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3d Biomimetic Model for Cellular Invasion in Angiogenesis and Cancer

Abstract
Cell migration is an essential and highly regulated process. Cells migrate to vascularize tissues, to form tissue,
and to respond to inflammation. Unfortunately, cell migration is also involved in numerous pathological
conditions such as in invasive tumors. Cells can migrate as individual cells or as collective groups of cells.
Particularly important in cell migration is the collective migration of cells as it is a hallmark of tissue
remodeling events during embryonic morphogenesis, wound repair, and cancer invasion. Perhaps,
angiogenesis is one of the most crucial collective migration processes as it is involved in multiple physiological
and pathological conditions such as formation of vasculature, wound healing, cancer progression and
metastasis. During angiogenesis, endothelial cells migrate collectively from existing vasculature in response to
a complex biochemical and mechanical cues to form multicellular structures that eventually develop into new
functional blood vessels. Angiogenesis is also a highly dynamic process where multiple cells rearrange and
coordinate within a sprout. Such dynamic rearrangement requires different cytoskeletal regulators such as
Rho GTPases proteins (RhoA, Rac, and Cdc42). Although the roles of Rho GTPase proteins have been well
characterized in 2D cell migration, little is known about their contributions in angiogenic morphogenesis.
Here, we engineered a 3D biomimetic microfluidic-based device, called AngioChip, where endothelial cells
are induced to migrate collectively from a pre-formed biomimetic cylindrical blood vessel into a 3D interstitial
collagen matrix. The sprouts in our AngioChip demonstrate in vivo-like morphogenetic features such as
formation of tip-stalk cells, lumen formation, filopodial-like protrusions in leading tip cells, and formation of
perfusable neovessels. Using this system, we examine the roles of Cdc42 to regulate many aspects of
angiogenic morphogenesis. We find that disturbing Cdc42 activity reduces formation of branches, migration
speed, and collective migration. Additionally, Cdc42 also negatively regulate filopodia formation. We also
develop the AngioChip into a pancreatic ductal adenocarcinoma (PDAC) on a chip to investigate the
interactions between pancreatic cancer cells and blood vessels. Vascular invasion, where PDAC cells invaded
towards the vasculature during tumor progression, is a hallmark of metastatic PDAC. Nevertheless, how
pancreatic tumor cells interact with the blood vessels remains largely unknown. Using our PDAC-on-a-chip,
we reveal a striking observation where PDAC cells invade and de-endothelialize the blood vessels. This de-
endothelialization process leads to vascular replacement in the blood vessels and is mediated by proliferation
of PDAC through Nodal/Activin-ALK7 signaling.
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ABSTRACT 

3D BIOMIMETIC MODEL FOR CELLULAR INVASION IN ANGIOGENESIS AND CANCER 

Duc–Huy T. Nguyen 

Christopher S. Chen 

Cell migration is an essential and highly regulated process. Cells migrate to vascularize tissues, to 

form tissue, and to respond to inflammation. Unfortunately, cell migration is also involved in 

numerous pathological conditions such as in invasive tumors. Cells can migrate as individual cells 

or as collective groups of cells. Particularly important in cell migration is the collective migration of 

cells as it is a hallmark of tissue remodeling events during embryonic morphogenesis, wound repair, 

and cancer invasion. Perhaps, angiogenesis is one of the most crucial collective migration 

processes as it is involved in multiple physiological and pathological conditions such as formation 

of vasculature, wound healing, cancer progression and metastasis. During angiogenesis, 

endothelial cells migrate collectively from existing vasculature in response to a complex 

biochemical and mechanical cues to form multicellular structures that eventually develop into new 

functional blood vessels. Angiogenesis is also a highly dynamic process where multiple cells 

rearrange and coordinate within a sprout. Such dynamic rearrangement requires different 

cytoskeletal regulators such as Rho GTPases proteins (RhoA, Rac, and Cdc42). Although the roles 

of Rho GTPase proteins have been well characterized in 2D cell migration, little is known about 

their contributions in angiogenic morphogenesis. Here, we engineered a 3D biomimetic 

microfluidic-based device, called AngioChip, where endothelial cells are induced to migrate 

collectively from a pre-formed biomimetic cylindrical blood vessel into a 3D interstitial collagen 

matrix. The sprouts in our AngioChip demonstrate in vivo-like morphogenetic features such as 

formation of tip-stalk cells, lumen formation, filopodial-like protrusions in leading tip cells, and 

formation of perfusable neovessels. Using this system, we examine the roles of Cdc42 to regulate 

many aspects of angiogenic morphogenesis. We find that disturbing Cdc42 activity reduces 

formation of branches, migration speed, and collective migration. Additionally, Cdc42 also 
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negatively regulate filopodia formation. We also develop the AngioChip into a pancreatic ductal 

adenocarcinoma (PDAC) on a chip to investigate the interactions between pancreatic cancer cells 

and blood vessels. Vascular invasion, where PDAC cells invaded towards the vasculature during 

tumor progression, is a hallmark of metastatic PDAC. Nevertheless, how pancreatic tumor cells 

interact with the blood vessels remains largely unknown. Using our PDAC-on-a-chip, we reveal a 

striking observation where PDAC cells invade and de-endothelialize the blood vessels. This de-

endothelialization process leads to vascular replacement in the blood vessels and is mediated by 

proliferation of PDAC through Nodal/Activin-ALK7 signaling. 
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CHAPTER 1: INTRODUCTION 

1.1 Cellular invasion in physiological and pathological contexts 

1.1.1 Cellular invasion in morphogenesis and cancer 

The ability for cells to migrate is essential for physiological functions such as immune-

surveillance, wound healing, and tissue morphogenesis during embryo development. Pathological 

processes such as in cancer invasion and metastasis also depend on the ability of malignant cells 

to transform, acquire motility and invasiveness to break away from their tissue of origin and seed 

distant organs to form secondary tumors (1). There are different modes of cell invasions: single cell 

migration, multicellular streaming, and collective migration (2). Although different modes of cellular 

invasion are important for many physiological and pathological processes, the purpose of this thesis 

will mostly focus on collective migration.  

Distinguished from collective migration is single-cell migration. Single-cell migration is 

characterized by invasion of individual cells without cell-cell interactions during migration and a low 

correlation in the migration pattern between a cell and its neighbors. Single-cell migration is further 

classified into two subtypes comprised of amoeboid and mesenchymal migration. In amoeboid 

migration, cells obtain a round cell-body and there are several variants depending on the protrusive 

activity of migrating cells. Examples for different variants of amoeboid migrations are 1) cells that 

change morphology rapidly with short thin protrusions, without blebs and move with high velocities 

(0.4–5 µm/min); 2) cells with blebbing morphology and move slower in chaotic movements; and 3) 

cells with short protrusions associated with proteolytic activity with speed ~0.1 µm/min (2). In 

mesenchymal phenotype, cells have an elongated or spindle-shaped body and long protrusions. 

The front protrusions are dynamic and rapidly extend and retract while the rear of the cells can stay 

immobile, resulting in a relatively slow net migration at ~0.2 µm/min (2). 

In contrast to single cell migration, both multicellular streaming and collective cell migration 

have common features such as movement of a group of cells and the migrating path is straighter 
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as compared to single cell migration. However, these two invasive modes share distinct 

characteristics. In multicellular streaming, cells that migrate along the same path are loosely or 

non-adherent. The streaming cells typically have speeds of 1-2 µm/min (3). On the other hand, in 

collective migration, cells within the group are held together by cell-cell junctions. There is also a 

high correlation of directionality between neighboring cells. These cells move as a single strand of 

cells led by a single leader cell or as broad sheet of cells led by several leader cells (3-5). Collective 

migration is typically the slowest mode of cell migration (0.01–0.05 µm/min) in multiple cell types 

including cancer, but faster collective migration (0.2–1 µm/min) is also observed in development 

(6-8). 

In single cell migration, a classified cyclic 5-step process has been described (9). The first 

step of single cell migration requires initial polarization of the cell cytoskeleton to distinguish 

between the front and rear of the migrating cells. During this step, extensive protrusions, either 

ruffles or pseudopods, are formed. The subsequent step requires the engagement of adhesion 

receptors of the integrin families (alpha and beta integrins). Adhesion receptors are clustered and 

recruit additional scaffolding proteins to form nascent adhesion complexes and mature focal 

adhesions. These focal adhesions bind cells to the substrata or extracellular matrix proteins 

(ECMs). In step 3, surface proteins, such as proteases (MT1-MMP, uPA/uPAR), are recruited to 

proteolytically cleave the ECMs providing space for the cells to expand forward. In step 4, shortly 

after integrin-ligand binding, actin filaments engage with adaptor as well as cross-linking and 

contractile proteins, such as myosin II, which stabilize and contract the actin polymers. In step 5, 

under tension and contraction created by myosin II, actin filaments are shortened to provide 

contraction, which allows the front end of the cell body to glide forward and rear end to retract. 

These five steps provide an adaptive and dynamic framework in most of the cell types. However, 

they might undergo adaptive modifications depending on the inherent molecular repertoire or 

specific functions of various cell types (9). 
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In collective cell migration, steps 1-4 of the migration cycle of each individual cell are 

retained. However, the mode of rear retraction and forward gliding of the cell body is now placed 

under an important modification. If the moving cells in the group are to remain connected to the 

rest of the moving cells within the group, trailing edge retracting drags the following cells along the 

emerging migration track. Therefore, the trailing edge exerts forces to the ECMs and cell-cell 

junctions. It is very likely that rear retraction and release of adhesive bonds towards the substrata 

are involved, yet the maintenance of cell-cell junctions allows transferring of the net migration vector 

on the following cells. Tracking of single cells within a cohesive migration group of cells in different 

locations reveals intact inner architecture of cells within a group (10). One additional important 

feature of collective migration is that leading edge extension, and force generation as well as trailing 

edge retraction is a shared process by several cells. In other words, there are three distinct set of 

cells within a cohesive migration group of cells: a group of leading edge cells that generates force, 

a group of passively dragged cells, and a trailing group of cells that execute retraction. All these 

three groups provide an asymmetry to the moving group. 

During development, many morphogenetic processes involved collective migration such 

as morphogenetic movement of inner blastocysts (11), epithelial budding and developing ducts 

during branching morphogenesis (12), and migration of epithelial cells at the rim of the optic and 

the invaginating thyroid gland (13). More complex collective migration examples include collective 

movement during the converging extension of the vertebrate embryo in the Xenopus (14, 15) or 

the closure of dorsal surface in Drosophila embryo (16). Outside the context of development, 

collective migration is also seen in adults, such as in physiological wound healing. During wound 

healing, the horizontal migration of epithelial cell sheets across the wound tissue helps contract 

and close the wound (17). At the same time, endothelial cells sprout from existing blood vessels to 

form new blood vessels to support the repaired tissues (18). 

While collective migration plays many important roles during embryo development, it is 

also a putative mechanism for invasion and metastasis of cancer. Evidence of collective migration 
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in cancer is present in not fully dedifferentiated tumors, high and intermediate differentiated 

tumors of epithelial origins such as lobular breast cancer, epithelial prostate cancer, large-cell 

lung cancer (19, 20), melanoma (21), and rhabdomyosarcoma (22). Two morphological and 

functional variants of collective migration in tumors have been observed in vivo through histology. 

The first mode is a result of protruding sheets and strands of cells that maintain contact with the 

primary site. This mode is typically observed in oral squamous-cell carcinoma, mammary 

carcinoma (19), colon carcinoma (23), melanoma, and basal cell carcinoma. A second mode is 

characterized as groups of cells, seen in histology and referred to as ‘nests’, which detach from 

the primary site and extend along interstitial tissue gaps. This second mode is observed in 

epithelial cancer and melanoma (21). Interestingly, collective migration is observed in multiple 

stages of the metastasis cascade including clusters of cells circulating in the peripheral blood or 

lymphatic vessels (24-26). The dissemination of collectives of cells has a greater implication for 

cancer metastasis rather than single cells. 

 
1.1.2 Molecular mechanism to regulate collective cell migration 

One of the most distinctive features of collective migration is the formation of leader and 

follower cells. Leader cells localize at the front of the group, where they receive instructive signals 

to guide follower cells at the rear to migrate in the same direction. This process may be regulated 

through chemical or mechanical signaling (27, 28). The existence of the leader and follower cells 

secure front-rear polarity for the entire moving process. Delta-Notch signaling is implicated in 

determining the leader and follower cells as demonstrated in angiogenic (29). An additional 

example of negative feedback loops to inhibit formation of leader cells in neighboring cells is within 

2D sheet migration (28). Interestingly, the fate of leader cells may be transiently determined as 

leader cells and follower cells might dynamically exchange position such as in angiogenic sprouting 

and in the developing mammary gland. The extracellular cues and downstream signaling to specify 

leader and follower cells are probably cell type-specific. Previously described signaling pathways 
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include mitogen-activated protein kinase, focal adhesion kinase, phosphoinositide-3-kinase, Src 

kinases, Notch, and Rho GTPases.  

Once leader and follower cells are specified, individual cells in the group have to respond 

to a plethora of instructive cues from the microenvironment to move as a collective group. These 

signals can be topographic, chemical, or electrical. Topographic cues are consisted of extracellular 

matrix proteins, molecules bound by the ECM or the resident cells within the group. Haptokinesis 

is a topographic guidance in which cells orient their axis and movement along the topography 

provided by the anisotropy of the environment (30). Topography of guiding structures enables 

alignment of adhesion sites in parallel to the substrate, followed by a longitudinal actin cytoskeleton. 

For example, in 1D migration, fibroblasts patterned on a narrow line of adhesive substrate migrate 

in a string-like fashion, discouraging cells to migrate next to each other. Other examples in 3D 

topography guidance include collective groups of cells moving as a continuous sheet at the 

interfaces between muscle fibers or larger nerves and network formed by ECM fibers (31). If 

haptokinesis describes adhesion receptor-dependent migration along an isotropic substrate, 

haptotaxis indicates migration along a gradient of immobilized ligands in the substrate. Cells usually 

orient their migration toward the increasing availability of ligands. However, cell movement may 

also oppose the increasing gradient of ligands depending on the cell type and context (32, 33). 

Leader cells can guide collective migration of the group through sensing the guiding cues, 

depositing or removing the ECMs to alter adhesion sites or releasing or depositing immobilized 

cytokines/chemokines on the ECMs (31, 34). Lastly in topographic guidance, groups of cells also 

respond to the stiffness gradient of the microenvironment, a phenomenon called durotaxis. Positive 

durotaxis or migration towards a stiffer region is previously described in fibroblasts. Similarly, 

sarcoma cell sheets exhibit greater degree of collective migration on a stiffer substrate (35). During 

durotaxis, cells integrate different mechanosensory machineries such as focal adhesion, integrins 

and myosin II-mediated contractility in response to tissue stiffness.   
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In addition to the topographical cues, cell instructive signals also include biochemical and 

electrical signals. In chemical guidance, collective cell migration is influenced by gradient of soluble 

chemical factors, a phenomenon also called chemotaxis. Chemotactic guidance is essential during 

developmental processes but also a powerful tool to direct collective migration in experimental 

systems (36). Gradient of soluble biochemical factors can be generated through intrinsic diffusion 

ability of molecules within tissues or through convection due to interstitial fluid flow or a combination 

of both. Receptor binding and activation by biochemical factors induce and stabilize polarizing cell 

groups to move towards the increasing availability of biochemical cues (37). Chemotaxis is 

generally a paracrine mechanism but also induced by the cells themselves. Cells in a group may 

self-generate a gradient by different mechanisms: releasing chemokine-degrading enzymes that 

diffuse along the cell group and clear chemokines in the rear cells (38), or expressing migration-

enhance factors/receptors in the front and decoy receptors in the rear that bind and internalize the 

chemokines to limit the biological function of the chemokines in rear cells (39, 40). In addition to 

chemoattractant in chemotaxis migration, chemorepulsive cues impose a constraint to direct 

migration away from the cues (41, 42). Such factors include FGF8 and Wint3a, which induce 

mesendodermal cell sheet to migrate away from the primitive streak during gastrulation (43). Lastly, 

electrical guidance also known as galvanotaxis or electrotaxis is probably the least studied in 

collective cell migration. Electrotaxis describes directional migration of cells relative to direct-current 

electric field, which can be generated by cathode and anode (44). It has been shown to influence 

migration of many cell types including fibroblasts, epithelial and endothelial cells, neurons, immune 

cells, and cancer cells (45). Electric field can open voltage-gated ion channels to enable influx of 

ions and downstream signaling through activation of ion transport proteins, and cytoskeletal 

polarization (46, 47). For example, migration-inducing cell surface receptors including EGFR, 

acetylcholine receptor, and integrins were reported to respond to electric fields to locally activate 

PI3K/Akt and MAP/ERK signaling. 

In tissues, there is a plethora of instructive guidance signals including both physical and 

biochemical cues. These cues act parallel to a group of cells. Therefore, migrating collective cells 
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need to integrate concurrent, potentially cooperative or opposing inputs to make their decision and 

adjust their migrating direction. The integrative inputs may lead to strengthen the cellular cohesion 

of cells within group to encourage collective migration or permit dispersal and transition from 

migration group to single cell migration (48). Therefore, cells within a group need to process and 

prioritize the instructive signals. Particularly interesting is the process of collective migration in 

angiogenesis where endothelial cells not only sprout out from a vessel in a collective manner, they 

also process microenvironment cues to undergo morphogenesis to develop multiple branches and 

well-structured hierarchical networks to support the tissue homeostasis, growth and regeneration. 

 

1.1.3 The morphogenetic process of angiogenesis  

The vasculature develops shortly after gastrulation. Starting as blood islands from 

progenitor cells (hemangioblasts) in the visceral yolk sac, hemangioblasts differentiate into either 

hematopoietic or endothelial cells. The endothelial cells undergo the first phase of blood vessel 

formation in a process called vasculogenesis where they coalesce to form the primitive network of 

the vasculature. A second phase of blood vessel formation, called angiogenesis, begins, as 

endothelial cells from the existing primitive vascular plexus sprout out to form new blood vessels. 

These new blood vessels also undergo extensive remodeling via fusion and regression to finally 

form a fetal vasculature (49). 

 During angiogenesis, in response to various stimuli including biochemical and mechanical, 

some endothelial cells within the capillary walls are selected to become tip cells. These tip cells 

first digest the basement membrane proteins in the blood vessel and extend their cellular 

protrusions, filopodia, into the interstitial tissues to lead the sprouts. Tip cells do not proliferate in 

response to angiogenic cues (50). Though tip cells in zebrafish undergo a single proliferation during 

intersegmental vessel development (51). Other cells follow the tip cells to become stalk cells. Tip 

cells express higher level of VEGFR2 and DLL4 than following stalk cells. However, at any given 

time, stalk cells which express higher level of VEGFR2 and DLL4 can overtake tip cell to resume 
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tip cell position (52). Tip-stalk shuffling is a highly dynamic process. As multicellular sprout 

structures penetrate into the interstitial tissues, stalk cells from the trunk of the sprouts may undergo 

phenotypic transition into tip cells to initiate formation of branches.  

Many steps further are essential to convert a sprout into fully functional blood-carrying 

vessels. For example, sprout extension requires migration of stalk cells. At the same time, stalk 

cells also proliferate to contribute to the extension of sprouts. To form new vascular connections, 

tip cells need to suppress their motile, exploratory behavior as they encounter their targets, which 

are either tips of other sprouts or existing vessels. Strong adhesive interactions between the tip/tip, 

tip/stalk enable connections of 2 sprouts or a sprout to an existing blood vessel. Once connection 

is established, cytoskeletal rearrangement allows opening of the sprouts to form lumen throughout 

the sprouts. Interestingly, existing evidence in zebrafish during intersegmental vessel formation 

suggests the role of fluid shear stress to initiate the formation of lumen within the intersegmental 

vessels (53). Failure of fusion might also help preventing formation of arteriovenous shunts or serve 

as a positive regulation of regression of unnecessary vessels.  

 

Figure 1.1. The morphogenetic processes of angiogenesis (modified and adapted from Alitalo. 
Nature (2006): 8, 464-478). (A) Endothelial cells in the vessels are exposed to pro-angiogenic 
factors and begin to digest the basement membrane protein. (B) The tip cells extend filopodia into 
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the matrix in the direction of pro-angiogenic cues. (C) Tip cells lead the way while stalk cells are 
following. Lumen begins to develop. Tip cell of one sprout can encounter tip cell of another sprout 
during their migration. (D) Fusion of sprouts results in a blood vessel, which is lumenized 
throughout and perfused with blood vessels. Newly formed vessels are eventually mature to with 
deposition of basement membrane proteins. 

 

Angiogenesis undoubtedly plays a critical role during embryo development. Nevertheless, 

dysregulations of angiogenesis in adults can contribute to many diseases. Historically, pathological 

angiogenesis is only implicated in cancer through ground-breaking work by Judah Folkman and 

many other labs to demonstrate that angiogenesis is a hallmark of cancer (54). To support the over-

demanding growth of tumor, cancer cells secrete angiogenic factors to recruit blood vessels to 

supply nutrients and oxygen. These blood vessels then become escaping routes for the cancer 

cells to metastasize and seed distant organs to form secondary tumors. In recent years it has 

become increasingly evident that insufficient or abnormal angiogenesis also contributes to the 

pathogenesis of many more disorders. Another example of pathological disease due to excessive 

angiogenesis is retinopathy in diabetes patients which ultimately leads to blindness. Insufficient 

angiogenesis or damaged endothelium is also implicated in multiple diseases such as Alzheimer 

disease, diabetic neuropathy, atherosclerosis, hypertension, restenosis, Crohn disease, hair loss, 

nephropathy, osteoporosis, and so on (54). 

 

 1.1.4 Molecular mechanism of angiogenesis 

 Because angiogenesis is a critical process, it is tightly regulated by several mechanisms 

including expression of different family members, expression of alternatively spliced variants and 

ligand binding to different receptors. One of the most important molecule that controls blood-vessel 

sprouting is vascular endothelial growth factor A (VEGFA). VEGFA is required for chemotaxis and 

differentiation of endothelial cell precursor cells, endothelial cell proliferation, vasculogenesis, and 

blood vessel remodeling. Alternative splicing of VEGFA generate several variants. Binding of 

VEGFA to the receptor tyrosine kinase VEGFR2 (or KDR or FLK1) promotes downstream signaling 
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to enable angiogenic responses. VEGRF1 (or FLT1), secreted as a soluble receptor, is known to 

act as an antagonist or ligand trap for VEGFA signaling pathway (55, 56). Hypoxia is an important 

stimulus for expansion of the vasculature (57), and VEGF expression is upregulated during hypoxic 

conditions. Specifically, during organ development, cells are first oxygenated by simple diffusion 

until the tissue grows larger than the diffusion limit can permit to support tissue growth. Locally 

hypoxic environment triggers vessel growth through hypoxia-inducible transcription factors (HIFs) 

(57). Loss of a single allele of VEGF can cause vascular defects during embryogenesis (58, 59). A 

25% reduction of VEGF levels impairs spinal cord perfusion and results in motor neuron 

degeneration (60). The role of VEGFB remains to be determined in angiogenesis while VEGFC is 

implicated in controlling lymphangiogenesis. 

 Platelet-derived growth factors share a significant degree of sequence to VEGF but their 

functions are distinct. For instance, PDGF-B is implicated in the maturation of vascular 

development. PDGF-B is expressed on the endothelium while PDGFR is present on vascular 

smooth muscle cells and pericytes. PDGF-B null mice had reduced pericyte coverage on 

capillaries. Similarly, PDGFR-B-null mice had decreased numbers and proliferation of smooth 

muscle cells and pericyte progenitors and most predominantly in the brain, heart, and brown 

adipose tissue (61, 62). Another protein also regulating smooth muscle cell attachment to blood 

vessel is angiopoietin. There are four members of angiopoietins (Ang 1-4) (63). Among these 

Angiopoietin 1 and 2 are the most understood due to their roles in developmental and pathological 

angiogenesis. Angiopoietin signals through Tie2 receptor kinase. Ang2 can induce phosphorylation 

of Tie2 in endothelial cells in autocrine of paracrine manners (64, 65). During angiogenic and 

vascular remodeling, Ang2 is expressed in endothelial cells and contributes to the detachment of 

smooth muscle cells. Genetic knock out of Ang-1 leads to embryonic lethality due to cardiovascular 

abnormalities (66).  

 The superfamily of FGFs and their receptors control a wide range of biological functions 

(67). Among the FGF ligands, bFGF is one of the first discovered angiogenic factors. FGF1 has 
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angiogenic and arteriogenic properties while FGF9 stimulate angiogenesis in bone repair. FGF can 

act on endothelial cells directly or indirectly via activating the secretion of angiogenic factors of 

other cell types (67). For instance, FGF activates secretion of hedgehog, ANG-2, and VEGF-B. 

Aberrant FGF signaling also promotes tumor angiogenesis and mediates the escape of tumor 

vascularization from VEGF-inhibition treatment (68). Interestingly, FGF1 and FGF2 deficiency in 

mice didn’t result in vascular defects and there exists substantial redundancy in the FGF 

superfamily (67). 

 The large TGF-β superfamily also contributes to angiogenesis and vascular malformations. 

Particularly important is the role of ALK1 or endoglin, one of the receptors for TGF-β family. Loss 

of ALK1, ALK5, or TGF-βR-2 leads to arteriovenous malfunctions. Human hereditary hemorrhagic 

telangiectasia or the formation of dilated capillaries is a result of mutation of ALK1 gene (69). TGF-

β signaling plays an important role for differentiation of endothelial cells. TGF-β also promotes 

vascular smooth muscle cell differentiation. As a result, deficiency of ALK1 impairs mural cell 

development (69). However, the effects of TGF-β in angiogenesis remains to be further explored 

due to the inconsistent results whether they promote or inhibit angiogenesis (70). 

 Notch and Wnt signaling pathways also contribute to the formation of blood vessels. 

Studies of tip-stalk cell formation in vessel, particularly, in the retina model indicate the roles of 

NOTCH to mediate the tip-stalk phenotype through DLL4-Notch signaling axis (71). More 

specifically, JAGGED1, a NOTCH ligand is expressed in stalk cells during tip-cell selection by 

disturbing the reciprocal DLL4 and NOTCH signaling from the stalk cell to the tip cell (72).  

Tip-stalk cell selection is a competitive and dynamic process. Besides NOTCH and DLL4, 

endothelial cells also express various types of various WNT ligands and their frizzled receptors that 

can stimulate endothelial cell proliferation. NOTCH activates WNT signaling in proliferating stalk 

cells during vessel branching. WNT also activates NOTCH in a reciprocal-feedback loop (73, 74). 

Gene-inactivation of some of the WNT and Frizzle members in mice such as Wnt2, Wnt5a, Fzd4, 
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and Fzd5 causes vascular defects and combined loss of Wnt7a and Wnt7b impairs angiogenesis 

in the brain and disturb blood brain barrier formation(75). 

 Though less studied in the context of angiogenesis, hepatocyte growth factor (HGF), and 

monocyte chemotactic protein-1 (MCP-1) have also been shown to be involved in angiogenesis. 

HGF, also known as a scatter factor, is a large multidomain protein structurally similar to 

plasminogen with c-met as a receptor with tyrosine kinase activity. HGF is a potent mitogen, and 

morphogen for endothelial cells(76, 77). Administration of HGF as a protein or through adenoviral 

vector promotes angiogenesis without increasing vascular permeability or inflammation (78, 79). 

Combining HGF and VEGF enables more robust proliferative and chemotactic response of 

endothelial cells than either factor alone. Similarly, in 3D collagen gels, neither HGF or VEGF alone 

is sufficient to promote survival or tubulogenesis in endothelial cells, but a combination of the two 

growth factors will promote these responses (80, 81).  

MCP-1 is a key chemokine responsible for trafficking and activation of 

monocytes/macrophages through its receptor CCR2. However, it has also been implicated in 

inflammation and angiogenesis. In fact, administration of exogenous MCP-1 increases 

monocyte/macrophage recruitment, and indirectly results in collateral vessel formation, and 

ultimately blood flow to the ischemic tissue in ischemic hindlimb models (82, 83) and in ischemic 

myocardium (84). Additionally, MCP-1 can also exert direct effects on endothelial cells to trigger 

angiogenesis (85). 

 Besides the growing list of angiogenic proteins (e.g.: VEGF, PDGF, FGF, HGF, MCP-1, 

TGF-β, etc.), recent discoveries also indicate the crucial role of lipids as mediators for 

angiogenesis. Among them, sphingosine-1-phosphate emerges as an important regulator of 

angiogenesis and vessel maturation (86). Sphingosine-1-phosphate (S1P) is a blood-borne lipid 

mediator with pleiotropic biological activities including growth, survival, migration of mammalian 

cells (87). S1P is generated by converting ceramide to sphingosine by the enzyme ceramidase. 

Sphingosine is further converted into S1P by sphingosine kinases (SK1 and SK2). Knockout of 
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either SK1 or SK2 doesn’t affect development of mice as it is fully compensated by the other 

functional enzyme. However, double knockout mice of SK1 and SK2 is embryonic lethal without 

detectable S1P level in the blood stream, suggesting that S1P is mainly generated through SK1 

and SK2 (88).  

The red blood cells are a major source of S1P, but other cell types such as vascular 

endothelial cells, and activated platelets also produce S1P (89-92). S1P binds to a family of five G 

protein-coupled receptors (GPCRs), called S1P1-S1P5 (87). S1P1, S1P2, and S1P3 are widely 

expressed in various tissues and the major receptor subtypes in blood vessels. S1P1 is coupled 

exclusively via Gi to Ras-mitogen activated protein kinase, phosphoinositide 3-kinase/ Akt pathway, 

and phospholipase C pathway, whereas S1P2 and S1P3 are coupled to multiple G proteins to 

activate phospholipase C, Rho pathways and as well as Gi-dependent pathway (86). Endothelial 

cells and vascular smooth muscle cells show distinct patterns of expression of S1P1, S1P2, and 

S1P3. Endothelial cells largely express S1P1 and S1P3, whereas S1P2 is expressed only in certain 

vascular beds (93, 94). S1P3 is abundantly expressed in both in endothelial cells and medial 

smooth muscle cells. S1P3 stimulates nitric oxide synthase and nitric oxide production in 

endothelial cells while it mediates vaso-constriction in smooth muscle cells (95). S1P regulates 

endothelial cell growth, survival, migration, and barrier function (82, 90, 91, 96-98). 

 S1P stimulates angiogenesis mainly through S1P1 and to a lesser extent through S1P3 

(86). Angiogenesis mediated by S1P1 and S1P3 is through activation of Rho GTPase Rac (93, 99-

102)  . S1P1 ablation in mice impairs accumulation of pericytes and smooth muscle cells to the 

blood vessels (103). In contrast to S1P1, S1P2 inhibits Rac activation, endothelial cell migration, 

and tube formation (94). Consistent with in vitro models, S1P2 on retinal endothelial cells exerts an 

inhibitory effect on angiogenesis in avascular areas of the retina (104). Mice null for S1P2 or S1P3 

develop normally without vascular defects, but combinatory deletion of S1P2 and S1P3 results in 

50% lethality but without a defect in smooth muscle cell coverage on vessels. This suggests the 

importance of S1P1 in vascular formation (86). 
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During the processes of angiogenic sprouting, the endothelial cells directly interact with the 

extracellular matrix. Linking the endothelial cells to ECMs are surface receptors such as integrins, 

which are heterodimeric receptors that mediate adhesion to ECM and immunoglobulin superfamily 

molecules (105, 106). Sprouting endothelial cells highly express avb3 and avb5 in tumor, which 

enables engaging of adhesion sites to multiple ECM proteins such as vitronectin, fibrinogen, and 

fibronectin to provide survival and traction for invading endothelial cells. Additionally, other integrins 

have also been reported to play a role in angiogenesis such as a1b1, a2b1, a4b1, a5b1, a9b1, and 

a6b4 (105, 106). Apart from promoting adhesions to ECMs, integrins also regulate angiogenesis 

through other mechanisms. They bind to growth factors (VEGF, FGFs, ANG-1) or their receptors 

(VEGFR2, FGFRs) to activate the signaling and stimulate vessel growth (105, 106).  

A significant part of angiogenic sprouting involves matrix degradation and remodeling 

mediated by enzymatic cleavage of ECMs through proteases. In fact, endothelial tip cells actively 

digest the basement membrane proteins to initiate the invasion into the interstitial tissue. 

Additionally, during branching, proteolytic remodeling of the ECM liberates cell unrestricted 

movement and convert anti-angiogenic peptides of the basement membrane into pro-angiogenic 

peptides. Among the enzymatic proteases, MMPs, a family of over 20 zinc- containing 

endopeptidases, have been shown to play multiple roles in angiogenesis (107). They degrade 

various components of ECMs (108). In addition to degrading ECM components, they also act to 

activate other MMPs and more importantly make available active growth factors and cytokines. For 

instances, MMP degrades insulin-like growth factor (IGF) binding proteins to release active IGFs, 

degrades proteoglycan perlecan in basement membranes to liberate FGFs, and degrade latent 

TGF-β binding proteins to activate active form of TGF-β ligands (109, 110). MMP-9 cleaves the 

pro-inflammatory cytokine IL-8 to increase its activity tenfold, and inactivate the angiogenic inhibitor 

platelet factor-4 (111). MMP activity is regulated by endogenous inhibitors, primarily by the tissue 

inhibitors of metalloproteinases (TIMPs). There are 4 TIMPs (TIMP-1 to -4), which bind tightly to all 

MMPs to regulate their activation. For example, TIMP-2 and TIMP-3 are efficient inhibitors of MT-

MMP2 (112). TIMPs also have additional biological activities independent of their MMP inhibitory 
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activity. For example, in angiogenesis, TIMP-2 can inhibit bFGF-induced endothelial cell 

proliferation (113). 

Last but not least is the role of junctional proteins as regulators of angiogenesis. Cell-cell 

communication is an inherent part of angiogenic sprouting. It is fundamentally important to 

synchronize cell-cell cohesive units in angiogenic sprouting but also regulates angiogenic sprouting 

initiation. Quiescent endothelial cells are growth-arrested through their interconnected junctional 

proteins but angiogenic endothelial cells dissociate their junctions to migrate and invade into the 

tissue. Tight junctional proteins such as claudins, occludins maintain blood brain barriers whereas 

adherent junctions such as VE-cadherins establish cell-cell adhesion during collective migration of 

sprouts (114). Among the adherent junctions, VE-cadherin is probably the most studied. Loss of 

VE-cadherin does not prevent development of vessels but causes defects in vascular remodeling 

and integrity (54). VE-cadherin is also required to localize CD34 to cell-cell contact for lumen 

formation (115). Localization of VE-cadherin at filopodia allows tip cells to establish new contacts 

with cells on outreaching sprouts to enable anastomosis between vessels (70). 

 

 1.1.5 Models to study angiogenesis 

 Vascular dysfunctions causally contribute to many diseases, including but not limited to 

cardiovascular diseases. The endothelium also plays a critical role in the pathobiology of illnesses. 

Angiogenesis is necessary to form new blood vessels in ischemic tissues or wounded tissues. 

However, excessive angiogenesis may be harmful in disease development such as in cancer, 

diabetic retinopathy, atheroma growth or the expansion of vasa vasorum (116). Recent studies also 

suggest that the endothelium secret angiocrine factors to balance between tissue regeneration and 

fibrosis after injury. Increasing evidence suggests even though endothelial cells are essential 

players of neovascularization, their cross-talks to other stromal cells such as pericytes, vascular 

smooth muscle cells, and immune cells are also very important to regulate the processes of 

neovascularization. Simple in vitro models possess some advantages to examine the many 
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processes of angiogenesis such as lumen formation, biochemical and mechanical interactions in 

high resolution imaging. However, in vivo models are also necessary to study the more complex 

interactions that enable functional and hierarchical blood vessel networks. Therefore, it is essential 

to utilize both in vitro and in vivo angiogenesis models to recapitulate angiogenesis in different 

stages of development and in different contexts (116). 

a) In vivo models of developmental angiogenesis 

In all vertebrates, blood vessels form through successive steps of vasculogenesis and 

angiogenesis. Upon differentiation of angioblasts, the endothelial cell precursors coalesce to form 

a primitive plexus of the vasculature. Expansion of the initial network of vessels through 

angiogenesis develops into fully functional and blood perfused networks of vessels. Immediately 

or during the vascular network expansions, remodeling of the vessels also occurs to prevent 

excessive formation of vessels and enable formation of mature vessels with mural cell coverage. 

A larger number of signaling pathways have been described to regulate vascular network formation 

during development (117) using various in vivo models of developmental angiogenesis including 

mouse embryonic hindbrain, postnatal retina, avian embryos of chick and quail, and avian models 

of zebrafish and Xenopus. 

Mouse hindbrain is vascularized before birth (118). The vasculature commences as 

vessels sprout into the hindbrain from a perineural vascular plexus at E9.5. First, these vessels 

grow perpendicular to the hindbrain surface toward the ventricular zone and then change direction 

to be parallel with the ventricular hindbrain surface and later anastomose with each other. This 

model is particularly important for the spatiotemporal analysis of organ vasculature due to their 

utilities for whole-mount staining and high-resolution imaging. Genetic manipulations are also 

available and more powerful when used with Cre-recombinase technology to study the roles of 

genes that might be lethal before birth of the embryos. 

In contrast to the mouse hindbrain vasculature, the retinal vasculature is only formed after 

birth (119, 120). Right on the day of birth, the vessels from the optic nerve head sprout 
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perpendicularly over the surface of the retina on a network of astrocytes. As the vascular network 

continues to advance at the front, the rear vasculature begins to remodel to form arteries and veins. 

Further recruitment of pericytes and smooth muscle cells encompasses the blood vessel to form 

mature vasculature. The primary vascular plexus is completed by day 9 postnatal. However, an 

additional 10 days is required for the remodeling and maturation of the vessels. One of the major 

advantages of the retinal model is its 2D structure, enabling high resolution imaging and reliable 

quantification of vascular migration and angiogenic sprouting. Additional advantage is that vascular 

formation is postnatal, which can be more easily influenced by environmental factors than hindbrain 

angiogenesis, which occurs in the utero. However, it is less suitable to quantify network density 

and vessel calibers as sprouting and remodeling are temporally overlapping, especially at the 

vessels in the rear of the network (116). 

Avian models of angiogenesis include chick and quail. The hallmark advantage of this 

model is that the animal development is within an eggshell, which may be used as a culture dish 

by creating a window for visual inspections and mounted on a microscope stage to monitor for 

extended periods of time. The larger size of the embryos also allows easy grafting of the tissues 

between different embryos. Previous work on grafting brain endothelial cells into liver shows the 

plasticity of brain endothelial cells to adapt to the liver environment by losing their blood brain barrier 

properties to adopt fenestrations (116). The most popular choice of experimental setup within the 

avian model is the chorioallantois membrane (CAM). The CAM is a highly vascularized 

extraembryonic appendage that provides nutrients and oxygen to the chick embryo. CAM is 

situated right beneath the eggshell, making it accessible to monitor the growth of vessels. Although 

CAM has been widely used to identify pro- and anti-angiogenic factors, validating the relevance of 

this model to intraembryonic angiogenesis remain a technical challenge (116). 

Complimentary to the mentioned above in vivo models of developmental angiogenesis is 

the aquatic model, which includes zebrafish and Xenopus. The hallmark advantage of both of these 

animal models is their semi-transparency, which makes it attractive for high resolution imaging. 
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Additionally, when coupled with in vivo labeling of endothelial cells, these models enable 

noninvasive studies of endothelial cell dynamics during angiogenesis. In the zebrafish model, 

specified angioblasts originated in the posterior lateral plate mesoderm migrate toward the midline 

to form a primordial vascular cord or precursor of the dorsal aorta (DA) and posterior cardinal vein 

(PCV) (121). Once the major axial vessels are established in the trunk, sprouting angiogenesis 

occurs. Bilateral sprouts branch off from the DA, led by migrating tip cells and follower proliferative 

stalk cells. These sprouts later anastomose and form arterial intersomitic vessels (ISVs). A 

secondary sprouting occurs from the PCV between 30 and 50hrs after fertilization. Half of these 

sprouts form the lymphatic vessels while the other half connect to the arterial ISVs, which lose their 

original connection with the DA to become venous ISVs and complete the circulation in the trunk 

of the zebrafish. Unlike the zebrafish, Xenopus form 1 DA and 2 paired PCVs, which resemble 

more closely to higher vertebrates, where DA and PCV each develop from a pair of vessels that 

later fuse to form a single DA and single PCV (122). Unlike zebrafish, ISVs emerge from both the 

DA and PCV such that there is a pair of arterial ISV and venous ISV at each intersomitic junction, 

which is more similar to mammals. ISVs reach the dorsal side of the trunk and anastomose to form 

the dorsal longitudinal anastomosing vessel (DLAV), which connects to the PCV near the head. 

Additional sprouting of capillaries is required to cover all the tail area by stage 46 (123).  

 

b) Models of adult angiogenesis 

Postnatal angiogenesis is mostly associated with tissue or organ growth. In some cases, 

postnatal angiogenesis is caused by reproductive demands or pathologies such as in cancer. 

Additionally, adult angiogenesis also occurs as the tissue or organ undergoes repairing processes 

from injury or vascular occlusion.  

One of the most visual and physiological assays for adult angiogenesis is the cutaneous 

wound assay. Tissue repair requires extensive cell proliferation, matrix deposition, and clearance 

of cell debris, which also demands heavily nutrients from the blood vessels. Thus, new blood 
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vessels are formed through angiogenesis to increase vascular density. Once the tissue is complete, 

vascular density returns to its normal level. Vessel density from time of injury to time of complete 

healing follows a bell-shape curve, with highest vessel density during the wound healing process. 

Although cutaneous wound healing is a robust model of adult angiogenesis that can be used in 

mice, rats, pigs, dogs, and primates, there are caveats that need to be considered. The extent of 

vascularization is highly dependent on the animal age. The angiogenesis process also relies on 

the blood coagulation system and inflammatory cells, which may complicate the mechanical 

understanding of the process (116). 

In addition to wound healing assay, there are Matrigel plug assay and angioreactors. 

Matrigel plug is an easy angiogenic setup, in which an injection of Matrigel with or without growth 

factor supplement is administered subcutaneously into mice. Analysis is followed between 7-14 

days post injection. Some analyses include vessel density and hemoglobin contents in the excised 

plugs. Additional information from the cellular content can also be quantified after fixation of the 

excised plugs. Some disadvantages of this model include inconsistency between different Matrigel 

plugs even within one animal. The ingrowth vessels in Matrigel plugs are often leaky and less 

mature without pericyte coverage, limiting the model to study the remodeling process of the 

vasculature (124). Similarly, to the Matrigel plug assay, angioreactors are implanted silicon 

cylinders that contain premixed volume of matrix with or without supplementary growth factors. 

Angioreactors are often implanted subcutaneously in the dorsal flank of mice (125). Similar 

analyses to Matrigel plug assay are also performed in the angioreactors.  

c) In vitro models of angiogenesis 

In vivo models of angiogenesis may better reflect the complex processes of 

neovascularization and often provide important assessments of therapeutic angiogenic agents in 

living animals. However, in vivo models require technical expertise, highly complex, time 

consuming and relatively expensive (126). Additionally, neovascularization in living organisms is 

not an isolated process but involves multiple cell types, as well as biochemical and mechanical 
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cues within the environment. Ultimately, these factors may complicate understanding of biological 

mechanisms of angiogenesis. As a result, in vitro models of angiogenesis become a valuable tool 

to quickly assess the effects of therapeutic agents, but also allow high resolution imaging and 

detailed mechanistic studies. There exist various in vitro models of angiogenesis which assess 

different aspect of angiogenesis including: migration, proliferation, 2D network formation, and 3D 

sprouting. 

Migration is one important aspect of angiogenesis sprouting. To assess migration, scratch 

wound assay has been employed due to their simple, quick, and inexpensive properties. Simply, 

endothelial cells are grown into a confluent monolayer and wounded by using a tip, needle or cell 

scrapper (127). The rate and extent of endothelial cell migration towards the ‘wounded’ area can 

be microscopically monitored over several hours until the assay complete around 8-18hours. 

Though wound healing assay is easy and quickly adapted by many labs, there are disadvantages 

to the models: difficulty in reproducing the scratched area of equal size, variability among wells due 

to initial cell confluence, mechanical damage to the endothelial cells when creating the wounds with 

sharp objects, and incapability to separate cell migration from cell spreading and proliferation (127). 

Several modifications have been made such as introduction of a fence or barrier instead of using 

the sharp objects to improve the reproducibility. However, cell spreading and proliferation are still 

inseparable from migration. Additional cell migration model also includes Boyden chamber to study 

cell migration towards a stimulus, but this set up inherently lacks the capability to be used for high 

resolution imaging. 

The effects of angiogenic factors on endothelial cell proliferation can be assessed by 

different methods more suitable than wound healing assay. Endothelial cells are often starved in 

serum-free or low serum medium and subsequently stimulated with stimuli. The most common and 

inexpensive means to evaluate proliferation is by using hemocytometer in conjunction with cell-

viability dye. An additional method based on the incorporation of DNA-binding dyes, such as BrdU, 

can also be used to visualize proliferation cells when cells are in S phase of the cell cycle. Metabolic 
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activity can also be correlated with cell proliferation and its activity can be examined using 

colorimetric assays. However, in some cases, an increase in metabolic demand doesn’t always 

correlate with cell proliferation (128).  

A commonly used in vitro angiogenic assay is tube formation on Matrigel in which 

endothelial cells are plated on a 2D surface of Matrigel, which is highly enriched in laminin (129). 

Quickly after 4-16hrs, endothelial cells organize into tube-like network on the Matrigel surface. 

Images can be taken in different areas of wells to quantify tube length, number of sprouts, number 

of branches, and number of ring structures. This assay can be used quickly to assess the potential 

therapeutic agents for angiogenesis. However, it is still under dispute whether these tube-like 

structures resemble capillaries with lumen in angiogenesis. Moreover, many other non-endothelial 

cell types such as fibroblast, vascular smooth muscle cells, and cancer cells may also form similar 

structures when plated on Matrigel, suggesting that this assay describes a competitive cell-cell 

versus cell-matrix interactions and hence, not specific to endothelial cells. 

To mimic the fundamental properties of endothelial cells to form lumen in 3D matrices, 

other models have been employed but the most common one is the endothelial cell tubulogenesis 

model. Endothelial cells are seeded in 3D collagen or fibrin matrices (130, 131) to allow them to 

assemble and align over time to form lumenized tubes. Lumen can be demonstrated by cross-

sections of cultures, confocal microscopy or transmission electron microscopy. Interestingly, this 

model also describes formation of tunnel spaces in the ECMs, vascular guidance channels, through 

MT1-MMP. These channels enable motility of endothelial cells, matrix remodeling, and recruitment 

of mural cells to the abluminal surface. Attachment of mural cells also increase basement 

membrane protein depositions interior of the guidance channels (34, 132, 133).  

Even though tubulogenesis recapitulate some of the intrinsic properties of endothelial cells 

such as tubule, lumen formation and recruitment of pericytes, this model generally lacks the initial 

invasion of endothelial cells. Therefore, a common strategy to seed endothelial cells on a 2D 

collagen matrix and allows them to invade inwards into the gel under guidance of angiogenic factors 
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with or without pericytes (34). Aggregates of spheroids have also been embedded inside matrices 

to mimic sprouting angiogenesis. Alternatively, endothelial cells are also seeded to coat surface of 

carrier beads, which are embedded into fibrin gels with the presence of human lung fibroblasts to 

enable endothelial cells to migrate outward from the carrier beads to form 3D lumenized sprout 

structures (134). Endothelial cell migration, and dynamic sprouting can be monitored with bright 

field contrast in real time. Sprout length, branches, lumen formation, and anastomoses can be 

assessed under this model. However, one of the disadvantages of this model is the presence of 

thick collagen matrices that limits the capability to perform high resolution imaging. 

A more recent advance of in vitro model of angiogenesis has been the utilization of 

microfluidic devices in which vascular sprouting occurs in the presence of fluid flow. Transparency 

of materials to make such microfluidic devices also enables higher resolution imaging. Though 

these microfluidic platforms are sophisticated, they are fabricated based on a simplistic design in 

which two square/rectangular channels are generated by casting off a mold. These rectangular 

channels are comprised of 3 sides made from inert polydimethylsiloxane (PDMS) whereas the 4 th 

side is a collagen or fibrin matrix wall where endothelial cells adhere and spread to form a 

monolayer. The other rectangular channel is enriched with angiogenic factors to enable migration 

of the endothelial cells into the collagen or fibrin matrix (135). Interestingly, to support the hydrogel, 

additional structural PDMS posts are interspersed inside the hydrogel, which create artificial stiff 

surface and may influence the migration of endothelial cells. 

  

1.1.6 Rho GTPases as regulators for cell migration and cell-cell adhesion and angiogenesis 

 Cells in multicellular animals not only migrate through the extracellular matrix but also on 

top of each other, between each other, and even through each other (136). There are various 

examples to illustrate such processes. For instance, immune cells migrate on endothelial cells, 

adhere and finally migrate through the endothelium to get to the inflamed tissues (137). In order to 

move, cells have to extend their protrusions and generate forces to advance their body forward. 
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Many different molecules and signaling pathways coordinate cell migration especially collective cell 

migration. Particularly important in cell migration is the role of actin cytoskeleton and regulators of 

actin dynamics. Angiogenic sprouting involves extensive remodeling and arrangement of actin 

cytoskeletons to enable a dynamic process between cell-cell within the multicellular sprout 

structures. Therefore, actin cytoskeleton and regulators of actin dynamics are expected to influence 

the morphogenetic processes of angiogenesis. 

 Among the regulators of actin dynamics are Rho GTPases. Mammalian Rho GTPases 

comprise a family of 20 molecules. Most Rho GTPases switch between an active GTP-bound state 

to an inactive GDP-bound state. The activation of Rho GTPases are controlled by three sets of 

proteins: guanine nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and 

guanine nucleotide-dissociation inhibitors (GDIs) (138). GEFs catalyze the binding of GTP while 

GAPs deactivate the Rho GTPases. GDIs modulate Rho GTPases by sequestration of Rho 

GTPases in GDP-bound or GTP-bound states (139-141). Upon activation, Rho GTPases interact 

with their downstream targets to stimulate a variety of biological activities: cell migration, cell 

division, adhesion, vesicle transport, microtubule dynamics, morphogenesis, neuronal 

development, cell-cycle progression and gene expression (142).   

Although there are many Rho GTPases, the three most studied members are RhoA, Rac1, 

and Cdc42. The most extensively studied RhoA effectors are the serine/threonine Rho-associated 

kinases (ROCKs), which are transported to the plasma membrane upon association with active 

RhoA (143). ROCKs is best known to regulate actomyosin contractility via phosphorylation of 

myosin light chain. The most well studied effector of Rac1 and Cdc42 is p21-activated kinase family 

of serine/threonine kinases. 

 Most studies within the context of RhoA signaling in angiogenesis have focused upstream 

of myosin through targeting RhoA and ROCK. Interestingly, these experiments obtain inconsistent 

results. For example, in studies of VEGF-induced, tumor-induced, or hypoxia-stimulated 

angiogenesis in vivo, RhoA/ROCK signaling appeared to enhance angiogenesis in some cases 
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(144, 145) but inhibit in others (146, 147). In agreement with in vivo studies, in vitro studies of 

RhoA/ROCK/Myosin II activity also exhibit inconsistent results. For instances, ROCK activity 

appeared to suppress invasion into 3D matrix (148) but it increased 2D migration and tube 

formation (149). This suggests the complicated role of RhoA to regulate angiogenesis. While RhoA 

regulates contractility, Rac proteins is most known to modulate lamellipodia and membrane ruffling 

formation (142). There are three Rac isoforms: Rac1, Rac2, and Rac3. Rac1 is probably the best 

studied among the three isoforms (138). Rac1 is ubiquitously expressed and involved in migration 

of pericytes, vascular smooth muscle cells, and macrophages (103, 150, 151), all of which can 

contribute to vessel development and angiogenesis (152, 153). In fact, conditional knockout of 

Rac1 suggest its crucial role for vascular development in the embryo. Interestingly and similarly to 

the RhoA, some study suggests the positive regulation of Rac1 (154) while some other study 

indicate the indispensable Rac1 in the context of tumor angiogenesis (155). 

The role of Cdc42 in angiogenesis has not been well described as compared to the roles 

of RhoA and Rac1 in angiogenesis. Cdc42 protein was first identified in Saccharomyces cerevisiae 

as a cell-cycle mutant where loss of Cdc42 inhibits budding and mating (156). A myriad of genetic 

knockout studies of Cdc42 demonstrate the importance of Cdc42 during development. For 

example, Cdc42 global knockout is embryonic lethal while conditional knockout of Cdc42 under 

different specific promoters results into different effects in the organism development depending on 

the affected cell types: defect in homing and retention of hematopoietic cells in bone marrow under 

Mx1-Cre, disturbance fate determination of apical neural progenitor cells under Emx1-Cre, loss of 

polarity in telencephalic neuroepithelium under Foxg1-Cre, hair loss in keratinocytes under K5-Cre, 

defect in axonogenesis in the brain under Nestin-Cre, and carcinoma development in the 

hepatocytes under Alb-Cre (157-159). It plays an essential role to cellular polarity (156) both in 

yeast and mammalian cells. Many studies of cellular polarization have focused on the epithelial 

sheet formation during which cells polarize to form distinct apical and baso-lateral surfaces between 

cell-matrix and cell-cell contacts. This polarization is initialized by adhesion protein such as nectin 

and E-cadherin (160), whose engagement also induces Cdc42 activation (161-163). Additionally, 
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in the context of cell migration in chemotaxis, individual cells also polarize in response to 

chemotactic soluble factors to generate front and rear ends in order to migrate towards the higher 

concentration of chemotactic factors. Cdc42 is shown to regulate this polarizing axis during cell 

migration. Dominant-negative Cdc42 mutants in neutrophils disturb polarization of the cells through 

generating unstable pseudopods while constitutively active Cdc42 blocks any changes in 

morphology (164).  

Another well-known biological activity of Cdc42 is to regulate formation of filopodia. 

Filopodia are finger-like actin-rich protrusions generated by the cells, often at the front of the cells 

during cell migration. They contain parallel bundles of filamentous actin and are thought to be 

important for probing the environment. More specifically, in angiogenesis, filopodia are present 

mostly in tip cells. In many cell types, both constitutively and dominant-negative Cdc42 affect the 

formation of highly dynamic filopodial extensions. Though it is important for cell migration, some 

study also suggests filopodia are dispensable for migrating tip cells in formation of intersomitic 

vessels in zebrafish model (165). Several downstream targets of Cdc42 in filopodia formations 

have been identified: Wiskott-Aldrich syndrome protein, actin-related protein-2/3, insulin-receptor 

substrate p53, and Diaphanous proteins (157, 166, 167).  

In regard to angiogenesis, there have been fewer studies to address the role of Cdc42 in 

angiogenesis. However, there have been studies to address the role of Cdc42 in lumen formations 

in tubulogenesis which appears to capture vasculogenesis rather than angiogenesis. In these 

studies, endothelial cells form intracellular vacuoles through pinocytosis. These vacuoles coalesce 

to form the lumen between endothelial cells. This process is largely driven by Rac1 and Cdc42 as 

both Rac1 and Cdc42 localize to the vacuole membranes during formation of lumen. Silencing 

Rac1 or Cdc42 inhibits vacuole formation and thus lumen formation. Downstream signaling 

molecules include WASP, PAK, Par3, Par6, and protein kinase C (168). Assessing the roles of 

Cdc42 in angiogenesis in vivo has been challenging due to embryonic lethality before E6.5 which 

occurs before formation of the vasculature (169). A recent study attempts to address the 
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vasculature defect in a conditional knockout Cdc42 in Tie2-Cre mice. The authors demonstrate that 

lack of Cdc42 in endothelial cells impairs migration and survival of endothelial cells but not cell 

cycle progression and ultimately results in defects in the vasculature. Additionally, the role of 

ADAM17 to mediate VEGFR2 shedding is also linked to conditional knock out of Cdc42 in 

endothelial cells, suggesting the role of Cdc42 in mediating VEGF signal transduction in vivo (170). 

 

1.2 Pathology of pancreatic cancer and vascular invasion in pancreatic cancer 

 1.2.1 Pancreatic adenocarcinoma 

Pancreatic cancer is currently the fourth leading cause of death among all cancers in the 

United States. With a 5-year survival rate well below 7% and a median survival of less than 6 

months, pancreatic cancer has become the most devastating cancer of all (171). In addition to that, 

due to a lack of unique symptoms and limitation in diagnosis, most patients are often diagnosed 

when they are in the advanced stages. Once diagnosed with pancreatic cancer, surgery and 

chemotherapy are possible options. However, for the 15-20% of patients who undergo potentially 

curative resection, 80% patients relapsed, resulting a 20% survival after 5 years (171). 

Improvement in survival has been minimal even when chemotherapy and/or radiotherapy are 

employed on patients who have had surgery due to the fact that the cancer itself is intensely 

resistant to chemotherapeutic drugs (172). 

The normal pancreas is consisted of digestive enzyme-secreting acinar cells, bicarbonate-

secreting ductal cells, centro-acinar that are located geographically at the transition between acinar 

and ductal cells, hormone-secreting endocrine islet cells, and relatively inactive stellate cells. 

However, the majority of malignant neoplasms of the pancreas are ductal adenocarcinomas. It has 

been thought that the origin of pancreatic cancer cells is from ductal cells (173). However, recent 

study pointed out that the Kras-mutated acinar cells were more capable of giving rise to pancreatic 

cancer as compared to Kras-mutated ductal cells and Kras-mutated centro-acinar cells (174). 
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Some less common pancreatic neoplasms include neuroendocrine tumors (arising from cells 

secreting insulin or glucagon), colloid carcinomas, pancreatoblastomas, and solid-pseudopapillary 

neoplasms (172). 

 Pancreatic cancer most frequently originates from pancreatic intraepithelial neoplasia 

(PanIN), but can also arise from larger precursor lesions such as intraductal papillary mucinous 

neoplasms (IPMNs) and mucinous cystic neoplasms. The molecular pathology of pancreatic 

cancer is dominated by constitutively active mutant Kras (>90%) (175). Additionally, inactivating 

mutations of TP53, CDKN2A, and SMAD4 are accounted for 50-80% of pancreatic cancers. Other 

genes such as ARID1A, MLL3, and TGF-ΒR2 are mutated in ~10% of all cases (176). In addition 

to the mutations acquired as the disease progresses, pancreatic cancers also display an aberrant 

autocrine and paracrine signaling cascades that ultimately support cancer cell proliferation, 

migration, invasion and metastasis. Some of which include TGFα, IGF1, FGFs, HGF, and their 

respective tyrosine kinase receptors EGFR, ERBB2, FGFRs, and HGFR. These signaling 

cascades are active in conjunction with anti-apoptotic and pro-survival pathway such as signal 

transducer and activator of transcription 3 (STAT3), nuclear factor-kB (NF-kB), and AKT (176). 

 Pancreatic cancers have also been characterized with an abundant and dense collagenous 

stroma (desmoplasia), resulting in a considerable hypoxic environment for tumor cells (177). The 

dense stroma of pancreatic cancer is comprised of many extracellular matrix proteins (ECMs), such 

as collagens, fibronectin, and laminins, as well as non-collagenous proteins such as glycoproteins, 

proteoglycan, and glycosaminoglycans (178). Tightly bound to the ECMs are factors together with 

osteopontin, periostin, and serine protein acidic and rich in cysteine that mediate interactions 

between the stromal cells and pancreatic cancer cells. Stromal cells include pancreatic stellate 

cells (believed to produce collagenous matrix and often been referred to as cancer-associated 

fibroblasts), infiltrating immune cells, endothelial cells, and neuronal cells. Immune cells within the 

tumors include T cells with majority being CD4+ regulatory T cells, myeloid-derived suppressor 

cells, macrophages and mast cells. Interestingly, the majority of infiltrating immune cells is 
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immunosuppressive phenotype even during earliest stages of the cancer (179). Because of the 

dense stromal environment, successful drugs delivery has been a challenge in both in vivo mouse 

models and in clinical settings. Although there has been substantial evidence of facilitatory role of 

stromal pancreatic stellate cells in tumor growth and metastasis, recent studies (using genetic 

techniques to deplete myofibroblasts numbers and functions) suggested stromal has a protective 

role in pancreatic cancer (180). These discrepancies indicate that the influence of stroma in 

pancreatic cancer might be context- and time-dependent. 

 Models of pancreatic cancer such as traditional cell lines, xenograft models, genetically 

engineered mouse models (GEMM), and organoid cultures have greatly advanced the knowledge 

and biology of pancreatic cancer (181). Traditional cell lines derived from human patients have 

been used together with the immunocompromised mouse in xenograft models remain widely used 

for initial screening of drugs or to understand the mechanisms in cell biology of pancreatic ductal 

adenocarcinoma cancer (PDAC). However, one of the key shortcomings of using cell lines and 

xenograft model is that the tumors from xenografts often lack the characteristics of the PDAC tumor 

environment such stromal cells and ECMs (181). To address many of the key weaknesses of the 

xenograft approach, GEMM was developed to recapitulate the tumor progression in PDAC. The 

most common GEMM is activating mutation in KRAS, followed by inactivating mutations in 

CDKN2A, TP53, and SMAD4 (182). The first successful engineering model that helped to launch 

the field was LSL-KrasG12D in combination of Cre recombinase technology to target the PDX 

promoter in pancreatic epithelial cells. KRasG12D mice (KC) bearing an activating Kras mutation 

appeared to have a median survival of 1 year and developed a spectrum of pre-invasive ducal 

lesions that mirror human PanIN. Upon aging, KC mice spontaneously develop primary and 

metastatic PDAC. However, not all KC mice develop PDAC. Therefore, to promote a rapid onset 

of PDAC, additional inactivating mutations in TP53, CDKN2A, or SMAD4 have been successfully 

implemented (183, 184). Among these, KC mice with mutated TP53 (KPC mice) possess properties 

that resemble human pancreatic cancer such as hypovascular, dense stroma, and 

chemo/radiotherapy-resistance (185, 186). 
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 Interestingly, organoid cultures of human and mouse pancreatic cancer have been 

described. Inspired from previously reported techniques to culture intestinal, gastric, colon 

carcinoma, hepatic, pancreatic, and prostatic organoids, pancreatic cancer organoids can be 

readily established from small biopsy specimens to obtain tumor cells. These tumor fragments of 

ductal cells were then embedded in 3D Matrigel. The 3D culture conditions to culture patient-

derived organoids enables personalized medicine and also serves as an important model to identify 

gene drivers and molecular pathways involved in PDAC progression (187). 

1.2.2 TGF-β signaling in cancer and in pancreatic cancer 

 The transforming growth factor-beta (TGF-β) was first discovered in 1983 as it possessed 

the ability to transform rat fibroblast (188). It is an important cytokine that is implicated in an 

extraordinary range of biological processes. The nomenclature, structure, receptor types, ligand 

interactions, and variability in signaling molecules make TGF-β and its partners an extremely 

complex group of proteins to study. TGF-β is a member of a large family of structurally related 

polypeptide growth factors, with each cytokine capable of governing numerous cellular processes. 

The proteins in TGF-β family are divided into 2 main branches: the BMP/GDF/MIS and TGF-

β/Activin/Nodal branches, based on their sequence homology and the specific signaling cascade 

that they participate in (189). In mammals, there are three distinct TGF-β isoforms (TGF-β1, TGF-

β2, and TGF-β3), Although, they are encoded by different genes and expressed in a tissue-specific 

and developmentally regulated manner, they signal through the same receptor-signaling systems. 

These isoforms are expressed in epithelial, endothelial, hematopoietic, and mesenchymal cells.   

Among these isoforms, TGF-β1 is the most abundant and universally expressed across 

many tissues (189). TGF-β1 is secreted into the extracellular matrix as a 25kDa molecule which is 

subsequently bound to one of several latent TGF-β1-binding proteins (LTBPs) to constitute a 

complex comprising of a dimer of TGF-β and LTBP (190, 191). The LTBP and TGF-β complexes 

not only stabilize TGF-β1 but also sequester the molecule within the ECM. Though it is 

hypothesized that activation of TGF-β1 from the complexes require subsequent proteolytic 
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enzymes to release the bioactive TGF-β1, integrins have been shown to activate TGF-β1 from its 

complexes as well (192). Once released from the complexes, TGF-β1 dimers initiate its signaling 

via binding to its appropriate receptors. 

There are two high affinity receptors for TGF-β ligands: TGF-β receptor type I, TGF-β 

receptor type II. The mechanism of signaling for all the ligands is fundamentally the same. Each 

ligand requires two types of receptors (type I and type II). For some ligands, additional co-receptors 

are required for optimal binding. Once the ligands bound to the receptor complexes, the 

constitutively active type II receptor phosphorylates the type I receptor on several serines and 

threonines in a highly conserved glycine- and serine-rich domain, close to the membrane-spanning 

region. This phosphorylation then activates the type I receptor kinases and allows binding site for 

the downstream substrates (193), the receptor-regulated SMADs (R-SMADs). 

Although SMAD proteins are not the only molecules that can transduce TGF-β superfamily 

signals to the nucleus, they are the best understood. There are eight vertebrate SMADs: SMAD1 

to SMAD8 (194), which are classified into 3 groups: R-SMAD (SMAD1, SMAD2, SMAD3, SMAD5, 

and SMAD8), co-SMAD (SMAD4), and I-SMADs (SMAD6, SMAD7). A traditional view of TGF-β 

superfamily is that BMPs and GDFs signal through SMAD1, SMAD5, and SMAD8 whereas TGF-

βs, Activins, and NODAL signal through SMAD2 and SMAD3. However, TGF-βs have also been 

shown to phosphorylate SMAD1 and SMAD5 in addition to SMAD2 and SMAD2 in many cell types 

depending on the context (195-198). The mechanism of signaling for all the TGF-β family ligands 

is fundamentally similar.  

Receptor-mediated phosphorylation allows R-SMADs to form heteromeric complexes with 

SMAD4. SMAD4 occupies a central position in the signaling pathways downstream of all the 

ligands. SMAD4 is required by many ligand-mediated responses but not all. The activated SMAD 

complexes are then transported into the nucleus to bind DNA and transcription factors to express 

multiple genes. In the nucleus, SMAD phosphatases also dephosphorylate activated R-SMADs to 

allow them to be exported into the cytoplasm. SMAD-pathways are also subject to numerous levels 
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of regulations. TGF-β superfamily pathways are also modulated by other signaling pathways. For 

example, R-SMADs are activated by growth factors-mediated through MAPKs, glycogen synthase 

kinase 3b (GSK3b), and cyclin-dependent kinases (CDKs). Interestingly, the TGF-β superfamily 

pathways are also known to antagonize each other – for example, GDF3 directly inhibits BMP 

signaling (199). 

 Although inhibition of cellular proliferation is one of the primary functions of TGF-β 

signaling pathway, numerous other contributions have been identified such as embryogenesis, 

differentiation, apoptosis, angiogenesis, immunosuppression, and wound healing. Because TGF-β 

regulates multiple biological processes, any aberration of its normal activities including its normal 

signaling partners in the TGF-β signaling cascade can have a wide-range pathological 

consequences. In fact, pathogenesis and progression of many cancers such as pancreas, colon, 

breast, melanoma, prostate, gastric, neuroendocrine, genecologic, skin and nervous system have 

been attributed to the disruption of normal TGF-β signaling (200). Interestingly, though TGF-β acts 

to inhibit proliferation, thus a tumor growth suppressor, some human malignancies can subvert 

TGF-β for their own purposes. These cancers overexpress TGF-β ligands, which eventually leads 

to loss of normal growth inhibitory response to TGF-β and advances metastasis and decreased 

survival. Therefore, TGF-β plays a paradoxical role as it is both classified as a tumor suppressor 

and as a tumor promoter in many cancers including pancreatic cancer (201). 

In pancreatic cancers, tumor cells have lost their tumor suppressive effects of TGF-β1 and 

several mutations of the TGF-β transduction pathway have been well described. The mutation or 

deletion of the common partner SMAD4 is probably the most well-characterized. SMAD4 or DPC4 

was one of the first novel tumor suppressors identified in pancreatic carcinomas (202). 

Approximately 30% of all pancreatic cancers shows a homozygous deletion of DPC4. DPC4 is 

inactivated in another 20% of pancreatic cancers. Almost in 90% of pancreatic tumors, there is an 

allelic loss of DPC4 chromosome. Mutations in DPC4 are within either the MH1 or most commonly 

the MH2 domain of the SMAD4 protein. These mutations are consisted of missense, nonsense or 
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frameshift mutations. Some of the arginine mutations in the MH1 domain lead to rapid degradation 

of SMAD4 as compared to wild type. Approximately, 50-90% of patients have SMAD4 alterations 

that diminish cell cycle control (202). 

Additionally, human TGF-β receptors have also been found to have certain inactivating 

mutations in many cancers such as colon, gastric, liver, breast and pancreatic cancer. Although 

mutations in TGF-βRII are observed in the majority (70-90%) of colorectal cancers, it is less 

frequently observed in pancreatic cancer, accounting for 4-7% of pancreatic cancers (203). 

Similarly, mutations in TGF-βRI accounts for 5% of cases. Some pancreatic cancers acquire 

resistance to normal inhibitory-growth of TGF-β by expressing low level of TGF-βRI, which can be 

restored by transducing cells with functional TGF-βRI (204).  

1.2.3 Roles of other TGF-β superfamily members in cancers 

The TGF-β superfamily comprises the TGF-βs, Activins, NODAL, bone morphogenetic 

proteins (BMPs), growth and differentiation factors (GDFs), and anti-Mullerian hormone (AMH). 

Over the past three decades, much emphasis has been given to the TGF-βs in cancer. However, 

increasing evidence of other TGF-βs superfamily members to contribute to cancer progression has 

upsurge in literature over the years. In particular, BMPs, Activins, NODAL, and GDFs (referred as 

BANGs) have now shown to participate in tumor development and dissemination (193). 

The most prominent roles of BANGs have been well described during early vertebrate 

development in many studies in mice, fish, and frogs. The earlier role of NODAL in the mouse 

embryo is at the blastocyst state where it is responsible to maintain the pluripotency, such as Oct4 

and Nanog (205). After implantation, a gradient of NODAL helps define the proximal-distal axis to 

establish the anterior-posterior axis of the embryo. In conjunction with BMP and WNT signaling, 

NODAL is essential for mesoderm and endoderm formation and patterning. At later stages, NODAL 

is also required for left-right axis patterning (206, 207). Similarly, the BMPs also act in a gradient in 

early embryos to establish the axis and the tissue patterns along them. BMP-induced patterning is 

molded by its secreted antagonists such as chordin and noggin (208). In later stages of 
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development, both BMPs and GDFs are required for the formation of many different organs such 

as for the regulation of teeth, limb, kidney, skin, muscle, vascular, hematopoietic and neural 

development (209, 210). 

However, a recent surge of papers suggests that many of BANGs roles in cancer is merely 

a redeployment of their roles in early development. Because the central roles of BANGs are to 

regulate stem cell maintenance and expansion, normal tissue hierarchical organization of tissues, 

a disturbance in somatic stem cells may generate cancer stem cells (211), or break down the tissue 

architecture during tumorigenesis. In the colon, two polyposis syndromes are genetically linked to 

aberrant BMP signaling and altered stem cell dynamics. Patients with juvenile polyposis syndrome 

develop hamartomatous polyps in the intestine with an increasing risks of adenocarcinoma. 

Germline mutations in ALK3 or BMPR1A are seen in 20-25% of JPS cases, with additional 15-20% 

of cases having mutations in SMAD4 (212). Hamartomatous polyps are associated with stem cell 

expansion and crypt fission in the colon, reflecting an aberrant BMP-WNT signaling axis. In 

sporadic colorectal cancer, evidence points to the loss of BMP signaling in the transition stage 

between adenoma and carcinoma. About 70% of cases displays inactivating BMP signaling in 

SMAD1, SMAD5, and SMAD8 (213). Cancer stem cells in 20% cases of human glioblastomas are 

rendered unresponsive to anti-proliferative and differentiation-inducing effects of BMPs by silencing 

of the ALK6 promoter (214). In the skin, tumor-educated stroma can override the endogenous BMP 

signaling by secreting antagonists such as Gremlin 1. Gremlin 1 is highly expressed in basal cell 

carcinoma but not in normal skin tissue (215). Additionally, Gremlin 1 overexpression is also 

present in many breast, lung, colon, pancreatic, and esophageal tumors. 

In contrast to BMPs and GDFs, which are both essential for adult tissue homeostasis and 

embryonic development, NODAL is not normally expressed in adult tissues with the exceptions of 

organs that undergo widespread remodeling such as the placenta, endometrium, and lactating 

mammary gland. NODAL expression in adult tissues is predominantly present in pathological 

contexts (216, 217). Pathological NODAL expression was first reported in melanoma, where the 
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amount of NODAL secretion correlated with tumor aggressiveness. Expression of NODAL enables 

melanoma to be less differentiated, more plastic and at the same time, NODAL signaling also 

allows aggressive melanomas to simultaneously express markers of multiple lineages 

(mesenchymal, epithelial, and endothelial). As a result, NODAL overexpression favors functional 

adaptation of melanoma cells to the hostile growth environment (218). Similarly, the phenomenon 

was also extended into prostate, breast and testicular tumors (219-221). In pancreatic cancer, 

NODAL signaling has similar roles as in embryonic development, that is to drive pluripotency and 

self-renewal of cancer stem cells (222). Overexpression of NODAL has been shown in multiple 

human pancreatic cancer cells and enhances metastasis to liver in a splenic xenograft model (223). 

 1.2.4 Tumor-blood vessel interactions during tumor metastasis-cascade 

 Regardless of successful techniques and advances in resecting primary tumors and 

adjuvant therapy to cure confined primary tumors, treatment of metastasis disease from tumor 

dissemination largely remain a clinical challenge to be addressed. Tumor metastasis has 

accounted for >90% of death in cancer patients. Metastasis of carcinomas is a complex and multi-

step process: 1) abnormal tumor cells begin to outgrow and break the basement membrane protein, 

2) tumor cells invade into the stromal environment and interact with stromal cells, 3) tumor cells 

gain access to the blood and lymphatic vessels to intravasate into the circulating blood/lymphatic 

vessels, 4) tumor cells survive rigorous transport in blood stream, 5) tumor cells are arrested at 

distant organ sites and extravasate out of the blood vessels, 6) tumor cells begin to colonize in 

tumor-supporting microenvironment of different distant organs and form secondary tumors (224). 

 One of the hallmarks of tumor growth is angiogenesis. In the early 1970s, Folkman 

postulated that tumors need to be vascularized to grow and that diffusible molecules regulate this 

process. Later, vascular endothelial cell growth factor (VEGF) was identified as one of many 

important factors to recruit blood vessel growth. However, tumor angiogenesis possibly involves 

multiple angiogenic factors besides VEGF as anti-angiogenesis targeting VEGF has been effective 

in some tumors but not others. Interestingly, many tumors develop in highly vascularized tissues, 
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such as brain, liver and lung. In these tissues, tumors can use other mechanism for vascularization 

named vessel cooption (225). Vessel co-option is a mechanism in which tumors obtain a blood 

supply by hijacking the existing vasculature and tumor cells migrate along the vessels of the host 

organ. In a rat glioma model, Holash et al. first observed the process of vessel-cooption, followed 

by vessel regression, tumor hypoxia and the stimulation of angiogenesis for further tumor growth. 

The process of vessel co-option was not just limited to gliomas, but also shown in rat mammary 

adenocarcinoma. In a zebrafish study by Zhao et al (226), vessel co-option and angiogenesis were 

thought to have distinct contributions at the earliest stage of microtumor initiation and metastasis. 

Vessel co-option served an alternative route to obtain nutrient and oxygen during early stage of 

tumor growth. However, angiogenesis played an essential role during the exponential growth during 

tumor progression (227). Interestingly, vessel co-option has also been suggested as a potential 

explanation for failure of anti-angiogenic therapy. 

 It has also been posited that tumor cells may also stay in the wall of blood vessels as they 

break into the blood vessels rather than staying outside the basement membrane in vessel co-

options. Interestingly, Chang et al has shown that GFP-pre-labeled colon carcinoma cells could 

integrate into the blood vessels in both ectopic and orthotopic implantation models to form blood 

vessels with interspersed GFP-labeled tumor cells (228). These mosaic blood vessels were 

accounted for 4% of total vasculature surface. Interestingly, they also demonstrated that mosaic 

vessels are fully functional with perfused fluorescent lectin. These tumor cells were thought to be 

in a transition of intravasating in the blood vessels and stay temporarily in the capillary vessel walls. 

FGF-2 and VEGF-A activated MMP2 activity to increase the mosaic vessels. 

 Interestingly, tumor cells seem to adapt and utilize different mechanisms to vascularize 

their extremely demanding needs for nutrients. In fact, another different concept of tumor self-

vascularized tissue was coined as vascular mimicry. Briefly, vascular mimicry (VM) is described as 

a functional plasticity of aggressive cancer cells to form de novo vascular networks to provide 

perfusion pathway for growing tumors. VM has been reported in multiple cancers including 
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melanoma, glioblastoma, carcinomas, breast, and sarcomas. Historically, vascular mimicry was 

proposed back in 1999 by Maniotis et al. In their study, using an aggressive uveal melanoma, they 

presented that the tumor was lined up with networks of channels interconnected by loops and 

visualized by periodic acid stain (PAS). Interestingly, these PAS positive networks were in close 

contact with the peripheral vascular vessels and partly stained by antibodies against Von 

Willebrand factors, CD34, VEGFR2, and lectin, which are markers for endothelial cells. Thin 

basement membrane was detected using electron microscopy in these networks but endothelial 

cells were not detected. These channels were also perfused with blood cells. Consistently with their 

observations in vivo, very aggressive uveal or cutaneous melanoma cells when cultured in 3D 

Matrigel or collagen matrix also formed architectural loops and network patterns that were 

lumenized and perfused by fluorescent dyes (229).  

 Among tumors, which are capable of VM, cancer cells exhibit a high degree of plasticity 

indicative of a multipotent phenotype similar in many respects to embryonic stem cells (230-232). 

Molecular profiling of these cells displays highly upregulation of genes associated with embryonic 

progenitors (CD133, Nodal), endothelial cells (Notch, VE-cadherin), matrix remodeling (MMP2, 

MMP14), and hypoxia (VEGF, HIF1a, HREs), and down regulation of genes associated with 

lineage-restriction of differentiation. VEGFR1, but not VEGFR2, mediates VEGF-A induced VM in 

melanoma cells and it has been proposed that VM is mediated through synergistic transduction of 

VEGFA/VEGFR1/PI3K/PKCα and integrin signaling pathways (233). Additionally, blocking of Nodal 

signaling has been shown to reduce VM activity of cancer cells (218, 234, 235).  

 1.2.5 Vascular invasion in pancreatic cancer and carcino-endothelialization 

 Although pancreatic cancer is an aggressive and highly metastatic cancer, evidence of 

vascular mimicry has not been described. However, vascular invasion, a process where cancer 

cells break through the blood and lymphatic vessels, is evident in pancreatic cancer. At the time of 

diagnosis, only approximately 16% of patients are present at stage I where the tumor is confined 

within the pancreas while 85%-90% have unresectable tumors (236). Vascular invasion is an 
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important parameter to assess the resectability of pancreatic tumors. Because of the close 

proximity of the pancreas to different large caliber vessels such as the hepatic aorta and veins, 

mesentery aorta and veins, about 21%-64% of patients exhibits vascular invasion according to one 

report (236) at the time of diagnosis. 

 Interestingly, when patient samples from PDAC were examined, microscopy vascular 

invasion was observed in 65.1% of the cases (237). Among the vascular invasion cases, 

histological samples also revealed isolated solitary ductal units (ISDs) within the adipose tissue 

adjacent to the pancreatic tumor. These ISDs were detected mostly in human pancreatic cancer 

patients up to 69.1% in cases with vascular invasion but not in chronic pancreatitis (238). 

Astonishingly, these ISDs exhibited features of vascular structures with evidence of elastin smooth 

muscle layer. However, the endothelial cells with flat morphology were not detected. Instead, the 

ducts are lined with cuboidal epithelial cells that also exhibit intraneoplasia (Figure 1.2). This 

phenomenon of endothelial cell replacement is termed carcino-endothelialization (238). 

 

Figure 1.2. Carcino-endothelialization in the fibroadipose tissue covering the pancreas in patients 
with pancreatic ductal adenocarcinoma. Image was adapted from Bandyopadhyay S. et al. (Am J 
Surg Pathol 2009; 33:425-429). (A) The Elastic-Van Gieson stain to demonstrate the elastin layer 
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around carcino-endothelialization ducts. (B) Smooth muscle actin stain to demonstrate the 
presence of myofibroblastic cells, typically present in vascular wall. 
  

 

CHAPTER 2: ANGIOCHIP, A BIOMIMETIC MODEL TO RECONSTITUTE ANGIOGENIC 

SPROUTING MORPHOGENESIS IN VITRO 

2.1 Abstract 

Angiogenesis is a complex morphogenetic process whereby endothelial cells from existing 

vessels invade as multicellular sprouts to form new vessels.  Here, we have engineered a novel 

organotypic model of angiogenic sprouting and neovessel formation that originates from pre-

formed artificial vessels fully encapsulated within a 3D extracellular matrix. Using this model, we 

screened the effects of angiogenic factors and identified two distinct cocktails that promoted robust 

multicellular endothelial sprouting. The angiogenic sprouts in our system exhibited hallmark 

structural features of in vivo angiogenesis, including directed invasion of leading cells that 

developed filopodia-like protrusions characteristic of tip cells, following stalk cells exhibiting apical-

basal polarity, and lumens and branches connecting back to the parent vessels. Ultimately, sprouts 

bridged between pre-formed channels and formed perfusable neovessels. Using this model, we 

investigated the effects of angiogenic inhibitors on sprouting morphogenesis. Interestingly, the 

ability of VEGFR2 inhibition to antagonize filopodia formation in tip cells was context dependent, 

suggesting a mechanism by which vessels might be able to toggle between VEGF-dependent and 

VEGF-independent modes of angiogenesis. Like VEGF, S1P also appeared to exert its pro-

angiogenic effects by stimulating directional filopodial extension, whereas MMP inhibitors 

prevented sprout extension but had no impact on filopodial formation. Together, these results 

demonstrate an in vitro 3D biomimetic model that reconstitutes the morphogenetic steps of 

angiogenic sprouting, and highlight the potential utility of the model to elucidate the molecular 

mechanisms that coordinate the complex series of events involved in neovascularization. 
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2.2 Introduction 

Angiogenesis, the process by which new capillary vessels sprout from existing vasculature, 

plays a critical role in embryonic development and wound healing, while its dysregulation can 

contribute to cancer progression as well as numerous inflammatory and ischemic diseases (54, 

239) . Consequently, therapeutic strategies to suppress, enhance, or normalize angiogenesis are 

widely sought to treat a broad spectrum of diseases (54, 239) . The most mature amongst these 

approaches targets the activity of angiogenic growth factors, such as vascular endothelial growth 

factor (VEGF), to modulate relevant signaling pathways and control the angiogenesis process. 

Indeed, inhibitors of such pathways have emerged as a mainstay therapy for some cancers and 

diabetic retinopathy (117, 240, 241) . However, it is still unclear how the endothelial cells (ECs) 

lining blood vessels form new vessels, or how angiogenic factors regulate such a dynamic, multi-

cellular process. 

Examining the physical process of angiogenesis requires experimental systems in which 

the formation of new capillary vessels can be easily observed and manipulated. Commonly used 

in vivo models such as the mouse dorsal window chamber, chick chorioallantoic membrane, and 

mouse corneal micropocket assays provide important validation platforms (242, 243) , but are low-

throughput and less suitable for identifying new cell biological mechanisms. In contrast, traditional 

cell culture models of angiogenesis bear little anatomical resemblance to the in vivo process. For 

instance, the tube formation assay involves the reorganization of ECs seeded onto the surface of 

Matrigel into multicellular cords that partially resemble vascular networks but lack important 

features observed in native angiogenesis, such as directional invasion of cells into a 3D 

extracellular matrix (ECM), proper polarization of the luminal and abluminal sides of ECs, lumen 

formation, and support of fluid flow (242, 244) . Assays involving sprouting of ECs from microcarrier 

beads or spheroids capture aspects of multicellular invasion, but the initial geometry of these 

systems requires cells to invade toward their apical domain, counter to the basally-directed invasion 
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in physiologic angiogenesis, and they also lack the continuous fluid flow known to fundamentally 

impact endothelial cell behavior (245).   

In contrast, organotypic models that have faithfully captured biological structure have 

proven to be transformative for a field, as exemplified by studies of engineered skin or mammary 

epithelial morphogenesis (246-248) .  Here, we demonstrate the use of endothelium-lined channels 

as a platform to recapitulate angiogenic sprouting in vitro. The system allowed us to screen 

combinations of angiogenic factors and identify cocktails that induced highly organized, directed 

multicellular sprouting into a surrounding ECM that appears to mimic key morphological aspects of 

in vivo angiogenesis not yet described by other in vitro models. Furthermore, we demonstrate the 

utility of this model by illustrating how pro- and anti-angiogenic agents impact the complex 

multicellular process of angiogenesis. 

 

2.3 Materials and Methods 

Device Fabrication. The device supporting the parallel channels consists of two layers of 

poly(dimethylsiloxane) (PDMS; Sylgard 184; Dow-Corning) bonded to each other and sealed 

against a glass substrate. The top PDMS layer was cast from a PDMS positive mold, previously 

replicated from a silicon wafer template. The bottom PDMS layer was cast off a silicon wafer 

template containing positive features illustrated in supplementary information (Figure 2.S3). 

Dimensions of important features in both layers are shown in Figure 2.1A. To assemble the device, 

the bottom layer was first reversibly sealed to a glass coverslip. The top and bottom layers were 

then separately treated with oxygen plasma, bonded together and cured at 110°C overnight. Upon 

removal from the oven, devices were treated with oxygen plasma to render the exposed PDMS 

surfaces hydrophilic. Hydrophilized devices were immediately treated with 0.1 mg/ml poly-L-lysine 

(Sigma) for 1 hour, followed by 1% glutaraldehyde (Sigma) for 1.5 hours. Devices were washed 

several times with H2O to remove residual glutaraldehyde, sterilized with UV light for 15 min, and 

soaked in 70% ethanol for 1 hour. To mold cylindrical channels, two acupuncture needles (Hwato), 
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400 m in diameter, were inserted into parallel grooves at the top of the bottom layer (Figure 2.S3). 

The needles were passed through the middle rectangular chamber of the device, resting 

approximately 200m above the glass coverslip surface. Rat tail collagen I, at 2.5 mg/ml, was 

pipetted into the middle chamber and allowed to polymerize at 37oC for 30 minutes. Excess 

collagen was subsequently aspirated from the fluid reservoirs feeding from the middle chamber. 

Devices were then covered with EGM-2 (Lonza) for at least 4 hours before the needles were 

extracted as previously described . Devices were then covered in EGM-2 for at least two days prior 

to seeding with cells.  

Cell Culture and Seeding in Devices. Human umbilical vein endothelial cells (HUVECs) 

(Lonza) were cultured in EGM-2. HUVECs, from passage seven to nine, were used in all 

experiments. HUVECs were concentrated at 107cells/mL and seeded into one of the two channels. 

The device was inverted to allow HUVECs to adhere to the top surface of the channel for 10 

minutes, and then flipped upright to allow cells to adhere to the bottom surface of the channel for 

another 10 minutes.  Cells that adhered in the fluid reservoirs were scraped off with a pipette tip, 

and unattached cells in the channel were thoroughly flushed out with phosphate-buffered saline 

(PBS). EGM-2 was immediately added thereafter and the devices were placed on a platform rocker 

(BenchRocker, BR2000), oscillating at 0.1Hz and with a maximum tilt of 9.5o in order to generate 

gravity-driven flow across the channels. Cells were cultured in channels for 1-2 days before the 

experiment was initiated. 

Immunofluorescence Staining. At designated time points, cells in the devices were fixed 

in situ with 3.7% formaldehyde for 45 minutes. For CD31 immunohistochemistry staining, cells were 

permeabilized with 0.1% Triton-X for 30 minutes, blocked in 3% BSA overnight at 4oC, washed 3 

times with PBS and incubated with mouse monoclonal antibody against human CD31 (1:200, 

Dako). For Laminin and Podocalyxin immunohistochemistry staining, the cells were blocked with 

3% BSA overnight at 4oC, washed 3 times with PBS and incubated with either rabbit polyclonal 

antibody against Laminin (1:100, Chemicon) or goat polyclonal anti-human podocalyxin (1:100, 
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R&D) overnight at 4oC. Before secondary antibody incubation, the devices were washed overnight 

with PBS at 4oC. All secondary antibodies (Invitrogen) were used at 1:500 dilution. In addition, cell 

nuclei were stained with DAPI (1:500, Sigma) and F-actin was stained with Alexa Fluor 488-

conjugated Phalloidin (1:100, Sigma). Before imaging, all devices were completely submerged in 

PBS for 2-3 days to remove background staining.   

Image Acquisition and Processing. Brightfield images of sprouts were acquired with a 

Nikon TE200 epifluorescence microscope (Nikon Instruments, Inc.) using 10x. Confocal 

immunofluorescence images were acquired with either 10x air objective or LD C-Apochromat 40x, 

1.1 numerical aperture (N.A.) water immersion objective attached to either an Axiovert 200M 

inverted microscope (Zeiss) equipped with an CSU10 spinning disk confocal scan head (Yokogawa 

Electric Corporation), and an Evolve EMCCD camera (Photometrics) or an Olympus IX 81 

microscope (Olympus America, Inc.) equipped with an CSU-X1 spinning disk confocal scan head 

(Yokogawa Electric Corporation), and an Andor iXon3 897 EMCCD camera (Andor Technology). 

ImageJ was used to merge channels, perform Z-projection for all confocal stacks, and generate 

longitudinal and transverse cross-sections. Custom MATLAB scripts and ImageJ were used to 

stitch images together. 

Screening of Angiogenic Factors. In screening experiments, the endothelialized ‘parent’ 

vessel was perfused with EGM-2 while the adjacent source channel was perfused with EGM-2 

enriched with angiogenic factors. Angiogenic factors include Vascular Endothelial Growth Factor 

(VEGF), Monocyte Chemotactic Protein-1 (MCP-1), Hepatocyte Growth Factor (HGF), and basic 

Fibroblast Growth Factor (bFGF), all purchased from R&D Systems. Sphingosine-1-Phosphate 

(S1P) and Phorbol Myristate Acetate (PMA) were purchased from Cayman Chemical and Sigma, 

respectively. VEGF, MCP-1, bFGF, HGF, and PMA were all used at 75ng/mL while S1P was used 

at 500nM. EGM-2 and enriched EGM-2 were refreshed daily for up to six days. Brightfield images 

were acquired daily for quantification. 

Bead Perfusion of Microvessels. After neovessels bridged the two preformed channels 

in the device, a solution of CellTracker CM-DiI (Invitrogen) was delivered into the parent vessel to 
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stain live HUVECs and neovessels in situ. Fluorescent beads (Polysciences) of 3 μm diameter 

were suspended in PBS and perfused into the parent vessel at a flow rate of 5 µL/min. Images of 

flowing beads were acquired at 40 frames/sec using an Eclipse TE2000 inverted epifluorescence 

microscope equipped with a live cell incubator and an Evolve EMCCD camera. Frames of bead 

time-lapse movie were stacked and overlaid with image of DiI-stained neovessels using custom 

Matlab code. Bead-video samples were subsequently fixed and imaged with a 10x air objective 

attached to a Leica LSM 710 confocal microscope system. 

Inhibition of Angiogenic Sprouting. The effects of inhibitors targeting VEGFR2 

(Semaxanib, Cayman Chemical), S1P receptors (Fingolimod, Selleck Chemicals) and MMPs 

(Marimastat, Tocris Bioscience) were evaluated in a similar setup to the angiogenic factor 

screening experiments. HUVECs were cultured in the ’parent’ vessel in either full EGM-2 (for 

Marimastat experiments) or incomplete EGM-2 lacking VEGF and bFGF (for Semaxanib and 

Fingolimod experiments). In all cases, the angiogenic source channel contained the same media 

as the ‘parent’ vessel supplemented with either the MVPS or HFMVS cocktails described in 

Results. In separate devices, Semaxanib or Fingolimod were administered into both channels at 

14 µM and 140 nM to yield effective concentrations of 10 µM and 100 nM, respectively, due to the 

additional volume of the gel. Marimastat was administered only into the source channel at 0.6 μM. 

All inhibitors were added daily at starting on concurrent with or three days after the initial addition 

of angiogenic cocktails. Media in both channels were refreshed daily.  Brightfield images were 

acquired daily for quantification. 

Quantification of Sprout Length and Sprout Density. Custom MATLAB code was 

written to measure the individual distances from the leading protrusions of tip cells to the wall of 

the parent vessel. Tip cells were additionally quantified as either attached to stalk cells extending 

from the endothelialized channel or as isolated single cells (Figure 2S1). Sprouting metrics were 

quantified for the screening experiment (n = 2 samples per condition), the VEGFR2 and S1P 

inhibitor experiment (n = 5 samples per condition), and the MMPs inhibitor experiment (n = 3 

samples per condition). 
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Filopodia Quantification and Analysis. Projections from z-resolved confocal stacks, 

which were taken using 25x water immersion objective attached to Axiovert 200M inverted 

microscope (Zeiss) with spinning disk confocal scan head, were used to analyze filopodia length 

and number. A custom MATLAB code was used to determine the distance from the tips of filopodia 

to the center of cell nuclei and count the number of filopodia. The number and length of filopodia 

were averaged over the number of cells across 3 samples per condition. 

Statistical Analysis. Sample populations were compared using unpaired, two-tailed 

Student’s t-test. P < 0.05 was the threshold for statistical significance. Data points on the graphs 

represent mean values and error bars depict SEM. 

 

2.4 Results 

A microengineered platform that supports angiogenic sprouting and neovessel 

formation in vitro 

To study the process of angiogenic invasion and sprouting from an existing vessel, we 

designed a device in which an endothelium lining a cylindrical channel was fully surrounded by 

matrix and exposed to a gradient of angiogenic factors emanating from a parallel source channel 

(Figure 2.1A). The device was assembled by casting Type I collagen into a PDMS mold/gasket with 

two parallel needles held across the casting chamber. Upon collagen polymerization, the needles 

were extracted to create hollow cylindrical channels in the collagen matrix (Figure 2.1A). 

Endothelial cells (ECs) were then injected into one of the channels, allowing them to attach on the 

interior wall and form a confluent endothelium or “parent vessel” (Figure 2.1B). Flow was 

maintained through both channels for the duration of the experiments and media containing 

angiogenic factors was subsequently added to the second channel to establish a gradient across 

the collagen matrix to the endothelium (Figure 2.1B). Thus, the device design provided a means to 

promote and visualize endothelial sprouting that might emulate early angiogenic processes. 
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Using this device, we first examined how various pro-angiogenic factors might impact 

directed invasion and sprouting from the parent vessel. Six common factors associated with 

angiogenesis in the literature were selected: basic fibroblast growth factor (bFGF) (249) , 

hepatocyte growth factor (HGF) (250) , vascular endothelial growth factor (VEGF) (58, 251), 

monocyte chemotactic protein-1 (MCP-1) (85), sphingosine-1-phosphate (S1P) (252), and Phorbol 

12-myristate 13-acetate (PMA) (253). After these factors were added individually to the non-

endothelialized source channel, phase-contrast and confocal microscopy were used to assess the 

organization and development of EC invasion over four days. We found that VEGF, MCP-1, HGF 

or bFGF alone did not induce significant invasion into the matrix, while S1P and PMA resulted in 

substantial directed invasion (Figure 2.S1). This invasion was oriented directly toward the source 

channel, despite the fact that cell migration from the endothelium was not artificially constrained in 

any direction by our system design (Figure 2.1C).  

Interestingly, S1P and PMA stimulated markedly different modes of cell migration. S1P 

drove chemotactic migration primarily of single cells from the endothelialized channel, whereas 

PMA triggered collective cell migration that manifested itself in the form of sparse, long, multi-

cellular sprouts into the matrix (Figure 2.1Ci,ii). Progressively more complex combinations of the 

six factors yielded more substantial multicellular sprout-like structures, especially in the case of two 

distinct combinations that drove robust sprouting – HGF, bFGF, MCP-1, VEGF, and S1P (HFMVS) 

and MCP-1, VEGF, PMA, and S1P (MVPS) (Figure 2.S1). HFMVS-guided invasion exhibited 

numerous sprout-like structures that extended hundreds of micrometers from the endothelialized 

parent vessel as well as large numbers of solitary cells migrating into the matrix (Figure 2.1C iii,iv). 

The MVPS cocktail induced an even greater multicellular sprouting response with less single cell 

migration (Figure 2.1Cv). In both cases, the sprouts continued to invade toward the source channel 

as long as the gradient was maintained. 

Remarkably, when the tips of these sprouts reached the source channel (typically after one 

week), they breached into the source channel, forming what appeared to be new microvessels 
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connecting the two parallel channels (Figure 2.1D). To test whether these “neovessels” possessed 

functional, perfusable lumens, 3µm fluorescent beads were added to the media flowing into the 

endothelialized parent channel. Beads traveled through the neovessels to the source channel with 

no leakage into the interstitial space, indicating fully developed lumens lined by a continuous 

endothelium. Overlaying frames of the time-lapse images demonstrated the path of the beads 

through these occasionally branching neovessels (Figure 2.1D).   

 

 

 

Figure 2.1. 3D formation of endothelial sprouts and neovessels in a microfluidic device. (A) Device 
schematic. Parallel cylindrical channels are encased in 3D collagen matrix within a microfabricated 
PDMS gasket and connected to fluid reservoirs. One channel is coated with ECs and perfused with 
medium while the other channel is perfused with medium enriched with angiogenic factors. (B) 
Photograph of the device.  Zoom shows phase (top) and fluorescent (bottom) micrographs of an 
endothelialized channel. F-actin and nuclei are labeled with phalloidin (green) and DAPI (blue), 
respectively.  (C) Representative confocal immunofluorescence images of sprouting and migrating 
ECs in response to gradients of different pro-angiogenic factors: S (i), P (ii), HFMVS cocktail (iv), 
and MVPS cocktail (v). Panel iii shows a phase image of directed sprouting induced by HFMVS. F-
actin and nuclei are labeled with phalloidin (green) and DAPI (blue), respectively. (D) Neovessels 

in the device are shown in (i) a merged image of a time-lapse movie tracking the position of 3m 
red fluorescent beads perfused through the large channels and neovessels and (ii) a z-projection 
confocal image of the same vessels. Beads were added to the left end of the parent vessel and 
flowed through neovessels to the factor source channel. In both images ECs (green) are labeled 

with DiI. Scale bars of 2x zoom-in insets in (C) are 50 m.  All other scale bars are 100 m. 
Abbreviations: F=bFGF, H=HGF, M=MCP-1, P=PMA, S=S1P, V=VEGF. 
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Sprouts exhibit morphologic features of in vivo angiogenesis 

Because this experimental model allows us to monitor the detailed structural events of 

sprouting, we next proceeded to examine the changes in cellular organization during early stages 

of invasion. For this purpose, we focused on the MVPS cocktail, which promoted the greatest 

sprouting response with minimal single cell migration. Prior to stimulation, cells in the 

endothelialized channel exhibited the expected apical-basal polarity as demonstrated by the 

localization of CD34 apical marker podocalyxin to the luminal face (254). On the basolateral side 

of the endothelium we observed laminin deposition. Upon stimulation, occasional single ECs began 

invading into the matrix and extending filopodia-like protrusions in the direction of the angiogenic 

gradient (Figure 2.2A). During initial invasion, we observed interruptions in laminin 

immunofluorescence, consistent with focal degradation of the basement membrane (Figure 2.2B). 

These leading tip cells were replete with filopodia-like protrusions, morphologically recapitulating 

in vivo sprout tips (50). As these tip cells migrated deeper into the matrix, neighboring cells followed 

while maintaining cell-cell contacts along the length of the sprout, as shown by PECAM-1  staining 

(Figure 2.2C). Thus, the sprouting process from the parent endothelium into the matrix involved 

collective cell migration that supported a contiguous structure between the sprout and parent 

vessel. Even at this early stage of 2-3 cells per sprout, evidence of lumen formation was detected 

in 3D reconstructions of confocal images (Figure 2.2D). Moreover, apical-basal polarity appeared 

intact in the sprouts as evidenced by apically targeted podocalyxin staining (Figure 2.2Di,iii).  

As the sprouts continued to invade and extend into the matrix, they became longer, 

contained progressively more cells, and began to branch (Figure 2.2E-G). Stereotypical sprouting 

morphology was evident in these mature sprouts, with cells at the sprout tip developing numerous 

thin filopodia-like protrusions, in contrast to cells in the stalk containing few filopodia protrusions 

(Figure 2.2E-G). Lumens developed in both early and late sprouts that often extended from the 

parent vessel up to, but never within, the tip cell (Figure 2.2D,E). Partial lumens occasionally were 

evident behind the tip cell that were not connected to the parent vessel, suggestive of spontaneous, 
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focal cord-hollowing or lumenization (Figure 2.2Fiv). Staining confirmed that the sprout tip cells 

lacked specific localization of podocalyxin, while stalk cells demonstrated localization of 

podocalyxin to the luminal space (Figure 2.2E). We observed laminin deposition in the mature 

sprouts (Figure 2.2F) and found that PECAM-1-positive cell-cell junctions were generally intact 

throughout the sprouts (Figure 2.2G). In addition to primary sprouts, maturation of secondary 

branches also occurred in our system. Different stages of secondary branching were evidenced by 

stalk cells occasionally marked by direct filopodia-like protrusions suggesting early branch initiation 

(Blue arrow, Figure 2.2F), whole cells extending out from the stalk of the sprout (Blue arrow, Figure 

2.2E), and finally as full multicellular branches with their own new tip cells extending toward the 

angiogenic gradient (Figure 2.2G).   

Upon formation of neovessels spanning the two channels, non-perfused filopodial 

protrusions notably disappeared (Figure 2.2Hi). The neovessels were lumenized end-to-end 

(Figure 2.2Hii, iii), and cells were aligned with flow as in the parent vessel, demonstrated by actin 

stress fiber alignment (Figure 2.2Hiv). Further examination revealed the deposition of laminin 

around the neovessels (Figure 2.2I), localization of podocalyxin to the luminal domains (Figure 

2.2J), and PECAM-1 staining reflective of intact cell-cell junctions (Figure 2.2K). 

 

Figure 2.2 Characterization of early and late sprouts and neovessels. Representative confocal 
immunofluorescence images of early (A-D) and late (E-G) sprouts and neovessels (H-K). For all 
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images F-actin and nuclei are labeled with phalloidin (green) and DAPI (blue), respectively. Staining 
for laminin (B, F, I), PECAM-1 (C, G, K), and podocalyxin (podclxn; D, E, and J) are shown in red. 
(A) Micrograph of an EC extending processes into the matrix towards the source channel. (B) 
Laminin immunofluorescence (red) is marked by white arrowheads on the abluminal side of the 
parent vessel. Fluorescence is interrupted by early sprout invasion. (C) Image of an early 
multicellular sprout stained for F-actin (green) and PECAM-1 (red). White arrowheads point to 
PECAM-1 staining at cell-cell junctions. Inset: z-projection of back half of sprout showing only red 
channel (PECAM-1). (D) Early sprout stained for podocalyxin (red) shown in z-projection (i), and 
single slice (ii, iii). White arrowheads mark podocalyxin at luminal side of sprout shown by 
transverse (inset, i) and in-plane (ii) sections. (E) Mature sprout stained for podocalyxin (red) shown 
in z-projection (i) with blue arrow marking cell invading out from sprout stalk, and in cross-sections 
of tip cell (ii) showing no lumen or spatial podocalyxin localization in the cell, and stalk (iii) with 
white arrowheads marking podocalyxin staining at apical side of lumenized stalk cells.  (F) Mature 
sprout stained for laminin (red) shown in z-projection (i) with blue arrow marking stalk cell filopodia, 
and in cross-sections of sprout tip cell (ii) that contains no lumen and shows presence of laminin 
staining, in lumen-containing stalk cell (iii) with white arrowheads marking laminin staining at basal 
side, and stalk cell that contains no lumen (iv) showing laminin immunofluorescence. (G) Mature 
sprout stained for PECAM-1 (red) shown in full z-projection (i) and z-projection of back half of sprout 
(ii). White arrowheads in (ii) mark PECAM-1 staining at cell junctions. (H) Neovessel shown in z-
projection (i), cross-section (ii), and in-plane slice (iii). F-actin (iv) shows actin fiber alignment with 
direction of flow indicated by double-arrow line. (I) Neovessel exhibits laminin staining (red) at its 
basal side (white arrowheads). (J) Neovessel exhibits podocalyxin staining (red) at its luminal side 
(white arrowheads). (K) Neovessels express PECAM-1 staining (red) at cell junctions (white 
arrowheads). Yellow, pink, orange boxes indicate longitudinal slice or partial stack, transverse 

cross-section, and zoom-in, respectively. Scale bars are 25 m. 

VEGF drives directed filopodia formation and sprout extension in a context 

dependent manner 

While the structural similarities between angiogenic sprouts observed in our system and 

those found in vivo were broadly encouraging, it was also important to explore whether our 

angiogenic sprouts responded physiologically to agents known to perturb the angiogenic process. 

To address this question, we investigated whether anti-angiogenic agents could impact sprouting 

in our system. First, a VEGF receptor 2 (VEGFR2) inhibitor Semaxanib (255, 256)  was added with 

the HFMVS angiogenic cocktail. If added from the outset, the inhibitor abrogated sprout initiation 

(Figure 2.3A). Because angiogenic inhibitors are also thought to lead to regression of pre-existing 

sprouts (257), we also tested the effects of adding Semaxanib to the source channel after 3 days 

of uninhibited sprouting. We found that further progression of sprouts was arrested, but obvious 

regression of the sprouts did not occur (Figure 2.3A). Closer inspection of VEGFR2-inhibited sprout 

architectures revealed a near complete loss of the many filopodia-like protrusions normally present 

in the tip cells, with a decrease in the number and length of protrusions (Figure 2.3B,C). 
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Surprisingly, we observed that sprouting induced by the MVPS cocktail, while slowed, appeared to 

proceed despite VEGFR2 inhibition (Figure 2.3D). Confocal images revealed that the filopodia-like 

protrusions in these sprouts were largely unaffected by Semaxanib, whether added at Day 0 or Day 

3 (Figure 2.3F). Quantitative analysis showed that the number of filopodial extensions was 

unchanged and their length was unaffected (Figure 2.3E). Importantly, these results demonstrate 

that the angiogenic process modeled by our system can respond to physiologically relevant anti-

angiogenic therapeutics. Moreover, this system offers insights into the mechanism by which 

Semaxanib may antagonize angiogenesis, by arresting the formation of cellular protrusions that 

are critical to the initiation and growth of angiogenic sprouts. Interestingly, in contexts containing 

factors that can promote protrusive activity in a VEGF-independent manner, angiogenic sprouts 

become refractory to Semaxanib. 

 

Figure 2.3. Effects of VEGFR2 inhibition on angiogenic sprouting. (A, D) Plot of sprout length driven 
by HFMVS (A) or MVPS (D) in response to Semaxanib treatment over time. Pro-angiogenic cocktail 
was initiated at Day 0 and Semaxanib treatment was initiated at either Day 0 (Day 0 Sem), Day 3 
(Day 3 Sem), or never (No Inhib). (B,E) Quantification of filopodia length and number in sprouting 
for inhibitor treatment versus no-inhibitor control. (C,F) Representative confocal 
immunofluorescence images of indicated conditions at Day 6. F-actin and nuclei are labeled with 
phalloidin (green) and DAPI (blue), respectively. Grid indicates no detectable signal so no data was 

acquired. Scale bars are 50 m.  Error bars are SEM. * represents significant difference from control 
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(p < 0.05). ns represents no significant difference from control. N = 5 samples for sprout length 
quantification, N = 3 samples for filopodia quantification. All filopodia quantifications performed on 
data from Day 6 of experiment.  

 

S1P and MMP inhibition demonstrate independent steps for angiogenic invasion  

To further investigate the morphogenetic responses to anti-angiogenic factors, we 

examined the effects of perturbing S1P signaling, which acts as a strong chemoattractant through 

a G-protein coupled receptor (S1PR) and is known to regulate angiogenesis (258, 259). Exposing 

cells to the S1PR inhibitor Fingolimod (260) resulted in abrogation of sprout initiation when 

introduced at Day 0, and inhibited further sprout extension when given at Day 3 (Figure 2.4). 

Interestingly, these effects were independent of which angiogenic cocktail (HFMVS or MVPS) was 

employed (Figure 2.4A,D). Quantification of the remaining sprout structures revealed nearly 

complete loss of filopodia-like protrusions, with cells appearing less elongated and organized 

(Figure 2.4B,C,E,F). These data suggest that S1P signaling also regulates angiogenic sprouting, 

and that multiple pathways in addition to VEGF signaling may contribute specifically to the 

directional protrusions necessary for sprout extension. However, though necessary, we would 

anticipate that filopodial protrusions are only one of several key cellular processes required for 

sprout extension. In support of this, we observed that the broad spectrum MMP-inhibitor, 

Marimastat (261, 262), also blocked sprout invasion and extension (Figure 2.S2), but had no effect 

on directed filopodial extension. 
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Figure 2.4. Effects of S1P receptor inhibition on angiogenic sprouting. (A, D) Plot of sprout length 
driven by HFMVS (A) or MVPS (D) in response to Fingolimod treatment over time. Pro-angiogenic 
cocktail was initiated at Day 0 and Fingolimod treatment was initiated at either Day 0 (Day 0 Fing), 
Day 3 (Day 3 Fing), or never (No Inhib). (B,E) Quantification of filopodia length and number in 
sprouting for inhibitor treatment versus no-inhibitor control. (C,F) Representative confocal 
immunofluorescence images of indicated conditions at Day 6. F-actin and nuclei are labeled with 
phalloidin (green) and DAPI (blue), respectively. Grid indicates no detectable signal so no data was 

acquired. Scale bars are 50 m.  Error bars are SEM. * represents significant difference from control 
(p < 0.05). ns represents no significant difference from control. N = 5 samples for sprout length 
quantification, N = 3 samples for filopodia quantification. All filopodia quantifications performed on 
data from Day 6 of experiment. 
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Figure 2.S1. Characterization of gradient between parent vessel and source channel. Relative 
intensity profile at 2, 5, and 60 min after addition of 20kDa fluorescently tagged dextran. A 1D 
solution to Fick’s Law using data acquired at 2 min after introduction of the dextran provided an 
estimate for the diffusion coefficient of 1.80 x 10-6 cm2/s 
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Figure 2.S2. Quantitative metrics for scoring number and length of sprouts and single cell 
migration. (A) Leading cells are categorized as sprout tip cells (black arrowheads) when in contact 
with stalk cells connected to the parent vessel (dashed white line), or as isolated, single cells (white 
arrowheads). Sprout length was measured as the distance between leading protrusions of sprout 

tip cells and the nearest point along the parent vessel. Scale bars are 100 m. (B) Plot of sprout 
length and the number of sprout tip cells and single cells after 4 days of exposure to indicated 
factor(s). N = 2 samples per condition. (C) Representative phase images of each condition after 4 
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days of exposure to indicated factor(s). Scale bars are 200 m. Abbreviations: F=bFGF, H=HGF, 
M=MCP-1, P=PMA, S=S1P, V=VEGF. 

 

Figure 2.S3. Characterization of cell-deposited extracellular matrices by the endothelium. (A) 
Laminin immunofluorescence (red) is shown in a z-resolved confocal stack en face projection of a 
parent vessel (i), with zoomed-in view (ii). Radial slice (iii) indicating localization of laminin at the 
basal side. (B) Collagen IV immunofluorescence (red) is shown in a z-resolved confocal stack 
projection of a parent vessel (i), with zoomed-in view (ii). Radial slice (iii) indicating localization of 
collagen IV at the basal side. F-actin and nuclei are labeled with phalloidin (green) and DAPI (blue). 
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Figure 2.S4. Quantification of sprout length for the MVPS and MPS cocktails at day 4. MVPS and 
MPS cocktails were only added to the source channel. Error bars are SEM. Ns, no significant 
difference from MVPS control (P≥0.05). 

 

 

Figure 2.S5. Quantification of sprout length for different S1P gradients. (A) Plot of sprout length at 
day 4 for the MVPS cocktail in source channel (control gradient), MVPS in source channel plus 
S1P in parent vessel (no gradient), MVP in source channel plus S1P in parent channel (negative 
gradient), and MVP in source channel (no S1P). (B) Plot of sprout length at day 4 for the MVPS 
cocktail in source channel with different concentrations of S1P: 250nM (low gradient), 500nM 
(control gradient), and 1µM (high gradient). * Significant difference from the MVPS (control 
gradient) (P≥0.05); ns, no significant difference from MVPS (control gradient) control. 
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Figure. 2.S6. Effects of MMP inhibition on angiogenic sprouting. (A) Plot of sprout length driven by 
MVPS in response to Marimastat treatment over time. Pro-angiogenic cocktail was initiated at Day 
0 and Marimastat treatment was initiated at either Day 0 (Day 0 Mar), Day 3 (Day 3 Mar), or never 
(No Inhib). (B) Representative confocal immunofluorescence images of indicated conditions at Day 
6. F-actin and nuclei are labeled with phalloidin (green) and DAPI (blue), respectively. Scale bars 

are 50 m.  Error bars are SEM. * represents significant difference from control (p < 0.05). N = 3 
samples for sprout length quantification.  

 

 

Figure 2.S7. Schematic of the device manufacturing process. A silicon template (blue and white) 
containing four rectangular features for the top layer of the device was made using UV lithography 

(I). Uncured PDMS (beige) was cast onto silicon template (II). After curing at 80 C, PDMS top layer 
(beige) was cast off the template (III). A silicon template containing four linked rectangular features 
was used to make a bottom positive PDMS mold (grey) (IV). Uncured PDMS (green) was cast onto 
positive PDMS mold and a glass slide was applied to trap the PDMS between the mold and glass 

(V). System was inverted (VI). After curing at 110 C, PDMS bottom layer (green) was cast off the 
PDMS mold and adhered to a glass coverslip (VII). Following oxygen plasma treatment, top and 

bottom PDMS layers were aligned and sealed and placed in a 110 C oven overnight. 
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2.5 Discussion 

Although central to angiogenesis, the morphogenetic process of endothelial invasion and 

sprout extension has been difficult to observe in vivo and models of sprouting in vitro have largely 

ignored the key initial conditions in which sprouts emanate from ECs lining a perfused vessel. 

Several tissue engineering approaches have been developed recently in which endothelial cells 

can be seeded into a channel within extracellular matrix to form a primitive vasculature (263-265). 

Here, we built on this concept with a device that allows angiogenic factors to trigger directed 

invasion and sprouting from such vessels, and used it to examine sprouting events. Other designs 

have been presented for studying sprouting that use channels with square rather than circular 

cross-sections in which endothelium lines a planar sidewall of matrix and expose cells to contact 

with silicone or glass on top and bottom walls (135, 266, 267). Although the close proximity of cells 

to the glass and silicone walls likely prevents cells from forming fully developed sprouts, the 

simplicity of such devices are an attractive alternative for more focused modeling of cellular 

invasion. In contrast, the system presented here allows cells to emanate outwards from the vessel 

wall in all directions without introducing such physical constraints, and thus provides a new avenue 

for studying multicellular, morphogenetic aspects of angiogenesis.  

The ability to assess the organization of invading cells was a critical feature that enabled 

us to begin to characterize and isolate factors that support the many steps involved in angiogenic 

sprouting. In our system, VEGF alone had negligible effect on sprouting while S1P only triggered 

single cell migration. Instead, only in the presence of a more complex cocktail of multiple factors 

could we observe robust multicellular sprout-like invasion where a morphologically distinct leading 

tip cell was trailed by a multicellular stalk. Interestingly, our results suggest that different 

combinations of factors can be similarly potent. In line with these findings, one recent study reported 

that a combination of factors secreted by stromal fibroblasts was necessary to induce sprouting 

(268). Another study suggested that exposure to a combination of hematopoietic chemokines, 

VEGF, and FGF led to a marked enhancement in tubulogenesis and sprouting (269). The 
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recognition that multiple combinations of factors can drive angiogenesis, likely through different 

mechanisms, further underscores an important role for model systems that allow for the rapid 

characterization of factor combinations.  

With the appropriate stimuli in place, sprout formation and extension in our system 

proceeded through a well-defined progression that mirrored major steps of in vivo angiogenesis, 

including directed tip cell invasion, multicellular stalk formation, lumen formation, and neovessel 

perfusion. These steps are consistent with seminal observations of in vivo angiogenesis showing 

the emergence of tip cells from an existing vessel, and stalk cells that establish apical/basal polarity 

and form a lumen that excludes the tip cell (50, 254, 270). VEGF has been shown to be important 

in triggering such tip cells to extend thin, actin-rich protrusions and in guiding stalk cells to form 

elongated multi-cellular sprouts (50, 117). Here, we showed that both VEGF and S1P signaling 

appear to drive these filopodia-like protrusions and sprouting, consistent with mechanistic studies 

suggesting that multiple angiogenic factors can activate Cdc42, a key GTPase for filopodia 

formation. Interestingly, the effect of VEGFR2 inhibition on sprouting depended on the composition 

of the angiogenic cocktail, and may explain why some anti-VEGF inhibitors block angiogenesis in 

some instances but not others.  

Many distinct mechanisms have been described for in vivo lumen formation (271). In our 

system, we observed fully developed lumens formed by stalk cells lining a tunnel left behind the 

leading tip cell. In other instances, the lumen was present only just behind the tip cell, not yet 

extending contiguously back to the base of the stalk, suggesting spontaneous lumen formation by 

the stalk cells. These observations are consistent with mechanisms for lumenization observed in 

vivo. Finally, in addition to the simple coordination of tip and stalk cells to form linear vessels, our 

system also seems to support higher-order events such as branching, a key mechanism to the 

patterning of sprouts controlled by the dynamic interconversion of stalk cells and filopodia-

containing tip cells (50, 272-275), as well as loss of filopodial activity and regression upon eventual 

perfusion of the neovessel, a critical component of microvascular pruning and remodeling (276). 
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The basis for this type of pruning could be explained by recent studies reporting that shear stress 

could suppress VEGF-induced invasion (266). Thus, the system introduced here faithfully 

recapitulates key features of in vivo angiogenesis and provides the ability to link specific stimuli to 

defined morphogenetic processes, further illustrating the power of such a model. 

Loss-of-function in vivo models remain the mainstay for studying both physiologic and 

pathologic processes, including those involving angiogenesis (242, 277). However, organotypic 

models that are able to capture basic features of these processes in an in vitro setting undeniably 

offer additional levels of control and analysis that are critical to gaining mechanistic insights (248). 

The model system presented here highlights that the field of angiogenesis has matured sufficiently 

to enable reconstitution of the complex morphogenetic changes within endothelial cells as they 

invade to form multicellular sprouts and newly perfused vessels. Even so, it represents merely a 

first step toward establishing a new platform for investigating vascular remodeling. Indeed, the 

introduction of additional cell types, including stromal, parenchymal, and circulatory cells, could 

open the door to establishing a deeper understanding of how different microenvironmental, genetic, 

organ-specific, and pathologic factors could contribute to the different forms of angiogenesis. This 

study adds to recent developments (278, 279) that together highlight the importance of engineered 

experimental models as a new approach to studying biological processes. 
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CHAPETER 3: THE ROLE OF CDC42 IN BRANCHING MORPHOGENESIS 

3.1 Abstract 

 Angiogenesis is a highly dynamic process where endothelial cells extensively rearrange 

their cytoskeletal structures to migrate and coordinate between tip and stalk cells in a collective 

manner. The Rho family of GTPases has been shown to be important regulators of cytoskeletal 

rearrangement during cell migration. However, the roles of Rho GTPases in angiogenesis remains 

unclear. Particularly, conditional knockout of Cdc42 in endothelial cells resulted in lethality in mouse 

embryos and defects in formation of vasculature, which makes it challenging to understand the 

roles of Cdc42 in the morphogenetic processes of angiogenesis. In vitro manipulations of Cdc42 

indicated the role of Cdc42 in lumen formation in 3D tubulogenesis. But its role in other 

morphogenetic processes of angiogenesis such as formation of branching is largely unknown. 

Here, using a previously developed 3D biomimetic model of angiogenesis, we examine the roles 

of Cdc42 in branching morphogenesis of angiogenic sprouting. We find that inhibition of Cdc42 

though reduces migration speed has minimal effect on directional migration of 3D sprouting. 

Disturbance of Cdc42 activity leads to less branching in angiogenesis but has no effect on the 

length of branches. We also observe the role of Cdc42 to regulate collective migration. Interestingly, 

we also find that Cdc42 negatively regulates filopodia formation. Taken all together, our study 

reveals the many aspects of Cdc42 to mediate different morphogenetic processes of angiogenic 

sprouting. 

 

3.2 Introduction 

Angiogenesis is a process where new blood vessels form from existing vasculature. During 

endothelial cell sprouting, endothelial cells from the blood vessels detect and respond to angiogenic 

cues. The endothelial cells then probe the environment using their filopodia protrusions, and digest 

the vascular basement membrane to extend their bodies into the interstitial tissue to form tip cells 
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with following stalk cells (50). Tip cells and stalk cells form multicellular sprouts, which ultimately 

develop into mature perfusable blood vessels with hierarchical structures (168). To establish these 

ordered vessel networks, sprouts have to extensively form multiple branching structures and 

undergo changes such as pruning to remodel the structures. Such processes require dynamic 

changes in cytoskeleton of endothelial cells.  

Rho GTPase proteins are known to regulate actin cytoskeleton dynamics in cell migration 

during organ development and tissue morphogenesis (138). Among Rho GTPase proteins, Cdc42 

has a conserved role to regulate cellular polarity, cell cycle division and actin cytoskeleton 

dynamics. More importantly, Cdc42 has been shown to regulate the formation of filopodia in 

different cell types including fibroblasts, immune cells, and endothelial cells in 2D culture (138). In 

neuronal cells, deletion of Cdc42 led to reduction in branching of growth cones (158, 159, 280). In 

vivo deletion of Cdc42 whether global or endothelial-cell-specific knockout, has resulted in similar 

defects in vascular formation in both fetal and adult vasculatures. More specifically, formation of 

the vascular tree lack branching structures in the trunk and heart of mice with genetic knockout of 

Cdc42 (170). However, as both vasculogenesis and angiogenesis concomitantly occur during 

embryonic development to form the branching network of the vasculature, it is a challenge to 

decipher the role of Cdc42 in the morphogenetic processes of angiogenesis.  

Despite the implication of Cdc42 in mediating branching morphogenesis in angiogenesis, traditional 

culture of endothelial cells on Matrigel has attempted to answer the formation of branching network 

but the assay does not fully capture the 3D microenvironment where angiogenesis typically occurs 

within eukaryotic organs (242). Additionally, studies of Cdc42 in 3D culture relies on embedding 

endothelial cells within 3D collagen matrix to allow the cells to form a vascular network, which 

resembles the process of vasculogenesis during embryonic development rather than the process 

of angiogenesis (116). Therefore, the role of Cdc42 to mediate branching morphogenesis in 

angiogenesis remains to be explored. Here, using a previously developed Angiochip (281), where 

endothelial cells are triggered to sprout from a biomimetic blood vessel, we sought to investigate 

the effects of Cdc42 on the morphogenesis of angiogenesis. Unlike other studies of tubulogenesis 
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and Matrigel assays, where endothelial cell network formation occurred in a uniform distribution of 

biochemical stimuli, which makes it challenging to address biological significance of Cdc42 on 

chemotactic migration in angiogenesis, our AngioChip employed a biochemical gradient not only 

to stimulate formation of multicellular sprout structures but it also allows us to unveil the effects of 

Cdc42 in the context of chemotactic migration in angiogenic sprouting. Additionally, we were able 

to tune the amount of Cdc42 pharmacological inhibitor to investigate a more complex role of Cdc42 

within cytoskeleton dynamics. We observed the many facets of Cdc42 to mediate the 

morphogenetic processes of angiogenesis in our study.  

 

3.3 Materials and Methods 

Device Fabrication. As previously reported, devices were fabricated from two layers of 

poly(dimethylsiloxane) (PDMS; Sylgard 184; Dow-Corning) (281). They were treated with plasma 

etcher, bonded together and adhered to a 25mm square glass coverslip. After treatment with 

0.1mg/ml poly-L-lysine (Sigma) for 1hr, they were treated with 1% glutaraldehyde for 1hr and 

washed several times with H2O. Rat tail collagen 1 (2.5mg/ml, Corning) was pipetted into the 

devices with two 400µm diameter acupuncture needles. Upon gelation, the needles were extracted 

leaving two hollow cylindrical channels within the collagen matrix. 

Cell Culture. Human umbilical vein endothelial cells (HUVECs) (Lonza) were cultured in 

EGM-2. HUVECs were seeded into the channel at 3x106 cells/mL as previously described. After 

seeding was complete, devices were immediately placed on a platform rocker (BenchRocker, 

BR2000). 

Angiogenic Sprouting Assay. A combination of angiogenic factors including vascular 

endothelial growth factor (VEGF, 75ng/ml, R&D), monocyte chemotactic protein-1 (MCP-1, 

75ng/ml, R&D), sphingosine-1-phosphate (S1P, 500nM, Cayman Chemical) and Phorbol Myristate 

acetate (PMA, 10ng/ml, Sigma) were administered the next day after cell seeding. The cocktail of 

angiogenic factors was refreshed daily as previously described. 
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Inhibition of Cdc42 Experiment. The next day after cell seeding, Cdc42 inhibitor (ML141, 

15µM, Millipore) was added on the same day that sprouting was started. ML141 was administered 

in both the biomimetic blood vessel and in the angiogenic source channel. Devices were either 

treated with DMSO as control or ML141 over a course of 4 days before they were fixed and stained 

for confocal imaging. Devices were always placed on rocker to provide shear forces in the channels 

over the entire course of experiments. For filopodia experiment, 22.5µM ML141 was added for 4 

hours before they were fixed for quantification (N=4 samples per conditions). 

Immunofluorescence and Confocal Image Acquisition. After fixation, devices were 

permeated with 0.1% Triton-X (Sigma) for 30min and proceeded to incubation with Phalloidin Alexa 

488 (1:200, Invitrogen) overnight in the cold room. Devices were washed several times with 1xPBS 

till fluorescent background was negligible before image acquisition. Confocal images were acquired 

with 40x water immersion objective, Axiovert 200M inverted microscope (Zeiss), and spinning disk 

confocal scan head. Images were acquired in a tiling mode and later stitched using ImageJ. 

Quantification of Sprout Length, Sprout Density, Sprout Angle, and number of 

Invading Cells. To quantify sprout length and density, custom MATLAB code was written to 

measure the individual distances from the leading protrusions of tip cells to the wall of the parent 

vessel, and to count the number of sprouts. Sprout angle was determined as the angle from which 

the sprout deviates from the vertical direction of the gradient between the two channels. ImageJ 

was used to count the number of cell nuclei from projection of z-resolved confocal stacks. (N = 4 

samples per condition). 

Quantification of Branches and Intersegmental Branches. Adopting the custom 

MATLAB code from quantification of sprouts, we quantified number of branches and intersegmental 

branches and their respective lengths. A branch length was defined as the distance from the tip of 

the branch to the end of the branch on the sprout trunk whereas intersegmental branch length was 

defined as the distance connecting the two ends of the intersegmental branch on two separate 

sprouts. 
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Filopodia Quantification. A custom MATLAB code was used to determine the distance 

from the tips of filopodia to where it originates on the cell body from projections of z-resolved 

confocal stacks. The number and length of filopodia were averaged over the number of tip cells in 

each sample. Filopodia angle was measured as the angles in which filopodia deviate from the 

vertically perpendicular line between the 2 channels. (N=4 samples per condition). 

             Statistical Analysis. Sample populations were compared using unpaired, two-tailed 

Student’s t-test or two-sided Wilcoxon rank sum test. *P < 0.05 was the threshold for statistical 

significance. Data points on the graphs represent average values and error bars depict SEM. * 

indicates P<0.05; *** indicates P < 0.001. 

 

3.4 Results 

Inhibition of cdc42 reduced migration speed 

To elucidate the role of Cdc42 in angiogenesis, we employed a biomimetic angiogenic 

model or the AngioChip, which was previously published in our lab (Figure 3.1A). In brief, the 

AngioChip was comprised of two hollow cylindrical channels embedded within a 3D collagen matrix. 

In one of the channels, we seeded endothelial cells and allow them to form an endothelium. In the 

second channel, we administered a cocktail of angiogenic factors, which established an angiogenic 

gradient to trigger sprouting into the 3D collagen matrix (281). To inhibit Cdc42 activity, we used a 

pharmacological inhibitor ML141 (282, 283). We observed that complete inhibition of Cdc42 led to 

cell death. However, sprouting morphogenesis typically occurred over a course of 3-4 days in our 

AngioChip. Therefore, to observe the function of Cdc42 in morphogenesis, we targeted a 50% 

decrease in Cdc42 activity (Figure 3.1B). We administered the inhibitor at the beginning of cocktail 

addition in order to investigate the effects of Cdc42 from the onset of sprouting till formation of 

multicellular sprouts. Partial inhibition of Cdc42 activity significantly decreased the invasion depth 

of sprout tip cells into the interstitial matrix (Figure 3.1C). Cell migration speed was subsequently 

diminished (Figure 3.1D). Interestingly, the appearance of angiogenic sprouts appeared similarly 
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between DMSO control and in Cdc42 inhibition under phase contrast images over a course of 4 

days (Figure 3.1E). 

   
Figure 3.1. Inhibition of Cdc42 in AngioChip. (A) Device schematic. 2 channels fully embedded 
inside 2.5mg/ml Collagen gel. (B) Cdc42 activity was reduced in half with Cdc42 inhibitor ML141.  
(C) Average invading distance of tip cells into matrix guided by a gradient of angiogenic cocktail 
including MCP-1, VEGF, PMA, and S1P. (D) Average invading speed of tip cells over 4 days. (E) 
Representative images of sprouts at Day 4 for control DMSO and Cdc42-inhibited devices. N=4; * 
indicates significant difference (P≤0.05); ns indicates no significant difference. 

 

Inhibiting Cdc42 diminished sprout density and sprout length 

To further characterize the changes in the morphogenesis of angiogenesis upon Cdc42 

inhibition, we utilized confocal microscopy to capture high resolution images of sprouting and 

quantify the number of sprouts and average sprout length. Partial inhibition of Cdc42 =slightly 

decreased the number of sprouts per unit area (Figure 3.2A). However, the average sprout length 

was significantly reduced in half (Figure 3.2B). 

Cdc42 has been shown to regulate cell polarity, one of the many important aspects of cell 

migration (156). Thus, inhibition of Cdc42 results in non-persistent migration in 2D (282). Our 
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previous results also showed a slight decrease in migration distance and speed, which may be a 

result of non-persistent migration. To verify this, we decided to measure the average sprout angle. 

We postulated that tip cells with non-persistent migration may continuously change directions as 

they migrate towards the source and thus the angle of sprout (Figure 3.2D) may be larger. To our 

surprise, average sprout angle remained unchanged, which revealed that inhibition of Cdc42 didn’t 

affect chemotactic migration towards a gradient of angiogenic cocktails in our biomimetic model of 

angiogenic sprouting but rather directly affected the invasion speed. 

 

 

Figure 3.2. The effects of Cdc42 on sprout length and density during angiogenesis sprouting. (A) 
Quantification of sprout density between control DMSO and Cdc42 inhibition. ML141 was initiated 
at onset of sprouting for 4 days. (B) Sprout length was quantified at day 4.  (C) Representative 
confocal images of sprouting in DMSO and ML141 devices at day 4. (D) Average sprout angle was 
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quantified between DMSO and ML141 devices. N=4; * indicates significant difference (P≤0.05); ns 
indicates no significant difference. 

 

Inhibition of Cdc42 decreased collective cell migration 

To our surprise, the fact that inhibition of Cdc42 activity had a stronger effect on sprout 

length but less so on the invasion depth prompted us to further investigate the extent of cellular 

invasion. From our previous work, different invasion modes (single cell and collective cell migration) 

were observed in our system. Therefore, we characterized the extent of single and collective cell 

migration. We observed the presence of more single cells at the invading front when we inhibited 

Cdc42 activity (Figure 3.3A,B). We also observed a significant reduction in the number of invading 

cells into the 3D interstitial collagen matrix (Figure 3.3C). Interestingly, among these migrating cells, 

we found a significant elevation in the number of single cell migration (Figure 3.3D). Taking 

together, this unveiled that inhibition of Cdc42 activity reduces the extent of cellular invasion and 

collective cell migration of angiogenic sprouting. 

 

Figure 3.3. The effects of Cdc42 on collective migration of endothelial cell sprouting. (A) 
Representative image of cellular invasion in control DMSO device at day 4. (B) Representative 
image of cellular invasion in Cdc42-inhibited device at day 4.  (C) The number of invading cells 
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quantified at day 4 between DMSO and Cdc42-inhibited conditions. (D) The percentage of single 
migrating cells quantified at day 4 between DMSO and Cdc42-inhibited conditions.  N=4; * indicates 
significant difference (P≤0.05). 

 

Cdc42 regulates branching morphogenesis of angiogenic sprouting 

One of the many important morphogenetic processes of angiogenesis is the formation of 

vessel branches (168, 273). As previously reported, branching was evidenced in our AngioChip 

(281). To further identify the morphogenetic differences of sprouts during angiogenic sprouting 

upon inhibition of Cdc42 activity, we quantified the formation of branches with confocal images. 

Occasionally, we also observed tip cells that fuse to another multicellular sprout structure from the 

parent vessel as demonstrated in the schematic (Figure 3.4A). In our model, a majority of sprouts 

exhibited formation of one single branch (Figure 3.4B). Inhibition of Cdc42 significantly reduced the 

number of branches in sprouts (Figure 3.4C). Occasionally, we also observed intersegmental 

branches that connect two individual sprouts through a multicellular tubular structures, which we 

called intersegmental branches. These intersegmental branches appeared to be significantly less 

as Cdc42 was inhibited (Figure 3.4E). Surprisingly, the length of both branches and intersegmental 

branches remained to be unaffected upon inhibition of Cdc42 activity (Figure 3.4D,F). 
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Figure 3.4. The effects of inhibiting Cdc42 on branching morphogenesis of angiogenic sprouting. 
(A) A schematic of difference branching structures and sprout morphology observed in angiogenic 
sprouting in the AngioChip guided by a cocktail of MCP-1, VEGF, PMA, and S1P. (B) Number of 
branch points is quantified for DMSO vs ML141 conditions.  (C) The number of sprouts with 
branches between DMSO and ML141 conditions. (D) Average branch length for DMSO and ML141 
conditions.  (E) Percentage of intersegmental branches for DMSO and ML141 conditions. (F) 
Average length of intersegmental branches in DMSO and ML141 conditions.  N=4; * indicates 
significant difference (P≤0.05); ns indicates no significant difference. 

 

Effects of Cdc42 inhibition on filopodia formation 

To further understand the role of Cdc42 to significantly abate the formation of branches, 

we carefully studied the formation of filopodial extensions as Cdc42 has been demonstrated to 
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regulate the formation of filopodia formation in other cell types including fibroblasts, and neuronal 

cells (284-286). Filopodia are protrusive extensions predominantly present in leading tip cells of 

branch tip and sprout tip cells. We treated Day 3 multicellular sprout structures with defined tip cells 

(Figure 3.5A,i) for a short and acute dose of inhibitor ML141. Short and acute treatment of Cdc42 

inhibitor on invading angiogenic sprouts with multiple extensions in tip cells revealed changes in 

filopodia appearance (Figure 3.5A,i and ii). Surprisingly, acute exposure to Cdc42 inhibitor didn’t 

affect the angle of filopodial extensions (Figure 3.5B). Unexpectedly, inhibition of Cdc42 doubled 

the number of filopodial extensions in tip cells (Figure 3.5C). The distribution of filopodia number 

per tip cells appeared to maintain a similar distribution between control DMSO and Cdc42 inhibition 

conditions but shifted to where there was higher filopodia number/tip cell (Figure 3.5D). Additionally, 

we observed an increase in the percentage of filopodia smaller than 10µm (Figure 3.5F) whereas 

there was no noticeable change in filopodia-like protrusions larger than 10µm. This ultimately led 

to a significantly smaller average length of filopodia in tip cells as Cdc42 activity was inhibited 

(Figure 3.5E). 
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Figure 3.5. Filopodia formation of endothelial cell sprouting upon Cdc42 inhibition. (A) 
Representative confocal images of phalloidin-stained sprout tip cells showing filopodial extensions 
in DMSO and ML141 conditions. Sprouting was initiated for 3 days before 22.5µM ML141 was 
added for 4hrs before fixation. (B) Average angle of filopodia of sprout tip cells was quantified for 
DMSO vs ML141 conditions.  (C) The number of filopodial extensions per sprout tip cells for DMSO 
and ML141 conditions. (D) Histogram of filopodial extension numbers per sprout tip cells for DMSO 
and ML141 conditions.  (E) Average length of filopodial extensions is quantified for DMSO and 
ML141 conditions. (F) Histogram of filopodial extension length for DMSO and ML141 conditions.  
N=4; * and *** indicate significant difference P≤0.05 and P < 0.001, respectively. 
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3.5 Discussion 

While Cdc42 has been identified as an important regulator of many cellular processes such 

as control of cell division, establishment of cellular polarity, and formation of filopodia in 2D cell 

culture (156, 287), its role in endothelial cells, especially, in 3D settings has only been explored in 

details at the initiation and formation of lumen during tubulogenesis (288, 289). Using our 

biomimetic blood vessels where endothelial cells were triggered to sprout by a defined chemical 

gradient, our study suggests that inhibition of Cdc42 also affects the formation of branches of 

endothelial cell sprouts. 

It has been shown that Cdc42 is an important regulator of chemotaxis. Though the role of 

Cdc42 in chemotaxis is possibly cell-type dependent. For example, mouse embryonic fibroblasts 

and hematopoietic stem cells without Cdc42 failed in directed migration, whereas directed migration 

was unaffected in Cdc42-null fibroblastoid cells (290). In our study, inhibition of Cdc42 had a mild 

effect on migration speed but appeared to be unaffected in chemotactic migration. In fact, 

persistency of migration as quantified through sprout angles remained unchanged when Cdc42 

was inhibited. This suggested that Cdc42 inhibition appeared to impair migration speed rather than 

chemotaxis. This observation is in agreement with a previous report where Cdc42 and Rac regulate 

migration speed but not direction of migration towards a gradient of PDGF (291). In addition to the 

role of Cdc42 effect on cell migration, we also observed that its activity also contributed to 

cytoskeletal arrangement ultimately leading to extension of sprouts and extension of filopodial 

protrusions. 

During lung development, Cdc42 directly regulates polarity and its activity is heightened at 

the active budding sides (292). Consequently, disruption of Cdc42 by genetic knockout causes 

abnormal Cdc42 activity on the epithelial cell layer and ultimately reduces epithelial cell budding 

during lung morphogenesis (292). Similarly, in endothelial cell sprouting from an endothelium, 

quiescent endothelial cells first need to reverse polarity to become tip cells (293). As a result, a 

disruption of polarity signaling may potentiate abnormal morphogenesis. Our result demonstrated 

that inhibition of Cdc42 caused a reduction in sprout density, which may suggest a role of Cdc42 
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to contribute to the initiation of tip cells from the endothelium. Similarly, the number of branches, 

where stalk cells have to emerge from sprouts to become tip cells, is also reduced. These results 

indicate that Cdc42 may act through cellular polarity to positively regulate the initiation of tip cell 

formation within an endothelium and within the stalk cells in the trunk of endothelial sprouts. As a 

result, disruption of Cdc42 signaling caused a reduction in the formation of sprouts and branches 

in angiogenic sprouting in our AngioChip.  

Interestingly, if Cdc42 positively mediates the formation of sprout and branches, its activity 

appeared to negatively regulate the initiation of filopodia formation. In our organotypic model, 

inhibition of Cdc42 significantly upsurged the number of filopodia in tip cells. This result appeared 

to contradict other reports in which inhibition of Cdc42 prevented formation of filopodia in 

fibroblasts, and neurons (156, 285). This suggests that Cdc42-driven filopodia formation may be 

cell type-specific. Additionally, most studies often examine a particular biochemical stimulus to 

activate Cdc42 for filopodia bursts in endothelial tip cells. For example, a previous study in caudal 

migration of endothelial cells in zebrafish indicated the role of Bmp signaling to mediate filopodia 

outgrowth (294) whereas another study suggested the function of ECM to induce activation of 

Cdc42 to promote filopodia formation through VEGF-independent NRP1 signaling in zebrafish and 

angiogenesis in mouse retina (295). In contrast, our biomimetic model employed a cocktail of 

different angiogenic factors to trigger sprouting, which may be a factor contributing to the 

discrepancy. 

During angiogenic sprouting events, endothelial cells need to establish apical-basal 

domains to mature into a lumenized blood vessels. At the same time, they need to maintain cell-

cell junction between tip-stalk and stalk-stalk cells to form multicellular structures. In 3D endothelial 

cell tubulogenesis, a previous study has reported the role of Cdc42 to mediate lumen formation 

through Par3, Par6 and PKC complexes (289). Here, in our model, we observed a role of Cdc42 to 

regulate collective cell migration. Disruption of Cdc42 encouraged migration of single cells. This 

suggests another important role of Cdc42 to not only regulate the cellular polarity during lumen 



75 
 

formation but also to target and maintain the junctional complexes between cell-cell during 

angiogenic sprouting.  

In conclusion, using an organotypic model of angiogenesis in which sprouting emanate 

from an endothelium under a defined biochemical gradient, we characterized the effects of Cdc42 

on angiogenic sprouting. In our angiogenic model, Cdc42 appeared to regulate migration speed, 

branching morphogenesis, and filopodia formation. Interestingly, we also observed the many facets 

of Cdc42 activity depending on the morphogenetic processes that Cdc42 targets. For example, 

Cdc42 positively initiates sprout formation but negatively mediates filopodial initiation. In addition, 

it contributes to the extension of sprout length but appears to have no effect on branch length. 

Further studies need to address its activity to mediate and maintain vascular junction to support 

collective cell migration. 
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CHAPTER 4: A PRECLINIAL ORGANOTYPIC MODEL TO EXAMINE VASCULAR 

INVASION AND VASCULAR REPLACEMENT IN PANCREATIC DUCTAL 

ADENOCARCINOMA 

  

4.1 Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is often not detected until it has already spread 

significantly into surrounding tissues and metastasized to distant sites (296). However, it remains 

unclear how the PDAC cells interact with the blood vessel during vascular invasion to metastasize. 

Here, we describe a preclinical organotypic PDAC-on-a-chip to examine the vascular invasion of 

PDAC. [Need a sentence that actually describes the model – something like “Tumor cells are 

seeded in a 3D matrix wherein an engineered endothelialized lumen is juxtaposed>” In this model, 

we reveal a striking phenomenon where PDAC cells invaded into the blood vessel, induced 

apoptosis in the endothelial cells and replaced the endothelial cells in blood vessels. This 

phenomenon was confirmed in a model of ectopic tumor growth.  We further identified ALK7 as a 

critical mediator of vascular replacement in PDAC. Blocking ALK7 diminished tumor cell 

proliferation and ultimately inhibited vascular replacement. Our study unveils ALK7 as a potential 

therapeutic target to prevent vascular replacement during vascular invasion in PDAC. 

  

4.2 Introduction 

 Although the detection and treatment of cancer in its earliest stages has significantly 

improved outcomes in many confined tumors, survival rates for tumors that have spread to distant 

sites remains dismal (297). As such, the vast majority of cancer mortalities stem from metastasis 

and its complications (298, 299). Metastasis is a final product of a chain of complex multiple steps 

including local spread of cancer cells at primary sites of origin, invasive entry into nearby 



77 
 

vasculature (intravasation), and dissemination and growth at distant organ sites (224, 300). The 

interactions between tumor cells and blood vessels in particular are poorly understood, despite the 

importance of these interactions to many steps of the metastasis cascade.  

In part, the lack of detailed understanding of these tumor-vessel interactions is because it 

is difficult to observe these interactions in models of tumor invasion.  In vivo studies of tumor growth 

in mice have made important observations of tumors near vascular structures, based on histologic 

evidence, and a few studies have attempted to observe these events through intravital microscopy. 

For instance, metastatic breast cancer to the brain after extravasation remained closely adhered to 

the vessels to avoid apoptosis induced by astrocyte-secreted serpin proteins (301). Recent 

attempts to use in vitro cultures to model these interactions have suggested the importance of 

juxtaposing tumor cells with vessel-like structures such as endothelial cell-lined lumens in order to 

model processes such as extravasation or intravasation (302, 303). Here, we apply such 

engineered 3D models of vessels to study the interactions of such vascular structures with 

pancreatic ductal adenocarcinomas. These tumors are reportedly highly avascular, with a paucity 

of endothelial cells within these tumors (185, 304).  

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic cancer whose cancer 

cells have been shown to escape the tumor and enter into the circulation at very early stage of the 

tumor progression (296, 305, 306). One of the hallmarks of advanced PDAC is local invasion of the 

tumor onto the nearby hepatic veins, arteries, and mesentery blood vessels (307). Vascular 

invasion is an important parameter to determine resectability of the tumor (236). It also contributes 

to the dismal 5-year survival rate below 7% of PDAC (307). It is also an initial step to enable entry 

of tumor cells into the circulation, resulting in circulating tumor cells that are present in the blood 

stream before lesions are detectable in PDAC (305). Yet, these tumors are reportedly highly 

avascular, with a paucity of capillary vessels within these tumors (185, 304). Thus, it appears that 

PDAC exhibits unusual yet important features in its interactions with vessels. Here, we describe a 

model system in which a biomimetic ductal channel containing PDAC cells is juxtaposed to an 
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engineered rudimentary blood vessel consisting of an endothelialized, perfused lumen.  Using this 

model, we investigated PDAC invasion and interactions at the blood vessel interface. Our model 

revealed a striking phenomenon where blood vessels were replaced by the PDAC cells. We also 

provided a mechanistic study to unveil Nodal/Activin-mediated signaling through ALK7 receptor to 

enhance PDAC proliferation to permit de-endothelialization of blood vessel during vascular 

invasion. 

  

4.3 Materials and Methods 

Cell culture. Primary murine pancreatic cancer cells (a gift from Dr. Stanger, University of 

Pennsylvania) were isolated from primary tumors of GEMM (Kras-G12D p53-/- YFP) and cultured 

in DMEM + 10% fetal bovine serum + L-glutamine + Gentamycin. Human pancreatic cancer cell 

lines, Panc-1 (a gift from Dr. Faller, Boston University) and BxPC-3 (a gift from Dr. Stanger, 

University of Pennsylvania) were cultured in DMEM + 10% FBS + 1% Pen/strep and RPMI1640 + 

10% FBS + 1% Pen/Strep respectively. HUVECs were cultured in EGM-2 (Lonza). EGM2 was used 

in all coculture experiment unless indicated otherwise.  

 Device fabrication and 3D organotypic PDAC experiments. Devices were fabricated as 

previously described (281). Briefly, our organotypic PDAC on a chip was comprised of 2 

polydimethylsiloxane (PDMS) gaskets cast from silicon wafer masters. The gaskets were bonded 

after plasma etching and treated with 0.1mg/ml poly-L-lysine (Sigma) overnight and subsequently 

treated with 1% glutaraldehyde (EMS) as previously described. 2.5mg/ml rat tail collagen I 

(Corning) was pipetted into the devices after 2 acupuncture needles were placed in the gaskets. 

Needles are either 1mm or 500µm apart. PDAC cells were seeded at 2x106 cells/ml in EBM2 

(Lonza) and HUVECs were seeded at 3x106 cells/ml in EGM-2 (Lonza) as previously described 

(281). Devices were plated on platform rocker. Media in blood vessel channel containing an 

additional 10%FBS + EGM2 was added into blood vessel channel to induce migration of PDAC 
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cells. PDAC channel was cultured in EBM2. All media was refreshed daily. SB431542 (Tocris) was 

used at 5µM concentration and added into both channels. 

 Immunofluorescence staining in 2D cultures. Samples were fixed with 4%PFA and 

permeated with 0.1% Triton-X. Samples were blocked with 3%BSA and subsequently incubated 

with primary antibodies: anti-CD31 (Dako, 1:200), anti-GFP (Abcam, 1:500), anti-cleaved caspase 

3 (Cell Signaling, 1:500) and DAPI (Sigma, 1:500). All secondary antibodies (Invitrogen) were used 

at 1:1000. 

Cell imaging and quantification in 3D devices. Migration of PDAC in 3D organotypic 

model was captured using bright field. Invasion distance was measured using a custom Matlab 

code to determine the distance from the tip of the invasive front to the biomimetic PDAC duct. For 

quantification of PDAC invasion area on biomimetic blood vessel, devices were fixed with 4%PFA, 

permeated and blocked with 3%BSA overnight. Primary antibodies for anti-CD31 (Dako, 1:200), 

anti-GFP (Abcam, 1:500), anti-cleaved caspase 3 (Cell Signaling, 1:500), and Dapi (Sigma, 1:500) 

were all incubated overnight at 4oC. Primary antibodies were washed overnight. Secondary 

antibodies (Invitrogen, 1:500) were incubated overnight and devices were washed over a few days 

to remove background before confocal microscopy. Confocal images were acquired with spinning 

disk confocal microscope. Z projection of image stack was used to quantify the area of blood vessel 

replaced by PDAC. 

2D co-culture experiment for apoptosis. HUVECs were seeded into 96 well plate at 

17000cells/well overnight to obtain a confluent monolayer. PDAC cells were seeded at 4200 

cells/well over HUVECs. Apoptosis was determined via active caspase activity quantified by 

apoptosis bioluminescence kit (Promega), following the manufacturer’s instruction. 

Bioluminescence intensity of activate caspase was acquired using SpectraMax5. Tumor-

conditioned media were collected from coculture of 500000 HUVECs and 130000 PD7591 

overnight in 1.5ml EGM2 in wells of 6 well plate and immediately used in experiment. Neutralizing 

antibodies for TNFα, FasL, Trail and their respective control antibodies were used at 25µg/ml. 
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Neutralizing antibody for pan-TGFβ (R&D) and its respective antibody control (R&D) were both 

used at 100ug/ml 

 PDAC vascular invasion in 2D heterotypic patterning coculture. Annulus rings were 

cut out by using biopsy hole punches (2mm and 3.5mm diameter) from a PDMS slab. Annulus rings 

were placed in the center of wells in 24 well plate. 10000 PDAC cells were seeded inside the 

annulus ring while HUVECs were subsequently seeded at 150000 cells outside the annulus rings 

overnight. Annulus rights were peeled off the next day and cells were allowed to grow into contact 

for 2-3 days after removal of annulus rings. Multiple overlapping images of YFP PDAC cell islands 

were imaged using TE200 microscope (Nikon). Overlapping images were stitched using ImageJ 

and PDAC areas were quantified using ImageJ. 

Tumor xenograft model. Under anesthesia (standard isoflurane inhalation) pancreatic 

cancer cell line (PD7591) was subcutaneously inoculated into the dorsal area of the athymic nude 

mouse (NCr-nu/nu, 4-5 week, female) by using regular insulin syringes. The cancer cells were 

resuspended in 1:1 mixture of cancer cell growth medium and Matrigel (high protein concentrated 

form) kept in ice. Two million cancer cells in 100 μL mixed solution were rapidly injected per animal. 

Mice were monitored daily after the tumor injection and the size of growing tumors was measured 

with a caliper every two days. The tumor volume was calculated with an equation: 0.52 x (AxB2), 

where ‘A’ is a long axis and ‘B’ is a short axis of the tumor. Tumors were allowed to grow to a 

maximum volume of 2000 mm3
 
in all cases as consideration for the animals’ welfare. All procedures 

were performed in the sterile environment of a laminar flow cabinet housed in the animal facilities 

area in Charles River Campus (CRC) animal facility at Boston University. When the tumors reach 

a certain size, the tumors were excised to examine tumor microenvironment and tumor invasion to 

blood vessels. The animals were sacrificed using the standard carbon dioxide euthanizing method 

or the secondary physical (cervical dislocation) method. 

Tumor tissue processing and immunofluorescence staining. Excised tumors were 

rinsed in PBS, and fixed in 4% formalin for 18 hours at room temperature, then stored in 100% 
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methanol at -20°C. For immunofluorescence, the fixed tumors were placed in 30% sucrose solution 

in PBS, incubated overnight at 4°C, and frozen in the Tissue-Tek Optimal Cutting Temperature 

(O.C.T.) compound (Sakura, Tokyo, Japan). Sections of 10-μm thickness were cut at -20°C. Some 

other cases, we cut small pieces of tumors using blades for whole mount staining. After blocking 

with 5% normal goat serum (Jackson ImmunoResearch, West Grove, PA) in PBST (1X PBS with 

0.3% Triton) overnight at 4°C, the sections were treated with one or more of the following primary 

antibodies overnight at 4°C: rabbit anti-cleaved caspase 3 (1:100, Cell Signaling), rat anti-mouse 

CD31 (1:100, BD Pharmingen), rat anti-TER119 (1:100, Santa Cruz) antibodies. After rinses with 

PBS overnight at 4°C, sections or whole mount tumor pieces were incubated overnight at 4°C with 

one or more of the secondary antibodies: fluorescein isothiocyanate (FITC)-conjugated goat anti-

GFP antibody, rhodamine-conjugated goat anti-rat antibody, Alexa 647-conjugated goat anti-rabbit 

antibody (1:500, all three from Jackson ImmunoResearch). DAPI (4',6-diamidino-2-phenylindole, 

1:10,000, Roche, Indianapolis, IN) was also included in the secondary antibody solution. Rinsed 

samples were mounted with the ProLong Gold anti-fade reagent (Invitrogen, Carlsbad, CA). 

Fluorescent signals were visualized and digital images were obtained, using a LEICA confocal 

microscope.  

Statistical Analysis. Sample populations were compared using unpaired, two-tailed 

Student’s t-test. *P < 0.05 was the threshold for statistical significance. Data points on the graphs 

represent average values and error bars depict SEM.  

  

4.4 Results 

A model of PDAC on a chip reveals 3D invasion and vascular replacement 

To examine the process of PDAC invasion toward engineered blood vessels, we 

engineered an organotypic model of pancreatic ductal adenocarcinoma (PDAC) on a chip building 

on a previously developed vessel on a chip (281). Briefly, our PDAC organotypic model is 
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composed of two hollow cylindrical channels, which are completely embedded into collagen matrix 

(Figure 4.1A). In one of the channels, we seeded endothelial cells to form a biomimetic blood vessel 

as previously discussed (281). In a parallel channel, we seeded pancreatic cancer cells and allowed 

them to adhere to form a monolayer of epithelial cells to mimic a ductal compartment of pancreatic 

duct. In order to observe the interactions of pancreatic ductal adenocarcinoma with the blood 

vessels, we stimulated migration of the pancreatic cancer cells with a gradient of 10% FBS, a 

commonly used method to investigate migration of cancer cells. FBS was administered into the 

endothelium channel and refreshed daily.  

Upon stimulation with FBS, the pancreatic adenocarcinoma cells in the biomimetic ductal 

channel began to proliferate and lost their polarity and pile on top of one another to form a multilayer 

of cells. By day 4, PDAC cells began to invade into the matrix towards endothelial lumen. The 

invasion was collective with epithelial cells remaining in contact with each other with branched 

structure reminiscent of epithelial morphogenesis (Figure 4.1B). As we maintained the FBS 

gradient, the pancreatic cancer cells continued to approach the engineered blood vessel. Upon 

contact with the biomimetic blood vessel, they wrapped around the blood vessel and spread along 

the length of the blood vessel (Figure 4.1C). Intriguingly, during PDAC invasion, we observed part 

of the blood vessel was de-endothelialized and replaced by the PDAC cells (Figure 4.1D). We first 

observed de-endothelialization of blood vessel in primary mouse PDAC cell line PD7591 but later 

also identified 3 additional primary mouse PDAC cell lines and human pancreatic cancer cell line 

producing the same result (Supplementary Figure 4S1). 

Close examination of the interface between PDAC and endothelium on the luminal surface 

of the vessel, we observed dying endothelial cells, marked by active caspase-3 in proximity to the 

area where pancreatic cancer cells have invaded onto the blood vessel (Figure 4.1E). To 

investigate whether our model has revealed an in vivo process that occurs in the pancreatic tumor 

environment, we subcutaneously inoculated the same tumor cells into nude mice. After the tumor 

reached 400mm3, we sacrificed the mice and resected the tumor including the adjacent area around 
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the tumor. Interestingly, we also observed a scarcity of blood vessels in the vicinity of the tumor 

region (Figure 4.1F), consistent with observations reported in genetically engineered mouse 

models and human pancreatic tumors (185). Among the small number of intratumoral blood 

vessels, a majority of endothelial cells were positive for active caspase-3, and some adjacent blood 

vessels near the peripheral tumor were also positive for active caspase 3 (Figure 4.1F).  

 

Figure 4.1. Preclinical organotypic model for PDAC-on-a-chip to capture vascular invasion and 
vascular replacement. (A) Schematic of PDAC-on-a-chip with a biomimetic blood vessel and a 
pancreatic cancer duct. Phase image shows cells seeding after 1 day in culture (B) Average 
invasion distance of PDAC cell line PD7591 towards a gradient of FBS with and without HUVECs. 
Addition of HUVECs increases migration speed of PD7591. (C) PD7591 invaded towards blood 
vessel, migrated along the vessel and wrapped around the blood vessel. (D) Confocal image of a 
section of the blood vessel invaded by PD7591 showed that part of the blood vessel was de-
endothelialized. (E) PDAC caused apoptosis in endothelial cells in the blood vessels in PDAC 3D 
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organotypic model. (F) Endothelial cells were also apoptotic in the tumor in a xenograft model in 
vivo 

 

PDAC vascular invasion induces endothelial cell apoptosis through TGF-β 

signaling. 

We next sought to identify which signaling pathways that caused endothelial apoptosis. 

We employed a 2D heterotypic co-culture of PDAC cells and endothelial cells by interspersing 

PDAC cells on top of a monolayer of endothelial cells (Figure 4.2A). Overnight incubation revealed 

a significant number of apoptotic endothelial cells in proximity to the pancreatic cancer cells while 

pancreatic cancer cells were all negative for active caspase 3 (Figure 4.2A), which is also 

consistent with our organotypic model and in vivo xenograft model. TGF-β, TNF-α, FasL, and Trail 

have been shown to induce apoptosis in different cell types (308-312). We sought to identify which 

of these apoptotic pathways may be involved in endothelial apoptosis in 2D heterotypic coculture 

with PDAC cells. After PDAC cells were plated for 24hrs with or without inhibitor of each of these 

four common apoptotic pathways, we quantified the active caspase activity. Blocking Trail, FasL, 

or TNF-α signaling with neutralizing antibodies didn’t prevent apoptosis. However, inhibition of 

TGF-β signaling with SB431542 (313) significantly prevented apoptosis of endothelial cells in 2D 

heterotypic co-culture with PDAC cells (Figure 4.2B). 

To examine the effectiveness of blocking TGF-β signaling to prevent de-endothelialization 

in our 3D organotypic PDAC on-a-chip model, we allowed pancreatic cancer cells from the 

pancreatic cancer duct to invade to the engineered blood vessel. Once the pancreatic cancer cells 

landed on the blood vessels, we started 5µM SB431542 treatment for a duration of 7 days. 

Interestingly, we also found that blocking TGF-β signaling significantly prevented pancreatic cancer 

cells to de-endothelialize our biomimetic blood vessel (Figure 4.2C).  

We further investigated whether inhibition of TGF-β signaling also led to less vascular 

apoptosis in vivo by subcutaneously injecting the same pancreatic cancer cell line PD7591 into 

mice. By day 9, when the tumor reached 100mm3, we started to administer SB431542 and control 
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vehicle into two groups of mice through peritoneal injection daily for 1 week. Interestingly, tumor 

growth didn’t decelerate in response to SB431542 (Figure 4.2D), in agreement with previous 

studies (222, 223). Remarkably, mice treated with SB431542 for 1 week had less apoptotic 

endothelial cells. Subsequently, these tumors acquired a higher vessel density within the tumor 

microenvironment (Figure 4.2E). This mirror what we uncovered using our preclinical organotypic 

PDAC-on-a-chip. 
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Figure 4.2. Inhibition of TGF-β signaling prohibited vascular apoptosis and vascular replacement. 
(A) Endothelial cells were apoptotic, shown by active caspase 3 staining (white), near the invading 
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pancreatic cancer cells PD7591 in 2D heterotypic coculture. (B) Screening for apoptosis pathways 
revealed TGF-β-mediated apoptosis in endothelial cells. (C) Inhibition of TGF-β signaling with 
SB431542 prohibited vascular replacement in 3D organotypic model. (D) Inhibition of TGF-β 
signaling with SB431542 in tumor xenograft model. Tumor growth didn’t decelerate. (E) 
Quantification of vascular apoptosis and vascular density revealed a significant reduction in 
endothelial cell apoptosis and significantly higher vessel density within the tumor in the xenograft 
model. NS indicates non statistical significance (p>0.05). * and ** indicate statistical significance, 
p<0.05 and p<0.01 respectively. 

 

Vascular replacement is driven through invasion and endothelial displacement by 

PDAC cells. 

To closely examine cellular interactions during vascular replacement, we designed a 2D 

heterotypic pattern coculture to enable careful observation of cell-cell interacts at the interface 

between endothelial cells and PDAC cells. Pancreatic cancer cells were plated inside an annulus 

while endothelial cells were plated outside the annulus ring. Retrieval of the annulus revealed a 

circular pattern of pancreatic cancer cells surrounded by a monolayer of endothelial cells (Figure 

4.3A). Over a period of 6 days, pancreatic cancer cells began to invade outward and took over the 

endothelial cells (Figure 4.3A). When cultured alone, pancreatic cancer cells expanded quickly to 

cover the surface. However, as endothelial cells were present outside, the extent of tumor cell 

invasion dropped drastically, which suggested that pancreatic cancer cells first need to break 

through the barrier of endothelial cell in order to invade outward. Notably, when the co-culture 

pattern was treated with 5 µM SB431542 to inhibit TGF-β signaling, we observed an even more 

significant reduction in the extent of tumor cell invasion, suggesting that SB431542 was effective 

to prevent vascular replacement in our 2D heterotypic pattern coculture. This 2D heterotypic pattern 

coculture appeared to capture the replacement of endothelial cells during invasion of PDAC cells. 

Similarly, we also observed the efficiency of SB431542 to prevent vascular replacement of human 

pancreatic cancer cell lines BxPC-3, and Panc-1 over several days in 2D heterotypic pattern 

coculture (Supplementary Figure 4S2). 

Interestingly, we also observed that there was a significantly high signal of active caspas-

3 in endothelial cells at the interface between endothelial cells and PDAC cells. Treatment with 
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SB431542 significantly reduced the active caspase-3 staining in endothelial cells closely in contact 

with PDAC cells (Figure 4.2B). This observation prompted us to carefully examine the cellular 

dynamics at the interface between PDAC cells and endothelial cells through time lapse movie. 

Remarkably, the PDAC cells appeared to invade and push the endothelial cell front line backward, 

causing the endothelial cells to round up and undergo apoptotic (Supplementary Movie S1). 

Addition of SB431542 to the culture media during time lapse halted the physical invasion of 

pancreatic cancer cells (Supplementary Movie S2). 

 

Figure 4.3. Vascular replacement is driven through invasion and endothelial displacement by 
PDAC cells. (A) Heterotypic pattern coculture of PD7591 and HUVECs. PD7591 was patterned 
inside the annulus while HUVECs were seeded outside the annulus. PD7591 was allowed to invade 
and replace the vascular cells in the presence of DMSO or SB431542. Invasion area of PD7591 
was quantified over 6 days and revealed the effectiveness of inhibition of TGFβ signaling to prevent 
vascular replacement. (B) Apoptotic endothelial cells were more pronounced at the interface 
between pancreatic cancer cells and endothelial cells. SB431542 diminished apoptotic endothelial 
cells in proximity of pancreatic cancer cells. Scale bar is 200 µm. * indicates statistical significance 
(p<0.05).  
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Vascular replacement of PDAC was driven through ALK7-mediated proliferation of 

PDAC cells. 

Since SB431542 has previously been reported as an inhibitor for ALK4/ALK5/ALK7 (313), 

we sought to determine which receptors in each of the cell types contributed to vascular 

replacement. In endothelial cells, treatment with SB431542 significantly reduced the apoptosis of 

endothelial cells (Figure 4.4A). We also knocked out ALK5 in endothelial cells via CRISPR/Cas9 

and observed a similar reduction in apoptosis in endothelial cells (Figure 4.4B). This demonstrated 

that ALK5 was the receptor that regulated endothelial cell apoptosis. To investigate whether ALK5 

KO endothelial cells impede vascular invasion, we plated wild type PD7591 and ALK5 KO HUVECs 

in 2D heterotypic pattern coculture. Interestingly, the quantified invasion area of PD7591 showed 

no difference between ALK5 KO vs scramble HUVECs condition (Figure 4.4C).  This suggested 

that although ALK5 regulated endothelial cell apoptosis, inhibition of ALK5 signaling in endothelial 

cells contributed minimally to PDAC invasion and vascular replacement. 

 

Figure 4. Vascular replacement of PDAC was driven through ALK7-mediated proliferation of PDAC 
cells. (A) SB431542 inhibited apoptosis of endothelial cells (n=3 individual experiments). (B) 
Knocking out ALK5 receptor in endothelial cells suppressed apoptosis of endothelial cells reflecting 
the similar effect of SB431542 (n=3 individual experiments). (C) ALK5 KO HUVECs didn’t 
decelerate PD7591 invasion suggesting that ALK5-mediated apoptosis contributed minimally to the 
vascular replacement in PDAC (n=2 individual experiments). (D) SB431542 reduced proliferation 
of PD7591 (n=3 individual experiments). (E) Knocking out ALK7 receptor in PD7591 suppressed 
proliferation of PD7591 mirroring the similar effect of SB431542 (n=2 individual experiments). (F) 



90 
 

Blocking proliferation using 5µg/ml Aphidicolin halted vascular invasion and vascular replacement 
in 2D heterotypic pattern coculture (n=3 individual experiments). * and ** indicate statistical 
significance, p<0.05 and p<0.01, respectively. 

 

On the other hand, SB431542 reduced proliferation of PD7591 (Figure 4.4D). Noticeably, 

using CRISPR-mediated knockout of ALK7 receptor in PD7591, we observed a similar reduction 

in proliferation of PD7591 (Figure 4.4E). This suggested that ALK7 mediated proliferation of 

PD7591. To verify that proliferation is the main contributor of vascular replacement, we employed 

the 2D heterotypic pattern coculture and compared the invasion area of PD7591 with and without 

Aphidicolin, a proliferation inhibitor. Noticeably, we observed a significant reduction in invasion area 

of PD7591 cells when cell proliferation was inhibited (Figure 4.4F). This confirmed out hypothesis 

that ALK7-mediated proliferation of PDAC plays a particularly prominent role to vascular invasion 

and endothelial cell replacement in PDAC. 

 

4.5 Discussion 

In contrast to most tumors, which are hyperangiogenic, human PDAC is poorly 

vascularized (185, 304). Previous studies, using genetically engineered mouse model (GEMM), 

have shown that PDAC is also hypovascular and the tumor has a paucity of vessels with diameter 

larger than 10 µm (185, 304). Interestingly, pancreatic cancer cells are also known to express and 

secrete a plethora of pro-angiogenic factors (314), which raises the question of how these tumors 

end up hypovascularized. Our studies suggest that the lack of intratumoral vasculature in PDAC is 

not a result of reduced angiogenesis per se, but instead a result of endothelial cell apoptosis 

triggered by the invading tumor cells. The ability of these tumors to rapidly invade into the vessel 

lumen and displace the endothelial cells has been observed in human PDAC samples but not with 

chronic pancreatitis (237, 238), and could explain the high rate of CTC and metastatic load of PDAC 

in general. Reportedly, 69.1% of cases of human PDAC with vascular invasion exhibits vascular 

replacement as examined through histological sections of patient samples (238). Similarly, a recent 
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study reported that when ovarian cancer spheroids were plated on a monolayer of endometrium, 

they spread on the surface of the endometrium and displaced the endometrial cells (322). This 

study together with ours demonstrate that tumor cells acquire an efficient capability to clear stromal 

components as they continue to invade and engross the stromal environment. 

Apart from discovering a mechanism to explain hypovascularity in PDAC, our study unveils 

the crucial role of ALK7 signaling to contribute to hypovascularity in PDAC. ALK7 is a receptor for 

both Activin and Nodal (193). The roles of Activin and Nodal are well characterized during 

embryogenesis and especially they also play a role in pancreas development (217). However, its 

pathological activities in diseases, such as in pancreatic cancer have been elusive. A recent study 

has linked Nodal but not Activin to the formation of pancreatic cancer stem cells (222). In addition, 

besides stimulating formation of a rare population of pancreatic cancer stem cells, Nodal has also 

been found to re-express in many human pancreatic cancer cell lines while it is absent in normal 

adult pancreatic epithelial cells. Blocking Nodal diminished liver metastasis in an in vivo liver 

metastasis model of pancreatic cancer (223). Here, we discovered that ALK7 activation stimulates 

proliferation of PDAC cells, likely mediated by Activin and Nodal ligands. CRISPR-mediated 

knockout of ALK7 in the tumor cells abrogated the invasion and replacement of endothelial cells in 

blood vessels. Interestingly, Nodal has also been linked to mediate formation of microvascular 

channels by aggressive and genetically deregulated tumor cells in melanoma (218, 315). These 

findings together with our study suggested that Nodal/Activin-ALK7 is an important signaling to 

promote tumor-blood vessel interactions and inhibiting Nodal/Activin-ALK7 signaling is a potential 

avenue to block vascular invasion and vascular replacement in PDAC. 

 Endothelial cells can be induced to undergo apoptosis via many previously identified 

soluble pro-apoptotic signals such as FasL, TNFα, TGFβ, and Trail to trigger caspase-dependent 

apoptosis. However, the apoptosis of endothelial cells induced by PDAC invasion may be triggered 

through an alternative mechanism that requires proximal physical contact and differential 

proliferation rates between the tumor cells and endothelial cells. Specifically, highly proliferative 
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tumor cells physically invaded and displaced slowly proliferative endothelial cells, leading to 

endothelial cell apoptosis and vascular replacement. Such a phenomenon resonates with a 

classical concept of cell-cell competition, which describes the existence of ‘winner cells’ and ‘loser 

cells’ based on their fitness within the local environment such as their cellular division potential 

(316). For instance, during Drosophila development, Minutes mutated cells experienced slow 

growth rate and were cleared by wild type cells through apoptosis induction (317). These effects 

are not unique to PDAC, as previous studies also observed mammary tumor lines can induce 

apoptosis in HUVECs while normal mammary epithelial cells, fibroblasts, or leukocytes did not 

(318). 

 Here, using our 3D organotypic model, we demonstrate that tumor-endothelial cell 

interactions are not restricted only to intravasation and extravasation, but involve more complex 

processes such as endothelial displacement within the blood vessels. Our simple model of PDAC 

and blood vessels provided sufficient complexity to reveal this process, yet allowed us to introduce 

genetic and spatiotemporal control to isolate receptor pathways involved for each cell type. Going 

forward, such models could be used to capture the behavior of other tumor types as well as 

additional features of tumor progression, such as specific stromal components (ECMs, stromal 

cells, blood vessel components) and immune cells. Although existing in vivo mouse models provide 

great opportunities to capture the progression of cancer, dissecting the molecular mechanisms and 

cell-cell interactions is often difficult due to the complexity of in vivo models. Thus, as demonstrated 

here, 3D organotypic models provide an important complement to understand these complex 

cellular interactions with more mechanistic insight (319). 
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Figure 4.S1. Vascular invasion and replacement were also observed in other murine primary PDAC 
cell lines and human pancreatic cancer cell line in our 3D biomimetic PDAC-on-a-chip model. (A) 
Murine primary pancreatic cancer cell line (MH6883 Clone 4) invaded and de-endothelialized the 
blood vessels. (B) Murine primary pancreatic cancer cell line (PD883) invaded and de-
endothelialized the blood vessels. (C) Murine primary pancreatic cancer cell line (MH6556 Clone 
4) invaded and de-endothelialized the blood vessels. (D) Human pancreatic cancer cell line (Panc-
1) invaded and de-endothelialized the blood vessels. In all images, pancreatic cancer cells are in 
green, HUVECs stained with CD31 in red, and cell nuclei stained with DAPI in blue. Scale bar is 
200µm. Blood vessels were outlined in yellow dash lines. 
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Figure 4.S2. Vascular invasion and replacement of human pancreatic cancer cell lines in 2D 
heterotypic patterning coculture. (A) Human pancreatic cancer cell line Panc-1 and HUVECs were 
patterned in 2D heterotypic coculture with or without 5µM SB431542. SB431542 effectively 
reduced vascular replacement of Panc-1 (n=3 individual experiments). (B) Human pancreatic 
cancer cell line BxPC-3 and HUVECs were patterned in 2D heterotypic coculture with or without 
5µM SB431542. SB431542 effectively reduced vascular replacement of BcPC-3 (n=3 individual 
experiments). * indicates statistical significance (p<0.05), ** indicates statistical significance 
(p<0.01). 
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Table 4.1. Primers for qPCR. 

Primers (5’-3’) 

Human ALK5 (Forward) GCTGTGAAGCCTTGAGAGTA 

Human ALK5 (Reverse) ATGCCTTCCTGTTGACTGAG 

Human TGFβR2 (Forward) TCCTCGTGAAGAACGACCTA 

Human TGFβR2 (Reverse) TAGGACTTCTGGAGCCATGT 

Human TGFβ1 (Forward) CTGTGGCTACTGGTGCTGAC 

Human TGFβ1 (Reverse) GCAGCTTGGACAGGATCTGG 

Human TGFβ2 (Forward) CTGCAGCACACTCGATATGG 

Human TGFβ2 (Reverse) TACTCTTCGTCGCTCCTCTC 

Human TGFβ3 (Forward) TTCCGCTTCAATGTGTCCTC 

Human TGFβ3 (Reverse) TCCTCTGCTCATTCCGCTTA 

Mouse TGFβ1 (Forward) GAGCTGCGCTTGCAGAGATT 

Mouse TGFβ1 (Reverse) ACAGCCACTCAGGCGTATCA 

Mouse TGFβ2 (Forward) CGAGCAGCGGATTGAACTGT 

Mouse TGFβ2 (Reverse) ACAGCGTCTGTCACGTCGAA 

Mouse TGFβ3 (Forward) CACGGTGCTTGGACTATACA 

Mouse TGFβ3 (Reverse) GCTGCACTTACACGACTTCA 
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Table 4.2. Oligo sequences for CRISPR. 

gRNA oligos (5’-3’) 

Human ALK5 oligos CACCGCATACAAACGGCCTATCTCG 

AAACCGAGATAGGCCGTTTGTATGC 

Human ALK7 oligos CACCGTGTGAAGCAGCATTCGGTTT 

AAACAAACCGAATGCTGCTTCACAC 

Mouse ALK5 oligos CACCGTCCGCAGCTCCTCATCGTGT 

AAACACACGATGAGGAGCTGCGGAC 

Mouse ALK7 oligos CACCGCGGTTTGGGGAAGTGTGGCA 

AAACTGCCACACTTCCCCAAACCGC 

Scramble CACCGGCACTACCAGAGCTAACTCA 

AAACTGAGTTAGCTCTGGTAGTGCC 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

Culture systems to study angiogenesis have evolved from traditional 2D systems to 3D 

systems and to microfluidic platforms to model angiogenesis. Standard 2D culture was first used 

to study endothelial cell migration in wound healing context in 2D. Tube formation on 2D Matrigel 

was also employed to study the network formation of endothelial cells. These assays, however, are 

unable to capture 3D invasion in in vivo angiogenic sprouting (242, 281). Perhaps, one of the most 

robust 3D culture systems for angiogenic sprouting is the microcarrier bead sprouting assay where 

endothelial cells are coated on a microcarrier bead and invade in a 3D manner into the interstitial 

matrix under the guidance of VEGF and additional cues provided by fibroblasts. Although 

microcarrier bead model quite accurately capture the angiogenic invasion in 3D, it is fundamentally 

lacking fluid shear stress, which endothelial cells are constantly under exposure (281). Thus, 

microfluidic platforms for angiogenesis have gained popularity as they not only introduce fluid shear 

forces but also enable better control of shear stress levels. Such a microfluidic platform is typically 

fabricated using standard photo lithography. A microfluidic angiogenesis on a chip fabricated from 

lithography is often comprised of 3 compartments. Two compartments are square rectangular 

channels, located at two sides of a middle compartment where extracellular matrix proteins are 

introduced. Endothelial cells are seeded into one of the square rectangular channels where 

endothelial cells are in contact with ECM proteins on just one vertical wall of the channel and with 

PDMS on the other 3 walls (48, 320-322). By introducing biochemical signals into the non-

endothelialized channel, endothelial cells begin to invade into the interstitial compartment and 

organize into 3D multicellular sprout structures. 

Our AngioChip device also has 3-compartment system that is capable of generating a 

gradient to induce angiogenic sprouting. However, our model has several distinct features that 

enable the study of morphogenetic processes of angiogenesis that might not be accessible by 

using other microfluidic platforms. First, the usage of acupuncture needles permits the creation of 

circular channels that resemble structural features of blood vessels. In contrast, in other microfluidic 
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devices, endothelial cells only sit on a vertical wall of extracellular matrix proteins, which may limit 

studies of how other non-endothelial cell types interact with the blood vessels. For instance, study 

of tumor cell migration along and around the blood vessels, which have been observed in vivo, may 

be challenging in such systems. Secondly, the biomimetic blood vessel in our device is completely 

surrounded by extracellular matrix proteins while other microfluidic devices may contain structural 

supports made from PDMS or glass coverslips. These mechanically stiff structures may alter cell 

behaviors as they begin to migrate into the environment with different stiffnesses (281, 319). Those 

described distinct features, thus, highlight the suitability of the AngioChip to study the 

morphogenetic processes of angiogenesis in vitro. However, similarly to other microfluidic devices, 

the Angiochip also exhibits limitations. For example, retrieval of cells for subsequent biochemical 

assays is possible but not straightforward when a large number of cells are required. In addition, 

the current design of the AngioChip does not enable study of various levels of shear stress as shear 

stress is dictated by a limited number of settings of the platform rocker. Additional modifications are 

thus required to incorporate microfluidic pump to enable studies of different shear stress levels. 

Besides, the field of angiogenesis, we also observe a rapid adaptation of cell culture from 

2D to 3D and to microfluidic platforms in different biological systems. Traditional 2D culture has 

been utilized to expand, culture and, study cellular signaling pathways. Despite their valuable 

contribution in biomedical research, they often fail to recapitulate in vivo tissue functions of many 

cell types or accurately predict drug activities (323). 3D models such as organoids, cell-embedded 

into matrices have provided an additional complexity of tissue organizations to better model disease 

states and drug responsiveness (324-327). Nonetheless, the 3D models also have limitations such 

as incapability to introduce fluid flow and tissue-tissue interfaces, which are crucial for many organs. 

As a results, microfluidic platforms offer the possibility of overcoming these limitations. In recent 

years, we have especially experienced a plethora of more complicated microfluidic-based culture 

platforms that model better disease states and functions of organs. For example, a simplified kidney 

model in a PDMS microfluidic device under physiologically relevant levels of shear forces greatly 

enhanced tissue polarization and induced formation of differentiated and polarized kidney 
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epithelium (328). A living model of human alveolar-capillary interface was created by 

microfabricating a flexible PDMS device. Human alveolar epithelial cells were cultured on one side 

of the porous membrane and exposed to air while human lung capillary endothelial cells were 

culture on the opposite side of the same membrane and exposed to flowing medium. Stretching of 

the flexible PDMS gaskets apply mechanical forces on both the human alveolar epithelial cells and 

endothelial cells to mimic better in vivo functions of lung (329). Moreover, a human blood-brain-

barrier on a chip was developed by lining a porous, fibronectin-coated polycarbonate membrane 

with human brain microvascular endothelium on one side and human astrocytes on the other side 

(330). This device also included embedded microelectrodes to measure trans-epithelial electrical 

resistance across the barrier and demonstrated approximately 25% barrier of living brain, which is 

superior to standard 2D cultures. Our biomimetic model of angiogenesis also demonstrated its 

capability to capture in vivo-like features of sprouting angiogenesis such as digestion of basement 

membrane at initial invasion, formation of tip-stalk cells in multicellular sprout structures, lumen 

formation within sprouts, formation of perfusable neovessels. It can also serve as a screening 

platform to identify the effects of angiogenic factors and the efficacy of angiogenic inhibitors in 

different contexts (281) . Taken together, the microfluidic culture systems including our AngioChip 

provide strong evidence that microfluidic culture systems are capable of reproducing human organ 

physiology. With separate compartmental designs and introduction of fluid flow and mechanical 

cues, they also provide flexibility to dissect the biomolecular and mechanical contributors to tissue 

and organ function, as well as disease development (331). 

 In this thesis, I described the fabrication of a microfluidic platform, the AngioChip, to study 

angiogenic morphogenesis and also examined the role of Cdc42 in branching morphogenesis of 

angiogenesis using the AngioChip. In the study of Cdc42, I showed that inhibition of Cdc42 

disrupted formation of multicellular structures. However, a detailed mechanism of how Cdc42 

regulates collective cell migration in angiogenesis has not been described. Because angiogenesis 

is a dynamic process that involves different cytoskeletal regulators, further studies can focus on 

the effects of different cytoskeletal regulators such as Rac, RhoA, and their GEFs and GAPs to 
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coordinate the dynamics of cellular organization in sprouts. Rho GTPases exhibited spatial and 

temporal activity during cell migration in 2D. However, how Rho GTPases activity is distributed in 

3D angiogenic sprouts remains to be explored. Molecular constructs that enable spatial and 

temporal activation of Rho GTPases have been described in literature (332). These molecular 

constructs may be employed in the AngioChip platform to explore the spatial and temporal 

regulation of Rho GTPases in angiogenesis.  

Moreover, the physical forces that are generated by tip and stalk cells during sprouting 

angiogenesis can be realized in AngioChip with high resolution imaging and sophisticated algorithm 

of tracking forces. Notch and DLL signaling has been linked to formation of tip and stalk cell (50). 

Since tip and stalk cells undergo dynamic shuffling during sprout formation, a hypothesis that Notch 

and DLL may regulate cytoskeletal proteins or vice versa during shuffling is possible. Endothelial 

cells with knock down or over activation of Notch and DLL can be seeded into the AngioChip to 

elucidate their contributions to cytoskeletal rearrangement during sprouting. Angiogenesis is not 

only regulated by soluble biochemical cues in the environment, it is also regulated by the 

mechanical cues such as substrate stiffness, topography of the extracellular matrix proteins (32, 

333). Thus, incorporating mechanically tunable synthetic materials in the AngioChip will enable 

such studies. Stromal cells in the interstitial tissue also participate in regulating angiogenesis. For 

example, macrophages have been described to enable fusion between vascular tip cells during 

zebrafish development (334). Addition of other cell types such as immune cells, pericytes, 

fibroblasts into the interstitial matrix of the AngioChip will permit studies of cell-cell interactions 

during angiogenesis. 

In this thesis, I also described a development of a pancreatic cancer on a chip by 

introducing a biomimetic pancreatic ductal cancer channel in parallel to the biomimetic blood 

vessel. This study unveils a surprising phenomenon where tumor cells can replace endothelial cells 

from the blood vessels. I also dissected the molecular mechanism that enable endothelial cell 

replacement in PDAC. However, additional experiments are required to further dissect the 
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molecular mechanisms. For instance, we have shown that Alk7 KO PDAC cells are less 

proliferative while ALK5 KO HUVECs are less apoptotic. A heterotypic patterning coculture for 

these two cells are necessary to confirm the effects of Alk7 on PDAC cells and ALK5 on endothelial 

cells to prevent vascular replacement. Additionally, we propose to perform in vivo experiments to 

identify the effect of SB431542 on vascular replacement. Similarly, we also propose to implanted 

Alk7 KO cells into athymic mice to confirm their vascular replacement potential in vivo. It is also 

essential to perform histological section or whole mount confocal imaging of tumor samples to 

identify vessels that are replaced by PDAC in a xenograft model. 

This study on vascular replacement also raises additional questions that need to be 

addressed in future studies. For example, we observed that in the presence of endothelial cells in 

the blood vessels, PDAC appeared to migrate more quickly towards the blood vessels in response 

of the gradient of FBS. This suggests that endothelial cells may secret angiocrine factors to 

modulate migration of PDAC. What angiocrine factors that are involved in this process remain to 

be explored. Interestingly, we consistently observed collective migration of primary PDAC cell line 

PD7591. These collective structures contain a tip-like cell at the front and following stalk cells at 

the rear. Since PD7591 is derived from mice with heterozygous knockout of p53 protein, which 

regulates genomic stability, it is important to verify the collective migration capability of different 

clones of primary PDAC cell lines besides PD7591. One can also ask the question whether tip-

stalk formation in PDAC collective migration is also regulated by Notch and DLL signaling as in 

endothelial cells. Will tip and stalk cells shuffle in PDAC collective migration?  

Our study on vascular invasion specifically focused on the de-endothelialization process 

where PDAC cells have already undergone multiple steps to break into the blood vessels. Thus, 

we have largely neglected the preceding steps of vascular invasion before the de-endothelialization 

process. In particular, since endothelial cells have been shown to deposit a layer of basement 

membrane proteins surrounding the endothelium (281), it is unclear how PDAC cells are able to 

interact with the basement membrane proteins (e.g.: what integrins or MMPs are required to 
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engage tumor cells to the basement membrane and enable disruption of this barrier to allow tumor 

cells to gain access into the interior of the blood vessels). Will inhibiting TGFβ signaling with 

SB431542 block the entry of tumor cells into the blood vessels or the migration of tumor cells in 3D 

interstitial matrix? Additional questions in cellular polarity during invasion of the pancreatic cancer 

cells may also be explored with the PDAC-on-a-chip. For instance, what disturbed cellular polarity 

signaling enables tumor cells to form multiple layer of cells in the biomimetic ductal channel and 

whether invasion into the interstitial matrix occurs before or after formation of multilayer of cells. 

Interestingly, as the cancer cell transition from a surface of ducts into 3D tissue or from 3D tissue 

onto a curved surface of vasculature, they need to switch from a defined basal-apical polarization 

on 2D curved surfaces into a non-defined basal-apical polarization in 3D migration. Understanding 

the molecular mechanisms that regulate this polarization switch may provide strategies to block 

tumor cell migration. 
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