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Mammary Epithelial Metastatic Phenotype Forced Through the
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Abstract
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-
matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues on cell
motility, cell-cell interaction and assembly and traction force profile in an in vitro breast cancer model. The
behavior of non-tumorigenic mammary epithelial cells was observed on surfaces with varying ligand
concentration and polyacrylamide gel rigidity. Our data shows that cell velocity is biphasic in both matrix
rigidity and adhesiveness, which are inversely related. Traction force microscopy revealed that maximum
migration velocity is reached at intermediate force of single cells.

Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤1250 Pascals. This result implies an
existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. On softer gels of 400 Pa,
stiffness similar to pre-malignant breast tissue in vivo, cells undergo multi-cellular assembly, division and re-
arrangement into 3D spherical aggregates on 2D surface. The aggregates resemble the spherical acini found in
vivo and are also formed with EpH4-J3B1 mouse mammary epithelial cells at same compliance.

We establish mechanical cross talk between cell-cell and cell-matrix adhesions. Our findings of
mechanotransduction show cell pairs exhibit 'tug of war' competitive dynamics between cell-cell and cell-
matrix traction forces. Deletion of E-cadherin binding site to β-catenin results in loss of cell-cell tension
magnitude and loss of the cross talk.

We are first to show force dynamics of cell division and cytokinesis in adherent mammalian cells. In normal
division intercellular force goes through a maximum. Inhibition of myosin II mediated contractility with
blebbistatin completely inhibits cell cytokinesis on gel surfaces. However inhibition of Rho-associated kinase
ROCK does not inhibit cytokinesis, only reduces the magnitude of the forces. Therefore myosin II mediated
contractility is necessary for cytokinesis on physiologically relevant substrates.
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ABSTRACT 

 

MAMMARY EPITHELIAL METASTATIC PHENOTYPE FORCED THROUGH THE 

EXTRACELLULAR MATRIX 

Olga Shebanova 

Daniel A. Hammer 

Biochemical and mechanical cues of the extracellular matrix have been shown to play 

important roles in cell-matrix and cell-cell interactions. We have experimentally tested 

the combined influence of these cues on cell motility, cell-cell interaction and assembly 

and traction force profile in an in vitro breast cancer model. The behavior of MCF10A 

non-tumorigenic mammary epithelial cells was observed on surfaces with varying 

fibronectin ligand concentration and polyacrylamide gel rigidity. Our data shows that cell 

velocity is biphasic in both matrix rigidity and adhesiveness, which are inversely related. 

Traction force microscopy revealed that maximum migration velocity is reached at 

intermediate force of single cells. 

 Cell-cell adhesion becomes strongly favored on softer gels with elasticity !1250 

Pascals. This result implies an existence of a compliance threshold that promotes cell-cell 

over cell-matrix adhesion. On softer gels of 400 Pa, stiffness similar to pre-malignant 

breast tissue in vivo, cells undergo multi-cellular assembly, division and re-arrangement 

into 3D spherical aggregates on 2D surface. The aggregates resemble the spherical acini 

structures found in vivo and are also formed with EpH4-J3B1 mouse mammary epithelial 

cells at same compliance.  
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 We also establish mechanical cross talk between cell-cell and cell-matrix adhesions. 

Our findings of mechanotransduction show cell pairs exhibit 'tug of war' competitive 

dynamics between cell-cell and cell-matrix traction forces. Deletion of E-cadherin 

binding site to "-catenin results in loss of cell-cell tension magnitude and loss of the cross 

talk.   

 Finally, we are first to show force dynamics of cell division and cytokinesis in 

adherent mammalian cells. We find in normal division intercellular force goes through a 

maximum. Inhibition of myosin II mediated contractility with blebbistatin completely 

inhibits cell cytokinesis on gel surfaces. However inhibition of Rho-associated kinase 

ROCK does not inhibit cytokinesis, only reduces the magnitude of the forces. Therefore 

myosin II mediated contractility is necessary for cytokinesis on physiologically relevant 

substrates.  The results show affects of the biochemical and mechanical stimuli of the 

ECM on the strength and force of cell-cell and cell-matrix adhesions.
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Chapter 1

Introduction

1.1 Cancer pathology and Extracellular Matrix in breast

cancer metastases

Metastasis of tumor cells to distant organs is the primary cause of cancer-related mortal-

ity. Breast cancer metastasis accounts for over 90% of lethality in cancer patients [1].

Breast cancer survival rate for women with distant metastasis in the United States is 25%

(American Cancer Society Facts and Figures). Progression of benign tumors to invasive

carcinomas is a life threatening yet poorly understood phenomenon in the development of

the disease. Events of tissue destabilization, increased proliferation, loss of cell-cell adhe-

siveness, and increased cell-matrix interaction ultimately result in loss of tissue integrity,

cell invasion and metastasis, which are the motivation of my thesis work.

The normal mammary tissue consists of globular epithelial cells surrounded by extra-

cellular environment called the stroma. The highly polarized epithelial cells form hollow

lumen containing spheres, called acini, and ducts surrounded by less abundant myoepithe-

lial cells and basement membrane [2, 3] .

In the human breast the interstitial stroma is abundant, more than 80% of breast vol-

1



ume, and dynamically changing environment [2]. The stroma consists of fat tissue, blood

vessels, interstitial/interlobular dense and intralobular loose connective tissues. The hu-

man epithelial cells are located in collagenous compartments separate from the fat tissue,

whereas in mouse mammary glands the cells are directly embedded in fatty tissue. The

ratio of fibrous interstitial stroma to fat tissue in the human breast is highly unique to the

individual [2]. The breast tissue is constantly subjected to changes in hormone levels in

addition to the microenvironment changes [4].

It is becoming more apparent that the dynamic mammary gland environment is instru-

mental in maintaining organ integrity and homeostasis or in promoting and initiating breast

cancer development [4, 5]. The extracellular environment is not a passive support for ep-

ithelial cells but an active contributor to tumor progression [4]. Diverse factors of aging,

inflamed and changing extracellular environment have been found as leading developers of

cancer progression and metastasis.

Abnormal breast epithelium in benign tumors shows high proliferation with stromal ex-

pansion and fibrosis. Progression of the disease that results in metastasis shows increased

stroma deposition of collagens, fibronectin, laminin, proteoglycans, and glycosaminogly-

cans, compared to a extracellular matrix of a wound healing gone awry [2, 6, 7]. These

changes in extracellular environment have been found in tumor tissue and favor invasion

through mechanical changes due to increased fibrosis and matrix crosslinking [8, 9]. Col-

lagen deposition is accompanied by loss of collagen curvature and increased fibril linearity

and crosslinking, with increase amounts of amine oxidase crosslinking enzyme, LOX [8].

Normal human mammary gland is measured around 160 to 400 Pa, where as breast tumors

can be 2 to 4 kPa or even stiffer [8-12].

Mammographic studies on women with dense breast tissue, containing increased col-

lagen and fibronectin deposition in the stroma, found increased risk of breast cancer [13].

Fibronectin (FN) ligand is found abundant in the mammary gland basement membrane dur-
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ing development and tumorigenesis [3], but normal adult mammary tissue is largely devoid

of fibronectin [14]. The mechanical properties in addition to the biochemical changes al-

ter in vivo matrix adhesion and change cellular signaling and subsequent cellular behavior.

Differences in cellular response to matrix density and rigidity in vivo and in vitro attest

to the importance of biophysical and biochemical cues of the extracellular matrix (ECM).

In vitro studies have observed in detail how increasing matrix stiffness, through increas-

ing collagen density or stiffness of polyacrylamide gels coated with basement membrane,

disrupts the ordered lumen containing acini and induces cell invasiveness [9].

Biochemically it has been additionally found that deposition of fibronectin in the base-

ment membrane reverses growth arrest of the homeostatic acini tissues and promotes more

fibronectin production [3]. Increased fibronectin levels are observed in stroma of various

types of mammary tumors [14]. Furthermore FN deposition is up-regulated by the extracel-

lular rigidity [3]. Additionally extracellular tenascin, hyaluronan, and thrombosponin are

considered to favor invasion [2]. During progression to invasive breast cancer the tumor

cells come in direct contact with the remodeled fibronectin and collagen rich and mechani-

cally stiffer interstitial stroma [4]. Therefore the focus of our research lies in studying these

two ligands in combination with mechanical changes to study cell invasiveness through

cell-matrix regulated motility and cell-cell adhesivity.

The genetic mutations or other carcinogenic events leading to malignant breast cancer

are not discounted in this research. But it is more and more evident that cancer development

and progression is not solely dependant on genetic predisposition of the individual cells

within the tissue. The tendency to metastasize is preordained by a spectrum of genetic

mutations, but it is the extracellular microenvironment of the organ that induces the tumors

to metastasize and arrest in specific organs [15]. An inflammation related mechanism is

also implicated in ECM changes. The immune response can be caused by number of factors

like bacterial and viral infections, carcinogenic substances, obesity, aging, senescence [16].
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The inflammatory response contributes to the malignant phenotype through restructuring

of the extracellular environment. Changes that promote the invasive malignant transition

and are therefore of interest to us.

Furthermore studies on intercellular components of normal and tumorigenic breast tis-

sue revealed loss of polar localization and up-regulation of cell-matrix and cell-cell molecu-

lar proteins such as integrins, cadherins, vinculin, talin, α-actinin and focal adhesion kinase.

In normal mammary gland integrins are found on basolateral surface of acini epithelial

cells, but in invasive carcinomas the staining was random throughout the cell aggregates

[17]. In vitro 3D studies of invasive breast cancer cell aggregates treated with anti-β1 inte-

grin antibodies reverted the malignant phenotype to an ordered spherical structure [18, 19].

A direct connection has thus been made between extracellular matrix crosslinking density,

that yields the tissue stiffening, and enhanced integrin signalling [8].

Mechanical equilibrium must exist not only with the environment but also between the

cells in a tissue. Cell-cell junctions hold together and shape distinct tissues and organs,

specifically adherens junctions are the site of connection of transmembrane proteins to

the cytoskeletal actin filaments that provide architectural strength and form and maintain

tissue homeostasis. Adherent cells modulate forces onto each other to maintain the tissue

integrity. Influenced by cues from the ECM these cell-cell tensions and adhesion mechanics

change and become unstable, which aids in cell invasion and metastasis [20].

Breast tissue integrity is also dependant on cell-cell adhesion. Epithelial cells rely on

cell-cell adhesion to maintain tissue integrity and function [21-23]. Development of benign

lesions into invasive metastatic cancer is characterized by a tumour cell’s ability to over-

come the cell-cell adhesion and invade surrounding tissue [24]. Early classical demonstra-

tions showed tumor cells adhering to each other less avidly than non-tumor cells [25-26].

An important player in epithelial cell adhesion is E-cadherin. The cadherin staining

of normal glands is localized to apical cell-cell junctions. This patterning and E-cadherin
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adhesion function are lost in invasive tumors [17, 24]. E-cadherin is thought to act as sup-

pressor of epithelial tumor cell invasiveness and metastasis [27]. Loss of E-cadherin or

any of the intracellular E-cadherin-catenin complex cause loss of cell adhesion and tumour

progression. Studies also show over-expression of E-cadherin leads to growth arrest while

inhibition of cadherin function induces tumorigenicity [24]. Thus experimental manipula-

tion established an inverse relationship between E-cadherin expression and function and tu-

mor progression [28]. Overall evidence demonstrates that perturbed E-cadherin expression

and function promotes cancer progression to invasion and metastasis [28]. Loss of expres-

sion and gain-of-function mutations of β-catenin are also common in human cancers and

result in loss of cell-cell adhesion and increased gene transcription [29]. Loss of α-catenin

in some cancer types has served as a stronger prognostic factor for invasion, growth and

metastasis [30]. Furthermore 5 year survival rate of cancer patients with α-catenin loss was

drastically decreased compared to those with just E-cadherin loss [30].

The final part of this thesis work that is an important precursor of tumor formation,

which is cell division. There is a long standing link between cell division and cancer. The

human body itself continually replenishes with ~108-109 cell division events occurring at

every moment in time [31]. Therefore successful cell division is critical to human health.

Discovery and understanding of cell division have existed since nineteenth century. It orig-

inated with the work of German biologist Theodor Boveri in 1888, who introduced the idea

of the connection between abnormal mitosis and malignant tumours. It is the final stages of

abscission and failure of complete cytokinesis that has been proposed to promote tumori-

genesis through tetrapoloidy and chromosomal instability [32]. Although once presented

as a simple picture of constriction of the equatorially positioned cleavage plane containing

contractile ring of parallel actin filaments and myosin, cytokinesis has been identified as a

more complex process in recent studies. Not only is the mechanism different in different

cell types, but also the necessity of attachment to the extracellular environment in mam-
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malian cells has become a novel area of discovery. Today the process still remains widely

studied with questions left to be explored. Research on cell division is important to lead to

understanding and better treatments of disease such as cancer and especially breast cancer

in our work.

Numerous studies indicate it is similar molecular players of integrin and cadherin me-

diated adhesion that alter cell proliferation behavior Inhibition of cell spreading on two

dimensional substrate induces epithelial cells to arrest in the growth phase, G1, of the cell

cycle [33]. Integrin mediated matrix adhesion, in addition to growth factors, is important to

cell division and in its absence the mitogenic signaling is weak and transient [34]. Increased

matrix adhesivity due to increased ligand densities and stiffness and decreased cell-cell co-

hesivity, both increase cell mitogenic activity. Thus we look at how the necessary adhesion

to the extracellular environment controls cell proliferation.

The extracellular environment not only promotes breast cell invasiveness and metasta-

sis, but also the arrest and establishment of metastatic aggregates in distant organs. Breast

cancer, in addition to prostate and lung, preferentially metastasize to the bone [35]. In

fact 70% of all patients dying of breast cancer have evidence of metastasis to the bone

[36]. The bone marrow microenvironment is rich with microvessels and growth factors

[35, 37]. The bone is mechanically a very rigid environment, ranging in elastic modulus of

50 to 100kPa [11]. This physiological phenomenon of cell motility at higher breast tissue

stiffness, but arrest in stiffest bone tissues hints at a non-linear more unique relationship be-

tween cell motility and the extracellular environment. Futhermore bone cells, osteoblasts

and osteoclasts secrete paracrine factors that induce chemotaxis and cell adhesion, support

cell survival and growth and stimulate angiogenesis [35]. Involvement of chemokines in

breast cancer metastasis is an established interesting idea with many unanswered questions

to understand as well [38, 39].

The importance of extracellular environment in metastatic tumor progression begs the
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question if cancer can be reversed by engineering the tumour microenvironment. Although

extracellular adhesion proteins, like integrins, have become molecular targets for develop-

ing cancer compounds entering clinical trials on anti-migratory drugs [40], there are no

currently published compounds for extracellular matrix modifications. Perspectives have

been written to raise the possibility of developing a tissue engineering approach to can-

cer therapy with materials to induce cancer reversion to normal tissue [41]. Levental and

al. also found that inhibition of lysyl oxidase (LOX) enzyme in vivo decreases collagen

crosslinking and fibrosis and inhibits breast tumour progression [12] and LOX repression

inhibits cell invasion in vitro [42]. Therefore LOX could be a potential breast cancer ther-

apy target to inhibit tissue stiffening in early detected tumours and thus prevent invasive

metastasis.

How the extracellular environment stimulates intracellular pathways, facilitates abnor-

mal cell division, increases cell migration and decreases cell-cell interaction is an important

mechanical and biochemical phenomenon in cell invasion, a critical step in cancer progres-

sion. Our focus on studying and understanding the important step of tissue destabilization

in breast cancer metastasis will advance the knowledge and understanding of the begin-

ning stages of mammary cell invasion. Understanding dynamics and force generation of

cell-matrix and cell-cell interactions will aid in understanding the metastasis phenomenon

of cancers and additionally will shed light on a diversity of areas such as embryogenesis,

organ and tissue development and regeneration. The gained knowledge of the mechanism

of cancer metastasis can lead to better diagnosis of breast cancer progression as well as

other metastatic cancers, new treatments and therapies.
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1.2 Cell-matrix and cell-cell mechanotransduction com-

ponents and pathways

To better understand the role of cell adhesion to the extracellular environment and to its

neighbors in metastatic behavior, it is important to look at both intra- and inter- cellular

players and pathways involved. The mechanical stretching and unfolding changes to the

molecules themselves have been found to mediate the ECM initiated intracellular cascade.

Therefore I’ll review and summarize key molecular components and pathways leading to

the invasive motile mechanosensing and transducing behavior.

Cell-matrix adhesion

Focal adhesions (FA) provide the platform of connection between the ECM and the cy-

toskeleton and response to external force. The molecules involved in FAs are called mechano-

sensors because they detect external mechanical signals and convert them to biochemical

signals inside the cell. These biochemical intercellular signals are furthermore interpreted

by mechano-transducing molecules at the FA to exert force back onto the extracellular en-

vironment. Focal adhesions are mechano sensor and transducer sites that modulate cell

behavior and phenotype, in vitro and in vivo [43].

The key cell connector and signal transducer to the biochemical and mechanical extra-

cellular matrix is the integrin protein. Although multiple other receptors and membrane

proteins play a role in interpreting and transmitting signals to the cellular surroundings,

integrin family of proteins is key in cell-matrix adhesion. Integrins are interesting and un-

usual transmembrane receptors because of their bidirectional signalling ability: outside-in

and inside-out. Interesting work on inside-out integrin activation via chemokine and the

role of ECM is studied in neutrophils, dendritic and other blood cells in Hammer lab [44].

In this work we focus on outside-in affects of ECM on epithelial behavior.
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The ECM integrin binding leads to a vast signaling cascade and structural changes

within the cell, assembly of cytoplasmic multimolecular complexes, cytoskeletal engage-

ment, pathways that ultimately lead to gene expression and measurable cell behavioral

mechanical responses. It is a grand stage of numerous players, of which a few will be men-

tioned with relation and better understanding of the dynamic ECM-integrin-cytoskeleton

linkage in cellular mechanotransduction.

The initial ECM bound integrin-cytoskeleton linkage involves talin recruitment with a

2 pN slip bond initial force applied by the cytoskeleton onto the extracellular ligand [45].

Talin null cells have minimal and delayed focal adhesion formation [46]. Talin binding

is readily followed by vinculin recruitment to the nascent adhesion site. Vinculin head

binds talin and its tail domain binds to F-actin and paxillin [47]. Vinculin readily available

binding sites are supplemented with those exposed only upon mechanical stretching of its

helical bundles [48-51]. Vinculin has been found necessary for focal adhesion maturation

and required for its stability [52] and is therefore an important mechanotransducing protein

in cell-matrix adhesion.

Recent published data from Schwartz lab elegantly measured tension across this mechan-

otransducing molecule with Fluorescence Resonance Energy Transfer (FRET) [53]. Di-

rectly measuring the force across vinculin molecule, ~2.5 pN in stable FAs, shows highest

tension during adhesion assembly and lowest during disassembly. The data shows that vin-

culin recruitment and force transmission are required for FA stabilization under force, but

these two are independent processes [53].

Both talin and vinculin establish a ’slippage clutch’ between the static matrix adhe-

sions and the treadmilling actin [54]. The continuous myosin pulling of actin transmits the

pulling forces onto the ECM, via strong connection between integrin and F-actin through

talin and vinculin. Weaker linkage to the integrins leads to detachment of actin and sliding

of the cell body over the adhesion. This is a precise local regulation mechanism of cell
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motility on integrin-actin level [55]. The clutch mechanism is a local modulation of the

strength of the integrin-actin connection in response to the changes in attachment strength

to the ECM, either through talin and vinculin or α-actinin [56]. This proposed mecha-

nism of tunable integrin-actin interaction in response to extracellular cues implicates talin,

vinculin and α-actinin as important mechanotransduction players.

Signalling proteins are also necessary for the mechanical integrin-actin modulation.

Paxillin protein is detected in nascent adhesions. Its structure allows for numerous simulta-

neous interactions and its function is of a molecular platform regulating integrin-actin link-

age through modulating the FA composition [43, 57, 58]. Focal Adhesion Kinase (FAK)

plays an essential role in promoting focal adhesion turn over, which is necessary to pro-

mote cell motility [43, 59]. FAK-null cells cannot detect differences in ECM rigidity unlike

normal cells that migrate preferentially on rigid substrates [60]. Furthermore FAK is found

over-expressed in invasive breast cancer [61].

Stronger cell-matrix adhesion is dependant on growth and maturation of FAs, which is

dependant on inside-out mechanisms of α-actinin actin crosslinking and myosin II contrac-

tile activity [55, 62]. Outside-in externally applied force is found to achieve the same result

[63]. Thus outside force affects FA growth through inducing actin cross-linking, which is

dependant on α-actinin and myosin II, although not specifically on the contractile activity

of myosin II. The cross-linking and bundling of actin filaments may promote clustering of

integrins and induce further accumulation of signaling partners that lead to even further

growth of the adhesion plaque [55].

The physical link between integrins and actin is also important in actin polymerization

and global control of the cytoskeletal dynamics. In addition to FA components, it is actin

that drives cell protrusion and retraction in migration and regulation of cell shape. Local

actin polymerization is through a central molecular Arp2/3 complex [64] and is coupled

to global regulation of actin dynamics by the family of Rho GTPases. Most important of
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Figure 1.1: Integrin signalling pathways.
Few examples of the integrin mediated mechanical and biochemical input, signaling pathways, re-
sponses and the phenotypic output. Highlighted in yellow is intracellular force generating machin-
ery of consequence to our research. Graphic is modified from Legate et al. [55].

these are Rac, Cdc42 and RhoA. Integrin ligation and clustering target Rac to the lead-

ing edge where it promotes lamellipodial protrusion and regulates actin polymerization.

RhoA promotes cell contractility. One of its effectors is Rho Kinase (ROCK) which af-

fects contractility by increasing phosphorylation of the regulatory light chain of myosin II.

Initial phases of cell adhesion and lamellipodial protrusion require Rac activity and RhoA

suppression, which can be accomplished by Rac1, and then stabilization of the contacts

necessary for motility depends on Rho [43, 55, 65]. These two players are also involved in

cell-cell adhesion and become especially interesting in cell division, specifically cytokine-

sis, of adherent cells.

Integrins are thus unique proteins that connect all these diverse intercellular pathways

11



to extracellular environment, a modified Fig. 1.1 published by Legate et al. illustrates the

connection [55]. They regulate ligand-binding affinity, integrate mechanical and chemical

signals of the ECM through direct association with the cytoskeleton and transmit resulting

contractile forces onto the ECM. Of coarse each protein in the vast cell-matrix interaction

has an important role, only very few ones are listed and studied in this work. But the briefly

described intracellular molecular players implicate and stress the importance of outside en-

vironment mechanical force and biochemical ligand cues. These molecules are implicated

in mediating signal transduction in response to mechanical stimuli at the mechano-sensor

site of focal adhesion. However from all the specific protein-protein binding interactions

and players identified in FAs, there still exists a lack of understanding how a cell regulates

these combinatorial interactions in a spatial and temporal manner to regulate cell behavior,

specifically spreading, motility and force response.

Furthermore it is important to consider that most of these molecular studies have been

conducted on tissue culture plastic or class surfaces, which are not physiologically rele-

vant rigid materials and are not representative of natural cellular environments. Currently

it is unknown precisely how changes in matrix composition alter the composition of these

signaling complexes. To gain a more thorough and correct understanding of outside-in sig-

naling and activity it is necessary to dissect, supplement and revise the current knowledge

on more physiological mimicking substrates.

The work of this thesis focuses exactly on that: the affect of physiologically relevant

conditions in breast cancer development on complex cellular response measured and quan-

tified through the cell motile and mechanical behavioral response.

Cell-cell adhesion

Equivalent to cell-matrix focal adhesions with integrins as connectors, cell-cell interactions

maintain Adherens Junctions (AJ) with cadherin proteins as the key signal transducer from
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outside-in. Cadherins are plasma membrane-spanning proteins that mediate cell-cell ad-

hesion by binding to identical cadherins on the surface of neighboring cells. Interestingly

enough, cadherins are found to have inside-out and outside-in signalling capabilities as

well [66]. Outside-in signaling is elicited by cadherin ectodomain binding which triggers

local accumulation of phosphorylated proteins, recruitment and redistribution of actin fila-

ments and membrane remodeling. The inside-out signaling is seen in altered extracellular

cadherin binding which is changed by microfilament and microtubule depolymerization

affecting intracellular cadherin domain [66].

The cytoplasmic domain is linked to the actin cytoskeleton and therefore modulates me-

chanical cell-cell adhesion, serving in tissue recognition and sorting, boundary formation,

maintenance, coordinating cell movement and inducing polarity, influencing both integrin-

matrix adhesions and growth factor signaling pathways [67]. Cadherin-mediated cell-cell

adhesion is fortified by catenin molecules that bind to the cytoplasmic tail of cadherins and

link it to the actin cytoskeleton. Just like integrins, cadherins have been found to cluster

at sites of cell-cell adherens junctions, allowing for the development of mechanical stress

within the epithelium [68, 69].

Cadherins are type 1 membrane glycoproteins that function as dynamic membrane

spanning macro-molecular complexes [22]. The extracellular domain of cadherins con-

sists of calcium binding repeats which are important for homophilic recognition and adhe-

sion, although heterophilic interactions between classical cadherins have also been reported

[28, 67]. Cytoplasmic domain of cadherins is highly conserved between different subtypes

and binds directly to several cytoplasmic proteins including β-catenin and p120 [67, 147].

These binding proteins are important in connection with the cytoskeleton. p120 directly

binds and inhibits RhoA and indirectly activates Rac1 and cdc42 [70, 71]. β-catenin bind-

ing to E-cadherin is necessary for cell-cell adhesion [72].

β-catenin binds directly to α-catenin which is connected to actin cytoskeleton, although
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the mechanism is not yet clearly defined. Work by Nelson lab has shown that it is in fact

excess unbound α-catenin dimers that engage the actin filaments, suppress actin assembly

and strengthen cell-cell adhesion [30]. In fact α-catenin binding to β-catenin and actin was

found to be mutually exclusive, due to an allosteric switch in the monomer conformation

of α-catenin to bind preferentially E-cadherin/β-catenin complex versus the homodimer

binding and bundling actin filaments [73]. Since β-catenin/α-catenin binding affinity is

relatively weak at ~1 μM and cytoplasmic α-catenin homodimer concentration is ~10X that

of the monomer. The role of the α-catenin is then thought to be in dimer reorganization

of actin dynamics at cell-cell contact to decrease membrane activity, stabilize cadherin-

mediated cell-cell adhesion and further decrease cell migration [30, 73, 74].

Furthermore if E-cadherin bound β-catenin serves a supportive role in cell-cell adhe-

sion and tissue connectivity and integrity, the unbound intracellular β-catenin serves an

antagonistic role. Intracellular stabilization and accumulation of unbound β-catenin re-

sults in nuclear translocation and transcription factor induction of the protein, which will

be discussed with cell division. β-catenin stabilization and nuclear translocation tips the

equilibrium from normal to uncontrolled proliferation, differentiation and tissue disruption

in colorectal cancer. β-catenin and Wnt protein signaling pathway has also been found to

trigger tumorigenesis in breast cancer in addition to skin, bone marrow and colorectal can-

cers [75]. Immunohistochemical staining of β-catenin and E-cadherin in different types of

cervical carcinomas found strong cytoplasmic and nuclear stains, versus membrane bound

in normal tissue [76]. Tumor cells with nuclear accumulation of β-catenin have also been

found to undergo loss of E-cadherin expression and epithelial-mesenchymal transition, a

phenomenon describing transformation events to invasive epithelial cancers [75]. The E-

cadherin β-catenin relationship in cancer cell invasion has been further modeled and simu-

lated as well [77].

RhoA and Rac1 have been found to regulate E-cadherin function and reorganization
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Figure 1.2: E-cadherin cell-cell junction schematic.
Schematic overview of the E-cadherin-catenin complex involved in cell-cell adhesion. Key
proteins of interest in our reserach are E-cadherin and β-catenin and their connection to the
actin cytoskeleton. Adopted and modified from Berx et al. [147]

of cadherin-catenin complex and the underlying actin cytoskeleton [24, 78]. Rac1 spatio-

temporally reorganizes the plasma membrane at newest cell-cell adhesion sites and de-

creases at older, stabilized sites [79]. Rac1 is activated upon and co-localizes to E-cadherin

adhesion and regulates local actin dynamics through promoting its nucleators, such as

Arp2/3. The Rac1 mediated lamellipodial initiation of contact is suppressed and followed

by actomyosin contraction in later stages of cell-cell adhesion [78]. α-catenin homodimer

concentration grows as clusters of cadherin-catenin complexes grow and local inhibition

and decrease in Arp2/3-mediated actin polymerization is observed [78]. RhoA activity is

detected after the de novo cell-cell adhesions are formed - however its role and actomyosin

contraction are not as clear. One theory is that at cell-cell contact RhoA actually aids in

contact expansion and does not maintain contractile activity [78].

Mechanotransducers like myosin II and myosin VI are also found in cell-cell adhesions.

Recruited and stimulated by E-cadherin, myosin II is responsible for regional distribution

and clustering of the cadherins [80]. Myosin VI is recruited to mature cohesive cell-cell
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contacts and is necessary for maintaining the strong cadherin adhesion and interaction with

vinculin [81]. Fig. 1.1 can thus be adopted and slightly changed to represent the E-cadherin

cascade from cell-cell adhesion input to output change in cellular phenotype. Fig. 1.2,

adopted from Berx et al. [147], is a pictorial representation of the described intracellular

proteins involved in E-cadherin mediated cell-cell adhesions.

Cadherins can be further influenced by integrin-mediated signaling. Assembly of new

cell-cell adhesion complexes on the periphery of old ones has been found to be aided by

presence of integrins [78, 82, 83]. This cross-talk between FAs and AJs is further impli-

cated through shared molecular players like Rac1, RhoA, and vinculin. Since the cadherin-

catenin complex does not bind actin directly, Nelson lab hypothesizes that actin cytoskele-

ton is anchored by integrin based focal adhesions co-localized with the cell-cell cadherin

based adherens junctions [78], leading to a direct dependence of AJs on FAs.

A recent study from the Nelson lab of epithelial cell behavior on micropatterned E-

cadherin and Collagen functionalized surfaces demonstrated the cross-talk between E-

cadherin and integrin adhesion complexes for a single cell. The results showed migration

and traction force dependence on integrin pathway but directionality and lamellipodia ac-

tivity is dependant on E-cadherin related signalling [84], leading to dependence of newly

forming FAs on AJs. Although cadherin-based binding did not dictate migration rate on

the micropatterned surfaces, Leckband group found that E-cadherin expression reduced

cell motility in both adhesion dependant and independent manner. Expressing E-cadherin

in null breast tumor epithelial cells decreased migration with expression level and with

immobilized E-cadherin surface density [85].

Therefore motility is affected by a delicate interplay of both adhesion complexes, which

convinces that a mechanical interplay must exist. In migration the connection is shown

through the actin cytoskeleton and the mechanosensor molecules involved in both cell-

matrix and cell-cell adhesions. Similar to focal adhesions where force is transmitted to the
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extracellular environment, in adherens junctions, mechanical force signals must be trans-

mitted between neighboring cells as well [33]. Traction forces in fact have been detected

and measured through cadherin mediated adhesions [86, 87]. Although the magnitude of

force is lower than that detected in integrin adhesion mediated traction forces, they are sig-

nificant and similarly increase with increasing substrate rigidity. Furthermore myosin II

disruption through blebbistatin shows decrease in cadherin mediated cell-cell adhesion and

force generation, again similar to findings in FA studies [80, 87]. Cell-cell adhesion com-

plexes therefore mechanosense stiffness of the neighbor and mechanotransduce contractile

myosin II dependant forces.

The cross-talk between FAs and AJs is additionally thought to be in dynamic competi-

tion with each other, leading to a regulated balance between cell-cell and cell-ECM adhe-

sion. Sharing same intercellular components, such as Rac1, RhoA, and vinculin, could also

contribute to the competition between FAs and AJs. The Differential Adhesion Hypothesis

(DAH) addresses this competitive cross-talk through tissue surface tension of intercellu-

lar adhesive differences and elegant experimental results [88, 89]. Ryan et al. found that

increasing cell-cell adhesion through increased cadherin expression or decreased substrate

ligand expression leads to a decrease in cell-substratum adhesion and more tissue like cohe-

sivity [90]. The hypothesis thus supports the competition between cell-cell and cell-matrix

adhesions.

Cell division

Cell-matrix adhesion is imperative and necessary in adherent mammalian cells. Futhermore

both, integrin and cadherin mediated adhesions and their shared intracellular molecular

players have all been found important in cell proliferation.

β1 integrin has been found to associate with epidermal growth factor (EGF) receptor in

epithelial cells and be necessary for the cell cycle to proceed to mitotic (G2/M) phase [91].

17



Integrin dependent activation of the EGF receptor activates extracellular signal-regulated

kinase (Erk) and protein kinase B (Akt) dependent growth phase (G1) progression [92].

Rho, actin polymerization, actin-myosin contractility and myosin light chain-dependant

contractility are all necessary for cyclin D1 expression and cell cycle progression [33]. FAK

has been shown to stimulate cyclin D1 promoter and that cyclin D1 mRNA is a major target

for FAK [93-95]. Rac1 also increases c-Jun N-terminal kinases (JNK) and Erk activity

which increase proliferation [34].

Both biochemical ECM cues, such ligands as fibronectin and collagen, and mechanical

strain have been shown to cause S phase (interphase) entry [33]. Substrate rigidity increases

cell proliferation rate [96]. Kumar et al [97] demonstrated that cyclic mechanical strain

increases cell proliferation of myoblasts.

Proliferation is also linked to cell-cell adheren junctions. Increase in cytosolic β-catenin

acts as a transcription promoter and promotes proliferation [24, 34]. Although under basal

conditions cadherins serve as sinks for β-catenin binding and free cytosolic β-catenin levels

are kept low by rapid degradation [28]. This normal homeostatic state can be inhibited by

Wnt signalling, which is upregulated in tumors [75]. Thus it appears cadherin’s capacity

to bind and buffer β-catenin is critical during active cell signaling to keep proliferation

in check, especially in tumors. Furthermore studies suggest E-cadherin has a capacity to

negatively regulate mitogenic signaling through growth factor receptors [28]. But VE-

cadherin has been found to stimulate S phase entry in cells with intact actin cytoskeleton

and actin-myosin contractility [98]. α-catenin conditional deletions in mouse epithelia cells

cause them to be hyperproliferative, multinucleated and more motile [99].

The research on intramolecular pathways of cell division is vast and astounding, which

motivated us to look closer at the events of cell division through the extracellular matrix.

The mechanical role of the ECM or cell-cell adhesion is very unclear in cell division, es-

pecially in mammalian adherent cells. Therefore it is imperative to better understand the
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ECM and intercellularly mediated mitotic behavior. In this inherently mechanical process,

the dynamic cytoskeletal polymers and motors cooperate and work together to generate the

forces necessary for mitosis and cytokinesis in cell division [100]. Intact actin cytoskeleton

and retrograde signalling are required for onset of mitosis, but cell-cycle machinery can

control the state of actin organization, therefore cell division is a complicated inside-out

and outside-in signalling process [101]. Through the actomyosin cytoskeleton engagement,

force is generated at the equator during the cytokinesis of a dividing cell to separate it into

the two new daughter cells. Myosin-dependent equatorial contraction model has been es-

timated to contain thousands of myosin molecules and generate maximal contractile force

of 1 to 100 nN in the contractile ring [100]. Other computational models of the contrac-

tile ring mechanism have been published [102, 103] and raise an interesting question of

whether cytokinetic contraction is local to the equator of the division furrow or is global in

the cell.

Overall it is clear the mechanical process of dividing the cell body into two daughter

cells is a complex system with genetic code, mechanical as well as biochemical sensors,

feedback loops and force transducing machinery. The feedback mechanosensory loop has

been observed in the early stages of cytokinesis. Mechanical perturbation with micropipette

aspiration technique applied to the cortical pole of an early stage dividing cell shows the

division process delayed. Myosin II localizes to the stressed and deformed pole and cy-

tokinesis halts until the cell is able to readjust itself. When the cell recovers by rearranging

myosin II and cytoskeletal components in the equator ring region, cytokinesis proceeds.

However this is not the case in late stage cytokinesis. In late stages, the myosin does not

localize to the site of mechanical disturbance. The contractile ring remains intact and cy-

tokinesis continues and cell divides even under mechanical stress [104]. Nonetheless this is

even more evidence of an important role force and mechanical stimuli play in cell division,

specifically cytokinesis.
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Myosin II inhibition experiments of adherent mammalian cell lines showed that sub-

strate adhesion rescues cytokinesis in 90% myosin II inhibited cells. Blebbistatin inhibi-

tion only blocked cytokinesis when >95% of myosin was blocked and the observed cellular

behavior implicated the inability of the daughter cells to spread in opposing polar direc-

tion which caused the failure of scission [105]. All this implicates substrate adhesion as

necessary driver in addition to myosin contraction in the equatorial furrow region in the

mechanical cytokinetic process.

1.3 ECM mimetic in Traction Force Microscopy

Cell traction forces are crucial and necessary in a range of biological processes such as

wound healing, inflammation, angiogenesis and metastasis, which is the specific focus of

our work [106]. Mechanical cues of the extracellular environment influence intracellular

pathways as discussed in previous section and thus dictate and influence cellular phenotype

and behavior. To study the changes in the cell behavior we use quantitative methods of cell

spread area, motility, cell-cell interaction and traction force measurements.

Epithelial cellular traction forces originate in the actin polymerization, actomyosin con-

traction and intracellular protein regulation of the cytoskeleton. The force is transmitted to

the Extracellular Matrix (ECM) through the stress fibers via adhesive sites termed Focal

Adhesions (FA). These micrometer-sized regions are highly organized and are crucial for

cell development, movement and proliferation. Furthermore these adhesions are sensitive

to the ECM compliance and adhesivity. FAs serve as not only transmitters of traction but

sensors as well. The cell senses biochemical and mechanical adhesivity of the substrate

through the integrin mediated FAs. Then the cellular cytoskeleton acts as the contractile

force generator and transmits force through these adhesions. The crosslinked actin fila-

ment bundles, myosin crossbridges and proteins of the cytoskeleton generate the tension to
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contract the cell body [107].

Several experimental setups quantified the mechanosensitivity of FA’s through the un-

derlying cell-substrate traction force measurement [107, 108]. There are three methods

for cell traction force measurement: cell-embedded protein gel contraction, thin silicone

membrane wrinkling and force sensor arrays. The protein gel, usually collagen but may be

fibrin, laminin, or basement membrane, method measures change in the free floating gels

dimensions to calculate the force exerted [43, 109-112]. The free floating gel contraction

method is used for a wide range of cells and biochemical manipulations [112-115]. How-

ever published work with this method does not measure traction forces of individual cells,

although significant advancements have been made towards 3D traction force calculations

[116].

In recent work from Ravichandran group calculations of traction forces in three dimen-

sions were done for 3T3 fibroblasts plated on 2D fibronectin coated polyacrylamide gels

[116]. Further applying the calculation theory to individual cells embedded into a 3D gel

environment would yield more realistic in vivo representative results.

Second method is the thin silicone membrane introduced by Harris et al. in 1981. It was

the first to show that individual cells exert force and to be used to determine traction forces

during cellular cytokinesis [117]. However the quantitative computational method of this

technique does not accurately predict the wrinkles caused by the complex, non-isotropic

cellular traction force field.

The third method is the force sensor array. It uses deflection-force relationship in a

fabricated elastic substrate. The calibrated null state and elastic theory are used to solve the

inverse problem of the traction force required to generate the substrate deformations. Mi-

cropatterned elastomers and polyacrylamide gel substrates are the most common substrates

used in this type of traction force analysis [107]. The deformation of cell adherent substrate

has been measured with patterned elastomers [63, 118, 119], deflection of elastomer pillars
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[120-122], and in our lab - specifically functionalized fluorescent bead embedded polyacry-

lamide gels [9, 44, 123, 124].

A point must be discussed here to address a biological phenomenon called strain stiff-

ening observed only in native biological gels and not in perfectly elastic gels. A synthetic

material cannot simulate this native phenomenon of stiffening of the biological material as

it gets strained, which prevents large deformation and preserves tissue integrity [125-126].

The biophysical property that is directly related to strain-stiffening behaviour of biopoly-

mer gels is the negative normal stress in response to shear stress [126]. The importance of

this phenomenon on a single cell level is that cells have been found to spread even on soft

gels, communicate over long distances and influence local and global extracellular environ-

ment on such gels, like fibrin gels [127]. Therefore the strain-stiffening property of biologic

materials is important in cell motility, cell-cell communication and durotaxis. However due

to the non-elastic properties of the fibrin protein gel, a quantitative theory to interpret cell

force behavior has not been developed yet. Therefore we use the elastic gel system as the

best available quantifiable option.

The gels are fabricated with bis-acrylamide that acts as the cross linker of the acry-

lamide monomer, Fig. 1.3. The specific ratios of crosslinker to monomeric subunit poly-

merize into gels with specific elasticity, measured and referenced by Young’s Elastic Mod-

ulus (Chapter 2). Polyacrylamide gel itself is not adhesive to cells. The surface of the gels

is then functionalized with a use of a reactive linker molecule via bulk co-polymerization

or surface modification (Chapter 2). Neither method affects the cross linking elastic nor

surface mechanical properties of the gel, as characterized in Fig.1.4

The cross linkers used in our protocols are commercially available or lab synthesized

acrylic acid N-hydroxysuccinimide esters. N-6-((acryloyl)amino)hexanoic acid (N6) is a 6

carbon chain linker and is synthesized in accordance with published protocols and consid-

erations [129-132]. Two carbon acrylic acid N-hydroxysuccinimide ester (N2) is purchased
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Figure 1.3: Polymerization reaction of polyacrylamide gels.
N,N’-Methylene-bis-acrylamide (bis) cross-links acrylamide subunits with the catalytic free radical
initiation by ammonium persulfate (APS) and TEMED. Final gel mechanical properties can be
controlled by total concentrations of acrylamide and bis, see Chapter 2 for details [128].
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from Sigma-Aldrich. In both cross linkers it is the acrylic acid group that covalently bonds

the linker to the gel, a reaction that can happen at slightly acidic conditions. The NHS

moiety, only in basic conditions, is displaced by the primary amine present on proteins and

peptides resulting in a covalent bond between the gel and the ligand [128]. Therefore the

gel can be functionalized with any protein and peptide that contains an available amine.

The new functionalization protocol was not only characterized for mechanical proper-

ties with Atomic Force Microscopy (AFM) and compared to unconjugated gels, but also the

two different linkers, N6 and N2 with and with out bis-acrylamide were quantified, Fig. 1.4.

The FN ligand surface distribution is more uniform compared to old protocol, Fig. 1.4D.

Further quantification of surface FN coverage was done with HRP ELISA method. N2

bound FN surface concentration was found to be increasing with or without bis-acrylamide

and compared to N6 as well, Fig. 1.4 D-F.

In this research both conjugation methods were used successfully, although for future

experiments the new method is highly recommended. Fibronectin and collagen type I lig-

ands as well as respective binding site peptides, RGD and GFOGER, were used to func-

tionalize the surface for optimal cell adhesion. GFOGER is a newly found interesting

peptide in that it has a helical structure but it does not aggregate or forms fibrils in neutral

conditions, like its protein inspiration collagen [133-136].

For Traction Force Microscopy (TFM) studies the gels also contain embedded fluores-

cent beads for displacement tracking of cell deformed substrate. TFM is an essential tool

for measuring stresses that cells exert on a hydrogel substrate and thus mechanotransduc-

tion on the surface [60, 123, 137, 138]. In our work with use TFM code developed by

Dembo and Wang (1999) [132, 137, 139-141].

Cell motility and interaction brightfield images serve to outline cell area of the stress

contact region and the null image is obtained with trypsin cell removal (Fig.1.5). The

method uses correlation-based optical flow algorithm where a grid is set for the unstressed
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Figure 1.4: Characterization of the new polyacrylamide gel functionalization method.
(A) AFM measurements taken over a range of stiffnesses by collaborators in V.M. Weaver lab show
no statistical difference between N6+bis-acrylamide (bis) FN conjugated and unconjugated gels.
(B) Synthesized 1250 Pa gels (3% acrylamide and 0.2% bis) measure at 1250 Pa elastic modulus
average, with AFM, after conjugation with N2 and N2+bis linker, with 0 or 0.1 mg/ml FN function-
alization. (C) Fibronectin surface distribution of bulk co-polymerization and new surface function-
alization methods, is visualized with Alexa 488 anti-FN fluorescent antibody. Scale bar = 100 μm
(D-F) Fibronectin surface coverage is quantified with HRP ELISA on soft and stiff gels, 1.25 and
14 kPa respectively. (D) Surface concentration of FN increases with increasing bulk concentration,
with and without bis addition on soft and stiff gels. (E and F) FN coverage is plotted for N2 versus
N6+bis method as quantified by HRP absorbance at 0.01 and 0.05 mg/ml FN respectively.
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Figure 1.5: Two cell TFM.
EpH4 mouse mammary epithelial cells (A) are depicted for Traction Force Microscopy. Scale bar
= 50 μm (B) Fluorescent beads are imaged stressed (red) and relaxed cell-free after trypsin removal
(green). Beads further from the cells remain unstressed before and after cell removal, as seen with
red and green overlay giving yellow color. (C) Corresponding displacement vectors are calculated
with TFM code. (D) Traction force map solution in pseudo color represents the stresses the cells
exert onto the substrate (cell size not to scale).
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null image to determine the lattice nodes. Then the best correlation is determined between

the unstressed nodes and the stressed pixels, with further quadratic interpolation of the

optimum to get the best match. The in-plane strain norm is computed not to exceed the

maximum strain norm. The distance between the unstressed node and matching stressed

pixel then generates the overall displacement field. The displacement field is then corrected

to eliminate noise and error due to mismatch.

Next the traction forces are estimated from the displacement field with elastic deforma-

tion equations in two dimensions, with an inverse method calculation through [137, 139].

To perform such calculations there are three conditions: a solution must exist, the solution

must be unique and the solution depends continuously on the data. This solution method

is combined with a forward model that relies on the fact that polyacrylamide gels are lin-

early elastic and employ elasticity theory. Although recent published data states at higher

applied pressures the elasticity of polyacrylamide gels becomes non-linear [142], the range

of stress applied by our cells is well below these values.

Dembo method adopts a constraint of a smooth traction field with a Bayesian probabil-

ity chi-square statistic of the obtained traction map. Furthermore there are constraints that

guide the solution, like Newton’s laws of total force of the system being equal to zero, since

the cell mass is very small nor is the cell accelerating. In two cell model these constraints

are important and the theory is discussed in more detail in next section.

Polyacrylamide gel method has its limitations. The traction force solution method uti-

lizing Fourier transform traction cytometry or boundary element methods [139], both reach

a limit in small adhesion sizes. Simulation and optimization work is underway to combine

a traction reconstruction with point forces method with the two aforementioned ones [143].

However even this method is not optimal because it depends on discrete user-specified ad-

hesion sites, which is faulted if the location of these small adhesions is unknown, such is

the case on polyacrylamide gels.
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Further limitations of this method are its dependence on concentrated number of fluo-

rescent beads and failure to include bead displacements in z direction. Three dimensional

stress is not an uncommon phenomenon for cells that exert larger stresses especially on

softer, more porous polyacrylamide substrates. Advancement in force calculations in the

third dimension has been recently published [116, 144].

Other methods of traction force calculations such as micropillars have been utilized

successfully. In fact the micropillars have been used to study forces exerted by sheets of

cells [121]. Findings concluded that the cells on the periphery exerted highest forces onto

the substrate and those on the inside of the sheet, much lower [121]. It would also be

interesting to find the intercellular forces in the sheet - if these forces are higher on the

inside of the sheet versus the periphery. Nonetheless the connection between forces and

mechanics of behavior of single cell and multi-cellular tissue is still very much unclear.

There are a few concerns with the micropillar technologies as well, in comparison to

the polyacrylamide set up used in this research. Taken into consideration were the facts

that ligands are not covalently bonded, but stamped to the PDMS punctate surface and

thus uniform concentration and surface ligand density is not easily controlled. There is no

deformation or propagation of signal, because the surface is not continuous. Furthermore

micro-pillar set up is still in the process of optimization, as studies have found that elastic

pillars anchored to elastic underlying substrate (which also deforms) can overestimate the

applied forces [145].

TFM has been successfully used to date for numerous insights into cell behavior and

phenotype, like force generation during motility, specific molecular knock out or mutant

cell lines and intercellular forces, as it is used in this work as well!
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1.4 TFM definitions and theory for two cells

For two interacting cells, c1 and c2 and let r1 and r2 denote the associated cell-substrate

contact regions. The forces exerted on the substrate as a result of cell activity will be

described by a 2D traction field, T(x) ≡
(
Tx(x),Ty(x)

)
. Such forces are mediated by direct

cell-substrate contacts and in consequence the associated traction field must vanish outside

the contact regions. The traction field at some location x is thus said to be “exerted” or

“produced” by c1 if x ∈r1 and by c2 if x ∈r2.

In general, the field of torque density created by a traction field is given by a vector

with three components;

x∧T =




ωx(x)

ωy(x)

ωz(x)




=




xyTz− xzTy

xzTx− xxTz

xxTy− xyTx




. (1.1)

In the present context however, the position and traction vectors both lie in the plane of the

substrate surface which means that Tz = xz = 0. As a result, ωx = ωy = 0 at all points and

the torque always corresponds to a simple clockwise or counterclockwise twisting around

the z-axis.

Finite element meshes that exactly cover r1 and r2 allow for any continuous field over

these regions to be approximated by a large multi-dimensional vector with discrete compo-

nents, much as the pixel values of a raster image can approximate a continuous field of light

intensity. For example if the mesh covering r1 has nn1 nodes and if the so called “nodal”

traction acting at the i− th node is a vector si = (six, siy), then the traction field generated by

c1 is uniquely specified by giving a vector having 2nn1 scalar components;

tc1 =
(
s1x, s1ys2x, s2y · · · snn1x, snn1y

)
c1
. (1.2)
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When represented in this fashion, the integral of the traction over r1 is given by a finite

sum;

∫

r1

Tdxdy =




∑

i∈r1
sixai

∑

i∈r1
siyai



=



〈Tx〉c1
〈
Ty
〉

c1



≡ 〈T〉c1 . (1.3)

where ai is the area of the “pixel” associated with the i-th mesh node. Simplified notation

of the numerical integral of an arbitrary function f (x) over r1 is denoted by the symbol

〈 f 〉c1, extended to the case of Cartesian traction vectors over r1.

The special cases 〈1〉c1 or 〈1〉c2 correspond to the integrals of the function f = const =

1, over the contact regions. These brackets are thus identical to the areas of r1 and r2

respectively. The average value of a scalar function, f (x), over one or the other contact

region is defined by a ratio of area integrals (e.g. 〈 f 〉c1 / 〈1〉c1). We will denote the area

integral with pearly brackets “{}”, such that {T}c1 will be completely equivalent to writing

out the ratio 〈T〉c1 / 〈1〉c1.

To further illustrate the bracket notation for integrals and averages, consider the root-

mean-square average of the traction over c1:

√
{T ·T}c1 =

√{
T 2

x
}
c1
+
{
T 2

y
}
c1
. (1.4)

A related but quite distinct quantity is the area average of the traction magnitude;

{|T|}c1 =
{√

T 2
x +T 2

y

}

c1
. (1.5)

As yet another example, consider the integral of the torque generated by c1;

〈x∧T〉c1 = k 〈ωz〉c1 ≡ k
∑

i∈r1

(
xixsiy− xiysix

)
ai . (1.6)
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Further we defined angle between traction vector fields of two cells as

cosθ = 〈T〉c1 · 〈T〉c2
| 〈T〉c1 | | 〈T〉c2 |

. (1.7)

Newtons Laws

To allow the possibility of cell-cell mechanical linkage, then the total force acting on c1,

can be broken into a sum of two terms;

F1 = Fs1+F21 , (1.8)

where Fs1 is the force on c1 from contact with the substrate and F21 is the force from contact

with c2. Using logical symmetry, the total force acting on c2 is given in similar fashion.

Corrections involved in neglecting factors such as gravitational forces, pressure forces,

buoyancy and viscous forces from culture medium are all very small for the conditions of

the present study.

Applying the 1st law of motion, (action and reaction), to c1 and c2 considered as closed

mechanical systems, the force on c1 from c2 must be exactly the opposite of the force on

c2 from c1;

F21 = −F12 . (1.9)

We also conclude that the force acting on a given cell from the substrate must be the neg-

ative of the force on the substrate from the given cell. But as discussed in the last section,

the force on the substrate from a cell is the integral of T(x) over the appropriate contact

region. Hence, making use of our bracket notation;

Fs1 = −〈T〉c1 , and,

Fs2 = −〈T〉c2 .
(1.10)
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Suppose now that c1 and c2 have masses m1 and m2 and that their centers-of-mass are

accelerating at rates a1 and a2. Combining Eqs. 1.9 and 1.10 with Eq. 1.8 yields the

following expressions for the 2nd law of motion for c1 and c2;

m1a1 = F1 = −〈T〉c1+F21 , and,

m2a2 = F2 = −〈T〉c2−F21 .
(1.11)

The mass of a typical cell (e.g. fibroblast) is ∼ 10−11 kg and the acceleration exhibited

by its center of mass is typically less than ∼ 10−8 m/sec2. From this it follows that the

ma terms on the left of the last two equations are very small (less than one millionth of

a pico-Newton). In comparison, the force produced by a typical myosin motor, or by a

single polymerizing actin filament, is on the order of 10 pico-Newtons. We may therefore

safely conclude that for studies related to cell motion, the expression F =ma reduces to the

special form F = 0.

This simplification means that the various driving forces acting on the cell-cell and

cell-substrate interfaces must exactly counterbalance each other;

0 = −〈T〉c1+F21 , and, (1.12)

0 = −〈T〉c2−F21 . (1.13)

Adding Eq. 1.12 and Eq. 1.13 causes cancellation of the cell-cell forces and yields the

expected result for global force balance of the cell pair as a whole;

0 =
[〈T〉c1+ 〈T〉c2

]
. (1.14)

On the other hand subtracting the equations and rearranging allows us to directly calculate
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the cell-cell force;

F21 =
1
2
[〈T〉c1−〈T〉c2

]
. (1.15)

Magnitude of the interaction force than can be derived by taking the dot product of Eqs1.12

and 1.13;

|F21| = F21 ·F21 = −〈T〉c1 · 〈T〉c2 . (1.16)

The force F21 corresponds to the rate of momentum transfer from c2 to c1 (opposite to

the transfer from c1 on c2). Such inter-cellular momentum fluxes are tiny and occur in

the intricate cleft of the cell-cell interface. It is therefore difficult or impossible to observe

them by any known direct mechanical method. On the other hand we now see that Eqs.

1.15 and 1.16 provide unambiguous ways to express these “invisible” cell-cell forces in

terms of traction integrals that can be directly measured. The present study is the first to

show that measurement of cell-cell forces is feasible, significant and temporally dynamic.

In addition to inter-cell forces we also study and apply the theories to inter-cell torques.

Thus we derived equations that relate the torque exerted on c1 by c2,Ω21, with measurable

integrals of torques exerted across the cell-substrate contact;

0 = −〈x∧T〉c1+Ω21 , and,

0 = −〈x∧T〉c2−Ω21 .
(1.17)

As previously, we further conclude that the inter-cell torque is given by a difference of two

integrals;

Ω21 =
1
2
[〈x∧T〉c1−〈x∧T〉c2

]

= 1
2k
[〈ωz〉c1−〈ωz〉c2

]
,

(1.18)
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and that the magnitude is a dot product;

|Ω21| =Ω21 ·Ω21 = −〈ωz〉c1 · 〈ωz〉c2 . (1.19)

Torques are not commonly encountered in cell biology and indeed a very strange idea

to think of two interacting cells as though they were a couple of gears in a wristwatch

ratcheting and shearing against each other. The strangeness of these ideas is all the more

reason why we discuss them and make some estimate about the magnitude and character

of the cell-cell torque.

Statistical Considerations

Quantities like cellular traction integrals have two values; ideal exact values that exist only

in theory and real measured values that are derived in an experiment. One may acknowl-

edge this distinction by using a Tilda to denote the measured value corresponding to some

exact quantity. Thus the experimentally measured traction field reported by the LIBTRC

code may be denoted by T̃(x) . Likewise, the vector representation of the experimental

traction with respect to a mesh over r1 is vector with many scalar components;

t̃c1 =
(
s̃1x, s̃1y s̃2x, s̃2y · · · s̃nn1x, s̃nn1y

)
c1
. (1.20)

As a general proposition, experimental and exact variables are related according to equa-

tions of the form;

T̃(x) = T(x)+ε(x) (1.21)

where ε, the “experimental error”, is a scalar or a vector with random numbers as compo-

nents. These numbers are drawn from a distribution with mean=0 and with stdev= σε.

Any integral of an experimental traction field is related to a corresponding exact integral
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as one would expect. For example,

〈
T̃
〉

c1
= 〈T〉c1+ 〈ε〉c1

=



〈Tx〉c1
〈
Ty
〉

c1



+



〈εx〉c1
〈
εy
〉

c1



.

(1.22)

In view of Eqs. 1.12and 1.13 it follows that;




〈
T̃x
〉

c1〈
T̃y
〉

c1



=




Fx,21

Fy,21



−



〈εx〉c1
〈
εy
〉

c1



, and, (1.23)




〈
T̃x
〉

c2〈
T̃y
〉

c2



=



−Fx,21

−Fy,21



−



〈εx〉c2
〈
εy
〉

c2



. (1.24)

Combining these expressions to eliminate Fx,21 and Fy,21, we derive the following gen-

eral relation between the experimental traction integrals of two interacting cells;

〈
T̃β
〉

c1
= −
〈
T̃β
〉

c2
−
(〈
εβ
〉

c2
+
〈
εβ
〉

c1

)
whereβ = x, y. (1.25)

This relation should be valid for all interacting cell pairs regardless of the physiological

circumstances, background traction magnitudes, experimental error and for either the x or

the y components of traction.

From Eq. 1.25 it is clear that an integral of the experimental traction produced by a cell

is always the sum of an exact part and an error term. The exact part is a weighted sum of

many large nodal tractions that need to satisfy constraints of force balance. These exact

terms are thus systematically organized into blocks or subgroups of opposing forces that

tend to cancel each other except for a small residual. On the other hand the error part of an

integral is composed of individual terms that may be small on a point by point percentage
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basis but that are random and are not subject to systematic global constraints. Thus the

nodal errors do not cancel very efficiently and the percentage error of a traction integral

tends to be much larger then the percentage error of its component terms.

Applying Eqs. 1.14 and 1.15 results in an approximation of the cell-cell force derived

by using measured integrals instead of exact integrals. Rearranging Eq. 1.25 and substitut-

ing the result into Eqs. 1.14 and1.15 and rearranging Eqs. 1.23 and 1.24 yields

〈
T̃
〉

c1
+
〈
T̃
〉

c2
= −(〈ε〉c1+ 〈ε〉c2) , and, (1.26)

〈
T̃
〉

c1
−
〈
T̃
〉

c2
= 2F21+ (〈ε〉c2−〈ε〉c1) . (1.27)

One may conclude from this that the left of Eq 1.26 defines a certain noise level and that

the left of Eq.1.27 corresponds to the sum of a noise term with identical properties, super-

imposed on a signal that we wish to detect (the value of F21). In order for us to detect the

signal accurately, the absolute value of the signal-plus-noise, i.e.
∣∣∣∣
〈
T̃
〉

c1
−
〈
T̃
〉

c2

∣∣∣∣, should

typically be much bigger than the absolute value of the noise alone, i.e.
∣∣∣∣
〈
T̃
〉

c1
+
〈
T̃
〉

c2

∣∣∣∣.

From the usual bootstrap analysis of traction maps we know that the error vectors as-

sociated with the individual nodal tractions are uniform in space and randomly orientated.

On the other hand if we consider sets of images of different cells or of the same cell at

different times, then the magnitude of the error from image to image tends to vary in a way

that correlates with the magnitude of the largest nodal traction. This happens because the

parts of an image where the tractions are intense tend to overshadow the parts where the

traction are small, just as an intense light source will tend to overshadow a weak source.

We may conclude from this that in a given image of interacting cells, the magnitude of

terms like, (〈ε〉c1 + 〈ε〉c2) and (〈ε〉c2 − 〈ε〉c1), will scale in proportion to measures of the

background traction magnitude (e.g.
〈∣∣∣T̃
∣∣∣
〉

c1
+
〈∣∣∣T̃
∣∣∣
〉

c2
). Since there are usually consider-
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able variations in background traction, the signal-to-noise ratio in different images will also

fluctuate. Fortunately these fluctuations can be compensated by appropriate scaling of the

signal.

The scaling of the traction signals should be particularly useful to demonstrate the

temporal dynamics of cell-cell interaction forces. Thus we will define the scaled non-

dimensional traction “residuals” as:

C− =

∣∣∣∣
〈
T̃
〉

c1
−
〈
T̃
〉

c2

∣∣∣∣
〈∣∣∣T̃
∣∣∣
〉

c1
+
〈∣∣∣T̃
∣∣∣
〉

c2

, and, (1.28)

C+ =

∣∣∣∣
〈
T̃
〉

c1
+
〈
T̃
〉

c2

∣∣∣∣
〈∣∣∣T̃
∣∣∣
〉

c1
+
〈∣∣∣T̃
∣∣∣
〉

c2

. (1.29)

The normalization of these residuals is intended to insure that the signal/noise level is

constant. C− and C+ the should both undergo similar random fluctuations with the same

mean and variance when the cells are not in physical contact. The value of C− should be at

higher level for cells in contact, as the interaction forces become significant. The values of

C+ should remain flat regardless of contact, since the normalization removes effects due to

changes in background contractile activity. The key prediction tested with this analysis is

that C+ ! C− when cells are in contact and C+ ≈C− when cells are separated.

Equations 1.26 and 1.27 can also be used to devise formal tests for accepting or reject-

ing the “null interaction hypothesis”: F21 = 0. Student t-test is performed to test the null

hypothesis of F21 = 0, by comparing Eqs. 1.26 and 1.27 implying that
〈
T̃
〉

c1
+
〈
T̃
〉

c2
and

〈
T̃
〉

c1
−
〈
T̃
〉

c2
(or equivalently C+ and C−), and statistical significance is presented in exper-

imental results.
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1.5 Hypothesis and Thesis overview

In our experimental approach to study breast cancer invasiveness and metastasis as a func-

tion of extracellular matrix, we engineer an ECM mimetic surface where both the bio-

chemical and mechanical properties can be varied simultaneously. This in vitro platform

allows us to study phenotype changes in normal non-transformed cells as function of only

extracellular environment cues. It is a very controled system that can decouple and at the

same time combine the affect of the two cues to give novel results. Furthermore the quan-

tified behavior can be linked to the intracellular components to study the key proteins in a

physiologically meaningful ways. The experimental set up is described in detail in Chapter

2.

Our initial question started at the unique lumen containing structure of the mammary

glands called the acini. Specifically, applying the ideas of adhesive dynamics and the dif-

ferential adhesion hypothesis, we set up to show that if the cell-matrix adhesion can be

engineered to decrease below an energetically favored minimum, the cell-cell adhesion

will drive the mammary epithelial cells to form the interesting acinar structures. Moreover

we wanted to confirm if there exists a universal compliance switch, around 1000 Pa, below

which the cell-cell adhesion would drive the formation of almost native looking structures,

in our case 3D spheres, just like the networks observed in endothelial cells [124, 146].

Although it has been shown before that motility goes through a maximum as a function

of matrix stiffness in smooth muscle cells, we further ask if the similar result exists in

mammary epithelial cells and as a function of biochemical matrix cues. Furthermore we

wanted to see if in stride with the differential adhesion hypothesis, cell-cell adhesion will

play a role in cell motility as well. All this work is reported in Chapter 3.

The motility and cell-cell inhibition results of Chapter 3 raised questions of cross-talk

between the two adhesion platforms. In Chapter 4 I explore the question of cell-cell and

cell-matrix adhesion through traction force results. The biphasic motility results and cell-
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cell contact duration inhibition of motile behavior shaped my hypothesis: it takes inter-

mediate force to elicit maximum motility and cell-cell adhesion will increase this force

requirement. To my surprise the predicted outcome was observed in experimental data.

Further interesting cell area, force, and cell-cell tension and velocity relationships emerged.

In this Chapter 4, I further tested β-catenin, the intracellular component of that links cell-

cell adhesions to the cytoskeleton and its affect on traction force profile of the cell.

My observed and reported connection between the cell-cell and cell-matrix interactions

and the computational ability of traction force microscopy guided me to take a more de-

tailed look at cell-cell interaction force dynamics and temporal resolution of the behavior

through the underlying ECM substrate. Force vectors, angles and even torque are discussed

for two interacting cells in Chapter 5.

In the last question of ECM driven cancer progression I focused on cell division and

cytokinesis. In adherent mammalian cells adhesion to the underlying ECM is imperative in

cell survival, but the mechanics of the division cycle have not been studied or fully under-

stood through the cellular environment. In Chapter 6 of this thesis I report novel findings of

cell division and cytokinesis force dynamics through the underlying gel. Furthermore, the

role of myosin II mediated contractile ring constriction as the cytokinetic driver of daugh-

ter cell abscission is put to the test via blebbistatin and Y-27632 inhibition traction force

experiments. All these novel and interesting results shed light on the mechanics of cell

division through the ECM, a process that has not been previously studied.

In Chapter 7, I close the thesis with future directions and ideas of further important cell

invasiveness and metastasis questions and hypothesis to test.
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Chapter 2

Materials and Protocols

2.1 Cell Culture

MCF10A human breast epithelial cells were purchased from American Type Culture Col-

lection (ATCC) and maintained at 37°C and 5% CO2 in growth media as described [1].

Growth media consisted of DMEM/F12 with 5% Donor Horse Serum (Invitrogen, Carls-

bad, CA) supplemented with 20 ng/ml EGF (Peprotech, Rocky Hill, NJ), 0.5 μg/ml hy-

drocortisone, 100 ng/ml cholera toxin, and 10 μg/ml insulin (Sigma-Aldrich, St. Louis,

MO). Tet-off E-cadherin β-catenin GFP-tagged plasmid transfected MCF10A cells were a

generous gift from V.M. Weaver lab. These cells were maintained in a non induced state

with between 1 μg/ml of doxycycline (Clontech, Mountain View, CA). Plasmid induction

required 3 day incubation in the absence of doxycycline.

EpH4-J3B1 [2] mouse breast epithelial cells were a gift from V.M. Weaver lab and

were maintained at 37°C and 5% CO2 in DMEM/F12 supplemented with 2% Fetal Bovine

Serum (Invitrogen) and 5 μg/ml insulin (Simga-Aldrich) growth media. In division exper-

iments these cells were incubated on the functionalized gels for 4 hours to allow adhesion

and then serum starved overnight to synchronize the cell cycle. On the day of the experi-
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ment cells were serum stimulated for 4 hours to initiate division cycle. 30 μM Blebbistatin

(Sigma-Aldrich) was be used to block myosin II actin-binding site without adverse side

effects on other molecular pathways. 40 μM Y-27632 was used to inhibit ROCK (Rho-

associated protein kinase) (Sigma-Aldrich). Chemical inhibition was initiated with incuba-

tion for 1 hour prior to imaging.

Experimental media for all cell lines was supplemented 1/1000 parts Penn/Strep, Fungi-

zone and Gentimicin (Invitrogen). Experiments were conducted on cells between passages

3 and 8. Cells were also synchronized prior to plating on functionalized gels. Cells were

allowed to fully spread on the functionalized glass for 4 hours and overnight on gel sub-

strates, prior to experimenting.

2.2 Immunofluorescence and Imaging

Cell nuclei were stained with Hoechst 33342 FluoroPure dye and Qtracker Cell Labeling

Kit was used for long term cell tracking (Invitrogen). Cells were imaged in real time

with Nikon Inverted Eclipse TE300 microscope (Nikon Instruments Inc, Tokyo, Japan)

and a Photometric Cool Snap HQ camera (Roper Scientific, Trenton, NJ) in a temperature

controlled chamber at 37°C and 5% CO2. Fluorescence was detected with 4900 DAPI

and 51004v2 FITC/TRITC filter sets (Chroma Technology Corp, Rockingham, VT). A

LabView (National Instruments, Austin, TX) program was used to control the mechanical

stage and timed exposure for picture capture.

Cells were plated sparsely at 1000 cells/cm2 overnight and isolated single or two inter-

acting cells were observed for 2 to 6 hours. Images were taken at 10-30 minute intervals,

to minimize long-term light exposure while accurately capturing behavior. Cells on 400

Pascal gels were imaged every hour for 8 hours. The time stamp HH:MM records the time

hours:minutes. In motility experiments each gel experimental condition was repeated at
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least twice and more than 10 cells or cell pairs were analyzed per experiment. Cell area

and two cell interaction duration and distance were quantified manually with NIH ImageJ

software (http://rsbweb.nih.gov/ij/). Cell velocity was quantified with macros code written

in ImageJ software that tracked the fluorescent tagged nucleus. All data was then compiled

and analyzed separately for single cells and cell pairs that maintained contact, with code

written in Matlab 7.0 software (Mathworks Inc., Natick, MA).

Fluorescent bead displacements at the cell-substrate adhesion surface were calculated

with respect to the no-cell containing unstressed trypsinized surface. Displacement vectors

were used to calculate substrate strain and the corresponding cell traction stresses with

LIBTRC 2.x code developed by Prof. Micah Dembo, Boston University [3-8].

2.3 Gel Preparation

Coverslip activation, N-6-((acryloyl)amino)hexanoic acid (N-6) synthesis and ligand func-

tionalized polyacrylamide gels were all prepared and characterized in accordance with pub-

lished protocols and included below [6-14]. Protein A gels were further incubated with

recombinant human E-cadherin/FC chimera (R&D Systems), per the published protocol

from Prof. Nelson’s group [15].

Coverslip Activation Protocol

1. Place coverslips in single 100 mm dish. Use 150 mm dish if using 50 mm coverslips.

2. Add 20 ml (40-50 ml for 150 mm dish) of 0.2 M HCl, shake to disperse coverslips

and leave on orbital shaker overnight.

3. Decant 0.2 M HCl (can reuse at least a couple of times).
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4. Rinse coverslips several changes (4 to 5) with deionized water couple of minutes

shaking on orbital shaker.

5. Add 20 ml of 0.1 M NaOH and incubate room temperature on orbital shaker for 10

minutes or more.

6. Rinse coverslips several changes (4 to 5) with deionized water couple of minutes

shaking on orbital shaker.

7. Add 20 ml of deionized water and add 100 μL aminopropyl trimethoxysilane (0.5%

v/v final).

8. Incubate with shaking on orbital shaker a minimum of 30 minutes at room tempera-

ture.

9. Rinse coverslips with deionized water 4 or 5 times quickly just at the sink, then rinse

well on orbital shaker with 4 to 5 changes of water for several minutes (must remove

all traces of aminopropyl trimethoxysilane).

10. Thaw glutaraldehyde briefly and in the chemical hood add 0.5% (v/v) glutaraldehyde

in 1xPBS (20 ml total volume for 100 mm dish). Incubate on orbital shaker for at

least 1 hr.

11. Rinse coverslips with deionized water 4 or 5 times quickly - disposing of the bulk

glutaraldehyde into chemical waste container, then rinse well on orbital shaker with

4 to 5 changes of water for several minutes.

12. Dry coverslips on a piece of kimwipe. Store dry in dry 100 mm dish.
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Bulk Functionalization Gel Protocol

Gel Synthesis

The following recipes are for the indicated gel stiffness. pH all solutions to pH=6 with

5N HCl, about 10 μL. Accurate measurement of functionalized gel stiffness was taken and

Young’s modulus calculated with steel ball method [16] and confirmed with atomic force

microscopy.

Stiffness 40% acr 2% bis 40% 2% 0.25M HEPES ddH2O TEMED

(Pa) % final % final (mL) (mL) (mL) (mL) (μL)

140 3 0.04 1.62 0.44 2.6 13.80 10

400 3 0.05 1.62 0.55 2.6 13.69 10

675 3 0.06 1.62 0.66 2.6 13.58 10

1050 3 0.1 1.62 1.1 2.6 13.14 10

1250 3 0.2 1.62 2.2 2.6 12.00 10

2500 5 0.2 2.7 2.2 2.6 10.94 10

2700 7.5 0.035 4.0 0.385 2.6 11.455 10

7900 7.5 0.07 4.0 0.77 2.6 11.07 10

15700 7.5 0.15 4.0 1.65 2.6 10.19 10

22000 7.5 0.25 4.0 2.75 2.6 9.09 10

60000 10 0.5 5.4 5.5 2.6 4.95 10

1. Put 50 μL of 500-nm fluorescent beads in a 0.5-ml eppendorf tube and sonnicate for

5-10 minutes (be careful that you just turn the time dial and not turn on the heat

switch).

2. Weigh 5.6 mg of N6 crosslinker (either synthesized in lab or commercially purchased

from Molecular Probes: 6-((acryloyl amino)hexanoic acid succinimidyl ester 4) in

1.5 ml eppendorf tube per ml of solution in an eppendorf tube, add 70 μL of 200 proof
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ethanol and with a pipette tip mechanically break up the larger chunks of crosslinker

in ethanol. Brief sonication of the crosslinker will help break up and dissolve the

chunks too. Scale all amounts in the next steps of final volumes to that of crosslinker.

3. Add 845 μL of gel solution to the dissolved crosslinker in ethanol and vortex for up to

10 minutes until the crosslinker is fully dissolved. Add 40 μL of deionized research

grade H2O (ddH2O) and 40 μL of beads to the gel solution (if not doing TFM, just

add 80 μL ddH2O). Mix with a pipette and DO NOT VORTEX once beads are added.

4. Place eppendorfs in a vacuum flask or a bubble vacuum chamber and de-gas for 30

or more minutes.

5. Coat some top cover slips (18mm circular cover slips) with rain-x. Initially apply

with a cotton swab, but use your gloved fingertip to smear the rain-x evenly over the

coverglass. Place on kimwipes with rain-x coated surface up. Allow rain-x to dry

about 5 minutes and wipe reasonably clean with a kimwipe.

6. Add 6.0 μL of freshly made 10% APS to a gel solution. Mix up and down with a

pipette. One gel at a time, dispense 30 μL on top of the activated glass (see Coverslip

Activation Procedure) and immediately after, place a rain-x coated top coverglass

on top of the gel solution, sandwiching the gel solution between the activated glass

and rain-x coated cover slip. Immediately flip the coverslip over so that the 18-mm

coverglass is on the bottom. Place a wet paper towel near the gels so they don’t dry

out while gelling.

7. Chill a wash bottle of ddH2O in the refrigerator for use.

Conjugation Procedure

1. Prepare sterile fibronectin (Fn), collagen or peptide solution to bind to the polyacry-

lamide gels.
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2. You will need about 200 μL of solution for each gel. Keep the solutions on ice.

3. After EXACTLY 45 minutes remove the top circular cover slip from the gel (care-

fully either with a razor blade, 2 pairs of fine tipped tweezers or another device). Try

swelling the gel with ice cold ddH2O so the gel doesn’t dry out or crack. Rinse again

with ICE-COLD ddH2O and place gel side up. Immediately dispense 200 μL of

the prepared Fn, collagen or peptide solution onto the gel and cover to help prevent

evaporation. Place gels in the refrigerator and incubate overnight.

4. Prepare a solution of 1/100 parts of ethanolamine in 50 mM HEPES buffer pH=8.0

in the chemical hood and then vortex. You will need 300 μl for each gel that you

made. Place the solution on ice to cool completely.

5. After the overnight incubation, rinse the gels one at a time with ICE-COLD PBS and

dispense 300 μL of the prepared ethanolamine solution onto each gel. Incubate for

30 minutes covered in the cold-room or refrigerator.

6. After the 30 minute incubation, rinse gels one at a time with ICE-COLD PBS. Store

hydrated gels in 1xPBS wrapped in parafilm and aluminum foil up to 4 days in the

cold-room or refrigerator.

Cell Plating

1. UV gels for 30 minutes in culture hood to sterilize (make sure the chambers are

open). Aspirate off the PBS.

2. Add 2 ml of cell media into each chamber on top of the gel. Incubate for 30 minutes

at 37°C prior to plating cells.

3. Passage your cells. For each gel that you are going to plate prepare 3 ml of growth

media. For example, for 5 gels, place 15 ml of growth media in a 15-ml tube. Add
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1:1000 gentimicin, fungizone and penn/strep to the media.

4. Dispense 3x103 cells for each ml of media into the media. For example, dispense

3x104 cells into 10 ml of media. Mix media and cells well pippetting up and down

carefully without bubbles.

5. Aspirate the culture media from each chamber and add 3 ml of the growth media

with cells. Place chambers in the incubator overnight.

NOTE: It is important to note that extracellular matrix ligands are not single proteins, not

only in the fact that they adhere and interact with each other, but form fibrillar compli-

cated structures they form. Collagen is such a complicated protein, being that it is both

thermally unstable as a monomer and its triple helix structure is stable as a monomer only

in acidic conditions [18, 19]. However NHS ester group is not reactive under acidic con-

ditions. Therefore if a tightly controlled non-fibrillar distribution of surface collagen is

required other options need to be explored, such as using low concentrations of well pro-

cessed and digested collagen solutions, interpolating the ligands into the bulk polyacry-

lamide mixture prior to gelation, or using an acidic linker, such as 2-Acrylamido-2-methyl-

1-propanesulfonic acid sodium salt (Sigma-Aldrich). This linker contains SO3 group that

interacts with the primary amine on the collagen protein while maintaining the acidic en-

vironment. It also has the acrylic acid group that covalently binds polyacrylamide. Low

concentration of 3 mg SO3 per ml of polyacrylamide solution or lower is sufficient. Higher

concentrations of SO3 affect and deform the gel. Then collagen ligand can be dissolved

in 20 mM Acetic acid solution in 1xPBS (pH 4.33) and evenly adherent on the surface

compared to the uneven fibrillar aggregates of collagen observed when using N6 linker

with collagen diluted in 1xPBS (pH 7.4), Fig. 2.1. However, SO3 does not covalently bind

collagen but rather adhere.
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Figure 2.1: Collagen surface distribution.
FITC conjugated collagen (Sigma-Aldrich) on (A) 7900 Pa gel coated with 0.1 mg/ml collagen in
1xPBS prepared with N6 bulk protocol and (B) 2500 Pa gel coated with 0.05 mg/ml collagen in
Acetic acid 1xPBS pH 4.33 prepared with 3 mg/ml SO3 bulk method. Scale bar = 50 μm
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Surface Functionalization Gel Protocol

Reagents

• 40% acrylamide (Bio-Rad)

• 2% bis-acrylamide (Bio-Rad)

• cold 50mM HEPES pH 8.0

• TEMED

• 10xPBS

• 1xPBS

• cold deionized H2O (ddH2O)

• 10 mg/ml (1%) APS solution in ddH2O

• 0.5M HEPES pH 6.0

• 200 proof EtOH

• 30 mg/ml (3%) Irgacure 2959 (Ciba) solution in EtOH

• 30 mg/ml (3%) N6 (N-6-((acryloyl)amino)hexanoic acid) solution in EtOH, MW

282.3 g/mol

• 18 mg/ml N2 (N-Acryloxysuccinimide) solution in EtOH, MW 169.1 g/mol

• protein/peptide of interest
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Gel Synthesis

1. Prep acrylamide solution according to this recipe below and vortex the solution

briefly. Final volume should be 1.6ml add 160 μl of 10xPBS and 1.6 μl TEMED.

If storing or reusing the solution – mix it without TEMED and without APS. APS is

added LAST to activate gelation. The recipes below are for a gel without beads. Ac-

curate measurement of functionalized gel stiffness was taken and Young’s modulus

calculated with steel ball method [17] and confirmed with atomic force microscopy.

Stiffness 40% acr 2% bis 40% 2% 10xPBS ddH2O TEMED 1% APS

(Pa) % final % final (μL) (μL) (μL) (μL) (μL) (μL)

140 3 0.04 120 32 160 1126.4 1.6 160

400 3 0.05 120 40 160 1118.4 1.6 160

675 3 0.06 120 48 160 1110.4 1.6 160

1050 3 0.1 120 80 160 1078.4 1.6 160

1250 3 0.2 120 160 160 998.4 1.6 160

2700 7.5 0.035 300 28 160 950.4 1.6 160

4000 7.5 0.05 300 40 160 938.4 1.6 160

7900 7.5 0.07 300 56 160 922.4 1.6 160

14000 7.5 0.15 300 120 160 858.4 1.6 160

22000 7.5 0.25 300 200 160 778.4 1.6 160

60000 10 0.5 400 400 160 478.4 1.6 160

2. For TFM: Put 50 μL of 500-nm fluorescent beads in a 0.5-ml eppendorf tube and

sonnicate for 5-10 minutes (be careful that you just turn the time dial and not turn

on the heat switch). Be sure to subtract the volume of bead solution added from

the volume of ddH2O! Add about 40 μL of beads to the gel solution containing all

ingredients minus APS. Mix with pipette, DO NOT VORTEX once beads are added.

3. De-gas in a vacuum flask or a bubble vacuum chamber for 30 mins.
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4. Coat some top cover slips (18mm circular coverslips) with rain-x. Initially apply

with a cotton swab, but use your gloved fingertip to smear the rain-x evenly over the

coverglass. Place on kimwipes with rain-x coated surface up. Allow rain-x to dry

about 5 minutes and wipe dry and clean with a kimwipe.

5. Put activated glass cover slips (described in Coverslip Activation Procedure) on a

plate of water or with wet paper towel to humidify the gelation. The gels should not

dry out during the gelation!

6. Add 160 μL of 1% APS (freshly made in ddH2O) to the degassed solution. Mix up

and down with a pipette gently not to introduce too much air to the solution.

7. One gel at a time, dispense 20 μl on top of the activated glass and immediately after,

place a rain-x coated top coverglass on top of the gel solution, sandwiching the gel

solution between the activated glass and rain-x coated cover slip. Do this carefully

not to trap any bubbles in the sandwiched gel because the gel then won’t gel and its

elasticity is compromised! For TFM thin gels are desired, for other experiments can

increase volume to 30 μl or more - if in doubt, make sure the final height of the gel

is not above 50-70 μm, otherwise the cells might feel the stiffness of the underlying

glass.

8. Immediately flip the chamber over so that the 18-mm coverslips is on the bottom and

the beads will settle to the top surface of the gel. Let the gel for about 30 minutes

– until it gels (visibly confirmed through coverslip separation around the edges).

Carefully with a razor blade remove the top circular cover slip from the gel – do not

rip or damage the gel. Rinse well and store in cold ddH2O or 1xPBS for up to 10

days.
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Conjugation Procedure

1. To conjugate the surface with protein or peptide, aspirate off the liquid from the gel

surface and prep the conjugation solution per recipe below (recipe is for 30 μL per

gel, therefore multiply by number of gels plus extra volume). NOTE: If the peptide

or ligand is very small or surface topography is desired, 2% bis solution will help.

0.1% final volume of bis should be sufficient. Make sure if adding volume of 2% bis,

to subtract the appropriate volume from ddH2O.

N2 or N6 linker Irgacure 2959 0.5M HEPES ddH2O N2 or N6 Irgacure 2959

% final % final pH 6 (μL) (μL) (μL) (μL)

1 0.1 3 16 10 1

2. Dissolve 18 mg/ml (3%) of N2 in 200 proof EtOH mechanically or with a vortex or

by sonicating the N2 briefly. Don’t sonicate too long as it warms up the solution.

Smaller volumes dissolve N2 better. Adding ddH2O volume and vortex together will

also help the linker dissolve. If using N6 – adjust the amount of linker appropriately

for difference in MW!

3. Mix N2, HEPES and ddH2O and degas for 30 mins. Chill a wash bottle of ddH20.

4. Prepare sterile and fresh protein/peptide solution in 50 mM HEPES buffer pH 8.0

(if the protein is not stable, you can also prepare the solution in 1xPBS) and keep

On ICE for the following steps. You will need about 200 μL of solution per 18mm

coverslip gel.

5. Coat some top cover slips (18mm circular cover slips) with rain-x. Initially apply

with a cotton swab, but use your gloved fingertip to smear the rain-x evenly over the

coverglass. Place on kimwipes with rain-x coated surface up. Allow rain-x to dry

about 5 minutes and wipe dry and clean with a kimwipe.

71



6. Prepare fresh Irgacure 2959 (3%) stock solution by dissolving 30 mg/ml in 200 proof

EtOH, vortex if needed.

7. After solution is degassed add Irgacure solution to it to make final solution. Mix up

and down with a pipette gently not to introduce too much air to the solution.

8. One gel at a time, dispense 30 μL to each gel surface and spread it around gently with

a pipette tip or a glass pipette, without touching the surface.

9. Place rain-x coated cover slip on top of the gel with N2 solution (rain-x side down)

carefully not to squeeze the solution out and not to introduce any bubbles to the

surface!

10. Place the gel under UV lamp (350nm and 115V lamp like spectroline EN-180) for

10 to 20 minutes.

11. Continue each gel one at a time. After UV is done – you might see whitish residue

around the gel if it contains 2% bis.

12. Carefully with a razor blade or with a stream of wash remove the top circular cover

slip from the gel – do not rip or damage the gel. Rinse well 2x 5 min in ice cold

ddH2O dish on ice - cold temperature and acidity of water will keep NHS from

hydrolyzing.

13. One gel at a time, aspirate carefully the ddH2O wash from the gel and dispense

200 μL of prepared ice cold protein solution onto the gel surface. Incubate gels in

a parafilm sealed environment to prevent evaporation of the protein solution for 2+

hours at RT or in the refrigerator overnight.
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Blocking Procedure

1. Prepare a solution of 1/100 parts of ethanolamine in 50 mM HEPES buffer pH 8.0 in

the chemical hood and then vortex. You will need 200 μl for each gel that you made.

Place the solution on ice to cool completely.

2. After the 2-hr or overnight incubation, rinse the gels one at a time with cold 1xPBS

and dispense 200 μL of the prepared ethanolamine solution onto each gel.

3. Incubate for 30 minutes covered in the cold-room or refrigerator.

4. After the 30 minute incubation, rinse gels one at a time with ice cold 1xPBS. Gels

can be stored in cold 1xPBS wrapped in parafilm and aluminum foil up to 4 days in

the cold-room or refrigerator.

Cell Plating

1. UV gels for 30 minutes in culture hood to sterilize (make sure the chambers are

open).

2. Aspirate off the PBS. Add 2 ml of cell growth medium into each chamber on top of

the gel.

3. Incubate for 30 minutes at 37°C prior to plating cells, unless specific control of sur-

face ligand type or concentration is desired.

4. Passage your cells. Add 1:1000 gentimicin, fungizone and penn/strep to the plating

media.

5. Dispense no more than 3x103 cells for each ml of media. For example, dispense

3x104 cells into 10 ml of media. Mix media and cells well, pippetting up and down
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carefully without bubbles. Aspirate the media from each chamber and add appropri-

ate amount of the cell containing growth media.

6. Place chambers in the incubator overnight or for at least 4 hrs to spread.

N2 linker

Pictorial representation of the protocol procedure. Adopted from Kandow et al. [16]
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Surface Characterization Protocol

Reagents

• 1xPBS

• 1% heat denatured (30 mins at 56°C) BSA in 1xPBS blocking solution or Pierce

Starting Block

• 1xPBS + 0.1% Triton

• O-Phenylenediamine dihydrochloride (Sigma Aldrich)

• Hydrogen Peroxide solution 30% w/w in H2O (Sigma Aldrich)

• 50 mM Citric Acid 100 mM Na2HPO4 pH 5 solution

• 2N HCl

• 1° Antibody (ex: BD mouse anti-Fibronectin) on ice

• 2° Antibody (ex: BD goat anti-mouse IgG HRP or FITC conjugated) on ice

Procedure

1. Prep substrate as usual

2. Block at RT for 30 mins with 1% BSA solution or Pierce Starting Block or another

blocking solution

3. Add 250 μL per 18 mm coverslip gel (titrate amount depending on size of surface,

take into account in wells – solution sticks to sides so might need higher volume)

of 1:200 diluted 1° Antibody in 1% BSA solution (or higher dilution depending on

antibody – 2 μg/ml is on the lower end) and incubate for 30 mins gently shaking at

RT on orbital shaker
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4. Rinse 3x with 1xPBS + 0.1% Triton

5. Add 250 μL of 1:200 diluted 2° Antibody in 1% BSA solution (can use a higher

dilution since this is a secondary) and incubate for 30 mins gently shaking at RT.

6. Rinse well 3x with 1xPBS + 0.1% Triton

7. Fluorescent development is done now – just image.

8. For HRP: Prep HRP development solution fresh. Dissolve 2.5 mg/ml O-phenylene-

diamine dihydrochloride in Citric Na2HPO4 solution (this might be titrated down to

1 mg/ml if there is large amount of protein on surface). Add 1 μL/mL H2O2 last and

vortex.

9. Put plate with samples on plate shaker and aspirate off all wash liquid.

10. Do these steps FAST: add 200 μL of HRP solution to each well and shake the plate

and start timer.

11. Depending on how fast the solution color changes within 1 minute to as long as 10

minutes, add 100 μL 2N HCl to stop the reaction. Do not let the reaction to go to

completion! Stop it as soon as color change is apparent. Develop the color.
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Chapter 3

Cell motility and assembly in vitro as a

model for Breast Cancer metastasis

Progression of benign tumors to invasive carcinomas is a life threatening yet poorly under-

stood phenomenon in the development of breast cancer. Events of tissue destabilization,

loss of cell-cell adhesiveness and increased cell-matrix interaction ultimately result in cell

invasion and metastasis. Understanding cell migration and cell-cell interaction are keys to

understanding cell invasion, a critical step in cancer progression. Both genetic events and

extracellular matrix (ECM) changes play important roles in this invasive cell phenotype

[1-3]; however the role that the ECM plays is still unclear. The quantitative relationship

between adhesiveness and compliance of the ECM leading to disruption of multicellular

structures and cell invasion are the primary focus of this research.

Research on mammary epithelial cells has shown progression of breast cancer is associ-

ated with tissue stiffening in vivo and in three dimensional culture [1, 4, 5]. Experiments in

3D basement membrane gels found the breast epithelial cells to form ordered multicellular

aggregates called acini – a concentric spherical shell of cells with a hollow lumen [5-7].

At higher substrate stiffness such as coincidentally observed in cancerous tissue, the acini
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tend to be disordered and display an invasive cancerous phenotype [5]. Furthermore pro-

gression and invasiveness of breast cancer in vivo is also associated with increasing ligand

density, such as fibronectin (FN) and collagen [8, 9]. The ECM expression levels of FN are

significantly elevated in sites of breast cancer metastases [10], as in the common site for

carcinoma metastasis, the fibronectin rich lymph node [11].

The question then arises whether this tissue disassembly and cell invasiveness is regu-

lated by differential cell-cell interaction modulated by cell-cell communication or altered

cell motility due to cell adhesion and substrate stimuli. Previously Steinberg and Foty

showed that cell assembly into multicellular structures could be controlled by differential

cell-cell interaction. However, these investigations were carried out solely through manip-

ulating the level and specificity of cadherin expression [12, 13]. But it is now apparent that

it is not only intrinsic cell properties but also extracellular substrate stiffness and adhesive-

ness that play significant roles in cell-cell interaction and multicellular structure formation

as well [1, 5-7, 14, 15, 41].

Further motivation to better understand the cell-cell cohesion and tissue disassembly

stems from 2D in vitro experiments that have shown ECM properties to affect individual

cell behavior. Mechanical properties of substrates, such as can be engineered in polyacry-

lamide gels, have shown to affect cell speed, persistence and direction of migration [16-19].

Recently we showed that endothelial cells display reduced motility on compliant gels due

to communication through the substrate [20]. The mechanical properties of the ECM thus

affect signaling pathways within the cell through mechanically responsive sensors [21, 22],

such as decrease of FAK phosphorylation on compliant substrates [5] and regulation of ac-

tomyosin contractility [21, 23]. Changes in biochemical extracellular environment, such as

increasing surface ligand density also affects individual cell spreading and force generation

[24, 25]. Cellular response to biochemical and mechanical ECM properties has been found

convoluted in the type of biochemical cue as well, as measured by difference in response to
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stiffness on collagen versus fibronectin coated gels [42]. Further computational predictions

of the impact of the mechanical and biochemical cues on migration in 3D have been devel-

oped [26-28]. However the effect of both biochemical and mechanical ECM properties on

migratory and interactive cell behavior have yet to be experimentally tested or quantified.

Furthermore, cell motility has been connected on intracellular level to cell-cell interac-

tion through key common intracellular players in integrin and cadherin molecular pathways

[5, 29-32]. However, this cross-talk between the two molecular mechanisms has yet to be

translated to cellular phenotype and behavior. It is still unclear how the interplay of both

adhesion and compliance collectively affect cell phenotype and behavior, such as motil-

ity and cell-cell interaction. Here we further investigate effects of substrate adhesiveness

and compliance on cell motility, spreading, cell-cell interaction and assembly. We examine

how cell-cell adhesivity further modulates cell motility and invasiveness in breast epithelial

cells as a model of oncogenesis.

To effectively isolate and understand the ECM influence on the invasive phenotype, our

experimental system connects the behavior of an individual cell to that of multi-cellular

structure. This connection between the single cell, two cells and tissue-like aggregates is

the key in learning about the fundamental factors controlling tumorigenic and metastatic

development. Thus our research focuses on individual and interacting cell behavior in a

strictly controlled environment. This controlled in vitro extracellular environment is de-

signed such that adhesion and elasticity can be varied simultaneously and independently.

The mechanical properties are reproduced with polyacrylamide gels [33, 34]. In this work,

we vary the stiffness of the gels from an elastic modulus of 400 Pascals (Pa), which is

close to pre-malignant tissue, to 1250 Pa, which is the elastic modulus of stroma adjacent

to the tumor, to 2500 and 7900 Pa, which represents the range of stiffness of tumors [5, 21,

46]. A wide range in FN ligand coating density is tested as well. To decouple the genetic

predisposition for tumorigenesis from cell behavior we studied normal non-tumorigenic
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human breast epithelial cells [6]. Furthermore the cells are not stimulated by any growth or

soluble factors that may change, enhance or diminish the intracellular signaling cascades

elicited by the ECM. Plating these cells on substrates of mechanical and biochemical prop-

erties similar to those in vivo allows us to understanding the key factors that control cell

behavior.

In this paper we report the effect of the complex relationship of ECM adhesiveness

and compliance on cell migration and cell-cell cohesion. We find there is an optimum

where cells are highly motile and invasive and cell-cell adhesion is not observed. This op-

timum is a function of both ligand concentration and matrix stiffness. Further we show that

cell-matrix and cell-cell adhesion are not inversely related, but in a more complex relation-

ship, as increasing substrate adhesivity promotes cell-cell adhesivity but also can induce

an increase in cell motility and thus cell dispersion. Increased duration of cell-cell contact

decreases cell motility, dampened by increased mechanical and not biochemical proper-

ties of the ECM. Decreasing substrate elasticity to that of pre-malignant tissue maximizes

cell-cell cohesion and leads to the formation of three dimensional aggregates. Our results

thus show there exists a delicate balance between cell-matrix and cell-cell adhesion that is

controlled through mechano-chemical alteration of the extracellular environment.

3.1 Biochemical and mechanical ECM cues dictate cell mi-

gration velocity

Biochemical and mechanical properties and gradients in extracellular environment have

been individually shown to affect cell behavior, specifically spreading, migration and in-

teraction [5, 16, 18, 19, 24, 36]. However the extent of ECM dictating cell phenotype and

directing cell motility, interaction and tissue formation has not been fully isolated, tested

and understood. Here we explore the importance of the two ECM cues acting in concert in
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a breast cancer model, without the influence of oncogenic or soluble factors.

Cells have been shown to exhibit biphasic velocity profile as a function of compliance

[17]. Our further investigation of the combined effect of both cues on cell motility, we

report novel findings that cell speed is a shifting biphasic function of both mechanical and

biochemical cues, Fig. 3.1. Breast epithelial cells show a maximum in migration velocity

with ligand concentration for each substrate compliance and with increasing gel stiffness at

constant ligand density. The maximum velocity peak shifts as a function of both stiffness

and ligand concentration with an inversely dependent relationship.

Cell migration goes through a maximum as a function of increasing ligand concentra-

tion at each compliance (Fig. 3.1A). The cell speed is biphasic on glass and polyacrylamide

surface, and the FN concentration at which the cell speed reaches maximum increases as

the substrate stiffness decreases. Thus velocity is dependent not only on mechanical but

also on biochemical ECM conditions and to achieve maximum velocity, a higher concen-

tration of ligand is required to compensate for the decrease in matrix stiffness. The inverse

relationship between the substrate stiffness and ligand density supports the hypothesis that

both mechanical and biochemical cues play important compensating roles in cell migration.

The interplay of the two cues is also seen in the data that shows on softer 2500 and

1250 Pa gels, at FN concentration below 0.01 mg/ml, the cells cannot adhere strongly to

the substrate and therefore are not motile, as compared to either a stiffer 7900 Pa gel or

a glass substrate. Also note the biphasic behavior is not observed on the ligand-saturated

1250 Pa gels, introducing a limit to how much ligand density can rescue motility on soft

surface. Cell motility does not decrease even after the polyacrylamide surface has been

saturated with ligand.

Further comparison of cell motility on gels of different stiffnesses was performed at

three FN ligand concentrations, 0.01, 0.05 and 0.1 mg/ml (Fig. 3.1B). The cell speed goes

through a maximum as the substrate stiffness increases and the maximum shifts to higher
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Figure 3.1: Cell migration velocity as a function of the ECM.
MCF10A human breast epithelial single cell migration velocity is plotted as a function of both bio-
chemical and mechanical cues of the extracellular matrix (ECM). Single cell velocity is observed
on substrates with increasing fibronectin (FN) ligand concentration (A) on ( ) glass, and polyacry-
lamide gels of ( ) 7900 Pa, ( ) 2500 Pa, (filled circle) 1250 Pa Young’s elastic modulus. Velocity
profile displays a shifting biphasic function of FN concentration. (B) Gel compliance also dictates
single cell motility in a shifting biphasic manner, as seen on ( ) 0.01 mg/ml, (filled circle) 0.05
mg/ml and ( ) 0.1 mg/ml FN bulk concentration gels with increasing stiffness. (C) 3D mesh plot
and underlying 2D projection demonstrate the shifting maximum velocity peak as a function of FN
concentration and gel compliance ECM parameters, ± SEM
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stiffness with decreasing ligand concentration. At lower FN concentration the stiffness of

the matrix must be higher to achieve the same speed as at higher FN concentration and

lower gel rigidity. Comparatively the effect of FN surface density and compliance is not

the same on cell spread area, which is a monotonically increasing function of both cues

(Fig. 3.2).

Fig. 3.1C is a three dimensional plot with the underlying heat map that shows how

decreasing substrate rigidity from high to low and increasing substrate adhesiveness from

low ligand density to high shifts the specific ECM conditions at which the cell is able to

achieve maximum migration velocity, combining the results from Fig. 3.1A and B. The

plot shows the maximum in migration velocity is reached at an intermediate value of both

adhesion and compliance.

Spread area of MCF10A breast epithelial cells is found to be monotonically increasing

with both ligand density and stiffness, Fig. 3.2, although cells on softer substrate of 1250

Pa reach a limit to spread area and con not spread as much as cells on higher stiffnesses.

3.2 ECM mediated cell-cell adhesion slows migration

In this work we also investigated the role of cell-cell adhesion in cell motility. Previously,

Reinhart-King and co-workers showed that cell-cell interactions between bovine aortic en-

dothelial cells on compliant surfaces can decrease cell migration and dispersion [20]. We

find mammary epithelial cell-cell interaction consistently decreases the velocity of the cells

in contact on all substrate configurations.

To explore if cell-cell adhesion hinders cell migration, we compared the motility of

individual cells and cells in contact (Fig. 3.3A). At higher FN concentration or softer com-

pliance, we found the cell speed is always lower for cells in pairs than individual cells. The

significant reduction of speed due to cell-cell interactions on 7900 and 2500 Pa gels occurs
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Figure 3.2: Cell spread area as a function of the ECM.
MCF10A human breast epithelial cells plated sparsely (see methods) on ( ) glass and on polyacry-
lamide gels of varying stiffness (!) 7900 Pa, ( ) 2500 Pa, (filled circle) 1250 Pa Young’s modulus
and coated with increasing Fibronectin (FN) ligand concentration. Single cell spread area (A) plot-
ted as a function of increasing ligand concentration. Inset is cell area as a function of increasing
gel stiffness on gels coated with ( ) 0.01, (filled circle) 0.05 and ( ) 0.1 mg/ml FN, ± SEM. Rep-
resentative snapshots of cells plated on FN saturated surfaces at 0.1 mg/ml bulk concentration on
glass (B), 0.2 mg/ml on 2500 Pa (C) and 0.4 mg/ml on 1250 Pa (D) compliant gel. Scale bar = 50
μm
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at values of FN concentration where maximum velocity had been observed for individual

cells. At sufficiently high FN concentrations, migration velocity decreases for individual

cells and those in contact. On softer 1250 Pa gels cell-cell interactions slow cell velocities

at all FN concentrations. On these gels of elasticity similar to that of tumor adjacent stroma

in human breast [5, 46], cell-cell interactions significantly reduce motility, suggesting a

compliance threshold up to which cell-cell adhesion prevents cell invasiveness.

In Fig. 3.3B single cell motility and the motility of cells in pairs are compared for

each FN concentration as a function of gel compliance. Again, interacting cells move more

slowly than individual cells at gel rigidities where the single cell speed is maximal. For

low FN density, 0.01 mg/ml, the difference is only significant on a 7900 Pa gel. However

at high FN density, 0.1 mg/ml, the velocity of interacting cells is significantly slower on

softer substrates of elastic moduli 1250 and 2500 Pa.

Further quantification of the effect of cell-cell interaction shows novel findings that

cell migration depends on duration of cell-cell contact, Fig. 3.4A. Cell-cell interaction is

represented by fraction of time the cells spend in contact. The migration velocity of cell

pairs decreases linearly as a function of cell contact duration on FN coated gels. Best fit

analysis the data also shows the magnitude of the negative slope of velocity versus contact

fraction is increasing with increasing gel stiffness. It is evident cell-cell adhesion has a

more pronounced effect and decreases cell motility more acutely on softer 1250 Pa substrate

than on stiffer substrates. Thus although the magnitude of migratory reduction depends on

ligand density and compliance of the ECM environment, it is the compliance of the ECM

that dictates the extent of contact inhibited migration. Prolonged cell-cell contact decreases

cell motility more appreciably as the substrate stiffness decreases.

Optimum cell migration is also uniquely a function of the cell spread area, evoked

at multiple specific combinations of the two ECM conditions. The relationship between

migration velocity and cell spreading area is quantified for isolated single cells (i) and cells

87



Figure 3.3: Cell velocity profile of single and adherent cells.
MCF10A cell migration velocity of single cells is compared to cells in contact. Velocity is plotted
as a function of (A) increasing FN ligand concentration on gels of decreasing stiffness (!) 7900 Pa,
( ) 2500 Pa, (filled circles) 1250 Pa Young’s modulus and (B) as a function of compliance on ( )
0.01 mg/ml, (filled circles) 0.05 mg/ml and ( ) 0.1 mg/ml FN bulk concentration. Cell velocity
(μm/min) is plotted for single cells (filled markers) and cell pairs in contact (empty markers), ±
SEM
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Figure 3.4: Cell-cell contact inhibits maximum velocity.
MCF10A cell migration velocity is a function of cell-cell contact fraction (A) and cell spread area
(B). Cell pair motility decreases with increasing cell-cell adhesion duration (A). The slopes of the
best fit lines are -1.0, -1.9, and -2.4 for 7900, 2500, and 1250 Pa gels respectively. The magnitudes of
slopes are increasing with decreasing substrate stiffness, therefore cell-cell adhesion has a stronger
affect on cell migration on more compliant gels. (B) Cell migration is a biphasic function of cell
spread area for (i) single cells (filled markers) and (ii) cells in contact (empty markers). Maximum
migration velocity is achieved by single cells in area range of 750 to 1000 μm2. However cells
in contact do not exhibit same maximum migration velocity as do single cells. The cell velocity
(μm/min) is measured on ( ) glass, (!) 7900 Pa, ( ) 2500 Pa, (filled circles) 1250 Pa Young’s
modulus, ± SEM

in pairs (ii) in Fig. 3.4B. For all cells, the migration velocity is a biphasic function of cell

area, whereas area is a linearly increasing function of substrate adhesion and compliance

(Fig. 3.2). The maximum velocity is observed for isolated cells at spread area of 750 to

1000 μm2. Cells outside this range of spread area are not able to migrate as fast, no matter

the ECM stiffness or ligand density. Both cues of the ECM stimulate the cell to spread and

dictate the optimum area where the cell can then achieve maximum migration. Cell-cell

interaction also prevents cells in pairs from reaching the same maximum velocity as single

cells at that same spread area (Fig. 3.4B).

Furthermore, it has been previously shown that the spread area is directly related to the

cells ability to generate force [5, 37] and that maximum cell speed is related to intermediate

level of force generation, for numerous integrin and ligand expression levels [38]. Thus we

can elucidate the link between intermediate spread area and maximum velocity lies in the
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cells ability to generate optimum traction with the substrate. Our results conclude that both

mechanical and biochemical factors acting together evoke optimum spread area and force

generation to achieve maximum velocity.

Video micrographs of pairs of cells and their persistent interactions indicate that adhe-

siveness and compliance of the surrounding matrix play a role in the dynamics of cell-cell

interactions (Fig. 3.5). On a stiffer substrate of 7900 Pa, cell-cell contact is continuous at

FN concentration of 0.05 mg/ml, Fig. 3.5A. The two cells do not lose contact, pull each

other in all directions and are unable to migrate in unison nor independently. However on

0.05 mg/ml FN coated soft 1250 Pa gel, there is minimal interaction between cells. Two

cells pictured in Fig. 3.5B collide, redirect themselves and move on. The cells slow down

briefly upon collision, but do not form a lasting connection as they continue to migrate

independently away from each other. However, when FN concentration is significantly

increased to 0.4 mg/ml on the same soft gel, two cells pictured in Fig. 3.5C do not lose

contact, but rather pull and push each other as they attempt to migrate together. The cells

are unable to successfully move, just like the ones on gels in Fig. 3.5A. Thus inverse

changes in substrate elasticity and adhesion result in the same cell-cell behavior.

3.3 ECM compliance promotes formation of 3D multicel-

lular structures on 2D surface

Cell-cell adhesion’s significant affect on cell behavior on soft gels lead us to hypothesize

that reduction in substrate compliance to 400 Pa stiffness, similar to pre-malignant breast

tissue, would further promote cell-cell adhesiveness and increase cell assembly. Plating

the cells at 0.1 mg/ml FN concentration on the 400 Pa gels greatly decreased cell motility

and cell-cell contacts were persistent and permanent over a period of 3 days. Cells were

unable to spread nor significantly migrate, however when in close proximity, cells did
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Figure 3.5: ECM mediated cell interactions visualized.
MCF10A cell pairs pictured at time points captured with phase microscopy. The cells are imaged
on (A) 7900 Pa gel coated with 0.05 mg/ml FN, (B) 1250 Pa gel coated with 0.05 mg/ml and (C)
0.4 mg/ml FN bulk concentration. → follows the cell of interest and ‡ denotes cells in brief contact.
HH:MM. Scale bar = 50 μm
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come together and remain attached. With time they divided and rearranged themselves

into spherical three dimensional structures even on two dimensional gels. Cell assembly

was first observed after 24 hours of incubation on polyacrylamide gel, Fig. 3.6A. Cell

division and re-arrangement into more spherical or ellipsoid aggregates was observed next,

after 48 hours of incubation on these PA gels, as illustrated in Fig. 3.6B and C.

After 72 hours of incubation on 1250 and 400 Pa gels, cell aggregates were found on

the two dimensional surfaces as illustrated in Fig. 3.7. On 1250 Pa gels, the cells formed

islands of two dimensional aggregates, Fig. 3.7A. However on 400 Pa gels the aggregates

were three dimensional as confirmed with phase microscopy z-axis focus that revealed cells

at multiple heights of the aggregate. The third dimension of the aggregates was confirmed

with staining of the nuclei and observing that some nuclei were residing on top of other,

Fig. 3.7B.

In addition to the time lapse phase microscopy images, we further tested whether the

aggregates assembled into the 3D structure or proliferated to form the structures. Prior to

plating on 400 Pa gels, half of the cell population was incubated with cell tracker beads

while the other half was not. The mixed final sample was plated and incubated for 72

hours. Some 3D aggregates were found to have both bead and no-bead containing cells,

confirming cell assembly is involved in formation of 3D aggregates. In some 3D aggregates

none of the cells had beads while in others all cells contained beads. These results imply

that cells divided into these structures (Fig. 3.7C). Similar results were found on 140 Pa

gels, which is the elasticity similar to that of normal breast tissue (data not shown).

It is further important to mention one important driver for the observed cell aggregation,

which is the cell’s ability to sense its neighbors. Cells can sense the deformation of the elas-

tic substrate through durotaxis, as has been shown previously with NIH 3T3 fibroblasts on

polyacrylamide gels [37]. These cells were able to sense and migrate toward the stretched

and stiffer substrates. In our experiments on softer substrates, we find the MCF10A cells
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Figure 3.6: Cell assembly and aggregate initiation.
MCF10A cells assemble, divide and re-arrange into 3 dimensional aggregates on soft gels with
elastic modulus similar to pre-malignant tissue. (A) 24 hrs after plating, MCF10A cells were imaged
for 8 hours (see methods) and observed to assemble. 48 hours after plating the cells were observed to
divide (B) and re-arrange (C) into spherical 3-dimensional aggregates on 2-dimensional FN coated
polyacrlyamide gels. All gels are 400 Pa and coated with 0.1 mg/ml FN. * denotes a cell undergoing
division. HH:MM. Scale bar = 50 μm
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are able to sense the mechanical substrate deformation due to forces applied by nearby

cells and thus migrate toward each other. This phenomenon is demonstrated in Fig. 3.7,

where cells migrate toward each other on the 1250 Pa gels and after 72 hours of incubation

remain attached to each other forming 2D islands of cells on the gels. On more compliant

substrates, these aggregates become spherical and three dimensional. Thus the flexible sub-

strate induces tissue-like aggregation of MCF10A cells, similarly as the 3T3 cells studied

[37]

Therefore the cells do not need a 3D environment, as they are mechanosensing the

softness of the substrate which drives the formation of an energetically optimal spherical

3D aggregate. These aggregates may be the 2-dimensional analogues of the energetically

favorable spherical acini structures these cells form in 3-dimensional gels [5]. Compara-

tively, cells on 1250 Pa gels cluster and stick together and form a 2D-aggregate of cells,

but do not protrude in 3rd dimension (Fig. 3.7). Further increase in rigidity above 1250 Pa

or decrease in ligand density do not produce similar tight-island like aggregates in two nor

three dimensions (Fig. 3.8).

Furthermore we find the 3D aggregates in mouse mammary epithelial cells, EpH4-

J3B1 [44], as well, Fig. 3.9. On 1250 Pa gels coated with GFOGER collagen peptide after

3 days of incubation cells form 2 dimensional tight islands and no 3 dimensional structures,

Fig. 3.9A. Although we did find that after 6 days of incubation the cells formed tube like

structures with very few but present 3 dimensional aggregates on the tip, as seen in Fig.

3.9B and the inset fluorescent nuclei staining which shows a few nuclei residing on top of

other nuclei. This is similar to the observed EpH4-J3B1 behavior in 3D collagen culture

as reported by Montesano et al. [44]. This structure is also similar to native in vivo breast

tissue that consists of ducts leading into spherical lumen containing acini [6, 45]. On softer

gels of 675 Pa 3D aggregates started developing 2 days and grew 3 days after plating as

seen with inset nuclei staining, Fig. 3.9C and D.
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Figure 3.7: MCF10A 3D spherical aggregates on 2D substrates.
MCF10A cells on softer 2-dimensional FN coated polyacrlyamide gels 24 hours after plating (A
and C) and the respective aggregates 72 hours after plating (B, D-F). (A-B) 2D aggregates on 1250
Pa gels coated with 0.1 mg/ml FN. (C-D) On softer 400 Pa gels coated with 0.1 mg/ml FN, 3
dimensional aggregates are shown with inset fluorescent image of Hoecht dye stained nuclei in 3D
locations (D). (E-F) Bottom to top view of a 3D aggregate 72 hrs after plating, with z=0 μm at
the gel surface and slice 32 μm above on 0.1 mg/ml FN coated 400 Pa gel. 72 hr snapshots with
fluorescent beads were taken to test weather cells assemble or proliferate into 3D structures via pre-
incubating half of the cells with fluorescent beads and mixing equally with unlabeled cells prior to
plating. * denotes a cell undergoing division. Scale bar = 50 μm
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Califano and Reinhart-King showed that bovine aortic endothelial cells assemble into

tubular structures on low compliance gels (at elasticity below 1250 Pa) [14]. Recently

Saunders and Hammer further showed that the aspect ratio, useful metric for quantifying

the propensity of cells to form networks, is not network conducive on substrates of stiffness

greater than 1050 Pa for human umbilical vein endothelial cells [41]. Thus it may be that

cells of all types are encoded with a mechanical sensitivity to substrate elasticity that drives

them into multi-cellular structures appropriate to their phenotype. It is interesting to explore

the universality of this 1 kPa compliance associated switch further. These extensive results

beg to question other cell types to understand if all cells experience a universal compliance

threshold.
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Figure 3.8: Absence of aggregates on stiffer substrates.
MCF10A cells seeded at low density and imaged 72 hours after plating. (A) Cells plated on 2500
Pa gels and 0.01 mg/ml FN density. (B) Cells on 7900 Pa gels and 0.001 mg/ml FN. 3-dimensional
aggregate formation is not observed at these ECM conditions. Scale bar = 50 μm

97



Figure 3.9: Mouse mammary epithelial cell aggregates.
Mouse mammary epithelial cells, EpH4-J3B1, on 0.05 mg/ml GFOGER collagen peptide saturated
gels. EpH4 cells imaged (A) 3 days and (B) 6 days after plating on 1250 Pa gels. Cell aggregates
on 675 Pa gels (C) 2 days and (D) 3 days after plating. Inset Hoecht dye stained nuclei. Scale bar =
50 μm
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3.4 Mechanical and Biochemical ECM model

These findings link extracellular environment to collective cell behavior through the intra-

cellular connection between cell-matrix and cell-cell adhesions, as represented in schematic

Fig. 3.10. It is clear from the data that increasing biochemical stimuli on gel surface acti-

vates stronger cell-cell adhesion through a cascade of intracellular molecular events. The

activated cell adherens junctions (AJ) then maintain cells in continuous contact, and once

adherent to each other the cells’ migration is then inhibited. The cells would rather main-

tain contact than move independently. Increases in surface ligand concentration beyond the

optimum amount on the specific rigidity, continue to strengthen cell-matrix adhesion and

decrease cell motility for individual cells and cell pairs alike. The data further concludes

that increasing the mechanical stimuli favors cell-matrix interaction over cell-cell interac-

tion. Softer, more elastic matrices are unable to induce strong mature cell-matrix adhesion

and cell-cell adhesion is more evident. The mechanical conditions of the environment in-

crease the affinity and strength of cell-cell adhesion to such an extent that mammary epithe-

lial cells further organize into 3 dimensional structures. Therefore, it is the mechano-driven

ligand-integrin activation of proteins and molecular pathways inside the cell that promote

stronger cell-cell adhesions, while the compliance of the matrix inhibits the formation of

strong substrate adhesion.

The data suggests a link between ligand-integrin engagement and the formation of

strong adherens junctions between cells. Integrin-cadherin crosstalk and connection has

been previously explored [32, 39, 40] and our results suggest it plays a role in collective

cell behavior. One possible interpretation of our findings is that focal adhesions are acti-

vated by biochemical and mechanical properties of the ECM, whereas AJs are activated by

biochemical cues and inhibited by mechanical cues. Cell-cell interaction is activated and

favored at high ligand density, but is reduced by the rigidity of the ECM. At high stiffness,

the adhesion between two cells is not able to override the strength of cell-matrix adhesion
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Figure 3.10: Schematic summary of effects of biochemical and mechanical cues of the ECM on
cell-cell and cell-matrix interactions leading to cell motility and cell-cell assembly.

due to increasing mechanical cues of the ECM. But on softer gels cell-cell interaction is

stronger and thus cell migration is limited and cell-cell assembly is promoted, summarized

in Fig. 3.10.
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Chapter 4

Force profile in breast cancer

invasiveness and adhesiveness

Mechanosensing and cellular mechanotransduction are important areas of research in early

tissue development and disease progression, such as cancer. Force exerted by cells on the

matrix is an important part of cell spreading, migration, invasion and aggregation, and is

a function of the biochemical and mechanical properties of the extracellular environment.

Recent research on forces cells exert onto neighboring cells shows the importance of cell-

cell mechanics in tissue integrity and homeostasis [11]. Therefore mechanical strength

of both cell-matrix and cell-cell adhesions dictate cell behavior, specifically migration in

cancer invasion and metastasis. However the inter-connected and complicated relationship

between these forces and motility has yet to be fully explored.

In previous chapter our results showed motility increasing biphasically with increasing

substrate stiffness and ligand density. These findings point to the existence of a substrate

adhesivity optimum for maximum migration. This highly motile cellular behavior was

found to be inhibited by cell-cell interaction, as adherent cell pairs were unable to reach

the same maximal velocity as single cells on all extracellular matrix (ECM) mechanical
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and biochemical conditions. Furthermore the invasive phenotype was reverted on a two-

dimensional gel by decreasing the substrate stiffness to that of pre-malignant tissue. We

found that mammary epithelial cells can assemble, divide, re-arrange and crawl on top of

each other to form 3D tissue-like aggregates on 2D soft gels of 400 Pascals (Pa) Young’s

elastic modulus. This three-dimensional assembly is favored by strong cell-cell adhesion

and is not observed on substrates of 1250 Pa or stiffer. The mechanical softness of the

gel drives the cells to form permanent connections and adhere to each other preferentially

versus the surrounding matrix. This data suggests that cells are able to mechanosense not

only the matrix, but each other as well.

All of these novel findings of cell-cell mechanical linkage are supported by reported

motility and force traction data of cells plated on cadherin coated glass and elastomer pillars

[11, 6, 7]. Additionally the reported cross-talk between cell-matrix and cell-cell adhesions,

via intracellular integrin and cadherin mediated adhesion pathways [8, 10, 13], all serve as

our motivation for further research in the cross-linked cellular force mechanics.

Our findings are first to relate average cell motility to average traction force. Our data of

MCF10A cell motility reveal novel dynamics of an intermediate force that elicits maximum

migration of single cells but not in adherent cell pairs. We report data of maximum cell

stresses on soft and stiff substrates coated with a range of ligand densities. The maximum

stresses a cell is able to exert onto the underlying substrate are consistently and significantly

higher in adherent cells versus single cells, although the spread area of adherent cells on

average is smaller. This finding is slightly different than that reported by a study of forces

exerted by sheets of cells on micropillars. Findings concluded that the cells on the periphery

exerted highest forces onto the substrate and those on the inside of the sheet, much lower

[2]. The possible missing links could be the number of neighbors, density of the cell

packing, size and ability of the cell to spread at the edge versus the inside of the sheet.

Even cell cycle of the cell can influence the force exerted onto the ECM. It would also be
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interesting to find the intercellular forces in the sheet - if these forces are higher on the

inside of the sheet versus the periphery.

We are also first to report cell-cell tension data of adherent cell pairs as a function of

matrix stiffness and ligand density. In these experiments we find a novel linear relationship

between cell-cell and cell-matrix force. The ratio of cell-cell to cell-matrix force is found

linearly decreasing with cell spread area, which points to competition between the two

adhesions. With increased fibronectin ligand density and gel stiffness, the cell spreads

more on and adheres stronger to the substrate than that to its neighboring cell. The affect is

then observed to be opposite on cell motility. Velocity decreases with increasing cell-cell

to cell matrix force ratios. Which means with stronger cell-cell over cell-matrix adhesions,

cell motility is decreased. It is a regulated balance and competition between cell-cell and

cell-ECM adhesion that dictate motile behavior of the cells.

Adhesion complexes have been identified to connect two cells biochemically and me-

chanically, similarly as focal adhesions connect cells to the underlying matrix [3, 9, 14, 12].

To better understand the strength of cell-cell adhesion we further focused on β-catenin, a

key protein that links Adheren Junctions (AJ) and intracellular mechanical actomyosin

machinery. β-catenin is found bound to cytoplasmic domain of E-cadherin in AJ [5]. Phos-

phorylated E-cadherin cytoplasmic domain is found to interact directly with a hydrophobic

patch of β-catenin [5]. Therefore β-catenin links intercellular adhesion to intracellular force

sensing and generating proteins and therefore plays an important role in the force depen-

dant pathway of cell-cell interaction.

Furthermore if E-cadherin bound β-catenin serves a supportive role in cell-cell adhesion

and tissue connectivity and integrity, the unbound intracellular β-catenin serves an antag-

onistic role. Tumor cells with nuclear accumulation of β-catenin have also been found

to undergo loss of E-cadherin expression and epithelial-mesenchymal transition, a phe-

nomenon describing transformation events to invasive epithelial cancers [4]. Therefore we
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conducted force experiments on MCF10A transfected cells with dominantly expressing β-

catenin binding site mutant of E-cadherin. These cells are over-expressing the GFP-tagged

mutant E-cadherin that is missing a β-catenin binding domain. As expected the mutant

cells could not exert high forces onto each other, but furthermore we found they could not

exert high forces onto the matrix either. Importantly the cell-cell force did not increase

with matrix stiffness nor as cell-matrix force increased, thus decoupling the cross-linked

pathways.

4.1 Motility is a function of cell-matrix traction force me-

diated through cell-cell adhesion

Adhesion strength and traction forces exerted by cells onto the extracellular matrix (ECM)

drive cells motility in cancer metastasis. We report novel findings of mammary epithe-

lial cell force generation and motility as a function of cell-matrix and cell-cell adhesion.

MCF10A cells are plated on soft and stiff polyacrylamide gels, 1250 and 7900 Pa respec-

tively. The gels are coated with a range of fibronectin (FN) concentrations from low 0.001

to saturated 0.1 mg/ml.

Average traction forces increase for single and adherent cell pairs with increasing ma-

trix stiffness and ligand density, Fig. 4.1A. There is no statistical difference between av-

erage forces of single and adherent epithelial cells. However the maximum stresses the

adherent cells in pairs are able to apply onto the underlying substrate are much higher, Fig.

4.1C. On 7900 Pa stiff gels the difference between maximum stresses of single and adher-

ent cells is statistically significant with a p value < 0.05. On softer substrate of 1250 Pa

this difference is even more significant with a p value < 0.002. Therefore cell-cell adhesion

activates and engages the cellular cytoskeleton to elicit higher cell-matrix stresses than a

single cell is able to exert.
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Figure 4.1: Traction forces and stresses dictate motility.
MCF10A human mammary epithelial cell traction forces are compared for single cells (blue) and
adherent cell pairs (red) on physiologically soft and stiff gels, 1250 and 7900 Pa Elastic Modulus.
(A) Average traction forces increase with increasing Fibronectin (FN) ligand and increasing sub-
strate stiffness. (B) Migration velocity is plotted as a function of average traction force cells exert
for single cells ( ) and adherent cell pairs ( ). (C) Maximum traction stresses exerted by single
cells and adherent cell pairs. *p value < 0.05 and **p value < 0.002 (D) Maximum tractions in-
crease linearly with increasing cell area. Inset is plot of cell spread area of single and adherent cells
linearly increasing with the biochemical and mechanical cues. ±SEM
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The calculated average traction force on each substrate is plotted in relationship to the

cell motility reported at the corresponding ECM condition previously. A novel correlation

is found between single cell motility and average traction force. The speed goes through

a maximum as a function of cell-matrix traction forces, Fig. 4.1B, where an intermediate

force elicits the optimum single cell motility. However, this biphasic maximum is not

observed in adherent cell pairs. Cells in pairs do not reach the maximum velocity at all

over the range of calculated forces.

Furthermore for the similar spread areas, adherent cell pairs exert consistently higher

maximum stresses onto the underlying substrate. Even though the single cells are able to

spread to higher areas on some substrates, the maximum traction stresses are still lower,

Fig. 4.1D. This novel data means cytoskeletal contraction is higher in adherent cells and

therefore is activated by cell-cell adhesion in addition to cell-matrix adhesion. It is a novel

link to cell-matrix stresses enhanced by cell-cell adhesion.

To better understand cell-cell adhesion, tension between adherent cell pairs was calcu-

lated through the matrix traction force balance (see Theory section of Chapter 1). Although

cell-cell force, |F21|, is increasing with increasing stiffness and ligand density, the increase

is only statistically significant on softest gel and lowest FN density of 0.001 mg/ml, p value

< 0.002, Fig. 4.2A. An interesting linear increasing relationship between average traction

force and cell-cell force is observed, Fig. 4.2B. Furthermore to shed understanding of affect

of ECM mediated spread area on the cell-cell adhesion versus cell-matrix adhesion, we find

that cell-cell to cell-matrix force ratio is decreasing with increasing cell spread area. Espe-

cially on stiff 7900 Pa substrates (purple markers) force of cell-cell to cell-matrix adhesion

is much lower than on soft 1250 Pa gels (green markers), Fig. 4.2C.

Since in previous work we found that cell migration velocity is slowed by cell-cell

interaction, we further tested if the strength of cell-cell versus cell-matrix adhesion affects

cell migration velocity. The new findings of a linearly decreasing cell migration velocity of
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Figure 4.2: Cell-cell tension and average force relationships.
(A) Cell-cell tension, |F21|, is plotted as a function of substrate stiffness, E Modulus 1250 and 7900
Pa, and FN ligand density (mg/ml). *p value < 0.002 Further comparison of calculated traction
forces is done on 1250 (green) and 7900 (purple) gels. (B) |F21| is plotted versus cell-matrix average
traction force. (C) Ratio of |F21| to average traction force is a function of cell spread area. (D) Cell
velocity is plotted as a function of |F21| / average traction force ratio. ±SEM
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adherent cell pairs was found to correlate to increasing cell-cell over cell-matrix force ratio,

Fig. 4.2D. This data sheds light on understanding cell-cell adhesion role in cell motility and

invasiveness. We find it is not the absolute strength of the cell-cell adhesion that decreases

cell motility, but rather a correlation to that of strength of cell-matrix adhesion. A cell must

exert enough cell-matrix force to overcome the cell-cell tension to reach high velocity. The

speed and invasiveness of adherent cells thus depends on this ratio and not on absolute

cell-cell tension value. Therefore we report significant cell-cell and cell-matrix cross talk

in force dynamics.

4.2 Role of β-catenin in cell force profile

To better understand cell-cell force we focused on an intracellular player involved in the

connection between cell-cell adhesion and cytoskeleton engagement. β-catenin is an im-

portant player at cell-cell junctions that mediates cytoskeletal engagement connection to

E-cadherin cell-cell junctions. In normal cells it is found at AJ but in metastatic cells in

cytoplasm and nucleus [1]. Furthermore assembly of new AJ has been found aided by pres-

ence of integrins [10, 9, 13], which is also observed in our staining colocalization (yellow)

of β1 integrin (green) and β-catenin (red), Fig. 4.3. Therefore we decided to further test the

impact of β-catenin in cell force generation profile.

A dominantly expressing plasmid with mutant E-cadherin that is missing the β-catenin

binding domain was transfected into MCF10A cells. The mutant allowed us to test the

role of E-cadherin and β-catenin binding in adherens junctions (AJ) and activation of the

actomyosin cytoskeleton in force transduction. As expected the data finds the cell-cell

tension, |F21|, is significantly lower in mutant cells versus un-transfected cells on 1250 Pa

soft and 7900 Pa stiff gels, Fig. 4.4B. The |F21| is not only lower but doesnot increase with

increasing substrate stiffness, as observed in normal cells.
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Figure 4.3: MCF10A cells fluorescent staining.
MCF10A cells on 14 kPa stiff 0.1 mg/ml fibronectin coated polyacrylamide gels were fixed and
stained with Hoecht dye nuclei (blue), Alexa488 β1 integrin (green) and Cy5 β-catenin (red). Yellow
color at cell-cell junction is evident due to overlay of green and red, integrin and catenin staining
respectively. Scale bar = 10 μm

0

10

20

30

40

50

60

|F
2
1
| 

(n
N

)

1250 1250MT 7900 7900MT

B

0

50

100

150

200

250

A
v
e
ra

g
e
 F

o
rc

e
 (

n
N

)

1250 1250MT 7900 7900MT

A

0

20

40

60

0 100 200

Average Force (nN)

|F
2
1
| 

(n
N

)

C

Figure 4.4: E-cadherin mutant force profiles.
Traction forces of MCF10 E-cadherin mutant transfected cell pairs (grey) are compared to normal
adherent cell pairs (color). (A) Average traction force and (B) cell-cell tension, |F21|, are compared
on 1250 and 7900 Pa 0.1 mg/ml FN coated gels. (C) Cell-cell tension is plotted as a function of
average traction force. Cells on soft 1250 Pa gels are green and on stiff 7900 Pa gels are purple and
mutant cell data is shaded with grey markers ( ). ±SEM
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Surprisingly the average force exerted by the mutant adherent cells is also lower than

normal on both substrates, Fig. 4.4A, although it is increasing with increasing substrate

stiffness. There is no significant change in cell spread area, data not shown. Furthermore

mutant cell-cell force plotted in relationship to average traction force does not follow the

previously reported linearly increasing relationship in normal EpH4 cells, Fig. 4.4C. In-

creasing substrate stiffness increases average force, but cell-cell tension remains unchanged

in mutant cells. The inability of the mutant cells’ β-catenin to bind to E-cadherin and en-

gage the cellular cytoskeleton at the AJ prevents it from exerting strong |F21| forces. There-

fore we report novel findings that β-catenin E-cadherin binding is necessary in cell-cell

force transduction pathway and cross-talk.
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Chapter 5

Force dynamics of cell-cell interactions

Cellular ability to sense mechanical stimuli and exert stress on the extracellular matrix and

on its neighbors is important in tissue development and destabilization in disease progres-

sion. Numerous diseases are associated with defects in mechanotransduction [36]. In breast

cancer especially, where cell metastasis is the leading cause of lethality, forces play impor-

tant role in motility and invasiveness. Strength and disturbance of epithelial cell adhesions

to the surrounding matrix and to its neighbors is the hallmark of the invasive metastatic phe-

notype. We have thus set out to understand the dynamic mechanical connection of cell-cell

adhesions through cell-matrix interaction in a breast cancer model.

The role of the extracellular matrix (ECM) in force sensing and generation to cell

spreading and motility has been studied in diverse cell systems. Cells are able to exert

traction stresses onto the ECM through intracellular focal adhesion components connected

to the cellular actin cytoskeleton [15, 16, 20, 31, 45]. Furthermore substrate mechanical

stimuli have been shown to increase size, number, composition, and strength of focal adhe-

sions and the force cells exert [45, 18, 19, 21, 34, 37].

Published data has also shown cell are able to sense mechanical stimuli and exert force

through cadherin mediated adherens junctions. These experiments have been conducted
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in cadherin coated polyacrylamide and polydimethylsiloxane micropillar substrates that

mimicked cell surface [11, 12, 13]. Cadherin mediated cell-cell adhesion has been found

connected to the cellular cytoskeleton via intracellular molecular players [26, 32, 35, 42,

43, 53, 52] and to actomyosin contractility, implicated with myosin motors [30, 40, 50].

However this unique and interesting mechanical connection involved in cell-cell adhesion

is not fully understood.

Furthermore, cell-cell and cell-matrix mechanotransduction intracellular pathways are

not mutually exclusive, as connection and cross-talk between them have been proposed to

exist [8, 10, 13]. Cell-cell cohesion and cell-matrix adhesion were found as connected but

competing pathways in the differential adhesion hypothesis [28, 29, 48]. However, vas-

cular endothelial cadherin and cell-cell adhesion have been shown to promote cell-matrix

adhesion through increase in focal adhesion size and number [44]. Whereas, ECM rigidity

acts to inhibit cadherin mediated cell-cell adhesion and promote cell scattering and inva-

siveness [45, 51, 23]. Therefore the complicated cross-talk and connection of cell-cell and

cell-matrix interaction remains unclear in mechanical dynamics and strengths of the adhe-

sion.

In our work we analyze both cell-cell and cell-matrix forces co-currently in time for

a range of interactive dynamics to understand the cellular mechanotransduction on both

fronts. Experiments of breast epithelial cell pairs in contact or retracting, with some cycli-

cally repeating the interaction, revealed novel dynamics of their interactions. The mechan-

ical properties of the substrate gels was varied from an elastic modulus of 1250 Pascals

(Pa), to 2500 and 7900 Pa, which represents the range of stiffness of pre-malignant to inva-

sive tumor breast cancer environments [45, 17, 39]. Analysis was performed with traction

force microscopy (TFM) [24]. Novel mechanics were found and quantified through cell

exerted force orientation, magnitude and residual error on the extracellular substrate and

on adherent cell.
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Inspired by single cell polarization and orientation perpendicular to externally applied

stress fields modeled and experimentally tested [22, 33, 49, 54], we performed cell polar-

ization and orientation experiments in cell pairs. Our experimental set up has no outside

source of substrate deformation. Our findings report that cells exert force onto the extra-

cellular matrix anti-parallel to each other when they are in contact. The cells orient their

force fields anti-parallel only when the two cells are in direct contact and a mechanical

connection exists between the pair. This polarization is not observed prior or post contact

nor for cells in close proximity, less than a cell diameter distance apart.

Furthermore we find the alignment is also dependant on the strength of the cell-cell

interaction. The orientation angle begins to deviate from anti-parallel alignment and be-

comes random when cell-cell force is too weak, below 50 nN on all substrates. Therefore

we find in adherent cell pairs, the anti-parallel orientation of force is directly a function of

cell-cell adhesion, not due to substrate stiffness, nor substrate deformation or ligand type.

This interesting finding is further supported by intracellular molecular biology work that

shows cell-cell adhesion induces polarity and directed anti-parallel migration [25]. Most

recent publication by Nelson lab found that in presence of E-cadherin, on collagen pat-

terned surface, the cells orient their migration and traction forces[98], which supports our

findings as well.

We further find cell-cell force magnitude is a function of the ECM stiffness and is dy-

namic in time. Average intercellular force increases with increasing ECM stiffness. Force

magnitude and residual error analysis yield dynamic quantitative results of mechanical

strength and signal to noise magnitude of the cell-cell adhesion in time. The temporal

mechanics are a fascinating insight into strength of adhesions between the cells and the

matrix, validated by analysis of error in signal. This powerful assay can predict the break-

ing of cell-cell bond mechanically before it is visually confirmed. Such an assay can be

used in combination with biological essays to test the presence, absence as well as concen-
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trations of molecular players involved strong, weak and retracting cell-cell adhesions.

Finally, we find that a mechanical connection and correlation exists between the strength

of cell-cell and cell-matrix interactions, which further supports the intracellular connection

and cross-talk of molecular players and pathways between focal adhesions and adheren

junctions. We report experimental data that shows when adherent cell pair force increases,

cell-matrix force decreases, and when the cell-cell mechanical bond weakens, the cells ex-

ert stronger stresses onto the substrate. Indicating a mechanical tug of war exists within the

cell, via actomyosin contraction preferentially occurring either at cell-cell or at cell-matrix

adhesion. It will be interesting to test how one adhesion’s mechanical bond preferentially

drives the strength of the other or if it is a random cause and effect relationship.

It is finally important to note that all the studies of cell-cell mechanical interactions were

studied as a function of the ECM. Our experimental system interpolates cues from both

sources. This experimental system is only possible with TFM and is ideal in identifying

weather molecular players differentially prefer mechanical strength of cell-matrix over cell-

cell adhesions or cross-talk to increase and decrease each simultaneously.

5.1 Cell-cell interaction quantified through substrate de-

formation

Dynamics of cell-cell mechanotransduction of mouse mammary epithelial cell pairs ele-

gantly tell a story through their surroundings. The interactions were captured with time-

lapse microscopy and traction force calculations [24, 41]. Two single cells were observed

coming together, forming a visual contact, then breaking the adhesion and retracting away

from each other, for some cell pairs a repetitive cycle. Fig. 5.1A phase images provide

the visual confirmation of such a cell pair in time. The interaction between the cells is

reflected through the deformation of the underlying elastic polyacrylamide substrate. The
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cell-deformed substrate corresponding to each phase image was tracked with fluorescent

bead movements, embedded at the surface of the gel, Fig. 5.1B. In this figure, the displace-

ment vectors are exaggerated for better visualization for a cell pair on 1250 Pa collagen

coated gel.

The displacement fields of cells not in contact, at time 00:00 and 01:20, show bead

movement concentrated in two or three small areas under the cell with inward stresses.

Each cell thus strains the substrate at a few localized centers. These force centers either

create two dipoles within the cell or co-localize in the direction of movement. In this cell

pair the two dipoles persist as the cells come into contact initially, Fig. 5.1C. However

as the two cells form a strong adhesion with each other they rearrange to have only one

force center each, opposing to that of its partner, as seen at time 01:00 in Fig. 5.1B. The

individual cells now act together as one and their anti-parallel displacement fields show the

cell pair develops two dipoles as one entity. The substrate displacement vectors are larger

in magnitude as each cell concentrates all of its forces to oppose the other.

Furthermore, in substrate deformation, small displacement vectors can be seen point-

ing perpendicular to the anti-parallel force dipoles at the cell-cell adhesion boundary. These

vectors represent the substrate being ‘squeezed out’ at the site of cell junction, further illus-

trating the absence of force onto the substrate at this site and the presence of a mechanical

bond between the two cells. An analogy can be drawn to a ‘tug of war’ between the two

cells – each cell anchors itself into the substrate anti-parallel to its partner as it pulls on the

other through a metaphorical rope. Thus the gel is strained on opposite ends of each cell

and pushed out at the middle.

Using the traction vector definitions and Newton’s laws discussed in the Theory sec-

tion, we calculated the cell traction force maps corresponding to each time point, Fig. 5.1C.

The maps reflect the calculated stress magnitude and direction each cell must exert to elicit

the observed deformation of the substrate. Inset is a simplified cartoon representation of the
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Figure 5.1: EpH4 two cell interaction visualized.
Mouse breast epithelial cell interaction is captured with time lapse microscopy on 1250 Pa sub-
strates. (A) Phase images show two cells on collagen coated polyacrylamide gel with embedded
fluorescent beads. HH:MM. Scale bar = 50 μm (B) Displacement vectors of the fluorescent beads
correspond to the phase images at each time point. The vector fields represent the substrate deforma-
tion due to force exerted by the cells. (C) Calculated traction force maps show the cell stress fields
and centers as the two cells come into contact and separate. Inset cartoons depict the directionality
of the gel deformation due to the stress applied by the adherent cells.
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Figure 5.2: Temporal force vectors of cell-cell interactions.
Quantitative temporal results of interacting cell pair depict the cells initially in contact and then
retracting (shaded area). The cells were plated on collagen coated 7900 Pa polyacrylamide gel. On
all plots values for distance between the cells (*) are on the right y-axis. (A) x and y traction integral
component vectors of each cell in the pair are represented with 〈Tx〉c1 and 〈Ty〉c1 for cell 1 (black
symbols) and 〈Tx〉c2 and 〈Ty〉c2 for cell 2 (white symbols). (B) The angle between the traction
vectors ( ) of cell 1 and cell 2 is reported with cos θ, where cos θ = -1 represents anti-parallel
traction vector alignment, seen for cells in contact. (C) Magnitude of the force ( ) each cell exerts
onto the other in an adherent pair is calculated in accordance with Newton’s Laws, described in
Definition and Theory section and represented with |F21|.

anti-parallel alignment of force centers and substrate deformations observed in mechani-

cally adherent cell pairs on all substrates.

Quantitative analysis of the cell pairs substantiated these novel dynamics and mechan-

ics of cell interaction. Traction calculations provided new data of adherent cell force com-

ponent vectors, angles and magnitudes, Fig. 5.2. Computed x and y components of the

traction vectors of each cell (〈Tx〉 and
〈
Ty
〉
) are plotted as a function of time for a pair of

cells on 7900 Pa gel, Fig. 5.2A. The data shows the x and y vectors of each cell are opposite

in direction when the cells are in physical contact. The force exerted onto the substrate in

x and y direction for cell 1 and cell 2 are mirror images of each other, equal and opposite.

These vectors become random as soon as the two cells brake the physical connection, re-

tract and separate (shaded area). Calculated angles between these traction vectors support

the substrate displacements seen in Fig. 5.2B, the cells exert force anti-parallel (represented

with cosθ ≈ -1) to each other when they are in contact, Fig. 5.2B. The orientation becomes
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Figure 5.3: Temporal cyclic interaction dynamics.
Quantitative results of interacting cell pair in time depict the cells in contact retracting (shaded area)
and then coming back together. The cells were plated on collagen coated 1250 Pa polyacrylamide
gel. On all plots values for distance between the cells (*) are on the right y-axis. (A) x and y traction
integral component vectors of each cell in the pair are represented with 〈Tx〉c1 and 〈Ty〉c1 for cell 1
and 〈Tx〉c2 and 〈Ty〉c2 for cell 2. (B) The angle between the traction vectors ( ) of cell 1 and cell 2
is reported with cos θ, where cos θ = -1 represents anti-parallel traction vector alignment, seen for
cells in contact. (C) Magnitude of the force |F21| (!) each cell exerts onto the other in an adherent
pair is plotted versus time.

random when the cells retract.

Applying 1st law of motion to the component vectors, we calculated the magnitude of

force (|F21|) the cells exert onto each other throughout the time of interaction, Fig. 5.2C.

Constrained by Newton’s laws, that global force and torque integrated over the entire sys-

tem must be zero, the force between two physically separated cells equals zero, as seen in

the shaded area of Fig. 5.2C. For two cells in contact, |F21| is plotted on the order of nN

and interestingly decreases prior to the visual separation of the contact between the two

cells. The decrease can be similarly observed in the magnitudes of the component vectors

in Fig. 5.2A. These novel finding suggest that the mechanical strength of the interaction

between two cells decreases prior to visual separation of the adhesion junction, a concept

we’ll discuss further in the following sections. Furthermore these results are not stiffness

dependant and are repeatable occurrences that retract and come back together as supported

by data on 1250 Pa, Fig. 5.3.
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5.2 Adherent cells exert anti-parallel forces

The quantitative analysis of individual cell pairs on 1250 and 7900 Pa gels was averaged

and quantified to represent universal dynamics of cell-cell interaction on both soft and stiff

substrates, Fig. 5.4. As defined by the Newton’s laws of motion we calculated magnitude

of cell-cell force, |F21|, for each interacting cell pair and the angle between the forces

exerted by cells onto the substrate (cos θ). On both soft and stiff substrate the adherent cell

pairs exerted anti-parallel forces, where as separated cells exhibited a random alignment

distribution, Fig. 5.4A. The anti-parallel orientation for adherent cell pairs was found on

all substrate stiffnesses coated with both collagen and collagen peptide (GFOGER collagen

binding domain[27, 38, 47]), Fig. 5.5. Any affect of stiffness or ligand contribution to the

orientation angle was thus ruled out.

This is a significant finding because cells are able to align their force centers anti-

parallel to the neighboring cell only when the two are in contact, indicative of the strain

that the cells feel from each other and not through the substrate. The anti-parallel alignment

has been previously observed in response to substrate strain from outside stress field [22,

33, 49, 54]. Our data show that the cells align to the strain they feel from each other and

not the substrate. Furthermore the angle of alignment of adherent cell pairs depends on the

strength of the cell-cell bond, Fig. 5.4C. On a range of substrate stiffness, 1250, 2500 and

7900 Pa, there is a minimum force cells must exert on each other to align anti-parallel. At

|F21| < 50 nN the orientation of the forces is still in opposite directions, but some of the cell

pairs are not anti-parallel with -0.75 < cos θ < -1.0, as seen in the inset of Fig. 5.4C. And

at |F21| < 20 nN the alignment is random. The data shows there is a minimum strain cells

must sense from each other to align anti-parallel.
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Figure 5.4: Two cell anti-parallel alignment and average force.
Traction vector alignment and force are calculated and averaged for cells on 1250 and 7900 Pa gels.
(A) Box and whiskers plots with overlaying angle data (cos θ) are plotted for single cells (empty
circles) and adherent cell pairs (filled circles). Thick grey bar represents the mean value. (B)
Average force a cell exerts onto the extracellular matrix (ECM) is plotted with white bars (p<0.02).
Average force at the cell-cell junction exerted onto the adherent cell, |F21|, is plotted with black bars
with corresponding values on the right Y axis (p<0.03). ±SEM (C) Anti-parallel orientation angle
(cos θ) of adherent cell pairs is graphed as a function of strength of the cell-cell adhesion on 1250
( ), 2500 (◦) and 7900 ( ) Pa gels. Inset is a zoom at low |F21| cell-cell force values.
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Figure 5.5: Cell pair angles and torques.
(A) Traction vector alignment was averaged for cells on 1250, 2500 and 7900 Pa gels coated with
0.1 mg/ml collagen and 0.05 mg/ml GFOGER peptide concentrations. Box and whiskers plots with
overlaying angle data is plotted for adherent cell pairs. Thick grey bar represents the mean value.
(B) Intercellular torque magnitudes, |Ω21|, are plotted for each adherent cell pair (filled circles) and
compared to separated cells (empty circles) for which the values are due to error and ≈ 0. The non-
zero adherent cell-cell torques confirms existence of intricate mechanical mechanisms in cell-cell
communications.
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Figure 5.6: MCF10A force and cell-cell tension relationship.
Cell-matrix and cell-cell force relationship plotted for cells on soft 1250 Pa ( ) and stiff 7900 Pa
( ) gels. (A) Cell-cell force, |F21| is plotted as a function of cell-matrix force and (B) cell-cell
torque, |Ω21|, is plotted as a function of cell-cell force, |F21|.

We also averaged forces exerted onto the substrate by each cell and the force the cells

exerted onto each other |F21|, Fig. 5.4B. The average force cells exerted onto the substrate

increased with increasing substrate stiffness as expect. The difference was statistically

significant between 1250 and 7900 Pa gels with p value < 0.02. The force cells exerted

on each other increased as a function of the stiffness of the substrate as well, with p value

< 0.03. Furthermore the data shows that the force cells exert onto the ECM is only about

two fold larger than the force the cells exert on each other. This unique finding shows that

cells are able to exert strong forces on each other within an order of magnitude of those

they exert on the substrate. Although strong adheren complexes similar to focal adhesions

have not been fully identified in adhesion junctions between the cells, our data implies that

intracellular pathways must exist to allow for such high forces at cell-cell adhesions.

From the mechanical data of cell-cell adhesion strength, we went further to test if there

is a torque component in cell-cell adhesion, since there exists a rotational contribution of

force in cell-matrix adhesion. Interestingly we find non-zero torque exists between adher-

ent cells, Fig. 5.5B. In addition to linear tension between cells, this new concept of cells

rotating against each other like gears is very unique and needs to be pursued further.
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A further relationship between cell-matrix and cell-cell forces was found linear when

plotted as a function of each other, Fig. 5.6. On soft and stiff substrates, 1250 and 7900

Pa respectively, cell-cell tension increases with increasing cell-matrix force, Fig. 5.6(A).

Additionally cell-cell torque was found linearly increasing with the cell-cell force, Fig.

5.6(B). All of the analysis was performed on significant signal data, as determined by the

dimensionless C− > 0.2 statistic discussed in the next section.

5.3 Statistical interpretation of cell-cell adhesion strength

and retraction

In our analysis we further wanted to understand the error of the calculated data versus

the real data. Error analysis supplements our average reported values with statistics on

the dynamic cell-cell interaction, Fig. 5.7. Scaled non-dimensional residual (C+ and C−

discussed in Theory section of Chapter 1) calculations serve to distinguish the noise due

to error, from the detectable signal. These residuals proved to be significant statistical

determinants and in most instances predictors of cell-cell adhesion retraction.

Fig. 5.7A tracks the cell pair analyzed in Figs. 5.2. The shaded area represents the

visual separation observed with phase microscopy. The traction residuals for separated

cells represent purely error and therefore both are of low magnitude and C+ ≈ C−. Since

the C+ term represents only the error term, it remains relatively unchanged throughout the

entire experiment. The C− term is a sum of both error term and the |F21| cell interaction

force term, therefore for two cells in mechanical contact this residual is expected to be

significantly higher. In fact this significance is observed for cells in contact C+ < C−.

Furthermore C− (dashed line) residual values decrease prior to visual retraction. Both,

these statistical results and the cell-cell force magnitude calculations in Fig. 5.2C, serve as

a clear predictor and indicator of cell pair retraction prior to and even with out the need for
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visual confirmation. The decrease in intercellular force signal is in fact seen in adherent cell

pairs on all substrates prior the cell-cell adhesion is visually broken, Fig. 5.7C. Retracting

cell pairs are analyzed and plotted on rescaled to time x-axis, with 0 corresponding to

the first visual separation of the cell-cell adhesion. Negative time identifies cell pairs in

contact and positive time is after cells retracted and remained separated. There is statistical

difference between C+ and C− for cells in contact (t-test at each time point gives p<0.03),

but no statistical difference for separated cells. And C− decreases for all cell pairs prior

to visual separation. Therefore the mechanical strength of the cell-cell adhesion decreases

prior to visual retraction of that adhesion.

The residuals can thus serve as a test for the mechanical signal strength versus error

of the cell-cell adhesion junction. When the phase images confirm physical contact be-

tween the two cells over a period of an hour, the C− statistic attests to the strength and

significance of their bond, Fig. 5.7B. In this figure the cells are plated on 2500 Pa gels

and start out physically separated initially, denoted with shaded area. After 30 minutes the

cells come into contact and remain visibly adherent to each other as they push and pull on

each other. The inset phase images show the visibly attached cells at time points denoted

with arrow heads. Although visual adhesion is never broken, the C− values fluctuate and

serve as the gauge meter for the mechanical signal strength versus noise. Such analysis can

provide crucial insight into studies of molecular players involved in the mechanosensing

and mechanotransducing pathways of adherens junctions.

5.4 Mechanical dynamics of cross-talk between cell-matrix

and cell-cell adhesions

Cell-matrix and cell-cell adhesions have been linked through common inter-cellular molec-

ular cytoskeleton players, here we report new data supporting the mechanical connection
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Figure 5.7: Statistical analysis of cell-cell force interactions.
Scaled non-dimensional traction residuals, C+ (solid line) and C− (dashed line), were calculated
as discussed in Chapter 1. Corresponding phase images are inset for the cell pairs with the time
points marked by black arrowheads. (A) Two cells on 7900 Pa gels are in contact at time 00:00 and
retract at 01:15. The cells stay separated as highlighted by the gray area. HH:MM. (B) Two cells
initially captured separate on 2500 Pa gels come into contact after 30 minutes. The cell pair remains
in contact for the remainder of the experiment, however C− fluctuates . (C) Cell pair temporal
interaction on 1250, 2500 and 7900 Pa gels was rescaled to time 0 corresponding to the first visual
separation of the cell-cell adhesion. Negative time identifies cells in contact with each other and
positive time is after cells retracted and remained separated. C+ (solid line) and C− (dashed line)
were averaged over 10 cell pairs. Statistical difference observed for cells in contact C+ < C− (t-test
p value<0.03 at each time point), but for separated cells C+ ≈C− . ±SEM
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with force and traction stress result. Direct comparison of maximum traction stresses the

cells exert onto the ECM over 95% of their area and the force the cells exert onto each other

shows a correlation in the dynamics, Fig. 5.8. The cell pair plated on 2500 Pa substrate

pictured in Fig. 5.7B was analyzed for a correlation between the oscillating cell-cell force

pattern and cell-matrix force. Fig. 5.8A shows the anti-phase oscillatory behavior of both

forces with time. As the cells come into contact the force between them increases, then

as they migrate the force between the two cells decreases, and so on. The stress exerted

onto the substrate follows the opposite cycle, at first decreasing then as the cells move the

cell-matrix adhesion strengthens. There is an inverse linear relationship between the max-

imum stress onto the substrate exerted by the adherent cells and the force between them,

Fig. 5.8B.

The cell-cell versus cell-matrix inverse relationship is seen for non-oscillating force

behavior too, as in Fig. 5.8C. For this cell pair, after initial contact, the stress onto the

substrate remains high as a mechanical bond is formed between the two cells. The force

between the cells decrease to the lowest value but the stress onto the substrate remains high.

However as the cell-cell force increases, the cell-matrix stress drops to a low value, pointed

with the red arrow. Both values seem to then equilibrate for the rest of the experiment.

The force dynamics of cell-cell adhesion are thus correlated to the dynamics of cell-matrix

adhesion, shown by inset graph. The magnitude of force a cell applies onto its neighbor is

inversely related to the force it applies onto the surrounding matrix.

This new-found mechanical link between cell-cell and cell-matrix adhesion is also ob-

served in cell-cell torque. Intercellular torque increases as the stress applied on the gel

decreases, Fig. 5.8D, confirming a correlation between cell-cell and cell-matrix mechan-

ics. Furthermore an interesting cell-cell force relationship is found. The torque data implies

that the cells are not only pulling and pushing on each other, but in addition to a contractile

cell-cell adhesion there also must exist a shearing component to the interaction.
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Figure 5.8: Mechanical cell-matrix and cell-cell crosstalk.
Existence of cross talk between cell-matrix and cell-cell adhesion is explored in traction stress and
force dynamics. Maximum traction stresses exerted by each cell over 95% of its area ( and ! on
left y-axis) and magnitude of force between the two cells, |F21| ( ) on right y-axis are plotted as time
series. (A) Mechanical interaction in cell-matrix and cell-cell adhesions is calculated for a cell pair
on 2500 Pa gels pictured in Fig. 4b. The stress each cells exert onto the ECM ( and !) oscillates
with time, decreasing after the initial contact. The solid line represents the average between the
maximum stresses of two cells. The force between the cells |F21| ( ) oscillates anti-phase compared
to cell-matrix dynamics, increasing initially and then decreasing. (B) The relationship between the
two forces is linearly dependant with a negative slope, for increasing cell-matrix stresses (maximum
95% stress) the cell-cell force decreases (|F21|). (C) Force dynamics were plotted for cells on 7900
Pa gels that come and remain in contact. The red arrow points to a sharp decrease in stress cells
exert onto the substrate at exact time there is an increase in force cells exert on each other. Inset
shows the inverse linear relationship of the cell-matrix and cell-cell forces. (D) The stress cells exert
onto the ECM is compared to the intercellular torque |Ω21| (◦), magnitude values on the right y-axis.
Shaded area represents the two separated cells prior to contact.
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Our findings of mechanotransduction in cell-cell adhesion mediated by cell-matrix ad-

hesion show that cells polarize during contact with minimal force requirement, exert greater

force on each other on higher stiffness extracellular substrates, and exhibit ‘tug of war’ dy-

namics between the two adhesion sites. The dynamics not only show a mechanical bond

between two cells disappearing before the visual confirmation, but attest to the strength

of the interaction during cell motility and the strength of the mechanical interaction is in-

versely related to the stresses the cell exerts onto its environment. The present study is

the first to show that measurement of cell-cell forces is feasible, significant and temporally

dynamic. In the future it will be necessary to study the molecular mechanisms generating

inter-cell forces and the role of such forces in physiology and pathology. There are numer-

ous important questions raised. Could the inter-cell forces be part of signaling pathways

that have some role in tissue morphogenesis? Could defects in the control or production of

such forces be associated with pathological processes like cancer? In short, when one con-

siders the ramifications, the present work represents the threshold of a really revolutionary

and seminal series of developments.
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Chapter 6

Cell division and cytokinesis through

Extracellular Matrix

Rapid and uncontrolled cell division with failed cytokinesis are a hallmark of growing

tumors. Final stages of abscission failure creating chromosomally unstable cells have been

linked to tumorigenic progression of cancer [78]. Inherently a mechanical process, it is

hypothesised that cytokinesis is not a simple intracellular constriction step but additionally

an anchorage dependant mechanosensing and mechanotransducing abscission in adherent

mammalian cells.

The first and most widely accepted theory in cytokinesis progression is that an actin

contractile ring formed at the equator is constricted by myosin II motors [72, 83]. Force

profiles of dividing sea urchin egg have demonstrated that initially in the elongated cell,

high forces are localized to opposite pole regions and to the equator where the furrow

establishes and grows. As the furrow grows highest force is located in the region and

aligned parallel to the furrow [73]. These findings indicate that although initially force is

observed on opposing poles, it then co-localizes to the contractile ring region.

Contractile ring research has identified key mechanical components of the region as
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the actomyosin network. Current detailed observations by numerous microscopical tech-

niques such as 3D-EM, Pt-TEM, TIRF and 3D-deconvolution, show actin-myosin network

in Anaphase of Dictyostelium does not form a uniform contractile ring [75]. Embryonic

research on actin fibre alignment and myosin II localization have shown highly ordered

bundles [72]. But in fibroblast cells, a substrate adherent mammalian cell, an organiza-

tional bias for an orientation perpendicular to the spindle axes has been found [66].

Another active division driver found is RhoA, the contractile GTPase found in stress fi-

bres. Although localization nor gradients of RhoA have ever been detected, it is known that

Rac is able to limit RhoA dependant contractility. Therefore RhoA contractility is muted in

the polar cortical regions by Rac and actively pronounced in the equatorial region, where its

role in ROCK activated myosin II drives constriction of the contractile ring [83, 61]. Fur-

ther studies of actin cytoskeleton dynamics in the division cycle show actin localization at

the contractile ring region as early as Telophase in addition to aggregating to the periphery

to provide the cortical cell rigidity prior to cytokinesis[56]. The actin, myosin and Rho re-

search of substrate independent cell division yielded different mechanisms of intracellular

mechanical division. The three mechanisms involved in the contraction of the ring: purse

string, orthogonal filament, isotropic, anisotropic, parallel and traction contraction [67, 71].

In addition to alignment, concentration of these active components has been found im-

portant. Data from Yu-li Wang group also shows that higher accumulation of actin fila-

ments, caused by α-actinin over-expression and loss of actin turn over, actually results in

cytokinetic failure. Where as decrease in actin filaments at the cleavage furrow, brought on

by siRNA knock down of α-actinin, speeds up cytokinesis [59]. Myosin II is unaffected in

all of the experiments. This finding suggests that for adherent cells lower concentration of

filamentous actin at the contractile ring is desired for successful cytokinesis.

However the concentration, order or disorder of the contractile ring actin organization

differ between different organisms, especially in adherent animal cells [76]. Spreading,
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mechanosensing and stress dynamics onto the underlying substrate have been identified

as necessary and determinant in attached cells. Inhibition of cell spreading and increased

matrix elasticity decrease cell proliferation and increased in vivo tissue stiffening has been

found at sites of increased proliferation[58]. Identification of mechanotransducing molecu-

lar players such as ROCK [72], RhoA, Rac and Rho opposing gradients [83], FAK, vinculin

[56], Crk and paxillin[80] during cytokinesis has lead some groups to implicate presence

and participation of focal adhesion complexes in cytokinesis [69].

Important and intricate intracellular roles are played by Rac GTPases. Rac1 localization

to the cortical poles during cytokinesis and cell spreading is found important in myosin

light chain kinase phosphorylation and thus inactivation of myosin II. It is proposed that

Rac is involved in the mechanics of cytokinesis through a passive equatorial tearing that

divides two daughter cells via polar protrusion and traction force generation. This theory

is supported by experimental results of myosin II null and blebbistatin inhibited adherent

cells that are able to undergo complete division and cytokinesis on ligand coated glass

substrates [57, 83]. This myosin II contraction independent scission has been called as

cytokinesis B or passive cytokinesis, which is dependant on the presence and adhesivity of

the Extracellular matrix [60].

Specific link between extracellular matrix (ECM) adhesion and cytokinesis was fur-

ther established when cells with impaired β1 integrin signaling went into cytokinetic block

[62]. Biochemical ECM was found to affect division in fibronectin ligand ability to rescue

cytokinesis failures in serum-free unattached rat epithelial cells [72]. Mechanical ECM

affect on increasing proliferation has been observed in vitro and in vivo [58]. Overall in-

creased cell-matrix adhesivity due to biochemical or mechanical ECM cues increases cell

mitogenic activity[84].

With all this supportive mechanical data, it is interesting to find that only a few studies

have been published on the forces of cell division and cytokinesis. One such study was
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performed on substrate-independent division of mold cells. Calculations of force at the

equator region were based on the amount of fluorescent myosin II present and applied to

Hooke’s Law [77].

F = −k ∗x

γ = 2Sccosθ ∗Rf . (6.1)

The elastic force, which is the minimal contraction force (γ), is proportional to ex-

tent of furrow progression (Rf) and related to measured cell stiffness constant (2Sccosθ).

These calculations indicated maximum force of about 5nN exerted at the furrow region

during initial stages of elongated unattached cell cytokinesis before the dividing cell takes

on the dumbbell shape of late cytokinesis [77]. This force data of substrate independent

division has shown the highest contractile force between two daughter cells is exerted in

the initial stages of cytokinesis, prior to midbody formation and not during the ingression.

Published myosin-dependant equatorial cytokinesis model estimates a generation of maxi-

mal contractile force of 1 to 100 nN range in the contractile ring [79]. Further mechanical

calculations and force determinants have been gathered through non-substrate experiments,

like micropipette aspiration, atomic force microscopy, and laser tracking micro-rheology

[74].

The only force data of substrate attached cells was conducted on silicone sheets through

measurements of the wrinkles, which were observed highest at the furrow region in early

cleavage formation and then at the polar regions during cell separation [68]. These results

pave the way for more unanswered division and cytokinesis force questions, that we explore

in our studies.

In our work on cell division, we are first to show the mechanics and force profile of
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the dynamic process of adherent mammalian cell division. We find a cell completely lifts

off the substrate as it rounds up into a mitotic body and is unable to stress the substrate.

These findings are supplemented with cantilever force detachment experiments of cells in

different stages of the cell cycle showed cells in G2M/mitotic to maintain a much lower

number of cell-matrix bonds and therefore faster release of the matrix adhesion than the

cells in other stages of the mitotic cycle. However these few adhesions required higher

force to break. Thus the cell is tethered to the substrate with very few but very strong

bonds during the rounded lift off stage of the cycle [85].

Then in Anaphase and Telophase the two visible but not yet separate daughter cell

bodies slowly spread onto the underlying substrate, exerting very low forces still similarly

to spreading cells. As the cell undergoes cytokinesis we find the force profile is similar

to that of two retracting interacting cells. However the interesting and different dynamic is

found in the tension between daughter cells through the early and late stages of cytokinesis.

Our data show that in early stages the cell-cell force and torque rise and hit a maximum.

Although this maximum is observed in calculated equator force values of unadherent cells

with Hooke’s Law approximation by Robbinson et al., we find our data derived from cell-

matrix traction force are an order of magnitude higher for the adherent epithelial cells.

Furthermore averaged data for each stage of the cycle force dynamics reveals two linearly

dependant relationships, that between cell force and spread area, and between cell-cell

tension and cell-matrix force. Overall the area and force dynamics are similar on a range

of substrate stiffnesses, as normalized comparison data revealed.

Upon further investigation of the role of the ECM in the mechanotransduction of cy-

tokinesis, we used chemical inhibitors to inhibit strength and contractility in cell-matrix

adhesion. Inhibition of ROCK, which has been hypothesised to drive myosin II mediated

contractile ring constriction [83, 61], showed normal completion of cytokinesis. Although

lower percentage of cells was found continuing cell division cycle past Metaphase, all cells
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formed two complete and separate daughter cells. In addition to this finding, the force

data of the division cycle retained the force-area and maximum cell-cell tension patterns

observed in normal cell division. However the forces the cells were able to exert onto the

substrate and therefore onto each other were on the order of magnitude lower. These find-

ings show that strength of cell-matrix adhesion makes a decision point for cell to enter or

not to enter the division cycle, but does not affect active nor passive cytokinesis of the cell.

However inhibition of myosin II directly with blebbistatin resulted in completely dif-

ferent outcome. None of the inhibited cells were able to complete abscission and form

two daughter cells in cytokinesis, although all cells entered and continued through the divi-

sion cycle. After division cells remained binucleate and a few were furthermore observed

entering division again and forming trinucleate cells. We further find that inhibition of

contractility also decreased cell-matrix and cell-cell forces by an order of magnitude, but

furthermore the linear force-area and maximum cell-cell tension force dynamics are lost as

well. Therefore on physiologically stiff gel substrates, unlike published data on functional-

ized stiff glass [57], passive cytokinesis of two cells pulling apart cannot rescue the lack of

myosin II mediated active cytokinesis.

6.1 Temporal force profile of cell division and cytokinesis

Extracellular environment is imperative for successful cell division and cytokinesis in ad-

herent cells, such as epithelial cells. Most of our knowledge of cell division comes from

non-adherent ECM independent egg and yeast studies. In our experiments to understand

cell division, an important event in cancer progression, we study the process through its

relationship and adhesion to the ECM. The mechanics and ECM role in cytokinesis have

only been studied briefly through the extracellular environment [68], but are still poorly

understood. Here we are the first to show force dynamics of cell division of adherent cells.
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Figure 6.1: Temporal force profile of EpH4 mouse mammary epithelial cell division.
Cell division is observed on 0.05 mg/ml collagen functionalized 2500 Pa gels. (A) Rounded cell
entering Metaphase is captured in time with phase microscopy as it divides into two daughter cells.
Nuclei stained with Hoecht fluorescent dye to confirm Metaphase and two daughter cell nuclei.
HH:MM. Scale bar = 50 μm (B) Displacement vectors of the fluorescent beads correspond to the
phase images at each time point. The vector fields represent the substrate deformation due to force
exerted by the cells. (C) Calculated traction force maps show the cell stress fields and centers. Size
not to scale.
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Normal mouse mammary epithelial cells, EpH4, were captured dividing on 2500 Pa,

stiffness physiologically similar to a mouse mammary tumour [55], and the forces calcu-

lated, Fig. 6.1. Nuclear staining and phase images confirm the stage of the division cycle,

Fig. 6.1A. At time 0 the cell is pictured in Metaphase, then the two daughter cells are

evident and at 2 hours the daughter cells are spread and pictured separating in the final

stages of cytokinesis. Bead displacements of the underlying stressed substrate, Fig. 6.1B,

are used to calculate the traction force fields of the division process, Fig. 6.1C. At time 0

the cell is rounded and detached from the substrate with one small force center tethering

it to the substrate. Temporal resolution then shows the mechanical dynamics of spreading

and separation of the two daughter cells.

Quantitative analysis of this dividing cell are plotted in Fig. 6.2. Cell area during

Metaphase remains constant while the cell is detached and rounded, but as the daughter

cells spread their area increases, Fig. 6.2A. Average cell force follows the similar behavior.

The force of the detached rounded mother cell is almost zero as the cell completely detaches

from the substrate to undergo Metaphase and Anaphase. The daughter cells exert increasing

force as they spread on the substrate and pull away from each other. Therefore force-area

relationship is linearly increasing with division cycle progression, Fig. 6.2B.

However the tension between the daughter cells does not follow the linear relationship.

Force between two cells, |F21|, increases initially but goes through a maximum and de-

creases as the two cells pull away from each other, Fig. 6.2C. The torque, |Ω21|, between

the two cells also goes through a sharp maximum. The maximum corresponds to phase

image at 01:40 in Fig. 6.1A. The maximum phenomenon is unique because it has not been

previously observed in interacting cells, Chapter 4. This maximum therefore has to be

related exclusively to the process of cell division. It has been previously estimated with

Hooke’s Law approximation published by Robinson et al. However we find our magnitude

of cell-cell tension and maximum are an order of magnitude higher than the previously
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Figure 6.2: Quantitative analysis of dividing cell mechanics.
(A) Cell area ( ) and average force per cell ( ), of cells pictured in Fig. 6.1, are plotted in time.
Single mother cell divides into two daughter cells. (B) Average cell force is plotted as a function of
cell area (!). Dark and light markers represent cell1 and cell2 respectively. (C) Cell-cell force |F21|

( ) and torque |Ω21| ( ) between the two daughter cells are plotted in time.

published data [77]. This maximum could further represent the intracellular contractile

ring constriction at the final point of active cytokinesis, after which it is the cell-matrix ad-

hesion and anchoring that pulls the cells apart in the late stage of cytokinesis also referred

to as passive cytokinesis.

In addition to cytokinesis, where the ECM plays an important role in the interesting

force dynamics, the mechanics of the division process can also be divided into initial lift

off and cell adhesion and spreading of the two daughter cells. Starting in the beginning,

the analysis of dividing cells prior to entrance into Metaphase show no deviation in force

from normal S phase behavior. The cell simply rounds up and lifts off the substrate when

it enters Metaphase, breaking most of its adhesions with the substrate, Fig. 6.3A. Cell

area and force dramatically drop when the cell rounds up. Interestingly the cell-matrix

adhesion force drops to almost zero, Fig. 6.3B, which signifies a rapid disassembly of

focal adhesions and complexes. Adhesion to and force exerted on the substrate remains

insignificant as the cell divides into two daughter cells. At which time the cells begin to

adhere and spread on the substrate exerting increasing forces. Force is a linearly decreasing

function of area as the cell enters division, Fig. 6.3C, similar to that of a spreading cell.
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Figure 6.3: Force profile of cell entering division.
(A) Temporal phase micrographs of an EpH4 mouse mammary epithelial cell entering division
cycle with Hoecht dye labeled nuclei. Cell is plated on 2500 Pa 0.05 mg/ml collagen coated gel.
(B) Corresponding quantitative data of cell area ( ) and average cell force ( ) in time. (C) Average
cell force is plotted as a function of cell area (!). Dark and light markers represent cell1 and cell2
respectively. Scale bar = 50 μm

In the spreading stage of the daughter cells, the cell spread area and average force dy-

namics of the dividing daughter cells are very similar to that of a single cell, Fig. 6.4.

Quantitative analysis of a single EpH4 cell spreading show that the force on the extracellu-

lar environment increases as the cell spreads. Force is a linearly increasing function of the

cell area, Fig. 6.4C. The linear spreading force-area relationship has also been published

in other cell types by Reinhart-King lab, [65, 46].

151



4E-12 ##### 1E-14 5E-08 5E-08 #### 8E-08 75 5E+02

2E-12 ##### 6E-15 4E-08 5E-08 #### 7E-08 69 4E+02

7E-12 ##### 2E-17 5E-08 7E-08 #### 9E-08 88 4E+02

5E-13 ##### 3E-15 5E-08 5E-08 #### 7E-08 69 3E+02

4E-12 ##### 2E-16 6E-08 6E-08 #### 8E-08 85 4E+02

9E-13 ##### 6E-15 7E-08 7E-08 #### 1E-07 101 4E+02

4E-12 5E-12 ##### 6E-08 6E-08 #### 9E-08 91 3E+02

5E-12 2E-12 ##### 4E-08 6E-08 #### 8E-08 79 3E+02

5E-12 2E-12 ##### 6E-08 9E-08 #### 1E-07 114 4E+02

6E-12 1E-11 ##### 5E-08 9E-08 #### 1E-07 108 4E+02

7E-12 9E-12 ##### 6E-08 1E-07 #### 1E-07 126 4E+02

1E-12 2E-12 ##### 7E-08 9E-08 #### 1E-07 121 4E+02

1250 Pa p19

0

1

2

-10 70

-35

0

35 1250 Pa p19
0E+002E-034E-036E-038E-031E-021E-021E-022E-022E-022E-022E-023E-023E-023E-023E-023E-024E-024E-024E-024E-024E-025E-025E-025E-025E-025E-026E-026E-026E-026E-027E-027E-027E-027E-027E-028E-028E-028E-028E-028E-029E-029E-029E-029E-029E-021E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-011E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-012E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-013E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-014E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-015E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-016E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-017E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-018E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-019E-011E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+001E+00

2E-10 1.14E-09

Area (um^2)

 A
v
g

 

F
 1250 Pa p21

0E+00

3E-06

3E-10

Area (um^2)

a
v
g

 

F

1250 Pa p21

0E+00

3E-06

-10 80
Time (min)

A v

0

25
1250 Pa p21

0E+00

3E-07

4E-10 0.000000001

Area (um^2)

a
v
g

 

F

7900 Pa p37

0E+00

3E-07

0 0.5 1 1.5

Time (min)

a
v
g

 

F

0

60

7900 Pa p42
0E+00

3E-07

0 0.5 1 1.5
Time (min)

a v g
 

0

851250 Pa p42

0E+00

3E-07

4E-10 8E-10

Area (um^2)

a
v
g

 

F

200

500

800

0 60 120 180

Time (min)

A
r
e
a
 (
µ

m
2
)

0

70

140

A
v
e
r
a
g

e
 F

o
r
c
e
 (

n
N

)

B

60

80

100

120

140

200 400 600 800

Area (µm
2
)

A
v
e
r
a
g

e
 F

o
r
c
e
 (

n
N

)

C

Figure 6.4: Force profile of cell spreading.
Quantitative analysis of a single non-dividing mouse mammary epithelial cell spreading on 0.05
mg/ml collagen functionalized 2500 Pa gels. (A) Phase images with fluorescent labeled nuclei
depict the single cell as it spreads. (B) Cell area ( ) and average force ( ) are plotted in time. (C)
Average cell force is plotted as a function of cell area (!). Scale bar = 50 μm
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6.2 Traction force analysis at each stage of the cell division

cycle

Individual cell analysis was applied and averaged to bring quantitative understanding of cell

division at each stage of the division cycle. EpH4 cell division stages were distinguished by

nuclear staining and physically visible morphological changes. Normal non-dividing single

cell data is labeled as S phase. The visible distinctions of division stages are: Metaphase

when the cells is rounded and detached; Anaphase with an elongated and oval shaped cell;

Telophase with visible two rounded daughter cells; early cytokinesis observed in initial

spreading of two daughter cells; and the separation of the two fully spread daughter cells

in final late stages of cytokinesis as they break their connection.

All quantitative data points of the 15 dividing EpH4 cells on 0.05 mg/ml collagen func-

tionalized 2500 Pa gels are plotted in Fig. 6.5 to capture the relationship of the dynamics

of cell force. We observe the linearly increasing force-area relationship, Fig. 6.5A. The

cell-cell tension analysis shows that cell-cell force |F21| is increasing linearly with increas-

ing cell-matrix adhesion force, Fig. 6.5B. This linear relationship is also reminiscent of

that found in interacting cell pairs in Fig. 5.6. However this linearly increasing pattern is

not observed in the torque between the two cells, |Ω21|, Fig. 6.5C. All of the analysis was

performed on significant signal data, as determined by the dimensionless C− > 0.2 statistic.

The significant cell cycle force dynamics are further revealed in force averages at each

phase of the cell cycle, Fig. 6.6. Average area and average cell force are at absolute

minimum in Metaphase, Anaphase and Telophase. The cells are observed lifted and not

strongly attached to the underlying substrate during these stages. The two metrics increase

as the cells adhere to the substrate, spread and strengthen their anchorage to the matrix

and proceed with cytokinesis, Fig. 6.6A and B. The increasing force-area relationship is

maintained in all observed cells, Fig. 6.6C.
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Figure 6.5: EpH4 force and cell-cell tension relationship.
Quantitative data for 15 dividing EpH4 cells on 0.05 mg/ml collagen functionalized 2500 Pa gels il-
lustrates a linear force - area relationship (A). For significant signal, as determined by dimensionless
C− > 0.2 statistic, cell-cell (B) force |F21| and (C) torque |Ω21| are plotted as a function of increasing
average force a daughter cell pair exerts onto the underlying matrix.

The tension between two daughter cells initiated in Anaphase/Telophase increases as

cell division progresses, but then decreases in the final steps of cytokinesis, Fig. 6.6D. The

tension between two daughter cells thus goes through a significant maximum in all cells

observed. This data supports existence of two different mechanical mechanisms in early

and late cytokinetic abscission. A significantly clear relationship is not found in cell-cell

torque, Fig. 6.6E. All of this data is statistically significant as seen in the high signal to

noise ratio, presented as dimensionless C− and discussed in Introduction Theory section,

Fig. 6.6F. This statistic is useful to show the significance of the signal and for distinguishing

the signal from noise for further analysis in Fig. 6.5.

Furthermore the trends in area and average cell force are conserved on a range of sub-

strate compliance, 1250, 2500 and 7900 Pa gels, Fig. 6.6G and H. Data from each substrate

stiffness is normalized for the maximum on that substrate and averaged over the three con-

ditions. The pattern of decreasing cell spread area and average force is maintained, similar

to that on 2500 Pa gels. The linear increasing relationship of force versus cell spread area is

conserved as well, Fig. 6.6I. Note the force drops close to zero in Meta, Ana and Telophase

on all substrates, indicating the role of the ECM during these stages is minimal. Therefore

we shift the focus of further research onto cytokinesis - a substrate dependant process.
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Figure 6.6: Force profile at each cell cycle stage.
EpH4 mouse mammary epithelial cell division analysis at S phase, Metaphase, Anaphase/Telophase
and Early and Late Cytokinesis stages of cell cycle. Cells are plated on 2500 Pa 0.05 mg/ml collagen
coated gels. (A) Area, (B) average cell force, cell-cell (D) force |F21| and (E) torque |Ω21|, and (F)
dimensionless signal to noise statistic C are all plotted as a function of the cell cycle stages. The
dimensionless C− (!) confirm statistically significant signal of the results compared to noise C+ (♦).
(C) Average cell force is plotted as a function of area at each stage of division. EpH4 cell division is
normalized over a range of substrate stiffnesses. (G) Cell area and (H) average cell force are plotted
at each stage of the division cycle for cells on 1250, 2500 and 7900 Pa gels functionalized with 0.05
mg/ml collagen. (I) The average cell force is a function of cell spread area, normalized over all
substrates. ± SEM
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6.3 Myosin II motor and Rho-associated kinase roles in

cytokinesis

The final part of the cell division cycle is the cytokinesis - complete abscission and sepa-

ration of the two daughter cells. Cytokinesis has been widely studied in eggs, fission yeast

and slime mold but not in mammalian cells. Therefore most of the findings on cytokinesis

implicate active abscission process involving a contractile ring / cleavage furrow, consist-

ing of acto-myosin contraction and components. Specifically non-muscle myosin II motor

and RhoA GTPase provide and direct the force for furrow ingression. Myosin II has been

found to localize to the furrow region in the final stages of cytokinesis, implicating that

it is the dynamics and timing of the myosin II that drive ring constriction in cytokinesis

[70, 75, 77, 86]. Blebbistatin inhibition of myosin II was found to arrest furrow ingres-

sion without blocking its assembly and disrupt the uniform distribution and localization to

the furrow in dividing HeLa cells. Thus blebbistatin disrupts spatial organization of the

cytokinesis motor machinery and inhibits contraction of the cleavage furrow, without dis-

rupting mitosis or contractile ring assembly [81]. Interestingly Straight et al. also found

that further inhibition of ROCK (Rho-kinase) following blebbistatin treatment delocalized

myosin II over the entire mitotic cell body [81]. Although hypothesised to drive myosin II

mediated contractile ring constriction [83, 61], in published studies ROCK inhibition has

not been shown to disrupt equatorial myosin II localization in cell division, where as Rho

inhibition has [86]. However ROCK has a big role in disrupting cell-matrix focal adhesions

[82], therefore should be in important player in later stages passive cytokinesis.

In adherent mammalian cell lines the passive cytokinetic pathway has been defined as

important, because cells cannot finish cytokinesis without adhering to ECM. Cell-matrix

adhesion allows for the daughter cells to pull apart to complete the division. The passive

pathway was identified when myosin II-null and inhibited cells underwent complete di-
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vision cycle on ligand coated substrates [57]. ROCK inhibition did not inhibit complete

cytokinesis either in these studies [57]. However all these studies were conducted on glass

substrates. Therefore we wanted to further test the role of physiologically relevant ECM

adhesion in dynamic force mechanics of cell division and cytokinesis with myosin II and

ROCK inhibition.

We find that treatment of adherent mammary epithelial cells with myosin II inhibitor

blebbistatin (blebbi [64, 63]) greatly reduced the force generation ability of the cells. Al-

though cells were able to spread to much larger areas than normal on the 0.05 mg/ml col-

lagen coated 2500 Pa gels, they were unable to contract and apply force onto the substrate,

Fig. 6.7. Cellular polarization of forces as daughter cells spread and pull apart was lost as

well, Fig. 6.7B. The linear relationship between cell-matrix force and spread area was not

conserved, Fig. 6.7C and D. Although much smaller in magnitude, cell-cell tension was

present. Cell-cell force and torque was calculated to go through somewhat of a maximum,

Fig. 6.7D. However this was calculated in a hypothetical daughter cell division plane, as

none of the blebbi treated cells were able to complete cytokinesis and form two separate

daughter cells.

These results of completely inhibited cytokinesis are drastically different from the pub-

lished data of 30 μM blebbistatin treated normal rat kidney epithelial cells observed on

fibronectin coated glass [57]. The difference is most likely due to substrate compliance

affecting the contractile ability of the matrix adherent cell that was observed to rescue

myosin inhibited cytokinesis. Our experiments are conducted on physiologically stiff, but

compared to glass very soft, 2500 Pa gels. The implication draws even further attention to

the role of ECM mechanics in cell division and cytokinesis.

Therefore we went further to study if the strength of cell-matrix adhesion in addition

of contractility inhibits cytokinesis in the later stage of the passive abscission. Y-27632

selective chemical inhibitor was used to inhibit ROCK (Rho-associated kinase) that has
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Figure 6.7: TFM results of blebbistatin treated cells.
Traction force profile of 30 μM blebbistatin treated EpH4 cell division on 0.05 mg/ml collagen
functionalized 2500 Pa gels. (A) Rounded cell entering Metaphase is captured in time with phase
microscopy as it divides into two daughter cells. Nuclei stained with Hoecht fluorescent dye to
confirm Metaphase and two daughter cell nuclei. HH:MM. Scale bar = 50 μm (B) Calculated
traction force maps show the cell stress fields. Size not to scale. (C) Quantitative analysis of
dividing cell pair mechanics. Cell area ( ) and average force per cell ( ) are plotted in time. (D)
Average cell force is plotted as a function of cell area (!). Dark and light markers represent cell1
and cell2 respectively. (C) Cell-cell force |F21| ( ) and torque |Ω21| ( ) between the two daughter
cells are plotted in time.
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been found to inhibit strong focal adhesions and reduce cell-matrix force [45, 82]. The

treated EpH4 cells did exert lower forces onto the underlying substrate, but were observed

to undergo complete division and cytokinesis, Fig. 6.8. The traction force maps show

the cells polarize and exert anti-parallel forces as they pull apart, Fig. 6.8B. Furthermore

the quantitative analysis of cell spread area and cell-matrix force increase and maintain a

linear relationship similar to observed in normal division, Fig. 6.8C and D. Cell-cell tension

too goes through a sharp maximum, Fig. 6.8E. Therefore disruption of ROCK mediated

cell-matrix adhesion did not inhibit normal cytokinesis nor normal cell-matrix and cell-cell

force dynamics of the dividing cells.

The observed behavior leads to decoupling of two different mechanical processes of

passive cytokinesis: ROCK mediated substrate adhesion and myosin II substrate dependant

cell contractility. Inhibition of ROCK and myosin II results in two completely different

cytokinetic outcomes. Theses novel findings distinguish that it is only the inhibition of the

myosin II contractility that results in adherent cell cytokinesis failure.

Direct average comparison of the inhibited division is summarized in Fig. 6.9. In

normal cell division observed in 21 dividing cells, all of the cells that entered Metaphase

continued with division and 20 successfully underwent cytokinesis to form two separate

daughter cells. In comparison, out of the 23 observed blebbistatin (blebbi) treated cells 90%

continued with cell division and none of them completed cytokinesis. All blebbi treated

cells formed a binucleate single cell at the end of division. 35 cells were observed in Y-

27632 ROCK inhibition (Yrock) experiment. Only 70% of the cells that entered Metaphase

continued through the division cycle and of those 100% successfully finished the abscission

into two daughter cells in cytokinesis. These results, summarized in Fig. 6.9A, bring novel

understanding to ECM mediated cell division process.

Whereas myosin II inhibition prevents the cell from forming two complete daughter

cells, this inhibition of cell contractility does not stop cells from going through the division
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Figure 6.8: TFM results of Y-27632 treated cells.
Traction force profile of EpH4 cell division on 0.05 mg/ml collagen functionalized 2500 Pa gels,
treated with 40 μM Y-27632 ROCK inhibitor. (A) Phase microscopy of single cell dividing into
two daughter cells. HH:MM. Scale bar = 50 μm (B) Cell stress onto the extracellular environment
represented with calculated traction force maps. Size not to scale. (C) Cell area ( ) and average
force per cell ( ) are plotted in time. (D) Average cell force is plotted as a function of cell area
(!). Dark and light markers represent cell1 and cell2 respectively. (C) Cell-cell force |F21| ( ) and
torque |Ω21| ( ) between the two daughter cells are plotted in time.
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cycle. However, Yrock disruption of the strength of cell-matrix adhesion influences the

cell decision to enter the division cycle. Although the cell is able to completely divide and

undergo cytokinesis, 30% of the cells decide to abort division early due to lack of strong

cell-matrix adhesion. The strength of adhesion can also be decreased with decreasing ma-

trix stiffness and in fact lower division numbers have been reported in cells plated on softer

substrates versus increased division on stiffer substrates, where cells adhere and spread bet-

ter [58]. These published division results further support our findings that ROCK mediated

cell-matrix adhesion strength dictates cell decision to enter division, but we further find

that it does not inhibit division completion and cytokinesis.

Cell spread area of Yrock treated cells is similar to that of normal cells (red line)

throughout the cell division cycle, but not in blebbi treated cells, Fig. 6.9B. Blebbi treated

cells are able to spread twice as much as the normal EpH4 cells on 2500 Pa gels. However

neither inhibition allows for the cells to exert strong forces onto the ECM, Fig. 6.9C. In

fact all the forces onto the ECM and the tension between the daughter cells are an order

of magnitude lower than that of the normal cells, Fig. 6.9C-E. These results are significant

signals and not noise, as quantified by the high values of dimensionless C− statistic, Fig.

6.9F.

Furthermore quantifying the cell-matrix force as a function of cell spread area in divi-

sion dynamics, it is observed that the linear force-area relationship is conserved only in the

Yrock inhibited cells and not in the blebbi treated cells, Fig. 6.9D. The maximum cell-cell

tension is also conserved in Yrock inhibited cells, but not for blebbi, Fig. 6.9E. Myosin

II inhibited cells are able to spread to much greater area but the size does not linearly cor-

relate to the amount of force they can exert onto the underlying gel. It is also published

that RhoA activation of ROCK in cell division further phosphorylates and activates myosin

[61]. However since our results show complete cytokinesis in ROCK inhibited cells, it is

reasonable to suspect there has to be another myosin activation pathway that compensates
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Figure 6.9: Summary of inhibited division and forces at each stage of cell cycle.
(A) EpH4 mouse mammary epithelial cell division percentages compared between untreated cells
and those treated with blebbistatin (blebbi) and Y-27632 (Yrock). Black bars represent percent of
cells undergoing division cycle after rounding up in Metaphase. White bars represent percent of
cells that successfully underwent cytokinesis after entering division cycle. (B-F) Blebbistatin (!)
and Y-27632 ( ) treated EpH4 cells are analyzed at S phase, Metaphase, Anaphase/Telophase and
Early and Late Cytokinesis stages of cell cycle and compared to untreated EpH4 data (red line, see
Fig. 6.6). (B) Area, (C) average cell force, (E) cell-cell force |F21| and (F) dimensionless signal to
noise statistic C are all plotted as a function of the cell cycle stages. (F) The dimensionless C− (
! blebbi and Yrock) confirm statistically significant signal of the results compared to noise C+
(♦). (D) Average cell force is plotted as a function of area at each stage of division. All cells were
plated on 2500 Pa 0.05 mg/ml collagen coated gels. ± SEM
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in ROCK inhibited case.

The detailed temporal mechanics of adherent mammalian cell division shed light on the

force dynamics of the process, stressing the significance of the extracellular matrix in the

division cycle. The maximum peak data of cell-cell tension in cytokinesis further implicates

the importance of ECM in this process. The active intracellular equatorial contraction

is supplemented by cell-matrix adhesion to finish cytokinetic division into two daughter

cells, termed passive cytokinesis. Force data of the chemical inhibition experiments further

separate and define the contractile and adhesion pathways of passive cytokinesis. Myosin II

mediated contractility is necessary for completion of cytokinesis, where as ROCK mediated

strength of cell-matrix adhesivity serves as a check point to enter into the division cycle but

does not inhibit abscission of the two daughter cells.
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Chapter 7

Conclusions and Future Directions

7.1 Force cross-talk

In this research of a vital quest in understanding breast cancer invasiveness and metastasis,

we explored the pivotal role of the extracellular matrix (ECM). Our experimental results

have shown single cell motility is a biphasic function of both biochemical and mechanical

properties of the ECM. It is at intermediate and inversely related biochemical and mechan-

ical stimuli that cells reach maximum velocity. Cell-cell adhesion, which inhibits the max-

imum migration rate, is also found to be a function of the ECM. Furthermore we find there

is a compliance switch, around 1000 Pa, when cell-cell adhesions overcome cell-matrix

adhesion and mammary epithelial cells, both human and mouse, form three dimensional

aggregates on two dimensional gels. However, force profile calculations show that it is not

the absolute values of cell-cell force, but the increasing ratio of cell-cell tension to that of

cell-matrix force that linearly decreases cell motility. Therefore the next interesting ques-

tions to follow would be what cell-cell adhesion components inhibit or enhance this linear

function.

We tested out one of the important components, which is β-catenin binding to E-
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cadherin mediated cell-cell junctions. Over-expression of the E-cadherin mutant that lacks

the β-catenin binding domain does inhibit cell-cell tension. The linearly increasing rela-

tionship between average traction force and cell-cell tension is lost in these mutant cells.

Overall cells are unable to exert higher cell-cell forces even on stiffer substrates, as ob-

served in normal cells. Of coarse testing a wider range of mechanical and biochemical

substrates will paint a more complete picture of the ECM affect on β-catenin deficient in-

teractions and if the cross-dependence of the cell-cell and cell-matrix force pathways will

be decoupled. It will be further interesting to test the motility of these mutant cells, single

and interacting. Since the mutant decreases average traction force as well as cell-cell ten-

sion and since optimum motility we observed at intermediate cell force and low cell-cell

tension, our hypothesis is that the motility of even single cells will increase and cell-cell

interaction will not significantly inhibit this invasive phenotypic behavior. But this would

be an interesting question to pursue.

Further key players to test, that are involved in cell-cell adhesions and mechanotrans-

duction that are also implicated in cross talk with cell-matrix adhesions, would be vinculin,

myosin II and myosin IV. Since these proteins are very important in cell-matrix adhesions

as well, the best approach would be from simulating and plating the cells on a cell sur-

face mimetic gel. This can be achieved with coating the polyacrylamide gels with protein

A followed by an E-cadherin FC chimera, as described in Chapter 2. Traction force mi-

croscopy can then be a great tool to see the differences in the forces the mutant cells exert

on the E-cadherin coated surface. Furthermore plating β-catenin mutant cells on the cell

mimetic surface will add to understanding of its role in promoting cell-cell adhesion and

force generation.

These experimental ideas will apply the engineered surface and TFM computational

model to understand E-cadherin mediated cell-cell interaction dynamics of mammary ep-

ithelial cells. Our hypothesis is that mammary epithelial cells are able to sense and exert
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force on neighboring cells through myosin VI driven actomyosin contraction. This mechan-

otransduction at cell-cell junctions is dependent on initial clustering of surface E-cadherins

through myosin II action and the cluster is associated with the cytoskeleton via α-catenin

and vinculin interaction.

Recent in vitro studies of cellular force generation have shown that cells are able to

spread, migrate, and exert forces on cadherin coated substrates [98, 97, 96]. Motor proteins

including myosin VI have also been identified as key drivers of mature cell-cell interac-

tions [95], which is furthermore the only motor protein found localized at the site of tight

adheren junctions (AJs). Implications of these new findings point to cellular cytoskeleton

engagement and actomyosin contraction at cell junctions. TFM can be used to test the

role of myosin VI in E-cadherin junctions through cellular ability to sense and generate

force at AJs. Forces exerted by siRNA myosin VI knock down (KD) mammary epithelial

cells can be measured and compared with control and exogenous myosin VI rescue exper-

iments. Increase the mechanical stiffness of the surface will test if myosin VI also acts as a

mechanosensor at AJ.

Myosin II directed surface E-cadherin clustering is found necessary for cell-cell force

generation. Maturation of nascent cell-cell contacts to strong cadherin adhesions involves

cadherin clustering that depends on myosin II driven cytoskeleton re-organization [94].

Myosin II was directly implicated in E-cadherin clustering through photobleaching and

chemical inhibitor experiments conducted by Shewan et al [93]. Furthermore myosin II

supports cadherin-based actin bundles [93]. By inhibiting myosin II with pharmacological

inhibitors, it will be interesting to see if E-cadherin clustering and actin bundle formation

are necessary for AJ force generation with the powerful tool of traction force microscopy.

α-catenin and vinculin interaction are found increase force generation through engaging

the cytoskeleton at the cell-cell adhesion sites. To fully understand how myosin mediated

force generation is exerted at cell-cell junctions, vinculin is the perfect protein to test be-
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cause it connects the cytoskeleton to the E-cadherin junctions. Vinculin contains F-actin

and α-actin binding sites [91, 92]. Furthermore head and tail vinculin fragments fused

to α-catenin rescued cell-cell junction integrity of myosin VI-KD cells [95]. Therefore,

it is reasonable to suspect that E-cadherin complex bound α-catenin also binds vinculin,

which further interacts with actin and therefore serves as the force transducer between the

cytoskeleton and the cell-cell junction. Force generation role of α-catenin-vinculin-actin

binding with biological constructs of vinculin head or tail fused to α-catenin would shed

light on this important connection. Specifically, if over-expression of membrane bound vin-

culin head or tail domain will enhance or decrease force generation at cell-cell junctions.

All these experiments can be taken further to look at the cross-talk between cell-cell

and cell-matrix adhesions by plating the mutant and knock down or inhibited cells on ECM

coated polyacrylamide gels. However care should be taken in interpreting this data, because

all three proteins are involved in cell-matrix adhesions as well.

7.2 Cell division mechanics

Moving onto role of division in cancer progression, we looked at force dynamics of cell

cycle progression. Such studies have never been performed in detail before and mechanical

force data gathered. Therefore our detailed temporal results of normal cell division and

cytokinesis are the important starting point to study mechanics of the ECM dependant

process. It is especially in cytokinesis we find the important role the ECM plays. It has

been published that blebbistatin inhibited myosin II cells are able to undergo complete

abscission on glass substrates [90]. However our experimental results on physiologically

stiff gels, 2500 Pa, did not yield any blebbistatin inhibited cells that formed two separate

daughter cells. Furthermore our results show the area-force and cell-cell maximum tension

relationships, observed in normal and in ROCK-inhibited cells, were lost. Therefore it
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is interesting to ask if increasing the substrate stiffness further will rescue the cytokinetic

failure, just like published results on glass.

Further interesting division mechanics questions arise in tumourigenic cells, where di-

vision rates are higher and cytokinetic failures are more frequent. Therefore force dynamics

of tumourigenic cell lines like MCF7 and MDA-MB-231 can shed light on differences in

division between normal and cancerous cells. Can ECM compliance also rescue normal

division mechanics of these malignant cell lines?

There are numerous questions to ask when it comes to forces of ECM mediated cell

division and cytokinesis - since this is a very poorly studied arena, but a very important

phenomenon in tumour development and cancer progression. The role of RhoA and spatial

inhibition of mysoin II directly at the furrow can be explored beyond the work done in this

thesis. Furthermore over-expression of these two contractile ring components will yield

interesting force dynamic results as well. Inhibition of lamellipodial protrusion proteins,

such as Rac1, or other focal adhesion components such as vinculin and talin would shed

light on importance of cell’s ability to spread and exert force on the ECM in cytokinesis.

The degree of cytoskeleton crosslinking required for cytokinesis can be tested via α-catenin

protein inhibition or knock down.

7.3 ECM role in chemotaxis of invasive breast cancer

Although normal mammary tissue cells are not known to be responsive to chemokines,

breast cancer is characterized by distinct metastasis to lymph nodes and bone marrow. Ma-

lignant and invasive mammary epiethelial cells have been shown to express CXCR4 and

CCR7 chemokine receptors. Signalling through these receptors mediates actin polymeriza-

tion and pseudopodia formation and induces invasive response [89]. In vivo studies showed

that neutralizing CXCL12/CXCR4 interaction significantly impairs breast cancer metasta-
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sis [89, 87]. Therefore it would be further interesting to test and compare the chemotactic

response of normal and cancerous mammary epithelial cells as a function of the extracel-

lular environment.

Microfluidic platform developed by R. Jannat [88] in our lab allows to apply a chemo-

tactic gradient of one or two chemoattractants in addition to conserving the polyacrylamide

gel ECM mimetic capabilities. Building on our findings of maximum cell motility ob-

served on stiff and low ligand density and soft and high ligand density substrates, it would

be interesting to test if the motility of normal mammary epithelial MCF10A cells increases

with chemokine stimulation. If a change in motility is observed that means mechanical and

biochemical cues of the ECM elicit intracellular changes in receptor expression, which can

further be tested with immunostaining studies. This would be a great and novel finding

because it shows that the changes in extracellular matrix alone can promote a cancerous

phenotype and metastatic receptor expression in normal cells.

The microfluidic gel experimental set up can further answer questions of chemotactic

breast cancer cell motility and how the ECM mediates the invasive phenotype. Can the

substrate compliance alone inhibit or promote the motile chemotactic response of tumori-

genic mammary epithelial cells, like MCF7 or MDA-MB-231? How will the presence of

the chemoattractant inhibit the role of the mechanical and biochemical ECM cues?

Furthermore, with the new developed photointiator protocol the gel surface can be pat-

terned with multiple ECM ligands or other proteins and the pattern spacing and geometries

can be varied to test questions of adhesion size, combinatorial ligand mixtures, surface

bound growth factors or cadherin molecules and much more in cell motility and force gen-

eration. Overall the traction force microscopy is a great platform to answer the cell invasion

and motility related questions, which is what we have done in this thesis, and there are many

more still left unclear and not completely understood.
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