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ABSTRACT 

 

TOTAL SYNTHESIS OF (+)-18-EPI-LATRUNCULOL A 

Brett D. Williams  

Professor Amos B. Smith, III 

  

The total synthesis of (+)-18-epi-latrunculol A was undertaken to provide synthetic access to a 

sufficient amount of the scarce, sponge-derived macrolide to facilitate further biological 

evaluation. Preliminary bioassays revealed (+)-18-epi-latrunculol A to exhibit a selective, solid 

tumor cytotoxicity, while being devoid of the actin depolymerization activity customary to the 

latrunculin family of natural products, making the epimeric natural product a compound of 

interest for chemotherapeutics. An enantioselective total synthesis of (+)-18-epi-latrunculol A 

was accomplished; key features of the synthesis include a functional group compatible cross 

metathesis reaction, an acid-mediated cyclization/equilibration, a Carreira alkynylation, and a 

late-stage Mitsunobu macrolactonization. Finally, a novel method was also discovered to achieve 

the cyclization of δ-hydroxy-E-enones under mild, photochemical conditions.  
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CHAPTER 1 Introduction  

1.1 Introduction: The Latrunculin Family of Sponge Metabolites 

 The protected reefs of the Red Sea (Gulf of Eilat) are populated by red-colored sponges 

known as the Latrunculia magnifica (renamed Negombata magnifica).1 Although clearly visible 

from the surface and fully exposed, the sponges have not been observed being eaten by fish. 

Upon further examination, researchers discovered that, as a defense mechanism, the sponges 

exude a reddish liquid when squeezed that causes nearby fish to flee. If retreat is not possible, the 

fish suffer hemorrhaging followed by death within minutes after exposure to the red liquid. In 

1980, two polyketide natural products, latrunculin A (1.1) and latrunculin B (1.2), were isolated 

from Latrunculia magnifica and characterized by Kashman et al., utilizing spectroscopic methods 

and X-ray diffraction of a crystalline derivative of latrunculin A (Figure 1.1).2,3  

 An investigation into the cellular processes affected by the lead compounds revealed the 

ability of latrunculins to depolymerize selectively the actin cytoskeleton, while leaving the 

microtubule network unaffected.4 Actin is the most abundant intracellular protein within a 

eukaryotic cell.5 As a primary component of the cell cytoskeleton, actin determines the shape of 

the cell and is directly involved in many vital processes such as intracellular transport, cell 

Figure 1.1. Parent Latrunculin Compounds 
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motility and cell division.6 Actin exists in a dynamic equilibrium of monomeric G-actin and 

linear polymeric F-actin, continually polymerizing and depolymerizing. A number of toxic 

natural products are known to interfere with the dynamics of assembly or disassembly of actin 

subunits, such as rhizopodin,7 swinholide A,8 bistramide A,9 as well as others.10 Latrunculin A 

was found to form a 1:1 molar complex with monomeric G-actin, inhibiting repolymerization of 

the G-actin subunits and effectively resulting in net depolymerization due to the dynamic 

behavior of the polymeric F-actin.4,11 Treatment of cultured mouse neuroblastoma and fibroblast 

cells with submicromolar concentrations of either latrunculin A or latrunculin B result in rapid 

changes to the cell morphology (i.e., shape) due to depolymerization of the actin cytoskeleton. 

When the natural product is removed via washing, the cell morphology rapidly reassumes the 

original state, thus demonstrating reversibility of the latrunculin-actin interaction.1 The striking 

ability of latrunculin A and latrunculin B to depolymerize selectively the actin cytoskeleton at 

low concentrations has been widely exploited by researchers to probe the structure and function 

of actin-dependent cellular processes.12,13,14 Although cytochalasins were the first natural product 

“molecular probes” used to test the role of actin in biological processes,15 due to a better defined 

mode of action and more potent inhibition, latrunculin A is currently the most commonly 

employed molecular probe of the many natural product actin inhibitors.16  

 The extensive use of latrunculin A as a molecular probe, in combination with the macrolide’s 

interesting architecture, has led to sustained interest from the synthetic community.17-26 Smith and 

coworkers completed the first total synthesis of a latrunculin natural product, reporting their total 

synthesis of latrunculin B (1.2) in 1986.17 In 1990, Smith18 and White25 reported back-to-back 

syntheses of the 16-membered macrolide, latrunculin A (1.1) as well as other latrunculin 

congeners. Recently, Fürstner et al. published total syntheses of parent compounds latrunculin A 

and latrunculin B as well as a multitude of natural and unnatural latrunculin analogs. Fürstner and 
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coworkers have also spearheaded a detailed structure activity relationship (SAR) study of the 

latrunculins driven by information from the report of a crystal structure of G-actin bound 

latrunculin A.11,22,23 Binding information gathered from the crystal structure is summarized in 

Figure 1.2.11,22 The macrocyclic ring of latrunculin A skeleton predominantly fits in a 

hydrophobic region of the binding site, with carbons 5-7 partly exposed to solvent. An interesting 

hypothesis from Fürstner was that the stereochemistry at the C-18 position of latrunculin A 

should have an impact on the binding constant, as this stereogenicity dictates the location of the 

thiazolidinone in relation to the hydrogen bond donors/acceptors in the binding pocket.22  

 Although the naturally occurring C-16 epimer of latrunculin B (16-epi-latrunculin B) was 

synthesized and proven to inhibit actin polymerization,22 latrunculin A congeners epimeric at C-

18, had not been synthesized or tested prior to the recent report from Crews.16  The ability of the 

C-18 stereogenicity to control actin depolymerization was again called into question in 2008, 

when a new epimeric latrunculin A congener was isolated by Crews and coworkers (vide infra).16 

1.1.1 (+)-18-epi-Latrunculol A 

 Due to the general utility of latrunculin A as a molecular probe, significant efforts have been 

directed towards the isolation and study of latrunculin analogs. In 2008, Crews and coworkers 

Figure 1.2. Proposed Bonding Interactions between Latrunculin A and G-actin 
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isolated 13 latrunculin analogs from two taxonomically unrelated sponges, Negombata magnifica 

and Cacospongia mycofijiensis.16 Upon spectroscopic characterization and initial biological 

assessment, (+)-18-epi-latrunculol A (1.3) emerged as an intriguing discovery.  

 The latrunculin A congener, (+)-18-epi-latrunculol A (1.3), was characterized via extensive 

2D NMR analysis involving spectroscopic comparison to a related isolate, latrunculol A (1.4), 

which revealed that the two congeners were epimeric at C-18 (Figure 1.3, A.). Latrunculol A 

(1.4) was characterized and assigned in turn through spectroscopic comparison to latrunculin A 

(1.1), which established that both natural products shared the same carbon skeleton and that 

latrunculol A (1.4) contained a vicinal diol in the place of the E-olefin in latrunculin A (1.1).  The 

stereochemistry of the vicinal diol in 1.4 was elucidated through chemical conversion to the 

acetonide and NOESY NMR analysis (Figure 1.3, B.). 

 The isolated latrunculin congeners were evaluated first in a disk diffusion soft agar cell-based 

assay against three murine cell lines: colon 38, L1210, and CFU-GM. The epimeric latrunculin 

congener, (+)-18-epi-latrunculol A (1.3) displayed the highest solid tumor selective cytotoxicity 

profile27 of all the latrunculin natural products tested against colon 38 and CFU-GM (ZC38–ZCFU-

Figure 1.3. A. Comparison of H-18 Between Congeners B. NOESY Analysis of Latrunculol A  

 



	  
	  
5	  

GM = 15.0 mm). This congener (1.3) also demonstrated significant selective cytotoxicity against 

HCT-116 (5.5 µM) versus MDA-MB-435 (>50 µM) cell lines, and surprisingly did not display 

actin depolymerization activity (Figure 1.4). Interestingly, latrunculol A (1.4) proved to be the 

most cytotoxic latrunculin tested against colon 38 (ZC38 = 23.5 mm, at 1.1 µm), being 2.6 and 1.8 

times more toxic than parent compounds latrunculin A (1.1) and latrunculin B (1.2) respectively. 

Latrunculol (1.4) however produced significant actin disruption and did not exhibit selective 

cytotoxicity, bringing the biological significance of C-18 stereogenicity in the latrunculin A 

framework into light.  

 Conflicting accounts have been reported concerning the potential of latrunculin A to be a 

therapeutic agent.16,28 Due to the ubiquity of actin in living organisms, latrunculin A and 

latrunculin B display an unselective cytotoxicity profile and thus the parent latrunculins are 

generally considered not to possess a useful therapeutic index.28 Indeed, to date cytotoxic actin 

inhibitors have not been utilized as a therapeutic agent.16 Thus the selective cytotoxicity profile of 

(+)-18-epi-latrunculol A (1.3), as well as the actin-independent mode of cytotoxicity, makes this 

congener an exciting potential candidate as an anti-cancer therapeutic. In view of the divergent 

and presently unknown mode of cytotoxicity and the potential of (+)-18-epi-latrunculol A (1.3) as 

Figure 1.4. Microfilament Disrupting Effect of Latrunculin Compounds                                

                
Adapted with permission from Amagata, T.; Johnson, T. A.; Cichewicz, R. H.; Tenney, K.; Mooberry, S. L.; Media, 

J.; Edelstein, M.; Valeriote, F. A.; Crews, P. J. Med. Chem. 2008, 51, 7234-7242. Copyright 2008 American 
Chemical Society 

	  



	  
	  
6	  

a cancer chemotherapeutic agent, we embarked on the development of a scalable total synthesis 

of this latrunculin congener first to confirm the structure and relative and absolute 

stereochemistry as well as to provide additional material to facilitate additional biological studies.  

1.2 Relevant Synthetic Studies 

 Although at the outset of this project there were no reported total synthesis of (+)-18-epi-

latrunculol A, the latrunculin family of natural products had received considerable attention from 

the synthetic community.17-26 As (+)-18-epi-latrunculol A (1.3) shares the (+)-latrunculin A (1.1) 

carbon skeleton, previous total syntheses of parent compound (1.1) will be reviewed, as well as 

the Smith group’s seminal report on the total synthesis of (+)-latrunculin B (1.2).17-19 

1.2.1 The Smith Syntheses of (+)-Latrunculin B (1.2) and (+)-Latrunculin A (1.1)  

 In 1986, Smith et al. reported the first total synthesis of (+)-latrunculin B (1.2).17 They 

proposed a retrosynthetic analysis that would permit access to both (+)-latrunculin B (1.2) and 

(+)-latrunculin A (1.1) via an advanced common aldehyde 1.6 (Scheme 1.1). In turn, Smith and 

coworkers envisioned a Mitsunobu macrolactonization to close both the 14-membered 

macrolactone of (+)-latrunculin B and the 16-membered macrolactone of (+)-latrunculin A, in 

conjunction with a Wittig olefination to construct the requisite Z-olefin in both latrunculin natural 

products. The Wittig olefination called for reagents 1.5 and 1.10 to access the complete carbon 

skeletons of (+)-latrunculin B and (+)-latrunculin A, respectively. The cyclic ketal moiety in 1.6 

was anticipated to be accessed via an acid-mediated cyclization/equilibration sequence from 

ketone 1.7 (Scheme 1.2). Construction of the β−hydroxy ketone 1.7, in turn, was envisioned to 

utilize an aldol reaction. The requisite aldehyde (i.e., the aldol coupling partner) would arrive via 

orthoester formation of a racemic mixture of lactone 1.8, employing enantioenriched 2,3-

butanediol to provide a mixture of separable diastereomeric orthoesters, followed by ozonolysis 
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 of 1.12. Methyl ketone 1.9 was anticipated to be readily accessible via elaboration of L-cysteine.  

 In the forward direction, orthoester 1.12 was isolated as a single diastereomer in three steps 

from racemic allyl cyclopentanone after preparative HPLC separation of the diastereomeric 

orthoesters (Scheme 1.2). The aldol reaction afforded a 4:1 mixture of diastereomeric alcohols 

(1.7) that, upon treatment with an aqueous HCl/THF mixture, equilibrated to a 12:1 mixture of 

lactol diastereomers. Treatment with acidic methanol then afforded ketal 1.14 in 47% from 1.12. 

Scheme 1.2. Smith’s Synthesis of Latrunculin A and Latrunculin B 

 

Scheme 1.1. Smith’s Retrosynthetic Analysis of (+)-Latrunculin B and (+)-Latrunculin A 
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 Protection of diol 1.14, followed by DIBAL reduction delivered the common aldehyde 

intermediate 1.6 in 53% over two steps (Scheme 1.3). Wittig olefination, employing ylide 1.15 

(derived from 1.5, Scheme 1.1) afforded Z-olefin 1.16 in good yield (81%). Subsequent 

deprotection with HF•pyridine was followed by Mitsunobu macrolactonization to furnish the 14-

membered macrolactone 1.17. A two-step global deprotection was carried out utilizing ceric 

ammonium nitrate to achieve oxidative removal of the p-methoxy benzyl protecting group and in 

turn heating the methyl ketal at 60 °C in an aqueous acetic acid/THF mixture afforded (+)-

latrunculin B in 46% from 1.16 (Scheme 1.3).  The overall yield was 2.5% over the 13 steps.   

 White26 and Fürstner20-24 have also reported successful total syntheses of latrunculin B (1.2). 

The truncated latrunculin natural product served as an excellent initial target for their respective 

synthetic strategies to access the latrunculin family of natural products. As White and Fürstner 

both also reported total syntheses of latrunculin A that are reviewed (vide infra), 20-24,26 their 

syntheses of latrunculin B will not be reviewed in this thesis.  

 In 1990, both Smith and White simultaneously reported total syntheses of latrunculin A.14,21 

As the synthesis reported by Smith and coworkers both stems from their initial work on (+)-

Scheme 1.3 Smith’s Completion of the Total Synthesis of (+)-latrunculin B 
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latrunculin B and served as the basis for the synthesis of (+)-18-epi-latrunculol A (Chapter 2), the 

Smith synthesis of (+)-latrunculin A will be reviewed first.18,19,25  

 The synthesis of (+)-latrunculin A began with aldehyde intermediate 1.6, which was also 

utilized by Smith and coworkers in the synthesis of (+)-latrunculin B. The intended Wittig 

olefination proceeded in good yield (86%), providing that the reaction mixture was thoroughly 

deoxygenated (Scheme 1.4).  The ensuing 16-membered macrolactonization however was low 

yielding (31%) and efforts to remove the PMB protecting group were unsuccessful.  

 Unable to deprotect advanced intermediate 1.19, Smith et al. implemented a protecting group 

exchange from PMB to Teoc (Scheme 1.5). Towards this end, the PMB protecting group was 

removed from ketal 1.20 utilizing a procedure from Williams.29 Oxidation was, in turn, followed 

by Teoc protection of the thiazolidinone to provide 1.21 in 37% over three steps. The subsequent 

Wittig olefination, deprotection, and macrolactonization provided comparable yields to the 

analogous reactions of PMB-protected substrates (20%, three steps). Removal of the Teoc 

protecting group in this case, proceeded in good yield (84%) and treatment of the penultimate 

compound with a 3N HCl/THF mixture delivered (+)-latrunculin A (1.1) in a 72% yield. 

Scheme 1.4. Wittig Olefination and Mitsunobu Macrolactonization with PMB 
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 1.2.2 The White Synthesis of (+)-Latrunculin A (1.1) 

 White and coworkers utilized a multicomponent reaction sequence developed in their lab to 

construct a large section of the latrunculin skeleton in a single step and achieve their total 

syntheses of (+)-latrunculin A and (+)-15-epi-latrunculin A (Scheme 1.6).25,26 White envisioned a 

Mitsunobu macrolactonization to close the 16-membered lactone. Construction of the cyclic 

acetal was anticipated to arrive via an aldol reaction followed by an acid-mediated cyclization.  

Scheme 1.5. Protection Group Exchange and Completion of (+)-Latrunculin A 

 

Scheme 1.6. White’s Retrosynthetic Analysis of Latrunculin A 
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The northern hemisphere carbon skeleton (1.24) was constructed by employing the tandem 

dienolate addition/Wittig olefination one-pot protocol.   

 The one-pot dienolate addition/Wittig olefination afforded diene 1.24 in 60% yield via the 

sequence outlined in Scheme 1.7. Allylic phosphonium salt 1.26 was first converted to 

unsaturated phosphonium 1.29 via elimination of the allylic bromide with LDA. Addition of 

dienolate 1.30 to the phosphonium electrophile resulted in ylide 1.31, which in turn selectively 

participated in a Wittig reaction with aldehyde 1.28 to construct successfully a large portion of 

the (+)-latrunculin A (1.1) carbon skeleton. 

 Elaboration of 1.24 over four steps next provided the aldol precursor 1.32, which after aldol 

reaction, cyclization, and deprotection furnished two seco-acid diastereomers 1.33 and 1.34 

(Scheme 1.8). Seco-acid 1.33 was converted to (+)-latrunculin A in 48% via Mitsunobu 

macrolactonization followed by acidic hydrolysis of the methyl ketal.  

 

Scheme 1.7. White’s Tandem Dienolate Addition/Wittig Olefination 
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1.2.3 The Fürstner Synthesis of (+)-Latrunculin A (1.1) 

 In 2005, Fürstner and coworkers reported the total synthesis of (+)-latrunculin A (1.1)  

utilizing ring-closing alkyne metathesis (RCAM) as a key step to close the 16-membered 

macrolactone (Scheme 1.9).20-24 Fürstner envisioned an acid-mediated cyclization/equilibration to 

Scheme 1.9. Fürstner’s Retrosynthetic Analysis of (+)-Latrunculin A 

 

Scheme 1.8. White’s Completion of (+)-Latrunculin A 
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access the cyclic ketal present in (+)-latrunculin A, but interestingly they proposed to utilize 

δ−hydroxy enone 1.36 as a cyclization precursor (Scheme 1.11), as an alternative to their 

previously utilized20,21 yet capricious aldol approach (Scheme 1.10). 

 Construction of cyclization precursor 1.36 was achieved in ten steps from (+)-citronellene 

and employed a Horner-Wadsworth-Emmons reaction to construct the requisite enone (Scheme 

1.11). Exposure of enone 1.36 to an aqueous HCl and THF mixture resulted in hydration, 

Scheme 1.11. Fürstner’s Acid-Mediated Enone Cyclization 

 

Scheme 1.10. Fürstner’s Aldol Coupling Approach Toward Latrunculin A 
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cyclization, and, after treatment with acidic methanol, construction of methyl ketal 1.35 in 59% 

over the two steps.  

Metathesis precursor 1.39 (Scheme 1.12) was synthesized in two steps from alcohol 1.35 via 

triflate formation followed by displacement with the sodium salt of 1.34. The anticipated ring 

closing alkyne metathesis (RCAM) provided enyne 1.41 in an unoptimized 36% yield by utilizing 

complex 1.40. Decomposition was observed however when 1.36 was treated with ceric 

ammonium nitrate (CAN) in attempts to remove the robust PMB protecting group. To circumvent 

the problematic deprotection, the PMB protecting group was removed from RCAM precursor 

1.39 using ceric ammonium nitrate and the thiazolidinone was re-protected with the more labile 

Teoc group, a strategy similar to that employed by Smith and coworkers.17 With Teoc-protected 

RCAM precursor 1.42 in hand, molybdenum complex 1.40 was found to deliver macrocyclic 

enyne 1.43 in good yield (70%). Semi-reduction, using the Lindlar catalyst, was followed by 

removal of the Teoc group and hydrolysis of the methyl ketal to provide (+)-latrunculin A in 41% 

from 1.43.  
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1.3 Summary 

 The synthetic ventures reviewed (vide supra) each developed unique approaches to achieve 

the total synthesis of latrunculin natural products. While the total syntheses of latrunculin A (1.1) 

resulted in varying efficiencies (Table 1.1), each synthesis provides valuable information 

concerning the reactivity and sensitivity of latrunculin A intermediates.  

   

 

 

 

Research Group (year) Longest Linear  
Step Count 

Overall Yield of Longest 
Linear Sequence 

Smith et al. (1990) 17 steps 0.65 % 

White et al. (1990) 19 steps 0.7 % 

Fürstner et al. (2005) 20 steps 2.3% 

Scheme 1.12.  Fürstner’s Synthesis of (+)-Latrunculin A 

 

Table 1.1. Comparison of the Latrunculin A Total Syntheses 
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CHAPTER 2 Total Synthesis of (+)-18-epi-Latrunculol A (2.1) 

 

2.1 Initial Synthetic Analysis of (+)-18-epi-Latrunculol A (2.1) 

2.1.1 Retrosynthetic Analysis of (+)-18-epi-Latrunculol A (2.1) 

 Our synthetic approach toward (+)-18-epi-latrunculol A (2.1), was based on the original 

Smith et al. total synthesis of (+)-latrunculin A (2.2),1,2 with important modifications being made 

to ensure efficient and asymmetric access (Scheme 2.1). As in the earlier synthesis of (+)-

latrunculin A, we envisioned a late-stage Mitsunobu macrolactonization3 to close the 16-

membered macrolactone and a Wittig olefination4 to unite both northern and southern 

hemispheres and construct the Z-olefin. Wittig reagent (2.3) would arise via elaboration of cyclic 

ketal (2.5), which in turn would be accessed via an acid-mediated cyclization of hydroxy enone 

(2.6), similar to the cyclization employed by Fürstner et al.5 Hydroxy enone (2.6) would be 

obtained through the use of a functional group compatible cross metathesis reaction.6,7 The cross 

metathesis reaction was projected to shorten the synthetic route by two steps, compared to 

Fürstner’s route, which utilized a Horner-Wadsworth-Emmons olefination,5 by circumventing 

hydroxyl protection and ozonolysis.  Cross metathesis partners 2.7 and 2.10 were envisioned to 

be readily available from known aldehyde (–)-2.88 and D-cysteine (2.9) respectively.  

Figure 2.1. (+)-18-epi-Latrunculol A (2.1) and (+)-Latrunculin A (2.2) 
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2.1.2 Synthesis of Thiazolidinone Fragment (+)-2.8 and Byproduct 

The synthesis of (+)-18-epi-latrunculol A (2.1) began with the conversion of D-cysteine (2.9) 

to thiazolidinone (+)-2.11 by employing phenyl chloroformate (Scheme 2.2), followed by 

chemoselective nitrogen protection using p-methoxy benzyl chloride (PMBCl).9 Amide coupling 

utilizing TBTU as the coupling reagent furnished the Weinreb amide,10 which when treated with 

freshly prepared vinyl Grignard reagent and quenched with 2N HCl furnished enone (+)-2.10 in 

55% from (+)-2.11. Interestingly, when the vinyl Grignard reaction was quenched with a 

saturated aqueous solution of ammonium chloride, a mixture of enone (+)-2.10 and byproduct 

(+)-2.12 was obtained, presumably via nucleophilic addition of the released hydroxylamine to the 

enone product.11 The structure of (+)-2.12 was confirmed by single crystal X-ray analysis. 

Fortunately, rapid acidification (2 N HCl) of the reaction mixture afforded enone (+)-2.10 as the 

sole product, likely by protonating the released hydroxylamine and rendering this amine inert to 

the electrophilic enone.  

Scheme 2.1. Retrosynthetic Analysis of (+)-18-epi-Latrunculol A 
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2.1.3 Cross Metathesis Reaction and Acid-Mediated Cyclization 

 Known alcohol (–)-2.14 was readily available from 5-hexenoic acid via a known, three-step 

sequence (Scheme 2.3).12 Protection of the primary alcohol as the TBS ether followed by 

ozonolysis furnished known aldehyde (–)-2.8 in 71% from alcohol (–)-2.14.8  Brown allylation13 

next provided the requisite homoallylic alcohol, albeit contaminated with a small amount of 

epimeric homoallylic alcohol byproduct inseparable via standard silica gel chromatography.  The 

mixture was treated with three equivalents of enone (+)-2.10 and the Hoveyda-Grubbs 2nd 

generation catalyst while sparging with nitrogen to provide pure cyclization precursor (+)-2.15 in 

70% from (–)-2.8, as well as a 72% recovery of unreacted cross metathesis partner (+)-2.10.  

 The proposed acid-mediated cyclization/equilibration sequence was achieved by exposure of 

(+)-2.15 to a 6N HCl:THF (1:1.3; v:v) mixture, to furnish lactol (+)-2.18. Lactol (+)-2.18 proved 

to be unstable by slowly isomerizing at room temperature to a mixture of diastereomers; thus 

Scheme 2.3. Cross Metathesis Union 

 

Scheme 2.2. Synthesis of Enone (+)-2.10 and Byproduct (+)-2.12 
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protection as methoxy ketal (+)-2.5 was therefore carried out immediately following the acid-

mediated cyclization in a 43% yield over the two steps (Scheme 2.4). Although extensive 

experimentation on the acid, solvent, and temperature were carried out, multiple byproducts were 

always observed, concomitant with product formation. Byproduct formation is attributed to the 

highly acidic conditions required to hydrate the disubstituted enone (+)-2.15. Alternative 

conditions, explored to achieve the oxa-Michael reaction and ensuing cyclization, will be 

discussed in Chapter 3.  

 The proposed mechanism for the acid-mediated lactol formation is depicted in Scheme 2.4.1,5 

First, protonation of the carbonyl activates the enone for the intermolecular nucleophilic addition 

of water, to generate the δ,β−dihydroxy ketone, which cyclizes to lactol 2.16. The initial addition 

of water is unselective, generating a ~1:1 mixture of diastereomeric alcohols (via TLC analysis); 

however over time the reaction mixture becomes enriched with the desired α−diastereomer, 

presumably by equilibration via oxonium intermediate 2.17. Precedent for this equilibration 

process can be found in the Smith synthesis of (+)-latrunculin A.1  

 

 

 

Scheme 2.4. Acid-Mediated Cyclization/Equilibration Sequence 
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2.2 Fragment Union to Complete the Carbon Skeleton of (+)-18-epi-Latrunculol A 

 With the complete southern hemisphere (+)-2.5 in hand, attention turned to potential methods 

for fragment union to complete the carbon skeleton of (+)-18-epi-latrunculol A (2.1). A Wittig 

olefination was initially envisioned to complete the carbon skeleton and construct the requisite Z-

olefin. We were cognizant however of both the difficulties that the Wittig reaction presented in 

the original synthesis of (+)-latrunculin A,1 and the ease of which (+)-2.5 could be elaborated to 

test a variety of coupling procedures (Scheme 2.5). The ensuing section details the research on 

the final fragment coupling protocol to unite both northern and southern hemispheres of  (+)-epi-

latrunculol A (2.1) 

2.2.1 Synthesis of Wittig Reagent and Attempted Model Wittig Reaction 

 The desired Wittig reagent was readily accessible in three steps from ketal (+)-2.5 (Scheme 

2.6, 55% over three steps). Olefination, with benzaldehyde as the aldehyde coupling partner was 

first attempted using NaHMDS to deprotonate the unactivated Wittig reagent 2.19. Full 

conversion to one product was observed, but to our surprise the product contained no new olefinic 

Scheme 2.5. Access to Three Coupling Partners from Common Intermediate (+)-2.5  
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peaks in the NMR spectrum. Moreover, 1H-NMR analysis revealed no incorporation of the 

elements of benzaldehyde. The molecular weight, acquired via HRMS analysis, along with 14 

phenyl hydrogens (four being from the PMB group) present in the 1H-NMR spectrum lead to the 

assignment of the product as phosphine oxide 2.23. Reports from other research groups14,15 have 

also documented the formation of phosphine oxides from unactivated Wittig reagents in the 

presence of hydroxide. We were aware that our base (NaHMDS) would deprotonate any 

adventitious water in the reaction mixture, forming hydroxide in situ which, in turn could lead to 

byproduct formation (Scheme 2.7). Therefore to avoid byproduct formation, strictly anhydrous 

conditions were employed (i.e., flame dried flasks, anhydrous reagents, and addition of 4Å 

activated molecular sieves). However, even with anhydrous conditions, byproduct 2.23 was the 

only product isolated. Deoxygenated solvent was also used, employing a freeze, pump, thaw 

Scheme 2.6. Synthesis of Wittig Reagent and Attempted Olefination 

 

Scheme 2.7. Proposed Mechanism of Byproduct Formation 
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technique, but this also only resulted in formation of 2.23. At this juncture we decided to test 

alternative methods for the union of both northern and southern hemispheres of (+)-18-epi-

latrunculol A (2.1). 

2.2.2 Synthesis of Vinyl Iodide and An Attempted Chelation-Controlled Addition  

Vinyl iodide (+)-2.20 and terminal alkyne (+)-2.21 were each constructed in three steps from 

ketal (+)-2.5 in 41% and 56% respectively (Scheme 2.8). The structure and absolute 

stereochemistry of crystalline alkyne (+)-2.21 was confirmed by single crystal X-ray analysis 

(Scheme 2.11). The possibility of a utilizing a chelation-controlled addition to generate the 

necessary stereochemistry was next explored using vinyl iodide (+)-2.20.16,17  

The requisite northern hemisphere aldehyde (+)-2.25 (Scheme 2.9) was readily constructed in 

six steps from known alkynyl diol (–)-2.26.18 The synthesis began with a two-step chemoselective 

protecting strategy on diol (–)-2.26, followed by deprotonation of the alkynyl proton with n-BuLi 

and addition of the resulting anion to methyl chloroformate to provide alkynoate (–)-2.27. 

Conjugate addition of Me2CuLi was then followed in turn by deprotection utilizing acetic acid 

buffered TBAF and oxidation employing Parikh-Doering conditions19 to complete construction of 

Scheme 2.8. Synthesis of Vinyl Iodide (2.20) and Terminal Alkyne (+)-2.21 

 

Scheme 2.9. Synthesis of Aldehyde (+)-2.25 
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aldehyde (+)-2.25 in 35% from (–)-2.26. Noteworthy here, TBAF, not buffered with acetic acid, 

led to complete isomerization of the enoate, revealing the base-sensitive nature of this aldehyde. 

 The chelation-controlled addition of a vinyl nucleophile resulting from metalation of vinyl 

iodide 2.20 to aldehyde (+)-2.25 was expected to provide the desired diastereoselectivity via 

coordination of both the aldehyde oxygen and the neighboring oxygen protected by the small 

SEM protecting group (Scheme 2.10, A.).16,17,20 The chelation-controlled addition was tested by 

performing a lithium-halogen exchange between vinyl iodide 2.20 and t-BuLi, and then 

transmetallating to achieve a variety of vinyl nucleophiles. Unfortunately, addition of aldehyde 

(+)-2.25 to various metallated species only resulted in protodemetallation and decomposition of 

aldehyde (+)-2.25 (Scheme 2.10, B.). Decomposition of (+)-2.25 may be due to incompatibility of 

the strongly basic vinyl nucleophiles employed and the relatively acidic γ− or α−positions in 

enoate (+)-2.25. Deprotonation of the acidic hydrogens in enoate (+)-2.25 by the generated vinyl 

nucleophiles appears to be kinetically more favorable than addition into the aldehyde.  

 

 

Scheme 2.10. Attempted Chelation-Controlled Addition of Vinyl Iodide (2.20) 
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2.2.3 Synthesis of a Terminal Alkyne and Carreira Alkynylation 

 With renewed awareness of the sensitive nature of aldehyde (+)-2.25, a Carriera 

alkynylation21 employing alkyne (+)-2.21 was explored to generate a mild nucleophile that would 

avoid the competitive deprotonation observed with vinyl nucleophiles. A chiral ligand [(+)-N-

methylephedrine] would be employed to dictate the stereochemistry of addition. Initial attempts 

at the Carreira alkynylation resulted in no reaction, with both alkyne (+)-2.21 and aldehyde (+)-

2.25 recovered. We discovered however that when prolonged heating under high vacuum (12 h, 

120°C, <1 Torr) was employed to activate the requisite Zn(OTf)2, instead of flame drying (30 

min), a 69% yield of Carreiera adduct (+)-2.28 could be obtained. Moreover, when the reaction 

was permitted to stir for three days, the complete carbon skeleton of (+)-18-epi-latrunculol A 

(2.1) was generated in 95% yield (Scheme 2.11). The stereochemistry of the newly formed 

propargylic alcohol was confirmed via conversion to acetonide (+)-2.29 and subsequent 2D NMR 

analysis; particularly diagnostic were the NOE correlations illustrated in Scheme 2.11.  

Scheme 2.11. Carreira Alkynylation to Construct (+)-18-epi-latrunculol (2.1) Carbon Skeleton 
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2.2.4 The (+)-18-epi-Latrunculol A (2.1) End Game  

 With the carbon skeleton fully intact we turned to the requisite alkyne semi-reduction. No 

reduction was observed when (+)-2.28 was subjected either to Lindlar or P-2 nickel catalysts22,23 

under a hydrogen atmosphere. Molecular mechanics calculations employing MM2 force field 

were therefore undertaken to aid in visualization of the steric environment around the alkyne.  

Our strategy quickly changed however when we recognized that the methyl ester in (+)-2.28 was 

in nearly the required conformation for the envisioned Mitsunobu macrolactonization. With this 

information, as well as the knowledge that the semi-reduction of an alkyne imbedded in a 16-

membered macrolactone may be expedited by ring strain,5 we moved forward with the synthesis 

of an alkyne-containing seco-acid. In the MM2 model of (+)-2.28, the two adjacent hydroxyls 

were anti to each other, suggesting that individually protecting each hydroxyl, such as with two 

SEM groups, might facilitate the required conformation for Mitsunobu macrolactonization by 

allowing free rotation between the hydroxyls, compared to an acetonide protecting group, which 

would effectively tie the hydroxyls together and prevent rotation.  

 Implementing our protecting group strategy, propargyl alcohol (+)-2.28 was protected as bis-

SEM ethers (Scheme 2.12). Chemoselective removal of the TBS ether employing acetic acid-

buffered TBAF avoided isomerization of the sensitive enoate and hydrolysis of the methyl ester 

was achieved by heating with NaOH in ethanol to provide seco-acid (+)-2.30 in a high 75% yield 

over three steps. Ethanol proved essential to achieve a reproducible reaction rate and yield, as the 

poor solubility of (+)-2.28 in methanol lead to variability in the reaction. Also important to note is 

that heating (+)-2.28 in strongly basic NaOH did not lead to any detectable isomerization of the 

enoate, thus emphasizing the important effects of the counterion and solvent on reactivity.  
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 Turning to the highly anticipated Mitsunobu macrolactonization, seco-acid (+)-2.30 was 

treated with triphenyl phosphine and diisopropyl azodicarboxylate (DIAD) in both toluene and 

THF solvents (Scheme 2.13). Interestingly, no reaction was observed in THF, however full 

conversion was observed in toluene to provide a mixture of macrolactone and the reduced DIAD 

byproduct (DIAD-H2), which proved inseparable via standard silica gel chromatography. 

Fortunately, submitting the mixture of macrolactone 2.31 and byproduct to ceric ammonium 

Scheme 2.12. Preparation of Seco-Acid (+)-2.30 

 

Scheme 2.13. Mitsunobu Macrolactonization 
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nitrate (CAN), afforded pure deprotected macrolactone (+)-2.32 in 36% from (+)-2.30 after 

separation via flash chromatography. For comparison, the Mitsunobu macrolactonization utilized 

in the original Smith synthesis of (+)-latrunculin A proceeded in only a 31% yield,1 and the 

resulting macrolactone proved incompatible with all conditions employed to remove the PMB 

protecting group. Fürstner et al. also observed decomposition of their late stage intermediates 

when attempting to remove the robust PMB protecting group, and they likewise required a 

protecting group exchange before the completion of their total synthesis of (+)-latrunculin A 

(2.2).5 We had reasoned that macrolactone 2.31 might be able to withstand CAN-mediated 

oxidative removal of the PMB protecting group, as 2.31 lacks the conjugated diene moiety 

present in (+)-latrunculin A (2.2). 

 Global deprotection was undertaken next and comprised both removal of the two SEM 

protecting groups and hydrolysis of the methoxy ketal. Towards this end, (+)-2.32 was treated 

with aqueous acetic acid with catalytic camphorsulfonic acid (CSA) at 50°C to provide 

penultimate alkyne (+)-2.33. Although global deprotection occurred, acidic removal of the SEM 

groups required extended reaction times (>12h) at elevated temperature (ca. 50 °C), which led to 

varying degrees of decomposition and in turn inconsistent yields, ranging from ca. 30% to 50% of 

(+)-2.33. With the expectation of optimizing the global deprotection, a thorough investigation of 

conditions to provide either global deprotection or selective SEM removal was initiated (Scheme 

Scheme 2.14. Representative Deprotection Conditions Screened  
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2.14). Unfortunately, all conditions screened resulted in either decomposition of (+)-2.32, 

prohibitively slow deprotection, or no reaction.  

 Although moderate in yield, the global deprotection provided sufficient penultimate alkyne 

(+)-2.33 to test the final semi-reduction (Scheme 2.15). To our surprise, again no reduction was 

observed utilizing several batches of Lindlar or P-2 nickel catalysts under a hydrogen atmosphere. 

Other reduction conditions were explored that included: Wilkinson’s catalyst,24 homogeneous 

palladium catalyzed transfer hydrogenation, Adam’s catalyst,25 and a two-step 

hydroboration/protodeborylation sequence.26 All conditions however resulted in either no 

reaction, over-reduction, or decomposition of starting material (Scheme 2.15). We eventually 

discovered that catalytic palladium on carbon with no poisoning agent, under a hydrogen 

atmosphere, afforded the desired product with incomplete conversion. The reaction was then 

repeated with additional catalyst until we found that 1.2 eq of Pd/C (10 wt%) was required to 

provide full conversion to the product (via LCMS analysis). Not withstanding this success, only a 

29% isolated yield of (+)-18-epi-latrunculol A (2.1) was obtained (Scheme 2.15, condition 9). 

Fortunately, sufficient synthetic material was attained to facilitate a full spectral analysis.  

 

 

Scheme 2.15. Optimization of the Final Semi-Reduction 
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2.2.5. Interpretation of the Synthetic (+)-18-epi-latrunculol A (2.1) Spectral Data 

 All the spectral data of synthetic (+)-18-epi-latrunculol A (2.1) [i.e., 1H-NMR (500 MHz), 

HRMS parent ion identification, and chiroptic properties] except the 13C-NMR proved identical in 

all respects to those reported for the natural (+)-18-epi-latrunculol A (2.1).  Alarmingly, the 13C-

spectra contained identical peaks to that reported for natural (+)-18-epi-latrunculol A (2.1),2 

however certain peaks were “doubled,” suggestive of a diastereomeric mixture. Initially we 

feared that the extended reaction time required by the global deprotection was leading to 

epimerization of the anomeric carbon through the process illustrated in Scheme 2.16. However 

upon investigation of the 13C NMR spectra of (+)-2.33, we observed that (+)-2.33 was isolated as 

a single compound and not a mixture of diastereomers.  

 Turning our attention back to the natural product, we analyzed the “mixture” of synthetic (+)-

2.1 by super critical fluid chromatography (SFC) utilizing a chiral stationary phase.  To our 

surprise, only one peak was observed, suggesting that the diastereomers were either not separable 

via the several conditions utilized or that we did not have a mixture of diastereomers. Towards 

this end, a 13C NMR was taken of synthetic (+)-18-epi-latrunculol A (2.1) in CDCl3, instead of 

acetone-d6 in which the natural product was reported;2 the spectra now revealed the correct 

number of carbons. Tracing the problem back to acetone-d6, we noticed both H2O and DHO 

Scheme 2.16. Epimerization of the Anomeric Carbon 
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peaks in the 1H NMR spectra and rationalized that a deuterium exchange, occurring between the 

solvent and (+)-18-epi-latrunculol A (2.1), could account for the mixture observed in the 13C 

NMR. To our delight, handling acetone-d6 strictly under a nitrogen atmosphere greatly reduced 

the amount of H2O and DHO, and although the doubled peaks were still detectable in the 13C 

spectra, they were now only minor (Figure 2.2, A.). Moreover, adding D2O to the NMR sample 

caused the major carbon peaks that had previously appeared doubled to completely convert to the 

minor peaks resulting in one set of carbon peaks and a clean 13C NMR spectra of deuterated 18-

epi-latrunculol A (Figure 2.2, B.). 

  

 

 

 

 

 

 

 

2.3 Protecting Group Exchange and Optimization of the Alkyne Semi-Reduction  

 Confident we had completed the first total synthesis and structural confirmation of (+)-18-

epi-latrunculol A (2.1), we turned our attention toward optimizing the problematic reactions in 

the synthesis to enable a preparative scale synthesis of the natural product.  

2.3.1 Further Optimization of the Alkyne Semi-Reduction  

 We reasoned that the low isolated yield from alkyne hydrogenation could be due to the large 

amount of adsorbing carbon present as the solid catalyst support. By switching to a palladium-

mediated hydrogenation utilizing barium carbonate as a less adsorbent solid support, the semi-

Figure 2.2. 13C NMR (60-80ppm) of synthetic (+)-18-epi-latrunculol A (2.1) in  

A. acetone-d6 B. acetone-d6 with D2O 

	  
B. A. minor peaks 
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reduction of (+)-2.33 delivered (+)-18-epi-latrunculol A (2.1) now in a quantitative yield, albeit 

still requiring a stoichiometric amount of catalyst (Scheme 2.17).   

2.3.2 A Useful Protecting Group Exchange 

 As the investigation of multiple conditions for removal of the SEM groups provided limited 

success, we decided that switching to an alternative protecting group would offer a chance for 

improvement. We decided to return to an acetonide as protection for the vicinal diol, as this 

protecting group exchange would result in the same overall step count as bis-SEM protection, but 

importantly should be removed much more readily under acidic conditions. The noteworthy 

difference between SEM and acetonide protecting groups is the relative stability of the oxonium 

intermediates formed during acid-mediated deprotection (Figure 2.3). Due to the increased 

hyperconjugation from the geminal dimethyl groups in the acetonide compared to the methylene-

centered carbocation, the acetonide is more readily removed under acidic conditions.20 We were 

Figure 2.3. Relative Stabilities of Intermediates Formed in Acidic Deprotection of  

A. SEM Ether and B. Acetonide 

 

Scheme 2.17. Successful Conditions for the Semi-Reduction 
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aware that the conformations of the bis-SEM and acetonide protected seco-acids would likely be 

different, as the bis-SEM ether permitted free rotation between the protected hydroxyls, whereas 

the acetonide effectively eliminated free rotation, and that these differences might negatively 

affect the macrolactonization. Nonetheless, we moved forward with a protecting group exchange 

with the expectation that the mild conditions required by the acetonide protecting group would 

provide a higher yielding global deprotection. 

 Treatment of alkyne addition product (+)-2.28 with acidic methanol afforded removal of both 

SEM and TBS protecting groups. The vicinal diol in the resulting triol was chemoselectively 

protected as the acetonide to provide (+)-2.29 in 77% over the two steps (Scheme 2.18). 

Fortunately, after hydrolysis, the Mitsunobu macrolactonization and ensuing PMB removal 

proceeded in comparable yield as with the SEM protected intermediates to provide macrolactone 

(+)-2.34 in a 35% yield from methyl ester (+)-2.29. We were pleased to find that the anticipated 

global deprotection now delivered penultimate alkyne (+)-2.33 in good yield (86%) in only two 

hours (Scheme 2.19). Synthetic (+)-18-epi-latrunculol A (2.1) was now obtained in an 86 % yield 

over the final two steps, a marked improvement from the two-step, 15 % yield provided from the 

first generation synthetic route.  

Scheme 2.18. Protecting Group Exchange and Mitsunobu Macrolactonization 
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2.4 Summary 

 In summary, we are pleased to report the first total synthesis, structural validation, and 

assignment of the relative and absolute stereochemistry of (+)-18-epi-latrunculol A (2.1), in an 

overall yield of 3.5 % with a longest linear sequence of 15 steps from known aldehyde (–)-2.8 as 

outlined in Scheme 2.20. Key steps in the route include a functional group compatible cross 

metathesis reaction, which allows the elimination of two steps from the synthetic route, an acid-

mediated cyclization/equilibration sequence, a mild Carreira alkynylation, and finally a late-stage 

Mitsunobu macrolactonization. In addition, successful optimization of the moderate yielding 

global deprotection and low yielding semi-reduction will now permit preparative access to totally 

synthetic (+)-18-epi-latrunculol A (2.1). 

 

 

 

 

 

 

Scheme 2.19. Revised Global Deprotection and Semi-Reduction 
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Scheme 2.20. Total Synthesis of (+)-18-epi-latrunculol A (2.1) 

 



	  
	  

38	  

2.5 Chapter 2 References 

(1) Smith, A. B.; Noda, I.; Remiszewski, S. W.; Liverton, N. J.; Zibuck, R. J. Org. Chem. 1990, 

55, 3977-3979.  

(2) Amagata, T.; Johnson, T. A.; Cichewicz, R. H.; Tenney, K.; Mooberry, S. L.; Media, J.; 

Edelstein, M.; Valeriote, F. A.; Crews, P. J. Med. Chem. 2008, 51, 7234-7242. 

(3) Mitsunobu, O. Synthesis 1981, 1, 1-28. 

(4) Wittig, G.; Haag, W. Chemische Berichte-Recueil 1955, 88, 1654-1666. 

(5) Fürstner, A.; Turet, L. Angew. Chem. Int. Ed. 2005, 44, 3462-3466. 

(6) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 

4, 791-799. 

 (7) Chatterjee, A. K.; Choi, T.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc, 2003, 125 (37), 

11360–11370 

(8) Marshall, J.; Yanik, M. J. Org. Chem. 2001, 4, 1373-1379 

(9) Seki, M.; Hatsuda, M.; Mori, Y.; Yoshida, S.; Yamada, S.; Shimizu, T. Chem. Eur. J. 2004, 

23, 6102-6110. 

(10) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 39, 3815-3818. 

(11) Gomtsyan, A. Org. Lett. 2000, 2, 11-13. 

(12) Yu, S.; Pan, X.; Ma, D. Chem. Eur. J. 2006, 25, 6572-6584 

(13) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 7, 2092-2093. 



	  
	  

39	  

(14) Berretta, G.; Coxon, G. D. Tetrahedron Lett. 2012, 2, 214-216.  

(15) Chen, K.; Semple, J.; Joullie, M. J. Org. Chem. 1985, 21, 3997-4005. 

(16) Reetz, M. T. Acc. Chem. Res. 1993, 26, 462-468. 

(17) Reetz, M. T. Angew. Chem. Int. Ed. 1984, 23, 556-569. 

(18) Ramharter, J.; Mulzer, J. Org. Lett. 2009, 11, 1151-1153. 

(19) Parikh, J.; Doering, W. J. Am. Chem. Soc. 1967, 89, 5505-5507. 

(20) Wuts, P. G. M. and Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th ed.; 

Wiley: Hoboken, NJ, 2007 

(21) Frantz, D.; Fassler, R.; Carreira, E. J. Am. Chem. Soc. 2000, 8, 1806-1807. 

(22) Brown, C. A.; Ahuja, V. K.  J. Chem. Soc., Chem. Commun., 1973, 553-554 

(23) Lindlar, H. Helv. Chim. Acta 1952, 35, 446-456. 

(24) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G.  J. Chem. Soc. A 1966, 1711-1732. 

(25) Voorhees, V.; Adams, R. J. Am. Chem. Soc., 1922, 44 (6), 1397–1405 

(26) Brown, H. C.; Hamaoka, T.; Ravindran, N. J. Am. Chem. Soc., 1973, 95, 6456–6457 

 

 

 

 

 



	  
	  

40	  

CHAPTER 3. An Exploration of Tactics To Achieve the Cyclization of δ−Hydroxy Enones 

 Concurrent with our synthesis and optimization of the reactions discussed in Chapter 2, was a 

detailed investigation into the cyclization of δ−hydroxy enones (+)-3.1 and (+)-3.7 (products of 

cross metathesis) to afford cyclic ketal (+)-3.4 (Scheme 3.1). Research initially focused on the 

screening and optimization of previously reported methods, but when successful conditions were 

not uncovered, development of a mild protocol for the cyclization of δ−hydroxy enones to cyclic 

ketals was determined to be a valuable synthetic contribution.  We therefore focused our efforts 

on the task of developing such a synthetic method. 

3.1 Known Methods Screened to Achieve Enone Hydration and Cyclization  

 The use of an acid-mediated enone hydration/cyclization tactic to provide lactol (+)-3.4 was 

inspired by the report from Fürstner and coworkers of a similar reaction used their synthesis of 

the latrunculins.1 Although the cyclizations used by our group and Fürstner are similar, our yields 

were consistently ca. 20% lower than those reported by Fürstner. The lower yield can be 

attributed to the extra hydroxyl group present in our substrate (+)-3.7 [the TBS group in (+)-3.1 is 

quickly removed when exposed to aqueous acid], which can lead to byproduct formation due to 

preferential protonation of the hydroxyl groups instead of the enone carbonyl (Scheme 3.2).   

Scheme 3.1. Cyclization of δ−Hydroxy Enones 
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 In attempt to optimize the cyclization, we initiated a brief survey of Brønsted acids and 

solvents. Unfortunately, exposure of enone (+)-3.1 to dilute acids or small amounts of strong 

Brønsted acids (i.e., 1 to 3N HCl, TsOH•H2O, TfOH, HBF4, 12N HCl) all either failed to hydrate 

the enone, or rapidly led to the formation of multiple byproducts. Heating the reactions uniformly 

led to the formation of multiple byproducts and, conversely, slightly cooling the reaction (ca. 

20°C) provided the best results (Scheme 3.2, 43% for two steps). Treatment of (+)-3.1 with 

sodium hydroxide did not afford hydration or cyclization; moreover, due to the epimerizable 

stereogenic α−carbon present in (+)-3.1, basic conditions were minimally explored. 

Organocatalytic procedures involving iminium formation likewise were not surveyed. Possible 

two-step procedures such as copper-catalyzed borylation of the enone, followed by oxidation to 

afford the aldol product were attempted, but minimal reaction was observed utilizing B2Pin2 with 

CuCl/t-BuOK.2 Two methods for a δ−hydroxy assisted oxa-Michael addition were also tested via 

proposed bismuth catalyzed hemiacetal3 and aryl boronic ester4 intermediates but neither reaction 

afforded the desired product (Scheme 3.3).  

  

Scheme 3.2. Acid-Mediated Cyclization of (+)-3.1 
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3.2 Exploration of an Addition/Elimination, Two Step Tactic for Cyclization  

 At this point, we began to formulate ideas for a novel method to achieve the desired 

cyclization. Reviewing the proposed mechanism for acid-mediated cyclization/equilibration 

sequence (Scheme 3.2), we postulated that water first hydrates the enone, which we knew was the 

problematic step as the cyclization of γ, β−dihydroxy ketones (aldol products) proceeds quickly 

and in much higher yield. After the initial addition of water, lactol formation is followed by 

ejection of two molecules of water with formation of unsaturated oxonium 3.3, which permits 

equilibration to the thermodynamically most stable 2° alcohol.  We were interested in the 

possibility of initially adding a nitrogen, phosphorous, or sulfur-based nucleophile (instead of 

water) to enone (+)-3.7, and then subjecting the adduct to aqueous acid to access intermediate 3.3 

and subsequently product (+)-3.4 (Scheme 3.4).  

Scheme 3.3. Attempted δ−Hydroxy Assisted Oxa-Michael Reactions 

 

Scheme 3.4. Bypassing the Initial Oxa-Michael Reaction in Cyclization Cascade  
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 Towards this end, several nucleophiles were found to add readily into enone (+)-3.7. Selected 

examples are depicted in Scheme 3.5 and include pyridine, DMAP, imidazole, thiophenol, and 

tributyl phosphine. All bracketed compounds in Scheme 3.5 are tentatively assigned based upon 

LCMS analysis. Each adduct was subjected to a variety of acidic conditions (i.e., 2 to 6N HCl, 

H2O/AcOH/Δ) and thiophenol-adduct 3.9 was also subjected to thiophilic reagents such as HgCl2 

in attempts to access (+)-3.4 via intermediate 3.3. Unfortunately, product (+)-3.4 was never 

observed via TLC or LCMS analysis.  

 

 

 

 

 

 

Scheme 3.5. Addition of Nitrogen, Sulfur, and Phosphorous Nucleophiles to (+)-3.7 
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3.3 A Photochemical Isomerization/Cyclization Sequence 

3.3.1 Development of a Novel Photochemical Isomerization/Cyclization Sequence 

 Undaunted, we went back to the mechanism of cyclization. The problematic intermolecular 

oxa-Michael reaction was the required first step of the reaction sequence, as the ensuing 

cyclization could not occur when the substrate contains a trans-olefin. However, if the substrate 

contained a cis-olefin, cyclization would be facile and more likely to be catalyzed by acid than 

require the super-stoichiometric acids employed by Fürstner.1 Mindful that the trans-enone was 

more readily accessible than the cis-enone, we decided to examine the possibility of isomerizing 

the enone in the presence of a Brønsted acid to achieve cyclization. We recalled that acyclic 

enones are notoriously poor substrates for intermolecular photochemical reactions due to their 

rapid cis-trans isomerization.5 We thus turned to photochemistry as a method to achieve 

isomerization. A simplified mechanistic rational for the proposed cyclization is depicted in 

Scheme 3.6.5,6 Near UV radiation (300-400 nm) would be sufficient to promote the enone π−bond 

to an excited singlet state diradical (trans*) of identical geometry. As the excited diradical, the 

vicinal electrons are no longer participating in a constructive bonding interaction and because the 

exciplex (excited complex) is no longer at an energy minimum, the connecting bond between 

radicals will rotate to permit the electrons to be at a 90° angle. At this stage, the energy of the 

excited state is relatively close to the ground state and interconversion (relaxation) can occur to 

provide a ground state diradical that continues rotation to form a mixture of both cis and trans 

olefins (Scheme 3.6, A.). Geometrical isomerization of α,β−enones is well precedented;5,6 

however, we envisioned a dynamic resolution of the mixture of geometrical isomers7,8 by 

incorporating acid to achieve preferential cyclization of only the cis-isomer, thus funneling both 

isomers to the desired product (Scheme 3.6, B.). 
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 To test our proposal, (+)-3.7 was first irradiated at 355 nm in THF-d8 without acid and 1H 

NMR analysis confirmed isomerization had occurred to give a mixture of E- and Z-enones.  

Enone (+)-3.7 was then irradiated (355 nm) in the presence of various acids (i.e., p-

toluenesulfonic acid, 2N to 6N HCl) in either THF or acetonitrile. All attempts however resulted 

in prohibitively slow conversion and/or formation of multiple unidentified byproducts. A 

breakthrough came when the reaction was carried out in methanol-d4 with catalytic CSA and we 

observed complete conversion to a 3.8:1 mixture of diastereomeric dihydropyrans 3.12 (Scheme 

3.7).  Subsequent attempts to acquire an isolated yield of 3.12 were met with limited success, as 

the dihydropyran was discovered to react slowly to furnish the bismethoxy adduct via a ketal 

formation, complicating the product analysis.  

 

 

Scheme 3.6. Proposed Photochemical (A) Isomerization and (B) Cyclization Cascade 
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3.3.2 Exploration and Evaluation of the Photochemical Isomerization/Cyclization Sequence 

At this juncture, the photochemical method advanced to an individual project. Working with 

1st year graduate student (Bo Li), we set out to determine the generality of the reaction, as well as 

to investigate expansions that would further the application of this method to the synthesis of 

complex molecules.  

Towards this end, preliminary experiments completed by Bo Li have demonstrated generality 

of the method by applying the photochemical cyclization conditions to racemic 3.13 to generate 

methyl ketal 3.14 as a single diastereomer in high yield (Scheme 3.8, 91%). An interesting 

Scheme 3.7. Successful Photochemical Isomerization/Cyclization 

 

Scheme 3.8. Model Photochemical Isomerization/Cyclization Sequence 
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modification has also been implemented to provide a desirable cyclic ketal moiety containing a 

free hydroxyl in a two-step sequence (Scheme 3.8).  

 Using THF as solvent, the photochemical cyclization can now be achieved in the presence of 

25 eq of benzyl alcohol and 40 mol % of p-TsOH•H2O to generate dibenzylated product 3.15. 

Subjecting 3.15, without purification, to palladium catalyzed hydrogenation conditions in acidic 

methanol delivers methoxy ketal 3.16 also as a single diastereomer. Noteworthy here is the 

observation that the hydrogenation conditions not only converts the bis-benzylated diol to a cyclic 

ketal containing a free hydroxyl as a useful synthetic handle, but also greatly facilitates 

purification of 3.16 by converting the remaining high-boiling benzyl alcohol to toluene and water, 

which are both easily removed in vacuo. Interestingly, when transacetalization was attempted by 

heating 3.15 in acidic methanol, 3.14 was obtained thus lending credence to the proposed 

formation of unsaturated oxonium 3.3 (Scheme 3.2). 

 

3.3.3 Future Directions and Summary 

 Efforts are currently directed towards optimizing the yield of the two-step benzyl alcohol 

addition/deprotection sequence, as well as applying these reaction conditions to a diverse set of 

substrates. Although our photoisomerization/cyclization project is still in its infancy, we can 

envision several plausible extensions to afford valuable spirocycles (Scheme 3.9). We are also 

interested in employing chiral Brønsted acids to achieve asymmetric induction and complement 

the high diastereoselectivity currently observed.  
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 In conclusion, we have developed a novel photochemical isomerization/cyclization utilizing 

an acid-catalyzed photochemical dynamic resolution of enone geometric isomers. We took the 

inadequacy of the acid-mediated cyclization encountered in our total synthesis of (+)-18-epi-

latrunculol A as an impetus to develop a new synthetic method that employs mild conditions to 

achieve a highly desirable transformation. We are clearly pleased to report success on this front. 

As this research is presently ongoing, a comprehensive account of this work will be reported in 

due course.  

 

 

 

 

 

 

 

 

Scheme 3.9. Future Directions for Photoisomerization/Cyclization Method 
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CHAPTER 4. Experimental Information 

4.1 Materials and Methods 

Reactions were carried out in flame-dried or oven-dried glassware under a nitrogen 

atmosphere unless noted otherwise. Anhydrous diethyl ether (Et2O), tetrahydrofuran (THF), 

dichloromethane (CH2Cl2) and toluene were obtained from a PureSolv PS-400 solvent 

purification system. Triethylamine, diisopropylethylamine and pyridine were freshly distilled 

from calcium hydride under a nitrogen atmosphere. All chemicals were purchased from Aldrich, 

Acros or TCI. Reactions were magnetically stirred unless stated otherwise and monitored by thin 

layer chromatography (TLC) with 0.25 mm Silacycle pre-coated silica gel plates. Silica gel 

chromatography was performed utilizing ACS grade solvents and silica gel from either Silacycle 

or Sorbent Technologies. Infrared spectra were obtained using a Jasco FT/IR-480 plus 

spectrometer. Optical rotations were obtained using a Jasco P2000 polarimeter. All melting points 

were obtained on a Thomas-Hoover apparatus and are uncorrected. 1H NMR spectra (500 MHz 

field strength) and 13C NMR spectra (125 MHz field strength) were obtained on a Bruker Avance 

III 500 MHz spectrometer or a Spectrospin/Bruker cryomagnet (500MHz/52mm) with a 5 mm 

dual cryoprobe. Chemical shifts are reported relative to chloroform (δ 7.27) or acetone (δ 2.05) 

for 1H NMR spectra and chloroform (δ 77.23) or methanol (δ 206.68, 29.92) for 13C spectra. 

High-resolution mass spectra (HRMS) were measured at the University of Pennsylvania on either 

a Waters LC-TOF mass spectrometer (model LCT-XE Premier) or a Waters GCT Premier 

Spectrometer. 
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4.2 Detailed Procedures 

 

Acid (+)-2.11: To a solution of D-Cysteine hydrochloride hydrate (25 g, 142.34 mmol) in an 

aqueous sodium hydroxide solution (28.47 g NaOH, 140 mL H2O) cooled to 0 °C was added 

phenyl chloroformate (39 ml, 313.15 mmol) in toluene (60 mL) dropwise via addition funnel.  

After the addition was complete, the reaction mixture was allowed to warm to room temperature, 

where it was stirred overnight and quenched with toluene (60 mL) and H2O (60 mL). The 

aqueous layer was washed with toluene (3 x 50 mL). The aqueous layer was acidified by 

dropwise addition of 1N HCl to a pH < 1 and the solution was extracted with EtOAc (3 x 50 mL). 

Combined organic layers were washed with brine, dried with Na2SO4, filtered, and concentrated 

in vacuo to provide a white solid that was used without further purification.  

To a solution of the previously obtained white solid in H2O (14 mL), DMSO (48 mL), and NaOH 

(11.1 g, 278 mmol) cooled to 0 °C, was added p-methoxybenzyl chloride (25 mL, 184.4 mmol) 

dropwise. After addition was complete, the ice-water bath was removed and the reaction mixture 

was stirred at room temperature for 14 h. The reaction mixture became cloudy with white 

precipitate.  The reaction mixture was partitioned between diethyl ether (50 mL) and 0.5 N NaOH 

(aq) (50 mL). The aqueous layer was separated and washed with diethyl ether (2 x 50 mL). The 

aqueous layer was acidified to pH<1 by dropwise addition of 6N HCl to the stirring basic 

aqueous solution. The cloudy white mixture was extracted with EtOAc (3 x 75 mL) and 

concentrated in vacuo to yield (+)-2.11 (16.0 g, 59.86 mmol, 64% over two steps) as a brown oil: 
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[α] +53.2 (c .36, CHCl3); IR (neat, cm-1) 2934, 1740, 1612, 1514, 1444, 1396, 1248; 1H NMR 

(500 MHz, CDCl3) δ = 7.20 (d, J = 8.3 Hz, 2 H), 6.89 (d, J = 8.3 Hz, 2 H), 5.15 (d, J = 14.5 Hz, 1 

H), 4.20 (dd, J = 2.8, 8.3 Hz, 1 H), 4.02 (d, J = 15.7 Hz, 1 H), 3.81 (s, 3 H), 3.54 (dd, J = 9.3, 

11.7 Hz, 1 H), 3.42 (dd, J = 2.8, 12.3 Hz, 1 H); 13C NMR (125 MHz, CDCl3) δ = 174.5, 172.0, 

159.7, 130.1, 127.5, 114.6, 59.0, 55.6, 47.6, 29.2; HRMS (ES) m/z (M+H)- calcd 266.0487 obsd 

266.0475. 

 

Amide (+)-S1: To a solution of acid (+)-2.11 (16 g, 59.86 mmol) in CH2Cl2 (200 mL) was added 

i-Pr2NEt (31.4 mL, 179.58 mmol) N,O-dimethylhydroxylamine hydrochloride (9.93 g, 179.58 

mmol), and then TBTU (28.8 g, 89.79 mmol) portionwise. The reaction mixture became cloudy 

with white precipitate and was stirred overnight.  The reaction mixture was quenched with 1.2 N 

HCl (100 mL) and the biphasic mixture was extracted with CH2Cl2 (4 x 100 mL). The combined 

organic layers were washed with 0.5 N NaOH (100 mL) and then concentrated in vacuo. Crude 

mixture was purified via column chromatography on SiO2 (60% EtOAc: hexanes) to provide (+)-

S1 (15.35 g, 49.46 mmol, 83%) as a brown oil: [α] +76.1 (c 1, CHCl3); IR (neat, cm-1) 2935, 

1678, 1513, 1444, 1393, 1303; 1H NMR (500MHz, CDCl3) δ = 7.16 (d, J = 8.5 Hz, 2 H), 6.87 (d, 

J = 8.5 Hz, 2 H), 5.15 (d, J = 15.3 Hz, 1 H), 4.40 (dd, J = 5.7, 8.1 Hz, 1 H), 3.85 (d, J = 14.9 Hz, 

1 H), 3.80 (s, 3 H), 3.47 (dd, J = 8.9, 11.3 Hz, 1 H), 3.38 (s, 3 H), 3.21 (s, 3 H), 3.16 (dd, J = 4.8, 

11.3 Hz, 1 H); 13C NMR (125 MHz, CDCl3) δ = 172.5, 169.4, 159.6, 130.3, 127.9, 114.4, 61.5, 

57.7, 55.5, 47.2, 32.8, 28.3; HRMS (ES) m/z (M+Na)+ calcd 333.0885 obsd 333.0887.   
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Enone (+)-2.10: To a solution of amide S1 (316 mg, 1.018 mmol) in THF (3 mL) cooled to 0 °C, 

was added dropwise a solution of vinyl magnesium bromide in THF (2.1 M, 2.5 mL). Reaction 

mixture was stirred for 15 min before it was slowly poured into stirring 2 N HCl (10 mL) at room 

temperature and extracted with CH2Cl2 (3 x 15 mL). The combined organic layers were washed 

with a saturated aq. solution of NaHCO3, dried over Na2SO4, decanted, and concentrated in 

vacuo. The crude mixture was purified via column chromatography on SiO2 (60% EtOAc: 

hexanes) to provide (+)-2.10 (181 mg, 0.653 mmol, 64%) as a yellow oil: [α] +69.4 (c 0.75, 

CHCl3); IR (neat, cm-1) 1672, 1612, 1513, 1248, 1175; 1H NMR (500MHz , CDCl3) δ = 7.12 (d, J 

= 8.9 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.49 (dd, J = 11.1, 17.4 Hz, 1 H), 6.36 (dd, J = 1.0, 17.0 

Hz, 1 H), 5.90 (dd, J = 1.0, 10.5 Hz, 1 H), 5.07 (d, J = 14.7 Hz, 1 H), 4.34 (dd, J = 4.6, 9.3 Hz, 1 

H), 3.83 (d, J = 15.1 Hz, 1 H), 3.80 (s, 3 H), 3.51 (dd, J = 9.7, 11.9 Hz, 1 H), 3.14 (dd, J = 4.6, 

11.5 Hz, 1 H); 13C NMR (125 MHz, CDCl3) δ = 195.4, 172.0, 159.7, 131.7, 131.4, 130.2, 127.4, 

114.4, 63.7, 55.4, 47.4, 27.9; HRMS (ES) m/z (M+Na)+ calcd 300.0670 obsd 300.0684. 

 

Hydroxylamine (+)-2.12: orange crystalline solid. [α] +40.9 (c 1.0, CHCl3); IR (neat, cm-1) 

2935, 1724, 1674, 1611, 1513; 1H NMR (500MHz , CDCl3) d = 7.13 (d, J = 8.5 Hz, 2 H), 6.86 (d, 

J = 8.5 Hz, 2 H), 5.06 (d, J = 13.9 Hz, 1 H), 4.19 (dd, J = 5.2, 9.3 Hz, 1 H), 3.86 (d, J = 13.3 Hz, 

1 H), 3.80 (s, 3 H), 3.51 (dd, J = 10.3, 11.3 Hz, 1 H), 3.43 (s, 3 H), 3.18 (dd, J = 4.0, 12.3 Hz, 1 
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H), 2.97 - 2.83 (m, 2 H), 2.66 (t, J = 6.3 Hz, 2 H), 2.57 (s, 3 H). 13C NMR (125 MHz, CDCl3) δ = 

205.4, 171.9, 159.7, 130.1, 127.6, 114.5, 65.2, 60.0, 55.5, 54.8, 47.5, 45.0, 36.9, 27.9; HRMS 

(ES) m/z (M+Na)+ calcd 339.1379 obsd 339.1374.   

 

Olefin (-)-S2: To a solution of alcohol (–)-2.141 (1g, 8.76 mmol) in CH2Cl2 (30 mL) at RT was 

added imidazole (775 mg, 11.39 mmol) followed by TBSCl (1.39 g, 9.2 mmol). The clear 

reaction mixture became cloudy with white precipitate. After 30 min 0.5 M HCl (20 mL) and 

CH2Cl2 (20 mL) were added. The aqueous layer was separated and extracted with CH2Cl2 (2 x 20 

mL). Combined organic layers were washed with a saturated aq. solution of NaHCO3 (10 mL) 

and brine (10 mL) sequentially, and then dried over Na2SO4, decanted and concentrated in vacuo. 

The crude mixture was purified via column chromatography on SiO2 (5% Et2O: hexanes) to 

provide (-)-S2 (1.804 g, 7.89 mmol, 90%) as a clear oil. Spectral data matched that previously 

reported.2 1H NMR (500MHz, CDCl3) δ = 5.91 - 5.75 (m, 1 H), 4.98 (dd, J = 15.3, 40.0 Hz, 2 H), 

3.46 (dd, J = 5.9, 9.5 Hz, 1 H), 3.39 (dd, J = 6.7, 9.5 Hz, 1 H), 2.20 - 2.08 (m, 1 H), 2.07 - 1.95 

(m, 1 H), 1.70 - 1.58 (m, 1 H), 1.57 - 1.46 (m, 1 H), 1.23 - 1.11 (m, 1 H), 0.91 (s, 9 H), 0.89 (d, J 

= 6.7 Hz, 3 H), 0.05 (s, 6 H); 13C NMR (125 MHz, CDCl3) δ = 139.5, 114.3, 68.5, 35.5, 32.6, 

31.5, 26.2, 18.6, 16.8, -5.1. 

 

Aldehyde (-)-2.8: Ozone was bubbled through a solution of olefin (-)-S2 (3.98 g, 17.42 mmol) in 

CH2Cl2 (60 mL) at -78 °C until the reaction mixture appeared blue (3 h). A stream of nitrogen 

was then bubbled through the reaction mixture until the reaction mixture was again clear and no 

blue color remained. Triphenylphosphine (4.71 g, 17.94 mmol) was then added in one portion at -

TBSO

TBSO

O
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78 °C, after the addition the reaction was allowed to warm to RT and stirred overnight. Et3N 

buffered Silica (stirred with 2 mL Et3N and 100 mL Hexanes) and reaction was concentrated in 

vacuo.  The crude mixture was purified via column chromatography on SiO2 (100% hexanes to 

5% Et2O: hexanes) to provide (-)-2.8 (3.15 g, 13.67 mmol, 79%) as a clear oil. 

Spectral data matched that previously reported.3 1H NMR (500MHz, CDCl3) δ = 9.82 - 9.72 (m, 1 

H), 3.43 (s, 2 H), 2.53 - 2.38 (m, 2 H), 1.83 - 1.73 (m, 1 H), 1.68 - 1.57 (m, 1 H), 1.50 - 1.39 (m, 

1 H), 0.98 - 0.81 (m, 12 H), 0.04 (s, 6 H); 13C NMR (125 MHz, CDCl3) δ = 203.0, 68.0, 41.9, 

35.5, 26.1, 25.7, 18.5, 16.7, -5.2, -5.2. 

 

Homoallylic alcohol S3: To a solution of (−)-B-Methoxydiisopinocampheylborane (3.72 g, 11.8 

mmol) in Et2O (29 mL) at 0 oC was added a 1 M solution of allyl magnesium bromide in Et2O 

(11.8 mL, 11.8 mmol). After the addition was complete the ice bath was removed and the reaction 

mixture was stirred for 1 h at RT. The reaction was cooled to –78 oC and a solution of aldehyde 

(–)-2.8 (2.58 g, 11.2 mmol) in Et2O (10 mL) was added dropwise down the side of the flask, 

additional Et2O (5 mL) was used to wash any residual aldehyde. The reaction was stirred at –78 

oC for 3 h and then after allowing it to slowly warm to RT overnight NaOH (3 N, 8 mL) and H2O2 

(30% w/w, 3 mL) were added and the mixture was refluxed for 2 h. After cooling the mixture was 

extracted with Et2O (2 x 100 mL), combined organic layers were dried over Na2SO4, decanted and 

concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 (10% 

EtOAc: hexanes) to provide allylic alcohol S3 (3.10 g) contaminated with a minor amount of 

epimeric alcohol that was used in next reaction without further purification.   
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Enone (+)-2.15: To a portion of allylic alcohol S3 mixture (197 mg) in DCE (4 mL) was added 

(+)-2.10 (600 mg, 2.16 mmol, 3 eq) and mixture was sparged with N2 for 20 min. Hoveyda-

Grubbs 2nd gen catalyst (45 mg, 0.072 mmol, 10 mol%) was then added at RT, N2 sparging was 

resumed, and reaction was heated to 50 oC. After 3 h 20 min charcoal (ca 50 mg) was added and 

reaction mixture was stirred for 1 h, silica (ca 1 g) was then added and solvent was removed in 

vacuo. The crude mixture was purified via column chromatography on SiO2 (10 % EtOAc: 

CH2Cl2) to provide (+)-2.15 (262 mg, 0.502 mmol, 71% from aldehyde (–)-2.8) and recovered 

(+)-2.10 (287 mg, 1.04 mmol, 72% recovery);   [α]  +66.7 (c 0.93, CHCl3); IR (neat) 3459, 

2929, 2856, 1682, 1514, 1250; 1H NMR (500MHz, CDCl3) δ = 7.12 (d, J = 8.7 Hz, 2 H), 7.03 (dt, 

J = 15.5 Hz, 6.9 Hz, 1 H), 6.84 (d, J = 7.9 Hz, 2 H), 6.27 (d, J = 15.9 Hz, 1 H), 5.04 (d, J = 15.7 

Hz, 1 H), 4.30 (dd, J = 4.6, 9.3 Hz, 1 H), 3.84 (d, J = 15.9 Hz, 1 H), 3.79 (s, 3 H), 3.76 - 3.70 (m, 

1 H), 3.49 (dd, J = 9.3, 11.7 Hz, 1 H), 3.43 (d, J = 5.9 Hz, 2 H), 3.14 (dd, J = 4.8, 10.1 Hz, 1 H), 

2.47 - 2.39 (m, 1 H), 2.38 - 2.28 (m, 1 H), 1.90 - 1.81 (m, 1 H), 1.66 - 1.59 (m, 1 H), 1.59 - 1.52 

(m, 2 H), 1.51 - 1.39 (m, 1 H), 1.18 - 1.09 (m, 1 H), 0.91 - 0.86 (m, 12 H), 0.05 (s, 6 H); 13C 

NMR (125 MHz, CDCl3) δ = 195.0, 172.2, 159.6, 148.1, 130.2, 127.6, 127.0, 114.4, 71.1, 68.3, 

64.1, 55.5, 47.5, 40.6, 35.9, 35.1, 29.3, 28.2, 26.1, 18.5, 17.0, -5.2, -5.2; HRMS (ES) m/z 

(M+Na)+ calcd 522.2709 obsd 522.2688. 
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Lactol (+)-2.18: To a solution of enone (+)-2.15 (25mg, 0.048 mmol) in THF (0.28 mL) was 

added 6 N HCl (0.21 mL) dropwise at 20 oC. After reaction mixture was stirred for 19 h, a 

saturated aq. solution of NaHCO3 (5 mL) was added followed by extraction with CH2Cl2 (3 x 10 

mL). Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo. The 

crude mixture was purified via column chromatography on SiO2 (100% EtOAc) to provide lactol 

(+)-13 (16 mg) as a yellow oil with minor impurities. (+)-2.18 was used in the following reaction 

without further purification: [α]  +30.0 (c 1.0, CHCl3); IR (neat) 3370, 2934, 1650, 1513, 1444, 

1400; 1H NMR (500MHz, CDCl3) δ = 7.2 (d, J = 8.2 Hz, 1 H), 6.87 (d, J = 8.5 Hz, 1 H), 5.16 (d, 

J = 14.9 Hz, 1 H), 4.45 (d, J = 14.3 Hz, 1 H), 4.19-4.11 (m, 1 H), 3.93-3.85 (m, 1 H), 3.81 (s, 3 

H), 3.64 (dd, J = 5.2, 7.7 Hz, 1 H), 3.45 (d, J = 5.7 Hz, 2 H), 3.29-3.23 (m, 2 H), 2.15 (dd, J = 4.1, 

12.0 Hz, 1 H), 2.0 (d, 12 Hz, 1 H), 1.89 (bs, 2 H), 1.66-1.53 (m, 4 H), 1.35-1.11 (m, 3 H), .92 (d, 

J = 6.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ =174.3, 159.4, 129.8, 128.8, 114.4, 100.5, 70.0, 

68.1, 64.7, 64.5, 55.5, 48.4, 40.5, 38.9, 35.9, 33.1, 29.1, 26.7, 16.7; HRMS (ES) m/z (M+Na)+ 

calcd 448.1770 obsd 448.1782. 
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Ketal (+)-2.5: To a solution of lactol (+)-2.18 (16 mg) with minor impurities in MeOH (0.4 mL) 

was added camphorsulfonic acid (1 mg, 0.004 mmol) and reaction was stirred overnight at RT. 

The reaction was quenched with a saturated aq. solution of NaHCO3 (5 mL) and was followed by 

extraction with CH2Cl2 (3 x 10 mL). Combined organic layers were dried over Na2SO4, decanted 

and concentrated in vacuo. The crude mixture was purified via column chromatography on SiO2 

(80 % EtOAc: hexanes) to provide (+)-2.5 (9 mg, 0.021 mmol, 43% from enone (+)-2.15 as a 

clear oil: [α]  +46.1 (c 0.95, CHCl3); IR (neat) 3411, 2933, 1655, 1513, 1452, 1396, 1248; 1H 

NMR (500MHz, CDCl3) δ = 7.15 (d, J = 9.1 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 5.24 (d, J = 15.1 

Hz, 1 H), 4.22 (d, J = 14.9 Hz, 1 H), 4.13 - 4.03 (m, 1 H), 3.95 (dd, J = 4.8, 10.3 Hz, 1 H), 3.81 

(s, 3 H), 3.56 - 3.49 (m, 1 H), 3.46 (t, J = 5.7 Hz, 1 H), 3.41 - 3.26 (m, 2 H), 3.02 (s, 3 H), 2.11 

(dd, J = 4.6, 11.9 Hz, 1 H), 1.99 (d, J = 11.7 Hz, 1 H), 1.73 - 1.43 (m, 8 H), 1.29 - 1.16 (m, 1 H), 

1.15 - 1.07 (m, 1 H), 0.91 (d, J = 6.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ = 173.4, 159.2, 

128.8, 128.6, 114.3, 102.6, 70.5, 68.1, 64.8, 57.0, 55.4, 47.9, 46.9, 40.2, 37.8, 35.8, 33.1, 28.9, 

26.4, 16.6; HRMS (ES) m/z (M+H)+ calcd 462.1926 obsd 462.1912. 

 

 

Wittig Reagent 2.19: To a solution of methyl ketal (+)-2.5 (165 mg, 0.375 mmol) in CH2Cl2 (4 

mL) was added imidazole (153 mg, 2.25 mmol), triphenyl phosphine (296 mg, 1.13 mmol), and 

lastly iodine (248 mg, 0.975 mmol). The reaction mixture was stirred overnight at rt. A 1:1 

mixture of a 10% aqueous solution of Na2S2O3 (5 mL) and a saturated aqueous solution of 
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sodium bicarbonate (5 mL) was added to quench the reaction mixture. To the resulting biphasic 

solution was added additional CH2Cl2 (5 mL), organic layer was removed and the aqueous layer 

was extracted with CH2Cl2 (2 x 5 mL) and combined organic layers were dried over Na2SO4, 

decanted and concentrated in vacuo. Crude mixture was purified via column chromatography on 

SiO2 (40% EtOAc: hexanes) to provide iodide (172 mg, 0.313 mmol, 84%) as a clear oil that was 

used directly in the next reaction. 

 To a solution of iodide (170 mg, 0.31 mmol) in CH2Cl2 (3 mL) was added imidazole (53 

mg, 0.78 mmol), DMAP (19 mg, 0.16 mmol), and then TBSCl (71 mg, 0.47 mmol) portionwise. 

After stirring the reaction mixture overnight, a saturated aqueous solution of sodium bicarbonate 

(10 mL) was added to quench the reaction mixture. To the resulting biphasic solution was added 

additional CH2Cl2 (15 mL), organic layer was removed and the aqueous layer was extracted with 

CH2Cl2 (2 x 15 mL) and combined organic layers were dried over Na2SO4, decanted and 

concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 (10% 

EtOAc: hexanes) to provide iodide-OTBS (175 mg, 0.264 mmol, 84%) as a clear oil that was 

used directly in the next reaction. 

To a solution of iodide-OTBS (108 mg, 0.163 mmol) in acetonitrile (2 mL), was added 

triphenyl phosphine (640 mg, 2.44 mmol), i-Pr2NEt (0.2 mL, 1.14 mmol), and the reaction 

mixture was heated to 55°C for 48 h. Reaction mixture was concentrated in vacuo to afford an 

orange oil that was purified via filtration through a short pad of SiO2, washing with EtOAc to 

remove residual triphenyl phosphine and triphenyl phosphine oxide followed by washing with 5% 

MeOH/CH2Cl2 to provide Wittig reagent 2.19 as an orange foam (118 mg, 0.13 mmol, 78%). [α]

+24.6 (c 1.0, CHCl3); IR (neat, cm-1) 2927, 1667, 1512, 1438; 1H NMR (500MHz , CDCl3) d = 

7.90-7.82 (m, 4 H), 7.71-7.61 (m, 8 H), 7.55 (t, J = 7.7 Hz, 1 H), 7.50-7.44 (m, 2 H), 7.16 (d, J = 

8.6 Hz, 2 H), 6.91 (d, J = 8.4 Hz, 2 H), 5.15 (d, J = 16.1 Hz, 1 H), 4.19 (d, J = 16.1 Hz, 1 H), 

21
D



	   60	  

4.02-3.86 (m, 2 H), 3.81 (s, 3 H), 3.76-3.63 (m, 2 H), 3.40 (t, J = 9.6 Hz, 1 H), 3.27-3.18 (m, 2 

H), 2.84 (s, 3 H), 1.86 (dd, J = 4.5, 13.5 Hz, 1 H), 1.86-1.78 (m, 1 H), 1.77-1.65 (m, 4 H), 1.58-

1.47 (m, 3 H), 1.25-1.18 (m, 1 H), 1.04 (d, J = 6.4 Hz, 3 H), 0.87, (s, 9 H), 0.06 (s, 6 H); 13C 

NMR (125 MHz, CDCl3) δ = 173.5, 159.3, 135.2, 133.9 (d, J = 9.6 Hz), 132.3 (d, J = 11.8 

Hz),132.1, 130.6 (d, J = 11.8 Hz), 129.0, 128.8 (d, J = 3.2 Hz), 128.6, 119.5, 118.8, 114.4, 102.6, 

69.8, 65.2, 57.0, 55.6, 48.3, 46.9, 37.8, 33.7 (d. J = 10.2 Hz), 33.3, 30.3, 29.9, 29.8 (d, J = 3.3 

Hz), 26.5, 26.1, 21.0 (d, J = 8.7 Hz), 18.2, -4.3. -4.4; HRMS (ES) m/z (M)+ calcd 798.3777 obsd 

798.3763. 

 

Wittig Reaction Byproduct (+)-2.23: To a solution of Wittig reagent (5 mg, 5 µmol) in THF 

(0.1 mL) at 0°C was slowly added NaHMDS (1M, 50 µl) turning the reaction red. After the 

reaction was stirred at 0°C for 10 min, benzaldehyde (10 µl, 10 mg, 0.01 mmol) was added. After 

stirring for 5 min the reaction mixture was quenched with a saturated aqueous solution of 

ammonium chloride (5 mL). To the resulting biphasic solution was added additional CH2Cl2 (5 

mL), organic layer was removed and the aqueous layer was extracted with CH2Cl2 (2 x 5 mL) and 

combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo. LCMS 

analysis indicated (+)-2.23 to be a major product in the reaction mixture. The crude mixture was 

purified via column chromatography on SiO2 (40% EtOAc: hexanes) to provide (+)-2.23 with an 

unknown contaminant. The mixture was then further purified via preparative TLC (250 µm, 60% 

EtOAc: hexanes) to provide (+)-2.23 (1.6 mg, 2.2 µmol) as a clear film. [α] +33.0 (c .11, 
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CHCl3); IR (neat, cm-1) 2926, 2854, 1673, 1514, 1459, 1386; 1H NMR (500MHz , CDCl3) 

δ =7.76-7.69 (m, 4 H), 7.52-7.36 (m, 6 H), 7.15 (d, J = 8.5 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 2 H), 

5.19 (d, J = 15.6 Hz, 1 H), 4.21 (d, J = 15.6 Hz, 1 H), 3.96 (sept, J = 5.9 Hz, 1 H), 3.83 (dd, J = 

4.4, 9.3 Hz, 1 H), 3.81 (s, 3 H), 3.37-3.20 (m, 3 H), 2.88 (s, 3 H), 2.31-2.22 (m, 1 H), 2.12-2.11 

(m, 1 H), 2.08-1.96 (m, 1 H), 1.87 (dd, J = 4.7, 13.1 Hz), 1.72 (app dt. J = 2.2, 12.8 Hz, 1 H), 1.55 

(dd, J = 10.4, 13.1 Hz, 2 H), 1.47-1.33 (m, 2 H), 1.15 (q, J = 12.7 Hz, 2 H), 0.98 (d, J = 6.7 Hz, 3 

H), 0.88 (s, 9 H), 0.06 (s, 6 H); 13C NMR (125 MHz, CDCl3) δ = 173.6, 159.0, 131.6, 131.6, 

130.7 (d, J = 10.4 Hz), 130.6 (d, J = 9.5 Hz), 128.8, 128.7 (d, J = 5.3 Hz), 128.6 (d, J = 5.6 Hz), 

128.5, 114.1, 102.5, 69.9, 65.1, 57.0, 55.3, 47.7, 46.7, 40.8, 37.6, 37.1, 36.5, 34.0, 32.7, 29.7, 28.1 

(d, J = 3.4 Hz), 26.3, 25.9, 21.5 (d, J = 8.3 Hz), 18.1, -4.5, -4.6 HRMS (ES) m/z (M+H)+ calcd 

738.3414 obsd 738.3427. 

 

 

Hydroxy Aldehyde (+)-S4: To a solution of ketal (+)-2.5 (400mg, 0.91 mmol) in CH2Cl2 (9 mL), 

cooled to 0 °C was added TEMPO (21 mg, 0.137 mmol) followed by (Diacetoxyiodo)benzene 

(264 mg, 0.819 mmol) portionwise. After 12 h, the reaction mixture was partitioned between 

CH2Cl2 (10 mL) and a saturated aq. solution of Na2S2O3 (10 mL). The aqueous layer was 

extracted with CH2Cl2 (3 x 10 mL). Combined organic layers were dried over Na2SO4, decanted 

and concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 

(60% EtOAc: hexanes) to provide (+)-S4 (286 mg, 0.654 mmol, 72%) as a clear oil: [α]  +40.9 
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(c 0.39, CHCl3); IR (neat) 3438, 2929, 2845, 1721, 1669, 1612, 1513, 1456, 1395; 1H NMR 

(500MHz, CDCl3) δ = 9.59 (d, J = 1.6 Hz, 1 H), 7.14 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.5 Hz, 2 

H), 5.22 (d, J = 15.3 Hz, 1 H), 4.21 (d, J = 14.9 Hz, 1 H), 4.07 (spt, J = 4.2 Hz, 1 H), 3.96 (dd, J = 

3.2, 9.3 Hz, 1 H), 3.80 (s, 3 H), 3.58 - 3.48 (m, 1 H), 3.43 - 3.27 (m, 2 H), 3.00 (s, 3 H), 2.32 (q, J 

= 7.1 Hz, 1 H), 2.10 (dd, J = 5.2, 12.5 Hz, 1 H), 1.97 (d, J = 12.7 Hz, 2 H), 1.93 - 1.77 (m, 1 H), 

1.65 (t, J = 11.1 Hz, 1 H), 1.53 (q, J = 7.5 Hz, 2 H), 1.40 - 1.30 (m, 1 H), 1.29 - 1.15 (m, 2 H), 

1.10 (d, J = 7.1 Hz, 3 H), 0.91 - 0.75 (m, 1 H); 13C NMR (125 MHz, CDCl3) δ = 204.8, 173.5, 

159.2, 128.7, 128.6, 114.3, 102.7, 70.1, 64.5, 56.9, 55.4, 47.8, 46.8, 46.3, 40.1, 37.7, 33.0, 26.4, 

26.3, 13.6; HRMS (ES) m/z (M+H)+ calcd 438.1950 obsd 438.1938. 

 

 

TBS Vinyl iodide (+)-2.20: To a solution of IPh3PCH2I (1.26g, 2.38 mmol) in THF (24 mL) was 

added NaHMDS (1M, 1.9 mL) at rt and reaction mixture was stirred ca 1 min. Reaction mixture 

was cooled to -60 °C and HMPA (0.66 mL, 3.81 mmol) was added and reaction was further 

cooled to -78 °C and hydroxy aldehyde (+)-S5 (104 mg, 0.24 mmol) was added in THF (ca 1 mL) 

dropwise. After stirring at -78 °C for 1 h, the reaction mixture was quenched by the addition of a 

saturated aqueous solution of ammonium chloride (5 mL). The biphasic mixture was extracted 

with diethyl ether (3 x, 5 mL) and combined organic layers were dried over Na2SO4, decanted and 

concentrated in vacuo.  The crude mixture was purified via column chromatography on SiO2 (45-
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50% EtOAc: hexanes) to provide vinyl iodide (60 mg, 0.107 mmol, 45%) as a brown foam that 

was used directly in the next reaction. 

 To a solution of vinyl iodide (60 mg, 0.11 mmol) in CH2Cl2 (0.4 mL) was added 

imidazole (15 mg, 0.214 mmol), DMAP (7 mg, 0.054 mmol), and lastly TBSCl (24 mg, 0.16 

mmol) and stirred at rt overnight. The reaction was incomplete after 14 h so again imidazole (15 

mg, 0.214 mmol), DMAP (7 mg, 0.054 mmol), and lastly TBSCl (24 mg, 0.16 mmol) were 

added. After 12 h, a saturated aqueous solution of sodium bicarbonate (ca 5 mL) was added to 

quench the reaction. The biphasic mixture was extracted with CH2Cl2 (3x, 5 mL) and combined 

organic layers were dried over Na2SO4, decanted and concentrated in vacuo.  The crude mixture 

was purified via column chromatography on SiO2 (30% EtOAc: hexanes) to provide TBS vinyl 

iodide (+)-2.20 (74 mg, 0.11 mmol, near quant.) as an oil: [α] +15.4 (c .14, CHCl3); IR (neat, 

cm-1) 2927, 2856, 1676, 1513, 1457, 1389; 1H NMR (500MHz , CDCl3) d = 7.16 (d, J = 8.7 Hz, 2 

H), 6.87 (d, J = 8.7 Hz, 2 H),  6.15 (d, 7.1 Hz, 1 H), 5.88 (dd, J = 7.4, 9.0 Hz, 1 H), 5.20 (d, J = 

15.3 Hz, 1 H), 4.26 (d, 15.4 Hz, 1 H), 4.02 (sep, J = 5.0 Hz, 1 H), 3.95 (dd, J = 4.0, 9.3 Hz, 1 H), 

3.81 (s, 3 H), 3.56-3.50 (m, 1 H), 3.39-3.29 (m, 2 H), 3.04 (s, 3 H), 2.50 (quin, J = 6.0 Hz), 1.92 

(dd, J = 1.4, 4.9 Hz, 1 H), 1.81 (dt, J = 2.3, 12.4 Hz, 1 H), 1.59 (dd, J = 10.5, 13.0 Hz, 1 H), 1.52-

1.36 (m, 5 H), 1.24 (d, J = 12.2 Hz, 2 H), 0.98 (d, J = 7.1 Hz, 3 H), 0.89 (s, 9 H), 0.076 (s, 6 H). 

13C NMR (125 MHz, CDCl3) δ = 173.8, 159.2, 146.5, 129.0, 128.8, 114.4, 102.8, 81.2, 70.0, 65.4, 

57.5, 55.5, 48.0, 47.1, 41.0, 39.4, 38.1, 33.2, 31.9, 29.9, 26.5, 26.1, 19.6, 18.3, -4.3, -4.4; HRMS 

(ES) m/z (M+Na)+ calcd 698.1808 obsd 698.1774. 
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Alkyne (+)-S5: To a 1.0 M solution of t-BuOK in THF (4.6 mL, 4.6 mmol) cooled to –78 °C, 

was added Seyferth-Gilbert reagent (789 mg, 5.26 mmol) in THF (7 mL) down side of the 

reaction vessel. Reagent was washed with THF (3 mL) and reaction became yellow-orange but 

remained transparent.  After 25 min aldehyde (+)-S5 (1.15 g, 2.63 mmol) in THF (10 mL) was 

added to the solution dropwise and then washed with more THF (5 mL). The yellow-orange 

reaction mixture was quenched with a saturated aq. solution of NaHCO3 (15 mL) and CH2Cl2 (20 

mL) at –78 °C. The aqueous layer was separated and extracted with CH2Cl2 (2 x 30 mL). 

Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo. Crude 

mixture was purified via column chromatography on SiO2 (50% EtOAc: hexanes) to provide (+)-

S5 (852 mg, 1.97 mmol, 75%) as a white foam: [α]  +52.8 (c 0.23, CHCl3); IR (neat) 3416, 

2931, 1670, 1513; 1H NMR (500MHz, CDCl3) δ = 7.14 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.5 Hz, 

2 H), 5.22 (d, J = 16.1 Hz, 1 H), 4.22 (d, J = 15.5 Hz, 1 H), 4.07 (spt, J = 4.8 Hz, 1 H), 3.95 (dd, J 

= 4.2, 7.9 Hz, 1 H), 3.80 (s, 3 H), 3.58 - 3.47 (m, 1 H), 3.43 - 3.28 (m, 2 H), 3.01 (s, 3 H), 2.48 - 

2.32 (m, 1 H), 2.10 (dd, J = 4.2, 12.7 Hz, 1 H), 2.04 (d, J = 2.6 Hz, 1 H), 1.98 (d, J = 14.9 Hz, 1 

H), 1.81 - 1.68 (m, 1 H), 1.67 - 1.54 (m, 3 H), 1.49 - 1.35 (m, 1 H), 1.30 - 1.20 (m, 1 H), 1.17 (d, 

J = 6.9 Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ =173.6, 159.2, 128.8, 128.7, 114.4, 102.7, 88.6, 

70.0, 68.9, 64.7, 57.1, 55.5, 47.9, 46.9, 40.3, 37.9, 33.4, 32.5, 26.4, 25.9, 21.1; HRMS (ES) m/z 

(M+H)+ calcd 434.2001 obsd 434.2007. 
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TBS ether (+)-2.21: To a solution of alkyne (+)-S6 (270 mg, 0.623 mmol) in CH2Cl2 (2.1 mL) 

was added 2,6-lutidine (0.14 mL, 1.246 mmol). Reaction mixture was cooled to 0 °C, and 

TBSOTf (0.17 mL, 0.747 mmol) was added dropwise. After 1 h, the reaction was diluted with 

CH2Cl2 (5 mL), 0.5 N HCl (5 mL) was added, and aqueous layer was separated and extracted 

with CH2Cl2 (3 x 10 mL).  Combined organic layers were dried over Na2SO4, decanted and 

concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 (30% 

EtOAc: hexanes) to provide (+)-2.21 (341 mg, 0.623 mmol, near quant.) as white crystals: [α]  

+16.7 (c 0.69, CHCl3); Melting point = 79 oC-84oC, IR (neat) 3307, 2930, 2856, 1731, 1675, 

1513; 1H NMR (500MHz, CDCl3) δ = 7.16 (d, J = 8.3 Hz, 2 H), 6.87 (d, J = 8.9 Hz, 2 H), 5.20 (d, 

J = 15.3 Hz, 1 H), 4.26 (d, J = 15.9 Hz, 1 H), 4.08 - 3.97 (m, 1 H), 3.94 (dd, J = 4.6, 9.7 Hz, 1 H), 

3.85 - 3.76 (m, 3 H), 3.56 - 3.46 (m, 1 H), 3.34 (s, 2 H), 2.47 - 2.36 (m, 1 H), 2.04 (d, J = 2.2 Hz, 

1 H), 1.92 (dd, J = 4.4, 12.9 Hz, 1 H), 1.87 - 1.80 (m, 1 H), 1.76 - 1.67 (m, 1 H), 1.62 - 1.55 (m, 5 

H), 1.46 - 1.37 (m, 1 H), 1.31 - 1.21 (m, 2 H), 1.18 (d, J = 6.9 Hz, 3 H), 0.89 (s, 9 H), 0.08 (s, 6 

H); 13C NMR (125 MHz, CDCl3) δ = 173.7, 159.2, 128.9, 128.7, 114.3, 102.7, 88.7, 69.7, 68.9, 

65.4, 57.4, 55.5, 47.9, 47.0, 40.9, 38.0, 33.4, 32.5, 26.4, 26.0, 25.9, 21.1, 18.2; HRMS (ES) m/z 

(M+H)+ calcd 548.2866 obsd 548.2878. 
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TBS ether (–)-S6: To a solution of diol (–)-2.264 (0.9 g, 7.89 mmol) in CH2Cl2 (80 mL) was 

added imidazole (1.61 g, 23.67 mmol), cooled to 0 °C and added TBSCl (1.19 g, 7.89 mmol) 

portionwise. The ice bath was removed after 30 min and the reaction mixture was stirred at room 

temperature. After 14 h, 0.5 N HCl (40 mL) was added and the aqueous layer was extracted with 

CH2Cl2 (3 x 40 mL). Organic layers were combined and washed sequentially with a saturated aq. 

solution of NaHCO3 and brine, dried over Na2SO4, decanted and concentrated in vacuo. Crude 

mixture was purified via column chromatography on SiO2 (20% to 100% EtOAc: hexanes) to 

provide (–)-S6 (1.58 g, 6.9 mmol, 88 %) as a brown oil: [α] -1.1 (c 0.15, CHCl3); IR (neat, cm-

1) 3447, 3313, 2118, 1738, 1471, 1256, 1121; 1H NMR (500MHz , CDCl3) δ = 3.79 (spt, J = 4.2 

Hz, 1 H), 3.66 (dd, J = 3.6, 9.7 Hz, 1 H), 3.45 (dd, J = 7.1, 9.9 Hz, 1 H), 2.36 (dt, J = 2.1, 7.1 Hz, 

2 H), 1.97 (t, J = 2.6 Hz, 1 H), 1.72 - 1.57 (m, 2 H), 0.91 (s, 9 H), 0.08 (s, 6 H); 13C NMR (125 

MHz, CDCl3) δ = 84.2, 70.7, 68.7, 67.1, 31.8, 26.1, 18.5, 15.0, -5.2, -5.2; HRMS (ES) m/z 

(M+Na)+ calcd 251.1443 obsd 251.1441. 

 

Alkynoate (-)-2.27: To a solution of TBS ether (–)-S6 (556 mg, 2.43 mmol) in CH2Cl2 (8 mL), 

was added i-Pr2NEt (1.7 mL, 9.72 mmol), and SEMCl (0.52 mL, 72.92 mmol) dropwise. An exit 

needle was placed through septa to allow smoky atmosphere to clear.  After 14 h, a saturated aq. 

solution of NaHCO3 (20 mL) was added to quench the reaction mixture and the aqueous layer 

was extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were washed with 10% 

citric acid (50 mL) and dried over Na2SO4, decanted and concentrated in vacuo. Crude mixture 

was filtered through a pad of SiO2 to yield a yellow oil that was used without further purification.  
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To a solution of the previously obtained yellow oil in THF (8 mL), cooled to – 78 °C, was added 

a solution of n-BuLi in THF (2.4M, 1.5 mL) dropwise. After stirring for 20 min methyl 

chloroformate (0.33 mL, 4.13 mmol) was added dropwise and reaction mixture was stirred for 1 h 

and dry ice bath was removed. After stirring for 3 h, Et2O (10 mL) was added followed by a 

saturated aq. solution of NaHCO3 (10 mL). Aqueous layer was extracted with EtOAc (3 x 20 

mL), combined organic layers were washed with brine, dried over Na2SO4, decanted and 

concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 (5% 

ether: hexanes) to provide protected  (–)-2.27 (737 mg, 1.77 mmol, 73% over two steps) as a free 

flowing oil: [α] -36.6 (c 1.0, CHCl3); IR (neat, cm-1) 2953, 2239, 1718, 1435, 1253; 1H NMR 

(500MHz , CDCl3) δ = 4.78 (d, J = 6.7 Hz, 1 H), 4.71 (d, J = 6.5 Hz, 1 H), 3.76 (s, 3 H), 3.71 - 

3.53 (m, 5 H), 2.53 - 2.44 (m, 2 H), 1.93 - 1.81 (m, 1 H), 1.80 - 1.71 (m, 1 H), 0.95 (t, J = 8.3 Hz, 

2 H), 0.89 (s, 9 H), 0.06 (s, 6 H), 0.02 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ = 154.4, 94.9, 

89.6, 73.2, 65.6, 65.3, 52.7, 30.1, 26.1, 18.5, 18.3, 15.0, -1.2, -5.2. -5.2; HRMS (ES) m/z (M+Na)+ 

calcd 439.2312 obsd 439.2296. 

 

Enoate (–)-S7:  To a suspension of CuI (322 mg, 1.69 mmol) in THF (8 mL), cooled to 0 °C was 

added a solution of MeLi in Et2O (0.4M, 2.25 mL, 3.38 mmol) was added dropwise turning the 

reaction mixture orange and then clear. After stirring for 45 min, Me2CuLi solution was cooled to 

-78 °C and a solution of alkynoate (–)-2.27 (587 mg, 1.41 mmol) in THF (8 mL). After 2 h, pH 7 

buffer (10 mL) and MeOH (2 mL) were added, and then the reaction was extracted with EtOAc 

(3 x 20 mL). Combined organic layers were washed with brine, dried over Na2SO4, decanted and 

concentrated in vacuo. Crude mixture was purified via column chromatography on SiO2 (10% 

21
D

TBSO
OSEM

OMe

O



	   68	  

ether: hexanes) to provide (–)-S7 (351 mg, 0.81 mmol, 58%) as an oil: [α] -6.8 (c 0.67, CHCl3); 

IR (neat, cm-1) 2953, 2929, 2858, 1722, 1649, 1250; 1H NMR (500MHz , CDCl3) δ = 5.67 (s, 1 

H), 4.82 (d, J = 7.5 Hz, 1 H), 4.74 (d, J = 6.7 Hz, 1 H), 3.71 - 3.59 (m, 6 H), 3.67, (s, 3 H) 2.81 - 

2.63 (m, 2 H), 1.90 (s, 3 H), 1.79 - 1.70 (m, 1 H), 1.64 - 1.59 (m, 1 H), 0.96 - 0.94 (m, 1 H), 0.90 

(s, 9 H), 0.05 (br. s., 6 H), 0.02 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ = 166.8, 160.8, 116.1, 

94.9, 78.5, 65.8, 65.3, 51.0, 30.3, 29.7, 26.1, 25.3, 18.5, 18.3, -1.2, -5.2, -5.2; HRMS (ES) m/z 

(M+Na)+ calcd 455.2625 obsd 455.2638. 

 

Alcohol (+)-S8: To a solution of enoate (–)-S7 (351 mg, 0.811 mmol) in THF (8 mL), was added 

a solution of TBAF in THF (1 M, 1.6 mL) buffered with AcOH (0.12 mL).  After 14 h the 

reaction was quenched with a saturated aq. solution of NH4Cl (10 mL), aqueous layer was 

extracted with EtOAc (3 x 20 mL). Combined organic layers were washed with brine, dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified via column 

chromatography on SiO2 (20% EtOAc: hexanes) to provide (+)-S8 (257 mg, 0.807 mmol, 99%) 

as an oil: [α] +41.7 (c 0.39, CHCl3); IR (neat, cm-1) 3443, 2951, 2891, 1719, 1647, 1436, 1248; 

1H NMR (500MHz , CDCl3) δ = 5.75 - 5.64 (m, 1 H), 4.82 (d, J = 7.3 Hz, 1 H), 4.70 (d, J = 6.7 

Hz, 1 H), 3.84 - 3.74 (m, 1 H), 3.68 (s, 3 H), 3.64 - 3.54 (m, 4 H), 2.79 - 2.68 (m, 1 H), 2.68 - 

2.55 (m, 1 H), 1.91 (s, 3 H), 1.76 - 1.58 (m, 2 H), 1.04 - 0.90 (m, 2 H), 0.03 (s, 9 H); 13C NMR 

(125 MHz, CDCl3) δ = 166.9, 160.6, 116.2, 95.5, 82.2, 65.9, 65.5, 51.1, 30.1, 29.6, 25.4, 18.4, -

1.3; HRMS (ES) m/z (M+Na)+ calcd 319.1941 obsd 319.1940. 
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Aldehyde (+)-2.25: To a solution of alcohol (+)-S9 (149 mg, 0.468 mmol) in CH2Cl2 (5 mL), 

cooled to 0°C was added i-Pr2NEt (0.41 mL, 2.34 mmol) and DMSO (0.33 mL, 4.68 mmol).   

SO3 –pyridine (223 mg, 1.4 mmol) was then added in one portion. After 15 min, the reaction 

mixture was diluted with CH2Cl2 (10 mL) and a saturated aq. solution of NaHCO3 (10 mL) was 

added. The aqueous layer was separated and extracted with CH2Cl2 (2 x 15 mL). Combined 

organic layers were washed with brine, dried over Na2SO4, decanted and concentrated in vacuo. 

Crude mixture was purified via short column chromatography on SiO2 (30% EtOAc: hexanes) to 

provide aldehyde (+)-2.25 (144 mg, 0.455 mmol, 97%) as a brown oil: [α] +5.2 (c 1.3, CHCl3); 

IR (neat) 2952, 1719, 1650, 1437, 1378, 1249, 1193; 1H NMR (500 MHz, CDCl3) δ = 9.66 (d, 

J=1.58 Hz, 1 H), 5.70 (s, 1 H), 4.82 (d, J=7.13 Hz, 1 H), 4.75 (d, J=6.94 Hz, 1 H), 3.94 (ddd, 

J=7.13, 5.15, 1.39 Hz, 1 H), 3.71 - 3.82 (m, 1 H), 3.68 (s, 3 H), 3.58 - 3.67 (m, 1 H), 2.73 - 2.83 

(m, 1 H), 2.62 - 2.72 (m, 1 H), 1.90 (s, 3 H), 1.78 - 1.89 (m, 2 H), 0.93 (s, 2 H), 0.02 (s, 9 H); 13C 

NMR (125 MHz, CDCl3) δ = 202.9, 166.7, 159.3, 116.8, 95.3, 82.4, 66.1, 51.1, 29.2, 28.6, 25.3, 

18.2, -1.3; HRMS (ES) m/z (M+Na)+ calcd 339.1604 obsd 339.1605. 
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Propargyl Alcohol (+)-2.28: To Zn(OTf)2 (dried overnight at 120 °C under high vacuum, 1.12g, 

3.078 mmol), was added (+)-NME (azeotroped 3x with toluene, 600 mg, 3.35 mmol), 

triethylamine (distilled prior to use, 0.46 mL, 3.35 mmol) in toluene (3.5 mL). Reaction mixture 

was stirred vigorously for 3 h. Alkyne (+)-2.21 (300 mg, 0.548 mmol) was then added in toluene 

(1.3 mL) and stirred for 3 h. Aldehyde (+)-2.25 (95 mg, 0.300 mmol) was then added in toluene 

(0.5 mL) and reaction mixture was stirred at room temperature overnight. Reaction was portioned 

between a saturated aq solution NH4Cl (10 mL) and EtOAc (10 mL). Aqueous layer was 

extracted with EtOAc (3 x 20 mL). Combined organic layers were washed with brine, dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified via column 

chromatography on SiO2 (20% EtOAc: hexanes) to provide alcohol (+)-2.28 (247 mg, 0.287 

mmol, 95%) as a clear oil: [α]  +51.5 (c 0.79, CHCl3); IR (neat) 3440, 2951, 1719, 1678, 1513; 

1H NMR (500MHz, CDCl3) δ = 7.15 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 5.67 (s, 1 H), 

5.19 (d, J = 15.3 Hz, 1 H), 4.88 (d, J = 7.1 Hz, 1 H), 4.69 (d, J = 6.9 Hz, 1 H), 4.28 (d, J = 6.9 Hz, 

1 H), 4.24 (d, J = 15.3 Hz, 1 H), 4.01 (spt, J = 5.0 Hz, 1 H), 3.93 (dd, J = 4.0, 9.5 Hz, 1 H), 3.79 

(s, 3 H), 3.77 - 3.69 (m, 1 H), 3.69 - 3.59 (m, 4 H), 3.53 - 3.46 (m, 2 H), 3.38 - 3.28 (m, 2 H), 

2.99 (s, 3 H), 2.90 - 2.82 (m, 1 H), 2.64 - 2.55 (m, 1 H), 2.49 - 2.40 (m, 1 H), 1.95 - 1.89 (m, 2 

H), 1.88 (d, J = 1.0 Hz, 3 H), 1.83 - 1.76 (m, 1 H), 1.75 - 1.63 (m, 2 H), 1.63 - 1.51 (m, 3 H), 1.45 

- 1.36 (m, 1 H), 1.29 - 1.20 (m, 2 H), 1.14 (s, 3 H), 0.99 - 0.92 (m, 2 H), 0.88 (s, 9 H), 0.07 (s, 6 

H), 0.01 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ = 173.7, 166.7, 160.1, 159.2, 128.9, 128.7, 

116.4, 114.3, 102.8, 96.3, 90.5, 84.7, 79.3, 69.8, 66.2, 65.6, 65.4, 57.3, 55.5, 51.0, 47.8, 47.0, 

41.0, 37.9, 33.5, 32.5, 30.2, 29.5, 26.5, 26.1, 26.0, 25.1, 21.0, 18.3, 18.2, -1.3, -4.3, -4.4; HRMS 

(ES) m/z (M+Na)+ calcd 886.4391 obsd 886.4396. 
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Triol (+)-S9: To propargyl alcohol (+)-2.28 (43 mg, 0.0498 mmol) was added MeOH•HCl 

(1.5%) (0.7 mL), followed by CH2Cl2 (0.5 mL) to rinse the sides of the flask. After stirring for 3.5 

h at RT, a saturated aq. solution NaHCO3 (5 mL) was added to quench the reaction. The resulting 

mixture was extracted with CH2Cl2 (2 x 20 mL). Combined organic layers were dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified via column 

chromatography on SiO2 (80%-100% EtOAc: hexanes) to provide (+)-S9 (27 mg, 0.0436 mmol, 

88%) as a clear oil: [α]  +58.0 (c 1.0, CHCl3); IR (neat) 3423, 2945, 1651, 1513, 1442, 1395; 

1H NMR (500MHz, CDCl3) δ = 7.15 (d, J = 8.5 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 5.83 - 5.72 

(m, 1 H), 5.23 (d, J = 16.2 Hz, 1 H), 4.22 (d, J = 15.5 Hz, 1 H), 4.19 (br. s., 1 H), 4.12 - 4.05 (m, 

1 H), 4.03 (d, J = 3.4 Hz, 1 H), 3.95 (dd, J = 2.6, 8.9 Hz, 1 H), 3.80 (s, 3 H), 3.70 (s, 3 H), 3.59 - 

3.50 (m, 1 H), 3.50 - 3.43 (m, 1 H), 3.42 - 3.29 (m, 2 H), 3.19 - 3.09 (m, 1 H), 3.00 (s, 3 H), 2.81 

(d, J = 2.8 Hz, 1 H), 2.45 (q, J = 6.1 Hz, 1 H), 2.32 (quin, J = 5.5 Hz, 1 H), 2.11 (dd, J = 3.2, 12.1 

Hz, 1 H), 1.97 (d, J = 14.3 Hz, 1 H), 1.91 - 1.88 (m, 3 H), 1.66 (br. s., 2 H), 1.63 (br. s., 3 H), 1.60 

- 1.55 (m, 2 H), 1.47 - 1.39 (m, 1 H), 1.25 - 1.20 (m, 1 H), 1.15 (d, J = 6.9 Hz, 3 H); 13C NMR 

(125 MHz, CDCl3) δ = 173.5, 168.2, 160.0, 159.3, 128.8, 128.7, 117.2, 114.4, 102.7, 90.7, 79.2, 

73.6, 70.0, 66.3, 64.8, 57.1, 55.5, 51.6, 47.9, 46.9, 40.3, 37.9, 33.4, 32.6, 30.8, 29.3, 26.4, 26.1, 

24.9, 21.1; HRMS (ES) m/z (M+Na)+ calcd 642.2713 obsd 642.2715. 
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Acetonide (+)-2.29: To a solution of triol (+)-S9 (27 mg, 0.0436 mmol) in 2,2-

dimethoxypropane  (1 mL) was added acetone (0.2 mL) and a small crystal of p-TsOH•H2O. 

After the reaction mixture was stirred for 30 min at RT, a saturated aq. solution NaHCO3 (5 mL) 

was added to quench the reaction. The resulting mixture was extracted with CH2Cl2 (2 x 20 mL). 

Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo. Crude 

mixture was purified via column chromatography on SiO2 (40% EtOAc: hexanes) to provide 

acetonide (+)-2.29 (25 mg, 0.0379 mmol, 87%) as a clear oil: [α]  +27.5 (c 1.0, CHCl3); IR 

(neat) 3447, 2944, 1715, 1673, 1513, 1444, 1379; 1H NMR (500MHz, CDCl3) δ = 7.15 (d, J = 8.5 

Hz, 2 H), 6.88 (d, J = 8.7 Hz, 2 H), 5.76 - 5.63 (m, 1 H), 5.23 (d, J = 16.6 Hz, 1 H), 4.29 (dd, J = 

1.6, 7.3 Hz, 1 H), 4.22 (d, J = 15.1 Hz, 1 H), 4.11 - 4.02 (m, 1 H), 4.02 - 3.91 (m, 2 H), 3.80 (s, 3 

H), 3.68 (s, 3 H), 3.58 - 3.48 (m, 1 H), 3.42 - 3.29 (m, 2 H), 3.00 (s, 3 H), 2.88 - 2.77 (m, 1 H), 

2.71 - 2.60 (m, 1 H), 2.46 (q, J = 6.1 Hz, 1 H), 2.10 (dd, J = 5.0, 12.7 Hz, 1 H), 1.97 (s, 1 H), 1.91 

(d, J = 1.0 Hz, 3 H), 1.81 - 1.72 (m, 3 H), 1.71 - 1.65 (m, 1 H), 1.62 (s, 3 H), 1.60 - 1.56 (m, 1 H), 

1.44 (s, 3 H), 1.40 (s, 3 H), 1.25 - 1.19 (m, 1 H), 1.15 (d, J = 6.9 Hz, 3 H); 13C NMR (125 MHz, 

CDCl3) δ = 173.5, 166.8, 160.0, 159.3, 128.9, 128.7, 116.4, 114.4, 109.8, 102.7, 91.2, 81.8, 77.9, 

70.9, 69.9, 64.8, 57.1, 55.5, 51.1, 47.9, 46.9, 40.3, 37.8, 33.4, 32.5, 31.1, 29.8, 27.4, 26.6, 26.4, 

26.1, 25.4, 21.0;  HRMS (ES) m/z (M+Na)+ calcd 682.3026 obsd 682.3026. 
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Bis-Sem Ether (+)-S10:  To a solution of alcohol (+)-2.28 (208 mg, 0.241 mmol) and i-PrNEt2 

in CH2Cl2 (0.8 mL) was added SEMCl dropwise. After 36 hr, 0.5 N HCl (5 mL) was added. 

Aqueous layer was extracted with CH2Cl2 (3 x 5 mL). Combined organic layers were dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified via column 

chromatography on SiO2 (12% EtOAc: hexanes) to provide SEM ether (+)-S10 (210 mg, 0.211 

mmol, 88%) as a clear oil.  [α]  +98.1 (c 0.3, CHCl3); IR (neat) 2951, 2895, 1719, 1681, 1513, 

1456; 1H NMR (500MHz, CDCl3) δ = 7.15 (d, J = 8.1 Hz, 2 H), 6.87 (d, J = 8.1 Hz, 2 H), 5.65 (s, 

1 H), 5.19 (d, J = 15.3 Hz, 1 H), 4.91 (d, J = 7.1 Hz, 1 H), 4.85 (d, J = 8.3 Hz, 1 H), 4.75 (d, J = 

7.3 Hz, 1 H), 4.66 (d, J = 7.1 Hz, 1 H), 4.45 (d, J = 4.8 Hz, 1 H), 4.24 (d, J = 16.4 Hz, 1 H), 4.02 

(spt, J = 4.6 Hz, 1 H), 3.94 (dd, J = 3.6, 9.1 Hz, 1 H), 3.80 (s, 3 H), 3.66 (s, 7 H), 3.57 - 3.44 (m, 

2 H), 3.39 - 3.27 (m, 2 H), 2.98 (s, 3 H), 2.86 - 2.77 (m, 1 H), 2.71 - 2.61 (m, 1 H), 2.48 - 2.39 

(m, 1 H), 1.89 (br. s., 1 H), 1.90 - 1.85 (m, 3 H), 1.86 - 1.76 (m, 1 H), 1.55 (br. s., 6 H), 1.44 - 

1.36 (m, 1 H), 1.25 - 1.20 (m, 1 H), 1.14 (d, J = 6.7 Hz, 3 H), 0.97 - 0.92 (m, 4 H), 0.89 (s, 9 H), 

0.07 (s, 6 H), 0.03 - -0.01 (m, 18 H); 13C NMR (125 MHz, CDCl3) δ = 173.8, 166.6, 160.4, 159.2, 

128.9, 128.7, 116.2, 114.4, 102.8, 95.6, 92.4, 91.3, 79.7, 77.2, 69.8, 68.4, 65.6, 65.5, 65.4, 57.2, 
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55.5, 51.0, 47.8, 47.0, 41.0, 37.9, 33.6, 32.7, 29.9, 29.7, 26.5, 26.2, 26.1, 25.2, 21.2, 18.3, -1.2, -

4.2, -4.4; HRMS (ES) m/z (M+Na)+ calcd 1016.5205 obsd 1016.5207. 

 

 

Methyl Ester (+)-S11: To a solution of bis-SEM ether (+)-S11 (346 mg, 0.348 mmol) in THF 

(1.5 mL) was added a premixed solution of TBAF in THF (1 M, 3.5 mL, 3.5 mmol) and acetic 

acid (52 mg, 0.87 mmol) at room temperature. After 14 hr, a saturated aq solution NH4Cl (10 mL) 

was added and biphasic mixture was extracted with CH2Cl2 (3 x 40 mL). Combined organic 

layers were dried over Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified 

via column chromatography on SiO2 (40% EtOAc: hexanes) to provide Methyl Ester (+)-S11 

(305 mg, 0.347 mmol, near quant.) as a clear oil. [α]  +50.8 (c 0.2, CHCl3); IR (neat) 3458, 

2950, 1718, 1675, 1513, 1249; 1H NMR (500MHz, CDCl3) δ = 7.14 (d, J = 8.5 Hz, 2 H), 6.87 (d, 

J = 8.5 Hz, 2 H), 5.66 (s, 1 H), 5.23 (d, J = 16.1 Hz, 1 H), 4.90 (d, J = 6.7 Hz, 1 H), 4.85 (d, J = 

6.7 Hz, 1 H), 4.74 (d, J = 7.1 Hz, 1 H), 4.66 (d, J = 6.5 Hz, 1 H), 4.46 (d, J = 4.0 Hz, 1 H), 4.21 

(d, J = 15.5 Hz, 1 H), 4.11 - 4.02 (m, 1 H), 3.95 (dd, J = 3.3, 9.2 Hz, 1 H), 3.80 (s, 3 H), 3.66 (s, 7 

H), 3.57 - 3.48 (m, 2 H), 3.41 - 3.29 (m, 2 H), 3.00 (br. s., 3 H), 2.80 (dt, J = 6.1, 11.9 Hz, 1 H), 

2.69 (dt, J = 5.7, 10.9 Hz, 1 H), 2.49 - 2.40 (m, 1 H), 2.10 (dd, J = 5.0, 12.9 Hz, 1 H), 1.96 (d, J = 

12.1 Hz, 1 H), 1.88 (s, 3 H), 1.84 - 1.74 (m, 2 H), 1.68 - 1.55 (m, 4 H), 1.45 - 1.37 (m, 1 H), 1.22 

- 1.18 (m, 1 H), 1.14 (d, J = 6.7 Hz, 3 H), 0.97 - 0.90 (m, 4 H), 0.83 - 0.78 (m, 1 H), 0.01 (d, J = 
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2.4 Hz, 18 H); 13C NMR (125 MHz, CDCl3) δ = 173.5, 166.8, 160.4, 159.3, 128.8, 128.7, 116.2, 

114.4, 102.7, 95.6, 92.4, 91.3, 79.6, 69.9, 68.4, 65.6, 65.6, 64.7, 57.0, 55.5, 51.0, 47.8, 40.3, 37.8, 

33.5, 32.6, 29.9, 29.7, 26.4, 26.1, 25.3, 21.2, 18.3, -1.2, -1.2; HRMS (ES) m/z (M+H)+ calcd 

880.4521 obsd 880.4525. 

 

 

 

Seco-Acid (+)-2.30: To a vigorously stirring solution of methyl ester (+)-S12 (24 mg, 0.027 

mmol) in EtOH (2.5 mL), at room temperature was added 1 M NaOH (1 mL). Reaction mixture 

was then stirred at 50 °C for 24 hr. EtOH was removed in vacuo, 1N HCl (5 mL) was added and 

the mixture was extracted with CH2Cl2 (3 x 10 mL). Combined organic layers were dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified by filtering through a 

SiO2 plug with EtOAc to yield seco-acid (+)-2.30 (23 mg, 0.027 mmol, 97%) as a clear oil: [α]  

+56.0 (c 0.5, CHCl3); IR (neat) 3420, 2951, 2891, 1679, 1513, 1249; 1H NMR (500MHz, CDCl3) 

δ = 7.14 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.5 Hz, 2 H), 5.68 (s, 1 H), 5.22 (d, J = 16.1 Hz, 1 H), 

4.90 (d, J = 7.5 Hz, 1 H), 4.84 (d, J = 8.7 Hz, 1 H), 4.73 (d, J = 7.3 Hz, 1 H), 4.66 (d, J = 7.5 Hz, 

1 H), 4.45 (d, J = 5.9 Hz, 1 H), 4.21 (d, J = 13.5 Hz, 1 H), 4.10 - 4.01 (m, 1 H), 3.95 (dd, J = 3.8, 

9.5 Hz, 1 H), 3.79 (s, 3 H), 3.76 - 3.59 (m, 4 H), 3.53 (d, J = 6.1 Hz, 2 H), 3.42 - 3.28 (m, 2 H), 

2.98 (s, 3 H), 2.84 - 2.75 (m, 1 H), 2.75 - 2.65 (m, 1 H), 2.50 - 2.40 (m, 1 H), 2.13 - 2.07 (m, 1 

O

PMBN
S

OH

OMe

O

SEMO
OSEM

OH

O

21
D



	   76	  

H), 2.00 - 1.94 (m, 1 H), 1.95 - 1.88 (m, 3 H), 1.89 - 1.80 (m, 1 H), 1.80 - 1.49 (m, 5 H), 1.45 - 

1.39 (m, 1 H), 1.23 - 1.18 (m, 1 H), 1.17 - 1.11 (m, 3 H), 0.98 - 0.89 (m, 4 H), 0.01 (d, J = 3.6 Hz, 

18 H); 13C NMR (125 MHz, CDCl3) δ = 173.7, 170.1, 163.0, 159.2, 128.8, 128.7, 116.0, 114.4, 

102.7, 95.6, 92.4, 91.4, 79.6, 69.8, 68.5, 65.6, 65.6, 64.8, 60.6, 57.1, 55.5, 47.8, 46.9, 40.0, 37.6, 

33.4, 29.8, 29.8, 26.4, 26.1, 25.6, 21.2, 21.2, 18.2, 14.4, -1.2, -1.2; HRMS (ES) m/z (M-H)- calcd 

864.4208 obsd 864.4224. 

 

Lactone (+)-2.32: To a solution of seco-acid (+)-2.30 (139 mg, 0.1605 mmol), and triphenyl-

phosphine (210 mg, 0.8023 mmol) in toluene (16 mL). Reaction mixture was cooled to 0 °C, and 

DIAD was added dropwise. After 14 hr, SiO2 was added and solvent was removed in vacuo. The 

crude reaction (adsorbed on SiO2) was purified via column chromatography on SiO2 (20% 

EtOAc: hexanes) to provide macrolactone (140 mg, mixture of macrolactone and DIAD-H2) as a 

clear oil that was used directly in the next reaction.  

To a solution of the macrolactone from the previous step (70 mg) in MeCN (6.4 mL) and H2O 

(1.6 mL), cooled to 0 °C, was added CAN (176 mg, 0.321 mmol) in one portion, turning reaction 

mixture orange. Ice bath was removed after the addition and the reaction mixture was stirred 

vigorously. After 1.5 hr, a saturated aq solution NaHCO3 (10 mL) was added and aqueous 

solution was extracted with CH2Cl2 (3 x 30 mL).  Combined organic layers were dried over 

Na2SO4, decanted and concentrated in vacuo. Crude mixture was purified via column 
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chromatography on SiO2 (25 % EtOAc: hexanes) to provide lactone (+)-2.32 (21 mg, 0.029 

mmol, 36 % for two steps) as an oil. : [α]  +20.7 (c 0.2, CHCl3); IR (neat) 3358, 3193, 2924, 

2853, 1684, 1463, 1377, 1263; 1H NMR (500MHz, CDCl3) 5.68 (s, 1 H), 5.45 (s, 1 H), 5.10 (br. 

s., 1 H), 4.91 (t, J = 6.3 Hz, 2 H), 4.76 (d, J = 8.5 Hz, 1 H), 4.68 (d, J = 6.7 Hz, 1 H), 4.26 (d, J = 

8.7 Hz, 1 H), 4.15 - 4.03 (m, 2 H), 3.80 - 3.67 (m, 2 H), 3.63 - 3.52 (m, 3 H), 3.40 (dd, J = 8.7, 

12.7 Hz, 1 H), 3.36 - 3.29 (m, 1 H), 3.28 (s, 3 H), 2.72 (dt, J = 5.2, 10.7 Hz, 2 H), 2.34 (dt, J = 

5.2, 11.7 Hz, 1 H), 2.28 (d, J = 15.7 Hz, 1 H), 1.96 - 1.91 (m, 1 H), 1.88 (s, 2 H), 1.82 - 1.74 (m, 2 

H), 1.71 - 1.63 (m, 2 H), 1.58 - 1.48 (m, 2 H), 1.33 - 1.28 (m, 1 H), 1.18 (d, J = 6.7 Hz, 4 H), 1.00 

- 0.89 (m, 5 H), 0.03 (d, J = 10.5 Hz, 18 H). 13C NMR (125 MHz, CDCl3) δ = 174.1, 167.3, 

154.4, 118.5, 99.4, 96.3, 92.8, 90.3, 80.5, 78.8, 70.7, 66.9, 66.0, 65.6, 63.7, 57.7, 48.6, 35.9, 33.0, 

31.6, 30.9, 30.8, 29.9, 29.7, 24.6, 24.3, 21.5, 18.3, 18.2, HRMS (ES) m/z (M+Na)+ calcd 

750.3527 obsd 750.3529. 

 

Seco-Acid S12: To a solution of acetonide (+)-2.29 (13 mg, 0.0227 mmol) in ethanol (1.7 mL) 

was added an aq. solution of NaOH (1M, 0.7 mL) dropwise. After stirring overnight at 50 °C, the 

reaction mixture was concentrated under reduced pressure to give ca. 5 mL. An aq. solution of 

HCl (1 N, 5 mL) was then added to the reaction and the resulting mixture was extracted with 

CH2Cl2 (3 x 10 mL). Combined organic layers were dried over Na2SO4, decanted and 
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concentrated in vacuo. Crude mixture was purified via SiO2 plug (EtOAc) to provide seco-acid 

S12 (13 mg, 0.0227 mmol, near quant.) as a clear oil that was used in the next reaction without 

further purification. 

 

 

PMB-Macrolactone S13:  To a solution of seco-acid S12 (72 mg, 0.112 mmol) in toluene  (11 

mL) was added Ph3P (147 mg, 0.56 mmol) followed by the addition of a 60 % solution of DEAD 

in toluene (227 mg, 0.78 mmol) dropwise at RT.  After the reaction was stirred overnight, SiO2 

was added (ca. 3 g) and the solvent was removed in vacuo. Crude mixture was purified via 

column chromatography on SiO2 (17.5%-20% EtOAc: hexanes) to provide macrolactone S13 as a 

mixture contaminated with reduced DEAD (90 mg) that was used in the next reaction without 

further purification.  
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Macrolactone (+)-2.34: The next reaction was split into three batches.  

Batch 1: To a solution of the macrolactone S13 mixture from the previous step (10 mg) in MeCN 

(1.3 mL) and H2O (0.3 mL), was added CAN (35 mg, 0.064 mmol) in one portion, turning 

reaction mixture orange. The reaction mixture was stirred vigorously at RT. After 1 h, a saturated 

aq solution NaHCO3 (10 mL) was added and aqueous solution was extracted with CH2Cl2 (3 x 5 

mL).  Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo.  

Batch 2: To a solution of the macrolactone S13 from the previous step (34 mg) in MeCN (4.3 

mL) and H2O (1.1 mL), was added CAN (119 mg, 0.217 mmol) in one portion, turning reaction 

mixture orange. The reaction mixture was stirred vigorously at RT. After 1 h 40 min, a saturated 

aq solution NaHCO3 (10 mL) was added and aqueous solution was extracted with CH2Cl2 (3 x 10 

mL).  Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo.  

Batch 3: To a solution of the macrolactone S13 from the previous step (46 mg) in MeCN (5.6 

mL) and H2O (1.4 mL), was added CAN (161 mg, 0.293 mmol) in one portion, turning reaction 

mixture orange. The reaction mixture was stirred vigorously at RT. After ca. 1 h 30 min, a 

saturated aq solution NaHCO3 (10 mL) was added and aqueous solution was extracted with 

CH2Cl2 (3 x 10 mL).  Combined organic layers were dried over Na2SO4, decanted and 

concentrated in vacuo. 

The crude mixtures from batches 1, 2 and 3 were combined and then purified via column 

chromatography on SiO2 (17% EtOAc: hexanes) to provide lactone (+)-2.34 (20 mg, 0.0394 

mmol, 35% over two steps) as a film: [α]  +105.1 (c 0.58, CHCl3); IR (neat) 3273, 2935, 1697, 

1456, 1378; 1H NMR (500MHz, CDCl3) δ = 5.66 (s, 1 H), 5.53 (s, 1 H), 5.18 - 5.14 (m, 1 H), 

4.19 (d, J = 9.1 Hz, 1 H), 4.15 (t, J = 11.5 Hz, 1 H), 4.07 (t, J = 7.9 Hz, 1 H), 3.88 - 3.78 (m, 1 H), 

21
D
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3.44 - 3.36 (m, 1 H), 3.36 - 3.30 (m, 1 H), 3.29 (s, 3 H), 2.82 - 2.74 (m, 1 H), 2.70 (dt, J = 5.4, 

11.7 Hz, 1 H), 2.53 (dt, J = 5.2, 11.3 Hz, 1 H), 2.26 (d, J = 14.5 Hz, 1 H), 1.90 (d, J = 0.8 Hz, 3 

H), 1.84 (m, 4 H), 1.64 (s, 3 H), 1.61 - 1.53 (m, 2 H), 1.45 (s, 3 H), 1.41 (s, 3 H), 1.19 (d, J = 6.9 

Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ = 174.2, 166.8, 154.9, 118.6, 109.9, 99.4, 90.7, 82.5, 

77.9, 70.7, 66.7, 64.7, 57.7, 48.7, 36.1, 32.5, 31.0, 30.9, 30.9, 29.7, 29.3, 27.3, 26.7, 24.7, 24.5, 

20.8; HRMS (ES) m/z (M+Na)+ calcd 530.2188 obsd 530.2184 

 

Triol (+)-2.33: To a solution of macrolactone (+)-2.34 (7mg, 0.0138 mmol) in acetic acid (2.5 

mL) and H2O (1.1 mL) was added camphor sulfonic acid (2 mg). The reaction mixture was stirred 

at 50 °C. After 1 h, TLC analysis indicated the reaction to be complete. Acetic acid was removed 

in vacuo, a saturated aq. solution NaHCO3 (10 mL) was added and the cloudy aqueous mixture 

was extracted with CH2Cl2 (3 x 20 mL).  Combined organic layers were dried over Na2SO4, 

decanted and concentrated in vacuo. Crude mixture was purified via column chromatography on 

SiO2 (75% EtOAc: hexanes) to provide triol (+)-2.33 (5.4 mg, 0.0138 mmol, 86%) as a white 

foam: [α]  +90.3 (c 0.39, CHCl3); IR (neat) 3395, 2924, 1681, 1279; 1H NMR (500MHz, 

CDCl3) δ = 6.02 (s, 1 H), 5.71 (s, 1 H), 5.21 (s, 1 H), 4.27 (t, J = 11.6 Hz, 1 H), 4.09 (d, J = 7.7 

Hz, 1 H), 3.85 (t, J = 7.8 Hz, 1 H), 3.48 (t, J = 8.5 Hz, 1 H), 3.42-3.31 (m, 2 H), 2.84 (td, J = 5.3, 

11.4 Hz, 1 H), 2.70-2.63 (m, 1 H), 2.35 (td, J = 5.0, 12.1 Hz, 1 H), 2.17 (d, J = 14.6 Hz, 1 H), 

1.99 (d, J = 13.5 Hz, 1H), 1.90 (s, 3 H), 1.83-1.48 (m, 8 H), 1.3-1.27 (m, 1 H), 1.25 (bs, 2 H), 

O

HN
S

O

OH

O

O

HO OH
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1.17 (d, J = 7.0 Hz, 3 H) ; 13C NMR (125 MHz, CDCl3) δ = 175.8, 166.8, 156.0, 117.8, 96.6, 

90.4, 80.0, 75.9, 68.3, 66.9, 62.8, 62.7, 35.5, 32.5, 32.2, 32.0, 30.8, 29.9, 29.2, 24.5, 23.7, 21.3; 

HRMS (ES) m/z (M+Na)+ calcd 476.1719 obsd 476.1711 

 

(+)-18-epi-latrunculol A (2.1): To a solution of triol (+)-2.33 (2 mg, 0.0044 mmol) in EtOAc 

(0.3 mL) was added Pd on BaCO3 (20 mg). The reaction flask was evacuated and refilled with H2 

(3 x) and stirred at room temperature under a balloon of H2. After 4 h 30 min, a sample of 

reaction mixture was filtered through celite and LCMS analysis indicated reaction was complete. 

The reaction mixture was filtered through a pad of Celite with EtOAc and CH2Cl2, and the 

solvent was removed in vacuo. Residual catalyst was observed so the crude mixture was filtered 

through a clean pad of Celite with CH2Cl2 to afford (+)-2.1 (2 mg, 0.0044 mmol, near quant.) as a 

white foam: [α] +21.3 (c 0.12, MeOH); IR (neat, cm-1) 3418, 2926, 2855, 1681, 1444, 1383, 

1289; 1H NMR (500MHz, CD3COCD3) δ = 6.58 (s, 1H), 5.63 (t, J=10.5 Hz, 1H), 5.54 (s, 1H), 

5.15 (bs, 1H), 5.05 (t, J=10.9 Hz, 1H), 4.87 (s, 1H), 4.39-4.28 (m, 2H), 3.91 (t, J=7.8 Hz, 1H), 

3.58 (d, J=6.2Hz, 1H), 3.46 (d, J=7.4 Hz, 1H), 3.43 (dd, J=2.4 Hz, 8.1Hz, 2H), 3.40-3.33 (m, 

1H), 2.79-2.73 (m, 1H), 2.68 (td, J=3.6 Hz, 11.8 Hz, 1H), 1.53-1.40 (m, 2 H), 1.10-1.02 (m, 1H), 

.93 (d, J=6.5Hz, 3H); 13C NMR (125 MHz, CD3COCD3)5 δ = 174.1, 166.7, 158.8, 136.6, 132.4, 

118.7, 97.3, 76.7, 70.2, 68.1, 63.9, 62.5, 36.8, 35.4, 33.2, 32.5, 32.2, 31.9, 29.76, 29.16, 25.6, 23.2 

O
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O

OH
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; HRMS (ES) m/z (M+H)- calcd 266.0487 obsd 266.0475. HRMS (ES) m/z (M+Cl)- calcd 

478.1875 obsd 478.1861. 

 

Dihydropyran 3.12: To a solution of diol (+)-3.7 (5 mg, 0.012 mmol) in MeOD-d4 (0.75 mL, 

0.02 M) was added pTsOH•H2O (1 mg, 0.005 mmol). The reaction was transferred to an NMR 

tube and irradiated at 355 nm for 1 h and 40 min. 1H-NMR analysis indicated a 3.8:1 mixture of 

diastereomeric dihydropyran 3.12. The structure was assigned spectroscopically via 1H, 13C, 

COSY, and HSQC analysis. 1H NMR (500 MHz, CDCl3)7 δ = 71.6 (d, J = 8.3 Hz, 2 H), 6.85 (d, J 

= 8.9 Hz, 2 H), 5.00 (dd, J = 1.2, 5.3 Hz, 1 H), 4.90 (d, J = 14.8 Hz, 1 H), 4.04 (dd, J = 5.5, 8.4 

Hz, 1 H), 3.87 (d, J = 14.6 Hz, 1 H), 3.81 (s, 3 H), 3.72-3.69 (m, 1 H), 3.55-3.44 (m, 3 H), 3.32 

(dd, J = 8.3, 11.1 Hz, 1 H), 3.28-3.23 (m, 1 H), 1.94 (d, J = 14.6 Hz, 1 H), 1.69-1.56 (m, 7 H), 

1.42 (dd, J = 4.2, 12.2 Hz, 1 H), 1.39 (dd, J = 3.9, 12.7 Hz, 1 H), 1.20-1.15 (m, 1 H), 0.95 (d, J = 

6.6 Hz, 4 H). 13C NMR (125 MHz, CDCl3) δ = 172.6, 159.4, 153.2, 151.2, 130.2, 129.9, 128.8, 

128.6, 128.5, 114.3, 114.2, 102.1, 99.6, 69.0, 68.3, 61.0, 55.5, 46.6, 35.9, 35.8, 33.1, 32.4, 29.6, 

28.8, 16.8, 16.7, 1.2   HRMS (ES) m/z (M+Na)+ calcd 425.2190 obsd 425.2196. 

 

 

(±)-1-Phenyl-hex-5-en-3-ol (S15):8 To a solution of 3-phenyl propionaldehyde (1.34 g, 1.3 mL, 

10.0 mmol) in ether (33 mL) was added a solution of allyl magnesiumchloride in ether (2 M, 7.5 

mL, 15 mmol) at 0°C. The mixture was warmed to room temperature, stirred for 2 h, diluted with 

O

PMBN
S

OCD3

O

HO

OH
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ether and poured into saturated aqueous solution of NH4Cl (ca. 20 mL). The organic layer was 

separated, and the aqueous layer was extracted with EtOAc (3 x, ca 20 mL). The combined 

organic extracts were dried over Na2SO4, decanted, and the concentrated in vacuo. Purification of 

the crude reaction mixture via flash chromatography on silica gel (hexane/EtOAc 4:1) gave 1-

Phenyl-hex-5-en-3-ol (S15) (1.39 g, 7.89 mmol, 79%) as colorless oil. 1H NMR (500 MHz, 

CDCl3): δ = 7.32-7.29 (m, 2 H), 7..23-7.19 (m, 3 H), 5.88-5.79 (m, 1 H), 5.18-5.15 (m, 2 H), 

3.72-3.67 (m, 1 H), 2.86-2.80 (m, 1 H), 2.74-2.68 (m, 1 H), 2.37-2.32 (m, 1 H), 2.23-2.18 (m, 1 

H), 1.83-1.78 (m, 2 H), 1.66 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 142.3, 134.8, 128.6, 

128.6, 126.0, 118.5, 70.1, 42.3, 38.9, 32.3.  

 

 

 

 (±)-(E)-6-Hydroxy-8-phenyloct-3-en-2-one (3.13):9 To a solution of 1-Phenyl-hex-5-en-3-ol 

(S15) (1.20 g, 6.8 mmol) in dichloromethane (34 mL), but-3-en-2-one  (2.38 g, 3 mL, 33.9 mmol, 

5 eq, filtered through NaHCO3 pad) and 2nd Generation Grubbs-Hoveyda catalyst (128 mg, 0.2 

mmol, 3 mol%) were added sequentially. The reaction mixture was stirred overnight at room 

temperature, added with excess activated charcoal and filtered through celite, which was washed 

with EtOAc (50 mL). Then combined organic phases were concentrated in vacuo. Purification of 

the crude reaction mixture via flash chromatography on silica gel (hexane/EtOAc 4:1 to 3:2) gave 

3.13 (1.48 g, 6.78 mmol, quant.) as dark brown oil. 1H NMR (500 MHz, CDCl3) δ= 7.32-7.29 (m, 

2 H), 7.22-7.20 (m, 3 H), 6.83 (dt, J = 14.7, 7.1 Hz, 1 H), 6.16 (d, J = 16.0 Hz, 1 H), 3.84-3.79 

(m, 1 H), 2.85-2.79 (m, 1 H), 2.74-2.68 (m, 1 H), 2.49-2.44 (m, 1 H), 2.34-2.36 (m, 1 H), 2.26 (s, 

3 H), 1.85-1.81 (m, 2 H), 1.65 (br, 1 H). 13C NMR (125 MHz, CDCl3) δ= 198.6, 144.1, 141.7, 

133.8, 128.7, 128.6, 126.3, 70.1, 40.7, 39.0, 32.2, 27.2.  

OHO
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(±)-2, 4-dimethoxy-2-methyl-6-phenethyltetrahydro-2H-pyran (3.14): To a solution of (E)-6-

hydroxy-8-phenyloct-3-en-2-one (3.13) (124 mg, 0.56 mmol) and MeOH (0.6 mL, 14 mmol, 25 

eq) in THF (27 mL) was added p-TsOH (44 mg, .22 mmol, 40 mol%) at 20 oC. After flushing 

with N2, the reaction mixture was irradiated with 355nm UV while stirring for 2.5 hr. A saturated 

aq. solution of NaHCO3 (5 mL) was added followed by extraction with EtOAc (3 x, 10 mL). 

Combined organic layers were dried over Na2SO4, decanted and concentrated in vacuo. The crude 

mixture was purified via column chromatography on SiO2 (10% EtOAc in Hexane) to provide 

3.14 (120 mg, 0.45 mmol, 82%) as colorless oil.  

OR 

(±)-2, 4-dimethoxy-2-methyl-6-phenethyltetrahydro-2H-pyran (3.14): To a solution of (E)-6-

hydroxy-8-phenyloct-3-en-2-one (3.13) (133 mg, 0.61 mmol) in MeOH (31 mL) was added p-

TsOH (46 mg, 0.24 mmol, 40 mol%) at 20 °C. After flushed with N2, the reaction mixture was 

irradiated with 355nm UV while stirring for 3 hr. A saturated aq. solution of NaHCO3 (5 mL) was 

added followed by extraction with EtOAc (3 x, 10 mL). Combined organic layers were dried over 

Na2SO4, decanted and concentrated in vacuo. The crude mixture was purified via column 

chromatography on SiO2 (10% EtOAc in Hexane) to provide 3.14 (146 mg, 0.55 mmol, 91%) as 

colorless oil. 1H NMR (500 MHz, CDCl3) δ= 7.31-7.28 (m, 2 H), 7.23-7.18 (m, 3 H), 3.65 (sep, J 

= 4.4 Hz, 1 H), 3.61-3.56 (m, 1 H), 3.36 (s, 3 H), 3.18 (s, 3 H), 2.91-2.85 (m, 1 H), 2.70-2.64 (m, 

1 H), 2.24-2.20 (m, 1 H), 2.05-2.02 (m, 1 H), 1.94-1.87 (m, 1 H), 1.84-1.77 (m, 1 H), 1.38 (s, 3 

H), 1.30 (t, J = 11.3 Hz, 1 H), 1.14 (q, J= 11.7 Hz, 1 H). 13C NMR (125 MHz, CDCl3) δ= 142.3, 

128.5, 125.9, 99.7, 73.5, 68.6, 55.6, 47.8, 41.7, 37.8, 37.2, 32.1, 23.0 ppm. IR (neat, cm-1): ν = 
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2986, 2941, 2825, 1603, 1496, 1453, 1380 cm–1. HRMS (CI, [M+Na]+) calcd for C16H24O3 

287.1725, found 287.1622. 

 

(±)-2-methoxy-2-methyl-6-phenethyltetrahydro-2H-pyran-4-ol (3.16): To a solution of (E)-6-

hydroxy-8-phenyloct-3-en-2-one (S15) (135mg, 0.56 mmol) and BnOH (1.6 mL, 15 mmol, 

25eq) in THF (29 mL) was added p-TsOH (48 mg, 0.22 mmol, 40mol%) at 20 oC. After flushed 

with N2, the reaction mixture was irradiated with 355nm UV while stirring for 2.5 hr. The THF 

was removed in vacuo, and then MeOH (29 mL) and 10% Pd/C (84mg, 5 wt% to BnOH) was 

added. After stirring under an atmosphere of H2 (balloon) at room temperature for 5 hr, the 

mixture was filtered through celite, concentrated in vacuo and purified via column 

chromatography on SiO2 (40% EtOAc in Hexane) to provide 3.16 (110 mg, 0.44 mmol, 71%) as 

colorless oil. 1H NMR (500 MHz, C6D6) δ= 7.18-7.17 (m, 2 H), 7.11-7.06 (m, 3 H), 4.01 (sep, J = 

4.6 Hz, 1 H), 3.45-3.40 (m, 1 H), 3.00 (s, 3 H), 2.87-2.81 (m, 1 H), 2.58-2.52 (m, 1 H), 2.10-2.07 

(m, 1 H), 1.86-1.78 (m, 1 H), 1.67-1.58 (m, 1 H), 1.24-1.29 (m, 4 H), 1.06 (t, J = 11.3 Hz, 1 H) 

ppm. 13C NMR (125 MHz, C6D6) δ= 143.0, 129.0, 126.4, 128.4, 100.0, 69.0, 65.0, 47.8, 45.9, 

41.4, 38.5, 32.8, 24.2 ppm. δ= IR (neat, cm-1): ν = 3392, 3016, 2942, 2825, 1603, 1496, 1453, 

1378 cm–1. Awaiting HRMS data. 
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Appendix 1: Spectroscopic Data 
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Figure A2.47. COSY Spectrum (500 MHz) of Compound (+)-2.29 in CDCl3 
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Figure A2.48. NOESY Spectrum (500 MHz) of Compound (+)-2.29 in CDCl3 
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Figure A3.3. COSY Spectrum of Compound 3.12 in CDCl3 
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Figure A3.4. HSQC Spectrum of Compound 3.12 in CDCl3 
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X-ray Structure Determination of Compound (+)-2.12 

Compound (+)-2.12, C16H22N2SO4, crystallizes in the orthorhombic space group P212121 

(systematic absences h00:  h=odd, 0k0:  k=odd, and 00l:  l=odd) with a=5.13380(10)Å, 

b=15.8134(4)Å, c=20.2951(5)Å, V=1647.61(7)Å3, Z=4, and dcalc=1.364 g/cm3 . X-ray intensity 

data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated 

Mo-Kα radiation (λ=0.71073 Å) at a temperature of 143(1)K. Preliminary indexing was performed 

from a series of thirty-six 0.5° rotation frames with exposures of 20 seconds. A total of 1454 

frames were collected with a crystal to detector distance of 37.595 mm, rotation widths of 0.5° 

and exposures of 20 seconds:  

scan type 2θ ω φ χ frames 

φ -15.50 258.48 -343.84 19.46 715 

φ 19.50 59.55 -11.29 -26.26 739 

 Rotation frames were integrated using SAINTi, producing a listing of unaveraged F2 and 

σ(F2) values which were then passed to the SHELXTLii program package for further processing 

and structure solution. A total of 21759 reflections were measured over the ranges 2.01 ≤ θ ≤ 

25.06°, -6 ≤ h ≤ 6, -18 ≤ k ≤ 18, -23 ≤ l ≤ 24 yielding 2910 unique reflections (Rint = 0.0230). The 

intensity data were corrected for Lorentz and polarization effects and for absorption using 

SADABSiii (minimum and maximum transmission 0.6850, 0.7452). 

The structure was solved by direct methods (SHELXS-97iv). Refinement was by full-

matrix least squares based on F2 using SHELXL-97.v All reflections were used during refinement. 

The weighting scheme used was w=1/[σ2(Fo2 )+ (0.0562P)2 + 0.6677P] where P = (Fo 2 + 2Fc2)/3. 

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding 

model.  Refinement converged to R1=0.0328 and wR2=0.0917 for 2779 observed reflections for 

which F > 4σ(F) and R1=0.0348 and wR2=0.0936 and GOF =1.067 for all 2910 unique, non-zero 

reflections and 212 variables.vi The maximum Δ/σ in the final cycle of least squares was 0.000 
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and the two most prominent peaks in the final difference Fourier were +0.891 and -0.258 e/Å3. 

Table A-2.1.1. lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3.  

Anisotropic thermal parameters are in Table 4.  Tables 5. and 6. list bond distances and bond 

angles.  Figure A-2.1.1. is an ORTEPvii representation of the molecule with 30% probability 

thermal ellipsoids displayed. 

 

Figure A-2.1.1. ORTEP drawing of (+)-2.12 with 30% probability thermal ellipsoids. 
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Table A-2.1.1.  Summary of Structure Determination of Compound (+)-2.12 

Empirical formula  C16H22N2SO4 

Formula weight  338.42 

Temperature  143(1) K 

Wavelength  0.71073 Å 

Crystal system  orthorhombic 

Space group  P212121  

Cell constants:   

a  5.13380(10) Å 

b  15.8134(4) Å 

c  20.2951(5) Å 

Volume 1647.61(7) Å3 

Z 4 

Density (calculated) 1.364 Mg/m3 

Absorption coefficient 0.218 mm-1 

F(000) 720 

Crystal size 0.30 x 0.15 x 0.03 mm3 

Theta range for data collection 2.01 to 25.06° 

Index ranges -6 ≤ h ≤ 6, -18 ≤ k ≤ 18, -23 ≤ l ≤ 24 

Reflections collected 21759 

Independent reflections 2910 [R(int) = 0.0230] 

Completeness to theta = 25.06° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.6850 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2910 / 0 / 212 

Goodness-of-fit on F2 1.067 

Final R indices [I>2sigma(I)] R1 = 0.0328, wR2 = 0.0917 

R indices (all data) R1 = 0.0348, wR2 = 0.0936 

Absolute structure parameter 0.01(8) 

Largest diff. peak and hole 0.891 and -0.258 e.Å-3 
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Table A-2.1.2. Refined Positional Parameters for Compound (+)-2.12 

  Atom x y z Ueq, Å2 

C1 1.0524(4) 0.62084(14) 0.33835(10) 0.0279(5) 

C2 0.7930(4) 0.66507(12) 0.24772(10) 0.0208(4) 

C3 0.6820(4) 0.57638(13) 0.25899(11) 0.0264(5) 

C4 0.9657(4) 0.66593(12) 0.18627(11) 0.0215(4) 

C5 0.8329(4) 0.65989(13) 0.11968(10) 0.0235(4) 

C6 0.9336(5) 0.72774(13) 0.07314(9) 0.0255(4) 

C7 0.5778(5) 0.86525(16) 0.17121(13) 0.0391(6) 

C8 0.9230(6) 0.87532(15) 0.04552(12) 0.0377(6) 

C9 1.0274(4) 0.77284(14) 0.31757(11) 0.0283(5) 

C10 0.8332(4) 0.82437(13) 0.35701(10) 0.0234(4) 

C11 0.8233(5) 0.91214(14) 0.34929(10) 0.0278(5) 

C12 0.6528(4) 0.96067(13) 0.38572(10) 0.0274(5) 

C13 0.4850(4) 0.92319(13) 0.43070(10) 0.0242(5) 

C14 0.4946(4) 0.83623(13) 0.43957(10) 0.0244(5) 

C15 0.6676(4) 0.78818(13) 0.40261(10) 0.0250(5) 

C16 0.1490(5) 0.93992(15) 0.51089(11) 0.0327(5) 

N1 0.9422(3) 0.68590(11) 0.30617(8) 0.0239(4) 

N2 0.7949(4) 0.80715(12) 0.08224(9) 0.0337(5) 

O1 1.2150(4) 0.62468(12) 0.38164(8) 0.0414(4) 

O2 1.2001(3) 0.66794(10) 0.19108(8) 0.0278(3) 

O3 0.8202(3) 0.82747(10) 0.15091(8) 0.0346(4) 

O4 0.3192(3) 0.97644(9) 0.46304(8) 0.0302(4) 

S1 0.92494(11) 0.52264(3) 0.30868(3) 0.03006(15) 

Ueq=1/3[U11(aa*)2+U22(bb*)2+U33(cc*)2+2U12aa*bb*cos γ+2U13aa*cc*cos β+2U23bb*cc*cosα] 
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Table A-2.1.3. Positional Parameters for Hydrogens in Compound (+)-2.12 

  Atom x y z Uiso, Å2 

H2 0.6502 0.7056 0.2424 0.028 

H3a 0.6563 0.5473 0.2174 0.034 

H3b 0.5167 0.5792 0.2820 0.034 

H5a 0.6463 0.6664 0.1253 0.031 

H5b 0.8649 0.6045 0.1008 0.031 

H6a 1.1179 0.7366 0.0810 0.033 

H6b 0.9125 0.7088 0.0280 0.033 

H7a 0.5518 0.9173 0.1477 0.059 

H7b 0.5831 0.8765 0.2177 0.059 

H7c 0.4370 0.8272 0.1618 0.059 

H8a 0.8411 0.9282 0.0559 0.057 

H8b 0.9080 0.8646 -0.0009 0.057 

H8c 1.1037 0.8777 0.0575 0.057 

H9a 1.0558 0.8002 0.2754 0.037 

H9b 1.1924 0.7720 0.3409 0.037 

H11 0.9334 0.9382 0.3191 0.037 

H12 0.6503 1.0190 0.3801 0.036 

H14 0.3858 0.8103 0.4701 0.033 

H15 0.6721 0.7299 0.4088 0.033 

H16a 0.0407 0.8982 0.4901 0.049 

H16b 0.0417 0.9833 0.5298 0.049 

H16c 0.2504 0.9136 0.5450 0.049 
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Table A-2.1.4.   Refined Thermal Parameters (U's) for Compound (+)-2.12 

  Atom U11 U22 U33 U23 U13 U12 

C1 0.0221(11) 0.0394(12) 0.0222(10) 0.0006(9) 0.0052(9) 0.0041(10) 

C2 0.0173(9) 0.0223(10) 0.0229(10) -0.0022(8) -0.0019(9) 0.0032(8) 

C3 0.0228(10) 0.0274(11) 0.0289(11) 0.0010(8) 0.0007(9) -0.0006(9) 

C4 0.0199(11) 0.0176(9) 0.0270(10) 0.0003(8) -0.0005(9) 0.0005(8) 

C5 0.0238(10) 0.0241(10) 0.0225(10) -0.0045(8) -0.0005(9) -0.0011(9) 

C6 0.0251(10) 0.0318(11) 0.0196(10) -0.0023(8) -0.0004(9) -0.0002(10) 

C7 0.0381(13) 0.0345(12) 0.0449(14) -0.0063(10) 0.0097(12) 0.0051(12) 

C8 0.0439(14) 0.0342(12) 0.0352(12) 0.0077(10) 0.0034(12) -0.0014(12) 

C9 0.0250(11) 0.0338(12) 0.0261(11) -0.0058(9) 0.0028(9) -0.0065(9) 

C10 0.0235(10) 0.0263(10) 0.0205(10) -0.0035(8) -0.0042(8) -0.0023(9) 

C11 0.0313(12) 0.0293(11) 0.0228(10) 0.0043(9) 0.0009(9) -0.0080(9) 

C12 0.0345(12) 0.0197(10) 0.0282(11) 0.0017(8) -0.0052(9) -0.0022(9) 

C13 0.0258(11) 0.0246(10) 0.0221(10) -0.0004(8) -0.0065(8) 0.0005(9) 

C14 0.0276(12) 0.0220(10) 0.0238(10) 0.0005(8) 0.0032(8) -0.0046(8) 

C15 0.0295(11) 0.0197(9) 0.0258(10) 0.0017(8) -0.0011(9) 0.0006(9) 

C16 0.0328(13) 0.0343(12) 0.0310(12) -0.0043(10) 0.0035(10) 0.0054(10) 

N1 0.0231(8) 0.0274(9) 0.0210(8) -0.0028(7) 0.0018(8) 0.0013(8) 

N2 0.0438(12) 0.0288(10) 0.0285(10) 0.0042(8) 0.0030(10) 0.0025(9) 

O1 0.0360(9) 0.0601(11) 0.0280(8) 0.0034(8) -0.0086(8) 0.0028(9) 

O2 0.0186(8) 0.0372(8) 0.0275(7) 0.0038(7) 0.0014(7) 0.0006(6) 

O3 0.0329(9) 0.0357(9) 0.0352(9) -0.0030(7) -0.0031(8) 0.0029(8) 

O4 0.0331(8) 0.0229(7) 0.0345(8) -0.0032(7) 0.0031(7) 0.0018(7) 

S1 0.0331(3) 0.0269(3) 0.0302(3) 0.0049(2) 0.0043(3) 0.0068(2) 

The form of the anisotropic displacement parameter is: 
exp[-2π2(a*2U11h2+b*2U22k2+c*2U33l2+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 
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Table A-2.1.5. Bond Distances in Compound (+)-2.12, Å 

C1-O1  1.213(3) C1-N1  1.343(3) C1-S1  1.790(2) 

C2-N1  1.450(3) C2-C4  1.530(3) C2-C3  1.531(3) 

C3-S1  1.815(2) C4-O2  1.207(3) C4-C5  1.517(3) 

C5-C6  1.520(3) C6-N2  1.455(3) C7-O3  1.441(3) 

C8-N2  1.466(3) C9-N1  1.461(3) C9-C10  1.516(3) 

C10-C15  1.381(3) C10-C11  1.398(3) C11-C12  1.379(3) 

C12-C13  1.388(3) C13-O4  1.365(3) C13-C14  1.388(3) 

C14-C15  1.389(3) C16-O4  1.428(3) N2-O3  1.436(3) 

Table A-2.1.6. Bond Angles in Compound (+)-2.12, ° 

O1-C1-N1 127.1(2) O1-C1-S1 122.59(18) N1-C1-S1 110.30(16) 

N1-C2-C4 111.01(17) N1-C2-C3 106.40(16) C4-C2-C3 110.22(16) 

C2-C3-S1 104.84(14) O2-C4-C5 121.5(2) O2-C4-C2 120.8(2) 

C5-C4-C2 117.69(17) C4-C5-C6 110.87(17) N2-C6-C5 111.33(18) 

N1-C9-C10 113.10(18) C15-C10-
C11 

117.7(2) C15-C10-C9 122.41(19) 

C11-C10-C9 119.88(19) C12-C11-
C10 

121.0(2) C11-C12-
C13 

120.6(2) 

O4-C13-C14 124.8(2) O4-C13-C12 116.09(18) C14-C13-
C12 

119.1(2) 

C13-C14-
C15 

119.7(2) C10-C15-
C14 

121.93(19) C1-N1-C2 116.51(17) 

C1-N1-C9 121.16(18) C2-N1-C9 120.09(17) O3-N2-C6 105.78(16) 

O3-N2-C8 106.75(18) C6-N2-C8 110.51(19) N2-O3-C7 106.98(18) 

C13-O4-C16 117.30(17) C1-S1-C3 91.84(10)   
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References: 
iBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. 

iiBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. 
iiiSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany. 
ivSheldrick, G.M. (2008) Acta Cryst. A64,112-122. 

vSheldrick, G.M. (2008) Acta Cryst. A64,112-122. 
viR1 = S||Fo| - |Fc|| / S |Fo| 

wR2 = [Sw(Fo
2 - Fc

2)2/Sw(Fo
2)2]½ 

GOF = [Sw(Fo
2 - Fc

2)2/(n - p)]½ 

where n = the number of reflections and p = the number of parameters refined. 

 
vii“ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations”. C.K. 
Johnson (1976) ORNL-5138. 
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X-ray Structure Determination of Compound (+)-2.21 

Compound (+)-2.21, C29H45SiNSO5, crystallizes in the monoclinic space group P21 

(systematic absences 0k0: k=odd) with a=7.9222(4)Å, b=9.8530(4)Å, c=20.0514(10)Å, 

β=92.404(2)°, V=1563.78(13)Å3, Z=2, and dcalc=1.163 g/cm3 . X-ray intensity data were collected 

on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-Kα radiation 

(λ=0.71073 Å) at a temperature of 143(1)K. Preliminary indexing was performed from a series of 

thirty-six 0.5° rotation frames with exposures of 25 seconds. A total of 1904 frames were collected 

with a crystal to detector distance of 37.600 mm, rotation widths of 0.5° and exposures of 25 

seconds:  

scan type 2θ ω φ χ frames 

φ -15.50 258.48 8.97 19.46 681 

φ -8.00 -39.98 -206.70 55.93 485 

φ 19.50 59.55 -11.22 -26.26 739 

 Rotation frames were integrated using SAINTvii, producing a listing of unaveraged F2 and 

σ(F2) values which were then passed to the SHELXTLvii program package for further processing 

and structure solution. A total of 26518 reflections were measured over the ranges 2.30 ≤ θ ≤ 

25.07°, -9 ≤ h ≤ 9, -11 ≤ k ≤ 10, -23 ≤ l ≤ 23 yielding 5405 unique reflections (Rint = 0.0182). The 

intensity data were corrected for Lorentz and polarization effects and for absorption using 

SADABSvii (minimum and maximum transmission 0.6977, 0.7452). 

The structure was solved by direct methods (SHELXS-97vii). Refinement was by full-

matrix least squares based on F2 using SHELXL-97.vii All reflections were used during refinement. 

The weighting scheme used was w=1/[σ2(Fo2 )+ (0.0675P)2 + 0.6644P] where P = (Fo 2 + 2Fc2)/3. 

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding 

model.  Refinement converged to R1=0.0413 and wR2=0.1108 for 5055 observed reflections for 
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which F > 4σ(F) and R1=0.0453 and wR2=0.1146 and GOF =1.037 for all 5405 unique, non-zero 

reflections and 343 variables.vii The maximum Δ/σ in the final cycle of least squares was 0.005 

and the two most prominent peaks in the final difference Fourier were +0.653 and -0.286 e/Å3. 

Table A-2.2.1. lists cell information, data collection parameters, and refinement data. 

Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3.  

Anisotropic thermal parameters are in Table 4.  Tables 5. and 6. list bond distances and bond 

angles.  Figure A-2.2.1. is an ORTEPvii representation of the molecule with 30% probability 

thermal ellipsoids displayed. 

       

Figure A-2.2.1. ORTEP drawing of the Compound (+)-2.21 with 30% probability thermal 

ellipsoids. 
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Table A-2.2.1.  Summary of Structure Determination of Compound (+)-2.21 

Empirical formula  C29H45SiNSO5 

Formula weight  547.81 

Temperature  143(1) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21      

Cell constants:   

a  7.9222(4) Å 

b  9.8530(4) Å 

c  20.0514(10) Å 

β 92.404(2)° 

Volume 1563.78(13) Å3 

Z 2 

Density (calculated) 1.163 Mg/m3 

Absorption coefficient 0.177 mm-1 

F(000) 592 

Crystal size 0.45 x 0.10 x 0.05 mm3 

Theta range for data collection 2.30 to 25.07° 

Index ranges -9 ≤ h ≤ 9, -11 ≤ k ≤ 10, -23 ≤ l ≤ 23 

Reflections collected 26518 

Independent reflections 5405 [R(int) = 0.0182] 

Completeness to theta = 25.07° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7452 and 0.6977 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5405 / 1 / 343 

Goodness-of-fit on F2 1.037 
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Final R indices [I>2sigma(I)] R1 = 0.0413, wR2 = 0.1108 

R indices (all data) R1 = 0.0453, wR2 = 0.1146 

Absolute structure parameter 0.02(8) 

Largest diff. peak and hole 0.653 and -0.286 e.Å-3 

Table A-2.2.2. Refined Positional Parameters for Compound (+)-2.21 

  Atom x y z Ueq, Å2 

C1 0.6869(3) 0.5587(3) 0.31046(12) 0.0315(5) 

C2 0.5299(3) 0.5016(3) 0.27326(12) 0.0325(5) 

C3 0.5569(3) 0.4901(3) 0.19894(12) 0.0360(5) 

C4 0.6172(3) 0.6261(3) 0.17233(12) 0.0409(6) 

C5 0.7712(4) 0.6773(3) 0.21214(13) 0.0418(6) 

C6 0.6587(3) 0.5935(3) 0.38480(11) 0.0314(5) 

C7 0.5264(3) 0.7026(3) 0.39484(13) 0.0358(6) 

C8 0.4421(3) 0.4643(3) 0.43650(12) 0.0325(5) 

C9 0.7289(3) 0.3800(3) 0.45318(12) 0.0325(5) 

C10 0.8331(3) 0.4465(3) 0.50883(12) 0.0320(5) 

C11 0.7676(3) 0.5479(3) 0.54818(13) 0.0365(6) 

C12 0.8636(3) 0.6091(3) 0.59870(12) 0.0409(6) 

C13 1.0306(4) 0.5684(3) 0.61088(13) 0.0405(6) 

C14 1.0981(3) 0.4688(3) 0.57227(14) 0.0435(6) 

C15 0.9997(3) 0.4091(3) 0.52132(14) 0.0420(6) 

C16 1.2910(4) 0.6057(5) 0.67301(19) 0.0701(10) 

C17 0.9785(3) 0.4936(4) 0.32871(14) 0.0489(7) 

C18 0.4860(6) 0.1885(6) 0.1243(4) 0.133(3) 

C19 0.4358(8) 0.4235(10) 0.0279(2) 0.156(3) 

C20 0.1316(4) 0.3187(3) 0.10072(17) 0.0551(8) 

C21 0.0397(5) 0.4497(4) 0.0842(2) 0.0777(11) 

C22 0.0881(6) 0.2134(4) 0.0460(3) 0.0930(16) 

C23 0.0746(6) 0.2688(6) 0.1686(3) 0.0969(16) 
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C24 0.8193(4) 0.8216(4) 0.19183(15) 0.0541(8) 

C25 0.9666(4) 0.8823(3) 0.23067(17) 0.0567(8) 

C26 1.1380(4) 0.8203(4) 0.21775(15) 0.0545(8) 

C27 1.1823(4) 0.8330(4) 0.14723(16) 0.0579(8) 

C28 1.2173(5) 0.8403(5) 0.09099(18) 0.0688(10) 

C29 1.2800(5) 0.8929(4) 0.26179(17) 0.0674(10) 

N1 0.6068(2) 0.4732(2) 0.42160(10) 0.0304(4) 

O1 0.7363(2) 0.68346(19) 0.28261(8) 0.0362(4) 

O2 0.3745(2) 0.3684(2) 0.46237(10) 0.0438(5) 

O3 1.1170(3) 0.6373(2) 0.66120(11) 0.0562(6) 

O4 0.8117(2) 0.4579(2) 0.30462(9) 0.0393(4) 

O5 0.3974(2) 0.4546(2) 0.16727(9) 0.0442(5) 

S1 0.33204(7) 0.61662(7) 0.41375(3) 0.03750(16) 

Si1 0.36412(11) 0.34500(10) 0.10758(5) 0.0584(3) 

Ueq=1/3[U11(aa*)2+U22(bb*)2+U33(cc*)2+2U12aa*bb*cos γ+2U13aa*cc*cos β+2U23bb*cc*cosα] 

Table A-2.2.3. Positional Parameters for Hydrogens in Compound (+)-2.21 

  Atom x y z Uiso, Å2 

H2a 0.5042 0.4127 0.2910 0.043 

H2b 0.4342 0.5605 0.2804 0.043 

H3 0.6405 0.4194 0.1907 0.048 

H4a 0.6448 0.6160 0.1259 0.054 

H4b 0.5269 0.6923 0.1745 0.054 

H5 0.8666 0.6161 0.2057 0.056 

H6 0.7663 0.6255 0.4050 0.042 

H7a 0.5102 0.7568 0.3547 0.048 

H7b 0.5620 0.7621 0.4314 0.048 

H9a 0.8036 0.3464 0.4198 0.043 

H9b 0.6693 0.3029 0.4709 0.043 

H11 0.6562 0.5754 0.5403 0.049 
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H12 0.8173 0.6770 0.6245 0.054 

H14 1.2094 0.4413 0.5802 0.058 

H15 1.0469 0.3424 0.4950 0.056 

H16a 1.3025 0.5117 0.6849 0.105 

H16b 1.3368 0.6611 0.7088 0.105 

H16c 1.3511 0.6231 0.6333 0.105 

H17a 1.0023 0.5855 0.3163 0.073 

H17b 1.0590 0.4339 0.3095 0.073 

H17c 0.9860 0.4854 0.3764 0.073 

H18a 0.6041 0.2065 0.1197 0.199 

H18b 0.4498 0.1196 0.0931 0.199 

H18c 0.4677 0.1580 0.1689 0.199 

H19a 0.3771 0.5076 0.0200 0.234 

H19b 0.4118 0.3626 -0.0086 0.234 

H19c 0.5552 0.4404 0.0318 0.234 

H21a 0.0748 0.4833 0.0420 0.117 

H21b 0.0659 0.5156 0.1183 0.117 

H21c -0.0798 0.4334 0.0817 0.117 

H22a -0.0323 0.2041 0.0408 0.140 

H22b 0.1372 0.1275 0.0584 0.140 

H22c 0.1325 0.2430 0.0046 0.140 

H23a 0.1106 0.3323 0.2027 0.145 

H23b 0.1239 0.1817 0.1782 0.145 

H23c -0.0463 0.2614 0.1674 0.145 

H24a 0.8449 0.8210 0.1449 0.072 

H24b 0.7220 0.8800 0.1967 0.072 

H25a 0.9464 0.8737 0.2779 0.075 

H25b 0.9711 0.9785 0.2205 0.075 

H26 1.1359 0.7239 0.2297 0.072 

H28 1.2449 0.8461 0.0465 0.091 

H29a 1.3860 0.8482 0.2561 0.101 
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H29b 1.2521 0.8888 0.3079 0.101 

H29c 1.2885 0.9861 0.2483 0.101 

 

 

Table A-2.2.4.   Refined Thermal Parameters (U's) for Compound (+)-2.21 

  Atom U11 U22 U33 U23 U13 U12 

C1 0.0279(12) 0.0357(13) 0.0307(12) -0.0005(10) -0.0031(10) -0.0015(10) 

C2 0.0296(12) 0.0336(14) 0.0340(12) -0.0026(10) -0.0032(10) -0.0062(10) 

C3 0.0322(12) 0.0404(14) 0.0350(12) -0.0068(11) -0.0049(10) -0.0018(11) 

C4 0.0434(14) 0.0510(16) 0.0280(12) 0.0005(12) -0.0028(10) -0.0025(14) 

C5 0.0416(15) 0.0536(16) 0.0303(13) 0.0000(12) 0.0038(11) -0.0106(13) 

C6 0.0261(11) 0.0364(15) 0.0311(11) 0.0002(10) -0.0041(8) -0.0078(10) 

C7 0.0394(14) 0.0325(14) 0.0353(13) -0.0002(10) -0.0017(10) -0.0045(11) 

C8 0.0294(12) 0.0370(14) 0.0310(12) -0.0019(10) -0.0013(9) -0.0040(11) 

C9 0.0330(12) 0.0315(13) 0.0332(12) 0.0034(10) 0.0021(10) 0.0019(10) 

C10 0.0302(12) 0.0334(13) 0.0323(12) 0.0072(10) 0.0012(9) 0.0011(10) 

C11 0.0300(13) 0.0415(15) 0.0378(13) 0.0023(11) -0.0013(10) 0.0054(11) 

C12 0.0481(15) 0.0387(15) 0.0354(13) -0.0014(12) -0.0025(11) 0.0048(13) 

C13 0.0454(15) 0.0405(15) 0.0347(13) 0.0066(11) -0.0087(11) -0.0063(11) 

C14 0.0304(13) 0.0519(18) 0.0474(15) 0.0051(13) -0.0091(11) 0.0045(12) 

C15 0.0371(14) 0.0437(16) 0.0451(15) 0.0009(12) 0.0017(11) 0.0090(12) 

C16 0.063(2) 0.072(2) 0.071(2) 0.010(2) -0.0357(17) -0.012(2) 

C17 0.0294(13) 0.075(2) 0.0421(15) 0.0022(14) -0.0003(11) 0.0029(14) 

C18 0.079(3) 0.089(4) 0.225(7) -0.087(4) -0.066(4) 0.037(3) 

C19 0.162(6) 0.256(9) 0.053(3) -0.041(4) 0.039(3) -0.094(6) 

C20 0.0540(17) 0.0479(18) 0.0615(19) -0.0112(15) -0.0199(15) 0.0003(15) 

C21 0.068(2) 0.056(2) 0.106(3) -0.002(2) -0.027(2) 0.0090(19) 

C22 0.082(3) 0.069(3) 0.123(4) -0.042(3) -0.053(3) 0.001(2) 

C23 0.077(3) 0.115(4) 0.099(3) 0.023(3) 0.010(2) -0.032(3) 

C24 0.0574(18) 0.062(2) 0.0437(16) 0.0097(15) 0.0062(13) -0.0108(16) 
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C25 0.070(2) 0.0450(18) 0.0562(18) 0.0028(14) 0.0106(15) -0.0072(15) 

C26 0.0636(19) 0.0537(19) 0.0457(16) 0.0038(14) -0.0023(14) 0.0061(16) 

C27 0.0525(17) 0.068(2) 0.0526(19) -0.0064(16) -0.0026(14) 0.0046(16) 

C28 0.070(2) 0.086(3) 0.050(2) 0.0036(19) 0.0045(16) -0.005(2) 

C29 0.063(2) 0.084(3) 0.0532(19) -0.0055(18) -0.0113(16) 0.0132(19) 

N1 0.0272(9) 0.0339(11) 0.0301(10) 0.0039(8) -0.0003(8) -0.0040(8) 

O1 0.0372(9) 0.0418(10) 0.0297(9) -0.0003(8) 0.0017(7) -0.0128(8) 

O2 0.0370(10) 0.0429(12) 0.0519(11) 0.0064(9) 0.0047(8) -0.0103(8) 

O3 0.0598(13) 0.0542(14) 0.0525(12) -0.0010(10) -0.0221(10) -0.0100(11) 

O4 0.0290(9) 0.0507(12) 0.0381(9) -0.0030(8) -0.0006(7) 0.0033(8) 

O5 0.0380(10) 0.0517(12) 0.0420(10) -0.0131(9) -0.0092(8) -0.0014(9) 

S1 0.0290(3) 0.0408(3) 0.0425(3) -0.0030(3) -0.0007(2) 0.0005(3) 

Si1 0.0450(5) 0.0675(6) 0.0622(5) -0.0332(5) -0.0043(4) -0.0038(4) 

The form of the anisotropic displacement parameter is: 
exp[-2π2(a*2U11h2+b*2U22k2+c*2U33l2+2b*c*U23kl+2a*c*U13hl+2a*b*U12hk)] 

  Table A-2.2.5. Bond Distances in Compound (+)-2.21, Å 

C1-O4  1.410(3) C1-O1  1.412(3) C1-C2  1.531(3) 

C1-C6  1.555(3) C2-C3  1.519(3) C3-O5  1.433(3) 

C3-C4  1.527(4) C4-C5  1.516(4) C5-O1  1.4521673) 

C5-C24  1.532(5) C6-N1  1.464(3) C6-C7  1.521(4) 

C7-S1  1.812(3) C8-O2  1.213(3) C8-N1  1.354(3) 

C8-S1  1.785(3) C9-N1  1.459(3) C9-C10  1.509(3) 

C10-C15  1.383(3) C10-C11  1.387(4) C11-C12  1.380(4) 

C12-C13  1.394(4) C13-C14  1.373(4) C13-O3  1.374(3) 

C14-C15  1.389(4) C16-O3  1.424(4) C17-O4  1.431(3) 

C18-Si1  1.843(5) C19-Si1  1.884(6) C20-C21  1.511(5) 

C20-C23  1.533(6) C20-C22  1.538(5) C20-Si1  1.860(3) 

C24-C25  1.500(5) C25-C26  1.521(5) C26-C27  1.476(4) 

C26-C29  1.573(5) C27-C28  1.175(5) O5-Si1  1.6252(19) 
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Table A-2.2.6. Bond Angles in Compound (+)-2.21, ° 

O4-C1-O1 111.90(19) O4-C1-C2 105.0(2) O1-C1-C2 111.1(2) 

O4-C1-C6 111.37(19) O1-C1-C6 103.92(19) C2-C1-C6 113.70(19) 

C3-C2-C1 111.15(19) O5-C3-C2 107.18(19) O5-C3-C4 110.0(2) 

C2-C3-C4 109.7(2) C5-C4-C3 111.4(2) O1-C5-C4 110.2(2) 

O1-C5-C24 106.2(2) C4-C5-C24 111.9(3) N1-C6-C7 107.20(19) 

N1-C6-C1 111.07(19) C7-C6-C1 114.22(19) C6-C7-S1 107.07(17) 

O2-C8-N1 126.3(2) O2-C8-S1 123.00(19) N1-C8-S1 110.74(18) 

N1-C9-C10 112.3(2) C15-C10-
C11 

117.8(2) C15-C10-C9 120.4(2) 

C11-C10-C9 121.8(2) C12-C11-
C10 

121.6(2) C11-C12-
C13 

119.6(3) 

C14-C13-O3 125.0(3) C14-C13-
C12 

119.7(2) O3-C13-C12 115.2(3) 

C13-C14-
C15 

119.9(2) C10-C15-
C14 

121.5(3) C21-C20-
C23 

108.2(4) 

C21-C20-
C22 

109.1(3) C23-C20-
C22 

110.6(4) C21-C20-Si1 111.3(3) 

C23-C20-Si1 107.8(2) C22-C20-Si1 109.7(3) C25-C24-C5 115.4(3) 

C24-C25-
C26 

115.6(3) C27-C26-
C25 

112.3(3) C27-C26-
C29 

107.8(3) 

C25-C26-
C29 

110.1(3) C28-C27-
C26 

178.7(4) C8-N1-C9 119.4(2) 

C8-N1-C6 117.2(2) C9-N1-C6 122.21(18) C1-O1-C5 114.6(2) 

C13-O3-C16 117.6(3) C1-O4-C17 116.1(2) C3-O5-Si1 126.97(17) 

C8-S1-C7 92.09(12) O5-Si1-C18 110.72(19) O5-Si1-C20 106.06(13) 

C18-Si1-C20 114.0(2) O5-Si1-C19 107.8(2) C18-Si1-C19 108.9(4) 

C20-Si1-C19 109.1(2)     
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group, Brett worked on a myriad of projects throughout his first year, but starting his second year 

he was able to focus exclusively on the total synthesis of (+)-18-epi-latrunculol A, a natural 

latrunculin A congener. After completion of the total synthesis of (+)-18-epi-latrunculol A, Brett 

took full advantage of the intellectual freedom Professor Smith had (unofficially) granted him by 

investigating novel methods to accomplish the cyclization of δ−hydroxy enones under mild 

conditions. Focusing on reaction development was an extremely gratifying endeavor and resulted 

in a photochemical isomerization/cyclization sequence that is currently being developed further 

through collaboration with first year graduate student, Bo Li. 

In October 2013, Brett will begin a postdoctoral fellowship with Professor F. Dean Toste at 

the University of California, Berkeley. Along with his enthusiasm to reside in the Bay Area, Brett 

is very excited to focus purely on reaction development and to study the wonders of 

organometallic chemistry.     
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