
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

On the Classification of Irregular Dihedral
Branched Covers of Four-Manifolds
Alexandra Kjuchukova
University of Pennsylvania, george.t.horseprotection@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Mathematics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1817
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Kjuchukova, Alexandra, "On the Classification of Irregular Dihedral Branched Covers of Four-Manifolds" (2015). Publicly Accessible
Penn Dissertations. 1817.
http://repository.upenn.edu/edissertations/1817

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76395954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=repository.upenn.edu%2Fedissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1817?utm_source=repository.upenn.edu%2Fedissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1817
mailto:libraryrepository@pobox.upenn.edu


On the Classification of Irregular Dihedral Branched Covers of Four-
Manifolds

Abstract
We prove a necessary condition for a four-manifold $Y$ to be homeomorphic to a $p$-fold irregular dihedral
branched cover of a given four-manifold $X$, with a fixed branching set $B$. The branching sets considered
are closed oriented surfaces embedded locally flatly in $X$ except at one point with a specified cone
singularity. The necessary condition obtained is on the rank and signature of the intersection form of $Y$ and
is given in terms of the rank and signature of the intersection form of $X$, the self-intersection number of $B$
in $X$ and classical-type invariants of the singularity.

Secondly, we show that, for an infinite class of singularities, the necessary condition is sharp. That is, if the
singularity is a two-bridge slice knot, every pair of values of the rank and signature of the intersection form
which the necessary condition allows is in fact realized by a manifold dihedral cover.

In a slightly more general take on this problem, for an infinite class of simply-connected four-manifolds $X$
and any odd square-free integer $p>1$, we give two constructions of infinite families of $p$-fold irregular
branched covers of $X$. The first construction produces simply-connected manifolds as the covering spaces,
while the second produces simply-connected stratified spaces with one singular stratum. The branching sets in
the first of these constructions have two singularities of the same type. In the second construction, there is one
singularity,

whose type is the connected sum of a knot with itself.
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ABSTRACT
ON THE CLASSIFICATION OF IRREGULAR DIHEDRAL BRANCHED

COVERS OF FOUR-MANIFOLDS

Alexandra Kjuchukova
Julius Shaneson

I prove a necessary condition for a four-manifold Y to be homeomorphic to a

p-fold irregular dihedral branched cover of a given four-manifold X, with a fixed

branching set B. The branching sets considered are closed oriented surfaces embed-

ded locally flatly in X except at one point with a specified cone singularity. The

necessary condition obtained is on the rank and signature of the intersection form of

Y and is given in terms of the rank and signature of the intersection form of X, the

self-intersection number of B in X and classical-type invariants of the singularity.

Secondly, I show that, for an infinite class of singularities, the necessary condition

is sharp. That is, if the singularity is a two-bridge slice knot, every pair of values

of the rank and signature of the intersection form which the necessary condition

allows is in fact realized by a manifold dihedral cover.

In a slightly more general take on this problem, for an infinite class of simply-

connected four-manifolds X and any odd square-free integer p > 1, I give two

constructions of infinite families of p-fold irregular branched covers of X. The first

construction produces simply-connected manifolds as the covering spaces, while

the second produces simply-connected stratified spaces with one singular stratum.

The branching sets in the first of these constructions have two singularities of the
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same type. In the second construction, there is one singularity, whose type is the

connected sum of a knot with itself.
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Chapter 1

Introduction

The study of branched covers of Sn dates back to the 1920s when Alexander dis-

covered their astonishing generality: he proved that every closed orientable PL

n-manifold is a PL branched cover of Sn [1]. Since this seminal work, the classifica-

tion of branched covers has been an active area of research – see, for example, [2],

[12], [22].

A typical question of interest is to find the minimum number of sheets, or the

least complex, according to some criterion, branching set needed to realize all man-

ifolds in a given dimension as covers of the sphere. So far, the answers are known

only in dimension three: by a well-known result ([10], [15]), every closed oriented

three-manifold is a three-fold irregular cover of S3 branched over a knot.

Intuitively, a knot in S3 is the “simplest possible” branching set over a three-

dimensional base (by opposition to, say, a link or a self-intersecting curve). There-
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fore, we can restate the result about covers of S3 in the following way: allowing

a complicated branching set does not enrich the family of branched covers of the

three-sphere. The situation in dimension four is considerably more subtle. A four-

manifold Y which can be realized as a branched cover of S4 with branching set

a locally flat oriented submanifold must have signature equal to zero (see [23]).

On the other hand, by a result of Montesions [16], every closed oriented PL four-

manifold is a four-fold cover of S4 branched over an immersed PL surface. The

middle ground between these two results remains poorly understood. For example,

what manifolds can be realized as covers of S4 branched over an embedded, but not

necessarily locally flat, oriented surface of a given genus? More specifically, what

singularities does the branching set need to have in order to realize a given manifold

Y as a cover of S4? These are among the motivating questions of this thesis.

However, the work presented here is not restricted to covers of the sphere. Given

any simply-connected closed oriented topological four-manifold X, we ask: which

closed oriented topological four-manifolds Y are homeomorphic to branched covers

of X, and with what singularities on the branching set? In Chapter 3 we prove a

necessary condition for a four-manifold Y to be homeomorphic to a p-fold irregular

dihedral branched cover of the pair (X,B), where X is a closed oriented topolog-

ical four-manifold, and the branching set B ⊂ X is an oriented surface embedded

locally flatly in X except at finitely many points with specified singularity types.

In a subsequent section, I show that, under some additional assumptions on the
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singularity type, the necessary condition is sufficient as well.

The sufficient condition just described is obtained via a procedure for construct-

ing an irregular branched cover with a specified slice knot singularity. Namely,

fix an odd square-free integer p, a closed oriented four-manifold X and a surface

B embedded locally flatly in X. The first step is to embed in X a surface B1,

homeomorphic to B, so that the embedding B1 ⊂ X admits a slice singularity.

The second step is to construct an irregular p-fold cover of X branched over B1.

Third, I give a procedure for obtaining an infinite family of covers by modifying the

branching set away from the singularity. If, in addition, X is simply-connected and

π1(X − B, x0) = Z/2Z, the covers obtained by this method are simply-connected

manifolds. A consequence of this construction is that any slice knot which itself

admits an irregular p-fold dihedral cover can be realized as the unique singularity

of a branched cover between four-manifolds. Whether the same is true for all knots

remains an interesting open question.

In Section 3.3, I describe two more procedures for constructing infinite families

of irregular p-fold branched covers over singular branching sets. These procedures

admit a more general type of singularities but work over a more restricted set of

four-manifolds X. The first procedure yields a manifold cover; the branching set

has two components. One of the components is locally flat, and the other has

two singularities of the same type, α, which is not necessarily slice. The second

procedure produces a stratified space as a cover, and the branching set has two
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components: one is again locally flat, and the other has one singularity of composite

type, α#α. In both cases, the assumption that α is slice is not needed.

In Section 3.4 I prove that the correction term to the signature of a branched

cover which arises from the presence of a singularity α is an invariant of the knot

type α. I also prove that this invariant is additive with respect to knot connected

sum. One summand in the formula for this invariant is expressed in terms of linking

numbers in a branched cover of α. An algorithm for computing linking numbers

in a branched cover of S3 is outlined in the Appendix. It constitutes a minor

generalization of the algorithm presented in Perko’s Thesis [18].
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Chapter 2

Background

2.1 Basic definitions

Let X and Y be topological manifolds of the same dimension m ≥ 2. In this text

a branched cover f : Y → X will mean a finite-to-one surjective map which is a

local homeomorphism over the complement of a codimension-two subcomplex B of

X. We call B the branching set of f and say that f is a cover of X branched over

B or simply that f covers the pair (X,B). The restriction

f |f−1(X−B) : f−1(X −B)→ X −B

is the associated unbranched cover of f . The degree of a branched cover is the degree

of its associated unbranched cover.

When working in the smooth category, one naturally adopts a more restrictive

definition of a branched cover. That is, one requires that B be a smooth submanifold
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of X. In addition, if N(B) is a closed tubular neighborhood of B, then for every

connected component Ni of f−1(N(B)) we require that there be an integer r such

that the restriction f |Ni : Ni → N(B) is a bundle map which on every (two-

dimensional) fiber is the canonical n-fold cover of the punctured disk to itself. We

say that n is the branching index of f at N . The branched covers considered in this

paper will admit such a parametrization locally, except at finitely many points on

the branching set, which we will call singular points or simply singularities. The

type of singularities we allow are described below.

Definition 2.1.1. Let X be a topological four-manifold and let B be a closed

surface embedded in X. Let α ⊂ S3 be a non-trivial knot, and let z ∈ B be a

point. Assume there exist a small open disk Dz about z in X such that there is a

homeomorphism of pairs (Dz − z, B − z) ∼= (S3 × (0, 1), α × (0, 1)). Then, we say

that the embedding of B in X has a singularity of type α at z.

We will consider covers whose branching sets are closed oriented surfaces, locally

flat except for finitely many singularities of the above type. In this scenario a

branched cover f over (X4, B2) has the following description: for any b ∈ B which

is locally flat, a parametrization of f as in the smooth case exists in a neighborhood

of b. For z ∈ B a singularity of type α and Dz as in Definition 2.1.1, over Dz the

map f is the cone on a cover of S3 branched along the knot α.

If there exists a degree p branched cover f : Y → X with branching set a

topologically flat, possibly disconnected, oriented submanifold B of X, a formula
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of Hirzebruch’s [11] generalized by Viro [23] gives:

σ(Y ) = pσ(X)−
p∑
r=2

r2 − 1

3
e(Br). (2.1.2)

Here σ denotes the signature of a four-manifold, Br ⊂ Y is the union of components

of f−1(B) of index r, and e(Br) is the normal Euler number of the embedding of Br

into Y . (Of course, there is also a version of this formula in which e(Br) is replaced

by 1
r
e(f(Br)), where e(f(Br)) is the normal Euler number of the image of Br in

X.) We wish to compute the effect on this formula which of introducing a singular

point to branching set. The answer to this question for a broad class of covers is

the object of Theorem 3.1.1.

We will be concerned primarily with the following two types of branched covers.

Definition 2.1.3. Let f : Y → X be a branched cover of topological manifolds with

branching set B. If the associated unbranched cover of f arises from a surjective

homomorphism φ : π1(X − B, x0) → Z/pZ, we say f is a cyclic p-fold branched

cover.

Definition 2.1.4. Let f : Y → X be a branched cover of topological manifolds

with branching set B, and let p be an odd integer greater than 1. Let φ : π1(X −

B, x0) → D2p be a surjective homomorphism, where D2p is the dihedral group of

order 2p. If the associated unbranched cover of f corresponds to φ−1(Z/2Z) under

the classification of covering spaces of X − B, we say that f is an irregular p-fold

dihedral cover of X branched along B. For z ∈ B a singularity, f−1(z) consists of

a single point.
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It is helpful to give a description of the pre-image of a point on the branching

set in an irregular dihedral cover. For every locally flat point b ∈ B the pre-image

f−1(Db) of a small neighborhood Db of b in X contains p−1
2

components of branching

index 2 and one component of branching index 1.

We say a pair (X,B) with Bn−2 ⊂ Xn admits a p-fold irregular dihedral (or

cyclic) cover if there exists such a cover over X whose branching set is B. When the

base manifold X is understood – primarily, when X = S3 and B ⊂ X is a knot –

we may simply say that he knot type of B admits a p-fold irregular dihedral cover.

2.2 Knot Theory and preliminary results

In this section we review the knot-theoretic concepts that arise in our work, and

prove a number of Lemmas which we will need later. Since the essential questions

of this thesis are not addressed until the next chapter, it would not be unreasonable

for the reader to skim or skip this section and refer back to it as its relevance to

the subsequent results becomes clear.

Definition 2.2.1. A knot K ⊂ S3 = ∂B4 is called slice if there exists a properly

embedded smooth two-disk D ⊂ B4 with ∂D = K.

Definition 2.2.2. A knot K ⊂ S3 = ∂B4 is called ribbon if there exists an immer-

sion ψ of a two-disk D into S3 such that ψ(∂D) = K, all singularities of ψ(D) are

simple arcs ι1, ... , ιs, and for all j, 1 ≤ j ≤ s, ψ−1(ιj) = ι′j q ι′′j such that ι′j ⊂ D◦
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and ∂ι′′j ⊂ ∂D. We say that D is a ribbon disk for K.

All ribbon knots are slice: the interior of a ribbon disk can be pushed into the

interior of B4 without self-intersections, producing a slice disk. The converse is

an old conjecture of Fox [7] which has been proved for two-bridge knots by Paolo

Lisca [14].

The following property of ribbon disks will be very useful to us in constructing

simply-connected four-manifolds as branched covers.

Lemma 2.2.3. Let K ⊂ S3 = ∂B4 and let D′ ⊂ S3 be a ribbon disk for K. Then,

there exists D ⊂ B4, a slice disk for K, such that the map i∗ : (π1(S3 −K), x0)→

(π1(B4 −D), x0) induced by inclusion is surjective.

Proof. The key is that we pushing the interior of D′ into the interior of B4 in such

a way that the resulting slice disk D admits a Morse function g whose critical

points are only saddles and minima. Computing the fundamental group of the

complement of D in B4 by cross-sections (see [6]), we start with π1(∂B4−∂D, x0) =

π1(S3−K, x0) and proceed to introduce new generators or relations at each critical

point of g. Since g has no maxima, no new generators are introduced, implying

that i? : π1(S3 −K, x0)→ π1(B4 −D, x0) is a surjection.

Proposition 2.2.4. Let K ⊂ S3 ⊂ ∂B4 be a slice knot and let D ⊂ B4 be a

slice disk for K. Let p > 1 be an odd square-free integer. If the pair (S3, K)
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admits an irregular p-fold dihedral cover, then the pair (B4, D) admits one as well.

Furthermore, if K is a two-bridge knot, D can be chosen in such a way that the

irregular dihedral cover of B4 branched along D is simply-connected.

Proof. Let ∆K(t) denote the Alexander polynomial of K and ∆D(t) that of D.

Denote by Ŝ the double branched cover of the pair (S3, K) and by K̂ the pre-image

of K under the covering map. Then, |∆K(−1)| = |(H1(Ŝ;Z)|. Similarly, denote by

B̂ the double cover of B4 branched along D and D̂ is the pre-image of D. Again

we have, |∆D(−1)| = |(H1(B̂;Z)|.

Since K admits a dihedral cover, H1(Ŝ;Z) has Z/pZ as a subgroup. It follows

that ∆K(−1) ≡ 0 mod p. Since D is a slice disk for K, by results of Fox and

Milnor [8] we have ∆K(−1) = ±(∆D(−1))2, so (∆D(−1))2 ≡ 0 mod p. Since p is

square-free, we conclude that ∆D(−1) ≡ 0 mod p as well. Then H1(B̂;Z) surjects

onto Z/pZ, and therefore D̂ admits a p-fold cyclic cover T with ∂T = N . This cover

T is a regular dihedral 2p-fold branched cover of (B4, D). Let Z be the quotient

of T by the action of any Z/2Z subgroup of D2p. Then Z is the desired irregular

dihedral p-fold cover of (B4, D). Its boundary, which we denote by U , is an irregular

dihedral p-fold cover of K.

So far we have shown that a dihedral presentation of the group of a slice knot

extends to a dihedral presentation of the complement of a slice disk in B4. Now

assume in addition that K is a two-bridge knot. In this case it is well-known that

U is in fact S3. Indeed, the pre-image S? of a bridge sphere for K is a dihedral
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cover of S2 branched over four points, so S? has Euler characteristic

χ(S?) = p(χ(S2)− 4) + 4
p+ 1

2
= 2,

producing a genus-zero Heegard splitting for U . Therefore, U ∼= S3.

Since K is two-bridge slice, it is ribbon. Hence, by Lemma 2.2.3, the slice disk

D for K can be chosen so that 0 = π1(U, x0)
i∗−→ π1(Z, x0) is a surjection. Therefore,

given a map ψ : π1(B4−D, x0)→ D2p, the pre-image (ψ◦ i∗)−1(Z/2Z) surjects onto

ψ−1(Z/2Z). This implies that the inclusion of the unbranched cover associated to

U into the unbranched cover associated to Z induces a surjection on fundamental

groups. Since the branching set of U is a subset of the branching set of Z, it follows

that 0 = π1(U, x0) � π1(Z, x0) is a surjection. We conclude that the irregular

dihedral cover of the pair (B4, D) is simply-connected, as desired.

Definition 2.2.5. Let α ⊂ S3 and β ⊂ S3 be two knot types. We say that β is a

mod p characteristic knot for α if there exists a Seifert surface V for α with Seifert

pairing LV such that β ⊂ V ◦ ⊂ S3 represents a non-zero primitive class in H1(V ;Z)

and LV (β, ω) + LV (ω, β) ≡ 0 mod p for all ω ∈ H1(V ;Z).

In [4] Cappell and Shaneson defined characteristic knots and proved that for p

an odd prime and α a non-trivial knot, α admits an irregular dihedral p-fold cover

if an only if there exists a mod p characteristic knot for α, which in turn exists if

and only if p divides | det(LV + LTV )|. In this section, we exhibit a family of pairs

(α, β), where α is a two-bridge slice knot and β is a (2, 2n + 1)-torus knot which

can be realized as mod 3 characteristic knot for α.
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Figure 2.1: The knot C(e1, ..., e6). Each square represents a two-strand braid with

only positive or only negative twists, according to the sign of ei. The absolute value

of ei denotes the number of crossings.

Recall that Lisca [14] proved that, for two-bridge knots, being slice is equiv-

alent to being ribbon. Previously, Casson and Gordon [5] gave a necessary con-

dition for a two-bridge knot to be ribbon, and Lamm [13] listed all knots satis-

fying this condition. He found that for all a 6= 0, b 6= 0 the knots K1(a, b) =

C(2a, 2, 2b,−2,−2a, 2b) and K2(a, b) = C(2a, 2, 2b, 2a, 2, 2b) are slice. Figure 2.1

recalls the notation C(e1, ..., e6). In Figure 2.2 we give a genus 3 Seifert surface V

for the knot α = C(e1, e2, e3, e4, e5, e6). We use the surface V for all subsequent

computations.

Since two-bridge slice knots are of particular interest for our construction of

dihedral covers of four-manifolds, our first task is to determine the values of the

parameters a and b for which the knots Ki(a, b) admit three-fold dihedral covers.

Proposition 2.2.6. A knot of the type K1(a, b) admits an irregular three-fold di-

hedral cover if and only if

(1) a ≡ 0 mod 3, b ≡ 2 mod 3 or

(2) a ≡ 1 mod 3, b ≡ 1 mod 3.
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ω1 ω3 ω5ω2 ω4 ω6

−e1 e2 −e3 e4 −e5 e6

Figure 2.2: A Seifert surface for the knot C(e1, ..., e6), together with the set of

preferred generators for its first homology.

A knot of the type K2(a, b) admits an irregular 3-fold dihedral cover if and only

if

(3) a ≡ 0 mod 3, b ≡ 1 mod 3 or

(4) a ≡ 1 mod 3, b ≡ 0 mod 3.

In these cases, a curve representing the class β ∈ H1(V ;Z) is a mod 3 charac-

teristic knot for the corresponding Ki(a, b) if and only if, with respect to the basis

{ω1, ω2, ω3, ω4, ω5, ω6}, we have, respectively,

(1) [β] ≡ (1, 0, 1, 1,−1, 1) mod 3,

(2) [β] ≡ (−1, 1, 1, 0, 1, 1) mod 3,

(3) [β] ≡ (1, 0, 1,−1, 1, 1) mod 3,

(4) [β] ≡ (−1, 1, 1, 1, 0, 1) mod 3.

Proof. Let V denote the Seifert surface for C(e1, e2, e3, e4, e5, e6) depicted in Fig-

ure 2.2. We think of the ei as being chosen so that the knot C(e1, e2, e3, e4, e5, e6)

is of type K1(a, b) or K2(a, b). Let LV denote the matrix of the linking form for V
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with respect to the basis {ω1, ω2, ω3, ω4, ω5, ω6}. The Seifert matrix for V in this

basis is LV + LTV . It has the form:



−e1 1 0 0 0 0

1 e2 −1 0 0 0

0 −1 −e3 1 0 0

0 0 1 e4 −1 0

0 0 0 −1 −e5 1

0 0 0 0 1 e6


It is sufficient to check that det(LV + LTV ) ≡ 0 mod 3 precisely in situations

(1),..., (4). For instance, in the case C(e1, e2, e3, e4, e5, e6) = K1(a, b), we obtain

det(LV + LTV ) = −(8ab+ 2b− 1)2. So we must solve the equation

8ab+ 2b− 1 ≡ 0 mod 3.

If a ≡ 0 mod 3, the equation reduces to 2b−1 ≡ 0 mod 3, so b ≡ 2. If a ≡ 1 mod 3,

then b ≡ 1 mod 3. If a ≡ 2 mod 3, there is no solution. The remaining computations

are equally trivial, so they are omitted.

To verify that the classes [β] ∈ H1(V ;Z) listed represent all characteristic knots,

we check that for a and b as specified, we have (LV +LTV )β ≡ 0 mod 3 and moreover

the classes β are the unique solutions mod 3.

More generally, we have the following:
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Proposition 2.2.7. Let p > 1 be an odd prime. There exits an infinite family

of integer pairs (a, b) such that the two-bridge slice knot K1(a, b) ⊂ S3 admits an

irregular dihedral p-fold cover, and similarly for K2(a, b).

Proof. The case p = 3 was treated in Proposition 2.2.6, so assume p > 3. The

determinant D1(a, b) of the Seifert matrix of the knot K1(a, b) is equal to −(8ab+

2b − 1)2. Setting a ≡ 0 mod p, we find that D1(a, b) ≡ 0 mod p if and only

if 2b ≡ 1 mod p. Since p is odd, a solution exists. Another pair of solutions is

a ≡ 8−1 mod p and b ≡ 3−1 mod p.

Similarly, we find that the determinant D2(a, b) of the Seifert matrix of the knot

K2(a, b) is (8ab + 2a + 2b + 1)2. Setting b ≡ −1 mod p, we find that a ≡ (−6)−1

mod p.

For any given p and any family of two-bridge slice knots Ki(a, b) with a and b

chosen so that det(LV + LTV ) ≡ 0 mod p , the classes in H1(V ;Z) represented by

characteristic knots are easily computed as in Proposition 2.2.6 by solving a system

of equations mod p. One can see by direct examination that if p = 3 each of these

classes can be realized by the unknot. The same methods can be used to find knot

types of characteristic knots for all p.

15



2.3 Brief note on notation

We denote the restriction of a map f to a part of the domain D by f |D or simply

by f | when the restricted domain D is understood.

The intersection of two surfaces S1 and S2 in a four-manifold is denoted S1 � S2.

We write ~u(S) the push-off of a surface S along a normal ~u.

The linking number of two links γ1 and γ2 in the three-sphere is denoted by

lk(γ1, γ2). The self-linking of a curve or link γ will be written as lk~v(γ, γ) if a

framing is specified directly, or as lkF (γ, γ) if the framing is determined by specifying

a Seifert surface F for γ.
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Chapter 3

Irregular Dihedral Branched

Covers of Four-Manifolds

3.1 Necessary condition for the existence of a di-

hedral cover

The main result of this section is a necessary condition which the intersection form

of a manifold Y must satisfy if Y is homeomorphic to an irregular dihedral branched

cover of a four-manifold X with specified (oriented) singular branching set B.

Theorem 3.1.1. Let X and Y be closed oriented four-manifolds and let p be an

odd prime. Let B ⊂ X be a closed connected and oriented surface embedded in X.

Assume that B ⊂ X is topologically locally flat except for an isolated singularity of

type α. If an irregular p-fold dihedral cover f : Y → X branched along B exists,
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then α admits an irregular dihedral p-fold cover and this cover is the three-sphere.

Furthermore, the following formulas hold:

χ(Y ) = pχ(X)− p− 1

2
χ(B)− p− 1

2
, (3.1.2)

σ(Y ) = pσ(X)− p− 1

2
e(B)− p2 − 1

6p
LV (β, β)− σ(W (α, β))−

p−1∑
i=1

σζi(β). (3.1.3)

Here, χ denotes the Euler characteristic, and σ is the signature of a four-

manifold. For B a closed oriented surface embedded in a closed oriented four-

manifold X, the self-intersection number of B in X is given by e(B) := 〈[B]∗ ∪

[B]∗, [X]〉, where [B]∗ is the Poincaré dual of the class [B] ∈ H2(X;Z), and [X] is

the fundamental class of X. Given a knot α, by V we denote a Seifert surface for

α with Seifert pairing LV , and we let β ⊂ V ◦ be a mod p characteristic knot for

α (Definition 2.2.5). Next, σζi(β) denotes the Tristram-Levine ζ i-signature of β,

where ζ is a primitive p-th root of unity. Finally, the manifold W (α, β) is a cobor-

dism between a dihedral p-fold branched cover of α and a cyclic p-fold branched

cover of β. A construction of W (α, β) “by hand” was originally described in [4]; it

is recalled in the proof of Proposition 3.1.14.

Remark 3.1.4. Note that when Y is a simply-connected manifold, Equation 3.1.2

is equivalent to expressing the rank of H2(Y ;Z) in terms of data about the base

manifold and branching set. This observation, however trivial, will be of much use
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to us because our approach to the classification problem at hand is to pin down the

intersection form of a dihedral branched cover over a given data.

Remark 3.1.5. The quantity p2−1
6p
LV (β, β) +σ(W (α, β)) +

∑p−1
i=1 σζi(β), from here

on denoted Ξp(α), is in fact an invariant of the knot type α. For a proof, jump to

Section 3.4.

For a discussion of characteristic knots and an explanation of how to find β

from a Seifert surface for α, consult Section 2.2. It is straightforward to compute

LV (β, β) and
∑p−1

i=1 σζi(β) from diagrams of α and β. The third term in the defi-

nition of Ξp(α), namely σ(W (α, β)), has so far been described only abstractly, as

the signature of a particular four-manifold. In Proposition 3.1.6, we compute the

second homology group of this manifold in terms of the first homology of the chosen

Seifert surface and characteristic knot for α. In Proposition 3.1.14, and we give an

explicit formula for the term σ(W (α, β)) in terms of linking numbers of curves in

the irregular dihedral p-fold branched cover of α. A procedure for computing linking

numbers in a branched cover of a knot is outlined in the Appendix.

Proposition 3.1.6. Let α ⊂ S3 be a knot which admits a p-fold irregular dihedral

cover M for some odd prime p. Let V be a Seifert surface for α and let β ⊂ V be a

mod p characteristic knot for α. Let Σ the p-fold cyclic cover of β. Let W (α, β),

here denoted W , be the cobordism between M and Σ constructed in [4]. We denote

by V − β the surface V with a small open neighborhood of β removed, and by β1
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and β2 the two boundary components of V − β that are parallel to β. Then:

H2(W,M ;Z) ∼= Z
p−1
2 ⊕ (H1(V − β;Z)/[β1], [β2])

p−1
2 . (3.1.7)

Proof. Since Cappell and Shaneson’s construction of W is essential to our compu-

tation, we review it here. Let f : Σ→ S3 be the cyclic p-fold cover of β. Since p is

prime, Σ is a rational homology sphere. Let

f × 1I : Σ× [0, 1]→ S3 × [0, 1]

be the induced branched cover of S3 × [0, 1] as in [4]. Next, let

J := f−1(V × [−ε, ε])

be the pre-image of a closed tubular neighborhood V × [−ε, ε] of V in S3×{1}, and

let

T := f−1(V × {0}),

T ⊂ J ⊂ Σ× {1}.

Then J deformation-retracts to T , and T consists of p copies of V identified along

β via the identity map on S1 and permuted cyclically by the group of covering

transformations of f .

Consider the involution h̄ of J defined in [4] as a lift of the map

h : V × [−ε, ε]→ V × [−ε, ε],

h(u, t) 7→ (u,−t).
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Let q be the quotient map defined as

q : Σ→ Σ/(x ∼ h̄(x)|x ∈ J)

or, in short, q : Σ→ Σ/h̄. Lastly, let

W := (Σ× I)/h̄.

As shown in [4], W is a cobordism between the cyclic p-fold cover Σ = Σ× {0} of

β and the irregular p-fold dihedral cover of α, M := (Σ/h̄)∩ ∂(W ). This completes

the description of the construction of the pair (W,M) whose second homology we

compute here.

Since W = (Σ× I)/h̄, where the domain of h̄ is Σ×{1}, W is by definition the

mapping cylinder of the quotient map q. Let R := J/h̄. We have

H2(W,M ;Z) ∼= H2(M ∪R,M ;Z) ∼= H2(R,M ∩R;Z),

where the second isomorphism is excision, and the first follows from the fact that

W deformation-retracts onto Σ/h̄ = M ∪R. Since

M ∩R = ∂(R)− V0

(following the notation of [4], V0 is the copy of V in T fixed by h̄), we can rewrite

the above isomorphism as

H2(W,M ;Z) ∼= H2(R, ∂(R)− V0;Z).

The relevant portion of the long exact sequence of the pair (R, ∂(R)− V0) is:

H2(R;Z)→ H2(R, ∂(R)− V0;Z)→ H1(∂(R)− V0;Z)→ H1(R;Z). (3.1.8)
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In Equation 3.1.11 below, we show that H2(R;Z) = 0. Assuming this for the

moment, the above exact sequence, combined with the equation before it, gives:

H2(W,M ;Z) ∼= H2(R, ∂(R)− V0;Z) ∼= ker(i∗ : H1(∂(R)− V0;Z)→ H1(R;Z)).

(3.1.9)

Our goal, therefore, is compute this kernel.

V is a surface with boundary and, by definition, β represents a non-zero primitive

class in H1(V ;Z). Therefore, β can be completed to a one-dimensional subcomplex

C ∨ β which V deformation-retracts to. (We can assume that C is the wedge of

2g−1 circles, where g is the genus of V .) Moreover, we can perform the deformation

retraction of V onto such a one-complex simultaneously on each copy of V contained

in T , fixing the curve of intersection β. Therefore, T deformation-retracts to a one-

complex containing β wedged to p copies of C, where

H1(C;Z) ∼= H1(V ;Z)/[β].

It follows that

H2(J ;Z) ∼= H2(T ;Z) ∼= 0

and

H1(J ;Z) ∼= H1(T ;Z) ∼= Z(2g−1)p+1 ∼= ⊕p(H1(V ;Z)/[β])⊕ Z,

where the singled-out copy of Z is generated by [β].

Furthermore, since the deformation-retraction of J onto T can be chosen to

commute with h̄, J/h̄ = R deformation-retracts to T/h̄, which is isomorphic to p+1
2
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copies of V identified along β. (This follows from the fact that V0 is fixed by h̄, and

the remaining p−1
2

copies of V in T become pairwise identified in the quotient. All

copies of β are identified to a single one in both T and T/h̄.) Therefore,

H1(R;Z) ∼= Z(2g−1) p+1
2

+1 ∼= Z⊕ (H1(V ;Z)/[β])
p+1
2 . (3.1.10)

By the same reasoning as above, we can also conclude that T/h̄ deformation-retracts

to a one-complex, so

H2(R;Z) = H2(J/h̄;Z) ∼= H2(T/h̄;Z) ∼= 0. (3.1.11)

Next we examine ∂(J) and ∂(R). To start, ∂(V × [0, 1]) ∼= V ∪α V . Then

∂(J) consists of p copies of V ∪α V , which we label V +
i ∪ V −i , 0 ≤ i < p, with

identifications we now describe. Cut each V ±i along β±i ⊂ V ±i . Now, V ±i − η(β) is

a connected surface with three boundary components, αi, β
±
i,1 and β±i,2, where the

β±i,j ⊂ V ±i are labeled in such a way that the covering translation on J carries β±i,j

to β±i+1 mod p,j. Then we can think of ∂(J) as obtained from 2p disjoint copies of

V − β, labeled V ±i − β±i , by gluing α+
i to α−i and β+

i,j to β−i+1 mod p,j. Thus, ∂(J) is

a closed surface of genus (2g − 1)p. In addition, we find that

H1(∂(J);Z) ∼= ((H1(V − β;Z))/([β1], [β2]))2p ⊕ Z2p. (3.1.12)

Recall that R is a Z/2Z quotient of J , where the Z/2Z action fixes V0× I and pairs

off V +
i with V −p−i for 1 ≤ i ≤ p−1

2
. Thus, ∂(R)−V0 is a surface of genus p(g−1)+ p+1

2

and we have:

23



H1(∂(R)− V0;Z) ∼= ((H1(V − β;Z))/([β1], [β2]))p ⊕ Zp+1. (3.1.13)

Our aim is to compute

ker(i∗ : H1(∂(R)− V0;Z)→ H1(R;Z)).

We can now rewrite the map induced by inclusion as

i∗ :
(
(H1(V − β;Z))/([β1], [β2])

)p ⊕ Zp+1 → (H1(V ;Z)/[β])
p+1
2 ⊕ Z.

It remains to examine i∗. It maps the copy of (H1(V −β;Z))/([β1], [β2]) coming

from V +
0 isomorphically onto its image, and it “pairs off” the remaining p−1 copies

of (H1(V − β;Z) onto p−1
2

copies of H1(V ;Z)/[β] in the image. This contributes

H1(V − β;Z)
p−1
2 to ker(i∗). The remaining Zp+1 in H1(∂(R) − V0;Z) is generated

by Z
p+1
2 curves which map to the single [β] in the image, and an additional Z

p+1
2

curves which map isomorphically to the p+1
2

classes in H1(V ;Z) which are not in

the image of i∗H1(V − β;Z). Thus, as we claimed,

ker(i∗) ∼= (H1(V − β;Z)/([β1], [β2]))
p−1
2 ⊕ Z

p−1
2 .

This allows us to give a formula for the signature of W .

Proposition 3.1.14. Adopt the assumptions and notation of Proposition 3.1.6. In

addition, assume that the p-fold irregular dihedral cover of α is S3. Let w1, w2, ..., wr
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be a basis for H1(V − β;Z)/([β1], [β2]). Denote by ψ the covering translation on

the p-fold cyclic branched cover f : Σ → S3 with branching set β, and denote by

wi,±j , i ∈ {1, ..., r}, j ∈ {1, ..., p} the pre-images of the wi lying in f−1(V × [−1, 1])

so that wi,±j ⊂ V ±j at ψV ±k = V ±k+1 mod p. Lastly, denote by wi,±j and β
±
j the images

of the corresponding curves1 in Σ under the involution h̄ : Σ → S3. Let A be the

matrix of linking numbers in S3 of the following set of links:

{wi,+k − w
i,−
k , β

+

k,1 − β
+

k−1,1}i=1,...,r;k=1,... p−1
2
.

Then, σ(W ) = σ(A).

Proof. Note that, since p is prime, Σ is a rational homology sphere. It follows that

H2(W,M ;Z) ∼= i∗(H2(W ;Z)) ⊂ (H2(W,S3 ∪ Σ;Z)).

By Proposition 3.1.6 we already know that

H2(W,M ;Z) ∼= ker(i∗ : H1(∂(R)− V0;Z)→ H1(R;Z)) =: K.

By the proof of the same proposition, the set of links

{wi,+k − w
i,−
k , β

+

k,1 − β
+

k−1,1}i=1,...,r;k=1,... p−1
2

forms a basis for K.

Recall that the isomorphism H2(W,M ;Z) ∼= K is given by the boundary map

in the long exact sequence 3.1.8. Consider any two elements u1, u2 in our basis for

1Note that each wi,±j is a lift of wi,±j to the irregular dihedral p-fold cover of α.
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K. Each ui is the image under the boundary map δ of a class Ui ∈ H2(W,M ;Z);

that is, ∂Ui = ui. Now, let u1 = a1 − a2 and u2 = b1 − b2 with ai, bi curves in

M ∼= S3. Note that a1 − a2 bounds a cylinder S1 × I properly embedded in W . (If

a1− a2 = wi,+k −w
i,−
k , this is immediately clear since wi,+k −w

i,−
k ⊂ wik× I ⊂ Vk× I.

If a1 − a2 = β
+

k − β
+

k−1, note that β
+

k−1 = β
−
k , and the same argument applies.)

Additionally, each of a1, a2 bounds a Seifert surface in S3; denote the two surfaces

by A1 and A2, respectively. So we can compute intersections using the closed class

U ′1 := A1 ∪∂A1 a1 × I ∪∂A2 a2.

Letting Bi denote a Seifert surface for bi, by analogy we can define

U ′2 := B1 ∪∂B1 b1 × I ∪∂B2 B2.

First, let us consider the case of self-intersection, U ′1 �U
′
1. The push-off of the link

a1−a2 along the normal in S3 to A1∪A2 extends to a1×I. Indeed, the obstruction

to the existence of such an extension lies in H1(R, ∂(R)−V0;Z) ∼= H2(R, V0;Z) = 0.

Therefore,

U ′1 � U
′
1 = lkA1∪A2(a1 − a2, a1 − a2).

Similarly, if ai 6= bi, we have,

U ′1 � U
′
2 = (A1 ∪ A2) ∩ (B1 ∪B2) = lk(a1 − a2, b1 − b2).

Therefore, the matrix of linking numbers between elements of our basis for K is

also the intersection matrix for (W (α, β)). This completes the proof.
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The Proof of Proposition 3.1.6 also allows us to compute the fundamental group

of the manifold W (α, β) for knots α which can arise as singularities of dihedral

branched covers between four-manifolds.

Corollary 3.1.15. Let p be an odd prime and let α be a knot which admits a p-fold

irregular dihedral cover. Assume moreover that this cover homeomorphic to S3. Let

β be a characteristic knot for α and let W (α, β) be the cobordism between S3 and

the p-fold cyclic cover of β constructed in [4]. Then W (α, β) is simply-connected.

Proof. We assume the notation of the proof of Proposition 3.1.6. (In this notation,

the additional assumption of this Corollary is that M ∼= S3.) We have seen that

W (α, β) is homotopy equivalent to M ∪ R and that M ∩ R = ∂R − V0. We also

know that i∗ : π1(∂R − V0, a0) → π1(R, a0) is surjective. On the other hand, any

loop in π1(∂R − V0, a0) = π1(M ∩ R, a0) is contractible in M since π1(M ; a0) = 0.

Therefore, by van Kampen’s Theorem, π1(M ∪R, a0) = 0 = π1(W (α, β), a0).

Finally, we prove the Main Theorem of this section.

Proof of Theorem 3.1.1. The existence of a p-fold dihedral cover f : Y → X over

the pair (X,B) implies straight away that the knot α itself admits a p-fold dihedral

cover M . Indeed, simply consider the restriction of f to f−1(∂N(z)), where z ∈ B ⊂

X is the singular point on the branching set and N(z) denotes a small neighborhood.

Since by assumption there is a homeomorphism of pairs

(∂N(z), B ∩ ∂N(z)) ∼= (S3, α),
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this restriction of f to f−1(∂N(z)) is the desired dihedral cover. The fact that M

is homeomorphic to a three-sphere follows from the assumption that the cover Y is

a manifold: simply recall that over N(z) lies the cone on M . This proves the first

assertion.

We proceed to derive the formula for the Euler characteristic of Y . Let N(B)

denote a small tubular neighborhood of B in X. Then, we can write

X = (X −N(B))
⋃

∂N(B)

N(B).

Since ∂N(B) is a closed oriented three-manifold, we know that χ(∂N(B)) = 0.

This gives:

χ(X) = χ(X −N(B)) + χ(N(B)) = χ(X −B) + χ(B).

We can further break down this equation as

χ(X) = χ(X −B) + χ(B − z) + 1.

Similarly, letting B′ denote f−1(B) and z′ := f−1(z), we have:

χ(Y ) = χ(Y −B′) + χ(B′ − z′) + 1.

Since f |Y−B′ : Y −B′ → X−B is a p-to-one covering map and f |B′−z′ : B′−z′ →

B − z is a p+1
2

-to-one covering map, we conclude that

χ(Y ) = pχ(X −B) +
p+ 1

2
(χ(B)− 1) + 1 = pχ(X)− p− 1

2
χ(B)− p− 1

2
,

as claimed.
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The computation of σ(Y ) is considerably more intricate. Our strategy for carry-

ing it out will be to reduce to the case of a branched cover with locally flat branching

set, at which point the signature of the cover can be computed by the well-known

formula we recalled in Equation 2.1.2. By keeping track of the changes of signature

produced in the process, we will be able to compute the defect to the signature that

arises from the presence of a singularity on the branching set.

We resolve the singularity in two stages. At the start, the branching set has one

singular point, in a neighborhood of which the branching set can be described in

terms the knot α. Our first step will be to replace this singularity by a curve’s worth

of “standard” (that is, independent of the knot type α) non-manifold points on the

branching set. The second step will be to excise these “standard” singularities and

construct a new cover whose branching set is a locally flat submanifold of the base.

We carry out these two steps in detail below, and we calculate the effect each of

them has on the signatures of the four-manifolds involved.

Step 1. Let Dz ⊂ X be a neighborhood of the singular point z such that

(Dz ∩ B) ⊂ Dz is the cone on α. As we already established, α admits a p-fold

dihedral cover. Equivalently, if V is any Seifert surface for α, there exists a mod p

characteristic knot β ⊂ V (see Definition 2.2.5). Let W (α, β) be the manifold

constructed in [4] as a cobordism between a p-fold dihedral cover of α and a p-fold

cyclic cover of (S3, β). By construction, there is a p-fold branched covering map

h1 : W (α, β)→ S3 × [0, 1].
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Secondly, let

h2 : Q→ D4

be a p-fold cover of the closed four-ball branched over a Seifert surface V ′ for

β, as constructed in Theorem 5 of [3]. Let Σ be the p-fold cyclic cover of β.

By construction, ∂Q ∼= Σ and, similarly, W (α, β) has one boundary component

homeomorphic to Σ. Note that, for i = 1, 2, the map

hi|Σ : Σ→ S3

is the p-fold cyclic cover branched along β. Therefore, we can construct a branched

cover

h1 ∪ h2 : W (α, β)
⋃
Σ

Q −→ S3 × [0, 1]
⋃

S3×{1}

D4. (3.1.16)

We denote W (α, β)
⋃

ΣQ by W for short, and the map h1 ∪ h2 by h. Thus, we can

rewrite Equation 3.1.16 as

h : W → D4.

This map is a p-fold branched cover whose restriction to the boundary of W a p-fold

irregular dihedral cover of the pair (S3, α). So, denoting the branching set of h by

T , there is a homeomorphism of pairs

(∂D4, ∂T ) ∼= (S3, α).

Furthermore,

T ∼= α× [0,
1

2
]
⋃

α×{ 1
2
}

V
⋃

β×{ 1
2
}

β × [
1

2
, 1]

⋃
β×{1}

V ′.
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We see from this description that T is a two-dimensional subcomplex of D4 which is

a manifold away from the curve β×{1
2
}. As evident from the above homeomorphism,

the branching set is homeomorphic to the Cartesian product of S1 and the letter

“Y” in a small neighborhood of the curve β × {1
2
}.

We shall use the map h to construct a new cover of the manifold X which

will differ from f only in a neighborhood of the singularity z ∈ B. Specifically,

let D′z := f−1(Dz) and observe that the restrictions of the maps f and h to the

boundaries of Y −Dz and W , respectively, are the p-fold irregular dihedral branched

cover2 of (S3, α), which is again S3.Therefore, we can define a new branched covering

map

f ∪ h : (Y −D′z)
⋃
S3

W −→ (X −Dz)
⋃
S3

D4.

Denote the manifold (Y −D′z)
⋃
S3 W by Y1 and the map f ∪ h by f1. Note that,

by Novikov additivity [17], σ(Y1) = σ(Y ) + Σ(W,M). Of course,

X −Dz

⋃
S3

D4 ∼= X,

so we continue to denote the base space by X. We denote the branching set of f1

by B1 and note that

B1
∼= B −N(z)

⋃
α

T.

2We use the phrase “the dihedral cover of α” somewhat liberally here. Dihedral covers of α

are in bijective correspondence with equivalence classes of characteristic knots β. Naturally, if α

admits multiple non-equivalent dihedral covers, we choose the one determined by f to construct

W .
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As prescribed, B1 has a circle’s worth of non-manifold points regardless of the choice

of the knot α.

Step 2. Denote by β∗ the curve of non-manifold points of T above, so that

β∗ ⊂ S3 × 1
2

and β∗ ⊂ T ⊂ X. Let N(β∗) ∼=ψ S1 × B3 be a small tubular

neighborhood of β∗ in X. To construct the homeomorphism ψ : N(β∗)→ S1×B3,

we choose a frame {~n1, ~n2, ~n3} for the normal bundle of β. For every b ∈ β∗, let

~n1(b) be the normal to β in V at the point b, ~n2(b) the normal to V in S3×{1
2
}, and

~n3(b) the normal to S3 in the product structure S3×I. Clearly, {~n1(b), ~n2(b), ~n3(b)}

are linearly independent for all b ∈ β∗.

We can now construct a new closed oriented four-manifold, denoted X2, as

follows:

X2 =
(
X −N(β∗)

) ⋃
S1×S2

(
X −N(β∗)

)
.

The identification of the two copies of ∂(X −N(β∗)) is done by a homeomorphism

φ : S1 × S2 → S1 × S2

given by the formula

φ(eiθ, y) = (e−iθ, y).

In particular, φ reverses orientation on S1×S2, so the manifold X2 can be given an

orientation which restricts to the original orientations on both copies of X−N(β∗).

Therefore, by Novikov additivity we obtain:

σ(X2) = 2σ(X −N(β∗), ∂) = 2σ(X). (3.1.17)
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Note that, since φ acts as the identity on the S2 factor, it identifies the boundary

of the branching set T − N(β∗) in one copy of X − N(β∗) with the boundary of

branching set in the other copy of X − N(β∗). Thus, the image of the branching

set after this identification has the form

(
B1 −N(β∗)

)⋃
3S1

(
B1 −N(β∗)

)
. (3.1.18)

Here the fact that the union of the two copies of T − N(β∗) is taken along three

circles corresponds to the fact that a neighborhood of the singular curve β∗ intersects

T in three closed curves (one for each “vertex” of the letter “Y”).

Denote the surface constructed in Equation 3.1.18 by B2. The careful reader will

have noticed that B2 is disconnected; we will describe its two connected components

in more detail shortly. Since φ reverses the orientation on each boundary circle,

the orientations of the two copies of (B1 − N(β∗)) can be combined to obtain a

compatible orientation on B2. Furthermore, by our choice of ~n3, N(β∗) ∩ S3 × {1
2
}

is precisely the normal neighborhood of β∗ in S3 × {1
2
} framed by {~n1, ~n2}, the

normals to β∗ in V and to V in S3 × {1
2
}. Consequently,

(S3×{1

2
})∩∂(N(β∗)) ∼= ∂

(
(S3×{1

2
})∩N(β∗)

)∼= ∂(β∗×D2) ∼= S1×S1. (3.1.19)

In particular, the restriction of φ to the boundary of the normal neighborhood of

β∗ in S3 × {1
2
} also reverses orientation. This implies that the positive normal

to the oriented surface (V − N(β∗)) ∪φ| (V − N(β∗)) inside the three-manifold

(S3 × {1
2
} − N(β∗)) ∪φ| (S3 × {1

2
} − N(β∗)) restricts to the normals of V in each

corresponding copy of S3. This observation will be very useful shortly.
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Recalling the definition of B1, namely B1 = (B − Dz)
⋃
α(T − N(β∗)), we can

break down B2 = (B1 −N(β∗)) ∪3S1 (B1 −N(β∗)) into

B2 =
(
(B −Dz) ∪α (T −N(β∗))

)⋃
3S1

(
(B −Dz) ∪α (T −N(β∗))

)
. (3.1.20)

By construction, B2 is embedded locally flatly in X2 – that is, all singularities have

been resolved. Also, as we indicated previously, B2 has two connected components,

since removing a neighborhood of β∗ disconnects T . Attaching along the three

curves in S1 × S2 pairs off each of the four surfaces with boundary and its homeo-

morphic copy, producing two closed surfaces which we denote B′2 and B′′2 . Here, B′2

is the component of B2 obtained by identifying two copies of (B −Dz) ∪α (V − β)

along S1 q S1, and B′′2 is the component of B2 obtained by identifying two copies

of3 V ′ along S1. By construction, the cover over B′2 is p-fold dihedral, whereas the

cover over B′′2 is p-fold cyclic. That is, a point in B′2 has p+1
2

pre-images, all but

one of branching index 2, whereas a point in B′′2 has one pre-image of index p. This

distinction will be relevant to our computation shortly.

Now our aim is to construct a p-fold branched cover of (X2, B2) from the covers

f of (X,B) and h of (D4, T ). We are helped greatly in this task by the observation

that

h−1(N(β∗)) ∼= S1 ×B3

(a nice explanation of this rather surprising fact can be found on p.173-174 of [4]).

3It would be more consistent with our earlier notation to say that B′′2 is obtained from two

copies of β × [0, 1] ∪β×{1} V ′, which, of course, is a surface homeomorphic to V ′.
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Therefore, denoting h−1(N(β∗)) by N ′, we can form the covering manifold as:

Y2 :=
(
Y1 −N ′

) ⋃
S1×S2

(
Y1 −N ′

)
.

Here, the identification along the boundary S1 × S2 is also done by φ, so, again,

Y2 can be given an orientation which restricts to each copy of (Y1 − N ′) to the

orientation compatible with the given orientation on Y . In particular,

σ(Y2) = σ
(
(Y1 −N ′) ∪S1×S2 (Y1 −N ′)

)
= 2σ(Y1) = 2(σ(Y ) + σ(W,M)). (3.1.21)

Because Y2 and X2 were constructed from copies of (Y1 −N ′) and (X −N(β∗)) by

gluing via φ, the restrictions of f1 to the two copies of (Y1 −N ′),

f1| : (Y1 −N ′)→ (X −N(β∗)),

can be glued to obtain a map

f2 :
(
(Y1 −N ′) ∪S1×S2 (Y1 −N ′)

)
→
(
X −N(β∗)

)
∪S1×S2

(
X −N(β∗)

)
,

written for short as

f2 : Y2 → X2.

To complete the proof, what remains is to compute the effect this surgery has on

the signatures of the base and covering manifolds. By Equation 2.1.2,

σ(Y2) = pσ(X2)− p− 1

2
e(B′2)− p2 − 1

3p
e(B′′2 ).

Recall that from Equations 3.1.17 and 3.1.21 we have

σ(X2) = 2σ(X)
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and

σ(Y ) =
1

2
σ(Y2)− σ(W,M).

Also, by Novikov additivity,

σ(W,M) = σ(W (α, β),M ∪ Σ) + σ(Q,Σ) = σ(W (α, β)) +

p−1∑
i=1

σζi(β).

In the last step, we have expressed the signature of Q in terms of Tristram-Levine

signatures of β, using Theorem 5 of [3]. We have also shortened σ(W (α, β),M ∪Σ)

to σ(W (α, β)). Now we combine the last four equations and simplify. The result is:

σ(Y ) = pσ(X)− 1

2

(p− 1

2
e(B′2)− p

2 − 1

3p
e(B′′2 )

)
−σ(W (α, β))−

p−1∑
i=1

σζi(β). (3.1.22)

To complete the proof, we need to compute the self-intersection numbers of B′2 and

B′′2 in X2 and relate them to that of B in X.

Recall that we denote the push-off of a surface S along a normal ~u by ~u(S), and,

as before, we denote self-intersection by “�”. For brevity, we also denote B − Dz,

the complement in B of a neighborhood of the singularity z, by Bz.

Note that if ~v is an extension (not necessarily non-vanishing) to Bz of the normal

to V in S3 × 1
2

such that Bz and ~v(Bz) are transverse, then by definition

e(B) = (Bz ∪α V ) � ~v(Bz ∪α V ).

Since V is disjoint from both ~v(V ) and ~v(Bz), and Bz is disjoint from ~v(V ), the

above equation simplifies to

e(B) = Bz � ~v(Bz). (3.1.23)
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Recall that the surface B′2 is obtained from two copies of Bz ∪α (V −β) attached by

a homeomorphism φ| on their boundary β1qβ2. Recall also that ~n2, the restriction

to β∗ of the positive normal to V in S3× 1
2

(and thus of ~v), is preserved by the gluing

homeomorphism φ|. Therefore, the two copies of the normal ~v to Bz ∪α (V −β) can

be combined obtain a normal, which we also denote ~v, to B′2 in X2. We have:

B′2 = Bz ∪α (V − β) ∪β1qβ2 (V − β) ∪α Bz. (3.1.24)

Since V − β and ~v(V − β) contribute nothing to the self-intersection B′′2 � ~v(B′′2 ),

e(B′2) = 2(Bz � ~v(Bz)) = 2e(B). (3.1.25)

Similarly, if ~v is an extension (not necessarily nowhere-zero) to V ′ of the normal

~n2 to the boundary β∗ of V ′ such that V ′ and ~v(V ′) are transverse, we have:

e(B′′2 ) = 2(V ′ � ~v(V ′)) = 2lk~v(β, β) = LV (β, β). (3.1.26)

Here, LV denotes the Seifert form on V , the Seifert surface for α. The last equality

follows from the fact that ~v is an extension of the normal to V in S3 × 1
2

and V ′ is

a Seifert surface for β.

Putting everything together, we can rewrite Equation 3.1.22 as:

σ(Y ) = pσ(X)− p− 1

2
e(B)− p2 − 1

6p
LV (β, β)− σ(W (α, β))−

p−1∑
i=1

σζi(β). (3.1.27)

With that, the proof is complete.

Remark 3.1.28. The property that a p-fold dihedral cover of a knot α is homeo-

morphic to the three-sphere can be regarded as a condition for α to be an allowable
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singularity on the branching set of an irregular p-fold dihedral cover between four-

manifolds. The condition is satisfied, for example, for all two-bridge knots and any

odd p (see the proof of Proposition 2.2.4) and can be disregarded if one allows the

covering space to be a stratified space, rather than necessarily a manifold, or if one

considers a slightly more general notion of branched cover (see Remark 3.3.3).

Remark 3.1.29. We note that the techniques used in the proof of Theorem 3.1.1 are

purely local. Using the same methods, one can just as easily compute the correction

to the signature and Euler characteristic of a branched cover Y resulting from the

presence of multiple singularities on the branching set. There is also an interesting

connection between the cover obtained by branching over two singularities and the

cover obtained by branching over their connected sum. See Remark 3.4.5.

3.2 Sufficient condition in the case of two-bridge

slice singularities

In this section, we describe a method for constructing an irregular p-folddihedral

cover of a general simply-connected four-manifold X. The main theorem of this

section establishes that, for a certain class of singularities, all pairs of integers

(σ, χ) afforded by the necessary condition (Theorem 3.1.1) as the signature and

Euler characteristic of a p-fold irregular dihedral cover of a given base manifold

X with specified branching set B are indeed realized as the signature and Euler
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characteristic of a p-fold irregular dihedral cover over (X,B).

Theorem 3.2.1. Let X be a simply-connected four-manifold. Let B ⊂ X be an

oriented surface embedded topologically locally flatly in X and such that π1(X −

B, x0) ∼= Z/2Z. Let p be an odd square-free integer, and let α be a two-bridge slice

knot which admits a p-fold dihedral cover. If σ and χ are two integers such that

χ = pχ(X)− p− 1

2
χ(B)− p− 1

2
(3.2.2)

and

σ(T ) = pσ(X) +
p− 1

2
e(B)− Ξp(α), (3.2.3)

then there exists a simply-connected four-manifold Y such that σ(Y ) = σ, χ(Y ) = χ

and Y is homeomorphic to an irregular dihedral p-fold cover of X. The branching

set of this covering map is a surface B1
∼= B, embedded in X with an isolated

singularity z of type α and such that e(B1) = e(B).

Before we present the proof, we establish two preliminary results.

Proposition 3.2.4. Let X be four-manifold and let B ⊂ X be an embedded oriented

surface of genus g such that π1(X − B, x0) ∼= Z/2Z. Then X admits a simply-

connected double cover with branching set B.

Proof. Since π1(X − B, x0) ∼= Z/2Z, a double cover of X branched along B exists;

we show that it is simply-connected. We denote the cover by X̂ and we denote

by B̂ the (homeomorphic) pre-image of B under the covering map. We apply van
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Kampen’s theorem to X̂ = (X̂ − B̂) ∪∂N(B̂) N(B̂), where N(B̂) denotes a small

tubular neighborhood of B̂. Being the universal cover of (X − B), (X̂ − B̂) is

simply connected, so i∗ : π1(∂N(B̂), b0) → π1(X̂ − B̂, b0) is the zero map. In

addition, i∗ : π1(∂N(B̂), b0) → π1(N(B̂), b0) is surjective. It follows from van

Kampen’s Theorem that X̂ is simply-connected.

Next, we prove a lemma concerning the singularity we are about to introduce

to the branching set. This will allow us to construct the desired dihedral cover.

Lemma 3.2.5. Let p > 1 be an odd square-free integer and let K ⊂ S3 be a slice

knot such that the pair (S3, K) admits an irregular p-fold dihedral cover. Then

there exists an embedded two-sphere S2 ⊂ S4 such that the pair (S4, S2) admits an

irregular p-fold dihedral cover W and S2 ⊂ S4 is locally flat except at one point

where it has a singularity of type K. Moreover, if K a two-bridge knot, W is a

simply-connected topological manifold.

Proof. Let D2
1 ⊂ B4

1 be a slice disk for K. Denote the cone on the pair (S3, K) by

(B4
2 , D

2
2). It has the property thatD2

2 is a locally flat submanifold ofB4
2 except at the

cone point x, where by construction D2
2 has a singularity of type K. Identifying the

two pairs (B4
1 , D

2
1) and (B4

2 , D
2
2) via the identity map along the two copies of (S3, K)

lying on their boundaries, we obtain an embedding of a two-sphere S := D2
1 ∪K D2

2

in S4 = B4
1 ∪S3 B4

2 such that S has a unique singularity of type K at x.

By Proposition 2.2.4, the pair (B4
1 , D

2
1) admits an irregular dihedral p-fold cover

W whose boundary M is the irregular dihedral p-fold cover of the pair (S3, K).
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Since (B4
2 , D

2
2) is a cone, its irregular dihedral p-fold cover is simply the cone on M .

Thus, the pair (S4, S) admits a cover

Z := W
⋃

∂W∼M×{0}

(M × [0, 1]/M × {1})

as claimed. If, in addition, K is a two-bridge knot, by Proposition 2.2.4 we know

that M is the three-sphere and moreover that we can pick the disk D2
1 to be ribbon

so that W is simply-connected. Thus, Z is a simply-connected manifold.

Proof of Theorem 3.2.1. The proof is as follows: first, we modify the branching

set B by introducing a singular point of an appropriate type to the embedding

of B in X; next, we construct the desired covering space Y by pasting together

several manifolds along their boundaries; we check that Y is indeed a p-fold irregular

dihedral cover of X with the specified branching set; lastly, we verify that Y is a

simply-connected manifold.

We begin by modifying the surface B ⊂ X by introducing a singularity of type

α. Let S2 ⊂ S4 be an embedded two-sphere with a unique singularity of type α

constructed as in Lemma 3.2.5.

Let y ∈ S2 ⊂ S4 be any locally flat point with N(y) a neighborhood of y

not containing the singular point x. We use N(y) to form the connected sum

of pairs (X,B)#(S4, S2) =: (X,B1). By construction, B1 is homeomorphic to B

but is embedded in X in such a way as to admit a unique singularity of type α.

Furthermore, it is easy to compute, for example by a Mayer-Vietoris sequence, that
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H1(X−B;Z) ∼= H1(X−B1;Z) and the latter group is Z/2Z by assumption. Hence,

X admits a double cover f : X̂ → X branched along B1.

Since y ∈ S4 is a locally flat point, B ∩ ∂N(y) is the unknot. Now viewing

∂N(y) as embedded in B1, we note that the restriction of f to f−1(∂N(y)) is a

double branched cover of the trivial knot, whose total space is again S3. It follows

that the double branched cover X̂ of the pair (X,B1) is the connected sum (along

S3 viewed as a double cover of the unknot) of the double branched covers of a

punctured (X,B) and (S4, S2) − N(y). We denote by f0 : X̂0 → (X − N(x)) the

restriction of f to the pre-image X̂0 of X − N(x); in other words, f0 is a double

branched cover of a punctured (X,B).

Next, consider the irregular dihedral p-fold cover g : Z → S4 of (S4, S2) con-

structed as in Lemma 3.2.5. For y as above, g−1(∂N(y)) is the irregular dihedral

p-fold cover of the unknot, which consists of the disjoint union of p+1
2

copies of S3,

p−1
2

of which are double covers and one a single cover. Therefore, g−1(S4 − N(y))

is an irregular dihedral p-fold cover of (B4, D2). Its boundary consists of p+1
2

copies

of S3. Of those, p−1
2

double-cover the complement of the unknot and one is mapped

homeomorphically by g. Now we form the manifold Y which we will show is a di-

hedral cover of X. We attach to g−1(S4−N(y)) a copy of X̂0 along each boundary

S3 which double-covers the complement of the unknot and a punctured copy of X

along the boundary S3 which is a cover of index 1. The map

h := g ∪ p−1
2
f0 ∪ 1X−N(∗) : Y → X
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is a branched cover of (X,B1). By construction, h satisfies the property that for all

points z ∈ B − x, if N(z) is a small neighborhood of z in X not containing x, then

h−1(N(z)) has p−1
2

components of index 2 and one component of index 1. So Y is

the desired dihedral cover.

Finally, we observe that Y consists of simply-connected manifolds joined to-

gether via homeomorphisms on their boundaries. Indeed, X is simply-connected

by assumption, and X̂ is simply-connected by Proposition 3.2.4. The irregular di-

hedral cover Z of S4 is simply-connected by Lemma 3.2.5, and, therefore, so is

g−1(S4 − N(y)). We concluded that Y is simply-connected, which completes the

proof.

Remark 3.2.6. Certain interesting variations on this result are not hard to obtain.

For instance, if we do not require that our construction produce a simply-connected

cover, we can relax the condition that π1(X − B, x0) ∼= Z/2Z and use for our

branching set any surface B which represents an even class in H2(X;Z). For another

result in the simply-connected realm, assume that a pair of integers (σ, χ) satisfy

Equations 3.2.2 and 3.2.3 for some given X, B, α and p. Then, if χ′ = χ+ (p− 1)k

for a natural number k, we can find a manifold Y ′ which is homeomorphic to a p-

fold irregular dihedral cover of X and satisfies σ(Y ′) = σ, χ(Y ′) = χ′. This follows

from the proof of Theorem 3.2.1, together with the following Lemma.

Lemma 3.2.7. Let B2 ⊂ X4 be an oriented surface of genus g embedded locally
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flatly in X such that π1(X−B, x0) ∼= Z/2Z. Then, there exists a smoothly embedded

oriented surface C of genus g + 1 in X such that π1(X − C, x0) ∼= Z/2Z, and such

that e(B) = e(C), where e denotes the self-intersection number of a submanifold.

Proof. Let T ⊂ S4 be an unknotted embedding of the two-torus in the four-sphere.

That is, assume that S1 × S1 ∼= T ⊂ S3 × [0, 1] ⊂ S4 is such that:

T ∩ S3 × {0} ∼= T ∩ S3 × {1} ∼= {∗},

T ∩ S3 × {1

3
} ∼= T ∩ S3 × {2

3
} ∼= {S1 ∨ S1},

T ∩ S3 × {t} ∼= S1, t ∈ (0,
1

3
) ∪ (

2

3
, 1),

and

T ∩ S3 × {t} ∼= S1 q S1, t ∈ (
1

3
,
2

3
).

Moreover, assume that for all t the corresponding level set S1 or S1 ∨S1 or S1qS1

bounds D2 or D2 ∨D2 or D2 qD2, respectively, inside the corresponding S3×{t}.

Using Fox’s method (detailed in [6]) for computing the fundamental group of a

surface complement in S4 by cross-sections, we find that π1(S4−T ) ∼= Z, generated

by a meridian of T in S4.

Now consider the connected sum of pairs (X,B)#(S4, T ) and let C = B#T ⊂

X#S4 ∼= X. Since a meridian m1 of T in S4 becomes identified under the connected

sum with a meridian m2 of B in X , it follows that the fundamental group of (X−C)

is isomorphic to 〈m1,m2|m1 = m2,m
2
2 = 0〉 ∼= Z/2Z.
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Finally, under the isomorphism of pairs (X,B)#(S4, T ) ∼= (X,C), the class

[C] ∈ H2(X;Z) corresponds to the class [B#T ] ∈ H2(X#S4;Z). Since [T ] = 0 ∈

H2(X#S4;Z), indeed e(B) = e(C).

The next theorem establishes the richness of the family of covers one can obtain

by introducing a slice knot singularity to a surface (later to become the branching

set) embedded in a four-manifold.

Theorem 3.2.8. Let X be a simply-connected closed oriented four-manifold whose

intersection form is indefinite and whose second Betti number is positive. For any

odd square-free integer p, there exists an infinite family of simply-connected closed

oriented four-manifolds {Yi}, each of which is homeomorphic to an irregular p-fold

cover of X branched over an oriented surface embedded in X with an isolated slice

knot singularity.

Proof. Let B ⊂ X be a closed surface, embedded topologically locally flatly in X

and such that π1(X − B;x0) ∼= Z/2Z. Since X is indefinite and its second Betti

number is positive, such a surface exists.

Let α be a two-bridge slice knot which admits an irregular dihedral p-fold cover.

Such a knot α exists by Proposition 2.2.7. Following the steps of the proof of

Theorem 3.2.1, we embed a two-sphere S ⊂ S4 locally flatly except for one sin-

gularity of type α; next, we construct a p-fold irregular dihedral cover of the pair

(X,B)#(S4, S) ∼= (X,B), as in the proof of Theorem 3.2.1.
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Using the same knot α as a singularity, by Lemma 3.2.7, we can increase the

genus of the branching set B to obtain an infinite family of such covers. These

covers are distinguished by their Euler characteristic. Using knots for which the

values of Ξp differ, it is possible to obtain covers distinguished by their signatures

as well.

We now turn to the question of determining when a particular manifold Y

can be realized as a p-fold dihedral cover over a given base data (X,B, α). Since

our approach is to analyze a dihedral cover in terms of its signature and Euler

characteristic, we will restrict our attention to situations where the manifold Y is

determined (or nearly determined) by the rank and signature of its intersection form.

The case of odd indefinite manifolds yields a particularly satisfying conclusion.

Theorem 3.2.9. Let X and Y be simply-connected closed oriented four-manifolds

whose intersection forms are odd and indefinite and whose Kirby-Siebenmann in-

variants are equal. Fix an odd square-free integer p and a two-bridge slice knot α.

Let B ⊂ X be an embedded surface such that π1(X − B, x0) ∼= Z/2Z. If the Euler

characteristic and signature of Y satisfy the formulas in Theorem 3.1.1 with respect

to X, B and α, then Y is homeomorphic to an irregular p-fold dihedral cover of X.

Proof. We follow the steps used in the proof of Theorem 3.2.1 to construct a p-fold

irregular dihedral cover of X branched over a surface B1
∼= B which is embedded

in X with a singularity of type α. Call this cover Z. Since α is a two-bridge slice

knot, by Theorem 3.2.1 we know that Z is a simply-connected manifold. We will
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prove that the intersection form of Z is isomorphic to that of Y .

Being a dihedral cover of X, Z satisfies the equations set forth in Theorem 3.1.1.

By assumption, Y satisfies these equations as well, so σ(Y ) = σ(Z) and χ(Y ) =

χ(Z). Since Y is a simply-connected four-manifold, the rank of H2(Y ;Z) is χ(Y )−2,

and the analogous statment holds for Z. In other words, we can conclude that the

intersection forms of Y and Z have the same signature and rank. The intersection

form of Y is odd indefinite by assumption. The intersection form of Z is also odd

and indefinite because by construction Z has a copy of X as a connected summand

and X itself is odd indefinite. Therefore, the intersection forms of Y and Z are both

indefinite and have the same signature, rank and parity. By Serre’s classification of

unimodular integral bilinear forms, they are isomorphic.

Finally, since Z is an odd-fold cover of X, the Kirby-Siebenmann invariants of

X and Z are equal, hence so are the Kirby-Siebenmann invariants of Z and Y .

Therefore, by Freedman’s classification of simply-connected four-manifolds [9], Y

and Z are homeomorphic.

3.3 Construction for other singularity types

We now describe a more general construction of dihedral covers, in which the con-

dition that the singularity is slice is relaxed. Let p be an odd integer, and let α

be a knot such that the pair (S3, α) admits an irregular dihedral p-fold cover and,

moreover, this cover is S3 (for example α could be a two-bridge knot). In this sec-

47



tion we define an infinite set of four-manifolds M such that for each X ∈ M, and

for every odd integer p, two families of infinite p-fold irregular branched covers of

X are constructed. The first construction, given in Theorem 3.3.1, yields manifolds

as the covers; the branching set in each case is a disconnected oriented surface with

two singularities of type α. The second construction, Theorem 3.3.2, is derived

from the first by establishing that it is possible to amalgamate the two singularities

to produce, over the same set of base manifolds, infinite families of irregular p-fold

covers with only one singularity of type α#α. Reducing the number of singularities

on the branching set causes the new covers obtained to be non-manifold: each cover

is a stratified space with one singular point. In a final twist, we can resolve the

singular point in the cover by blowing up. This allows us to produce a manifold as

a cover over the same base, now with one singularity of type α#α on the branch-

ing set. This last idea requires us to relax the condition that a branched cover be

finite-to-one and to allow the pre-image of the singularity on the branching set to

be infinite (see Remark 3.3.3). The reason that the cover thus obtained is no longer

a manifold is that if α is an admissible singularity type of a p-fold irregular dihedral

cover, then α#α is not (for details, jump to Lemma 3.3.5).

Theorem 3.3.1. Let X ′ be a simply-connected, closed, oriented four-manifold which

admits an embedded locally flat surface B′ with π1(X ′ −B′, x0) ∼= Z/2Z. Denote

S4 − S1 ×B3
⋃

S1×S2∼φS1×S2

S4 − S1 ×B3

by S, where φ(eiθ, x) = (e−iθ, x). For any prime p, the manifold X := X ′#S
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admits an infinite family of p-fold branched covers Yp,j, where each Yp,j is a simply-

connected manifold. For each j, the branching set of the covering map f : Yp,j → X

is an oriented surface B with two connected components, one of which is locally flat,

and the other has two singularities of the same type.

Theorem 3.3.2. Let X and p be as in Theorem 3.3.1. Then, X admits an infinite

family of simply-connected p-fold branched covers Zp,j with the following properties.

For each j, the branching set of the covering map f : Zp,j → X is an oriented

surface B with two connected components, one of which is locally flat, and the other

has one singularity whose type is a composite knot α#α. Furthermore, each Zp,j is

a stratified space with one singular point, whose type is the p-fold irregular dihedral

cover of α#α.

Remark 3.3.3. (“Theorem 3.3.2a”) Consider any one of the maps f : Zp,j → X

whose existence is established by the previous theorem. Denote the singular point on

the branching set of f by x, and let z be the singularity of Zp,j, so that f−1(x) = z.

Note that Zp,j itself can be covered by a manifold Z ′p,j, where Z ′p,j is obtained by

blowing-up Zp,j at z. Then, there exists a covering map f ′ : Z ′p,j → X which is a

dihedral branched cover over X − x. The map f ′ is not a branched cover in the

traditional sense, however, because the pre-image of the point x is not finite.

Proof of Theorem 3.3.1. We prove the theorem in four steps: (1) construct a man-

ifold which is a p-fold branched cover of S; (2) use this construction to produce a

p-fold branched cover of X; (3) describe a method to obtain an infinite family of
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covers from the first; (4) check that the manifolds constructed are simply-connected.

(1) Fix p odd. There exists a two-bridge knot α, not necessarily slice, which

admits an irregular dihedral p-fold cover. To verify this, let e1 and e2 be two integers,

not both of them odd, such that e1e2 ≡ 1 mod p (for example, take e1 = e2 = p+1).

Then, in the notation of Figure 2.1, the two-bridge knot C(e1, e2) admits a surjective

presentation onto D2p and hence a dihedral cover. Fix a two-bridge knot α which

admits such a presentation.

We will now construct an irregular p-fold cover of S such that the branching

set will have two singularities of type α. Let f : W (α, β) ∪Σ Q→ B4 be the p-fold

branched cover used in the proof of Theorem 3.1.1. Recall that the branching set

of f is a two-complex of the form

V ∗ := V ∪β×{0} β × [0, 1] ∪β×{1} V ′, (3.3.4)

where V is a Seifert surface for α, β ⊂ V is a mod p characteristic knot, and V ′

is a Seifert surface for β. Recall also that the restriction of f to the boundary of

W (α, β) ∪Σ Q is a p-fold irregular cover of (S3, α). Cone off the boundaries of the

pairs (B4, V ∗) and (W (α, β) ∪Σ Q, f−1(V ∗)) to and denote the respective closed

manifolds by S ′ andW ′. Extend f in the obvious way to produce a p-fold branched

cover f ′ : W ′ → S ′. The branching set of f ′ is a two-complex with one singularity

of type α and a circle’s worth of non-manifold points (corresponding to β × {0}

in Equation 3.3.4). Excise a neighborhood of this circle of singular points from

S ′ and glue two copies of the resulting manifold by the homeomorphism φ defined
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in the proof of Theorem 3.1.1. The resulting manifold is S. Denote by V the

two-subcomplex obtained by this process. V has two connected components – one

locally flat and one with two singularities of type α. Do the analogous construction

with W ′: that is, excise the pre-image under f ′ of a neighborhood of the singular

set, and glue two copies of the resulting manifold along their boundaries via φ. Note

that φ is an orientation-reversing homeomorphism compatible with the restriction

of f ′. Denote the resulting closed manifold by W . We combine the two copies of

f ′ :W ′ → S ′ to construct a p-fold branched cover f ′′ :W → S whose branching set

is V . This completes the first step.

(2) Let X ′ and B′ be as in the hypotheses of the Theorem. We wish to introduce

an appropriate singularity to B′ which will allow us to construct an irregular p-fold

cover of X ′#S. This step is very similar to the construction performed in the proof

of Theorem 3.2.1. As in said proof, let (X̂, B̂) be the two-fold branched cover of

(X ′, B′).

We wish to construct a branched cover of X ′#S. Let x ∈ V ⊂ S be a locally

flat point on the singular component of V . We delete a small neighborhood Dx

of x to form the connected sum of pairs (X ′, B′)#(S,V). We remark that, as

prescribed B′#V =: B has two connected components, one locally flat and one

with two singularities of type α. By construction, f ′′−1(Dx) has p−1
2

components

of branching index 2 and one component of branching index 1. Delete these from

(W , f ′′−1(V)) and form the connected sums with p−1
2

copies of (X̂, B̂) and one copy
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of (X,B). The manifold thus obtained, which we denote Q, is the desired p-fold

irregular branched cover of (X,B).

(3) In order to obtain an infinite family of covers, note that for any positive

integer k we can increase the genus of B by k (see Lemma 3.2.7) before performing

the procedure described in (2). Equation 3.1.2 shows that the covers obtained in

this manner are all distinct.

(4) It remains to prove that the covers given by this method are simply-connected.

Each Yp,j is constructed from W , X and (several copies of) X̂ by connected sums.

X is simply-connected by assumption, and X̂ by Proposition 3.2.4. We now show

that W is simply-connected as well. Recall that W was constructed from two

copies of W (α, β) ∪Σ Q by removing an S1 × B3 from each copy, gluing the two

W (α, β) ∪Σ Q − S1 × B3 along S1 × S2, and coning off the remaining boundary

components, each of which is homeomorphic to S3. Naturally, attaching copies

of D4 to the boundaries does not change the fundamental group. Note also that

W (α, β)∪ΣQ−S1×B3 is homotopy equivalent to W (α, β)∪ΣQ−S1. Since removing

a circle has no effect on the fundamental group of a four-manifold, it’s sufficient to

show that W (α, β) ∪Σ Q is simply-connected. The fact that Q is simply-connected

was proved in [4], and the simply-connectedness of W (α, β) is Corollary 3.1.15.

Therefore, W is simply-connected, and, consequently, so is Yp,j.

Our next order of business is to prove Theorem 3.3.2. For this purpose, we
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describe a procedure by which, starting with any one of the covers Yp,j → X

constructed in Theorem 3.3.1, we can “amalgamate” the two singularities on the

branching set to construct a new p-fold branched cover over the same manifold X.

That is, the branching set of the new cover will contain only one singular point.

The total space of the cover will be a stratified space with one singular point, the

pre-image under the covering map of the singularity in X. In this construction, we

make use of the following Lemma.

Lemma 3.3.5. Let α1 ⊂ S3 and α2 ⊂ S3 be two knots which admit dihedral pre-

sentations φi : π1((S3 − αi), ai) � D2p for some odd integer p > 0. Denote by Mi

the corresponding irregular dihedral p-fold cover of (S3, αi). Then, the knot α1#α2

admits a p-fold irregular dihedral cover homeomorphic to

(
M1 −q p+1

2
B3
) ⋃
q p+1

2
S2

(
M2 −q p+1

2
B3
)
.

Here, the manifolds (Mi −q p+1
2

) are attached to each other by the identity homeo-

morphism on their boundary q p+1
2
S2.

Proof. The key is to show that the knot connected sum α1#α2 can be formed in a

way compatible with the two presentations φ1 and φ2.

Let xi ∈ αi, i = 1, 2, be any two points, and denote by gi the homotopy class

of the meridian of αi based at ai and going once along the boundary4 a small

4Since φi maps all meridians to elements of order two, there is no need to worry about the

orientation of this loop.
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normal disk intersecting αi at xi. Without loss of generality, we can assume that

φ1(g1) = φ2(g2). (Proof: if the two elements are not equal, they are conjugate. In

this case, we can compose φ2 with an automorphism ψ of D2p sending φ2(g2) to

φ1(g1). The cover of (S3, α2) corresponding to ψ ◦φ2 is homeomorphic to M2.) Use

neighborhoods of the points x1 and x2 in the two copies of S3 to form the knot

connected sum α1#α2. By van Kampen’s Theorem,

π1((S3 − α1#α2), a0) ∼= π1((S3 − α1), a1) ∗ π1((S3 − α2), a2)/〈g1 = g2〉.

Since φ1(g1) = φ2(g2), the group of α1#α2 admits a presentation to D2p which

extends both φ1 and φ2. Let the corresponding irregular dihedral p-fold cover of

α1#α2 be f : M → S3. Formally decompose the base pair (S3, α1#α2) as

(S3, α1#α2) ∼= (S3
1 , α1)#(S3

2 , α2).

That is, think of each S3
i − N(xi), the complement of a small neighborhood of xi,

as embedded in the base. Then, we have

f−1(S3
i −N(xi)) ∼= Mi −q p+1

2
B3.

Also, the pre-image under f of the pair (S2, S0) along which the connected sum

of pairs (S3
1 , α1)#(S3

2 , α2) is taken consists of the boundaries of the p+1
2

three-balls

which appear in the last equation above. Lastly,

(S3
1 −N(x1)) ∩ (S3

2 −N(x2)) = ∅

and

(S3
1 −N(x1)) ∪ (S3

2 −N(x2)) = S3.
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We conclude that, as we claimed,

M ∼=
(
M1 −q p+1

2
B3
) ⋃
q p+1

2
S2

(
M2 −q p+1

2
B3
)
.

Proof of Theorem 3.3.2. Let f : Yp,j → X be one of the branched covers constructed

in Theorem 3.3.1. Denote the branching set of f by V and the two singularities of

V by z1 and z2. Fix two small neighborhoods Ni = N(zi) ⊂ X and denote the knot

∂Ni ∩ V ⊂ ∂Ni by αi. By construction, α1 and α2 are the same knot type, also

denoted α, and moreover the restrictions of f to f−1(N1) and f−1(N2) arise from

the same conjugacy class of presentations of the group of α to D2p.

Let a1 and a2 be two points in α1 and α2, respectively, and let γ ⊂ V be a simple

path from a1 to a2 which does not intersect the interiors of N1 and N2. Denote by

Nγ a small neighborhood of γ in V . Changing our choice of a2 if necessary, we can

assume without loss of generality that taking the connected sum of α1 and α2 along

γ is compatible with the two presentations to D2p (see Lemma 3.3.5). Now let N(γ)

be a small neighborhood of γ in X. Then

f | : f−1(N(γ))→ N(γ)

is a p-fold irregular branched cover of (B3, I), so it consists of p+1
2

disjoint copies

of B3, one mapped by homeomorphically f and the rest of branching index two.

Denote the four-ball N1 ∪ N(γ) ∪ N2 by N . Secondly, by a harmless abuse of

notation, denote the connected sum α1#α2 along γ by α1 ∪ γ ∪ α2. Then, there is
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a homeomorphism of pairs

(∂N, α1 ∪ γ ∪ α2) ∼= (S3, α#α)

and f−1(∂N) is the p-fold irregular cover of α1#α2 compatible with the two original

covers.

Consider the manifold X − N . Its boundary is a three sphere which, by con-

struction, intersects the boundary of V − N in α1#α2. Taking the cone on the

pair (X − N, V − N) produces a simply-connected manifold X homeomorphic to

the original manifold X. The cone on V − N is a surface homeomorphic to V

embedded in X with a singularity of type α1#α2.

We mimic this procedure in the cover. That is, consider Yp,j − f−1(N). It is a

simply-connected four-manifold with boundary the p-fold irregular dihedral cover

of α1#α2. We cone off its boundary to construct Zp,j, a stratified space with one

singular point. Extending f | : Yp,j − f−1(N) → X − N over the two cones in the

obvious way produces the desired p-fold branched cover f ′ : Zp,j → X. Since Yp,j is

simply-connected, so is Zp,j, as desired.

3.4 A family of knot invariants

In this section we study Ξp(α), the “defect” to the signature of a branched cover

which results from the presence of a singularity of type α on the branching set.

Proposition 3.4.1. Let p be an odd square-free integer, and let α ⊂ S3 be knot
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which arises as the singularity of an irregular dihedral p-fold cover between four-

manifolds. Assume that p2 does not5 divide ∆(−1), where ∆(t) is the Alexander

polynomial of α. In the notation of Theorem 3.1.1, the integer

Ξp(α) := −p
2 − 1

6p
LV (β, β)− σ(W (α, β))−

p−1∑
i=1

σζi(β) (3.4.2)

is an invariant of the knot type α.

Proof. Since α arises as a singularity of an irregular dihedral p-fold cover, by Theo-

rem 3.1.1, α itself admits an irregular dihedral p-fold cover. Since p2 does not divide

∆(−1), this cover is unique (see footnote on p. 166 of [4]).

When both α and β are fixed, it is clear that each of the terms p2−1
6p
LV (β, β),

σ(W (α, β)) and
∑p−1

i=1 σζi(β) is well-defined. Our goal is to show that their sum is

in fact independent of the choice of β.

Let f : Y → X be an irregular dihedral p-fold cover, branched over an oriented

surface B ⊂ X, embedded in X with a unique singularity of type α. Such a cover

exists by assumption. Then

Ξpα = pσ(X)− p− 1

2
e(B)− σ(Y ),

a formula independent of the choice of β.

A priori, however, it might be possible for another branched cover f ′ : Y ′ → X ′,

whose branching set also has a singularity of type α, to produce a different value of

5One could allow p2 to divide ∆(−1). In this case, Ξp would not necessarily be an invariant of

the knot type α but, rather, of α together with a specified presentation of π1(S3 − α, x0) � D2p.
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Ξp. This does not occur. By the proof of Theorem 3.1.1, any choice of characteristic

knot β can be used to compute the defect Ξp(α) to the signature of Y . Using the

same β and Equation 3.4.2 to compute this signature defect for two different covers,

for instance Y and Y ′, shows that Ξp(α) does not vary with the choice of branched

cover and indeed depends only on α.

It is evident from Equation 3.1.3 that the possible values of the Ξp invariant play

a key part in determining the possible values of the signatures of branched covers

over a given base. Therefore, it is of interest to study the properties and possible

values of this invariant. The rest of this section is dedicated to proving that Ξp is

additive with respect to knot connected sum.

Proposition 3.4.3. If α1 and α2 are two knots for which Ξp is defined6, then

Ξp(α1#α2) = Ξp(α1) + Ξp(α2).

Here, # denotes knot connected sum and

Ξp(α) :=
p2 − 1

6p
LV (β, β) + σ(W (α, β)) +

p−1∑
i=1

σζi(β),

in the notation of Theorem 3.1.1.

Proof. Additivity of Ξp with respect to knot connected sum can be deduced from

two simple observations. The first is that a characteristic knot for the connected

6As in Corollary 3.4.1, it is easiest, if not necessary, to assume in addition that each αi admits

a unique dihedral cover.
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sum of two knots can be obtained by taking the connected sum of two individ-

ual characteristic knots. We proceed to prove this assertion. Let α1 and α2 be

two knots, each of which admits a p-fold dihedral cover. Choose a Seifert surface

Vi for αi, and let Li denote the matrix (with respect to some basis) of the cor-

responding linking form. Let βi ⊂ Vi be a characteristic knot. Then V1#V2 is a

Seifert surface for α1#α2 and, with respect to the obvious basis, its Seifert matrix

is

L1 + LT1 0

0 L2 + LT2

. Because β1 ⊂ V1 is a mod p characteristic knot, we know

that each entry of [β1](L1 + LT1 ) is congruent to 0 mod p, where by [β1] we de-

note the homology class of β1 with respect to the chosen basis for H1(V1;Z). The

analogous statement holds for [β2] and L2 + LT2 . We wish to show that every entry

of

[β1#β2]

L1 + LT1 0

0 L2 + LT2

 (3.4.4)

is also congruent to 0 mod p. Because [β1#β2] = [β1] + [β2], we have

[β1#β2]

L1 + LT1 0

0 L2 + LT2

 = [β1]

L1 + LT1 0

0 L2 + LT2

+[β2]

L1 + LT1 0

0 L2 + LT2

 .
Since β1 ⊂ V1, the coordinates of [β1] corresponding to the basis elements that

generate H1(V2;Z) are all 0. (Put differently, β1 ⊂ V ◦1 does not link any curve in

V ◦2 .) Therefore, the components of the vector

[β1]

L1 + LT1 0

0 L2 + LT2
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are those of [β1](L1 + LT1 ), followed by zeros. The analogous statement holds for

[β2]

L1 + LT1 0

0 L2 + LT2

 .
This shows that, indeed, every entry of the vector given by Equation 3.4.4 is

0 mod p. Furthermore, since βi represents a primitive class in H1(Vi;Z), [β1#β2] ∈

H1(V1#V2;Z) is primitive as well. Therefore, β1#β2 ⊂ V1#V2 is a characteristic

knot for α1#α2.

Tristram-Levine signatures are additive with respect to knot connected sum and,

by the same reasoning as above,

LV1#V2(β1#β2, β1#β2) = LV1#V2(β1 + β2, β1 + β2) = LV1(β1, β1) + LV2(β2, β2).

This proves the additivity of the first and third terms in the definition of Ξp.

The second observation is that the p-fold dihedral cover of α1#α2 is composed of

the two individual dihedral covers by what we might call a “repeat connected sum”

taken by removing p+1
2

balls from each manifold, one for each branch curve (see the

proof of Lemma 3.3.5). Consequently, if we use the same basis for H1(V1#V2) as

above, the intersection matrix for W (α1#α2, β1#β2) will be block-diagonal, with

the intersection matrices of W (α1, β1) and W (α2, β2) on the diagonal. This proves

additivity of the third term.

Remark 3.4.5. At first glance, the additivity of Ξp with respect to knot-connected

sum may appear to imply that introducing a singularity of type α1#α2 results in
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a branched cover homeomorophic to the one obtained with two singularities α1

and α2. Indeed, Proposition 3.4.3 implies that the “defect” to the signature of a

branched cover arising from a singularity of type α1#α2 is equal to that arising from

the presence of two singularities, α1 and α2. However, introducing two singularities

α1 and α2 to a pair (X4, B2) results in a covering space which is in fact distinct from

the cover obtained by introducing one singularity of type α1#α2 to the same base.

A simple way to see this is to note that the Euler characteristic of the cover does

depend on the number of singularities. The formula for the Euler characteristic of

a p-fold dihedral cover of (X4, B2) with m singular points is

χ(Y ) = pχ(X)− p− 1

2
χ(B)− p− 1

2
m.

There is also a more subtle – and more essential – distinction to be made. As

seen from the Proof of Lemma 3.3.5, the knot types α1, α2 and α1#α2 can not

simultaneously be admissible singularity types for a p-fold irregular branched cover

between four-manifolds. That is, if the cover with singularity types α1 and α2 is a

manifold, then the cover with one singularity of type α1#α2 is not.
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Chapter 4

Further Questions

We conclude with a short list of research questions that emerge from this study.

1. Singularity types. We have provided a method of constructing a branched

cover with one slice singularity, as well as a method for constructing a cover

with two isolated singularities of “arbitrary” type. This raises the follow-

ing natural questions. First, can our method be generalized to construct a

cover with one singularity of arbitrary type? (This is related to the follow-

ing question: can a presentation of a knot group to a dihedral group D2p be

extended to a presentation of the fundamental group of the complement in

D4 of some Seifert surface for the knot?) Second, can every cover between

simply-connected four-manifolds be realized by our construction?

2. Knot invariants. A question closely related to the above is this: which knots

are admissible singularity types for a dihedral cover between four-manifolds?
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We know that two-bridge knots provide an example. However, there is no

known necessary and sufficient geometric criterion for determining whether

the irregular dihedral p-fold cover of a given knot is S3. Since the class of

admissible singularities effectively determines the variety of dihedral covers

over a given base, such a criterion would be manifestly useful. On the flip

side, it would be of interest to establish if a certain class of knots could

account for all irregular dihedral covers between four-manifolds. Can every

cover be realized with a two-bridge slice singularity? A study of the invariant

Ξp would provide a first clue in this direction.

3. Intersection forms and branched covers. Our strategy in determining whether

a given simply-connected topological four-manifold Y is homeomorophic to an

irregular dihedral branched cover of another simply-connected four-manifold

X has been to study the intersection forms of possible covers of X. The fact

that an indefinite unimodular integral bilinear form is determined by its rank,

signature and parity has allowed us to arrive at the bulk of our conclusions by

relying, almost entirely, on studying the behavior of the signature and rank

of intersection forms under dihedral branched covers. As a result, apart from

an obstruction, in all probability rather coarse, definite four-manifolds have

so far evaded our classification. Considerable refinements of our results could

be achieved by a study of the behavior of the intersection forms themselves

under dihedral covers.
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Appendix

Let α ⊂ S3 be a knot, and let f : M → S3 be a cover branched along α, arising from

a presentation ψ : π1(S3−α, x0)→ Sn. The linking numbers (when defined) between

the various components of f−1(α) are a subtle knot invariant studied extensively

by Perko [19], [21]. He used linking numbers to distinguish knots up to 11 crossings

[20] and to detect non-amphichiral knots [18], among other applications.

In his undergraduate thesis [18], Perko described a procedure for computing

these linking numbers. His method is, to this day, the most efficient algorithm

known for computing linking numbers of branch curves. We give a very short

summary of Perko’s method for computing linking numbers in a branched cover.

Our aim is to provide just enough detail to be able to describe a slight modification

of his algorithm which allows us to calculate the linking numbers of other curves,

as needed for evaluating the component of Ξp(α) which is expressed in terms of

linking.

Perko’s procedure for computing linking numbers between branch curves in a

branched cover f : M → S3 with branching set α:
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1. Use a diagram for α to endow S3 with a cell structure. The two-skeleton here

is the cone on α, and there is a single three-cell.

2. Use lifts f−1(ejk) of the various cells in S3, together with information about

how the meridians of α permute the interiors of the three-cells in the cover,

to obtain a cell structure on M .

3. Compute the boundaries of all two-cells of M . This step is non-trivial: “over-

passing” two-cells accrue additional boundary components determined by the

action of meridians of α on the three-cells.

4. Solve a system of linear equations to determine, for each component αi of

f−1(α), a two-chain with boundary αi.

5. For each pari (αi, αj), examine the signed intersection numbers of αi with a

two-chain with boundary αj to evaluate lk(αi, αj).

In order to compute the linking numbers of other curves in M , we introduce

an appropriate subdivision of the cell structure used by Perko. Consider a curve

γ ⊂ (S3 − α) whose lifts to M are of interest. We add the cone on γ to the two-

skeleton of S3. In order to be able to lift this new cell structure to a cell structure

on M , we treat γ as a “pseudo-branch curve” of the map f . That is, we think of

the presentation π1(S3−α)→ Sn as a presentation π1(S3− (α∪γ))→ Sn in which

meridians of γ map to the trivial permutation. (Naturally, this can be done for
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multiple curves γi simultaneously.) Linking numbers can be computed by following

steps 3, 4 and 5 above.
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[16] José Maŕıa Montesinos. A note on moves and irregular coverings of S4. Con-

temp. Math, 44:345–349, 1985.

[17] Sergei Novikov. Pontrjagin classes, the fundamental group and some problems

of stable algebra. Essays on Topology and Related Topics, pages 147–155, 1970.

[18] Kenneth Perko. An invariant of certain knots. Princeton University Press,

1964.

[19] Kenneth Perko. On covering spaces of knots. Glasnik Mat, 9(29):141–145,

1974.

[20] Kenneth Perko. On the classification of knots. Proc. Am. Math. Soc, 45:262–

266, 1974.

[21] Kenneth Perko. On dihedral covering spaces of knots. Inventiones mathemat-

icae, 34(2):77–82, 1976.

[22] Riccardo Piergallini. Four-manifolds as 4-fold branched covers of S4. Topology,

34(3):497–508, 1995.

[23] Oleg Viro. Signature of a branched covering. Mathematical Notes, 36(4):772–

776, 1984.

69


	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	On the Classification of Irregular Dihedral Branched Covers of Four-Manifolds
	Alexandra Kjuchukova
	Recommended Citation

	On the Classification of Irregular Dihedral Branched Covers of Four-Manifolds
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	tmp.1480453208.pdf.k4mSJ

