in 

response to apnea, highlighting the potential utility of dynamic CMRO2 quantification in assessing 

neuropathology. 
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Chapter 1: Introduction 

1.1. Cerebral Metabolism 

The mechanism through which the brain converts energetic substrates into thoughts and actions 

is one of the central questions in human biology. This section discusses the unique energy 

requirements of the brain, the early efforts to visualize brain energy use, and the motivations for 

quantifying the cerebral metabolic rate of oxygen (CMRO2). 

1.1.1. The Unique Energy Requirements of the Brain 

Among human organs, the brain is distinct in its requirement for a large, uniform, and 

uninterrupted supply of oxygen. Although comprising only 2% of total body mass, the brain 

accounts for approximately 20% of the body’s total oxygen consumption (1). Furthermore, the 

brain is almost entirely dependent on oxidative metabolism of glucose to meet its energy 

requirements, and is therefore especially susceptible to hypoxia and ischemia. If circulation to the 

brain is stopped, such as following cardiac arrest, loss of consciousness occurs in seconds, and 

brain tissue is irreversibly damaged in as little as three minutes (2). 

Since the brain is almost entirely dependent on oxygen to meet its energy needs, CMRO2 

provides a direct, quantitative measure of the brain energy requirements, and an important 

marker of tissue viability and function. While the precise cellular mechanisms relating neuronal 

signaling and cerebral metabolism are still an area of active investigation, it is known that 

approximately 80% of cerebral metabolism at rest is devoted to active signaling processes, i.e., 

the propagation of action potentials and the restoration of those potentials after 

neurotransmission (3). Recent observation that these resting-state signals are spatiotemporally 

correlated across distinct brain regions – the so-called “default mode network” (4) – has 

heightened interest in understanding the relationship between neuronal signaling and cerebral 

metabolism. 
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Because CMRO2 is remarkably well conserved in normal physiology, there is much interest in 

understanding physiologic and pathologic states in which CMRO2 is affected. Although, 

alterations in CMRO2 have been suggested in several common neurologic disorders, these 

changes are relatively small given the critical importance of oxygen in maintaining tissue viability. 

Furthermore, while cerebral metabolism is increased in response to mental and motor activity, 

these changes tend to be highly localized, informing on the structural and functional organization 

of the brain, but at the same time making measurement of these metabolic changes challenging. 

For these reasons, developing methods for quantification and imaging of brain activity and 

metabolism remains a major goal and challenge of neuroscience research. 

1.1.2. A Brief History of Measuring Brain Activity 

One of the major challenges in studying brain function is that the brain is relatively inaccessible to 

direct measurement. The electrical signals produced by the discharge of neuronal action 

potentials provide perhaps the closest measure of brain activity. These signals were first 

observed by Richard Caton in 1875, using galvanometric measurements in animals during 

chewing and visual stimulation (5). This work was expanded to humans with the invention of the 

electroencephalography (EEG) by Hans Berger in 1929 (6), which allowed non-invasive 

measurement of brain electrical activity through the scalp. Unfortunately, EEG and 

magnetoencephalography (7) – a complementary technique based on measurement of magnetic 

fields – have very limited sensitivity, spatial resolution, and penetration. However, these electrical 

changes are also associated with changes in blood flow and metabolism, providing alternative 

means of assessing brain activity and function. 

Despite producing relatively small changes in brain oxygen metabolism, motor and mental 

processes are associated with large changes in cerebral blood flow (CBF). In fact, these CBF 

changes are large enough to be observed by the naked eye, as demonstrated in 1881 by Italian 

physiologist Angelo Mosso, who observed increased regional pulsations in the brains of patients 

performing mental tasks while undergoing neurosurgery (8). In 1890, Charles Roy and Charles 
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Sherrington hypothesized that such CBF responses were related to increases in metabolic 

demand (9). However, quantitative methods for testing such hypotheses did not yet exist. 

A major breakthrough came in 1945, when Seymour Kety and Carl Schmidt introduced the first 

method for quantifying CBF and CMRO2 in humans based on the Fick Principle (10-12). In the 

1950s through 1970s, Kety and his student, Louis Sokoloff, led the development of 

autoradiographic methods to create quantitative images of CBF and CMRO2 in animals (13). The 

advent of positron emission tomography (PET) allowed extension of this autoradiographic work to 

humans, where it was used to detect regional activations associated with specific mental 

functions, for example, language processing (14). Seminal work by Peter Fox and Marcus 

Raichle (15,16) demonstrated that upon neuronal activation, local CBF increases in excess of 

CMRO2 (Figure 1.1).  

 

Figure 1.1: Early demonstration of uncoupling between blood flow and CMRO2 
upon neuronal activation by PET imaging. Despite a large increase in occipital 
blood flow, corresponding CMRO2 changes are below the level of detection. This 
mismatch between flow and metabolism provides the basis for the BOLD fMRI 
technique. Figure adapted from (15). 
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This mismatch provides the foundation for the blood-oxygen-level-dependent (BOLD) functional 

magnetic resonance imaging (fMRI) method, which allows observation of brain activity based on 

MRI-measured changes in local blood oxygenation. The BOLD fMRI effect was first observed by 

Seiji Ogawa in rats in 1990 (17) and subsequently demonstrated in humans by Ogawa (18) 

(Figure 1.2) and several other groups (19-21). 

 

Figure 1.2: Early demonstration of the BOLD effect in humans. (A) T1-weighted 
axial image with several regions of interest (ROIs) indicated by square boxes; (B) 
T2*-weighted BOLD image at the same slice location; (C) Pseudocolor map of 
BOLD image intensity changes in response to visual stimulation and (D) 
corresponding time-course plots of signal intensities from ROIs in (A), indicating 
restriction of BOLD effect to ROIs (1 and 2) in the visual cortex. Figure from (18). 

Unlike PET-based metabolic imaging, BOLD fMRI does not require injection of radioactive 

tracers, can be performed on standard clinical imaging systems, and provides higher spatial and 

temporal resolution. In the past 20 years, use of BOLD fMRI has grown exponentially and 

provided enormous insights into the spatiotemporal functional organization of the brain. 
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1.1.3. Why Quantify CMRO2? 

1.1.3.1. Limitations of BOLD fMRI 

Though the contribution of BOLD fMRI to basic neuroscience cannot be overstated, the technique 

has fundamental limitations. The relative simplicity of the technique belies the enormous 

complexity of interpreting the underlying physiologic meaning of BOLD data. 

BOLD signal changes are predominantly vascular in origin, driven by changes in CBF and 

cerebral blood volume (CBV) more so than metabolism. The relationship between BOLD signal 

and its vascular and metabolic determinants is a complex one, modified by a number of 

physiologic and external factors. Therefore, BOLD signal must always be quantified in terms of 

changes relative to a baseline state; it cannot be used to quantify baseline cerebral metabolism. 

These relative BOLD signal changes can vary significantly within (22) and across (23) subjects, 

reducing power to detect group differences. Group comparisons can also be confounded by 

vascular effects unrelated to metabolic differences, for instance, in studies of aging (24,25). 

As a measure of brain activity, CMRO2 has several theoretical advantages compared to BOLD 

fMRI signal. Unlike BOLD, CMRO2 can be measured in absolute physiologic units, and may 

provide more power to detect group differences in longitudinal and clinical studies. Although 

simultaneous fMRI and intracortical EEG in animals has shown BOLD signal changes to correlate 

with underlying neuronal activity (26), BOLD signal onset latency is an order of magnitude greater 

compared to underlying electrical signals (27). Furthermore, BOLD signal originates from the 

post-capillary venous vasculature, which may be far from the site of activation (28). In contrast, 

the CMRO2 response is expected to exhibit closer spatiotemporal correlation with neuronal 

activation. CMRO2 imaging would thus provide a more precise and accurate tool for studying the 

temporal dynamics of neurologic function and spatial organization of brain functional systems. 
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1.1.3.2. Potential Clinical Applications of CMRO2 Measurement 

CMRO2 measurement and mapping could be of significant benefit to the diagnosis and 

management of many common neurologic diseases. PET is the current gold standard for 

metabolic brain imaging; however, its cost, complexity, and invasiveness significantly limit its 

application. Compared to PET, MRI is inexpensive, non-invasive, and relatively ubiquitous in 

modern hospitals. Potential clinical applications of MR-based CMRO2 quantification include the 

study of stroke, brain tumors, Alzheimer’s disease (AD), and obstructive sleep apnea (OSA). 

In stroke, blood flow and oxygen delivery are regionally compromised. While some tissue is 

irreversibly damaged, surrounding tissue in the “ischemic penumbra” region is potentially 

salvageable. Identifying this tissue is critical to decision making in acute stroke management, as 

administration of tissue plasminogen activator, a clot-dissolving agent, carries a high risk of acute 

bleeding. It is believed that imaging of CMRO2 and oxygen extraction fraction (OEF), the fraction 

of total delivered oxygen extracted from the blood, may provide a better measure of tissue 

viability than existing MRI methods based on diffusion/perfusion mismatch (29,30). 

It has long been known that tumors exhibit hypoxia due to preferential use of anaerobic glycolysis 

even in the presence of sufficient oxygen, an observation known as the Warburg effect (31). 

Thus, hypoxia provides a biomarker of tumor presence, and the degree of hypoxia may provide a 

prognostic and diagnostic measure for decision making in cancer management (32). MR-based 

CMRO2 mapping could provide a more direct and less invasive means of assessing tumor 

hypoxia than the current method of fluorodeoxyglucose (FDG) PET. 

Though the etiology of AD pathology has long been ascribed to the deposition of beta amyloid 

plaques and neurofibrillary tangles, recent studies suggest vascular dysfunction plays a 

significant role in the development of AD and other dementias (33). AD has been associated with 

regional reductions in CMRO2 with preserved blood flow using PET (34), as well as reduced 

global cerebrovascular reactivity (CVR) in response to breath-hold measured with Doppler 

ultrasound (35). Magnetic resonance (MR)-based methods have been widely used in studying 
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structural changes in AD, and CMRO2 methodology would add an important functional 

component to these studies. 

Although OSA is defined by structural and functional failure of the upper airway to maintain 

patency during sleep, it is also associated with extensive neurologic comorbidities of poorly 

understood etiology. OSA has been associated with gray matter loss in regions associated with 

ischemic sensitivity, such as the hippocampus (36). Detection of impaired CVR in OSA (37-39), 

suggests that blunting of the normal apneic cerebrovascular response may allow hypoxic damage 

to occur during OSA-associated nocturnal apneas. Preliminary data suggests that OSA is also 

associated with changes in CMRO2, both at rest and dynamically in response to breath-hold 

challenge (40). 

1.2. CMRO2 Quantification 

This section outlines the physiology of brain oxygen delivery and consumption – the basis for 

quantifying CMRO2. Current methods for CMRO2 quantification are discussed and compared, 

with particular focus on the various MR-based methods and their respective tradeoffs between 

spatial and temporal resolution. 

1.2.1. Overview of Brain Oxygen Delivery and Consumption 

In aerobic metabolism, oxygen acts as the final electron acceptor of the electron transport chain, 

driving the formation of adenosine triphosphate (ATP), the main energy substrate in the body: 

6O2 +C6H12O6 + 36ADP + 36Pi →6CO2 + 6H2O+36ATP           [1.1] 

Oxidative phosphorylation of glucose (and additionally ketone bodies during starvation) is the sole 

mechanism through which the brain can produce ATP for any appreciable amount of time. While 

nonoxidative glucose consumption (glycolysis) plays an important role in providing rapid energy 

during functional activation (15,41), it is considerably less efficient than aerobic metabolism, 

producing only 2 ATP molecules per glucose molecule compared to 36 ATP. Thus, it is believed 
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that increased energy demand during even transient brain activation states is met largely through 

oxidative metabolism (42). 

Oxygen is not produced endogenously and must be continuously transported to the brain via the 

blood. This is achieved by passive diffusion of oxygen across the alveolar and capillary 

membranes of the lungs, where it binds to hemoglobin in erythrocytes, and, to a much lesser 

extent, is dissolved in blood plasma. The degree of binding of oxygen to hemoglobin is governed 

by the partial pressure of oxygen, represented by the hemoglobin dissociation curve (Figure 1.3). 

 

Figure 1.3: Hemoglobin (Hb) dissociation curve illustrating the relationship 
between oxygen partial pressure (pO2) and percent hemoglobin oxygen 
saturation (%HbO2). Normal values for arterial blood and brain tissue are 
indicated. The sigmoidal shape of the curve results from cooperative binding of 
oxygen at the four heme sites of the Hb tetramer, and facilitates unloading of 
oxygen from blood to brain tissue along the pO2 gradient. 

In normal physiologic and atmospheric conditions, the oxygen partial pressure (pO2) in the arterial 

blood is 80-100 mmHg, resulting in an arterial oxygen saturation (Ya) of approximately 98 percent 

hemoglobin oxygen saturation (%HbO2). Because pO2 in the brain (and other end-organs) is 

much lower, oxygen is released in these tissues from hemoglobin and diffuses along a 

decreasing pO2 gradient: across the capillary membrane, through the cellular membrane of 

neurons and glial brain cells, and finally into the mitochondria where aerobic metabolism takes 
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place. The oxygen depleted venous blood, with about 1/3 of its hemoglobin desaturated, is 

returned to the heart and lungs. This process of oxygen extraction is schematically illustrated in 

Figure 1.4.  The different magnetic properties of oxygenated and deoxygenated hemoglobin 

provide the foundation for MR-based quantification of blood oxygen saturation and CMRO2, 

discussed in Section 1.2.4. 

 

Figure 1.4: Schematic illustration of brain oxygen extraction in the capillaries. 
oHb is oxygenated hemoglobin and dHb is deoxygenated hemoglobin. 

1.2.2. Fick Principle for CMRO2 Quantification 

Assuming all oxygen extracted from the blood is used for ATP production, the Fick Principle 

(Equation 1.2) can be used to quantify CMRO2 (10-12): 

CMRO2 =Ca ⋅CBF ⋅ Ya −Yv( )            [1.2]
 

where Ya and Yv are the arterial and venous oxygen saturation in %HbO2, CBF is the cerebral 

blood flow in µmol per minute per 100 g of brain tissue, Ca is the arterial oxygen content of fully 

saturated arterial blood (i.e., blood with Ya = 100 %HbO2) in µmol of O2 per mL blood, giving 

CMRO2 in µmol per minute per 100 g of brain tissue. Ca is a Hb-dependent constant: 

Ca = 0.620559 ⋅Hb           [1.3] 
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where Hb is in g/dL and the scaling factor is calculated from a hemoglobin molar mass of 64458 

g/mol (43). Ya can be measured continuously with a digital pulse oximeter, leaving Yv and CBF to 

be quantified from the MR imaging experiment. Ya − Yv is often called the arteriovenous oxygen 

difference (AVO2D). Brain oxygen extraction is frequently reported in terms of the OEF, which is 

equal to AVO2D/Ya. OEF and AVO2D values are very similar for Ya in the normal range, and are 

sometimes used interchangeably. 

Kety and Schmidt (11,12) were the first to quantify CMRO2 using the Fick Principle. To quantify 

CBF, they integrated the differential concentration of nitrous oxide (N2O) in the arterial and 

venous blood during continuous inhalation of N2O gas. Ya and Yv were measured directly via co-

oximetry of arterial and venous blood. Though accurate and well validated, the technique is highly 

invasive, requiring catheterization of the femoral artery and jugular vein. It also provides only a 

single steady-state global measurement of Yv, CBF, and CMRO2. However, this landmark work 

laid the foundation for the vast array of cerebral blood flow, oxygenation, and metabolism 

measurement and mapping techniques introduced in the subsequent 60 years. 

1.2.3. Non-MR-Based Methods 

1.2.3.1. Optical Methods 

Several optical methods exist for quantification of cerebral blood flow and oxygen saturation. 

These methods take advantage of the fact that oxyhemoglobin (oHb) and deoxyhemoglobin 

(dHb) absorb light at different wavelengths.  

Jugular bulb oximetry (JBO) involves intravenous insertion of a fiber optic probe and 

determination of Yv from the absorption spectrum of different wavelengths of light. JBO can be 

combined with transcranial Doppler (44) measurement of CBF for quantification of CMRO2. While 

the approach has the advantage of allowing continuous bedside monitoring, the catheter insertion 

is invasive and prone to serious complications such as carotid artery puncture (45), and the 

technique is prone to errors due to poor catheter tip placement and calibration (46). 
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Optical methods can also be applied to regional measurement of blood flow and oxygenation. 

Near-infrared spectroscopy (NIRS) (47) involves application of light with wavelength 650-1100 

nm, which can penetrate the scalp, skull, and brain to a depth of several centimeters. The 

measured absorption spectra are used to estimate relative concentrations of oHb and dHb, which 

are then used to derive Yv. A complementary optical technique for CBF measurement, diffuse 

correlation spectroscopy (DCS) (48), measures the scattering of near-infrared light in tissue. 

NIRS and DCS can be combined to quantify local CMRO2 (49); however, the low penetration 

depth of light inherently limits the approach to measurement of cortical regions near the skull 

surface. Thus, the technique is best suited to studies involving neonates (50), whose skulls are 

thinner, or in animals, where smaller brain sizes and use of cranial windows improves light 

penetration. 

1.2.3.2. PET 

PET involves the injection or inhalation of exogenous, positron-emitting radioactive tracers with 

specific chemical properties. The emitted positrons annihilate with surrounding electrons to 

produce equal energy 511 keV photons that are emitted in opposite directions and detected by 

the PET scanner. The position of these detection events can be used to tomographically compute 

the spatial distribution of annihilation events, and, thus, the spatial distribution of the tracer. 

PET-based quantification of CMRO2 (51-53) uses intravenous injection of H2
15O water to quantify 

CBF and separate inhalation of radioactive 15O2 gas to quantify OEF, which together can be used 

to quantify CMRO2. Although the method is considered the gold standard for CMRO2 mapping, it 

has a number of significant limitations. It is highly invasive, requiring both arterial and venous 

punctures, as well as exposure to radiation. Due to the complexity and cost of the protocol, and 

the need for an on-site cyclotron to produce the 15O tracers, only a handful of sites around the 

world are equipped to conduct PET-based CMRO2 studies. While the generated CMRO2 maps 

are of high quality, the spatial resolution is somewhat coarse (≈ 5 mm3). Furthermore, the 

acquisition time is on the order of tens of seconds, limiting applications in functional experiments. 
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1.2.4. MR-Based Methods 

1.2.4.1. MRI Contrast and CMRO2 

Unlike PET, MRI is inherently non-invasive and relatively ubiquitous in modern medical centers. 

MRI is based on nuclear magnetic resonance (NMR), the process by which atomic nuclei absorb 

and re-emit electromagnetic radiation. In MRI, a strong magnetic field is used to polarize nuclear 

spin magnetic moments. Application of radiofrequency (RF) pulses matching a particular nuclei’s 

resonant (Larmor) frequency causes rotation of those moments into the plane perpendicular to 

the main field, and precession of the moments about the main field induces a measurable signal 

in RF coils via electromagnetic induction. This signal will decay with a time constant called the 

effective transverse relaxation rate (R2*). The portion of the signal decay due to static field 

inhomogeneity can be removed by spin-echo refocusing, thus isolating the transverse relaxation 

rate (R2). These two quantities define a third relaxation rate, R2’, where R2’=R2*-R2. R2’ 

represents the rate of signal decay due to static magnetic field inhomogeneities, but is only an 

exponential decay constant when this inhomogeneous field distribution is Lorentzian. These 

relaxation rates are often defined in terms of relaxation times: T2*=1/R2*, T2=1/R2, and T2’=1/R2’. 

Imaging is made possible by the application of magnetic field gradients, which result in spatial 

information being encoded into the resulting MR signal (54). While MRI is possible with any nuclei 

possessing non-zero spin magnetic moment, because the human body is mostly composed of 

hydrogen-containing water molecules, 1H is the nucleus of choice for most human MRI imaging. 

The varying chemical and structural properties of tissues have different effects on the time 

evolution of the MR signal, which can be exploited by different combinations of RF pulses and 

gradients (pulse sequences) to produce images with widely varying contrast. The tunability and 

variety of MR contrast has made it an enormously powerful tool for clinical diagnosis and 

scientific discovery. 

A fundamental limitation of NMR and MRI is that the degree of polarization of nuclear magnetic 

moments is quite small, only a few parts per million, and the exponential time constant for 
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repolarization (the T1) is quite long, on the order of seconds for many tissues of interest. For this 

reason, tradeoffs between signal-to-noise-ratio (SNR), spatial resolution, and temporal resolution 

must be considered in almost all MRI applications, including CMRO2 quantification techniques. 

While direct detection of oxygen with 17O MRI is possible, enriched 17O is enormously expensive, 

and the detection sensitivity is low. The Fick Principle offers an alternative approach as CBF can 

be measured non-invasively using either phase-contrast MRI (PC-MRI) (55) in large cerebral 

vessels or mapped on a voxel-wise basis with arterial spin labeling (ASL) (56,57). Ya can be 

measured with pulse oximetry or assumed to be near 98 %HbO2 in normal conditions. This 

leaves quantification of Yv, which is the crux of MR-based CMRO2 quantification methods. Yv is 

itself of interest in certain applications, for instance, in stroke, where it may provide a marker for 

potentially salvageable tissue (29,30). 

MR-based Yv quantification takes advantages of the unique magnetic properties of the 

metalloprotein hemoglobin, first demonstrated by magnetic mass balance experiments conducted 

by Linus Pauling and Charles Coryell in 1936 (58). In the deoxygenated state, the Fe2+ heme 

iron’s six electrons in the five 3d orbitals are distributed across the egg and t2g orbitals, resulting in 

four unpaired electrons and a spin S = 2. When the heme iron becomes oxygenated, the ligand 

field separating the t2g and egg orbitals is increased, making the configuration in which all 

electrons occupy the three t2g orbitals more energetically favorable, and resulting in an electron 

spin S = 0. Thus, only dHb is paramagnetic, whereas oHb is diamagnetic. dHb paramagnetism 

causes a linear increase in the magnetic susceptibility of blood, and also has varying effects on 

the relaxation rates of blood and surrounding tissue. 

The paramagnetism of dHb is exploited in a variety of MR-based techniques to quantify Yv and 

CMRO2, as summarized in Table 1.1 and detailed in the sections that follow. These methods can 

be categorized based on the tissue compartment in which the effects of dHb are modeled 

(extravascular vs. intravascular) and the MR contrast method used to quantify these effects (T2*, 

T2’, T2, or susceptibility). Furthermore, the methods are distinguished by whether the 
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measurements are made on a global, regional, or voxel-wise basis, and the resultant tradeoff 

between their spatial and temporal resolutions. 

Signal Origin Contrast Spatial Res. Method (Ref) Yv Temp. Res. Simul. CBF? 

Extravascular T2* Voxel-wise Calibrated BOLD (59) 0:03 YES 

 T2’ Voxel-wise qBOLD (60) 8:30 NO 

Intravascular T2 Global TRUST (61) 0:24 NO 

  Regional TRU-PC (62) 2:50 NO 

   Projection-based T2 (63) 0:15 NO 

  Voxel-wise QUIXOTIC (64) 27:30 NO 

   VSEAN (65) 6:18 NO 

 Susceptibility Global OxFlow (66) 0:28  YES 

  Regional Quantitative Venography (67) 15:42 NO 

  Voxel-wise Zhang et al. (68) 60:00 NO 

Table 1.1: Summary of MR-based Yv/CMRO2 quantification methods and their 
respective features. ‘Signal origin’ is the tissue compartment in which signal used 
for Yv quantification is modeled. ‘Contrast’ is the MRI contrast mechanism used 
in the Yv quantification model. ‘Spatial Res.’ is the spatial resolution for Yv 
quantification in minutes:seconds. ‘Method (Ref)’ is the name/acronym or authors 
associated with the published method and the most relevant citation. ‘Yv Temp. 
Res.’ is the reported approximate temporal resolution for a single Yv 
measurement (ignoring any requisite planning or calibration scans). ‘Simul. 
CBF?’ denotes whether the method pulse sequence measures CBF 
simultaneously with Yv. 

1.2.4.2. Extravascular T2*-Based Methods (Calibrated BOLD) 

Because CMRO2 measurement has many potential advantages compared to standard BOLD 

fMRI (see section 1.1.3.1), the development and application of BOLD fMRI has been paralleled 

by attempts to resolve CMRO2 from the BOLD signal. This requires modeling the various 

physiologic factors that contribute to the BOLD signal, schematically illustrated in Figure 1.5. 

Neuronal activation causes a local increase in both CMRO2 and CBF; however, the increase in 

CBF is several times greater than what is required to meet the additional CMRO2 demand (16), 

resulting in a counterintuitive decrease in the OEF and thus [dHb], the concentration of 

deoxyhemoglobin in a voxel. CBF also independently increases the venous cerebral blood 

volume (CBVv) fraction, which acting alone would increase [dHb]. Overall, the CBF washout effect 
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dominates, resulting in a reduction in [dHb] and the characteristic increase in signal intensity in 

R2*-weighted BOLD fMRI images. 

 

Figure 1.5: Schematic diagram illustrating the various physiologic contributions 
relating neuronal activity to BOLD signal. 

BOLD signal is a simple exponential function of R2* and echo time (TE). Because fractional 

BOLD signal changes are only a few percent, the exponent can be linearized: 

ΔBOLD
BOLD0

=−TE ⋅ΔR2
*           [1.4] 

where subscript 0 denotes the baseline state and Δ denotes the change from baseline to 

activation. ΔR2* can be expressed as: 

ΔR2
* = A⋅ CBVv ⋅[dHb]v

β −CBVv0 ⋅[dHb]v0
β( )           [1.5] 
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where subscript v denotes the venous blood compartment, and A is a scaling factor that 

incorporates effects due to vessel geometry, magnetic field strength, and the susceptibility 

difference between blood and tissue (69,70). 

The supralinearity (i.e., β>1) of Equation 1.5 results from the combined effects of: 1) the linear 

exponential decay of spins in the vicinity of large venous vessels as predicted by the static 

dephasing model of Yablonskiy and Haacke (71) and 2) the quadratic exponential decay of spins 

in the vicinity of small vessels (capillaries) as predicted by the Luz-Meiboom model of fast 

exchange (72). Monte Carlo simulations based on the distribution of vessel sizes in the brain 

have suggested a β value of 1.5 at 1.5 T (70). The majority of functional imaging studies in recent 

years have been conduced at 3.0 T field strength, where β is predicted to be closer to 1.3 (73). 

However, this traditional physical interpretation of β is oversimplified; for example, it does not 

account for intravascular BOLD effects, which are especially significant at lower field strengths.  

Although non-invasive techniques for direct quantification of CBV exist, most notably vascular-

space-occupancy (VASO) MRI (74), they suffer from lower sensitivity, and cannot easily 

distinguish between arterial and venous CBV. Furthermore, the VASO method requires imaging 

at a specific blood inversion null point, making whole brain coverage difficult. Thus, total CBV is 

generally derived from ASL-measured CBF based on the Grub power relationship relating CBV to 

CBF (75): 

CBV
CBV0

=
CBF
CBF0
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&&

α

          [1.6] 

where α is the Grubb constant. While the original Grubb constant value (0.38) accounts for total 

CBV changes, because only dHb-containing CBVv, rather than total CBV, determines BOLD 

signal, recent work has suggested a lower value of α, 0.18 (76) or 0.23 (77). Although typically 

treated as a constant, α may potentially vary between subjects and brain regions (78-80). 
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Combining Equations 1.4-1.6 and invoking the Fick Principle (with Ya approximated to equal 100 

%HbO2) gives an expression relating BOLD signal changes to CMRO2 and CBF: 

ΔBOLD
BOLD0

=TE ⋅A⋅CBVv0 ⋅[dHb]v0
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          [1.7] 

The above equation can be simplified further by defining M, the maximum possible BOLD signal 

change that would result from total washout of all dHb from a voxel during a maximal CBF 

response (59,81). In this theoretical situation, the entire term in parentheses would reduce to 1 

(as the CBF term would dominate), resulting in the expression known as the Davis model (59): 
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          [1.8] 

Despite the aforementioned problems with the definitions of α and β, simulations based on a 

more complete BOLD signal model suggest that the general form of Equation 1.8 is valid if the 

traditional physical interpretations of α and β are relaxed and they are instead treated as fitting 

constants (82). This heuristic approach suggests lower values for α (0.14) and β (0.91) would be 

optimal. 

With knowledge of M, subsequent measurement of CBF and BOLD during a functional paradigm 

allows quantification of fractional changes in CMRO2 by solving Equation 1.8. However, M likely 

varies both across subjects and brain regions (83,84), and must therefore be “calibrated”. 

Davis et al. first demonstrated an approach to BOLD calibration via hypercapnic gas-mixture 

breathing (59). Assuming that hypercapnia does not result in changes in CMRO2 allows further 

simplification of Equation 1.8: 
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M is derived from measurement of BOLD and CBF signal during both baseline and hypercapnia.  

Application of hypercapnia calibrated BOLD to functional tasks may provide improved intra- and 

inter-subject reproducibility compared to traditional BOLD signal methods (85). However, the 

method has several limitations. Breathing hypercapnic gas can induce breathlessness, which 

may especially problematic in clinical patients who are distressed or infirm. Furthermore, the 

assumption of isometabolism has been challenged in several recent papers employing direct 

CMRO2 quantification based on T2 (86,87). Due to the large exponent on the relative CBF 

changes in Equation 1.9, the technique is highly sensitive to noisy ASL-derived CBF data. 

Recently, an alternative approach to BOLD calibration based on hyperoxic gas-mixture breathing 

was proposed (88). Hyperoxia is assumed to cause minimal changes in blood flow (89). Following 

the derivation of the deoxyhemoglobin dilution model (81) and assuming minimal hyperoxic CBF 

changes results in the following calibration model: 
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          [1.10] 

where [dHb]v is assumed to vary uniformly across the brain and is quantified via capnographic 

measurement of end-tidal O2 (EtO2) before and during hyperoxia. This approach avoids the 

patient discomfort associated with hypercapnia as well as the sensitivity of the model to errors in 

ASL-derived CBF (which is assumed to remain constant). Equation 1.10 does not require 

invoking the Fick Principle, and therefore does not make the assumption that Ya equals 100 

%HbO2. However, it has the major disadvantage of requiring an assumed baseline Yv value in 

order to derive [dHb]v from the EtO2 measurements. While Yv is quite uniform across the brain 
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(16), it varies considerably even between healthy subjects (61,66). Finally, hyperoxia is believed 

to induce a modest reduction in CBF. Although this can be incorporated into the model, it is 

difficult to measure for individual subjects due to the low sensitivity of ASL to small hyperoxic flow 

changes and further complicated by the T1 shortening of blood due to dissolved O2. 

Even more recently, several groups (90,91) have proposed combining multiple gas-mixture 

breathing paradigms in order to improve the precision of calibrated BOLD, as well as to allow 

extension of calibrated BOLD to the quantification of not just fractional CMRO2 changes but also 

resting state CMRO2. Of course, the need for multiple gas manipulations adds further complexity 

to the experimental protocol. 

Calibrated BOLD is the single current CMRO2 quantification with both voxel-wise spatial 

resolution and sufficient temporal resolution for application to functional experiments. However, it 

is fraught with challenges, including a complex experimental setup and the many physiologic 

assumptions inherent in the signal model and calibration procedures. The technique also suffers 

from low precision, such that significant spatial averaging is often required to yield physiologically 

plausible CMRO2 values, negating the advantages of voxel-wise coverage. 

1.2.4.3. Extravascular T2’-Based Methods (qBOLD) 

Like calibrated BOLD, T2’-based methods involve modeling the effects of intravascular dHb on 

extravascular signal. Rather than invoking the semi-empirical model of Equation 1.5, which 

requires calibration and corresponding physiologic assumptions, the MRI signal behavior is 

modeled explicitly in terms of known or measurable physical quantities by modeling the MRI 

signal in the so-called static dephasing regime (SDR). In the presence of magnetic field 

inhomogeneities, spins accumulate phase at different rates determined by the local magnetic field 

strength, causing phase incoherence and signal decay. Diffusion of spins between sites of 

different field strengths will also cause signal decay. In the SDR, it is assumed that static 

dephasing leads to complete signal decay before diffusion dephasing has an appreciable effect. 

These various effects are illustrated in Figure 1.6. 
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Figure 1.6: Schematic diagram illustrating how vessel size and diffusion distance 
determine diffusion dephasing versus static dephasing effects. When the vessel 
radius is small relative to the diffusion distance (left), two protons will dephase 
relative to one another as they randomly diffuse through a range of magnetic field 
strengths. When the vessel radius is large relative to the diffusion distance 
(right), two protons will dephase as a result of the different static magnetic field 
strengths in their local vicinities, long before diffusion dephasing can occur. 

The time behavior of extravascular MR signal in the SDR was first described by Yablonskiy and 

Haacke (71). By modeling small blood vessels as a network of randomly oriented cylinders, Yv 

can be expressed in terms of the spin-echo reversible decay rate, R2’: 

R2 '=CBVv ⋅γ ⋅
4
3
⋅π ⋅Δχdo ⋅Hct ⋅(1−Yv )⋅B0           [1.11] 

where Δχdo is the susceptibility difference between fully oxygenated and fully deoxygenated 

erythrocytes (discussed further in Section 1.2.4.5), Hct is the blood hematocrit, and B0 is the 

main magnetic field strength. It is noted that Equation 1.11 has the same functional form as 

Equation 1.5; however, the SDR does not consider diffusion effects, and thus β=1. 
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The SDR model also predicts that in a free induction decay experiment, the time dependent MR 

signal, S(t), exhibits different behavior in the short and long time scales related to the 

characteristic time, tc: 

S(t)= S(0)⋅exp −
4
3
⋅CBVv ⋅

t
tc

#
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. t <1.5⋅tc           [1.12] 

S(t)= S(0)⋅exp[CBVv ]⋅exp[−R2
* ⋅t] t >1.5⋅tc           

[1.13] 

CBVv can be solved from evaluation of Equations 1.12-1.13, leaving measurement of R2’ to 

determine Yv. Several spin-echo-based pulse sequences have been developed for R2’ mapping. 

The method was first applied to human studies by An and Lin (92), and later improved upon by 

He and Yablonskiy (60), who additionally considered the effects of static field inhomogeneities 

and signal contributions from cerebrospinal fluid (CSF) and intravascular blood, dubbing the 

method ‘quantitative BOLD’ (qBOLD). Such methods have shown promise in defining the 

ischemic penumbra region in acute stroke and post-stroke recovery (93). A recent iteration of the 

method (94) suggest that a simulation-based “fingerprinting” approach (95) may allow better 

fitting of acquired data to the qBOLD model. 

Although qBOLD achieves quantitative mapping of Yv without gas calibration, it has several 

limitations. The signal model defined by Equations 1.11-1.13, despite its complexity and 

subsequent modifications in qBOLD, does not account for contributions from diffusion. The 

assumption of randomly oriented cylinders critical to the SDR model may be inappropriate near 

large blood vessels, highly vascularized tumors, or regions of iron deposition. Furthermore, R2’ 

mapping techniques are based on spin-echo sampling, and thus have relatively long acquisition 

times compared to echo-planar imaging (EPI)-based R2* mapping (BOLD). Thus, qBOLD 

temporal resolution is poor and strictly limited to measurement of steady-state Yv and CMRO2.  
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1.2.4.4. Intravascular T2-Based Methods 

A variety of T2-based methods are based on isolation of venous blood T2, which can be related to 

Yv through theoretical and empirical models. As blood water protons diffuse through the magnetic 

field inhomogeneities created by dHb-containing erythrocytes, spin-echo irreversible (T2) 

dephasing occurs in the intravascular space. This decay can be estimated by a multi-spin-echo 

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, containing 180 degree pulses with spacing 

tCPMG. The Luz-Meiboom model for two-site fast exchange (72) can be modified and applied to 

diffusion of spins between intra- and extra- erythrocyte compartments (96-98) to quantify the R2 

of venous blood:  

R2,blood =R2,plasma +Hct ⋅ ΔR2,v +(1−Hct)⋅(Δωv )
2 ⋅τ ⋅ 1− 2τ
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where R2,plasma is the relaxation rate of blood plasma, ΔR2,v and Δωv are the relaxation-rate and 

susceptibility-shift differences, respectively, between the erythrocytes and plasma for exchanging 

water in the blood, τ is the exchange time between frequency-shifted sites, and tCPMG is the time 

spacing between consecutive 180-degree pulses in the CPMG echo train. This complex model 

can be simplified by combining multiple physical quantities into calibration constants, resulting in 

a second-order polynomial relating R2 of blood and Yv: 

R2,blood = A+B ⋅(1−Yv )+C ⋅(1−Yv )
2           [1.15] 

where A, B, and C are Hct- and CPMG spacing (tCPMG)-dependent constants which can be 

determined empirically from ex vivo blood samples. Such an approach to Yv quantification was 

first demonstrated by Wright et al. in the major thoracic vessels (98) and later demonstrated in 

cerebral veins in response to visual stimulation (96,99). Figure 1.7 shows an example calibration 

curve obtained from ex vivo blood samples. 
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Figure 1.7: Calibration curve relating Yv to measured T2 and Hct for tCPMG=10 ms. 
Each red dot represents an ex vivo blood sample with known Hct and Yv 
obtained from gold-standard co-oximetry. Figure adapted from (100). 

Determining the values of the calibration constants in Equation 1.15 is a major challenge for 

these T2-based methods. These constants lack specific physical meaning and must be 

determined empirically from measurements in ex vivo blood samples using a range of precisely 

controlled oxygenation and Hct levels. Furthermore, the constants must be derived separately for 

different field strengths and tCPMG times, ideally using a sequence with a CPMG echo train 

identical to that used for in vivo T2 mapping. Care must be taken in the calibration experiment to 

maintain normal blood chemistry (e.g., temperature and pH) and prevent blood settling. 

Another major challenge for T2-based methods is the need to isolate pure blood signal, as partial 

voluming of tissue or CSF will significantly bias measured T2 and Yv. Even in the largest vessels, 

such as the superior sagittal sinus (SSS), blood signal isolation is non-trivial due to the relatively 

large voxel sizes required by the fast imaging readouts used in CPMG-based T2-mapping 

sequences. Several different approaches have been proposed, as discussed below. 

Spin-tagging venous blood isolation (TRUST) 

T2-Relaxation-Under-Spin-Tagging (TRUST) (61) isolates venous blood signal via application of 

spin tagging, similar in principle to ASL-based CBF quantification. Subtraction of equivalent 

images acquired with and without venous blood inverted (tag) isolates pure blood signal. 
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Application of various amounts of CPMG T2 weighting prior to imaging allows for quantification of 

blood T2. This method has been applied in both the SSS and internal jugular veins, with very 

comparable values obtained (101), suggesting that the SSS can be used as a surrogate for global 

Yv. Combining TRUST with PC-MRI CBF quantification allows determination of CMRO2 (101). 

Since its introduction, TRUST has been improved in terms of speed and reliability (102) and 

extensively validated (100,103,104). It has been applied widely in physiologic investigations 

including the effects of hypercapnia (87), hypoxia and hyperoxia (105), caffeine (106), exercise 

(107), and cognitive training (108), in studies of neonatal development (109) and normal aging 

(110), and in diseases including multiple sclerosis (111) and mild cognitive impairment (112). 

Although providing a robust and reliable approach to global Yv quantification, TRUST temporal 

resolution for CMRO2 quantification is on the order of minutes, due to the temporally inefficient 

nature of CPMG-based T2-mapping and the need for a separate measurement of CBF. This limits 

the methods application to steady-state measurement of CMRO2. 

Phase-contrast venous blood isolation (TRU-PC, projection-based T2)  

As an alternative to spin tagging, blood signal can also be isolated through complex difference 

subtraction of images acquired with different first gradient moments (62,63), in a similar manner 

to PC-MRI blood flow quantification. An advantage of this approach over TRUST is that it does 

not require spin tagging in a drainage territory corresponding to a particular vein, and can thus be 

applied to smaller cortical vessels with arbitrary vessel geometry, as demonstrated using the T2-

Relaxation-Under-Phase-Contrast (TRU-PC) method (62).  

A similar technique using a projection-readout was demonstrated to quantify Yv in as little as 15 

seconds (63). However, because the complex difference signal is also dependent on blood flow, 

multiple averages are required to ensure blood flow effects are removed. This limits application of 

the technique to situations of steady-state blood flow, and partially negates the advantage of high 

temporal resolution.  
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The utility of regional Yv quantification based on intravascular (as opposed to voxel-wise) 

measurement is fundamentally limited. Unlike arterial perfusion territories, venous drainage 

territories corresponding to particular vessels are poorly defined. Thus, determining the Yv of a 

given tissue region from the Yv measured within nearby veins is a major challenge. A recently 

proposed method for quantitative imaging of venous drainage territories (113) shows promise, 

though spatial and temporal resolution are significantly limited by the need to spatially encode 

both venous vessels and corresponding tissue regions separately. 

Velocity-selective-excitation venous blood isolation (QUIXOTIC, VSEAN) 

Clever application of velocity selective excitation pulses (114) in combination with blood tagging 

and T2-preparation similar to TRUST can be used to specifically isolate signal from venous blood 

in the post-capillary venous compartment. Two similar techniques, QUantitative Imaging of 

eXtraction of Oxygen and TIssue Consumption (QUIXOTIC) (64) and Velocity Selective 

Excitation with Arterial Nulling (VSEAN) (65), use this approach to obtain voxel-wise 

quantification of Yv. However, because post-capillary blood comprises only a few percent of total 

parenchymal volume, these techniques suffer from low sensitivity and SNR. As such, they require 

multiple averages, and thus have long acquisition times even while being limited to a single 

acquisition slice. CSF signal contamination is also a concern, and may result in overestimation of 

Yv values. 

1.2.4.5. Intravascular Susceptibility-Based Methods 

While the aforementioned techniques are based on modeling the effect of paramagnetic dHb on 

transverse relaxation, Yv can also be more directly quantified by measurement of blood 

susceptibility itself. This technique exploits the relative paramagnetism of dHb versus oHb, which 

causes the susceptibility of whole blood relative to surrounding tissue, Δχ, to be linearly related to 

Yv (115): 

          [1.16] Δχ =Hct Δχdo 1−Yv( )+Δχoxy( )
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where Hct is venipuncture-derived hematocrit, and Δχdo and Δχoxy are the experimentally 

determined volume susceptibility differences between fully oxygenated and deoxygenated 

erythrocytes and fully oxygenated erythrocytes and water, respectively. Values of 4π×0.273 

p.p.m and 4π×0.008 p.p.m. (SI units) are used for Δχdo and Δχoxy, respectively, based on 

theoretical calculations (116,117) as well as ex vivo calibration experiments (116,118). Of note, 

the model in Equation 1.16 assumes that the susceptibilities of water, plasma, and tissue are the 

same to within experimental noise, and also assumes a single value for the mean corpuscular 

hemoglobin content (MCHC), the concentration of hemoglobin per volume of packed red blood 

cells. MCHC is known to vary in certain diseases, particularly anemia. Thus, a more complete 

model is obtained by substituting MCHCnorm/Hb in place of Hct in Equation 1.16, where Hb is the 

individual subject’s measured Hb, and MCHCnorm is the MCHC value assumed in the derivation of 

the Δχdo and Δχoxy constants, which, for the values used in this work (118), was 33.3 g/dL, 

corresponding to a Hct/Hb ratio of 0.03. 

Although blood susceptibility cannot be measured directly, it induces a local field offset, ΔB, 

which can be measured with an MRI multi-echo gradient-recalled echo (GRE) field mapping 

sequence as: 

ΔB =Δφ /γΔTE           [1.17] 

where Δϕ is the difference in phase accrual between echoes spaced apart by ΔTE in the blood 

versus surrounding reference tissue, and γ is the proton gyromagnetic ratio.  

Thus, solving for Yv hinges on determining Δχ from the measured ΔB. This relationship can be 

described in terms of a convolution in the image domain:  

ΔB =d⊗ χ           [1.18] 

where d is the dipole kernel, or a point-wise multiplication in the Fourier domain: 
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F(ΔB)=D ⋅Χ           [1.19] 

where D is the dipole kernel in the Fourier domain: 

D = 1
3
−
kz
2

k2
          [1.20] 

Because D contains zeros on a pair of conical surfaces at 54.6 degrees relative to the z-direction, 

inversion of the dipole kernel is ill-posed (119). Regularization or conditioning is necessary in 

order to find a unique solution for Δχ given ΔB (reviewed in (120)), the challenge of which forms 

the central focus of the growing field of quantitative susceptibility mapping (QSM). 

Susceptometry-based oximetry (OxFlow) 

Although inversion of Equation 1.18 is ill-posed in the general case, it can be solved for certain 

simple susceptibility distributions, including ellipsoids, and, of particular relevance to blood 

vessels, cylinders. By modeling a venous vessel of interest as a pseudo-infinite cylinder (i.e., with 

length >> width) and accounting for field cancellation due to the Lorentz sphere effect, the 

relationship between ΔB and Δχ is given by Equation 1.21 (121,122): 

          [1.21] 

where θ is the vessel angle with respect to B0. Combining Equations 1.16, 1.17, and 1.21 allows 

for determination of Yv by measurement of Δϕ: 

Yv =1−
6 Δφ /ΔTE( )

γB0ΔχdoHct 3cos2θ −1( )
+
Δχoxy

Δχdo

          [1.22]
 

  

ΔB = 1
6
ΔχB0 3cos2θ −1( )
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Theoretical modeling suggests this infinite cylinder model is quite accurate for vessels with angles 

less than 30 degrees relative to B0 (123). The model is schematically illustrated in Figure 1.8. 

 

Figure 1.8: Schematic illustration of a blood vessel approximated by the infinite 
cylinder model. Due to paramagnetic dHb, MR signal in the blood has additional 
phase (Δϕblood) compared to surrounding reference tissue (Δϕref). The phase 
difference (Δϕ) and vessel angle (θ) are the two imaging-derived parameters 
used to compute Yv in Equation 1.22.  

In addition to providing a surrogate for global Yv (63,101), the SSS is long, relatively straight, and 

nearly parallel to the B0 field when the subject is lying supine in an MRI scanner, making it an 

excellent candidate for application of the infinite cylinder model (Equation 1.21). Application of 

this susceptometry-based oximetry (SBO) approach to Yv quantification in the SSS has been 

validated both theoretically (123) and with anatomical phantom models (66). 

Because it is based on a simple 2D GRE phase mapping sequence, SBO is very fast compared 

to T2-based methods such as TRUST, and can be naturally interleaved with GRE-based PC-MRI 

for simultaneous quantification of Yv and CBF, and, thus, CMRO2. This combined blood 

Oxygenation and Flow (OxFlow) pulse sequence has been used to quantify CMRO2 at rest (66) 

as well as in response to hypercapnia in both adults (124) and neonates with congenital heart 

disease (125). 

The simple, first principle model relating Δϕ to Yv in SBO is a major advantage over the complex, 

ex vivo calibration model required in TRUST and other T2-based Yv techniques. However, this 
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model is also a limitation, as it restricts SBO to vessels that are sufficiently long, straight, and 

parallel to the B0 field. Regional venous vessels with appropriate geometry are limited, making 

the technique ideally suited for global Yv quantification in the SSS. A second limitation of SBO is 

that static magnetic field inhomogeneity from non-dHb sources (e.g., air-tissue interfaces) must 

be removed. This can be accomplished with polynomial fitting (126), but will perform poorly in 

situations of severe background field variation (e.g., near metal orthodontics). 

Quantitative susceptibility mapping (Quantitative Venography, technique by Zhang et al.) 

The second subset of susceptibility-based Yv quantification techniques involve 3D phase mapping 

of the brain and dipole inversion using QSM techniques. This has been done by: 1) focusing on 

only the intravascular signal to determine Yv of large and medium sized (MRI-resolvable) veins 

(67), and 2) modeling the susceptibility effects of the small venous blood compartment of tissue to 

determine voxel-wise Yv (68). The first approach produces a venogram of Yv values in the venous 

vascular tree, whereas the second gives voxel-wise Yv maps similar to the qBOLD technique. In 

both methods, ASL is used to measure CBF. Acquisition times for the 3D field maps are several 

minutes, thus, both techniques are limited to measurement of baseline physiology or steady-state 

stimuli.  

Though technically remarkable, these methods have significant practical limitations. As with T2-

based techniques for small vessel Yv quantification, the venogram approach requires relating 

vessel-specific Yv values to voxel-wise CBF values, for which there is currently no feasible 

approach. Though the voxel-wise method avoids this problem, due to the small blood volume 

fraction of tissue, the induced changes in susceptibility are approximately two orders of 

magnitude smaller than the corresponding susceptibility shifts measured using intravascular 

methods. In fact, the intravascular blood susceptibility model (Equation 1.16) ignores such shifts 

in tissue susceptibility entirely. Furthermore, the voxel-wise method requires imaging during both 

baseline and an assumed isometabolic stimulus (with caffeine used in (68)) in order to separate 

blood and non-blood susceptibility effects. 
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1.2.4.6. Dynamic Quantification of CMRO2 

Measurement and mapping of steady-state CMRO2 has proven useful in studies of human 

physiology, and demonstrated promise as a potential biomarker in neurologic disease. However, 

the brain must respond to dynamic changes in oxygen supply and demand that occur on the 

order of seconds, including physiologic stimuli such as acute hypoxia as well as neuronal 

activation during functional tasks. Better methodology for dynamic quantification of CMRO2 – both 

whole brain quantification and mapping – is needed. Such methods would provide insight into 

how neuronal signaling events unfold over time, and the temporal dynamics of neurometabolic-

hemodynamic coupling. It could also provide a tool to study diseases of altered neurometabolism 

and neurovascular reactivity.  

In assessing the existing methods for MR-based CMRO2 quantification, there are clear tradeoffs 

between robustness, spatial coverage, and temporal resolution. Simultaneous quantification of Yv 

and flow is critical for any dynamic technique, and currently possible only with calibrated BOLD 

and SBO. Only calibrated BOLD has sufficient temporal resolution to measure dynamic functional 

changes and also provide voxel-wise spatial resolution. Unfortunately, it relies on complex 

theoretical and experimental models, and only relative values are possible without multiple 

calibration states. On the other end of the spectrum, OxFlow provides a robust and relatively 

rapid means of whole-brain CMRO2 quantification. It has been used to study physiologic and 

pathologic processes that are expected to affect the whole brain uniformly and thus do not require 

mapping, for example, the response to hypercapnia. However, even OxFlow is an order of 

magnitude slower than BOLD, thus limiting its ability to probe the dynamic neurometabolic 

response to acute stimuli or functional activation. 

1.3. Outline of Dissertation Chapters 

This dissertation describes the development and application of novel MR-based CMRO2 

quantification methods capable of dynamic assessment of cerebral metabolism. In Chapter 2, a 

simple, susceptibility-based OxFlow method for whole-brain CMRO2 quantification with three-
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second temporal resolution is described, validated, and applied to demonstrate a small but 

significant increase in CMRO2 in response to volitional breath-hold apnea. In Chapter 3, this 

rapid OxFlow method is combined with the robust and reproducible, but much slower TRUST 

technique. The resulting interleaved TRUST (iTRUST) pulse sequence achieves significantly 

improved T2-based CMRO2 temporal resolution, and permits direct, simultaneous comparison of 

susceptibility- and T2-based Yv quantification. iTRUST is used to investigate the highly debated 

hypercapnic CMRO2 response to better interpret conflicting results from recent studies. In 

Chapter 4, the potential for improved calibrated BOLD via direct quantification of global Yv is 

described and demonstrated using a novel pulse sequence combining OxFlow with traditional 

multi-slice, double-echo ASL/BOLD. Using hyperoxia and hypercapnia gas-mixture breathing 

protocols, the technique is demonstrated in comparison to the traditional Davis model approach. 

Finally, in Chapter 5, the methods outlined in Chapter 2 are translated in a small clinical pilot 

study of OSA patients and controls. OSA-associated differences in both baseline CMRO2 and the 

CMRO2 apneic response are reported and discussed. 
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Chapter 2: High Temporal Resolution Quantification of Global 

Cerebral Metabolic Rate of Oxygen Consumption in Response to 

Apneic Challenge 

2.1. Abstract 

We present a technique for quantifying global CMRO2 in absolute physiologic units at three-

second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to 

volitional apnea. Temporal resolution of three seconds was achieved via a combination of view-

sharing and SSS-based estimation of tCBF rather than tCBF measurement in the neck arteries. 

These modifications were first validated in three healthy adults and demonstrated to produce 

minimal errors in image-derived blood flow and Yv values. The technique was then applied in 10 

healthy adults during an apnea paradigm of three repeated 30 s breath-holds. Subject-averaged 

baseline tCBF, AVO2D, and CMRO2 were 48.6 ± 7.0 mL/100g/min (mean ± SD), 29.4 ± 3.4 

%HbO2, and 125.1 ± 11.4 µmol/100g/min, respectively. Subject-averaged maximum changes in 

tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 

3.5%) but statistically significant (P = 0.00044, two-tailed t-test) increase in average end-apneic 

CMRO2. This method can be used to investigate neurometabolic-hemodynamic relationships in 

normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify 

neurometabolic responsiveness in diseases of altered neurovascular reactivity. 

2.2. Introduction 

Because cerebral metabolism is almost entirely oxidative, continuous O2 delivery to the brain is 

critical and tightly regulated. The CMRO2, defined as the brain oxygen consumption rate per unit 

tissue mass, is a direct measure of oxidative metabolism, in contrast to indirect measures such as 

perfusion or BOLD MRI signal. Therefore, CMRO2 is an ideal parameter for investigating 

relationships between neuronal activity, blood flow, and cerebral metabolism in normal physiology 
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and diseases of cerebrometabolic dysfunction. In fact, alterations in cerebral oxygen metabolism 

are associated with many of the most common neurologic disorders, including mild cognitive 

impairment (112), Alzheimer’s disease (34), Parkinson’s disease (127), and multiple sclerosis 

(111). 

In recent years, significant progress has been made toward non-invasive MR-based methods for 

absolute CMRO2 quantification. Much attention has focused on developing methods to quantify 

CMRO2 absolutely (in physiologic units) and on a voxel-wise basis. As overviewed in Chapter 1, 

such voxel-wise methods model the effect of deoxygenated hemoglobin on either brain tissue T2’ 

(60), T2 (64), or BOLD signal (90) to quantify the voxel-wise Yv, which can be combined with ASL 

CBF measurement to yield CMRO2. In contrast, methods that quantify oxygen extraction globally 

model the effect of dHb on the intravascular T2 (63,101) or MR signal phase (66,128) of large 

veins to quantify intravascular Yv, which combined with PC-MRI-based quantification of CBF 

yields CMRO2. Although these intravascular methods lack the ability to measure local changes in 

oxygen metabolism, many physiologic states and neurologic disorders are global in nature, and 

therefore assessable via measurement of global CMRO2. Furthermore, voxel-wise absolute 

CMRO2 techniques require many minutes for each CMRO2 measurement and therefore cannot 

quantify changes in response to dynamic physiologic challenges or neurologic stimuli. By 

sacrificing spatial specificity, intravascular methods enable CMRO2 quantification in clinically 

feasible scan-times and at much higher temporal resolutions – seconds rather than minutes – 

compared to voxel-wise approaches. 

Based on the infinite cylinder model (121,122), SBO is a simple and robust method for 

intravascular CMRO2 quantification. Unlike T2 relaxation-based methods for quantifying 

intravascular Yv, the paramagnetic cylinder model approach does not require prior calibration to 

specific scanners, sequences, or blood Hb/Hct values (Hb and Hct are input parameters 

theoretically included in the model). It also has equal accuracy and precision across all Yv values 

and is scalable with field strength. These features make the model suitable for application to a 
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variety of clinical populations and experimental conditions, including longitudinal and multi-center 

studies. The simplicity of this approach also enables rapid CMRO2 quantification in response to 

stimuli. For example, in recent work (124), CMRO2 was measured at 25-second temporal 

resolution in response to hypercapnia by application of a SBO method and found to be constant 

during hypercapnic steady state. Though 25-second temporal resolution represents a drastic 

improvement over previous approaches, changes in cerebral oxygen supply and demand take 

place on the order of seconds, and thus require yet improved temporal resolution to be fully 

resolved. Calibrated BOLD-based methods can assess relative CMRO2 changes in seconds (85), 

however, such methods cannot quantify CMRO2 in absolute physiologic units. Furthermore, these 

BOLD-based methods require calibration via gas-mixture breathing, complicating application to 

human subjects, and are based on the assumption that the response to such gases is 

isometabolic, itself a topic of debate (117). 

Higher temporal resolution CMRO2 quantification would provide valuable insight into global 

neuronal activity during various dynamic stimuli. For instance, it could be applied to validate 

whether the aforementioned gas-mixture breathing stimuli used in calibrating the BOLD fMRI 

signal, including hypercapnic (59,81) and hyperoxic (88) gas-mixture breathing as well as breath-

hold (129), are in fact isometabolic and over what time frame (i.e., whether a delay exists in 

reaching an isometabolic steady state). Validating these assumptions is critical given the 

extensive use of fMRI in biomedical research and the growing interest in making BOLD fMRI 

more quantitative. Further, applying the dynamic CMRO2 method to neuronal activation tasks 

could help elucidate the biophysical mechanisms underlying the BOLD response, including the 

relative CMRO2 contribution to the BOLD post-stimulus undershoot, a topic of significant 

contention (130).  

Breath-hold apnea is another important area of investigation where high temporal resolution 

CMRO2 measurement is essential. Apnea is involved in a number of important diseases, such as 

asthma, chronic obstructive pulmonary diseases, and OSA. The normal physiologic response to 
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apnea maintains cerebral oxygen delivery via reduced cardiac output, peripheral vasoconstriction, 

and cerebral vasodilation (131). However, it has been suggested that in OSA the repeated 

nocturnal apneic events caused by upper airway mechanical failure may result in blunting of this 

normal response (37,132,133), potentially explaining the extensive neurologic pathology 

associated with the disease. Exploration of this hypothesis requires better methods for quantifying 

the cerebrometabolic apneic response. While non-MR methods such as Doppler ultrasound (37) 

or NIRS (133) have been applied to study the neurometabolic response to apnea in subjects with 

OSA, these techniques measure changes in either CBF or tissue O2 saturation (StO2), but not 

CMRO2, which requires simultaneous quantification of CBF and tissue oxygen extraction. CMRO2 

is maintained across healthy subjects both at baseline (66) and in response to certain physiologic 

stimuli such as hypercapnia (124), suggesting that it is a more significant index for assessing 

neurovascular dysfunction than either blood flow or oxygenation alone. Developing methods to 

better assess the normal CMRO2 response to apnea and its potential alteration in OSA could 

improve understanding of OSA neuropathology and provide insight into OSA treatment. 

In this section, we present and validate a method for dynamic CMRO2 quantification with three-

second temporal resolution, which extends the SBO approach previously described (66) to 

dynamic stimuli. This temporal resolution is achieved by using view-sharing to reduce the number 

of phase-encode lines by four-fold and by combining the Yv and flow quantification portions of the 

sequence. After validating the assumptions inherent in these temporal-resolution-improving 

measures, the technique was applied to a cohort of healthy individuals during a volitional apnea 

paradigm, both to demonstrate the method’s sensitivity and to characterize the normal apneic 

CMRO2 response. 

2.3. Methods 

2.3.1. CMRO2 Quantification via the Fick Principle 

The cerebral metabolic rate of oxygen is estimated by combining venous and arterial oxygen 

saturation and tCBF measurements using the Fick Principle (10-12): 
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CMRO2 =Ca ⋅tCBF ⋅ Ya −Yv( )           [2.1] 

where CMRO2 is the cerebral metabolic rate of oxygen consumption in µmol per minute per 100 g 

brain tissue, tCBF is the total cerebral blood flow in mL per 100 g brain tissue per minute, Ya and 

Yv are the arterial and venous oxygen saturation in %HbO2, and Ca is the arterial oxygen content 

in µmol of O2 per mL blood, a product of the measured hemoglobin concentration (Hb) and the O2 

carrying capacity of hemoglobin. Ca varies for each subject, and is given by: 

          [2.2] 

where Hb is the venipuncture-derived hemoglobin in g/dL and the scaling factor is based on a 

hemoglobin molar mass of 64458 g/mol (43). Ya can be measured continuously with a digital 

pulse oximeter, leaving Yv and tCBF to be quantified from MRI.  

2.3.2. Principles of Susceptometry-Based Global CMRO2 Quantification 

SBO exploits the relative paramagnetism of deoxygenated versus oxygenated hemoglobin, which 

causes the susceptibility of whole blood relative to surrounding tissue, Δχ, to be linearly related to 

Yv (115): 

Δχ =Hct Δχdo 1−Yv( )+Δχoxy( )           [2.3] 

where Hct is the venipuncture-derived hematocrit, and Δχdo and Δχoxy are the experimentally 

determined volume susceptibility differences between fully oxygenated and deoxygenated 

erythrocytes and fully oxygenated erythrocytes and water, respectively. Values of 4π×0.273 and 

4π×0.008 p.p.m. (SI units) are used for Δχdo and Δχoxy, based on ex vivo calibration experiments 

(116,118). 

Although this blood susceptibility cannot be measured directly, it induces a local field offset, ΔB, 

which can be measured with an MRI multi-echo GRE field mapping sequence as: 

Ca = 0.620559 ⋅Hb
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ΔB =Δφ /γΔTE           [2.4] 

where Δϕ is the difference in phase accrual between echoes spaced apart by ΔTE in the blood 

versus surrounding reference tissue, and γ is the proton gyromagnetic ratio. Quadratic fitting is 

used to remove contributions to Δϕ from static field inhomogeneities (126). 

Solving for Yv thus hinges on determining Δχ from the measured ΔB, an inversion problem that is 

mathematically ill-posed in the general case (119). However, by modeling the vessel of interest 

as a pseudo-infinite, circular cylinder, and accounting for field cancelation due to the Lorentz 

sphere phenomenon (121,122), the relationship between ΔB and Δχ can be calculated 

analytically: 

          [2.5] 

where θ is the vessel angle with respect to the main magnetic field, B0. Combining Equations 

2.3-2.5 allows determination of Yv by measurement of Δϕ: 

          [2.6]
 

Because the SSS is long, relatively straight, and virtually parallel to the B0 field with the subject 

lying supine, it is an excellent candidate for application of the infinite cylinder model. Application 

of the model to the SSS has been validated both theoretically (123) and with anatomical phantom 

models (66). Furthermore, the SSS is the largest cerebral vein, and it has been shown that 

oxygen saturation levels in the SSS are comparable to global cerebral Yv levels measured in the 

internal jugular vein (63,101), making the SSS an appropriate surrogate for global cerebral Yv. 

Direct susceptometry-based measurement of Yv in the internal jugular vein is difficult due to the 

often severe susceptibility artifacts caused by the proximity of air spaces such as the oral cavity 

and trachea. 

ΔB = 1
6
ΔχB0 3cos2θ −1( )

Yv =1−
6 Δφ /ΔTE( )

γB0ΔχdoHct 3cos2θ −1( )
+
Δχoxy

Δχdo
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2.3.3. Combination of SBO and PC-MRI for CMRO2 Quantification (OxFlow) 

Non-gated PC-MRI is used to quantify tCBF. The method utilizes motion-sensitizing gradient 

waveforms to encode information about velocity into the phase of the MR signal. Specifically, the 

pulse sequence involves two interleaves, both having null zeroth gradient moment along the 

direction of blood flow but nonzero first gradient moment. The latter determines the sensitivity of 

the accrued phase difference between the two interleaves, Δφ, to the velocity of the flowing spins 

as: 

Δϕ =γΔM1v           [2.7] 

where ΔM1 is the difference in the fist moment between the two interleaves and is dictated by a 

user-defined parameter VENC, defined as:  

VENC =γΔM1 /π           [2.8] 

VENC represents the velocity that causes a net phase accrual of π radians and therefore the 

maximum velocity that can be resolved without phase aliasing, and is typically chosen to be 

approximately 30% higher than the maximum velocity expected. Flow is quantified from velocity 

maps via multiplication of average vessel blood flow velocity by vessel cross-sectional area. In 

order to quantify CMRO2 per unit brain mass, flow must be normalized to total brain volume, 

which is quantified with a T1-weighted 3D magnetization-prepared rapid GRE (T1 MP-RAGE) 

pulse sequence (134). 

In previous work, these phase-based techniques for quantifying Yv and tCBF have been 

combined to quantify global CMRO2 at rest (66) and during hypercapnic gas breathing (124). In 

this approach, Yv is measured in the SSS and tCBF is measured simultaneously in the internal 

carotid and vertebral arteries of the neck using a two-slice-interleaved multi-echo GRE sequence. 

Four interleaves are required for each phase encoding, two to generate susceptometry weighted 
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phase difference maps and two to generate velocity encoded phase maps, resulting in a temporal 

resolution of 25 seconds. 

2.3.4. Pulse Sequence Modifications for Improved Temporal Resolution 

Modification of the susceptometry-based CMRO2 technique to achieve three-second temporal 

resolution (Figure 2.1) was accomplished via two changes to the original approach: 

 

Figure 2.1: High temporal resolution CMRO2 quantification pulse sequence. (A) A 
two-slice-interleaved fully phase-encoded reference sequence is run immediately 
before (B) the single-slice main sequence with 4x phase-encode reduction; (C) 
Experimental schematic illustrating relative timing of the reference and main 
sequence; (D) Sagittal maximum intensity projection image indicating slice 
locations corresponding to the pulse sequence diagram with magnitude images 
highlighting (E) the SSS in the head slice and (F) the internal carotid arteries 
(ICAs) and vertebral arteries (VAs) in the neck slice. Figure from (135). 

1. Combining of sequence interleaves: Rather than using two interleaves with different echo times 

to generate the Yv weighted phase-difference map, a multi-echo readout enables generation of a 

phase-difference map from data acquired in a single interleave. Any phase accrued due to 

velocity encoding will equally affect both echoes of the multi-echo readout, as both echoes have 
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the same polarity. Thus, the velocity and susceptometry interleaves can be combined. As a 

consequence of this modification, SSS blood flow (SSSBF) is quantified rather than tCBF from 

the neck arteries. However, tCBF can be accurately estimated by calibrating SSSBF based on 

the SSSBF:tCBF ratio measured at baseline with a two-slice-interleaved version of the sequence. 

This reference sequence (Figure 2.1a) is run immediately before starting the main (SSS-only) 

high temporal resolution CMRO2 sequence (Figure 2.1b), which is continued for the remainder of 

the scan. This modification yields a two-fold temporal resolution increase. 

2. Keyhole (136) reconstruction with reduced phase encoding lines: The number of phase-encode 

lines in the main (SSS-only) CMRO2 sequence is reduced by a factor of four from 208 to 52, and 

outer k-space is filled with data acquired from the same fully-phase encoded reference sequence 

used for calibrating SSSBF to tCBF (outer k-space data from echoes 1 and 2 in Figure 2.1a is 

added to continuously updated central k-space data from echoes 4 and 5 in Figure 2.1b). Unlike 

the main sequence, the reference sequence retains full phase encoding to facilitate Keyhole 

image reconstruction and allow higher fidelity quantification of the SSSBF:tCBF ratio. This 

modification yields a four-fold temporal resolution increase. 

The resultant pulse sequence (Figure 2.1a-b) has the following parameters: FOV = 208×208 

mm2 (head slice), 176×176 mm2 (neck slice), voxel size = 1×1×5 mm3 (head slice), 0.85×0.85×5 

mm3 (neck slice), TR/TE1/ΔTE = 28.85/5.5/7.04 ms, bandwidth = 521 Hz/pixel, flip angle = 15 

degrees, VENC = 60 cm/s (head), 80 cm/s (neck), temporal resolution = 12 s (reference 

sequence), 3 s (main sequence). The modifications described combine to provide an eight-fold 

improvement in temporal resolution without reducing theoretical SNR. In fact, because two 

phase-difference maps are simultaneously generated at every time point (one for each flow 

encoding) and subsequently averaged, SNR should theoretically improve by approximately 2 . 

The modifications described depend on several crucial assumptions that must be validated: 

1. In order to determine tCBF from the SSSBF:tCBF ratio at baseline, the SSSBF:tCBF ratio must 

remain constant throughout the experiment. Because the SSS receives venous blood from most 
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of the cortex, this assumption should be valid, especially during global physiologic challenges 

such as apnea or gas-mixture breathing.  

2. Keyhole reconstruction assumes that dynamic information is band-limited in k-space (i.e., 

image changes are low spatial-frequency processes). To satisfy this assumption, the diameter of 

any features of interest must be approximately greater than the Keyhole reduction factor times 

the static resolution, or 4 mm for the 1 mm resolution and 4x Keyhole reduction factor used in the 

sequence described. The SSS is approximately 10 mm in diameter, and thus should fulfill this 

requirement. 

3. Keyhole reconstruction assumes anatomic correspondence between the reference images and 

the main sequence images, and therefore requires that there be no movement over the course of 

the experiment. This is achievable at the level of the SSS because it is easy to keep the head 

stationary in the MR scanner, even during a challenging paradigm such as volitional apnea. 

In addition to improving temporal resolution, another motivation for velocity measurement in the 

SSS only is that the neck vessels are more prone to movement, especially during physiologic 

paradigms such as apnea, violating assumption 3, and are also relatively smaller, violating 

assumption 2. 

2.3.5. In Vivo Magnetic Resonance Imaging Studies 

Human subject studies were approved by the Institutional Review Board of the University of 

Pennsylvania. Ten healthy volunteers (6 males, 4 females, ages 29 ± 4 years) were recruited and 

participated after giving written informed consent. The subjects were judged to be healthy on the 

basis of their medical history. The particular population demographic was chosen to ensure 

maximal subject compliance to the physiologic paradigms. In all studies, images were acquired 

on a 3T Siemens Tim Trio system (Siemens Medical Solutions, Erlangen, Germany) using a 12-

channel head coil and 2-channel neck coil. A vendor-provided GRE axial localizer scan was used 

to select the location of the vessels of interest (SSS, internal carotid arteries, and vertebral 
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arteries) and estimate θ, the tilt angle of the SSS with respect to B0, from the coordinates of the 

centroid of the vessel for quantification of Yv as in Equation 2.6. 

2.3.5.1. Validation of Critical Methodological Assumptions 

Three of the volunteers (2 males, 1 female, ages 25 ± 1 years) completed a tube-breathing 

paradigm involving 2.5 minutes of normal breathing baseline, 2.5 minutes of breathing through 10 

feet of plastic tubing with an attached mouthpiece to induce changes in flow and Yv, and 2.5 

minutes of normal breathing recovery. Tube-breathing was chosen in this validation study 

because it induces a mixed hypercapnic/hypoxic state, similar in nature to breath-hold but 

sustainable over a long enough duration to acquire multiple data points at both slice locations 

with full phase encoding (137). The fully phase-encoded, two-slice-interleaved reference 

sequence was run during the entire paradigm, allowing quantification of the SSSBF:tCBF ratio 

over the course of the paradigm to test whether it remains constant during an apnea-like 

physiologic paradigm (assumption 1). Using full phase-encoding also allows comparison of 

SSSBF and Yv values obtained from retrospectively Keyhole reconstructed data, where various 

amounts of outer k-space are replaced at each time point with the corresponding data from the 

first time point, as if only the central k-space had originally been acquired, as is the case when 

running the main sequence. This tests whether changes in parameter values are sufficiently 

bandlimited in k-space to be accurately determined when using Keyhole sampling and image 

reconstruction (assumption 2). Finally, because the paradigm requires both manipulation of the 

tube mouthpiece and significantly increased respiration, it challenges the subject’s ability to 

remain static (assumption 3). 

2.3.5.2. Quantification of CMRO2 in Response to Apneic Challenge 

Volunteers completed an apnea paradigm involving three repeated blocks of a 30 s normal 

breathing baseline period, a 30 s breath-hold apnea period, and a 90 s normal breathing recovery 

period. Before being scanned, subjects were instructed that all breath-holds should be completed 

at functional residual capacity, in other words, at normal end expiration. After running the 
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reference sequence, the main sequence was run for the length of the 7.5-minute paradigm as in 

Figure 2.1c, allowing quantitation of Yv and tCBF at three-second temporal resolution. Ya was 

measured continuously during the paradigm with a digital pulse oximeter placed on the right 

middle finger. Except in cases of abnormal cardiac anatomy, blood pumped to the brain and 

periphery originates from the same mixed pool in the left ventricle and therefore has the same Ya. 

Thus, digital pulse oximetry will reflect cerebral Ya. To correct for the known temporal delay in the 

measured Ya when using digital pulse oximetry, the Ya curve was shifted forward in time for each 

subject so that arterial resaturation occurs 7.5 seconds after cessation of breath-hold, matching 

the known circulatory transport delay between the lungs and brain (138) to within the temporal 

resolution of the MR pulse sequence (3 s). Breath-hold at normal end expiration was chosen to 

keep breath-holds as consistent as possible across repeats and subjects, ensuring that 

inspiration would occur immediately at the end of the breath-hold period. Subjects were verbally 

coached during the imaging experiment to “breathe in”, “breathe out", and “stop breathing” six, 

three, and zero seconds before the start of each apnea period, respectively, to ensure exact 

timing of the breath-holds. All subjects were able to successfully complete each of the breath-

holds as confirmed by direct observation and pulse oximetry data. Following the breath-hold 

paradigm, a T1-weighted MP-RAGE image data set (voxel size = 1×1×1 mm3) was acquired for 

normalization of tCBF to brain volume. Total brain volume was obtained using a semiautomated 

region-growing algorithm in ITK-SNAP (139). After completion of the MR imaging experiment, 

each subject gave a venous blood sample, which was sent for complete blood count laboratory 

analysis to obtain a blood hemoglobin and hematocrit value. 

2.3.6. Data Processing 

In all experiments, binary masks were generated for the carotid and vertebral arteries and SSS by 

thresholding of complex difference images, which robustly isolates the signal from flowing blood. 

Yv was quantified in the SSS from Equation 2.6 with Δϕ equal to the average phase difference 

between the reference tissue and the SSS ROI. Flow was quantified in the neck arteries and SSS 
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by multiplying average velocity by cross sectional area for each corresponding vessel ROI, 

summing over the four neck arteries to get tCBF. 

In the tube-breathing experiments, images were retrospectively Keyhole-reconstructed at Keyhole 

reduction factors of 2, 4, 8, and 16 by discarding all but the central 104, 52, 26, or 13 lines of k-

space, respectively, and replacing outer k-space with corresponding data from the first image of 

the data set. In the apnea paradigm experiments, corresponding data acquired from the reference 

sequence was used to fill missing outer k-space data from the main sequence run for the duration 

of the paradigm.  

All time-course data from the apnea experiments was averaged over the three repeated blocks of 

the paradigm to remove physiologic noise not related to the paradigm and improve SNR. Average 

baseline parameter values were quantified from the first 24 seconds (8 data points) of the 

baseline period to exclude breathing effects from the coached inspiration and expiration during 

the final 6 seconds (2 data points) of the baseline period. Data from only the final 15 seconds (5 

data points) of the apnea period were used to generate end-apnea parameter values to eliminate 

residual breathing effects and because physiologic changes due to apnea are not expected to 

occur instantaneously. 
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2.4. Results 

Tube-breathing produced a similar response across the three subjects. Time-course plots of Yv, 

tCBF, and SSSBF in a representative subject (Figure 2.2a) demonstrate the expected increase in 

blood flow and venous oxygen saturation caused by hypercapnia that develops during the tube-

breathing portion of the paradigm. Coefficients of variation of the SSSBF:tCBF ratio (assumed to 

remain constant for a given subject to allow tCBF estimation from SSSBF) across all time points 

(N = 45) were 0.094, 0.075, and 0.084 for the three subjects. The SSSBF:tCBF ratio for each 

subject averaged across the normal breathing baseline and recovery (30 data points) and tube-

breathing (15 data points) portions of the paradigm is shown in Figure 2.2b. Welch’s t-tests for 

equal means between these two groups of SSSBF:tCBF values yields non-significant P-values (> 

0.40) for all subjects. 

 

Figure 2.2: SSSBF:tCBF ratio determination in three subjects. (A) Time-course 
plot of Yv, tCBF, and SSSBF in response to 3 minutes of tube-breathing (gray 
bar); (B) Histograms grouped by subject showing the SSSBF:tCBF ratio 
averaged over the baseline/recovery (N = 30 per subject) and tube-breathing (N 
= 15 per subject) portions of the paradigm with errors bars indicating ± 1 SD. 
Figure from (135). 
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Figure 2.3 demonstrates the effects of Keyhole reconstruction on the accuracy of derived 

parameters as observed from the tube-breathing experiment. In Figure 2.3a, time-course plots of 

Yv and SSSBF derived from images with full phase encoding are compared to the same plots 

generated from images retrospectively Keyhole-reconstructed with a range of Keyhole reduction 

factors. Note the greater errors when larger Keyhole reduction factors are used. In Figure 2.3b, 

these errors are plotted versus number of phase-encode lines used in the Keyhole reconstruction. 

Values are averaged over the tube-breathing portion of the paradigm only, where errors should 

be greatest as observed in Figure 2.3a. For the Keyhole reduction factor of 4 used in the CMRO2 

quantification sequence, mean error and root-mean-square error (RMSE) had magnitudes less 

than 0.04 for both Yv and SSSBF for all subjects. 

 

Figure 2.3: Error due to Keyhole reconstruction. (A) Time-course plot of Yv and 
SSSBF in response to tube-breathing (gray bar) derived from images 
reconstructed with full phase encoding (208 phase encode lines) and 
retrospective Keyhole reconstruction with 104, 52, 26, or 13 phase encode lines 
used; (B) Percent mean error and RMSE in Yv and SSSBF during tube-breathing 
using different numbers of phase encode lines for retrospective Keyhole 
reconstruction. ‘Sub’ stands for ‘subject’. Figure from (135). 
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Figure 2.4 displays data from the apnea paradigm experiment in a typical subject. Changes in 

flow and Yv in response to apnea are visualized in the corresponding velocity and phase 

difference maps (Figure 2.4a). Time-course plots of the measured parameters (Figures 2.4b-c) 

demonstrate an increase in Yv and tCBF and a decrease in Ya in response to apnea (gray bar). 

From these data, AVO2D is quantified and plotted alongside the tCBF, the product of which yields 

CMRO2 (Figures 2.4d-e).  

 

Figure 2.4: Apnea paradigm representative subject images and time course data. 
(A) Magnitude image with the SSS outlined and corresponding velocity and 
phase difference (Δϕ) maps from specific time points (denoted by black symbols 
in B); (B) Time-course plot of pulse oximetry measured Ya and image-derived Yv 
and tCBF absolute parameter values with black symbols corresponding to 
images in A; (C) percent changes in Ya, Yv, and tCBF parameter values 
normalized to average baseline value; (D) tCBF, AVO2D, and CMRO2 absolute 
parameter values and (E) percent changes in parameter values normalized to 
baseline. Gray bars indicate the apnea period. All values in time-course plots are 
averaged across the three repeats of the paradigm. The bracketed sections 
‘Base’ and ‘EA’ indicate the data used for computing average baseline values 
and end-apnea values for each subject. Figure from (135). 
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Table 2.1 lists parameters extracted from the time-course data for each subject, both at baseline 

and in response to apnea. The average baseline Yv, tCBF, and CMRO2 values were 68.6 ± 3.0 

%HbO2, 48.6 ± 7.0 mL/100g/min, and 125.1 ± 11.4 µmol/100g/min, respectively, consistent with 

previous findings (66). As previously observed (66), oxygen delivery (the product of Ca and tCBF) 

was negatively correlated with oxygen extraction (AVO2D) at baseline (r = -0.76, P = 0.011, two-

tailed t-test). Maximum percent changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, 

respectively, resulting in a small (6.0 ± 3.5%) but significant (P = 0.00044, two-tailed t-test) 

increase in CMRO2 between baseline and end-apnea (final 15 s of apnea period). 

  Subject   
Parameter 1 2 3 4 5 6 7 8 9 10 Mean SD 

 

              tCBF Baseline 52.3 51.7 43.8 54.8 45.4 37.5 55.8 58.0 39.9 46.4 48.6 7.0 
(mL/100g/min) Maximum 83.6 70.1 62.0 82.9 62.8 52.1 73.9 91.4 55.8 64.8 69.9 12.9 

 
Change (%) 60.0 35.6 41.3 51.1 38.2 38.9 32.5 57.6 40.0 39.7 43.5 9.4 

              Yv Baseline 66.0 69.0 68.2 72.3 62.7 67.3 72.5 71.0 67.2 69.5 68.6 3.0 
(%HbO2) Maximum 73.6 72.4 77.0 76.1 67.3 73.0 76.0 79.8 72.3 74.0 74.2 3.4 

 
Change (%) 11.6 5.0 12.9 5.2 7.3 8.5 4.9 12.4 7.6 6.4 8.2 3.1 

              Ya Baseline 99.4 99.3 98.0 97.0 98.9 97.2 98.2 98.2 96.1 97.3 98.0 1.1 
(%HbO2) Minimum 92.7 94.7 96.3 90.7 92.3 94.0 93.3 96.3 91.7 93.2 93.5 1.9 

 
Change (%) -6.8 -4.6 -1.7 -6.5 -6.7 -3.3 -5.0 -1.9 -4.6 -4.2 -4.5 1.8 

              AVO2D Baseline 33.4 30.2 29.8 24.7 36.2 29.9 25.7 27.1 28.9 27.8 29.4 3.4 
(%HbO2) Minimum 20.0 22.3 19.4 15.7 25.7 21.5 17.3 16.5 22.3 19.2 20.0 3.1 

 
Change (%) -40.0 -26.2 -35.0 -36.4 -29.1 -28.2 -32.8 -39.2 -22.8 -30.9 -32.1 5.7 

              CMRO2 Baseline 142.2 135.8 118.8 122.0 125.5 104.9 140.0 123.5 117.4 120.6 125.1 11.4 
(µmol/100g/min) End-Apnea 147.1 155.8 122.6 130.3 132.5 107.2 147.4 130.1 126.9 126.9 132.7 14.1 

 
Change (%) 3.5 14.7 3.3 6.9 5.6 2.2 5.3 5.3 8.1 5.2 6.0 3.5 

Table 2.1: Summary of individual subject and group (mean and SD) values of 
various extracted parameters at rest and in response to volitional apnea. Ave. 
Baseline (average value over the first 24 s of the baseline period), 
Maximum/Minimum (highest/lowest value reached over the entire paradigm), 
End-Apnea (CMRO2 only: average value over the final 15 s of the apnea period); 
Change (percent change between Ave. Baseline and corresponding Maximum 
(Yv, tCBF), Minimum (Ya, AVO2D), or End-Apnea (CMRO2) parameter value. 
Table from (135). 
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The subject-averaged apneic response is displayed in the time-course plots of Figure 2.5. It is 

evident that flow increases during apnea and then undershoots before returning to baseline while 

oxygen extraction decreases during apnea and then overshoots before returning to baseline. The 

slightly larger magnitude of the flow increase compared to the AVO2D decrease causes a small 

increase in CMRO2 during apnea followed by a transient undershoot before return to baseline. 

 

Figure 2.5: Apnea paradigm cohort time course data. (A) Time-course plot of 
cohort-averaged Ya, Yv, and tCBF absolute parameter values and (B) percent 
changes in parameter values normalized to average baseline; (C) tCBF, AVO2D, 
and CMRO2 absolute parameter values and (D) percent changes in parameter 
values normalized to average baseline. Error bars indicate ± 1 SD. Gray bars 
indicate the apnea period. All values in time-course plots are averaged across 
the three repeated blocks of the paradigm. The bracketed sections ‘Base’ and 
‘EA’ indicate the data used for computing average baseline values and end-
apnea values. Figure from (135). 
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2.5. Discussion 

We have introduced an MR-based method for absolute quantification of CMRO2 in humans with 

three-second temporal resolution. Key methodological assumptions were validated in a tube-

breathing paradigm. The sensitivity of the technique to detect dynamic changes in cerebral blood 

flow, oxygen extraction, and CMRO2 was assessed in response to a dynamic volitional apnea 

paradigm in a cohort of young healthy adults.  

Results from the tube-breathing experiment (Figures 2.2 and 2.3) suggest application of the 

technique in the SSS produces only small systematic errors. Coefficients of variation of the 

SSSBF:tCBF ratio across all time-points of the paradigm were small (< 0.10) for each subject. 

Furthermore, Welch’s t-tests for equal means comparing the SSSBF:tCBF ratio for tube-breathing 

and non-tube-breathing portions of the experiment were nonsignificant for all subjects (P > 0.40). 

Therefore, it appears that SSSBF closely parallels tCBF in response to tube-breathing. This result 

is expected considering that the SSS accounts for nearly half of tCBF and because a global 

physiologic paradigm such as tube-breathing would not be expected to have a regional bias. 

Because of the similarity between tube-breathing and apnea, the results support estimation of 

tCBF based on SSSBF for quantifying CMRO2 in response to apnea or other global physiologic 

challenges. 

Systematic errors due to Keyhole reconstruction were observed to decrease expectedly as the 

Keyhole reduction factor was decreased. Mean errors and RMSEs in flow and Yv were less than 

0.04 for all subjects and less than 0.02 averaged across subjects when using a reduction factor of 

4. 

In response to apnea, we observed a small (6.0 ± 3.5%) but significant (P = 0.00044, two-tailed t-

test) increase in CMRO2. Apnea has been used in the past as an assumed isometabolic stimulus 

in BOLD fMRI studies, both for calibrating the BOLD signal to quantify relative CMRO2 changes 

(129) and as an isometabolic standard in studies investigating the BOLD post-stimulus 

undershoot (140). Our results suggest that apnea may be slightly pro-metabolic. Increased 
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CMRO2 in response to apnea could represent a physiologic mechanism for buffering the brain 

energy supply in anticipation of prolonged apnea, which eventually would lead to exhaustion of 

energy stores and neuronal cell death. This would be consistent with other observations of the 

normal apneic response, such as reduced cardiac output, peripheral vasoconstriction, and 

cerebral vasodilation, which serve to maintain oxygen stores in the brain at the expense of the 

periphery. 

Previous studies quantifying CMRO2 using the Fick Principle have focused on baseline 

physiology or steady-state stimuli only. Specific considerations must be made in applying the Fick 

Principle during dynamic stimuli. For instance, there is a possibility that the amount of oxygen 

stored in brain tissue changes during apnea, due to either changes in CBV or pO2. In applying the 

Fick Principle to large feeding or draining vessels, it is not possible to distinguish between 

changes in O2 storage and true O2 consumption (i.e., via aerobic metabolism). Potential errors in 

CMRO2 due to O2 storage effects are considered in the Appendix (Section 2.7), and shown to be 

negligible. 

To our knowledge, no previous studies have directly quantified CMRO2 during apnea, though 

studies of the CMRO2 response to various gas mixtures provide insight into the present work. In 

recent work, a similar CMRO2 technique employing SBO has shown that CMRO2 does not 

change during hypercapnic steady state (124). However, apnea represents a mix of both 

hypercapnia and hypoxia, and never reaches a steady state. Data from the periods between 

steady states were not recorded in the prior study, and the temporal resolution used (25 s) would 

be unable to distinguish the transient changes in CMRO2 detected in the present study. Studies 

of the CMRO2 response to hypercapnia using T2-based methods for Yv quantification have 

yielded mixed results, with T2-based intravascular approaches reporting both no change (141) 

and a 13.4 ± 2.3% decrease (87) in CMRO2 in response to moderate hypercapnia. The latter T2-

based approach was recently applied to detect a 5.0 ± 2.0% average increase in CMRO2 in 

response to mild (14% inspired FiO2) steady state hypoxia (105), a difference of 18.4% compared 
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to the CMRO2 response to hypercapnia using the same methodology. Given that apnea is a 

mixed hypercapnic/hypoxic stimulus, that similar SBO techniques as the one used in the present 

study have found hypercapnia to be isometabolic (124), and that T2-based approaches support a 

large CMRO2 difference between hypoxia and hypercapnia, the small apneic CMRO2 increase 

observed in this study is not unexpected. Nevertheless, extrapolations based on steady-state 

gas-mixture breathing are of limited relevance to apnea, which is inherently non-steady state, 

involving continuously increasing levels of both hypercapnia and hypoxia. 

Application of the proposed technique during administration of breathing gases (CO2 and O2) 

would better establish the relative contributions of hypercapnia and hypoxia to the observed 

apneic CMRO2 response. Such studies would also suggest the extent to which hypercapnia and 

hypoxia are isometabolic, not only at steady state, but in the transition to steady state. Such 

information is critical given the use of CO2 and O2 in calibrating BOLD fMRI, as there is growing 

interest in making BOLD fMRI more quantitative through respiratory calibration. 

The ability of the method to capture details of the temporal dynamics of the apneic response is 

especially well illustrated by the group-averaged time-course plots (Figure 2.5), which illustrate 

not only the neurovascular effects of apnea, but also the more subtle effects of respiration. 

Coached inspiration from six to three seconds prior to apnea causes reduced intrathoracic 

pressure and increased right atrial venous return, changes reflected by the small observed 

increase in CBF just prior to apnea initiation. In contrast, coached expiration during the final three 

seconds before apnea has the opposite effect, and the end-expiratory breath-hold state reached 

upon apnea initiation is also known to result in decreased cerebral venous blood flow (142). 

Indeed, CBF was observed to transiently decrease during the beginning of the apnea period, 

taking nearly half the apnea period for the flow increase due to apnea-induced hypoxia and 

hypercapnia to overcome the small flow reduction caused by the end expiration-induced 

reduction in cerebral venous blood flow. Finally, immediately after apnea cessation, another 

transient, sharp increase in flow is observed, likely also arising from the large initial inspiration at 
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the end of the apnea period. While opposite magnitude changes in the AVO2D difference were 

observed during the same aforementioned inspiratory and expiratory periods, they are of lesser 

magnitude, and, therefore, flow driven CMRO2 changes are recorded.  

It is difficult to ascertain whether these transient CMRO2 changes are real or arise from a 

temporary mismatch between the true (arterial) tCBF, and the SSS blood flow used to quantify 

tCBF in the described technique. Inspiration and expiration during other free-breathing portions of 

the paradigm is not temporally matched across subjects and paradigm repeats, and is therefore 

averaged out of the time course data. 

One possible limitation of the proposed method is the necessity of measuring Ya with pulse 

oximetry. No arterial vessels of suitable geometry for application of the infinite cylinder model 

exist in the head or neck region. Furthermore, the SNR of SBO phase difference maps is 

proportional to the accrued phase, which is small in highly oxygenated arterial blood. Accurate Ya 

quantification is critical as even a small underestimation in the Ya drop would mitigate the 

observed increase in CMRO2 in response to apnea. However, if underestimation of Ya were the 

cause of the observed apneic CMRO2 increase, one would expect the percent changes in Ya and 

CMRO2 in response to apnea to be positively correlated across subjects, however, this 

correlation was small, negative, and insignificant (r = -0.18, P = 0.62, two-tailed t-test). 

An alternative approach to fast CMRO2 quantification is the use of projection-based T2 

measurement, which achieves Yv quantification in 15 s, is independent of vessel orientation, and 

is not sensitive to field inhomogeneities (63). However, the method assumes that flow remains 

constant over the course of each 15 s measurement. It is therefore not suitable for a paradigm, 

such as apnea, in which significant flow changes occur over seconds. Furthermore, the model 

used for determining %HbO2 values from T2 measurements must be empirically calibrated to 

specific Hct values, with errors due to deviations in Hct becoming especially large for higher blood 

oxygen saturation levels. 



54 

 

2.6. Conclusions 

In conclusion, we have introduced and validated an approach for rapid quantification of CMRO2 

with three-second temporal resolution, and applied it to characterize the CMRO2 response to 

apnea. Potential clinical applications include investigation of diseases of altered neurometabolic 

response, for instance, obstructive sleep apnea. More broadly, by providing a simple, robust, and 

quantitative method for assessing CMRO2 in response to physiologic stimuli, the technique can 

be used to investigate neurometabolic-hemodynamic relationships in a variety of normal 

physiologic and pathologic conditions. 

2.7. Appendix: Non-Steady-State Application of the Fick Principle 

In applying the Fick Principle to non-steady state stimuli such as volitional apnea, one must 

consider the potential confounding effects of dynamic changes in the amount of O2 stored in the 

brain secondary to changes in either CBV or interstitial oxygen tension (piO2). 

Changes in CBF will cause a concomitant expansion of arterial and venous cerebral blood 

volume (CBVa and CBVv) (143) such that flow quantified in the large arteries or veins will not 

reflect instantaneous capillary flow. Because the OxFlow method described measures CBF on 

the venous side in the SSS, only changes in CBVv, and not CBVa, will affect the relationship 

between measured CBF and instantaneous capillary flow. In response to apnea, we observed a 

flow increase of about 30% during the 15 s end-apnea period (Figure 2.5). Assuming a Grubb 

power law relationship (75) between CBVv and CBF with α=0.18 (76), and a baseline CBVv of 

approximately 2% (60,144) (or 2 mL/100g tissue with blood and tissue approximated as having 

density equal to water), the calculated CBVv change is (1.300.18−1)×2 ≈ 0.1 mL/100g, or an 

average rate of 0.4 mL/100g/min over the 15 s end-apnea period. In other words, approximately 

0.4 mL/100g/min of the blood flowing through the capillary bed was directed toward CBVv 

expansion and not measured as tCBF. Given that this is less than 1% of tCBF, even at baseline, 

and that CMRO2 is linear with tCBF, a reasonable upper bound for the underestimation of CMRO2 

during the end-apnea period is 1.3 µmol/100g/min (1% of the average end-apnea CMRO2). This 
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would correspond to a true average end-apnea CMRO2 change of 7.1%, only slightly larger than 

the measured change of 6.0%. 

Another potential mechanism of O2 storage is the increase in piO2 that accompanies increased 

CBF (145). Additional dissolved oxygen in the interstitial space would temporarily be stored rather 

than metabolized in cells, resulting in overestimation of the instantaneous CMRO2. In response to 

apnea, CMRO2 increased by 7.6 µmol/100g/min (Table 2.1), which is 1.9 µmol/100g after 

integration over the 15 s end-apnea period or 0.048 mL/100g applying the Ideal Gas Law at 

37°C. Assuming an interstitial oxygen solubility of 0.003 mL/100g and interstitial volume fraction 

of 20% (146), Henry’s Law predicts a piO2 change of 80 mmHg would be required for additional 

O2 storage in the interstitium to entirely account for the observed CMRO2 change. 

There is limited literature examining the piO2 change associated with breath-hold; however, 

approximate values can be inferred from hypercapnia studies in animals. A study in Rhesus 

monkeys measured a 7 mmHg piO2 increase in response to 5% CO2 gas-mixture breathing (147). 

In humans, CBF changes in response to 5% CO2 are of similar magnitude to those observed in 

response to 30 s apnea in the present study (43.5%) (87,124). In a study of rats exposed to 

hypercapnia (145), the derived relationship between piO2 and CBF changes suggests a 43.5% 

increase in CBF would produce a piO2 increase of about half that amount (22%), corresponding 

to a 7 mmHg increase from a baseline piO2 of 30 mmHg. In both of these animal experiments, the 

expected piO2 change is less than 10% of what would be required to drive an apparent 6.0% 

CMRO2 increase. Furthermore, these inferred piO2 changes likely represent upper bounds, as 

apnea-associated hypoxia will independently lower piO2, opposing changes associated with 

increased CBF. Finally, if the observed CMRO2 increase was driven by piO2 changes, one would 

expect the maximum ΔtCBF and ΔCMRO2 to be positively correlated across subjects, which was 

not the case (ΔCMRO2 = −0.11×ΔtCBF+10.6, r2 = 0.08). In summary, O2 storage effects are 

expected to have a negligible impact on CMRO2 quantified via the Fick Principle, even during 

non-steady state stimuli such as apnea. 
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Chapter 3: Rapid T2- and Susceptometry-Based CMRO2 

Quantification with Interleaved TRUST (iTRUST) 

3.1. Abstract 

SBO and TRUST are two promising methods for quantifying CMRO2, a critical parameter of brain 

function. We present a combined method, interleaved TRUST (iTRUST), which achieves rapid, 

simultaneous quantification of both susceptometry- and T2-based CMRO2 via insertion of a flow-

encoded, dual-echo GRE (OxFlow) module within the T1 recovery portion of the TRUST 

sequence. In addition to allowing direct comparison between SBO- and TRUST-derived Yv 

values, iTRUST substantially improves TRUST temporal resolution for CMRO2 quantification and 

obviates the need for a separate blood flow measurement following TRUST acquisition. iTRUST 

was compared directly to TRUST and OxFlow alone in three resting subjects at baseline, 

exhibiting close agreement with the separate techniques and comparable precision. These 

baseline data as well as simulation results support the use of two instead of the traditional four T2 

preparation times for T2 fitting, allowing simultaneous quantification of susceptometry- and T2-

based Yv (and CMRO2) with three- and six-second temporal resolution, respectively. In 10 young 

healthy subjects, iTRUST was applied during a 5% CO2 gas-mixture breathing paradigm. T2-

based Yv values were lower at baseline relative to susceptometry (mean ± SD of 62.3 ± 3.1 vs. 

66.7 ± 5.1 %HbO2, P < 0.05), but increased more in response to hypercapnia. As a result, T2-

based CMRO2 decreased from 140.4 ± 9.7 at baseline to 120.0 ± 9.5 µmol/100g/min during 

hypercapnia, a significant −14.6 ± 3.6% decrease, whereas susceptometry-based CMRO2 

changed insignificantly from 123.4 ± 18.7 to 127.9 ± 25.7, a 3.3 ± 9.7% change (P = 0.31). These 

differing results are in accord with previous studies applying the parent OxFlow or TRUST 

sequences individually, thus supporting the reliability of iTRUST but also strongly suggesting that 

a systematic bias exists between the susceptometry- and T2-based Yv quantification techniques. 
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3.2. Introduction 

The human brain comprises only 2% of total body mass, but accounts for approximately 20% of 

total body oxygen consumption (1). Because the brain is almost entirely dependent on aerobic 

metabolism to meet its energetic demands, irreversible ischemic damage will result in minutes if 

oxygen delivery is disrupted. Unlike surrogate markers of metabolism such as CBF or BOLD fMRI 

signal, CMRO2 provides a direct measure of brain oxygen consumption. CMRO2 changes 

significantly over the course of neonatal development (109) and aging (110), and is altered in 

many of the most common neurologic diseases, including mild cognitive impairment (112) and 

Alzheimer’s disease (34), Parkinson’s disease (127), and multiple sclerosis (111). However, 

CMRO2 is relatively stable across healthy subjects at baseline (66,101), and in response to 

physiologic challenges such as hypercapnia (87,124,141), hypoxia and hyperoxia (105), and 

apnea (135). Thus, CMRO2 is an important quantity for understanding brain function in health and 

disease. 

The gold standard for CMRO2 quantification is triple-oxygen PET imaging (53), yet the technique 

is rarely applied in humans due to the radiation exposure and complexity of the protocol. 

Moreover, long scan times restrict PET to measuring resting-state CMRO2. MRI provides a non-

invasive, non-contrast alternative. During the past two decades, BOLD fMRI has been applied 

extensively to study neuronal activation in health and disease (148,149). However, BOLD signal 

does not provide a direct measure of brain oxygen metabolism, but rather reflects a complex 

interplay between CBF, CBV, and tissue properties such blood vessel diameter, in addition to 

CMRO2 (150). 

Recently, a number of MR-based approaches for direct quantification of cerebral Yv have been 

proposed (60-67,90-92,98,99,121,122,128,141,151). In combination with PC-MRI or ASL CBF 

quantification, these techniques allow determination of CMRO2 via the Fick Principle (10-12): 

CMRO2 =Ca ⋅tCBF ⋅ Ya −Yv( )           [3.1] 
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where Ca is the arterial oxygen content of blood in µmol/100mL and Ya is the arterial oxygen 

saturation in %HbO2, which can be measured with pulse oximetry. Total CBF (tCBF) is typically 

reported in units of mL blood/100g brain tissue/minute, giving CMRO2 in units of 

µmol/100g/minute. 

Measurement of Yv poses the most significant technical challenge in CMRO2 determination. 

Techniques for Yv quantification can be categorized based on the contrast mechanism – venous 

blood magnetic susceptibility (66,67,121,122,128), T2 (61-65,98,99,141,151), T2’ (60,92), or T2* 

(BOLD) (64,91) – as well as spatial specificity – large-vessel/whole-brain 

(61,63,66,98,99,121,122,128,141,151), small-vessel/regional (62,67), or parenchymal/voxel-wise 

(60,64,65,90-92). Regional and voxel-wise approaches are clearly desirable due to the 

heterogeneous nature of brain functional activation and pathology. However, these techniques 

have scan times on the order of several minutes, precluding dynamic measurements, and tend to 

suffer from low SNR, requiring significant spatial averaging to achieve acceptable precision and 

thus negating the utility of regional or voxel-wise measurement. In comparison, techniques for 

whole-brain Yv quantification are fast, robust, and easy to implement. 

The two best-established methods for global Yv quantification are TRUST (61) and SBO (SBO) 

(66). Both methods involve quantification of intravascular Yv in the SSS, the largest cerebral 

venous drainage vessel, which, in combination with PC-MRI quantification of tCBF, can be used 

to determine CMRO2 via Equation 3.1. In the case of TRUST, tCBF measurement requires a 

separate PC-MRI acquisition (101). However, because PC-MRI and SBO are both GRE 

sequences, they can be naturally combined into a single sequence, which we term OxFlow. This 

hybrid sequence was originally implemented via a two-slice-interleaved approach with CMRO2 

quantification temporal resolution of 25 seconds (66). Recently, addition of view-sharing and 

SSS-based estimation of tCBF improved OxFlow temporal resolution to three seconds, allowing 

study of the regulation of CMRO2 in response to dynamic physiologic paradigms such as breath-

hold apnea (135). Compared to OxFlow, TRUST has inherently lower temporal resolution, 

compounded by the need for a separate PC-MRI measurement to quantify CMRO2. Furthermore, 
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the relationship between T2, Yv, and Hct is non-linear, and must be calibrated to both pulse 

sequence parameters and field strength. However, unlike SBO, TRUST is vessel geometry 

independent, less sensitive to partial volume effects, and does not require background phase 

removal. 

A particularly important application of CMRO2 quantification is investigating the metabolic 

response to hypercapnia. Hypercapnia is relevant to a number of common diseases, including 

asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and congestive heart 

failure. Furthermore, knowledge of the CMRO2 response to hypercapnia is of substantial 

importance to functional imaging, where hypercapnia is routinely used for ‘calibrating’ the fMRI 

signal (59,81), often under the assumption that hypercapnia is isometabolic (i.e., does not affect 

CMRO2). However, the CMRO2 response to a hypercapnic stimulus remains controversial (117), 

with previous studies reporting a wide range of results from reduced, to unchanged, to increased 

CMRO2. An early MRI study using T2-based to Yv quantification reported an isometabolic 

response (141); however, CMRO2 responses to mild and moderate hypercapnia were in different 

directions (5.0% and −6.8%, respectively) and based on a calibration plot derived from room 

temperature blood samples (152), potentially impacting the accuracy of in vivo T2 quantification 

(116). Subsequently, both OxFlow and TRUST have been applied to study the CMRO2 response 

to hypercapnia using similar cohorts and experimental protocols involving a 5% CO2 gas-mixture 

delivery (87,124). While OxFlow data supported an isometabolic CO2 response, the TRUST study 

found a significant 13.4 ± 2.3% (mean ± standard error, N = 14) decrease in CMRO2. This 

discrepancy is disconcerting given both the importance of understanding the CMRO2 response to 

hypercapnia as well as the increasing application of TRUST and OxFlow in studying CMRO2 

responses to other stimuli and disease states. A recent study directly comparing resting TRUST- 

and SBO-derived Yv values in the same cohort (153) found SBO and TRUST Yv values to be 

correlated across subject, with TRUST Yv values slightly lower (mean ± SD of 63.2 ± 4.1 vs. 65.9 

± 3.3 %HbO2, P < 0.01) (Figure 3.1). However, this baseline difference does not by itself explain 
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the discrepancy in the hypercapnia results, which depends on the relative change in Yv in 

response to the stimulus. 

 

Figure 3.1: TRUST vs. SBO-derived Yv in 10 healthy subjects (age 33 ± 6) at 
rest. Error bars indicate intrascan standard deviations over 10 repeated 
measures. The dashed lines denote the 95% confidence interval for the linear fit. 
Figure adapted from (153). 

In this work, we propose a combined technique – termed interleaved TRUST (iTRUST) – 

whereby an OxFlow module is interleaved within the T1 recovery period of the TRUST sequence. 

This approach has two distinct benefits. First, it obviates the need for separate, non-simultaneous 

measurement of tCBF following the TRUST acquisition, substantially improving TRUST temporal 

resolution for CMRO2 quantification. Second, it allows for direct comparison of Yv quantified via 

magnetic susceptibility and T2 measurement of blood. Further temporal acceleration of TRUST is 

achieved by using fewer tag-control image pairs for T2 fitting. Both the combination of the 

techniques as well as the use of fewer T2 fitting points is validated in simulations and in vivo. The 

sensitivity of the technique to detect dynamic changes is demonstrated in response to breath-hold 

apnea. Finally, iTRUST is applied in a cohort of young healthy individuals during a CO2 gas-

mixture breathing paradigm with the goal of further investigating the potential disagreement 

between the TRUST and OxFlow techniques with regard to the hypercapnic CMRO2 response. 
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3.3. Theory 

3.3.1. Susceptometry-Based Quantification of Yv (SBO) 

SBO exploits the relative paramagnetism of deoxygenated versus oxygenated hemoglobin, which 

causes the susceptibility of blood relative to surrounding tissue, Δχ, to be linearly related to Yv: 

Δχ =Hct Δχdo 1−Yv( )+Δχoxy( )           [3.2] 

where Δχdo and Δχoxy are the experimentally determined volume susceptibility differences 

between fully oxygenated and deoxygenated erythrocytes and fully oxygenated erythrocytes and 

water, respectively. Values of 4π×0.273 and 4π×0.008 p.p.m. (SI units) are used for Δχdo and 

Δχoxy, based on ex vivo calibration experiments (116,118). 

Blood susceptibility induces a local field offset, ΔB, which can be measured with a field mapping 

sequence as: 

ΔB =Δφ /γΔTE           [3.3] 

where Δϕ is the difference in phase accrual between echoes spaced apart by ΔTE in the blood 

versus surrounding reference tissue. By modeling the vessel of interest as an infinitely long, 

circular cylinder, the relationship between ΔB and Δχ an be calculated analytically: 

ΔB = 1
6
ΔχB0 3cos2θ −1( )           [3.4] 

where θ is the vessel angle with respect to the main magnetic field, ΔB. Combining Equations 

3.2-3.4 allows determination of Yv by measurement of Δϕ. 

The SSS, the largest cerebral venous drainage vessel, is relatively long and straight when the 

subject is lying supine in the scanner, and therefore can be effectively approximated by the 

infinite cylinder model, despite its non-circular cross-section (66,123). The SSS has also been 
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shown to have a Yv nearly identical to that in the internal jugular vein (63,101), making it an 

excellent surrogate for global venous Yv. Furthermore, while field mapping of the internal jugular 

vein is complicated by the presence of trachea-induced susceptibility artifacts, the field local to 

the SSS is relatively homogenous. 

3.3.2. Combination of SBO and PC-MRI for CMRO2 Quantification (OxFlow) 

SBO can be combined with PC-MRI blood flow quantification to allow simultaneous measurement 

of Yv, tCBF, and, therefore, CMRO2, from a single sequence. By adding flow-encoding to the 

same dual-echo GRE used for Yv quantification, SSS blood flow (SSSBF) and Yv can be 

quantified from data acquired in the same TR period. SSSBF can then be retrospectively up-

scaled to tCBF based on a single measurement of the SSSBF:tCBF ratio at baseline (135).  

In this study, OxFlow was implemented with a BRISK k-space sampling scheme, with one-quarter 

k-space acquired at each time point (154,155). BRISK provides reduced motion sensitivity 

compared to previous view-sharing implementations of OxFlow using Keyhole k-space sampling 

(135,136) (Figure 3.2).  

 

Figure 3.2: BRISK vs. Keyhole Cartesian view-sharing. (A) Keyhole and BRISK 
temporal k-space sampling strategies. In Keyhole, only inner k-space is 
continuously updated, with outer k-space supplied from a separately acquired, 
fully sampled reference image. In BRISK, the most inner k-space segments are 
updated most frequently, and full k-space images are reconstructed via 
interpolation, using the nearest acquired data for each segment. (B) Axial 
magnitude images of the SSS, before, 2 seconds (1 time point) after, and 20 
seconds (10 time points) after a deliberate head shift. Because Keyhole assumes 
outer k-space does not change, it is highly sensitive to motion, whereas BRISK 
updates outer k-space periodically and thus resolves motion artifacts after 
several time points. 
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BRISK images were reconstructed by interpolating across time points using the nearest acquired 

data at each k-space segment, effectively resulting in a sliding window reconstruction with 

minimum window width of three seconds (inner 1/8th of k-space) and maximum window width of 

60 seconds (outer 5/8th of k-space). Other OxFlow sequence parameters include: TR/TE1/TE2 = 

14.2/6.5/11.5 ms, VENC = 40 cm/s, reconstructed matrix = 192×192, and resolution = 

1.0×1.0×5.0 mm. 

3.3.3. TRUST and Interleaved TRUST (iTRUST) 

The TRUST pulse sequence uses a non-selective MLEV-16 CPMG T2 preparation of varying 

effective echo time (eTE) – 0, 40, 80, and 160 ms – following either an 8 ms adiabatic hyperbolic 

secant pulse (bandwidth = 2214 Hz, thickness = 100 mm) to invert the blood magnetization (tag), 

or application of an equivalent off-resonance pulse without gradient (control). Similar in principle 

to ASL, tag-control subtraction of each eTE image pair isolates the venous blood signal. A non-

selective 90º spoiler RF pulse is applied to reset the magnetization before each tag-control 

module (102). A two-compartment exchange model is used to relate Yv to T2: 

1 /T2 = A+B ⋅(1−Yv )+C ⋅(1−Yv )
2           [3.5] 

where A, B, and C are Hct- and CPMG spacing (tCPMG)-dependent constants which have been 

determined from ex vivo blood samples (100). T2 is quantified by mono-exponential fitting of SSS 

tag-control difference signals vs. eTE as: 

ΔS = S0e
eTE⋅ 1/T1−1/T2( )           [3.6]  

where S0 is the difference signal at eTE = 0 and a T1 value of 1.613 seconds is assumed for 

venous blood (102).  

The TRUST sequence used in the present work follows that described in recent literature (102), 

with a TR of three seconds used to provide an optimal tradeoff between scan duration, accuracy, 

and precision, allowing a single Yv value to be quantified every 24 seconds. Important differences 
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relative to the published sequence include insertion of a slice-selective saturation pulse 200 ms 

before EPI readout (prior to T2 preparation) in order to better suppress static tissue signal 

(63,151), and use of a flow-compensated EPI readout with TE of 8 ms (5/8th partial Fourier 

readout). Flow compensation prevents flow velocity-dependent signal variations between tag and 

control images, which could lead to errors in the difference signals, especially in situations of 

rapidly changing flow (46). An alternative approach to avoiding these effects is use of a shorter 

TE achieved via parallel imaging (102), though this reduces SNR. Other TRUST sequence 

parameters include: tCPMG = 10 ms, reconstructed matrix = 64×64, and resolution = 3.4×3.4×5.0 

mm. 

More than half of the duration of the TRUST sequence consists of dead time, required to allow 

blood signal to undergo sufficient T1 recovery following global saturation before the next T2 

preparation. In iTRUST, this time is utilized to run an OxFlow module at the same location as the 

TRUST readout slice (Figure 3.3), beginning 350 ms after the saturation in order to capture the 

tissue signal approximately at its steady-state longitudinal magnetization. Besides the added 

OxFlow module, iTRUST is otherwise identical to TRUST.  

It is important to note that the RF pulses played out during the OxFlow module only affect spins in 

the imaging slice, whereas spins relevant to T2-quantification are located outside the imaging 

slice in the labeling slab. Furthermore, because the OxFlow module is run during both tag and 

control, any effect on spins in the subsequently acquired EPI images used for T2 quantification 

should be identical, and hence removed by tag-control subtraction. Likewise, the OxFlow GRE 

acquisition itself is unaffected by the TRUST sequence because it is acquired only after global 

magnetization reset. 
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Figure 3.3: iTRUST pulse sequence and example images. (A) TRUST sequence 
diagram with (B) inset depicting the OxFlow module inserted within the T1 
recovery period of the TRUST sequence. (C) Sagittal scout image indicating the 
relative positions of the labeling slab (red) and imaging slice (blue). (D) 
Magnitude image with square ROI indicating the position of the SSS. (E) Velocity 
map and (F) phase difference map of the SSS ROI from (D). (G) TRUST 
difference images for each eTE. Note that the spin histories of the OxFlow 
module and TRUST sequence should not interact as they are isolated by the 
global spin reset and the spatial separation of the imaging slice and labeling slab. 
Figure from (86). 

3.4. Methods 

3.4.1. Human Subject Protocols 

All human subject imaging protocols were approved by the University of Pennsylvania’s 

Institutional Review Board, and subjects provided written informed consent prior to participation. 

Studies were performed on 10 healthy subjects (age 29 ± 5 years, range 24-42, six males and 

four females) using a 3T Siemens Tim Trio system (Siemens Medical Solutions, Erlangen, 

Germany) with a 12-channel (validation study and apnea study) or 32-channel (hypercapnia 
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study) receive-only head coil. A vendor-provided time-of-flight axial localizer scan was used for 

slice selection, and retrospectively to determine θ in Equation 3.4. Before each OxFlow or 

iTRUST acquisition, a two-slice-interleaved PC-MRI pulse sequence was run at the level of the 

internal carotid and vertebral arteries in the neck and the SSS in the head in order to determine 

the subject’s SSSBF:tCBF ratio. OxFlow, TRUST, and iTRUST pulse sequences were 

programmed in SequenceTree (156). 

At the end of each scanning session, a 1-mm-isotropic 3D T1-weighted MPRAGE (134) data set 

was acquired so that tCBF could be normalized per unit brain mass in each subject. Total brain 

volume was obtained using the BET tool in FSL (157), and converted to mass based on an 

average brain density of 1.05 g/mL (158). Total intracranial mass (gray matter, white matter, and 

CSF) rather than total parenchymal mass (gray matter and white matter) was used for 

normalization to facilitate comparison of CMRO2 values with prior studies that did the same 

(66,101). It has recently been shown that inclusion of CSF volumes in flow normalization may 

bias toward underestimation of CMRO2 in older individuals (110), though this is not a concern in 

the present study due to the relatively young age of the subjects. 

3.4.2. Validation Study 

To test whether the combination of OxFlow and TRUST causes a bias in the measurements of 

either sequence, equivalent OxFlow, TRUST, and iTRUST sequences were run back to back for 

four minutes each in three subjects (age 29 ± 3 years, range 26-34, two males and one female). 

This protocol corresponds to 10 repetitions of TRUST and iTRUST with 24-second temporal 

resolution, and 80 repetitions of OxFlow with three-second temporal resolution. For the OxFlow 

only sequence, TR was increased to 31.25 ms to use the entire three-second time frame with 

sequence parameters otherwise equal to the iTRUST-inserted OxFlow module.  

For each subject, T2-based Yv (Yv-T2) was derived from TRUST and iTRUST data, and SBO-

based Yv (Yv-SBO) and tCBF from iTRUST and OxFlow data. Differences in parameter values 

across subjects were compared between techniques – TRUST vs. iTRUST for Yv-T2, OxFlow vs. 
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iTRUST for Yv-SBO and tCBF – to determine any potential bias in the interleaved approach 

relative to the separate techniques. Further, T2 values obtained from the iTRUST data were 

recalculated using only the 0 and 80 ms eTE image pairs to determine any bias caused by using 

fewer eTEs. T2 fitting with two eTEs has previously been demonstrated at 7T field strength (159), 

where the short T2 value of blood precludes the use of longer T2 preparations. 

3.4.3. Simulations 

The use of fewer eTE image pairs was further explored by simulating TRUST difference signals 

with a blood T2 value of 72 ms, corresponding to typical physiologic values of Yv = 65 %HbO2 and 

Hct = 0.40, with noise added corresponding to the typically observed SNR range of our acquired 

TRUST data (SNR = 20-80). This SNR range is similar to that reported in previous studies (102). 

Exponential fitting was performed and Yv values were determined from the published calibration 

curve (100) using all four (0, 40, 80, 160 ms), three (0, 40, and 80 ms), or two (0 and 80 ms) 

eTEs. RMSE relative to the true Yv of 65 %HbO2 was quantified as a function of SNR and number 

of eTEs used. 

3.4.4. Apnea Study 

To evaluate the sensitivity of the iTRUST technique to detect dynamic changes in flow, Yv-SBO, 

and Yv-T2, a breath-hold challenge was conducted in one healthy subject (age 28 years, male). 

iTRUST was run with two eTEs (0 and 80 ms) during a paradigm consisting of two minutes 

baseline, one-minute breath-hold after inhalation, and two minutes recovery. Yv-SBO and tCBF 

were quantified every three seconds. Yv-T2 values were quantified with sliding-window 

reconstruction using all adjacent difference image pairs, yielding six-second temporal resolution 

from 12-second data windows. The mean and standard deviation of the difference between time 

matched Yv-T2 and Yv-SBO values was quantified across all time points, and compared by paired 

two-sample Student’s t-tests. 
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3.4.5. Hypercapnia Study 

In 10 subjects, iTRUST comprising only two eTEs (0 and 80 ms) was applied during a 

hypercapnia paradigm to determine whether differences exist in the CMRO2 as determined via 

T2- versus susceptometry-based quantification of Yv. A two-way non-rebreathing T-valve (2700 

Series, Hans Rudolph, Inc., Kansas City, MO, USA) was used to deliver 5% CO2 in room air for 

five minutes via a 100 L Douglas bag. Room air was delivered five minutes before and after 

hypercapnia, and MRI data were collected continuously for the entire 15 minutes. Ya and heart 

rate (HR) were monitored with pulse oximetry, and end-tidal CO2 (EtCO2) and respiratory rate 

(RR) with capnography (Expression, Invivo Research Inc., Orlando, FL, USA).  

tCBF, Yv-SBO, and SBO-based CMRO2 (CMRO2-SBO) parameter values were determined from 

the OxFlow data at three-second temporal resolution, and Ya values were sampled at three-

second intervals to match the MRI data. Yv-T2 values were quantified every six seconds from the 

EPI data with sliding-window reconstruction. tCBF and Ya values were interpolated to the 

corresponding Yv-T2 time points to determine T2-based CMRO2 (CMRO2-T2) values every six 

seconds. For each parameter, means and standard deviations were quantified across the 

baseline (0-5 minutes) and steady-state hypercapnia (7.5-10 minutes) periods, and used to 

determine percent changes in response to hypercapnia. Changes in CMRO2-T2 and CMRO2-SBO 

in response to hypercapnia were evaluated with one-sample Student’s t-tests. 

3.4.6. Image Analysis 

All image reconstruction was performed with in-house-written MATLAB (Mathworks, Natick, MA) 

scripts. BRISK-sampled raw OxFlow data, whether acquired alone or as part of an iTRUST 

sequence, were first reordered to create full k-space images corresponding to each three-second 

time point. To determine tCBF, the phase difference between positive gradient-moment flow-

encoded and flow-compensated images acquired at TE1 were used to generate velocity maps, 

and SSSBF was obtained by integrating velocity across the vessel cross-sectional area. Data 

from the two-slice-interleaved PC-MRI sequence used to determine the SSSBF:tCBF ratio were 
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processed analogously. This ratio was then used to upscale the dynamically acquired SSSBF 

data to determine tCBF. 

For Yv-SBO determination, a raw phase difference map was generated from images acquired at 

TE1 and TE2 of the flow-compensated OxFlow interleave. Low spatial frequency bulk 

susceptibility effects were removed via second-order polynomial fitting of the induced field in the 

surrounding brain tissue (126). The average phase difference, Δϕ, was determined between 

pixels entirely within the SSS (i.e., without any tissue partial voluming) and pixels in a reference 

region of brain tissue surrounding the SSS approximately one vessel-radius in width and located 

one vessel-radius from the SSS border, allowing determination of Yv-SBO from Equations 3.2-

3.4. 

TRUST or iTRUST EPI data for T2-determiation were first reconstructed and corrected for N/2 

ghosting. Difference images were produced for each eTE via tag-control subtraction. As 

previously described (61), the four brightest pixels in the SSS were selected for T2 fitting, using a 

weighted least-squares fit calculated by the MATLAB function lscov.m. 
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3.5. Results 

Across the three subjects scanned at baseline, quantified Yv and tCBF values were consistent 

with previous reports (66,101), and mean absolute bias between TRUST and iTRUST Yv-T2 

(Figure 3.4a) and between OxFlow and iTRUST Yv-SBO (Figure 3.4b) and tCBF (Figure 3.4c) 

values were small. These values likely represent an upper bound on any true bias, as they also 

include contributions from measurement noise and true physiologic variation over the scan 

duration. Standard deviations of the parameter values varied across subjects, but were similar 

between techniques, suggesting precision of the combined iTRUST sequence to be comparable 

to the separate TRUST and OxFlow sequences. 

 

Figure 3.4: TRUST, OxFlow, and iTRUST parameter values acquired 
sequentially for four minutes each in three resting subjects. (A) TRUST vs. 
iTRUST Yv-T2 values. (B) OxFlow vs. iTRUST Yv-SBO values. (C) OxFlow vs. 
iTRUST tCBF values. Mean absolute bias is the absolute value of the bias 
between techniques, averaged across all time points and subjects. Error bars 
indicate ± 1 SD across the N = 10 (A) or N = 80 (B and C) data points collected in 
each four-minute acquisition. Figure from (86). 
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In Figure 3.5, iTRUST Yv-T2 values are shown based on T2 fitting using all four (0, 40, 80, and 

160 ms) or just two (0 and 80 ms) eTE difference signals. The mean ± SD difference between the 

two sets of values was small at 0.2 ± 1.8 %HbO2 (P = 0.65). The 95% confidence interval for the 

linear least-squares regression line includes the line of identity, further indicating that no 

significant bias is introduced by using two instead of four eTEs. Yv-T2 variability was slightly larger 

when using two versus four eTEs (subject-averaged SDs of 2.6 and 1.6 %HbO2, respectively). 

However, this difference is largely eliminated if RMSEs are scan-time normalized, that is, after 

multiplying by number eTEs  used for fitting. These data support the use of two eTEs in 

subsequent iTRUST experiments.  

 

Figure 3.5: Scatter plot of iTRUST Yv-T2 values fitted using all four (0, 40, 80, and 
160 ms) vs. only two (0 and 80 ms) eTEs from the same data. The 30 data points 
represent 10 repeat measures from each of three subjects. The linear least-
squares regression line for all data points (solid line) is shown alongside the line 
of identity (dotted line). 95% confidence intervals for the slope [0.93,1.25] and 
intercept [-16.4, 4.3] of the linear fit contain 1 and 0, respectively, indicating no 
statistically significant bias between the four and two eTE Yv-T2 values. Figure 
from (86). 
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Figure 3.6 shows RMSEs for Yv-T2 values across the typical TRUST SNR range, both absolute 

(6a) and scan-time normalized (6b). Even before normalization, three and two eTEs result in less 

error than four eTEs. Normalized for scan time, both three and two eTEs perform significantly 

better than four eTEs, with ≈ 30-45% reduction in RMSE across the SNR range. 

 

Figure 3.6: Simulation of expected Yv-T2 error vs. the number of eTEs used for T2 
fitting. (A) RMSE in Yv-T2 vs. TRUST difference signal SNR for four, three, or two 
eTEs. (B) RMSE normalized to acquisition time. Simulations were performed for 
N = 1000 virtual images for each SNR value, incremented by an SNR value of 1. 
Figure from (86). 
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iTRUST with two eTEs was evaluated in response to breath-hold apnea to test the ability of the 

technique to detect dynamic physiologic processes. A time-course plot of the extracted parameter 

values (Figure 3.7) demonstrates the expected apneic response of increased Yv and tCBF (135). 

Yv-SBO and Yv-T2 values match closely, with Yv-SBO values higher by an average of 1.5 ± 3.0 

%HbO2 (P < 0.01). 

 

Figure 3.7: iTRUST parameter values in response to a 60-second breath-hold in 
a single subject. T2 fitting with two eTEs and application of sliding window 
reconstruction yields Yv-T2 temporal resolution of six seconds. Yv-SBO and tCBF 
temporal resolution is three seconds. Gray shading indicates the apnea period. 
Figure from (86). 
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All 10 subjects were able to successfully complete the hypercapnia paradigm. Average brain 

volume, Hct, and SSS angle (θ) were 1468 ± 77 mL, 0.43 ± 0.04, and 15.2 ± 5.0°. On average, 

the SSSBF:tCBF ratio was 0.48 ± 0.03, in line with previous studies (135). Subject-averaged 

time-course plots of physiologic parameters measured via pulse oximetry (Ya, HR) and 

capnography (EtCO2, RR) are displayed in Figure 3.8. 

 

Figure 3.8: Subject-averaged time-course plots of physiologic parameters 
measured via pulse oximetry (Ya, HR) and capnography (EtCO2, RR). Gray 
shading indicates the hypercapnia period. Error bars indicate standard errors (N 
= 10). Comparing average baseline (0-5 minutes) and steady-state hypercapnia 
(7.5-10 minutes) values across subjects, significant increases were observed in 
EtCO2 (P < 0.0001), Ya (P < 0.01), and HR (P < 0.05). RR did not show a 
significant change (P = 0.64). Figure from (86). 

Figure 3.9 displays a representative subject time-course plot of all MRI-derived parameters (and 

Ya) in absolute physiologic units (9a), subject-averaged plots of both absolute parameter values 

(9b) and baseline-normalized parameter values (9c), and a scatter plot comparing Yv-SBO and 

Yv-T2 values across all subjects and time points (9d).  
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Figure 3.9: iTRUST-derived parameter values in response to five minutes of 5% 
CO2 gas-mixture breathing. (A) Time-course plots of absolute parameter values 
from (A) a representative subject and (B) averaged across all 10 subjects. (C) 
Subject-averaged parameter values normalized to average baseline values, with 
error bars indicating standard errors (N = 10) at each time point. In all time-
course plots, tCBF, Ya, Yv-SBO, AVO2D-SBO, and CMRO2-SBO temporal 
resolution is three seconds, and Yv-T2, AVO2D-T2, and CMRO2-T2 temporal 
resolution is six seconds. Gray shading indicates the hypercapnia period. (D) 
Scatter plot of time-matched Yv-SBO and Yv-T2 values across all subjects and 
time points (N = 1490), with different symbols/colors denoting individual subjects. 
Linear least-squares regression lines are plotted for each subject (solid lines), as 
well as the line of identity (dotted line). Mean slope and r2 values of the 
regression lines across subjects are β = 1.47 ± 0.20 and r2 = 0.90 ± 0.02. Figure 
from (86). 
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Parameter values were observed to reach a steady state after approximately 2.5 minutes of 

hypercapnia. Average baseline (0-5 minutes) and steady-state hypercapnia (7.5-10 minutes) 

values are displayed in Table 3.1. EtCO2, tCBF, Yv-SBO, and Yv-T2 all increased significantly in 

response to hypercapnia (P < 0.0001). Subject-averaged CVR was 4.6 ± 0.9% tCBF/mmHg 

EtCO2, in line with previous results (66,141). 

Parameter Baseline (0-5 min) CO2 (7.5-10 min) Change (%) P-value 
     EtCO2 (mmHg) 38.5 ± 2.9 50.1 ± 2.1 30.5 ± 5.5  < 0.0001 
Ya (%HbO2) 97.7 ± 0.6 98.3 ± 0.7 0.6 ± 0.6  < 0.01 
tCBF (mL/100g/min) 45.7 ± 6.0 70.1 ± 11.4 53.0 ± 12.7  < 0.0001 
Yv-SBO (%HbO2) 66.7 ± 5.1 77.2 ± 4.8 15.9 ± 2.8  < 0.0001 
Yv-T2 (%HbO2) 62.3 ± 3.1 78.4 ± 3.5 25.8 ± 3.7  < 0.0001 
AVO2D-SBO (%HbO2) 31.1 ± 4.8 21.1 ± 4.4 −32.5 ± 4.7  < 0.0001 
AVO2D-T2 (%HbO2) 35.4 ± 2.9 19.9 ± 3.0 −43.8 ± 5.9  < 0.0001 
CMRO2-SBO (µmol/100g/min) 123.4 ± 18.7 127.9 ± 25.7 3.3 ± 9.7 0.31 
CMRO2-T2 (µmol/100g/min) 140.4 ± 9.7 120.0 ± 9.5 −14.6 ± 3.6  < 0.0001 

Table 3.1: Summary of hypercapnia paradigm parameter values derived from 
pulse oximetry, capnography, and iTRUST MRI in 10 subjects. Parentheses 
indicate the standard deviations of parameter values across subjects. P-values 
are based on one-sample Student’s t-tests of the percent changes from baseline 
to hypercapnia. Table adapted from (86). 

Yv-T2, although lower than Yv-SBO at baseline, increased more during hypercapnia. As a result, 

in response to hypercapnia CMRO2-SBO did not change significantly (3.3 ± 9.7%, P = 0.31), 

whereas CMRO2-T2 decreased substantially (−14.6 ± 3.6%, P < 0.0001). Following cessation of 

apnea, tCBF and Yv undershot before gradually returning to baseline. CMRO2 values during the 

end-recovery period (12.5-15 minutes) were not significantly different from baseline values (P = 

0.36 and P = 0.33 for CMRO2-SBO and CMRO2-T2, respectively). 

3.6. Discussion 

3.6.1. Validation of iTRUST 

Because changes in flow and Yv tend to oppose each other both at baseline and in response to 

stimuli, it is critical to measure these two quantities simultaneously to most accurately determine 

CMRO2. This is especially important during physiologic stimuli, where temporal mismatch 

between Yv and flow quantification could lead to significant errors. iTRUST makes such 
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simultaneous measurement, previously achievable only with susceptometry-based CMRO2 

approaches, possible for T2-based CMRO2 quantification as well. 

Combination of the TRUST and OxFlow techniques in iTRUST did not significantly impact the 

accuracy or precision of the quantified parameters (Figure 3.4). This is expected, as the OxFlow 

and T2-quantificaiton portions of the pulse sequence are separated in such a way that they should 

not affect one another’s spin histories. While less time is available for OxFlow measurement in 

iTRUST than OxFlow alone for a given temporal resolution (1420 ms versus 3000 ms in this 

study), this did not appear to impact the precision of the OxFlow data as evidenced by similar 

standard deviations for iTRUST and OxFlow derived parameters (Figures 3.4b-c). 

3.6.2. T2-Based CMRO2 Temporal Resolution 

Previous implementations of TRUST had a temporal resolution for CMRO2 quantification of 

several minutes (103), compared to as little as three seconds for OxFlow (135). This is partially 

due to the usual acquisition of three TRUST averages (requiring 3×24 = 72 seconds) and 

measurement of each arterial inflow vessel with a separate 30-second PC-MRI measurement, 

which has been demonstrated to produce accurate and reproducible CMRO2 measurements 

(103). While this approach is optimal when a single CMRO2 measure of baseline physiology is 

the objective, it does not allow for quantification of dynamic changes in T2-based Yv/CMRO2. 

iTRUST increases CMRO2-T2 temporal resolution to as little as six seconds via insertion of flow 

quantification within the T1 recovery period and use of two eTEs with sliding window 

reconstruction. These modifications may also improve measurement precision. For instance, 

rapid measurement of SSSBF is achieved more easily than quantification of tCBF in the neck 

arteries, due to the sagittal sinus’ larger size, less pulsatile flow, and fixed position in the scanner 

even during swallowing, breath-hold, or gas-mixture breathing manipulations that can complicate 

flow quantification in the neck arteries. Upscaling this dynamically acquired SSSBF to tCBF only 

requires a single high-quality PC-MRI acquisition before or after accelerated SSSBF-only 
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measurement, since the SSSBF:tCBF ratio has ben observed to remain fixed in response to 

blood flow changes (135). 

Simulation results (Figure 3.6) suggest that inclusion of a 160 ms eTE difference image actually 

reduces T2 estimation precision due to its relatively low SNR. For iTRUST at 3T, T2 measurement 

based on two eTEs performs slightly better than three eTEs after normalization for scan time 

differences. This is because an eTE of 80 ms most closely matches the physiologic T2 range (60-

100 ms). In vivo measurements at baseline suggest a slightly greater Yv variation when 

retrospectively using two vs. four eTEs for T2 fitting (SDs of 2.6 vs. 1.6 %HbO2, respectively). 

However, this greater variation likely reflects some degree of sensitivity to true physiologic 

fluctuations  – absent in the simulation data – which is more significantly removed through 

averaging when using all four eTEs for fitting. One limitation of using only two eTEs is that 

confidence intervals for the exponential fitting (and therefore Yv) cannot be derived based on the 

regression of the exponential fit. 

3.6.3. Hypercapnia Study  

Parameter values quantified from the hypercapnia data were in good agreement with previous 

studies using TRUST or OxFlow independently, both in terms of resting state values (66,101) and 

changes in response to hypercapnia (87,124). Specifically, hypercapnia caused significant 

reduction in CMRO2-T2 (−14.6 ± 3.6%, mean ± SD), similar to the original TRUST study (87) 

(−13.4 ± 8.6%, mean ± SD, calculated from the reported standard error with N = 14), and also a 

non-significant change in CMRO2-SBO (3.3 ± 9.7%, mean ± SD), similar to the original OxFlow 

study (124). It was suggested (124) that the negative hypercapnic response observed with 

TRUST could have been biased due to flow measurement in the SSS, rather than in the neck 

arteries as was done with OxFlow. However, the present study used only SSS-based flow 

quantification, yet achieved results consistent with both previous studies (87,124). This 

consistency lends additional support to the use of SSS-based quantification of tCBF, a critical 

requirement for obtaining high temporal resolution CMRO2 quantification with OxFlow and 

iTRUST. It also strengthens confidence that the modifications involved in the combined iTRUST 
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sequence (including the use of 2 eTEs for T2 fitting) does not bias Yv-T2 quantification relative to 

the parent TRUST sequence. Most strikingly, it implies that the observed bias between Yv-T2 and 

Yv-SBO values – both in terms of the baseline offset and relative changes in response to 

hypercapnia – is not due to random error, differences in experimental protocols, or differences in 

subject populations, but rather a systematic bias between the techniques.  

Average baseline Yv-T2 values were observed to be significantly lower than Yv-SBO values (62.3 

± 3.1 vs. 66.7 ± 5.1 %HbO2, respectively, P < 0.05), consistent with another recent study (153). 

Longer TRUST EPI readouts have been shown to cause a systematic underestimation of T2 (and 

therefore Yv), especially at lower SNR. This effect was hypothesized to be caused by variations in 

blood flow, and led the authors to recommend use of a shorter (3 ms) EPI TE via application of 

parallel imaging (46). While the present study used a longer TE (8 ms), the slice-select gradient 

was first moment-compensated. This should prevent signal differences due to varying degrees of 

intravoxel dephasing in tag/control images acquired at different blood flow velocities. 

Furthermore, if a flow velocity-dependent bias did exist, the proposed Yv-T2 underestimation 

would be expected to get worse at higher Yv values due to the accompanying CBF and heart rate 

increase during hypercapnia. In fact, the opposite trend was observed, with Yv-T2 values rising 

significantly more than Yv-SBO values during the hypercapnic stimulus, regardless of the baseline 

offset between Yv-T2 and Yv-SBO. This is illustrated by the subject specific regression lines in 

Figure 3.9d, all of which had slopes significantly greater than unity (β = 1.47 ± 0.20, P < 0.0001 

for H0: β = 1). 

As recently described by Xu et al. (160), a flow-dependent error in Yv-SBO values could 

potentially arise due to phase accumulation as venous blood travels through an inhomogeneous 

B0 field. This flow-dependent phase accumulation will increase quadratically with echo time and 

linearly with the dot product between the flow velocity and the background field gradient. Were 

the background field gradient direction similar in each subject, it could cause a systematic bias 

toward flow-dependent over- or under-estimation of Yv-SBO. However, this effect alone cannot 

explain the observed bias between Yv-T2 and Yv-SBO values, as it would predict the bias to 
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increase in magnitude with increasing flow velocity, whereas the observed bias reverses direction 

between the low flow (baseline) and high flow (hypercapnia) states. Furthermore, for the pulse 

sequence parameters used, quantitative evaluation suggests the maximum possible error due to 

flow-dependent phase accumulation is small (see Appendix, Section 3.8). 

In addition to the aforementioned flow effects, another likely source of the observed discrepancy 

is an error in the calibration of one or both techniques – that is, the values of the constants in the 

model equations. However, the susceptibility model (Equation 3.2) is considerably simpler, with 

only two calibration constants – Δχdo and Δχoxy – defining a linear relationship between measured 

phase, Hct, and Yv. The values of these constants have been validated theoretically (116) and 

experimentally (116,118) with excellent agreement. In contrast, TRUST requires calibration of a 

quadratic equation (Equation 3.5) with six linear coefficients (100). This calibration equation is 

based on a two-compartment exchange model, which may be less appropriate than an alternative 

diffusion-based model (161). Furthermore, unlike SBO, T2-based Yv quantification has a complex 

dependence on field strength and pulse sequence parameters (RF inversion pulse, tCPMG). 

3.6.4. Applications of iTRUST 

In this work, we were interested in directly comparing T2- and susceptometry-based Yv/CMRO2 

values; however, iTRUST could also be used specifically as a high temporal resolution T2-based 

CMRO2 quantification technique. In this case, a single rather than dual-echo PC-MRI sequence 

module could be used, allowing for an increase in TR or reduction in the required view-sharing 

factor. Such a technique could be applied to CMRO2 quantification in the jugular vein, which is 

less well suited to SBO because of trachea-induced susceptibility artifacts. 

A potential clinical application of iTRUST is the assessment of CVR, the ability of the brain to 

dynamically increase flow in response to a vasodilatory challenge such as hypercapnia or breath-

hold apnea. Reduced CVR is strongly correlated with increased stroke risk (162) and associated 

with lower cognitive performance in subjects with mild cognitive impairment and Alzheimer’s 

disease (163). While CVR has typically been assessed in terms of blood flow changes only, 
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iTRUST and similar techniques for rapid CMRO2 quantification (135) allow multi-parametric 

assessment of the brain’s response to stimuli. Because CMRO2 is a more direct reflection of 

oxygen supply and demand, CVR assessed in terms of CMRO2 may provide a more meaningful 

index of neurovascular dysfunction than traditional flow-based CVR. 

The described approach of inserting a fast imaging sequence within a longitudinal signal recovery 

period has applications beyond iTRUST. T2-relaxation-under-phase-contrast (TRU-PC), which 

uses phase-contrast rather than tag-control isolation of venous blood (62), and which can probe 

vessels with diameters as small as one mm, contains an equivalent signal waiting period as in 

TRUST. Addition of flow quantification within TRU-PC would provide a means of quantifying 

oxygen flux rather than simply oxygen saturation in small regional vessels not suitable to SBO. 

An interleaved approach similar to iTRUST has been used to quantify perfusion, Yv, and T2* 

(termed PIVOT) via insertion of a multi-echo GRE within the post-label delay (PLD) of a pulsed 

ASL sequence (164). The technique allowed simultaneous measurement of all three parameters 

with two-second temporal resolution during a reactive hyperemia paradigm in the leg. Such 

combination of perfusion and Yv quantification may also provide a method for improved BOLD 

fMRI calibration, as suggested in recent work by Driver et al. (165). 

3.7. Conclusions 

We presented a novel technique, iTRUST, for combined susceptometry- and T2-based 

quantification of CMRO2 at high temporal resolution. Simulations and in vivo evaluations 

demonstrate that iTRUST has comparable precision and accuracy relative to the traditional 

uncombined methods. In addition, iTRUST provides significantly improved temporal resolution for 

T2-based CMRO2 quantification. In summary, iTRUST is a promising method for dynamic 

assessment of CMRO2, and offers a unique approach for evaluating and comparing 

susceptometry- and T2-based CMRO2 quantification techniques. 
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3.8. Appendix: Analysis of Flow-Dependent Error in SBO 

Following Equation 2 in (160), Δϕ in Equation 3.3 can be written as: 

φ =ψ +γΔB(r)TE − 1
2
γv(r)⋅∇ ΔB(r)( )TE2           [3.7] 

where ψ is the initial phase after RF excitation, and r and v are the position and velocity, 

respectively, of a spin isochromat. Equation 3.7 assumes that from spin excitation until the 

largest TE, the isochromat moves with constant velocity along a path with a linear field gradient, a 

reasonable assumption given the small distance traveled by a spin in time TE. Thus, the 

measured phase difference between TE1 and TE2 will be: 

Δφ =γΔB(r) TE2 −TE1( )− 12γ v(r)⋅∇B(r)( ) TE22 −TE12( )           [3.8] 

The infinite cylinder model used in SBO requires isolating the first (linear) phase term from the 

second (quadratic) phase term. In (160), this is accomplished through a quadratic fitting 

procedure, the “adaptive quadratic fit”. However, such fitting is not possible when only two echoes 

are acquired as in SBO. Instead, we consider the fractional error (ε) in the derived Δϕ resulting 

from the quadratic term, which is approximately the same as the resultant fractional error in the 

derived OEF (1-Yv): 

ε = Δφmeasured −Δφlinear( ) /Δφlinear =−
v(r)⋅∇B(r)( )
ΔB(r)

⋅
TE1 +TE2

2
         [3.9] 

where Δϕmeasured is the measured phase difference and Δϕlinear is the phase difference due to only 

the linear term (what would ideally be measured to generate the correct value for Yv). Equation 

3.9 demonstrates that the fractional error will be linear with the spin velocity, the gradient of the 

field along the path of the spin, and average echo time. Considering the echo times used for SBO 
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in this study (6.5 and 11.5 ms) and a “worst case scenario” of a flow velocity equal to the VENC 

(40 cm/s), the error is: 

ε = 0.36−v(r)⋅∇B(r)
ΔB(r)

          [3.10] 

where the field gradient is in units of Tesla/cm. Thus, if the field gradient along a 1 cm path of the 

spin is equal to the field difference between the vessel and surrounding tissue, 1−Yv will be 

underestimated by 36%, a significant error. Fortunately, for properly chosen SBO slice locations 

in the SSS, field maps generated at sequential slices along the path of the SSS suggest field 

gradients approximately an order of magnitude smaller than this. Thus, a value of several percent 

is a reasonable upper bound for error due to the quadratic phase term. However, this analysis 

highlights the critical need to select an ideal slice location for SBO, and the importance of 

shimming prior to SBO. It also provides motivation for minimizing the TE values as much as 

possible while maintaining sufficient phase contrast. Detailed investigation of this potential source 

of error should be explored in future work by applying a quadratic phase model – the “adaptive-

quadratic fit” as described in (160) – to an SBO sequence with several rephased echoes and 

longer echo times. 
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Chapter 4: BOLD Calibration with Interleaved Susceptometry-

Based Oximetry and Phase-Contrast Flow Quantification 

4.1. Abstract 

BOLD calibration is a promising approach for improving the interpretability and reproducibility of 

fMRI. However, current calibration methods based on hypercapnia and hyperoxia gas-mixture 

breathing have significant limitations. Here, we present a new ‘Yv-based’ BOLD calibration model 

and accompanying Ox-BOLD pulse sequence. This Yv-based model requires measurement of 

whole-brain Yv and tCBF in addition to voxel-wise mapping of CBF and BOLD signal. These 

various parameters are measured simultaneously with Ox-BOLD, which interleaves the rapid, 

GRE-based OxFlow method for global Yv and tCBF quantification with a BOLD-calibration-

optimized dual-echo pseudo-continuous ASL (pCASL) sequence for mapping CBF and BOLD 

signal. Both single and multi-slice versions of the sequence are applied to hypercapnia and 

hyperoxia gas-mixture breathing in healthy subjects. The resulting calibration M-maps compare 

favorably to those produced from the traditional Davis model using the same data, with 

considerably fewer non-physiologic M-values and more plausible anatomic contrast. 

4.2. Introduction 

In BOLD fMRI experiments, it is assumed that BOLD signal changes reflect neuronal activation 

spatially and temporally. This correspondence has been demonstrated by animal experiments 

involving simultaneous BOLD fMRI and intracortical EEG recordings (26). However, as discussed 

in Chapter 1, because BOLD signal changes are primarily driven by vascular processes (i.e., 

CBF changes), BOLD signal is temporally delayed and dispersed, and spatially broadened 

relative to underlying neuronal activity (27,28). Furthermore, BOLD signal changes have been 

shown to exhibit large intra- and inter-subject variability in response to the same task repeated 

across different days (22,23). Thus, despite the wide application of BOLD fMRI in studies of 
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normal physiology and disease, the technique is limited in its ability to detect group differences 

and longitudinal effects. 

In recent years, there has been much focus on developing techniques for direct quantification of 

CMRO2 (see Table 1.1 and citations). However, none of these techniques achieve both the high 

temporal resolution and whole-brain coverage of BOLD fMRI. Because the brain is a spatially 

heterogeneous and temporally dynamic organ, spatial and temporal resolution are both of critical 

importance in functional neuroimaging. Therefore, an attractive approach to CMRO2 

quantification is conversion of BOLD signal changes to relative changes in CMRO2, known as 

BOLD calibration. 

The relationship between neuronal activity and BOLD signal reflects a complex interplay between 

multiple factors (see Figure 1.5), including CBF, CBV, and CMRO2, as well as tissue properties 

such as blood vessel diameter, and field strength. BOLD calibration first requires modeling these 

various contributions to BOLD signal. This has typically been accomplished using the Davis 

model (59), which relates relative changes in BOLD, CBF, and CMRO2 in response to a stimulus: 
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where subscript 0 designates the baseline state, Δ denotes the change from baseline to 

activation, and M is the BOLD calibration constant, equal to the maximum possible BOLD signal 

change that would occur if all dHb were removed. The exponent α, the Grubb constant, reflects 

the relationship between CBF and CBV changes (75), while β reflects the relative contributions of 

large and small vessel dephasing effects (69,70). Exponents α and β are typically treated as 

constants. Although the Davis model has important theoretical limitations, including the fact that it 

excludes intravascular signal contributions, simulations based on a more complete multi-

compartment BOLD signal model suggest that the general form of Equation 4.1 is remarkably 
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accurate (82). A more detailed description and derivation of the Davis model is given in Section 

1.2.4.2. 

In BOLD calibration experiments, CBF and BOLD signal are typically measured simultaneously 

using an ASL pulse sequence (56,57), ideally with a double echo or double excitation scheme to 

achieve optimal contrast for both ASL and BOLD signals (166). This leaves only M and CMRO2 

as unknowns; thus, BOLD calibration is synonymous with determining M, which is expected to 

vary between subjects and across brain regions, and, therefore, should ideally be spatially 

mapped (83,84). Accurate M mapping is crucial for successful BOLD calibration as errors in M 

can heavily influence subsequently quantified CMRO2 changes (84).  

Davis et al. first demonstrated an approach to M calibration based on measuring hypercapnia-

induced changes in BOLD and CBF via CO2 gas-mixture breathing (59). If CO2 is assumed to 

have a negligible effect on CMRO2, Equation 4.1 can be simplified as: 
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Measurement of CBF and BOLD during baseline and hypercapnia are then used to determine M, 

which is subsequently applied to the full Davis model (Equation 4.1) to determine CMRO2 

changes associated with subsequent functional experiments. Early application of this approach 

was used to demonstrate large and stimulus-intensity-dependent CMRO2 changes in the primary 

visual cortex in response to a graded visual stimulus (42), supporting the notion that elevated 

energy demands in response to brain activation are met largely through oxidative metabolism. 

Hypercapnia-calibrated fMRI has demonstrated improved intra- and inter-subject reproducibility 

compared to BOLD signal alone (85). 

The major limitation of hypercapnia-based calibration is the need to assume a specific CMRO2 

response to hypercapnia. Despite numerous studies, CO2 effects on cerebral metabolism remain 

a topic of controversy (117), with disparate results from recent studies using similar experimental 
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paradigms and study populations (86,87,124,141). M-values derived from CO2-based calibration 

are also highly sensitive to errors from noise-prone ASL-derived CBF values due to the large 

negative exponent (α−β) on the CBF term in Equation 4.2. Finally, because it induces a 

sensation of breathlessness, CO2 is not well tolerated by some subjects, limiting its application. 

To address these challenges, Chiarelli et al. (88) proposed an alternative BOLD calibration 

approach based on hyperoxia (88). Unlike hypercapnia, which is used to isolate the effects of 

CBF on BOLD signal, hyperoxia causes BOLD signal changes based on changes in [dHb]v with 

only small effects due to blood flow (89). Following the deoxyhemoglobin dilution model proposed 

by Hoge et al. (81) and assuming CBF changes minimally in response to hyperoxia (89), one 

obtains an alternative form of the calibration equation: 
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          [4.3] 

Hyperoxia gas-mixture breathing has the advantages of better subject tolerability and a lack of 

sensitivity to noisy ASL-derived CBF measurements. However, hyperoxia may cause a small 

change in CBF, which can be incorporated into the calibration model (88) but are not easily 

measured due to the low sensitivity of ASL to small flow changes and its dependence on O2-

induced changes in blood T1. Furthermore, current implementations of the approach quantify 

[dHb]v changes from EtO2. This requires normal lung physiology and an assumed baseline OEF 

and CMRO2 response to O2. This is problematic because while OEF is relatively uniform across 

the brain (167), it varies significantly between even healthy subjects (61,66). Furthermore, 

CMRO2 may decrease slightly in response to hyperoxia (105).  

Recent approaches have attempted to combine hypercapnia and hyperoxia for improved 

calibration accuracy (90,91). These methods also allow determination of baseline Yv and CMRO2 

in addition to M. However, multiple gas manipulations add further time and complexity to the 

protocol, while still requiring many of the aforementioned assumptions.  
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Improved BOLD calibration requires: 1) removing problematic model assumptions, 2) reducing 

calibration model dependence on noise-sensitive parameters (i.e., ASL-derived CBF), and 3) 

increasing the accuracy of the measurements applied to the model. To accomplish this, we 

propose a novel pulse sequence and modified BOLD calibration model. The technique combines 

rapid, MR-based quantification of whole-brain Yv and tCBF with the usual ASL-based BOLD 

calibration pulse sequence for voxel-wise mapping of CBF and BOLD signal. Data from either 

hypercapnia or hyperoxia gas-mixture breathing are applied to a generalized Yv-based calibration 

model, which assumes only that changes in 1−Yv are spatially uniform across the brain. 

4.3. Methods 

4.3.1. Yv-Based Model 

Following a similar derivation as the hyperoxia-calibration model (88), but without assuming small 

changes in CBF, one obtains the following calibration equation: 
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Because [dHb]v is linearly proportional to 1−Yv, Equation 4.4 can be modified to: 
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In traditional calibrated BOLD approaches, an optimized ASL pulse sequence is used to measure 

CBF and BOLD simultaneously to maximize temporal correspondence between the measures 

and improve overall temporal resolution. In applying the Yv-based model, one would ideally 

quantify Yv simultaneously alongside CBF and BOLD. Although there are a number of recently 

proposed MR-based techniques for Yv quantification (60-67,90-92,98,99,121,122,128,141,151), 
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most have poor temporal resolution compared to ASL. However, several recent studies 

(described in Chapters 2-3 of this dissertation) have demonstrated rapid quantification of whole-

brain Yv using SBO applied to the SSS (86,135). In the present work, a BOLD-calibration-

optimized ASL pulse sequence was combined with SBO to simultaneously generate voxel-wise 

CBF and BOLD maps as well as a global measure of Yv. Addition of flow-encoding to the SBO 

sequence – i.e., OxFlow – provides a robust, global measure of CBF as well. To avoid confusion, 

voxel-wise CBF from ASL data will be denoted ‘CBF’, whereas OxFlow PC-MRI-derived blood 

flow will be denoted ‘tCBF’. 

This combined Ox-BOLD sequence generates the necessary data for application to the Yv-based 

model and has several advantages over previous calibration approaches. Unlike traditional 

hypercapnia calibration, no assumed CMRO2 response is necessary, and sensitivity to noise-

prone ASL-derived CBF values is reduced due to the small (α) exponent on the CBF term. The 

simultaneously acquired tCBF can be used to correct the voxel-wise ASL-derived CBF for pCASL 

labeling efficiency reduction which occurs at higher flow rates, such as during hypercapnia (168). 

Unlike traditional hyperoxia calibration, the Yv-based model places no assumptions on the CBF 

response, which can be measured globally from the PC-MRI data with high precision and no T1 

sensitivity. Baseline Yv does not need to be assumed, as it is measured from SBO, and thus 

capnography is not required. The Yv-based model can be equally well applied to any global BOLD 

stimulus – including hypercapnia and hyperoxia – so long as the stimulus produces relative 

changes in 1−Yv that are spatially uniform across the brain, as SBO measures Yv globally. The 

traditional calibration approaches and the Yv-based approach are compared schematically in 

Figure 4.1. 
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Figure 4.1: Schematic diagram comparing the traditional calibration models to the 
Yv-based calibration model. Model equations, assumptions, and relative 
advantages and disadvantages are compared. 

4.3.2. Ox-BOLD Pulse Sequence 

The Ox-BOLD pulse sequence (Figures 4.2 and 4.3) involves interleaving an OxFlow module 

with a BOLD-calibration-optimized, dual-echo pCASL (169) ASL pulse sequence. Since its initial 

demonstration for whole-brain CMRO2 quantification (66), various iterations of the OxFlow 

method have been demonstrated with sufficient temporal resolution to allow integration with other 

pulse sequences (86,135,155). The OxFlow module applied in Ox-BOLD is similar to that in the 

recently described iTRUST method (86) for combined T2- and SBO-based CMRO2 quantification 

(see Chapter 3). The OxFlow module used in Ox-BOLD (see inset in Figures 4.2 and 4.3) 

involves a single-slice, flow-encoded, dual-echo GRE with BRISK Cartesian view-sharing to 

achieve simultaneous SBO-based Yv quantification and PC-MRI-based flow quantification. A 

detailed description of the OxFlow pulse sequence is given in Chapter 2. The pulse sequence 

parameters for the OxFlow module used in this work are virtually identical to those used in 

iTRUST (as described in Chapter 3). 

Two versions of the Ox-BOLD pulse sequence were designed with single-slice (Figure 4.2) and 

multi-slice (Figure 4.3) EPI readouts, respectively. In single-slice Ox-BOLD, the OxFlow module 

assume Ya =1 ΔBOLD
BOLD0

=M ⋅ 1−
1−Yv
1−Yv 0

$

%

&
&

'

(

)
)

β

CBF
CBF0

$

%
&&

'

(
))

α$

%

&
&
&

'

(

)
)
)

Yv#Based)Calibra/on)Model)

O2#CO2#

+  no#assumed#CMRO2#
response##

+  reduced#sensi3vity#to#
noisy#ASL#CBF#data#

+  correc3on#for#reduced#
tagging#efficiency#
during#hypercapnia#

+  no#assumed#CBF#response#
(small#O2#induced#changes#
can#be#measured#robustly#
with#OxFlow)#

+  no#assumed#baseline#Yv#
+  no#need#for#capnography#

Tradi/onal)Calibra/on)Models)

O2:#assume#ΔCBF#=#0#
[Chiarelli#et#al.,#2007]#

CO2:#assume#ΔCMRO2#=#0#
[Davis#et#al.,#1998]#

-  CO2#may#not#be#
isometabolic#[Xu#et#al.,#
2011]#

-  highly#sensi3ve#to#noisy#
ASL#data#(large#
exponent#on#CBF)#

-  O2#may#modestly#reduce#
CBF#(changes#below#ASL#
detec3on#sensi3vity)#

-  must#assume#baseline#Yv#
and#infer#[dHb]v#changes#
from#endV3dal#gas#
monitoring#

ΔBOLD
BOLD0

=M ⋅ 1−
CMR02

CMR02 0

$

%

&
&

'

(

)
)

β

CBF
CBF0

$

%
&&

'

(
))

α−β$

%

&
&
&

'

(

)
)
)

ΔBOLD
BOLD0

=M ⋅ 1− CBF
CBF0

$

%
&&

'

(
))

α−β$

%

&
&

'

(

)
)

ΔBOLD
BOLD0

=M ⋅ 1−
[dHb]v
[dHb]v0

$

%

&
&

'

(

)
)

β$

%

&
&
&

'

(

)
)
)

Common#assump3on:##
(1VYv)#/#(1VYv)|0#spa3ally#
uniform#across#brain#



91 

 

is interleaved within the PLD to maximize temporal efficiency; no additional scan time is needed 

for acquisition of global Yv and tCBF. The pCASL labeling / control location is selected to intersect 

both internal carotid arteries and both vertebral arteries. The OxFlow slice is positioned 20 mm 

superior to the EPI slice to prevent if from impacting blood that will later flow into the pCASL slice, 

potentially affecting the EPI-derived BOLD or CBF measurement. Successful application of a 

similar GRE module within the PLD of an ASL sequence has been demonstrated in the PIVOT 

technique, used to quantify perfusion and Yv during post-ischemia reperfusion in the leg (164). 

 

Figure 4.2: Single-slice Ox-BOLD pulse sequence diagram. The OxFlow module 
is shown in the inset and relative slice locations are indicated on the sagittal 
magnitude image. Following pCASL labeling in the feeding arteries, OxFlow 
global tCBF and Yv data are acquired during the PLD, followed by a dual-echo 
EPI readout to generate voxel-wise CBF and BOLD maps. Sequence parameters 
include: pCASL – matrix = 80 x 80 (5/8th partial Fourier), FOV = 250 × 250 mm, 
slice thickness = 5 mm, TR/TE1/TE2 = 3650/8.1/52.9 ms, label duration = 1.8 s, 
PLD = 1.8 s, Hanning window average B1 = 1.7 µT, pulse interval = 1 ms, 
Gmax/Gavg = 9/1 mT/m. OxFlow – matrix = 192×48 (BRISK reconstructed to 
192×192), FOV = 176×176 mm, slice thickness = 5 mm, TR/TE1/ΔTE = 
17.5/7.2/6.65 ms, VENC = 40 cm/s. 

+"
PE

"1
"

+"
PE

"4
8

""

−"
PE

"1
"

−"
PE

"4
8"

GZ"

RF"
PLD"

EPI$(ASL$&$BOLD)$

OxFlow$(tCBF$&$Yv)$

pCASL$Label$/$Control$

Label"/"Control" •  •  •  •  •  •  •  •  •  •   

1800$ms$ 150$ms$1800$ms$

Single<slice"
Dual<echo"

EPI"

Flow%
Encoding%

GZ%

RF%

GY%

GX% TE1% TE2%



92 

 

In multi-slice Ox-BOLD (Figure 4.3), the OxFlow module is interleaved outside the pCASL 

sequence, with slab-selective saturation pulses used to prevent interaction between OxFlow and 

pCASL. The OxFlow readout is initiated 350 ms following saturation in order to capture the tissue 

signal approximately at its steady-state longitudinal magnetization (86). The post-OxFlow slab-

saturation resets spin history in the imaging slices, and also serves as a pre-saturation pulse for 

pCASL. The multi-slice sequence allows full brain coverage at the cost of the temporal efficiency 

afforded by the single-slice approach, resulting in prolongation of the TR from 3.75 to 6 seconds.  

 

Figure 4.3: Multi-slice Ox-BOLD pulse sequence diagram. The OxFlow module is 
shown in the inset and relative slice/slab locations are indicated on the sagittal 
magnitude image. pCASL labeling in the feeding arteries and PLD is followed by 
a 2D, 11-slice, dual-echo EPI readout to generate voxel-wise CBF and BOLD 
maps. After a slab-selective saturation pulse to remove spin history and a 350 
ms waiting period for signal recovery, OxFlow global tCBF and Yv data are 
acquired, followed by a second slab-selective saturation for ASL pre-saturation. 
Sequence parameters include: pCASL – matrix = 64x64 (5/8th partial Fourier 
echo 1, 6/8th partial Fourier echo 2), FOV = 220×220 mm, slice thickness = 7 
mm, slice gap = 1 mm, TR/TE1/TE2 = 6000/7.64/35.26 ms, label duration = 1.8 s, 
PLD = 1.8 s, Hanning window average B1 = 1.7 µT, pulse interval = 1 ms, 
Gmax/Gavg = 9/1 mT/m. OxFlow – matrix = 192×48 (BRISK reconstructed to 
192×192), FOV = 176×176 mm, slice thickness = 5 mm, TR/TE1/ΔTE = 
15.7/6.5/5.76 ms, VENC = 40 cm/s. 
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In both sequence versions, pCASL labeling parameters were adopted from Alsop et al. (170). An 

M0 image was acquire at the beginning of each Ox-BOLD sequence to correct for proton density 

weighting. 

4.3.3. In Vivo Imaging Experiments 

All imaging was performed on a 3T Siemens Tim Trio system (Siemens Medical Solutions, 

Erlangen, Germany) using a vendor-supplied 32-channel receive-only head coil. Before each Ox-

BOLD acquisition, a vendor-provided time-of-flight axial localizer scan was used for slice 

selection, and retrospectively to determine the vessel tilt angle (θ) in Equation 1.22 for Yv 

quantification. Furthermore, a two-slice-interleaved PC-MRI pulse sequence was run at the level 

of the internal carotid and vertebral arteries in the neck and the SSS in the head in order to 

determine the subject’s SSSBF:tCBF ratio (135). 

4.3.3.1. Single-Slice Ox-BOLD Validation 

Single-slice Ox-BOLD uses the PLD to acquire OxFlow data, which may cause inadvertent spin 

tagging effects. To test this possibility, single-slice Ox-BOLD was run in a single healthy volunteer 

at rest with five sequence versions: one with the OxFlow module removed and four with the 

OxFlow slice location varied relative to the EPI slice (which was kept constant) with Δz = 20, 30, 

60, or 100 mm. 30 tag/control pairs (3:45 minutes) of data were collected for each of the five 

sequences, repeated a second time with acquisition order reversed to control for physiologic drift. 

Average gray matter CBF and T2* for each of the five sequences was quantified. 

4.3.3.2. Gas-Mixture Breathing Experiments 

A two-way non-rebreathing T-valve (2700 Series, Hans Rudolph, Inc., Kansas City, MO, USA) 

was used to deliver 5% CO2 in room air (hypercapnia) or 100% O2 (hyperoxia) for five minutes via 

a 100 L Douglas bag. For all gas stimuli, room air was delivered five minutes before and after the 

gas-mixture, and MRI data were collected continuously for the entire 15 minutes. Using this 

protocol, three healthy subjects were scanned with single-slice Ox-BOLD during hypercapnia. 
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One subject was subsequently scanned during hyperoxia. On a separate day, this same subject 

was scanned with multi-slice Ox-BOLD during hypercapnia followed by hyperoxia.  

4.3.4. Data Analysis 

OxFlow data analysis was analogous to that described previously (86,135). In brief, following 

BRISK data reordering to create full k-space images, time-resolved SSSBF was determined from 

the phase difference between images acquired at TE1 with flow-encoding and flow-compensation. 

SSSBF was upscaled to tCBF based on the SSSBF:tCBF ratio quantified from the two-slice-

interleaved PC-MRI scan. Time-resolved Yv values were determined from the phase difference 

between flow-compensated data acquired at TE1 and TE2, with quadratic fitting used to remove 

static field inhomogeneities (126).  

EPI images were pre-processed using a standard pipeline involving homodyne reconstruction, 

N/2 ghost correction, brain extraction, motion correction, and 5mm Gaussian kernel smoothing. 

CBF was quantified using a general kinetic model (171) as described in (170). Average maps for 

baseline (CBF0, BOLD0) and stimulus (CBF, BOLD) conditions were generated after excluding 

data in the transition periods (minutes 0-1 and 10-11 for baseline, 5-6 for stimulus). For single-

slice Ox-Flow, this results in 32 and 64 tag/control pairs for stimulus and baseline conditions, 

respectively, and for multi-slice Ox-Flow, 20 and 40 tag/control pairs (due to the longer TR). 

OxFlow-derived, time-resolved Yv and tCBF values were averaged over equivalent time periods.  

For hypercapnia experiments, M-maps were generated using Equation 4.5 (Yv-based model) and 

Equation 4.2 (Davis model). For hyperoxia experiments, only the Yv-based model was applied, 

as the Davis model is unreliable for stimuli producing only small flow changes, and the traditional 

hyperoxia approach (Equation 4.3) requires capnography. For hyperoxia Yv-based calibration, 

OxFlow-derived tCBF values were used in place of ASL-derived CBF values. Values of α = 0.18 

and β = 1.5 were used throughout (76,91). M-values from the single-slice sequence were 

normalized to a TE of 35.26 ms (the multi-slice sequence BOLD TE) to facilitate comparison 

between the sequence versions. 



95 

 

Whole-brain average values for ASL-derived CBF, BOLD, and M were generated based on 

manual segmentation of gray matter (single-slice Ox-BOLD) or application of exclusion criteria on 

a per-voxel basis (multi-slice Ox-BOLD). Inclusion criteria were as follows: Hypercapnia –  0% < 

ΔBOLD < 15%, 0% < ΔCBF < 200%,  and 0% < M < 20%; Hyperoxia – 0% < ΔBOLD < 15%, -

50% < ΔCBF < 50%, and 0% < M < 20%. 

4.4. Results 

4.4.1. Interleaved Sequence Assessment 

Presence or location of the OxFlow module had no significant effect on CBF or T2* values. For 

the four sequences with the OxFlow module present, the mean and SD percent difference relative 

to the sequence with OxFlow module off were 0.9 ± 3.0 % and -0.4 ± 0.5 %, for CBF and T2* 

values, respectively. These small differences were not correlated with Δz (P = 0.40 and P = 0.24 

for CBF and T2*, respectively, based on Pearson’s correlation coefficients). Thus, no measurable 

error is introduced by acquiring OxFlow data in the pCASL PLD for single-slice Ox-BOLD. Similar 

validation experiments applied to the PIVOT sequence in the leg (164) also found no cofounding 

effect due to GRE data acquired in an ASL PLD. 

4.4.2. Single-Slice Ox-BOLD M-Quantification 

Figure 4.4 displays parameter time courses and parametric maps derived for single-slice Ox-

BOLD data from subject 3. CBF increases substantially in response to hypercapnia but 

decreases slightly in response to hyperoxia, whereas BOLD signal and Yv increase in response to 

both stimuli. Temporal correspondence between ASL-derived CBF and OxFlow derived tCBF is 

observed for both stimuli. Hypercapnia M-maps and average M-values using the Davis and Yv-

based model show similar values and anatomic contrast. Hyperoxia results in a slightly higher 

average M-value, also with similar anatomic contrast. Average gray-matter M for the three 

subjects who underwent hypercapnia was 9 ± 1% using the Davis model, and 8 ± 1% using the 

Yv-based model, in good agreement with recent literature (90,91,150). 
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Figure 4.4: Single-slice Ox-BOLD data from an example subject. (A) Time-course 
plot of OxFlow-derived tCBF and Yv and ASL-derived CBF and T2* during 
baseline, hypercapnia (HC), and hyperoxia (HO). (B) Parametric maps of time-
averaged ASL-derived parameters (T2*, CBF) are placed below the 
corresponding time-course data, with gray matter voxel-wise averaged M-values 
at bottom. All parametric maps are overlaid on GRE magnitude images. Note: 
although gray matter masking was applied to generate the time-course values 
and average M values, parametric maps include all voxels to illustrate gray/white 
anatomic contrast and retain outliers to facilitate comparison of model 
performance. 

4.4.3. Multi-Slice Ox-BOLD M-Quantification 

Figure 4.5 displays magnitude images and parametric maps at each of the 11 slices from both 

the hypercapnia and hyperoxia calibration experiments in subject 3. CBF maps are not displayed 

for hyperoxia as OxFlow-derived tCBF was instead used in the Yv-based model. As mentioned, 

without capnography, only the Yv-based model can generate M-maps for hyperoxia. Contrast 

between gray and white matter is apparent in all parametric maps, with M-values greater in gray 
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than white matter as expected. Image quality is generally lower in the inferior slices due to 

susceptibility artifacts from air spaces. This is especially apparent in the hyperoxia images, as 

paramagnetic O2 gas enhances susceptibility artifacts, causing intra-voxel dephasing and signal 

voids near the frontal sinuses (172). 

 

Figure 4.5: Multi-slice Ox-BOLD data from an example subject. The scale bars 
for each parameter value are shown at right. For ΔCBF, ΔBOLD, and M, the 
scale bar ranges correspond to the outlier exclusion thresholds. Note: parametric 
maps include outlier voxels to illustrate gray/white anatomic contrast and retain 
outliers to facilitate comparison of model performance. 

Figure 4.6 displays only the three middle slices for each of the three M-maps, highlighting the 

superior anatomic contrast present in the Yv-based model M-maps, as well as the presence of 

more significant outliers (bright spots) in the Davis model M-map.  
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Figure 4.6: Zoomed-in parametric M-maps from each of the three methods 
(slices 5-7 only). Bright spots in the Davis model CO2 calibration M-map 
represent outlier voxels, which are not apparent in the Yv-based M-maps. 

Table 4.1 lists whole-brain mean ± SD parameter values, and the number of voxels used for 

averaging (i.e., excluding outliers) out of the total N=12443 voxels included in the initial brain 

extraction. Hypercapnia ASL-derived CBF and OxFlow-derived tCBF correspond well. Average 

M-values for all three calibrations are similar, with Yv-based model hyperoxia calibration lowest. 

Both Yv-based model calibrations retained approximately 10% more voxels than the Davis model 

calibration. 

Parameter Hypercapnia Hyperoxia 
   CBF0 (mL/100g/min) 46.3 ± 31.1 ---------- 
CBF / CBF0 (%) 69.2 ± 44.0 (N = 9367) ---------- 
BOLD / BOLD0 (%) 3.9 ± 2.9 (N = 10713) 3.5 ± 2.7 (N = 10703) 

 
   (1-Yv) / (1-Yv)0 (%) -54.1 −30.0 

 
tCBF / tCBF0 (%) 68.6 2.6 
   M-Davis (%) 7.6 ± 4.3 (N = 7779) ---------- 
M-Yv (%) 5.5 ± 3.8 (N = 8510) 7.0 ± 4.1  (N = 8409) 

 

Table 4.1: Whole-brain-averaged parameter values from hypercapnia and 
hyperoxia M-calibration experiments. N corresponds to the number of voxels 
remaining after outlier exclusion out of a possible 12443. 
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The distribution of M-values for each of the three maps is shown in Figure 4.7, with outliers 

included. As suggested by the data in Table 4.1 and Figure 4.6, Yv-based M-maps show a tighter 

distribution of M-values, and many fewer non-physiologic (i.e., very high or negative) M-values. 

The Davis model demonstrates a tendency to produce extreme outlier values not seen in the Yv-

based models; without outlier exclusion the average M-value for the Davis model is significantly 

greater whereas the average Yv-based M-values are minimally affected (data not shown). Time-

course plots (not shown) were similar to those from the single-slice data (Figure 4.4a). 

 

Figure 4.7: M-value histograms for each calibration. Outliers are not excluded. 
Note that all voxels with M values below 0 or above 20, as well as others 
excluded based on ΔCBF and ΔBOLD cutoffs, were not included in generating 
the whole-brain averaged values in Table 4.1. 

4.5. Discussion 

In a recent review of calibrated BOLD techniques (150), Blockley et al. suggested that current 

BOLD calibration approaches could benefit from additional measurement of Yv, either to remove 

CMRO2 assumptions from hypercapnia calibration or baseline Yv assumptions from hyperoxia 

calibration. The proposed Yv-based model and Ox-BOLD sequence incorporate these ideas into a 

comprehensive BOLD-calibration approach. Using this approach, hypercapnia and hyperoxia 

gas-mixture breathing calibration was successfully demonstrated with fewer assumptions 

compared to traditional methods, resulting in visually improved M-maps compared to traditional 

hypercapnia calibration using the Davis model. These proof-of-principle results should be 

replicated in additional subjects, with the calibration results applied in subsequent task-based 

fMRI experiments to assess the performance of the method in deriving fractional CMRO2 

response maps. 
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4.5.1. Prior Applications of Yv to BOLD Calibration 

Using TRUST MRI, Lu et al. (173) found a negative correlation between baseline Yv and BOLD 

signal changes in response to a visual task, and suggested that Yv could be used as a regressor 

to reduce intersubject variability in the BOLD response, potentially improving reproducibility of 

fMRI studies. However, such an approach does not provide a means of determining CMRO2 from 

BOLD signal, and could potentially remove variability due to differences in the CMRO2 response 

itself. 

In a recent study, Driver et al. (165) demonstrated that Yv can be used to remove the need for an 

assumed CBF/CBV coupling constant (α). Yv was obtained by applying SBO to the phase data of 

the same EPI images used for BOLD signal quantitation. Because SBO is highly sensitive to 

partial voluming errors, EPI phase images do not provide an optimal approach given their 

relatively low spatial resolution. Furthermore, the Driver et al. method requires performing the 

functional task of interest during both baseline and hyperoxia. Though removing model 

dependence on α is a notable achievement, recent works suggest that errors due to inaccuracies 

in α can be minimized by relaxing the physical interpretation of α and β and instead treating them 

as fitting constants (82).  

4.5.2. Assessment of Calibration Results 

Both a single- and multi-slice version of the Ox-BOLD sequence was assessed. Single-slice Ox-

BOLD has better temporal resolution for M-calibration, and thus may be useful for calibration 

during short-term stimuli (such as breath-hold). However, lack of whole-brain coverage is a major 

limitation. While the multi-slice Ox-BOLD sequence has a longer TR, the OxFlow module is only 

needed during calibration, but not in subsequent application of the sequence for CMRO2 mapping 

during functional tasks. This is possible because M-values are minimally affected by pulse 

sequence parameters other than the EPI readout TE. Furthermore, the slab-saturation pulses 

isolate effects of the OxFlow module, such that the BOLD/ASL portion of the sequence should be 

unaffected by removal of the OxFlow module so long as the pre-saturation pulse remains. 
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Yv-based calibration M-maps from the multi-slice data were visually superior to the Davis 

calibration M-maps (Figure 4.6). However, single-slice Ox-BOLD data showed little difference 

between models (Figure 4.4). The reason for these differences is unclear. Multi-slice Ox-BOLD 

M-maps also had lower average M-values compared to the equivalent single-slice maps from the 

same subject. This is likely a result of the different exclusion criteria used (i.e., gray matter 

thresholding for single-slice vs. stimulus-response-based outlier exclusion for multi-slice), which 

can have a significant effect on quantified M-values (174). 

M-values tended to be higher in the most inferior slices, secondary to both higher ΔCBF and 

higher ΔBOLD. These trends seem unlikely to be entirely physiologic, and are also not confined 

to the frontal regions of the brain, arguing against susceptibility-induced intravoxel-dephasing 

effects as a sole explanation (172). Investigation of these slice-dependent effects would be aided 

by additional data sets in more subjects. 

4.5.3. Yv-Based Model Assumptions 

Despite removing various physiologic assumptions inherent in traditional calibration approaches, 

the Yv-based model equation (Equation 4.5) assumes that fractional changes in 1−Yv are 

spatially uniform across the brain. Although Yv is quite uniform across the brain at baseline (16), 

limited data is available regarding the spatial heterogeneity of its fractional changes in response 

to gas-mixture breathing challenges. This critical assumption requires further validation, and may 

be more appropriate for hyperoxia than hypercapnia given the spatially heterogeneous CVR 

response to hypercapnia. An alternative approach to Ox-BOLD hypercapnia-based calibration 

would be to use the original Davis model equation, but with OxFlow-derived fractional CMRO2 

changes in place of an assumed CMRO2 response (i.e., isometabolism). However, this would 

sacrifice the reduced ASL noise sensitivity of the Yv-based model. More work is needed to 

investigate the validity of these various approaches. 

It is important to note that the Yv-based model is specific to calibration, and the Davis model 

equation (Equation 4.1) must still be applied for subsequent determination of task-induced 
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CMRO2 changes. The accuracy of CMRO2 changes derived from Equation 4.1 will be influenced 

by both measurement errors as well as inaccuracies in model assumptions. For parameters that 

appear in both equations, for instance, the α and β constants, these errors may be propagated or 

partially canceled. While Figures 4.6 and 4.7 suggest that the Yv-based model has improved 

stability against outliers, detailed modeling of error propagation (82,175) would provide insight 

into the expected performance of the various calibration approaches. 

The SBO technique used to derive Yv assumes that tissue susceptibility does not change. This 

may not be strictly true in hyperoxia, as a significant amount of paramagnetic O2 becomes 

dissolved in tissue water and arterial blood (CBVa). The potential effect of dissolved O2 on SBO-

measured Yv should be further explored to determine whether the susceptibility model described 

by Equation 1.16 is appropriate, and, if not, what corrections must be made.  

4.5.4. Calibration Stimulus Considerations 

Although simultaneous acquisition of all MR-derived model parameters is an attractive feature of 

Ox-BOLD, and ensures temporal correspondence of the various physiologic parameters, it is not 

critical when measurements are made over long periods of steady state stimuli, as is usually the 

case in gas-mixture calibration studies. In this case, serial measurements of ASL, BOLD, PC-

MRI, and field mapping during both baseline and stimulus could provide similar information, and, 

furthermore, could be accomplished on most human scanning systems using only vendor-

supplied product sequences. However, the fully interleaved approach offered by Ox-BOLD could 

allow calibration with shorter stimulus epochs, non-steady-state stimuli such as breath-hold (176), 

or graded/stepped stimuli (81,177), which could improve M-map accuracy by fitting Equation 4.5 

over a range of measured values.  

The use of shorter stimulus periods or graded/stepped stimuli may be better suited to hyperoxia 

than hypercapnia calibration, as ASL SNR is often the limiting factor determining the number of 

averages needed (and ASL data is not needed for hyperoxia calibration). On the other hand, 

improving ASL SNR is desirable no matter what calibration method is used, as ASL data are 
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needed for subsequent derivation of task-induced CMRO2 changes with Equation 4.1. To this 

end, use of a double-excitation rather than double-echo approach (166) could permit use of state-

of-the-art 3D background-suppressed ASL readouts, which have long pulse trains precluding 

double-echo readouts. A feature of Ox-BOLD not explored here is the ability to correct for 

reduced ASL tagging efficiency during hypercapnia with OxFlow derived tCBF. Such correction is 

often estimated or determined from a separate PC-MRI acquisition (168). 

4.6. Conclusions 

This work demonstrates the potential for improved BOLD calibration using a new Yv-based 

calibration model and hybrid Ox-BOLD pulse sequence for simultaneous BOLD and CBF 

mapping alongside whole-brain Yv and tCBF quantification. The model requires fewer 

assumptions than traditional BOLD calibration approaches, and can be equally applied to 

hypercapnia and hyperoxia gas-mixture breathing. Preliminary data suggest the approach 

performs better than standard Davis model hypercapnia calibration, producing M-maps with more 

plausible contrast and many fewer non-physiologic outliers. 
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Chapter 5: Cerebral Metabolic Rate of Oxygen in Obstructive 

Sleep Apnea at Rest and In Response to Breath-Hold Challenge 

5.1. Abstract 

Obstructive sleep apnea (OSA) is associated with extensive neurologic comorbidities. It is 

hypothesized that the repeated nocturnal apneas experienced in patients with OSA may inhibit 

the normal apneic response, resulting in hypoxic brain injury and subsequent neurologic 

dysfunction. In this study, we applied the recently developed OxFlow MRI method for rapid 

quantification of CMRO2 during a volitional apnea paradigm. MRI data were analyzed in 11 OSA 

subjects and 10 controls (mean ± SD apnea-hypopnea index (AHI): 43.9 ± 18.1 vs. 2.9 ± 1.6 

events/hour, P < 0.0001; age: 53.8 ± 8.2 vs. 45.3 ± 8.5 years, P = 0.027; body mass index (BMI): 

36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m2, P = 0.0064). Although total cerebral blood flow and arteriovenous 

oxygen difference were not significantly different between apneics and controls (P > 0.05), 

apneics displayed reduced baseline CMRO2 (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100g/min, P = 

0.013). In response to apnea, CMRO2 decreased more in apneics than controls (-10.9 ± 8.8 % vs. 

-4.0 ± 6.7 %, P = 0.036). In contrast, group differences in flow-based CVR were not significant. 

Results should be interpreted with caution given the small sample size and future studies with 

larger independent samples should examine the observed associations, including potential 

independent effects of age or BMI. Overall, these data suggest that dysregulation of the apneic 

response may be a mechanism for OSA-associated neuropathology. 

5.2. Introduction 

OSA is defined by structural and functional failure of the upper airway to maintain patency during 

sleep, resulting in periodic cessations or reductions in breathing and subsequent arterial 

desaturations. One in five adults in the Western world is believed to have at least mild OSA (178), 

a figure that is rapidly increasing as obesity, the main risk factor for OSA, becomes more 

prevalent. In addition to the typical symptoms of daytime sleepiness, snoring, and disturbed 
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sleep, OSA is also associated with significant systemic comorbidities, including hypertension, 

myocardial infarction and congestive heart failure, stroke, and type 2 diabetes (179). Of particular 

relevance to this study, patients with OSA have a high prevalence of central nervous system 

dysfunction, including depression, dementia, and diminished cognitive performance (180), MRI 

studies of OSA patients have detected neurologic lesions suggestive of hypoxic damage, 

including focal loss of gray matter (36) and white matter (181). 

The etiology of OSA-associated neurologic comorbidities is not well understood. Brain tissue is 

particularly sensitive to hypoxic damage and rapid reperfusion (182), and brain regions known to 

be more acutely affected by hypoxia, such as the hippocampus, are among those identified as 

having gray matter loss in OSA (36). In normal physiology, apnea-induced hypercapnia and 

hypoxia cause chemoreceptor-mediated central vasodilation and concurrent peripheral 

vasoconstriction, preferentially conserving oxygen delivery to the brain to prevent hypoxic brain 

injury (183). In fact, recent work by our group has demonstrated that CMRO2 is not just 

maintained, but slightly increased in young healthy subjects in response to 30-second volitional 

apnea (135). This may represent a mechanism for increasing energy stores in anticipation of 

prolonged apnea, and is consistent with gas-mixture breathing studies demonstrating increased 

CMRO2 in response to steady-state hypoxia (105). However, it is possible that patients with OSA 

do not possess a normal apneic response, allowing hypoxic damage to occur during OSA-

associated nocturnal apneas. 

In support of this hypothesis are studies associating OSA with blunted CVR (37-39), typically 

defined as the CBF change in response to a vasoactive stimulus, such as hypercapnia (39) or 

apnea (37,38), the latter of which is particularly pertinent to OSA pathophysiology. In one study, 

CVR assessed in response to breath-hold by Doppler ultrasound was found to be significantly 

lower in OSA subjects, and more so in the morning, indicating that their diminished vasodilatory 

response is worsened by more recent exposure to nocturnal apneas (37). Recently, BOLD fMRI 

was used to detect reduced CVR in select brain regions of apneics, including the hippocampus 

(38). Blunted cerebrovascular responses to autonomic challenges (184,185) (e.g., orthostatic 
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hypotension, cold pressor challenge, etc.) suggest a mechanism of brain injury even during 

wakefulness, whereby day-to-day activities (e.g., standing) may not be met with an adequate 

cerebrovascular response to preserve central oxygen delivery. Finally, studies in both animals 

(186) and healthy humans (187) exposed to chronic intermittent hypoxia paradigms indicate a 

causal link between exposure to cyclic hypoxia and impaired vascular reactivity. If initial hypoxic 

injury itself leads to further blunting of the apneic response, a negative feedback cycle of 

worsening hypoxic damage could ensue. 

Though supporting a mechanism for hypoxic brain injury in OSA, these previous studies all 

measure surrogate markers of brain oxygen metabolism (i.e., blood flow, perfusion, or BOLD 

fMRI signal), reductions of which do not necessarily correlate with decreased oxygen delivery and 

consumption. Of more central interest is whether oxygen consumption itself is maintained. Direct 

quantification of CMRO2 requires quantification of both cerebral blood flow and oxygen extraction, 

the latter posing the greater technical challenge. CMRO2 is less variable than blood flow or 

oxygen extraction in healthy subjects at baseline (66,101), and relatively conserved in response 

to physiologic challenges such as hypercapnia (87,124) and hypoxia (105), suggesting that 

CMRO2 may be a more significant index for assessing neurovascular dysfunction than either 

blood flow or oxygenation alone. CMRO2 reduction has been associated with many of the most 

common neurologic disorders, including mild cognitive impairment (112) and Alzheimer’s disease 

(34), Parkinson’s disease (127), and multiple sclerosis (111).  

Quantifying CMRO2 in response to apnea requires temporal resolution on the order of several 

seconds. Although this temporal resolution can be achieved with BOLD fMRI, attempts to 

‘calibrate’ the BOLD signal (i.e., convert fractional BOLD signal change to fractional change in 

CMRO2), rely on models with many physiologic assumptions and complex experimental setups 

involving gas-mixture breathing (150). Moreover, such calibration techniques still provide only 

relative changes in CMRO2, with additional calibration needed to quantify baseline values in 

absolute physiologic units.  



107 

 

Recently, we have introduced an MRI technique for rapid whole-brain CMRO2 quantification 

based on simultaneous SBO and PC-MRI blood flow quantification – termed OxFlow (66). 

Subsequent iterations of the technique have employed view-sharing to achieve temporal 

resolution as low as three seconds for whole brain CMRO2 quantification (86,135). Unlike all 

previous CMRO2 measurement techniques, this method has sufficient temporal resolution to 

detect CMRO2 changes in response to apnea, allowing direct evaluation of the relationship 

between apnea, CVR, and brain oxygen delivery and consumption.  

In this study, OxFlow was applied to compare the CMRO2 response to apnea in OSA subjects 

and healthy controls. We hypothesized that OSA would be associated with reduced baseline 

CMRO2, as well as a blunted CMRO2 response to volitional apnea, and that this blunting would 

correlate with disease severity as measured by the apnea hypopnea index (AHI). 

5.3. Methods 

5.3.1. Susceptometry-Based Quantification of Yv (SBO) 

SBO exploits the relative paramagnetism of hemoglobin in the deoxygenated state, which results 

in a linear relationship between Yv and venous blood magnetic susceptibility relative to 

surrounding tissue (Δχ):  

Δχ =Hct Δχdo 1−Yv( )+Δχoxy( )
          

[5.1] 

where Hct is the hematocrit and Δχdo and Δχoxy are the volume susceptibility differences between 

fully oxygenated and deoxygenated packed red blood cells and between fully oxygenated packed 

red blood cells and water, respectively. Values of 4π×0.273 and 4π×0.008 p.p.m. (SI units) are 

used for Δχdo and Δχoxy, based on ex vivo calibration experiments (118). The susceptibility offset 

(Δχ) induces a field shift (ΔB), which causes an increase in MR signal phase (Δϕ) between blood 

and surrounding ‘reference’ tissue as a function of echo spacing (ΔTE) in a multi-echo gradient 

echo imaging sequence: 
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ΔB =Δφ /γΔTE           [5.2] 

where γ is the proton gyromagnetic ratio.  

Solving for Yv thus hinges on determining Δχ from the measured ΔB, an inversion problem that is 

mathematically ill-posed in the general case. However, by modeling the blood vessel of interest 

as a pseudo-infinite straight cylinder (121) with defined tilt angle (θ) relative to the main magnetic 

field (B0), an expression relating the susceptibility and field offsets can be derived analytically: 

ΔB = 1
6
ΔχB0 3cos2θ −1( )           [5.3] 

To quantify global Yv, this infinite cylinder model is applied to the SSS, the largest cerebral vein, 

which drains about 50% of total cerebral outflow. Yv in the SSS is nearly identical to global 

cerebral venous oxygenation measured in the internal jugular veins as shown by T2-based 

oximetry methods (63,101). However, while trachea-induced susceptibility artifacts complicate 

SBO in the jugular veins, the field adjacent to the SSS is relatively homogeneous, making it the 

ideal candidate for global Yv quantification via SBO. 

5.3.2. Combination of SBO and PC-MRI for CMRO2 Quantification (OxFlow) 

SBO and PC-MRI can be readily combined as a single gradient echo sequence by applying flow-

encoding before a multi-echo GRE readout, achieving simultaneous quantification of blood 

oxygenation and flow (Figure 5.1) (66,135). In this study, OxFlow was implemented with BRISK 

Cartesian view-sharing (154), with one-quarter k-space acquired at each time point and a 

resulting temporal resolution of two seconds for each simultaneously acquired pair of field- and 

velocity-maps. BRISK is more robust against subject motion compared to previous 

implementations of OxFlow using Keyhole view-sharing (135,136). Other OxFlow pulse sequence 

parameters used in this study were: reconstructed matrix = 208 × 208, resolution = 0.85 × 0.85 × 

5.00 mm, TR/TE1/ΔTE = 19.23/5.73/7.04 ms, bandwidth = 321 Hz/pixel, and VENC = 50 cm/s. 
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Figure 5.1: MRI pulse sequences for high temporal resolution quantification of 
global CMRO2. (A) Single-slice OxFlow pulse sequence with BRISK k-space 
sampling produces a velocity- and field-map at two-second temporal resolution to 
quantify SSSBF and Yv, respectively. (B) Dual-slice PC-MRI pulse sequence run 
prior to the OxFlow experiment allows quantification of the tCBFcal/SSSBFcal 
calibration factor used to upscale OxFlow-derived SSSBF to tCBF in Equation 
5.4. Arrows indicate the echoes used to generate each image. Circles indicate 
the vessels of interest (superior sagittal sinus in the head, internal carotid arteries 
(ICAs) and vertebral arteries (VAs) in the neck). (C) Sagittal maximum intensity 
projection showing the head (blue) and neck (red) slice locations and 
corresponding axial magnitude images. Boxes in the axial images correspond to 
the parametric map ROIs in (A) and (B). All images are from a representative 
OSA subject (male, 63 years old). Figure from (40). 

SSS blood flow (SSSBF) can be converted to total CBF (tCBF) via multiplication by a calibration 

factor determined through a separate two-slice-interleaved PC-MRI acquisition toggled between 

the internal carotid and vertebral arteries in the neck (which comprise tCBF) and the SSS in the 

head (Figure 5.1b) (135). This calibration step can be run before subsequent OxFlow 

experiments, allowing tCBF to be quantified as: 

tCBF = tCBFcal / SSSBFcal( ) ⋅SSSBF           [5.4] 

CMRO2 can then be quantified via the Fick Principle (10-12): 
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CMRO2 =Ca ⋅tCBF ⋅ Ya −Yv( )           [5.5] 

where Ca is the hematocrit-dependent arterial oxygen content of blood in µmol O2/100mL and Ya 

is the arterial oxygen saturation in %HbO2, which can be measured by digital pulse oximetry. The 

SSSBF:tCBF calibration pulse sequence parameters used in this study were: reconstructed 

matrix = 208 × 208, resolution = 0.85 × 0.85 × 5.00 mm, TR/TE = 12.02/5.73 ms, bandwidth = 

321 Hz/pixel, VENC = 50 cm/s (head slice) / 80 cm/s (neck slice), temporal resolution = 10 s, and 

averages = 4. 

5.3.3. Subjects 

Subjects were recruited based on results of a clinically indicated sleep study (in-lab attended 

polysomnography) performed at the University of Pennsylvania Sleep Center. The AHI was 

calculated as the mean number of apnea and hypopnea events per hour of sleep. Obstructive 

apneas were defined as at least a 90% drop in the thermal sensor excursion of baseline lasting at 

least 10 seconds; hypopneas were defined as a 50% reduction in airflow for greater than 10 

seconds and associated with greater than 3% decrement in oxyhemoglobin saturation and/or an 

arousal. Nasal pressure monitors were used in all subjects to measure airflow.  

Thirteen newly diagnosed apneics (AHI > 15 events/hour) and 10 non-apneic controls (AHI < 10 

events/hour) were selected after screening for standard MRI exclusion criteria (claustrophobia, 

metal implants, pregnancy, etc.) and excluding diseases expected to affect cerebral metabolism 

and/or CVR, including congestive heart failure, chronic obstructive pulmonary disease, stroke, 

head trauma, and other significant neurological diseases. Cigarette smokers or users of other 

nicotine products were excluded as smoking can affect vasodilation. Subjects had no prior history 

of OSA diagnosis or continuous positive airway pressure (CPAP) use. Subject demographics are 

displayed in Table 5.1. 
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Parameter OSA (N = 11) Control (N = 10) P-value 
    Age (years) 53.8 ± 8.2 45.3 ± 8.5 0.027* 
Gender (Male / Female) 7 / 4 4 / 6 0.39 
Race (CA / AA) 2 / 9 6 / 4 0.081 
BMI (kg/m2) 36.6 ± 4.4 31.9 ± 2.2 0.0064* 
AHI (events/hour) 43.9 ± 18.1 2.9 ± 1.6 < 0.0001* 
Ya Nadir (%HbO2) 77.5 ± 8.5 89.0 ± 3.7 0.0001* 

Table 5.1: Group demographics and polysomnography data. Parameter values 
are reported as mean ± SD across subjects. P-values are based on Wilcoxon 
two-sample exact tests (Age, BMI, AHI, Ya Nadir) or Fisher’s exact tests (Gender, 
Race). Abbreviations: CA, Caucasian; AA, African American. * denotes P < 0.05. 
Table from (40). 

5.3.4. Experimental Procedures 

All imaging protocols were approved by the Institutional Review Board of the University of 

Pennsylvania according to the ethical standards of the Belmont Report, and subjects provided 

written informed consent. Prior to scanning, a capillary blood sample was obtained and analyzed 

using an Hb 201+ (HemoCue, Brea, CA, USA) portable hemoglobin measurement device for 

determination of Hct in Equation 5.1 and Ca in Equation 5.5. 

5.3.4.1. Volitional Apnea Paradigm 

The apnea paradigm consisted of thirty-second breath-holds at end-expiratory volume to mimic 

nocturnal apneas experienced in OSA. Coaching was used to maximize intra- and inter-subject 

repeatability and consistency of the apneas. Prior to scanning, breathing at normal end-expiratory 

volume was explained and demonstrated. During all breath-holds, subjects were verbally 

instructed to “breathe in”, “breathe out”, and “stop breathing” at six, three, and zero seconds, 

respectively, before the designated start of each apnea period, and instructed to “breathe 

normally” at the end of the apnea period. Each subject performed two practice apneas in the MRI 

scanner prior to OxFlow scanning and three during OxFlow scanning. Verbal instructions were 

given via MRI-compatible headphones. Breath-hold compliance was monitored by respiratory 

bellows. 
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5.3.4.2. MR Imaging Protocol 

To minimize biological confounds and normal variations that might occur during the diurnal cycle, 

all subjects were scanned in the afternoon and instructed to abstain from caffeine (which 

promotes vasoconstriction) on the day of the study. All MR-imaging studies were performed on a 

1.5 T wide-bore (70 cm) Siemens Espree system (Siemens Medical Solutions, Erlangen, 

Germany) using vendor-supplied 12-channel head and 2-channel neck receive coils. Subjects 

were fitted with pulse oximetry (Expression, Invivo Research Inc., Orlando, FL, USA) and 

respiratory bellows before performing the first practice breath-hold. A vendor-provided axial 

localizer scan was run for subsequent slice planning, followed by a second practice breath-hold. 

To allow tCBF normalization to brain mass, a 1-mm-isotropic 3D T1-weighted MPRAGE data set 

was acquired. Next, the SSSBF:tCBF calibration scan was run, followed by second-order 

shimming over the brain volume. Finally, the OxFlow sequence was run continuously for nine 

minutes, during which the subjects completed three coached 30-second apneas, each followed 

by two minutes of normal breathing recovery. The entire MRI protocol lasted approximately 20 

minutes (Figure 5.2). 

 

Figure 5.2: MRI protocol for quantifying CMRO2 at rest and in response to apnea. 
Red boxes indicate 30-second coached volitional apneas. Two practice apneas 
are performed during protocol setup. During continuous CMRO2 quantification 
with OxFlow, three apneas are performed, each followed by two minutes of 
normal breathing recovery. Figure from (40). 

All subjects were able to successfully complete each breath-hold. However, two subjects (both 

apneics) failed to remain awake and experienced obstructive apneas during the recovery portions 

of the OxFlow acquisition, resulting in periodic desaturations throughout the paradigm. Their data 

were excluded from further analysis. 
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5.3.5. Data Processing 

All image reconstruction was performed with in-house-written MATLAB (Mathworks, Natick, MA) 

scripts. BRISK-sampled raw OxFlow data were first reordered to create full k-space data sets 

corresponding to each echo at two-second temporal resolution. Velocity-maps were obtained 

from the phase difference between flow-encoded and flow-compensated images reconstructed 

from data acquired at TE1. Field-maps were generated from the phase difference between flow-

compensated images reconstructed from data acquired at TE1 and TE2. Magnitude images at 

each time point were used to motion-correct the time series velocity- and field-maps using the 

StackReg plugin for ImageJ (188). 

OxFlow-derived SSSBF was determined by integration of the velocity-map over an ROI fully 

containing the SSS. Data from the two-slice-interleaved calibration sequence was processed 

analogously – with tCBFcal quantified by integration over the internal carotid and vertebral arteries 

– to calculate the tCBFcal/SSSBFcal calibration factor to upscale OxFlow-derived SSSBF and 

determine tCBF in Equation 5.4. Total brain volume was determined from the T1-MPRAGE data 

using the BET tool in FSL (157), and converted to mass based on an average brain density of 

1.05 g/mL (158). 

For Yv quantification, bulk susceptibility effects were removed from the field-maps via second-

order polynomial fitting of the field in brain tissue surrounding the SSS. Average phase was 

measured in two ROIs, one entirely within the SSS and another in a small reference region of 

brain tissue immediately surrounding the SSS approximately one vessel radius in width and 

located one vessel radius anterior to the SSS border. The difference in phase between these 

regions provides Δϕ in Equation 5.2. 

Ya values obtained via pulse oximetry were recorded at two-second intervals matching each 

OxFlow time point. To correct for the temporal delay between central and peripheral blood arrival 

from the lungs, the pulse oximetry data was time-shifted for each subject such that the initial 

resaturation following apnea occurred 7 seconds after apnea cessation. This timing corresponds 
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to the known circulatory transport delay between the lungs and brain (138) to within the temporal 

resolution of the pulse sequence. AVO2D was quantified as Ya − Yv. Combination of Equations 

5.1-5.5 was used to determine temporally resolved CMRO2. 

5.3.6. Statistical Analysis 

For each subject, time-course data were averaged over the three repeated blocks of the 

paradigm to improve signal-to-noise (SNR) and remove physiologic variation unrelated to apnea. 

For all parameters, average baseline values were quantified over the 24 seconds (12 data points) 

immediately preceding the “breathe in” command. For parameters that change monotonically in 

response to apnea, maximum (tCBF, Yv) or minimum (Ya, AVO2D) percent changes relative to the 

average baseline values were quantified. To characterize the CMRO2 apneic response, data 

were averaged over the second half (final 14 seconds, seven data points) of the apnea period to 

generate average end-apnea parameter values. The second half of the apnea period was used to 

eliminate residual breathing effects and because physiologic changes from apnea are not 

expected to occur instantaneously. The CMRO2 apneic response was quantified as the percent 

change from the average baseline to the average end-apnea period. 

Continuous outcomes were summarized using means and standard deviations (SDs) and 

categorical outcomes using frequencies and percentages. Given the relatively small number of 

apneics (N = 11) and controls (N = 10) in this study, summary measures were compared between 

groups using Wilcoxon two-sample exact tests (for continuous variables) and Fisher’s exact tests 

(for categorical variables). Baseline CMRO2 and the CMRO2 apneic response values were 

correlated with AHI using Spearman’s rank correlations. Statistical significance was defined as P 

< 0.05. Throughout the manuscript, parameter values are reported as mean ± SD and all P-

values are two-sided. 

Given the limited overlap in age and BMI between OSA subjects and controls, it was not possible 

to model the independent effect of these variables on CMRO2 or the CMRO2 apneic response 

within the entire sample. Instead, the potential effect of between-group differences in these 
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variables was assessed in a secondary analysis within a small sample of apneics and controls (N 

= 4 pairs), matched for age (within 2.5 years) and BMI (within 2.5 kg/m2). Differences in traits of 

interest were calculated within each pair, as the value in the apneic subject minus that in the 

control. Observed differences were tested for significance using an exact P-value from the non-

parametric signed rank test on the difference. The calculated differences in the matched sample 

were compared to that in the overall population. If a similar magnitude was observed, it was 

concluded that results in the overall population were unlikely to be primarily driven by differences 

in age and BMI. As a further step toward understanding potential confounding effects, age and 

BMI were associated with CMRO2 and the CMRO2 apneic response using Spearman’s rank 

correlations. These tests were performed across all subjects (N = 21), apneics only (N = 11), and 

controls only (N = 10). 

5.4. Results 

5.4.1. Subject Demographic and Polysomnography Group Characteristics 

AHI was significantly higher (43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour, P < 0.0001) and Ya nadir 

lower (77.5 ± 8.5 vs. 89.0 ± 3.7 %HbO2, P = 0.0001) in apneics relative to controls. Subjects in 

the OSA group (AHI > 15 events/hour) were of greater age (53.8 ± 8.2 vs. 45.3 ± 8.5 years, P = 

0.027) and BMI (36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m2, P = 0.0064), and had slightly though non-

significantly larger brain mass (1437 ± 208 vs. 1376 ± 177 g, P = 0.39). 

5.4.2. Baseline Differences Between OSA Subjects and Controls 

Time-course plots of the MR- and pulse oximetry-measured parameters in a single OSA subject 

(male, 63 years old) (Figure 5.3a) demonstrate the expected increase in Yv and tCBF and 

decrease in Ya in response to apnea (red shading), as previously observed in young healthy 

subjects (135). The resulting CMRO2 time-course in the same OSA subject (Figure 5.3b) shows 

a CMRO2 reduction from baseline (denoted ‘Base’) to end-apnea (denoted ‘EA’) of 12.1%. 
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Figure 5.3: Apnea paradigm data in a representative OSA subject (male, 63 
years old). (A) Single subject time-course plot of measured parameters (MRI-
derived tCBF and Yv and pulse-oximetry-derived Ya) and (B) quantified CMRO2 in 
absolute physiologic units. In all plots, data has been averaged over the three 
repeated blocks of the apnea paradigm and the gray shading indicates the apnea 
period. Black symbols correspond to the maximum (tCBF, Yv) or minimum (Ya) 
parameter values used to quantify the peak apneic response. ‘Base’ indicates the 
data averaged to quantify the baseline parameter values. ‘EA’ indicates the 
CMRO2 data averaged to quantify the end-apnea CMRO2 for determination of the 
CMRO2 apneic response. Figure from (40). 

Group time-course plots of measured parameters (Figure 5.4a) demonstrate a lower tCBF and 

Ya and higher Yv in apneics versus controls, as well as a considerably lower CMRO2 in apneics 

(Figure 5.4b) throughout the paradigm. Although tCBF, Ya, and Yv baseline-averaged parameters 

values were not statistically different between groups (Table 5.2), they synergistically resulted in 

a significantly lower CMRO2 in apneics versus controls (117.4 ± 37.5 vs. 151.6 ± 29.4 

µmol/100g/min, P = 0.013). The initial rise and fall in tCBF and Yv observed at the beginning of 

the apneic period is attributable to breath-hold-induced intrathoracic pressure changes causing 

modulations in cerebral venous return, as previously observed (135). 
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Figure 5.4: Group-averaged apnea paradigm data in OSA subjects and controls. 
(A) Time-course plots of OSA subject (solid lines) and control subject (dotted 
lines) measured parameters (MRI-derived tCBF and Yv and pulse-oximetry-
derived Ya) and (B) quantified CMRO2 in absolute physiologic units. (C) Baseline 
normalized tCBF, AVO2D and (D) CMRO2 illustrate the change in parameter 
values in response to apnea in each group. Error bars represent standard errors 
within each group and correspond to individually sampled time points. In all plots, 
data have been averaged over the three repeated blocks of the apnea paradigm 
and the gray shading indicates the apnea period. ‘Base’ indicates the data 
averaged to quantify the baseline parameter values. ‘EA’ indicates the data 
averaged to quantify the end-apnea CMRO2 for determination of the CMRO2 
apneic response. Figure from (40). 
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Parameter OSA (N = 11) Control (N = 10) P-value 
     tCBF Ave. Baseline (mL/100g/min) 42.4 ± 11.3 45.4 ± 7.1 0.20 
 Peak Apneic Response (%) 35.6 ± 17.1 35.7 ± 8.8 0.56 
     Ya Ave. Baseline (%HbO2) 95.6 ± 1.8 96.9 ± 1.9 0.13 
 Peak Apneic Response (%) -6.8 ± 0.5 -6.1 ± 1.4 0.036* 
     Yv Ave. Baseline (%HbO2) 62.2 ± 6.2 58.7 ± 7.2 0.25 
 Peak Apneic Response (%) 15.5 ± 10.6 13.4 ± 4.7 0.86 
     AVO2D Ave. Baseline (%HbO2) 33.4 ± 6.5 38.2 ± 7.5 0.17 
 Peak Apneic Response (%) -40.9 ± 14.0 -32.0 ± 6.4 0.099 
     CMRO2 Ave. Baseline (µmol/100g/min) 117.4 ± 37.5 151.6 ± 29.4 0.013* 
 Ave. Baseline to End-Apnea Change (%) -10.9 ± 8.8, P = 0.0049* -4.0 ± 6.7, P = 0.13 0.036* 

Table 5.2: Summary of baseline and apneic response parameters in OSA 
subjects and controls. Parameter values are reported as mean ± SD across 
subjects. P-values are based on Wilcoxon two-sample exact tests. * denotes P < 
0.05. Table from (40). 

5.4.3. Apneic Response in OSA Subjects and Controls 

To better illustrate the apneic response, measured parameters (Figure 5.4c) and CMRO2 (Figure 

5.4d) are displayed in terms of percent changes relative to average baseline values. CVR – the 

change in tCBF in response to apnea – was not different between groups. However, there was a 

trend toward a larger decrease in oxygen extraction (AVO2D) in apneics (-40.9 ± 14.0 vs. 32.0 ± 

6.4 %, P = 0.099). CMRO2 decreased significantly in apneics (-10.9 ± 8.8 %, P = 0.0049) but not 

in controls (-4.0 ± 6.7 %, P = 0.13), with a significant group difference (P = 0.036). Ya reduction in 

response to apnea was greater in apneics (-6.8 ± 0.5 vs. -6.1 ± 1.4 %, P = 0.036), although it 

should be noted that the magnitude of this difference was quite small, and thus had little impact 

on the observed differences in the CMRO2 apneic response. 

5.4.4. Relationship Between CMRO2 and AHI 

To examine the sensitivity of CMRO2 to OSA disease severity, AHI was correlated with both 

baseline CMRO2 (Figure 5.5a) and the CMRO2 apneic response (Figure 5.5b). When including 

all subjects (N = 21), AHI correlated significantly with baseline CMRO2 (Spearman’s ρ = -0.65, P 

= 0.0014) and the CMRO2 apneic response (Spearman’s ρ = -0.53, P = 0.013). When restricted 

to apneics only, AHI correlation with baseline CMRO2 was only marginally significant 
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(Spearman’s ρ = -0.61, P = 0.047), and AHI correlation with the CMRO2 apneic response 

(Spearman’s ρ = -0.47, P = 0.14) was only a trend. 

 

Figure 5.5: Relationship between CMRO2 and AHI. (A) Correlation plots of 
baseline CMRO2 vs. AHI and (B) CMRO2 apneic response vs. AHI. OSA subjects 
(solid diamonds) and controls (empty triangles) are clearly separated by AHI. 
Least squares regression lines are plotted for OSA-subjects only (solid lines) and 
for all subjects (dotted lines) with corresponding Spearman’s rank correlations 
and P-values indicated. Figure from (40). 

5.4.5. Age and BMI Effects Analysis 

Examination of a sub-sample of age- and BMI-matched subjects provided insight into possible 

confounding effects of the slight mismatch in these group characteristics. As expected given 

matching, pairs were similar with respect to age (mean ± SD difference: -0.25 ± 1.26 years, P > 

0.99) and BMI (1.2 ± 1.5 kg/m2, P = 0.375). Within the matched sample, apneics had a baseline 

CMRO2 45.9 µmol/100g/min lower on average compared to matched controls (P = 0.125) and a 

CMRO2 apneic response 10.4% lower (P = 0.375). These differences are greater than those 

observed between apneics and controls in the overall sample, supporting the effect size seen in 

that population. This suggests that although statistical significance was not achieved in this small 

matched sample, associations in the overall sample were not completely driven by imbalances in 

age and BMI.  
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Though not reaching significance, the data were suggestive of a negative correlation between 

CMRO2 and BMI (ρ = -0.40, P = 0.070) across the entire sample. In contrast, correlation between 

CMRO2 and BMI in apneics only (ρ = -0.38, P = 0.25) or controls only (ρ = 0.25, P = 0.49) was 

not significant, and correlations between BMI and the CMRO2 apneic response were not 

significant in any group. Across all subjects, correlations between age and both baseline CMRO2 

and CMRO2 apneic response were small and non-significant. Age correlated significantly only 

with the CMRO2 apneic response in control subjects (ρ = 0.73, P = 0.016), and approached 

significance when correlated with baseline CMRO2 in control subjects (ρ = 0.54, P = 0.105).  

5.5. Discussion 

5.5.1. Interpretation of Apnea Paradigm Data 

While a range of technologies have been used to study the pathophysiology of OSA, to the best 

of our knowledge, this is the first study to directly measure CMRO2 and its change in response to 

apnea in OSA subjects. We highlight two main findings: 1) baseline CMRO2 is lower in OSA 

subjects relative to controls and 2) there is a larger CMRO2 decrease in response to apnea in 

OSA subjects. Given the small sample size of the study, and that confounding by age and/or BMI 

cannot entirely be excluded given that groups were not fully matched, these preliminary findings 

should be interpreted with caution and replicated in larger samples. However, the results are 

consistent with growing evidence that blunted autoregulatory mechanisms in OSA may contribute 

to OSA-associated neuropathology (37-39,184,185,189), and suggest a potential role for CMRO2 

in studying these mechanisms. 

The observed reduction in baseline CMRO2 in OSA subjects is a consequence of both oxygen 

delivery (tCBF) and oxygen extraction (AVO2D) reduction. Although OSA subjects had lower 

values in both tCBF and AVO2D on average, results did not reach statistical significance. As 

mentioned, these negative results must be interpreted with caution given the limited sample size. 

Nevertheless, they suggest that CMRO2 may provide a more sensitive marker of baseline 

metabolic dysfunction than blood flow or oxygen extraction alone. Recently, a similar study of 
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OSA subjects and controls also found no group differences in baseline blood flow and no change 

in baseline blood flow in apneics treated with CPAP (38). We emphasize that our observed 

CMRO2 reduction in OSA subjects cannot be explained by brain atrophy, as the CMRO2 is 

normalized to brain volume, and, furthermore, brain mass was not significantly different between 

groups.  

In additional to lower baseline CMRO2, OSA subjects had a significantly larger decrease in 

CMRO2 in response to apnea compared to controls. In contrast, the increase in flow in response 

to apnea (CVR) was nearly identical between groups, with the reduced CMRO2 apneic response 

largely driven by a greater reduction in AVO2D in apneics. Just as CMRO2 has been proposed as 

a better measure of baseline neuronal function than blood flow, our results suggest that the 

CMRO2 response to vasoactive challenges may provide a more sensitive marker of regulatory 

dysfunction than flow-based CVR. While some studies have associated OSA with reduced CVR 

(37-39), others, including the present study, have not (185,187). More so than CVR reduction 

alone, inability to maintain CMRO2 during apnea provides a potential mechanism to explain the 

development of hypoxic brain damage in OSA. 

Although not reaching statistical significance, the control group in this study also displayed a 

negative CMRO2 response to apnea. This contrasts with previous data in 10 young, non-obese 

healthy subjects with no major underlying medical conditions, where a small but significant (6.0 ± 

3.5 %, P = 0.0004) increase in CMRO2 was observed during apnea using the same imaging 

protocol (135). One likely explanation for the different CMRO2 apneic response in these two 

control groups is the differences in their clinical characteristics. Controls in the present study were 

recruited among older, relatively obese subjects from a Sleep Clinic. These subjects likely have a 

higher prevalence of obesity, high blood pressure, and metabolic syndrome compared to the 

previously studied young healthy cohort.  

AHI correlated significantly with baseline CMRO2 across all subjects as well as in apneics only, 

demonstrating that baseline CMRO2 may be sensitive not just to apnea status but also apnea 
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disease severity. In contrast, AHI correlation with the CMRO2 apneic response was significant 

among all subjects, but only a trend when restricted to apneics. Thus, studies with more subjects 

are needed to determine the relative sensitivity of baseline vs. apneic response CMRO2 to OSA 

disease state. 

5.5.2. Study Limitations and Future Directions 

Our study has several limitations. First, it was performed in a relatively small sample of apneics 

and controls. A larger sample size would increase power to detect group differences, some of 

which were marginally significant. Thus, negative results (P > 0.05) should be interpreted with 

caution. However, our study did observe significant differences in our primary outcomes of 

interest, and, in general, power was approximately 75% to observe a mean difference between 

apneics and controls of 1.25 standard deviations. 

In this study, OSA subjects were significantly older and more obese than controls. While these 

differences reflect differences between OSA and non-OSA patients in the general population, the 

small sample and limited covariate overlap restricted our ability to control for potential 

confounders which could affect CMRO2 – such as age and BMI – in statistical models.  

While some recent work suggests that baseline CMRO2 may increase slightly with age (110), 

such a trend would have biased our results towards the null. In our data, there was a lack of 

association between CMRO2 measures and age in the overall sample, further suggesting that 

age did not confound the relationship between OSA and CMRO2 measures in our study. While a 

significant positive correlation was observed between age and the CMRO2 apneic response in 

controls only (ρ = 0.73, P = 0.016), it is unclear why this effect would exist only in controls, and, 

therefore, this result should be interpreted with caution. 

The relationship between BMI and CMRO2 has not been specifically investigated previously, and 

presents an added complication in our study, as obesity may affect the subjects’ ability to hold 

their breath.  For instance, obesity lowers functional residual capacity, which could potentially 

cause more significant hypoxia or hypercapnia to develop during volitional apnea, impacting the 
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apneic response. While we observed a negative correlation between CMRO2 and BMI across the 

entire sample (ρ = -0.40, P = 0.070), this does not necessarily demonstrate confounding by BMI, 

as such a trend would in fact be expected if CMRO2 were independently associated with OSA, 

given the BMI mismatch between apneics and controls. Furthermore, the fact that the same trend 

was not observed among control subjects only (ρ = 0.25, P = 0.49) suggests that in the absence 

of OSA pathology, CMRO2 is not independently associated with lower BMI, thus arguing against 

BMI effects driving our observed group differences. Finally, the observed correlation between BMI 

and CMRO2 was only 62% as strong as the correlation between AHI and CMRO2 (ρ = -0.65, P = 

0.0014). Thus, it is possible that the observed CMRO2 correlation with BMI is due to an 

independent CMRO2 association with AHI, rather than BMI. Future, larger studies including 

subjects and controls with a similar range of BMIs could better assess whether BMI 

independently affects CMRO2, and whether any such effects exist across the general population 

or are restricted to apneics alone. 

CMRO2 group differences observed in the overall study sample were similar to those in the 

subset of age and BMI matched subjects, again arguing in favor of OSA independently lowering 

baseline CMRO2 and the CMRO2 apneic response. However, it will be essential for larger 

independent studies to confirm the observed associations. Furthermore, future studies should 

examine the possible effects of additional OSA-associated co-morbidities, including type 2 

diabetes.  

Two subjects (both apneics) were excluded from data analysis due to inability to stay awake 

between breath-holds. Compliance could be improved in future studies via modification of the 

breath-hold protocol to include more frequent, shorter apneas, or by introducing visual cuing of 

the breath-holds, which in addition to sustaining subject attention, has been shown to improve 

breath-hold reproducibility (190). However, even with perfect subject compliance, volitional apnea 

may not elicit the same neurovascular response as true sleep-associated nocturnal apneas. To 

address this, our methodology could be applied during sleep to capture true apneic events in 
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OSA subjects. The feasibility of high temporal resolution MR imaging during sleep has been 

demonstrated in previous studies examining airway closure in OSA (191). 

A limitation of the OxFlow technique is that it is confined to quantification of global blood flow, 

oxygenation, and CMRO2. Though apnea, like hypercapnia and hypoxia, can be thought of as a 

global cerebrovascular challenge, OSA has been associated with focal brain lesions (36,181), 

and a recent study employing BOLD fMRI detected regional differences in CVR in OSA subjects 

(38). Unfortunately, CMRO2 mapping techniques are still at a developmental stage, with temporal 

resolutions on the order of many minutes and image noise levels often requiring whole-brain 

averaging to achieve physiologically plausible parameter values. While mapping of BOLD fMRI 

signal is possible at high temporal resolution, it does not provide a direct measure of either brain 

oxygen metabolism or blood flow, but rather reflects a complex interplay between blood flow, 

tissue properties, and CMRO2. A combination of both quantitative global measures, such as 

OxFlow, and qualitative but spatially resolved measures such as BOLD fMRI, could offer an ideal 

approach for future studies of vascular and metabolic dysfunction in OSA. 

Interpreting changes in baseline and apneic tCBF and CMRO2 is challenging, as such alterations 

could be viewed as either a cause or effect of underlying neuropathology. In a study of baseline 

CMRO2 and hypercapnic CVR in subjects with mild cognitive impairment (192), reduced CMRO2 

in the setting of maintained CVR was interpreted as suggesting less demand for oxygen due to 

primary cerebral dysfunction, as opposed to failure to meet demand due to vascular dysfunction. 

In our study, reduced baseline CMRO2 and maintained CVR were also observed, though the 

CMRO2 apneic response was reduced, suggesting that there may be a component of supply-side 

deficiency in OSA not accounted for by CVR.  Longitudinal monitoring of CMRO2 in OSA could 

help to discriminate between these various interpretations, for instance, by determining whether 

changes in baseline CMRO2 and CMRO2 apneic response occur concurrently or serially in OSA 

disease progression, and the extent to which CPAP therapy and resulting neurocognitive 

improvements are reflected by CMRO2 metrics. The simplicity, speed, and robustness of the 

OxFlow technique make it well suited for such applications. 
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5.6. Conclusions 

In summary, our results suggest that baseline CMRO2 is reduced in OSA subjects relative to 

controls, and, furthermore, that OSA subjects may fail to maintain normal CMRO2 during apnea. 

These findings add to the growing evidence that OSA-associated neuropathology is a 

consequence of autoregulatory dysfunction. MR-based quantification of CMRO2 may offer a new 

method for better understanding the mechanisms of neurologic impairment in patients with sleep 

apnea. 
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Chapter 6: Conclusions and Future Directions 

6.1. Conclusions 

MRI has facilitated major advancements in our understanding of brain energy use. This began 

with the advent of BOLD fMRI over 20 years ago, and has continued more recently with attempts 

to quantitatively measure CMRO2. Although much effort has been focused toward spatially 

mapping CMRO2, the brain is both spatially heterogeneous and temporally dynamic. This 

dissertation has outlined the development and application of a series of methods for dynamic 

quantification of CMRO2. The major results of this work are summarized as follows: 

In Chapter 2, we presented the OxFlow method for high temporal resolution quantification of 

whole-brain CMRO2. By applying temporal view-sharing and combining SBO-based Yv and PC-

MR-based tCBF quantification in the same slice, OxFlow achieves the highest reported temporal 

resolution for absolute quantification of whole-brain CMRO2: three seconds. This allows 

quantification of CMRO2 during dynamic stimuli, demonstrated in application to breath-hold 

apnea, where a small but significant increase in CMRO2 (6.0 ± 3.5%, P = 0.00044) was measured 

in ten young healthy subjects. This result highlights the utility of dynamic CMRO2 quantification, 

and argues against treating breath-hold apnea as an isometabolic stimulus, as has been done 

previously in some BOLD fMRI calibration studies. 

Unlike OxFlow, the T2-based TRUST technique is not limited by vessel geometry or background 

field effects; however, it is comparatively quite slow. In Chapter 3, we combined OxFlow and 

TRUST, producing an interleaved iTRUST sequence capable of six-second temporal resolution, 

T2-based, whole-brain CMRO2 quantification. iTRUST was used to directly compare SBO and T2-

based CMRO2 in response to hypercapnia, a topic of controversy in the functional imaging 

community as the two methods have produced conflicting results in recent literature. In striking 

agreement with these previous results, we found no significant change in iTRUST measured Yv-

based CMRO2 (P = 0.31), but a substantial reduction in T2-based CMRO2 (−14.6 ± 3.6%, P < 
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0.0001). These results suggest a true bias exists between these widely applied techniques for 

CMRO2 quantification, demanding further investigation. 

Calibrated BOLD fMRI provides a unique opportunity for both high spatial and high temporal 

resolution CMRO2 mapping, though current techniques lack the robustness of OxFlow and 

TRUST. Thus, in Chapter 4 we explored improved BOLD calibration through a combined Ox-

BOLD approach, where direct quantification of whole-brain Yv permits use of a generalized 

calibration model. Ox-BOLD calibration was demonstrated in a small group of healthy volunteers 

using both hypercapnia and hyperoxia gas-mixture breathing. Results suggest improved 

calibration with Ox-BOLD compared to the traditional Davis hypercapnia model, with significantly 

fewer non-physiologic outlier voxels and a more anatomically plausible gray/white matter contrast 

in calibration M-maps. 

Finally, in Chapter 5 we explored clinical application of dynamic CMRO2 quantification in patients 

with OSA. The original OxFlow method and breath-hold paradigm presented in Chapter 2 were 

applied in a clinical pilot study of 11 apneics and 10 controls. Although CBF and CVR were not 

significantly different between groups (P > 0.05), apneics displayed a significantly reduced 

baseline CMRO2 (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100g/min, P = 0.013) and apneic CMRO2 

response (-10.9 ± 8.8 % vs. -4.0 ± 6.7 %, P = 0.036). This suggests that CMRO2 may be a more 

sensitive marker of neurologic dysfunction than blood flow alone, and adds to growing evidence 

that OSA-associated neurologic dysfunction stems from blunting of normal cerebrovascular and 

cerebrometabolic autoregulation. 

In summary, this dissertation has presented a number of promising techniques and applications 

for dynamic quantification of CMRO2. Of the four main classes of CMRO2 quantification 

techniques presented in Chapter 1 (T2*, T2’, T2, or susceptibility), significantly improved temporal 

resolution has been achieved for two (susceptibility and T2), and a promising approach presented 

for improving a third (T2*). These various methods have been successfully applied to physiologic 

stimuli in healthy subject as well as in a pilot study of patients with OSA.  
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6.2. Future Directions 

6.2.1. OxFlow Technical Improvements 

The OxFlow technique pushes the limits of temporal resolution, and would benefit from 

modifications improving temporal SNR. Because SBO is scalable with field strength, with B0 

explicitly defined in the infinite cylinder model, application at 7T field strength is an attractive 

option for SNR improvement. Higher field strength would both increase bulk magnetization and 

result in greater susceptibility and flow-related phase accrual. However, realizing these benefits 

requires mitigating concomitant increases in background field inhomogeneity and chemical shift 

artifacts associated with high field strength.  

Radial acquisition presents another method for improved temporal SNR. It achieves more optimal 

sampling of center versus outer k-space than the Cartesian view-sharing approaches (i.e., 

Keyhole and BRISK) currently applied to OxFlow. Furthermore, golden angle radial trajectories 

allow retrospective optimization of temporal-view sharing and under-sampling factors, and 

facilitate application of signal processing techniques such as compressed sensing (193). 

A major limitation of the OxFlow technique is that it assumes infinite cylinder geometry, with tilt 

angle the only vessel feature used to relate measured phase accrual to Yv. A more general 

approach suggested by Driver et al. (194) is to first measure a vessel of interest’s exact 

geometry, and then apply a forward field calculation (195) to calibrate the field-susceptibility 

relationship. Using this approach as a calibration step could improve the accuracy of SBO-

derived Yv and permit its application to vessels with less than ideal geometry. This forward 

approach would also allow investigation (and mitigation) of the potential effects of adjacent bone, 

fat, and CSF on the accuracy of SBO. 

6.2.2. Technical Investigations 

The results of Chapter 3 raise concerns regarding the relative agreement between, and accuracy 

of, SBO- and T2-based Yv quantification techniques. As these methods gain wider application, 
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defining and understanding their potential biases is critically important. Given the relative 

complexity of the T2-based calibration model compared to that of SBO, we hypothesize an error 

in the former is most likely. However, this should be thoroughly investigated with both in vivo and 

ex vivo validation studies (100). The iTRUST pulse sequence would provide an ideal technique 

for such investigations. 

Unlike other CMRO2 quantification techniques, BOLD calibration offers both high spatial and high 

temporal resolution, though current techniques lack the necessary robustness to realize this 

potential. The Ox-BOLD pulse sequence and Yv-based model presented in Chapter 4 may be a 

step in the right direction, at the same time increasing the number of measured parameters while 

reducing the number of physiologic assumptions. Initial results are promising, though data in 

more subjects is needed, and the technique’s underlying assumption of spatially uniform changes 

in 1−Yv should be thoroughly validated. Although assessment of the Ox-BOLD method is 

challenging given the lack of a true gold standard for CMRO2 quantification in humans, it may be 

possible in animals via comparison to direct CMRO2 quantification techniques (i.e., 17O MRI or 

15O PET). 

6.2.3. Clinical Investigations 

As discussed in Chapter 5, the conclusions regarding CMRO2 reductions in OSA are limited by 

the small sample size of the study. Ongoing studies will validate these results in a larger cohort of 

subjects, including age- and weight-matched controls, using a modified radial version of the 

OxFlow sequence. To complement OxFlow-derived global CMRO2, voxel-wise BOLD-based CVR 

maps will also be acquired using an identical breath-hold paradigm, and resting state perfusion 

maps obtained with state-of-the-art background-suppressed 3D ASL (196). Furthermore, it will be 

investigated whether OSA-associated changes in CMRO2, CVR, and CBF are reversible with 

CPAP treatment, and whether these measures correlate with makers of neurologic function 

including cognitive battery performance. 
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In recent years, CBF and BOLD have been applied extensively to measure CVR in a variety of 

clinical disorders, including stroke (162) and Alzheimer’s disease (163). However, we anticipate 

that CVR assessed in terms of CMRO2 changes will provide a more sensitive marker of 

neurovascular dysfunction than traditional CBF- or BOLD-based measures. This hypothesis is 

supported by our finding of a significantly reduced CMRO2 response to apnea is OSA, despite 

non-significant differences in traditional CBF-based CVR. 

Indeed, dynamic assessment of CMRO2 has many potential applications for both clinical 

investigations and basic neuroscience. Much work remains in addressing critical challenges and 

defining new avenues of discovery. 
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