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Transcriptional Poising Prior to the Midblastula Transition Underlies
Dorsal Cell Fate Specification by the Wnt/Beta-Catenin Pathway

Abstract
Following fertilization in many multicellular organisms, zygotic transcription is suppressed for several hours
and cell divisions, until a major embryonic transition termed the midblastula transition (MBT). Nevertheless,
steps critical for later patterning of the embryo occur during this early stage. To address this question, we have
optimized the chromatin immunoprecipitation technique to allow the investigation of pre-MBT chromatin
architecture. We find that, in the context of transcriptional quiescence before the MBT in Xenopus, Wnt
signaling through β-catenin primes dorsal gene expression by establishing transcriptionally poised chromatin
architecture at target promoters. This is later resolved into active gene expression following the large-scale
activation of zygotic transcription at the MBT. During pre-MBT dorsal specification, β-catenin interacts with a
histone H3 methyltransferase activity that targets arginine 8 (R8). Recruitment of the arginine
methyltransferase Prmt2 to β-catenin target promoters is necessary and sufficient to establish the dorsal
developmental program, indicating that Prmt2-mediated histone H3R8 methylation plays a critical role
downstream of β-catenin in establishing poised chromatin architecture and marking key organizer genes for
later expression. This work demonstrates a mechanism whereby a signal transduction pathway can establish
poised chromatin architecture at target genes, which could have implications for the regulation of gene
regulatory networks during development. Additionally, our results suggest the possibility that transcriptional
poising plays a broader role in maintaining zygotic genome silencing before the MBT.
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ABSTRACT 

 

TRANSCRIPTIONAL POISING PRIOR TO THE MIDBLASTULA TRANSITION UNDERLIES 

DORSAL CELL FATE SPECIFICATION BY THE WNT/β-CATENIN PATHWAY 

Shelby A. Blythe 

Peter S. Klein 

 

Following fertilization in many multicellular organisms, zygotic transcription is suppressed for 

several hours and cell divisions, until a major embryonic transition termed the midblastula 

transition (MBT). Nevertheless, steps critical for later patterning of the embryo occur during this 

early stage. To address this question, we have optimized the chromatin immunoprecipitation 

technique to allow the investigation of pre-MBT chromatin architecture. We find that, in the 

context of transcriptional quiescence before the MBT in Xenopus, Wnt signaling through β-

catenin primes dorsal gene expression by establishing transcriptionally poised chromatin 

architecture at target promoters. This is later resolved into active gene expression following the 

large-scale activation of zygotic transcription at the MBT. During pre-MBT dorsal specification, β-

catenin interacts with a histone H3 methyltransferase activity that targets arginine 8 (R8). 

Recruitment of the arginine methyltransferase Prmt2 to β-catenin target promoters is necessary 

and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated 

histone H3R8 methylation plays a critical role downstream of β-catenin in establishing poised 

chromatin architecture and marking key organizer genes for later expression. This work 

demonstrates a mechanism whereby a signal transduction pathway can establish poised 

chromatin architecture at target genes, which could have implications for the regulation of gene 

regulatory networks during development. Additionally, our results suggest the possibility that 

transcriptional poising plays a broader role in maintaining zygotic genome silencing before the 

MBT. 
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Chapter 1: Introduction 

1.1: Summary 

 

 Embryonic development proceeds as a series of tightly regulated, 

successive programs of differential gene expression, ultimately establishing the 

pattern of the adult body plan from a single, totipotent fertilized egg. During 

oogenesis, eggs are loaded with maternal factors –either proteins or mRNAs– 

that guide the initial steps of embryonic development until the activation of the 

zygotic genome. For many organisms, the passage from maternal to zygotic 

control of development occurs several hours and cell divisions following 

fertilization, at the midblastula transition (MBT). Before the MBT, transcription 

from the zygotic genome is largely repressed, yet embryos emerge from this 

period already having begun the process of regional specification. This 

observation raises the question of how transcriptionally driven embryonic 

patterning can proceed under conditions of zygotic genome repression. 

 During early Xenopus embryogenesis, the Wnt/β-catenin signaling 

pathway functions to activate the gene regulatory network that establishes the 

dorso-ventral axis. In particular, maternal Wnt/β-catenin signaling functions 

during the pre-MBT period to activate the expression of the first zygotic genes 

that function in this network. Several lines of investigation have determined that 

pre-MBT β-catenin activity is both necessary and sufficient to establish the dorsal 

gene expression program, leading to the paradox: How can a transcription factor 
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function to activate transcription under conditions of global transcriptional 

repression? 

 To address this question, I hypothesized that β-catenin functions during 

the pre-MBT period to “mark” target genes for activation at a later time, thus 

functioning to establish transcriptionally poised chromatin architecture at target 

gene promoters. According to this model, the early activity of β-catenin at target 

genes would be sufficient to specify their activation at a later time, thus 

accounting for how β-catenin can activate gene expression in a repressive 

environment. To test this hypothesis, I first adapted the technique of chromatin 

immunoprecipitation to facilitate experimentation on pre-MBT Xenopus embryos. 

With this technique in hand, I determined that β-catenin target genes are indeed 

“poised” for activation prior to the MBT, and that β-catenin recruits a histone-

modifying activity to target genes which is both necessary and sufficient for their 

eventual activation, perhaps by contributing to the establishment of poised 

chromatin architecture. This work raises the further questions of what regulatory 

mechanisms contribute to the establishment of “poised” loci, and whether 

transcriptional poising is a widespread strategy underlying both the maternal-to-

zygotic transition and the specification of embryonic cell fates. 

 

1.2: The Midblastula Transition 

 

 The earliest of several temporally coordinated, large-scale developmental 

milestones occurs at the Midblastula Transition (MBT), when embryogenesis 
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comes to be directed by zygotic rather than maternal factors. Several major 

biochemical and morphological changes occur during the maternal-to-zygotic 

transition at the MBT. Generally, newly fertilized embryos undergo several 

rounds of rapid synchronous mitotic divisions. These initial cell divisions 

represent a rapid oscillation between DNA Synthesis (S-phase) and mitosis (M-

phase), without the intervening gap phases (G1- and G2-phase) observed in the 

typical somatic cell cycle (Graham and Morgan, 1966). For Xenopus and 

Zebrafish embryos, the rapidly dividing blastomeres lose synchrony and acquire 

G1- and G2-phases at the MBT, and display a markedly longer period between 

successive cell divisions (Kane and Kimmel, 1993; Newport and Kirschner, 

1982a). In the case of the fruit fly Drosophila melanogaster, nuclei rapidly 

multiply in a syncytium, and the pace of the nuclear division cycles slows at the 

MBT, as the embryo cellularizes (Edgar et al., 1986). Prior to the MBT, maternal 

mRNAs and proteins direct embryogenesis while the zygotic genome is 

maintained in a transcriptionally quiescent state. Zygotic control of development 

begins with the onset of large-scale transcription from the zygotic genome 

accompanied by widespread degradation of maternal factors. Also, at the MBT, 

DNA-damage checkpoints become activated, cells become motile, and cells 

become competent to undergo programmed cell death (Hensey and Gautier, 

1997; Newport and Kirschner, 1982a). In each case, the biochemical and 

morphological changes that culminate in the MBT are precisely coordinated by 

one or more timing mechanisms that are still not well characterized. 
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1.2.1: Two Developmental Timers 

 

 At least two timers coordinate the transition from maternal to zygotic 

control of development. The switch from the quick cell cycle of the cleavage 

divisions to the typical somatic cell cycle after the MBT is timed by the 

nucleocytoplasmic (N/C) ratio. Since early embryos exponentially multiply their 

DNA content without increasing their cytoplasmic volume, the increasing DNA is 

thought to titrate out a cytoplasmic factor that maintains the pre-MBT cell cycle. 

In Xenopus embryos, N/C ratio timer does not require new transcription, as cell 

cycle lengthening occurs in the presence of the RNA Pol II inhibitor, α-amanitin 

(Newport and Kirschner, 1982a). The N/C ratio timer also regulates the onset of 

expression for a number of zygotic transcripts, including several abundant type III 

genes (Lund and Dahlberg, 1987; Newport and Kirschner, 1982a, b). In 

Xenopus, it is unclear whether zygotic expression of any type II (mRNA coding) 

genes is linked to the N/C ratio timer. Notably, expression of several endogenous 

and exogenous type II genes still occurs at the MBT even under conditions 

where the N/C ratio timer is stopped by the inhibition of cell cycle progression 

(Almouzni and Wolffe, 1995; Kimelman et al., 1987; Lund and Dahlberg, 1987). 

Also, another marker of the MBT, Cyclin E protein degradation, occurs even 

when embryos are arrested during morula stages by cycloheximide treatment 

(Howe and Newport, 1996). These observations indicate that at least two 

independent developmental timers coordinate the multiple transitions that take 
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place at the MBT, one that measures the N/C ratio, and another that measures 

the elapsed time following fertilization. 

The onset of zygotic transcription in Drosophila also depends on 

measurement of both the N/C ratio and the “absolute time” following fertilization. 

Drosophila embryos typically undergo 14 rapid nuclear divisions prior to the MBT, 

which is followed by large-scale transcriptional activation and cell cycle 

lengthening. Haploid embryos will reach the MBT-stage N/C ratio one cell cycle 

later than their diploid counterparts and undergo an additional, 15th nuclear 

division prior to cell cycle lengthening. Nonetheless, haploid embryos still activate 

the expression of a subset of genes at the 14th nuclear division, albeit at lower 

intensity due to the abbreviated time between mitoses (Edgar et al., 1986; 

Yasuda et al., 1991). In support of the two-timer model, genome-wide 

transcriptional analysis in Drosophila has demonstrated that, while some 

immediate zygotic transcripts are sensitive to the N/C ratio for their activation, the 

majority of early zygotic genes are activated independently of this ratio, instead 

becoming active at a certain time after fertilization (Lu et al., 2009). This 

alternative developmental timer may be driven by regulated translation of the 

Drosophila Smaug protein, which is critical for coordinating both the degradation 

of maternal mRNAs and the activation of the zygotic genome at the MBT (Benoit 

et al., 2009). In this model, time is read out by the gradual accumulation of 

Smaug protein during the pre-MBT period. Smaug is translationally repressed 

initially, yet accumulates during the pre-MBT period, peaks during syncytial 

blastoderm stages, and is rapidly cleared at the MBT. Upon reaching a threshold 
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level of Smaug, the embryo begins clearing maternal transcripts and activating 

zygotic gene expression. Smaug is required for the destruction of maternal 

mRNAs that suppress zygotic transcription (Tramtrack) and for the zygotic 

expression of two positive regulators of RNA Polymerase II elongation: Cyclin T 

and Cdk9. Consequently, Smaug-deficient embryos have reduced RNA Pol II 

engaged in transcriptional elongation, which could be compounded with the 

persistence of transcriptional repressors and result in the failure to activate 

zygotic transcription. While a similar mechanism has not been described in any 

vertebrate model system, activation of the Xenopus zygotic genome can indeed 

be repressed by translational inhibition if embryos are treated prior to the 32-cell 

stage of development (A. Rosenberg, S. Blythe, P. Klein, unpublished). This 

observation suggests that, in addition to the N/C ratio, the embryo interprets the 

elapsed time after fertilization by the regulated translation of maternal mRNAs 

such as Smaug.  

 

1.3: Transcriptional Control Before the MBT 

 

 The mechanisms that maintain the pre-MBT transcriptional quiescence of 

type II (mRNA coding) loci are poorly understood. Early Xenopus embryos are 

fully competent to transcribe DNA. Early embryos contain functional RNA Pol II 

(Roeder, 1974) and pre-MBT embryonic lysates will transcribe mRNA from 

plasmid templates in vitro (Toyoda and Wolffe, 1992). But despite containing a 

fully functional transcriptional apparatus, most endogenous loci and exogenous 
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sources of DNA are silenced in pre-MBT embryos. Certain genes, however, are 

normally transcribed before the MBT suggesting that this repressive state is not 

absolute and can be circumvented under the appropriate conditions (Shiokawa et 

al., 2005; Yang et al., 2002b). Indeed, foci of newly synthesized RNA can be 

detected in the nuclei of pre-MBT Xenopus embryos (Kimelman et al., 1987), 

indicating that transcription can at least be initiated before the MBT. 

Quantification of radiolabeled UTP uptake further indicates that a low level of 

mRNA expression occurs as early as the 64-cell stage of development (5 cell 

divisions, ~2h before MBT at 23°C) (Shiokawa et al., 1981). At least a portion of 

these newly synthesized pre-MBT transcripts are of high molecular weight, 

heterogeneous, capped, and polyadenylated (Nakakura et al., 1987; Shiokawa et 

al., 1981; Yang et al., 2002b). This phenomenon is not limited to Xenopus 

embryos: pre-MBT transcription has also been observed in every developmental 

model system studied to date that undergoes a distinct MBT (Andéol, 1994; 

Leung et al., 2003; Mathavan et al., 2005; Pritchard and Schubiger, 1996). 

Therefore, while the MBT represents the major activation of zygotic transcription, 

zygotic genome activation is a gradual process that occurs over a period 

beginning, in Xenopus, at the 64-cell stage of development. Additionally, the 

phenomenon of endogenous pre-MBT transcription underscores the fact that 

early embryos are transcriptionally competent, and indicates that zygotic genome 

silencing is not achieved by a wholesale inactivation of the transcriptional 

apparatus. 
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1.3.1: Suppression of Basal Transcription in pre-MBT embryos 

 

Pre-MBT transcription is suppressed, in part, by chromatin-based 

mechanisms that are dominant over the basal transcriptional apparatus. 

Chromatin assembly itself is the major mechanism that represses basal 

transcription in pre-MBT embryos as it does in somatic cells (Prioleau et al., 

1994). Chromatin assembly results in the placement of nucleosomes within 

genes that will repress transcription by preventing the association of promoter 

regions with basal transcription factors, such as TATA-binding protein (TBP). 

Accordingly, interfering with chromatin assembly or supplementing templates 

with basal transcription factors generally circumvents pre-MBT global 

transcriptional silencing. Exogenous plasmids containing type II genes are rapidly 

silenced upon expression in early embryos (Almouzni and Wolffe, 1995; Lund 

and Dahlberg, 1987; Prioleau et al., 1994), but a temporary burst of pre-MBT 

transcription is observed if plasmids are pre-loaded with TBP protein (Prioleau et 

al., 1994). These pre-loaded plasmids are ultimately silenced upon becoming 

assembled into chromatin, only to be activated at the MBT. Importantly, this does 

not reflect a deficit in endogenous TBP protein, as overexpression of TBP in the 

early embryo is not sufficient to cause premature transcription: it must be pre-

bound to the plasmid in order to drive early transcription. This suggests that the 

basal transcriptional apparatus is prevented from interacting with promoters by 

pre-MBT chromatin structure. If chromatin assembly is competed by co-

expressing an excess of “non-specific” DNA, precocious transcription from pre-
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loaded plasmids continues throughout the MBT period (Prioleau et al., 1994). 

Early embryos contain vast stores of core histone proteins, synthesized during 

oogenesis, sufficient to assemble 20,000 to 40,000 nuclei (Woodland and 

Adamson, 1977), and to therefore sustain chromatin assembly long past the 

MBT. Non-specific DNA prevents silencing of pre-loaded plasmids by depleting 

the maternally supplied pool of core histones, and this effect can be suppressed 

by adding back exogenous core histone proteins (Almouzni and Wolffe, 1995). 

These results demonstrate the role of chromatin assembly in the suppression of 

basal transcription before the MBT, particularly the role of the nucleosome in 

establishing repressive chromatin architecture. 

 

1.3.2: Counteracting Trans-Activator Function 

 

In general, nucleosome occupancy at promoters is refractory to basal 

transcription (Lorch et al., 1987; Williamson and Felsenfeld, 1978; Workman and 

Roeder, 1987). In somatic cells, this repression is counteracted by recruitment of 

transcriptional activators to gene regulatory domains on chromatin, which 

function to open chromatin structure and potentiate pre-initiation complex 

formation at promoters. Therefore, the pre-MBT competition between chromatin 

assembly and transcriptional complex formation could thus account for the 

generalized repression of zygotic loci, but does not explain the silencing of genes 

whose activators are indeed present before the MBT. As a proof of principle, 

Almouzni and Wolffe (1995) co-expressed the transcriptional activator Gal4-
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VP16 in pre-MBT embryos along with a plasmid containing Gal4 consensus 

binding sequences. Under these experimental conditions, Gal4-VP16 is sufficient 

for prolonged pre-MBT transcription, leading to the conclusion that pre-MBT 

transcriptional repression stems from constraints on trans-activator function. It 

should be noted that the Almouzni and Wolffe (1995) study used a 300-fold molar 

excess of Gal4-VP16 to Gal4 DNA binding sites. In a subsequent study, Prioleau 

et al. (1995) were unable to reproduce Gal4-VP16-driven pre-MBT transcription 

using a more modest 4-fold molar excess of Gal4-VP16, but were able to drive 

prolonged pre-MBT transcription by pre-loading plasmids with this trans-activator. 

Therefore, constraints on trans-activator function could account for zygotic 

genome silencing, either by preventing interaction with regulatory elements on 

genomic DNA, or by interfering with downstream recruitment of an active 

transcriptional apparatus. 

One example of a constraint on transcriptional activator function is the 

counteracting repressive effect of DNA methylation. DNA methylation represses 

transcription at associated genes by serving as a ligand for methylated DNA-

binding transcriptional repressors. This is a form of epigenetic control of gene 

expression, as the pattern of methylated DNA (and hence the associated 

repressive activity) is inherited by daughter cells following cell division. 

Epigenetic inheritance of the DNA methylation pattern requires the activity of 

“maintenance methyltransferases,” such as DNA Methyltransferase I (Dnmt1), 

which copy the parental pattern of methyl-marks to the non-methylated daughter 

strand following DNA replication. Interestingly, depletion of Dnmt1 in pre-MBT 
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Xenopus embryos results in the precocious expression of many genes that are 

normally repressed until the MBT (or shortly thereafter) (Stancheva and Meehan, 

2000). This suggests that the activators for these Dnmt1-sensitive genes are 

otherwise active in early embryos, yet are prevented from activating the 

expression of their targets due to the counteracting repressive influence of DNA 

methylation. As Dnmt1 depletion affects only a subset of early zygotic loci, this 

also suggests that pre-MBT transcriptional silencing may be maintained by 

several overlapping mechanisms. 

Early embryos contain several endogenous transcriptional activators 

whose activities are required for subsequent embryonic patterning. How, then, do 

genes whose trans-activators are present in the early embryo maintain their 

silence? Certain trans-activators are prevented from binding their regulatory 

regions either by cytoplasmic sequestration or restricted nuclear import 

(Veenstra, 2002). In addition, trans-activators could be ineffective if their genomic 

target sites are occluded by nucleosome occupancy. However, at least some 

zygotic loci are able to interact with trans-activators and even establish active 

chromatin architecture during the pre-MBT period. For example, the cMyc locus 

establishes typically active patterns of DNase hypersensitivity before the MBT, 

despite transcriptional repression (Prioleau et al., 1995). Indeed, this has also 

been observed for several endogenous loci in Drosophila pre-blastoderm 

embryos as well (Lowenhaupt et al., 1983). Since acquisition of DNase 

hypersensitivity is commensurate in most cases with transcriptional activation, it 

is intriguing to observe this at transcriptionally silent loci. These observations 
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raise the possibility that zygotic loci establish and maintain “pre-set” chromatin 

architecture during the pre-MBT period, reflecting a multi-step process of 

transcriptional activation where trans-activator binding is temporally uncoupled 

from mRNA expression. Notably, the formation of active chromatin architecture at 

promoters leaves open the possibility that these promoters also recruit the basal 

transcriptional machinery. In this case, transcriptional silencing could be 

achieved downstream of pre-initiation complex formation, either by regulating 

RNA Pol II promoter escape or entry into transcriptional elongation. Interestingly, 

it is not clear whether acquisition of DNase hypersensitivity at pre-MBT 

promoters reflects either the inheritance of chromatin architecture established 

during gametogenesis, or if these patterns are established in the zygote by 

maternal transcription factors. 

 

1.3.3: Heritability of active chromatin structure before the MBT 

 

The pre-MBT embryo is also capable of maintaining patterns of active 

chromatin architecture despite the rapidity of the cleavage-stage cell cycle. 

Generally, patterns of DNase hypersensitivity are rapidly re-established following 

DNA replication, within 20 nucleosomes of the passing replication fork 

(Weintraub, 1979). This indicates that rapid DNA replication per se does not limit 

the propagation of established chromatin architecture. Furthermore, the rapidity 

of the early cell cycle does not interfere with active chromatin structure, as 

transplanted, transcriptionally active, post-MBT nuclei retain an epigenetic 
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“memory” of their parental gene expression program (Ng and Gurdon, 2005). 

These donor nuclei will have established active chromatin architecture and, upon 

transplantation, at least some of the “marks” of transcriptional activity are 

propagated through the pre-MBT period. For example, a cloned embryo 

generated by transplantation of a nucleus from the neural ectoderm of a tailbud-

stage embryo will “remember” its origin and express the neural gene NCAM well 

in advance of neural induction, when NCAM expression is normally activated (Ng 

and Gurdon, 2005). Remarkably, this precocious “remembered gene” expression 

is observed before the MBT in cloned embryos, indicating that establishment of 

transcriptionally active chromatin architecture is sufficient to drive pre-MBT 

transcription. This transcriptional memory is linked to chromatin modifications 

that correlate with active gene expression, the incorporation of histone variant 

H3.3 (Ng and Gurdon, 2008). Because these transplanted nuclei enter the pre-

MBT cell cycle, these observations reveal that chromatin assembly in the pre-

MBT embryo per se is not sufficient to cause global transcriptional silencing. In 

fact, establishment of active chromatin architecture can be propagated in early 

embryos, indicating that these mechanisms are intact and functional before the 

MBT. 

In conclusion, the pre-MBT embryo is not transcriptionally inert. In fact, 

mechanisms for establishing and propagating active chromatin architecture 

function during this time much as they would in somatic cells. At least some 

zygotic loci do, in fact, establish active chromatin architecture during this period, 

and are maintained in a pre-set or poised state until the MBT. Some genes are 
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even normally expressed prior to the MBT. It is unknown whether establishment 

of a poised state is typical of most “immediate-early” zygotic loci, or whether this 

is only true for a subset of these genes. Several potentially overlapping 

repressive mechanisms suppress these pro-transcriptional activities in order to 

prevent the expression of most zygotic loci. This repression has been shown to 

function at several levels: interfering with the assembly of the basal 

transcriptional machinery, and constraining transcriptional activator function. 

However, the formation of active chromatin architecture in the pre-MBT embryo 

leaves open the possibility that transcriptional repression takes place farther into 

the transcriptional cycle, perhaps by interfering with entry of RNA Pol II into the 

elongation phase of transcription. Interfering with these repressive mechanisms 

results in precocious transcription of zygotic loci, supporting the idea that pre-

MBT genomic silencing is achieved by balancing pro- and anti-transcriptional 

mechanisms. 

 

1.4: Transcriptional Poising 

 

In somatic cells, genes which can be activated fall into two general 

classes based on their chromatin structure: “pre-set” or “remodeling” [after 

(Wallrath et al., 1994)]. A pre-set (or poised) locus can produce transcripts 

quickly due to maintenance of open chromatin structure, which reveals trans-

activator interaction sites allowing for immediate binding and activation. A 

remodeling locus requires some kind of chromatin remodeling event prior to 
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activation, which facilitates the ultimate binding of trans-activators to otherwise 

concealed regulatory sites. In addition, genes requiring remodeling will typically 

have nucleosomes covering the transcriptional start site [e.g. (Richard-Foy and 

Hager, 1987)]. On the other hand, poised loci usually contain paused or stalled 

RNA Pol II within the transcriptional start site, in addition to other chromatin 

modifications that correlate with transcriptional activity (Margaritis and Holstege, 

2008). Consequently, these loci are kept silent by different mechanisms. While 

chromatin remodeling and trans-activator binding is limiting for the activation of a 

remodeling locus, poised loci are likely kept silent by regulating the entry of RNA 

Pol II into the elongation phase of transcription (Saunders et al., 2006). 

Furthermore, genome-wide analyses of RNA Pol II promoter occupancy in 

diverse organisms have established that a significant proportion of protein-coding 

genes are maintained in a poised state, which likely facilitates a rapid response 

to biological or environmental stimuli (Baugh et al., 2009; Guenther et al., 2007; 

Hargreaves et al., 2009; Muse et al., 2007; Radonjic et al., 2005; Zeitlinger et al., 

2007). The roster of poised genes in early Drosophila embryos and in 

mammalian embryonic stem cell systems also reflects the developmental 

potential of each system, suggesting that transcriptional poising could be an 

evolutionarily conserved mechanism underlying cell fate specification during 

embryogenesis. 

During Drosophila embryogenesis, for example, genes can be categorized 

according to the extent to which they associate with RNA Pol II. “Active” genes 

are found to interact with Pol II across the entire coding region; “stalled” genes 
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have Pol II bound only to the 5’ promoter-proximal region; and “absent” genes 

display no detectable Pol II binding. Both stalled and absent genes are 

transcriptionally repressed, but stalled genes are typically associated with 

developmental genes whereas absent genes are typically expressed much later 

in development (Zeitlinger et al., 2007). It is conceivable that stalled Pol II 

functions in this situation to poise genes for rapid activation later in development. 

Indeed, genomic loci that respond rapidly to biological and environmental stimuli 

tend to fall into the poised class (Baugh et al., 2009; Hargreaves et al., 2009; 

Muse et al., 2007; Radonjic et al., 2005; Rougvie and Lis, 1988), and 

transcriptional poising facilitates the synchronous, rather than stochastic, 

activation of genes in response to developmental cues (Boettiger and Levine, 

2009). Similarly, in human embryonic stem cells, approximately 75% of protein-

coding genes associate with Pol II, but only 50% of that set are transcriptionally 

active (Guenther et al., 2007). The remaining 50% of genes have RNA Pol II 

accumulated in the promoter proximal region, and many undergo abortive 

transcription, without transcript completion. In addition to interacting with stalled 

Pol II, poised loci also associate with histone modifications that typically correlate 

with active transcription: histone H3 lysine 4 trimethylation (H3K4me3), and 

histone H3 lysine 9/14 acetylation (H3K9/14Ac) (Guenther et al., 2007). These 

modifications are likewise restricted to the 5’ end of protein-coding genes, and 

have been implicated in the regulation of early phases of the transcriptional cycle 

(See Chapter 4). However, the role of specific histone modifications –such as 

H3K4me3– in the establishment or maintenance of a poised state is unclear. 
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In pre-MBT Xenopus embryos, an exogenous plasmid containing the 

cMyc locus will adopt an active pattern of DNase hypersensitivity, and this locus 

has been demonstrated in other model systems to undergo transcriptional 

poising (Krumm et al., 1992; Strobl and Eick, 1992). If the cMyc locus is indeed 

poised in pre-MBT embryos, this suggests that the embryo contains the maternal 

factors to both establish and maintain this type of chromatin architecture before 

the MBT. Does the establishment of transcriptional poising reflect inherited 

parental chromatin structure, or is it the product of developmental patterning 

events carried out after fertilization? There is evidence that suggests that 

chromatin structure can, in fact, be established in the gametes, and propagated 

epigenetically during early embryogenesis (Hammoud et al., 2009). In human 

spermatocytes, the promoters of many genes required for future embryogenesis 

maintain their association with somatic nucleosomes, whereas the rest of the 

genome is packaged in protamines. These retained somatic nucleosomes also 

bear chromatin modifications that typically correlate with transcriptional activity, 

although sperm are transcriptionally repressed. This results in the preferential 

marking of developmental promoters, which could serve as a basis for 

establishing “poised” chromatin conformation in the resulting zygote. Indeed, 

many of the genes that are found to be poised in human embryonic stem cells 

are also found to retain somatic nucleosomes in spermatocytes, allowing for the 

possibility that the poised state is initially specified in the gametes, and 

epigenetically inherited through the early cell divisions of the embryo, presumably 

aided by pro-transcriptional histone modifications. In species that silence their 
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genomes before the MBT, the establishment of a poised state could also serve 

as a mechanism to counteract any default state of transcriptional repression, as 

poised loci have also been shown to function as insulator elements (Chopra et 

al., 2009). Thus the establishment of a poised state could reflect the intrinsic 

maintenance of a genetic locus in a ready state that can be epigenetically 

inherited and established well in advance of mRNA expression in order to 

provide for a rapid and synchronous transcriptional response to developmental 

cues. 

 

1.5: Dorsal Specification by the Maternal Wnt/β-catenin Pathway 

 

 The Wnt signaling pathway plays essential roles during embryonic 

development, tissue homeostasis, and oncogenesis. The “canonical” Wnt (Wnt/β-

catenin) signaling pathway, in particular, represents a critical mechanism for 

converting extracellular stimuli into intracellular transcriptional responses. In the 

absence of a Wnt signal, β-catenin protein is translated, but rapidly degraded. 

Upon activation of the Wnt pathway, β-catenin protein is stabilized in the 

cytoplasm and ultimately translocates to the nucleus where it interacts with its 

genomic targets by binding members of the Tcf/Lef family of DNA-bound 

transcription factors. Within the nucleus, β-catenin functions as a versatile 

scaffold for recruiting a wide array of chromatin remodeling factors to target loci, 

and thereby activating their expression. 
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The Wnt/β-catenin signaling pathway is activated in Xenopus embryos 

prior to the first cell division and functions to initiate the gene expression program 

that will establish the embryonic dorso-ventral axis. This represents the earliest 

cell fate decision made in the embryo, and it occurs entirely before the MBT. 

Following fertilization, rotation of the cortical cytoplasm relative to the inner 

cytoplasm of the egg asymmetrically displaces a vegetally localized pool of Wnt 

pathway effectors (Miller et al., 1999; Tao et al., 2005). Blastomeres inheriting 

this cytoplasm activate Wnt signaling, which results in the establishment of the 

gene expression program that will give rise to the critical inductive center for 

dorsally derived tissues, Spemann’s organizer. The genes for the homeodomain 

proteins Siamois and Twin are two targets of maternal Wnt signaling, and they 

are both necessary and sufficient to drive dorsal development downstream of β-

catenin [(Ishibashi et al., 2008; Laurent et al., 1997; Lemaire et al., 1995), also D. 

S. Kessler unpublished, and Chapter 3]. Expression of Siamois and Twin does 

not begin until the MBT, but several observations indicate that their expression is 

activated shortly after fertilization, prior to the 32-cell stage (2.5h or six cell 

divisions before the MBT).  

 The embryo is only competent to activate the dorsal developmental 

program in response to the Wnt/β-catenin pathway until the MBT, after this point 

activation of Wnt signaling activates a distinct, non-dorsal gene expression 

program (Hamilton et al., 2001; Kao et al., 1986; Yamaguchi and Shinagawa, 

1989). The maternal (pre-MBT) Wnt pathway is restricted to dorsal progenitors 

(Tao et al., 2005), and early zygotic (post-MBT) Wnt pathway activity is activated 
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in the ventro-lateral marginal zone of the embryo (Christian et al., 1991; Smith 

and Harland, 1991). Correspondingly, stimulating the Wnt/β-catenin pathway 

before the MBT activates the dorsal gene expression program, and this response 

is abruptly lost after the MBT (Darken and Wilson, 2001; Fredieu et al., 1997; 

Hamilton et al., 2001). Therefore, the embryo is competent to activate dorsal 

gene expression in response to the Wnt/β-catenin pathway before the MBT, but 

not after. Additionally, loss-of-function studies for β-catenin indicate that dorsal 

specification is complete by the end of the 32-cell stage (5th cleavage, 2.5h 

before the MBT). β-catenin function must be blocked, either by translational 

inhibition or by expression of a dominant-negative Tcf protein, prior to the 32-cell 

stage in order to prevent the induction of β-catenin-dependent transcription after 

the MBT (Heasman et al., 2000; Yang et al., 2002b). These results indicate that 

β-catenin ostensibly specifies dorsal cell fates in the absence of transcriptional 

activity. Interestingly, transiently interfering with RNA Pol II function during the 

pre-MBT period prevents dorsal specification by β-catenin (Yang et al., 2002b). 

This indicates that, despite occurring during a period of transcriptional 

quiescence, dorsal specification by β-catenin nonetheless requires RNA Pol II 

function. It is unclear whether the requirement for RNA Pol II suggests that β-

catenin-directed pre-MBT transcription is absolutely required for dorsal 

specification, or if RNA Pol II function is required for the establishment of a 

poised chromatin structure at β-catenin target genes before the MBT. Indeed, 

two β-catenin target genes, Nodal-related 5 and 6 (Xnr5/6) are transcribed before 

the MBT (Yang et al., 2002b), however no studies have addressed whether their 
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pre-MBT expression, per se, is required for dorso-ventral patterning. Additionally, 

it is not clear how precocious expression of Xnr5/6 could activate the expression 

of Siamois and Twin, without which dorsal development fails. This raises the 

possibility that β-catenin functions via at least two distinct mechanisms during the 

pre-MBT period, one that results in the early activation of Xnr5/6, and another 

that specifies the eventual activation of Siamois/Twin at the MBT. 

In vitro, chromatin structure is essential for β-catenin/Tcf transcriptional 

activation (Tutter et al., 2001), thus raising the possibility that β-catenin activates 

transcription solely by mediating the recruitment of chromatin-directed factors to 

target loci. β-catenin has been shown to interact with members of three classes 

of chromatin-modifying enzymes: ATP-dependent chromatin remodelers, histone 

acetyl-, and methyl-transferases. The majority of these interactions take place 

through β-catenin’s C-terminal trans-activation domain, which is necessary and 

sufficient for transcriptional activation by β-catenin [reviewed in (Mosimann et al., 

2009)]. In addition, β-catenin also interacts with the Mediator and the Paf1 

complexes, which ostensibly link β-catenin to both initiating and elongating RNA 

Pol II complexes at target genes. The Wnt pathway even has a dedicated 

histone-modification “reader,” the PHD-domain containing protein Pygopus, 

which interacts indirectly (via Legless/Bcl9) with β-catenin, and is necessary for 

Wnt pathway transcriptional output. Pygopus also binds histone H3, trimethylated 

at lysine 4 (H3K4me3), which is a modification associated with both 

transcriptionally poised and active loci, and could thus serve as a Tcf-

independent tether for β-catenin at H3K4me3-marked loci. In light of this broad 
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roster of chromatin-directed β-catenin interacting proteins, it is reasonable to 

conclude that activation of the Wnt/β-catenin pathway results in chromatin 

remodeling and modification at target gene promoters as an initial step to 

activate their expression. 

Since induction of Siamois/Twin is the critical downstream target of the 

maternal Wnt/β-catenin pathway, and expression of these genes does not 

commence until after the MBT, β-catenin’s activity is temporally uncoupled from 

the transcriptional response of these essential targets. As such, β-catenin could 

function before the MBT to poise target gene activation after the MBT. In this 

model, β-catenin interacts with target gene promoters prior to the 32-cell stage 

and functions to establish a heritable, transcriptionally poised state. As such, it is 

predicted that several molecular markers common to poised loci would be 

present at β-catenin target genes before the MBT, including pre-bound RNA Pol 

II, and histone H3 K4me3, and K9/14Ac. Additionally, it is predicted that β-

catenin plays an integral role in establishing this poised chromatin architecture, 

functioning either in a “pioneering” role by initially relaxing chromatin structure to 

facilitate binding of the stalled Pol II complex, or by recruiting additional factors to 

already poised promoters in order to facilitate their eventual release into a bona 

fide active state at the MBT. 

 

1.6: Research Summary 
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 To address the question of how β-catenin functions before the MBT to 

activate the dorsal gene expression program, I first adapted a standard 

chromatin immunoprecipitation (ChIP) technique for use with a manageable 

number of pre-MBT embryos. This work is presented in Chapter 2 as published 

in Blythe et al., (2009). Upon optimizing the Xenopus ChIP protocol, I first 

evaluated the status of pre-MBT promoters with respect to binding of both β-

catenin and RNA Pol II, and association of pro-transcriptional histone 

modifications (H3K9/14 acetylation and H3K4 methylation). This work confirmed 

that β-catenin target genes are indeed poised before the MBT, and that β-catenin 

is particularly required for establishment of H3K4me3. Subsequently, I tested the 

hypothesis that β-catenin directly recruits a histone methyltransferase (HMT) 

activity to promoters before the MBT. While β-catenin does indeed recruit an 

HMT, surprisingly this activity was found to modify H3R8, not H3K4. Thus, I 

identified the β-catenin associated HMT to be Prmt2, an arginine 

methyltransferase with no previously known catalytic activity (or catalytic targets). 

Prmt2 is recruited to β-catenin target genes before the MBT, and this recruitment 

is sufficient to drive dorsal development downstream of β-catenin. Additionally, 

Prmt2 is necessary for dorsal specification, and we find evidence that Prmt2 

functions to prevent transcriptional repression of β-catenin target genes, 

suggesting a role for H3R8 methylation as an anti-repressive histone 

modification. These latter observations are presented in Chapter 3. A broad 

discussion of conclusions and future directions follows in Chapter 4. 
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Chapter 2: Chromatin Immunoprecipitation in Early 
Xenopus Laevis Embryos∗ 

 

2.1: Introduction 

 

 Chromatin immunoprecipitation (ChIP) has emerged as an invaluable tool 

for the study of the mechanisms of transcriptional control and chromatin 

dynamics. ChIP allows an investigator to determine whether a genomic locus is 

occupied by chromatin-bound factors such as transcription factors, chromatin 

remodeling complexes, and modified histones. The most widespread ChIP 

procedure uses formaldehyde-crosslinked, sheared chromatin from 106 to 107 

cells as the input material for an immunoprecipitation (IP), which is followed by 

several rounds of washing, crosslink reversal, and DNA purification. Because the 

genomic DNA is sheared to an average size of 1000 base pairs or less, the IP 

results in the purification of discrete genomic DNA fragments that associate with 

the antigen of interest. Thereafter, the purified DNA from the experimental IP is 

queried for enrichment relative to a control IP, either by PCR—for small numbers 

of target genes—or by one of several genome-wide analysis methods 

(microarray, high-throughput sequencing, library screening). Thus, ChIP 

represents a powerful method for investigating in vivo protein-DNA interactions. 

                                            
∗ The text of this chapter has been published (Blythe et al. Chromatin immunoprecipitation in 
early Xenopus laevis embryos. Dev Dyn (2009) vol. 238 (6) pp. 1422-32). The data presented in 
Figure 2.4 (and the accompanying text in section 2.3.6) were provided by co-authors Christine 
Reid and Dr. Daniel Kessler. 



 25 

For molecular embryologists, however, the typical ChIP protocol poses a 

number of challenges. Embryos represent heterogeneous populations of cells 

containing limiting amounts of genomic material. In addition, fractionation of 

embryos under the denaturing conditions commonly used in ChIP releases a 

large amount of non-chromatin-associated proteins, such as yolk, that complicate 

sample preparation and can increase nonspecific background. Consequently, 

molecular embryologists have been slow to adopt ChIP as a routine assay, 

especially for the analysis of early embryos. However, ChIP analysis of early 

embryos could help forge new frontiers in developmental biology. Whether by 

providing for the enhanced analysis of transcription factor function in gene 

regulatory networks, or by investigating the function of histone modifications and 

how their patterns unfold during embryogenesis, numerous new avenues of 

investigation will require the establishment of a ChIP protocol amenable to 

embryonic tissues. 

 Our goal was to develop a ChIP procedure that would be sensitive enough 

to detect transcription factor occupancy at promoters in cleavage-stage Xenopus 

laevis embryos (stage 7.5 to 8: approximately 1x103 cells per embryo). In 

addition, we wanted the protocol to be amenable to typical embryological 

manipulations, such as microinjection, and therefore optimized the protocol to 

use as few as 50 embryos per sample from these early stages. Finally, we 

wanted to circumvent several foreseeable problems with sample preparation by 

minimizing non-chromatin proteins in the ChIP samples, optimizing the 

crosslinking and sonication steps, and optimizing DNA extraction and PCR 
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conditions to maximize sensitivity. While this protocol was in development, a 

number of ChIP experiments on Xenopus laevis embryos were reported (Jallow 

et al., 2004; Kim et al., 2004; Messenger et al., 2005; Morgan et al., 2004; Ng 

and Gurdon, 2008; Park et al., 2005), representing four different protocols. While 

all of these protocols are similar in principle to ours, we have concentrated on 

maximizing the sensitivity of this procedure for the analysis of earlier stages of 

development with a small number of embryos. Here, we present our optimized 

protocol in detail, with some examples of its implementation. By demonstrating 

the basic method, and describing how the protocol was optimized, we aim to 

facilitate the adoption of ChIP as a routine assay in the Xenopus embryological 

laboratory. 

While our method is similar to now-standard ChIP protocols in use with 

other model systems (Kuo and Allis, 1999), some critical differences may be 

particular to the Xenopus system. First, we report optimized fixation and 

sonication techniques that yield chromatin crosslinked and sheared enough to 

detect transcription factor occupancy at promoters with at least 1000bp 

resolution. Second, because the standard 1% SDS lysis buffer used during 

sonication tended in our hands to produce low-quality chromatin from early 

embryos, we used a low-SDS (0.1%) radio-immunoprecipitation assay (RIPA) 

buffer. RIPA buffer produces high quality sheared chromatin samples while 

reducing yolk solubilization, thus limiting background by preventing protein 

precipitation. Doubling the number of washes further reduces background. 

Finally, we have optimized DNA purification and PCR conditions to allow for the 
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reliable detection of as little as 30 copies of a target sequence per reaction, 

facilitating the use of as few as 5x104 cells in the starting sample, an 

improvement of two orders of magnitude from the typical ChIP protocol. We also 

demonstrate approaches for quantitative PCR and statistical analysis of ChIP 

results, which can offer several advantages over endpoint PCR detection 

strategies for detecting differences between samples. Interestingly, several 

protocols for ChIP using either cultured cells, early mouse embryos, or tissue 

biopsies have been described that use as few as 1x102 cells (Acevedo et al., 

2007; Dahl and Collas, 2008; O'Neill et al., 2006), suggesting that, with 

modification, the sensitivity of this procedure could be enhanced even further. 

The protocol we present here is well suited to the Xenopus embryologist: it 

facilitates the use of microinjected embryos and explanted tissues by decreasing 

the amount of genomic material required to obtain meaningful data. Thus, we 

present this work with the hope that it will help advance the use of ChIP in 

embryological experiments and lead to new avenues of research in 

developmental biology. 

 

2.2: Results and Discussion 
 

In this section, we discuss the critical parameters for optimization and 

validation as well as general guidelines for ChIP in Xenopus. A step-by-step 

protocol follows in “Experimental Procedures”.  The most critical parameter in our 

experience is the method used to generate the sheared chromatin sample. 

Several factors need to be considered: extent of crosslinking, duration/strength of 
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sonication, and yield. In general, the greater the extent of crosslinking, the 

greater the amount of sonication that will be required to generate ideal (<1000bp) 

fragments. However, prolonged crosslinking will render chromatin impervious to 

fragmentation (Orlando et al., 1997), and over-sonication will result in reduced 

overall yield of genomic DNA. In addition, the target antigens should be 

considered. For example, nucleosomes can be immunoprecipitated with sheared 

genomic DNA without crosslinking (O'Neill and Turner, 2003), while transcription 

factors and secondarily-associated protein complexes may require extended 

crosslinking times (or different crosslinking reagents) to achieve sufficient co-

immunoprecipitation of genomic DNA (Zeng et al., 2006).  

 These factors should also be considered when customizing this protocol to 

particular applications. The following procedure was used to optimize 

crosslinking and shearing for blastula and gastrula stage Xenopus embryos. All 

sonication steps were performed using a Branson Sonifier 250 equipped with a 

1/4" microtip horn, set at 20% output. Other makes of sonicators will have 

different efficiencies, making these optimization steps even more critical. 

 

2.2.1: Crosslinking Optimization 

 

 To optimize crosslinking time, we performed a fixation time course on 

gastrula stage (stage 10) embryos. Using this stage ensures that enough DNA 

will be recovered for analysis by agarose gel electrophoresis. We collected 

embryos fixed in 1% formaldehyde / PBS for 15, 30, 45, and 60 minutes, as well 
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as control, non-fixed embryos. Samples were prepared according to the ChIP 

Day 1 protocol up to step 8 (see Experimental Procedures). We sonicated the 

samples minimally using conditions (3x 20 seconds, 20% output, 20% duty cycle) 

that would solubilize the genomic DNA from the insoluble pellet—effectively 

shearing native DNA— but would minimally shear crosslinked DNA. Post-

sonication supernatants were adjusted to 1% SDS, 10mM EDTA prior to 

crosslink reversal and DNA purification, as described in the Experimental 

Procedures, except that following RNase treatment, DNA was ethanol 

precipitated, resuspended in 50µl H2O and analyzed by agarose gel 

electrophoresis. 

 While genomic DNA from embryos fixed for 15 minutes showed no 

resistance to shearing as compared to control, DNA from embryos fixed for as 

little as 30 minutes showed evidence of crosslinking, indicated by the detection of 

slower-migrating, sonication-resistant DNA (Figure 2.1A). Subsequently, the 

extent of crosslinking was increased incrementally until the 60-minute timepoint.  

Although 60-minute fixation times have been reported (Orlando et al., 1997), 

typical ChIP protocols performed on yeast and cultured cell systems fix samples 

for 10 to 15 minutes (Kuo and Allis, 1999; Luo et al., 1998), with similar amounts 

of formaldehyde in PBS or culture medium. This result suggests that the kinetics 

of nucleoprotein crosslinking by formaldehyde is different in the case of the 

Xenopus embryo, perhaps due to a greater non-chromatin protein to DNA ratio 

compared to other systems. Therefore, it will also be important to optimize  
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Figure 2.1: Crosslinking and Sonication Optimization. 

(A) Minimally-sonicated, gastrula stage (stage 10) DNA from a 1% formaldehyde/ 1XPBS time 

course was resolved by 2% agarose gel electrophoresis. Onset of crosslinking is observed by the 

recovery of sonication-resistant, high molecular weight DNA (>1kb). (B) 60-minute crosslinked 

chromatin from gastrula stage embryos was fully sonicated for one to four rounds of 20 seconds 

each and resolved by 1.2% agarose gel electrophoresis. Three rounds of sonication balances 

optimal yield (90%) with maximal shearing (<1kb) of the crosslinked chromatin. 
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crosslinking times for later embryonic stages when this ratio begins to approach 

typical somatic levels. 

 

2.2.2: General Sonication Guidelines 

 

1) Perform sonication on ice to prevent overheating. Place the sample to be 

sonicated in a beaker filled with ice, and hold this under the sonicator horn 

during shearing. 

2) Sonicate in short bursts. 20-second rounds of sonication prevent sample 

overheating. Let the samples rest for at least 1 minute before the next 

round. 

3) Center the horn in the sample and avoid contact with the walls of the 

microcentrifuge tube. This will improve reproducibility. 

4) Avoid sample foaming, which happens when the tip of the horn draws air 

into the sample because it was brought too close to the surface. 

 

2.2.3: Shearing Optimization 

 

To determine whether we could generate sufficiently small average DNA 

fragment size with a longer fixation time, we crosslinked gastrula stage (stage 

10) embryos for 60 minutes and performed one to four rounds of full-strength 

sonication (20 seconds each, 20% output, 100% duty cycle) and repeated the 

crosslink reversal and DNA purification as described below (see Experimental 
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Procedures). One round of sonication generated a majority of <1000bp 

fragments, but we also noted a population of high molecular weight DNA that 

was reduced with each successive round of sonication (Figure 2.1B). By four 

rounds of sonication, the high molecular weight DNA was virtually undetectable, 

but overall DNA yield was also reduced by 25%. Therefore, we concluded that 

three 20-second rounds of sonication balances optimal yield (90%) with average 

fragment length (<1000bp). The efficiency and specificity of this method of 

crosslinking and shearing was further validated as described below. 

 

2.2.4: Chromatin Immunoprecipitation in Blastula Stage Embryos 

 

 We tested the ChIP protocol by scanning for occupancy of the 

transcription factor β-catenin within a 2.5kb upstream portion of the Xenopus 

nodal-related 6a (Xnr6) locus that contains several predicted Tcf/Lef binding sites 

(Figure 2.2A). Wnt/β-catenin pathway activity is required for Xnr6 expression 

(Rex et al., 2002; Takahashi et al., 2000; Xanthos et al., 2002; Yang et al., 

2002b), so we predicted that some of these sites would be occupied by β-catenin 

in blastula stage embryos. In addition, we performed ChIP for a euchromatin 

marker, di-acetylated [K9/K14] histone H3 (AcH3), reasoning that an active locus 

should be positive for AcH3 (Roh et al., 2005). A portion of the related Xnr1 locus 

that is not predicted to bind β-catenin was analyzed as an additional control 

(Figure 2.2A). 
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Figure 2.2: Chromatin immunoprecipitation in blastula-stage Xenopus 

embryos 

Schematic representations of the Xnr6a and Xnr1 genomic loci (A) demonstrate the locations of 

predicted Tcf/Lef consensus sequences relative to the ChIP PCR amplicons. (B) These primer 

sets amplify standard genomic DNA by PCR with similar efficiencies, with a limit of detection at 

approximately 30 haploid genomes. (C) Blastula-stage embryos (Stage 9) were processed for 

ChIP using either anti-acetylated histone H3, or anti-β-catenin antisera (with the corresponding 

negative controls). The PCR products were visualized by 3% agarose gel electrophoresis and 

ethidium bromide staining. Co-immunoprecipitation of associated genomic DNA is observed when 

the PCR signal is greater for the experimental IP (AcH3, β-catenin) than in the control IP (IgG, 

Serum). Note that the Xnr1 (-221) product occasionally amplifies as a doublet (seen in panel C): 

this represents genetic variation at this locus within our colony. 
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 PCR conditions were optimized to ensure detection of immunoprecipitated 

DNA present in limiting quantities. To maximize detection, we performed nested 

PCR, using two rounds of 20 cycles each to amplify target sequences from 

genomic DNA standards. Nested PCR has the twofold advantage of replenishing 

the polymerase, primers, and dNTPs available for amplification while increasing 

priming specificity by using a second, internal primer set for the second round of 

amplification. By this method, we are able to detect PCR products from as little 

as 100pg of genomic DNA, corresponding to approximately 30 haploid genomes 

(Figure 2.2B). Radiolabeling the second, inner PCR reaction further increases 

sensitivity (not shown). 

 We performed ChIP on blastula stage embryos with anti-AcH3 and anti-β-

catenin (Figure 2.2C). All loci tested were associated with AcH3, while only the 

Xnr6 (-118) and (-2349) amplicons were bound by β-catenin. Notably, an 

intermediate amplicon (-1280) was negative for β-catenin binding. Therefore, the 

fixation and sonication method in this ChIP protocol sufficiently fragments 

chromatin, and has at least a ~1000bp resolution. We expect that this approach 

will be useful for scanning intergenic regions for transcription factor binding sites 

and occupancy of modified histones. Additionally, these results confirm an 

expected result, namely, that Xnr6 is a direct target of the Wnt/β-catenin 

signaling pathway. 
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2.2.5: Controls for Antibody Specificity 

 

 Several control experiments confirmed the specificity of our β-catenin 

antibody under the conditions used for ChIP. To demonstrate antibody specificity, 

we both confirmed that the antibody could be competed by the immunizing 

peptide and tested that depletion of β-catenin would reduce the amount of co-

immunoprecipitated chromatin. When possible, this latter approach is a powerful 

method for antibody validation, as it will reveal off-target antibody recognition that 

could be overlooked by peptide competition alone. First, we optimized conditions 

for peptide competition of antibody-antigen binding using western blotting of 

protein recovered from immunoprecipitated chromatin. The β-catenin antibody 

was raised against the 145 N-terminal amino acids of the Xenopus laevis β-

catenin protein. We therefore used a 6xHis-tagged peptide corresponding to the 

immunizing peptide to compete for β-catenin binding in the ChIP assays, either 

by pre-incubation of the peptide with the antibody prior to the addition of sheared 

chromatin (Figure 2.3A, lane 2) or by addition of the peptide to the sheared 

chromatin before the antibody (Figure 2.3A, lane 3). For this experiment, the 

ChIP protocol was followed through Day 2, step 9, whereupon samples were 

analyzed by 8% SDS-PAGE followed by western blotting (see Experimental 

Procedures). Both methods of peptide competition reduced immunoprecipitated 

β-catenin in the ChIP samples, confirming the specificity of the antiserum. 

Notably, a 1/5th embryo equivalent was loaded in the input lane, while 2 embryo  
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Figure 2.3: Controls for antibody specificity 

(A) The specificity of the β-catenin antiserum was confirmed by performing ChIP on blastula-

stage (stage 9) embryos and competing with an excess of immunizing peptide (lane 2: pre-

incubation of antibody with peptide; lane 3, addition of peptide directly to sheared chromatin 

sample). Following IP, samples were processed as described in the text and separated by 8% 

SDS-PAGE. Immunoprecipitated β-catenin was analyzed by a standard western blot using the β-

catenin antiserum. (B) Peptide competition of the β-catenin ChIP and (C) knockdown of β-catenin 

by morpholino injection (20ng/cell at the 2-cell stage) confirms the specificity of the interaction 

between β-catenin and the Xnr6 promoter. The competitions in (B) and (C) were performed by 

pre-incubation of the peptide with the antiserum for 1 hour before addition to the sheared 

chromatin sample. 
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equivalents were loaded in the IP lanes, but similar band intensities for β-catenin 

are observed by western. This indicates that, following ChIP for β-catenin, as 

little as 10% of the available antigen is recovered, although these conditions 

effectively deplete lysates of antigen under native conditions (not shown). 

 Additionally, we tested whether the immunizing peptide would compete for 

co-immunoprecipitation of the Xnr6 genomic locus. Indeed, when the β-catenin 

antibody is competed with the immunizing peptide, only background levels of 

Xnr6 (-118) are co-immunoprecipitated, thus confirming the specificity of this 

interaction (Figure 2.3B). Likewise, only background levels of signal were 

detected with a negative control locus, Myosin Light Chain 2 (Xmlc2) (Park et al., 

2005). Finally, in Figure 2.3C, we demonstrate that knockdown of β-catenin by 

microinjection of a morpholino oligonucleotide (Heasman et al., 2000) also 

results in a loss of β-catenin binding to the Xnr6 locus, comparable to the 

reduction seen by peptide competition. This latter result is notable, insofar as the 

experiment was performed with a single set of microinjected embryos (100 total, 

plus 100 non-injected controls), demonstrating that this approach is amenable to 

typical embryological manipulations in common use within the Xenopus 

community. These observations validate the specificity of the ChIP protocol and 

the observation that β-catenin binds to the Xnr6 genomic locus in blastula stage 

embryos. 
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2.2.6: Quantitative PCR Analysis 

 

To determine whether ChIP samples produced by this protocol would be 

amenable to quantitative PCR analysis, we designed an experiment to evaluate 

the binding of Fast-1 (FoxH1) to the endogenous Goosecoid promoter. 

Goosecoid is an organizer gene with a well-defined promoter region responsive 

to both Wnt and Nodal signals (Watabe et al., 1995). During early 

embryogenesis, the Nodal pathway signals through the DNA-bound effector 

Fast-1 (Shen, 2007).  

Embryos were injected at the one-cell stage with mRNA encoding myc-

tagged Fast-1 (250pg) alone or in combination with Xnr1 mRNA (50pg), a 

Xenopus Nodal-related gene. Embryos were collected at the mid-gastrula stage 

(stage 10.5) and processed according to the ChIP protocol, using a polyclonal 

anti-myc antibody to immunoprecipitate myc-Fast-1 containing complexes, 

followed by QPCR. As a control for non-specific binding of the antibody, 

uninjected embryo samples were analyzed in parallel. As a negative control, 

binding of myc-Fast1 to the Ef1α coding region, which is not expected to bind 

Fast-1, was also examined.  

As shown in Figure 2.4, myc-Fast1 binds to the endogenous Goosecoid 

promoter, and not to Ef1α. While the signal from the Goosecoid promoter is high, 

the background from Ef1α is low, indicating that the binding of myc-Fast1 to the 

Goosecoid promoter is quite robust, as predicted. Similar results were obtained  



Figure 2.4*

42*Contributed by Christine Reid and Daniel Kessler
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Figure 2.4: Quantitative PCR analysis of ChIP 

Quantitative PCR for the Goosecoid promoter (gray bars) and Ef1α (white bars) normalized to 

uninjected embryo control (A) or quantified as a percentage of input DNA (B). Graphs represent 

average relative quantification for four independent experiments. An average of 45 one-cell 

embryos were injected with myc-Fast1 (250pg) alone or in combination with Xnr1 (50pg) and 

harvested at gastrula stage (stage 10.5) for ChIP analysis according to this protocol. QPCR was 

performed using SYBR green and relative quantification was performed using the ∆∆C(t) method. 

Error bars shown represent standard error. 
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with injection of as little as 25pg of myc-Fast-1 mRNA (data not shown). From 

these results we conclude that myc-Fast-1 indeed binds to the endogenous  

Goosecoid promoter and that QPCR provides a sensitive and quantitative 

method for analyzing ChIP samples obtained using this protocol. 

Figure 2.4 presents two approaches to data normalization. Figure 2.4A 

represents the fold enrichment when experimental samples are normalized to 

uninjected control samples and Figure 2.4B shows the quantity of each 

immunoprecipitated target sequence as a percentage of total input DNA. In this 

experiment, PCR amplification was linear over a range of 5% (the highest 

amount tested) to 0.01% input material. By comparison to genomic DNA 

standards, this corresponds to a range between 65 and 0.1ng genomic DNA 

(data not shown). Thus, in these experiments, single round QPCR is as sensitive 

as the nested PCR shown in Figure 2.2B. As such, we have not investigated 

whether QPCR is amenable to a nested PCR approach, but it is conceivable that 

a limited, initial (conventional) PCR amplification could enhance the sensitivity of 

a subsequent QPCR analysis. 

 Finally, β-catenin binds to chromatin indirectly through interaction with 

Tcf/Lef family members, raising the possibility that prolonged crosslinking (60 

min) is only required for indirect binding proteins, whereas proteins that bind 

directly to DNA may be crosslinked more efficiently. We therefore evaluated the 

effect of crosslinking time on the recovery of Tcf3 at target gene promoters by 

ChIP. Tcf3 is a member of the Tcf/Lef family of transcription factors that is 

predicted to bind directly the promoters of β-catenin target genes during early 
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embryogenesis (Molenaar et al., 1996). Embryos were injected with 25pg Myc-

tagged Tcf3 per blastomere at the two-cell stage and fixed at stage 10 for 15, 30, 

45, or 60 minutes. Following ChIP, samples were analyzed by QPCR for 

recovery of promoter sequences for the β-catenin target genes Siamois and 

Xnr6. Tcf3 has been shown previously to bind the Siamois promoter in gastrula 

stage embryos, and thus serves as a positive control in this experiment (Park et 

al., 2005). Recovery of Xmlc2 was also measured as a negative control for Tcf3 

binding. Figure 2.5 demonstrates that recovery of Tcf3-bound promoter 

sequences is maximal with 60 minutes of crosslinking time, and that crosslinking 

for 30 minutes or less leads to little or no recovery of target gene promoter 

sequences. Notably, crosslinking for up to 60 minutes does not result in a large 

increase of non-specific encrichment for the negative control locus. In addition, a 

45-minute crosslinking time is also sufficient to recover bound promoters (albeit 

less efficiently), with the advantage of slightly less signal from the negative 

control ChIP. These results underscore the observation in Figure 2.1A that 

extended crosslinking times are required to perform ChIP for DNA-bound 

transcription factors in early Xenopus embryos. 

 

2.2.7: Further considerations 

 

 In addition to the factors described above, several additional 

considerations should be made when designing a Xenopus ChIP experiment. 

Particularly, since embryos represent a heterogeneous population of cells,  



Figure 2.5
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Figure 2.5: Effect of crosslinking times on ChIP 

Anti-Myc-Tag ChIP was performed on sets of 37 gastrula stage (stage 10), non-injected or Myc-

Tcf3 injected (50pg) embryos, which were crosslinked for 15, 30, 45, or 60 minutes, as indicated. 

Samples were analyzed by QPCR for enrichment of Xmlc2 (-118), Xnr6 (-118), and Siamois (-

303), represented as % Input recovery. Crosslinking times between 45 and 60 minutes are 

required for the specific enrichment of the promoters for both Siamois (black bars) and Xnr6 

(hatched bars) by Myc-Tcf3 ChIP compared to the Xmlc2 promoter (gray bars). All non-injected 

(negative control) ChIPs yielded a comparatively low signal and are represented as white bars. 

Recovery of input material was similar for each timepoint. 
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certain protein:DNA interactions may occur in only a small fraction of the 

experimental sample. This will result in an overall reduction in the number of  

available binding events for analysis. In cases where a minimal amount of 

starting material is used, this heterogeneity could lead to “false negative” results. 

Several approaches are available to circumvent this problem: increasing the 

amount of starting material, increasing the amount of material in the PCR 

analysis, and enriching for the subpopulation of cell types with the predicted 

protein:DNA interaction. Xenopus embryos are particularly well suited for this 

latter approach. For example, using explanted tissues containing the lineage of 

interest can enrich for particular cell types. Alternatively, molecular techniques for 

expanding cell lineages can be used to troubleshoot negative results. Finally, in 

certain cases (and also when a suitable antibody is unavailable), it may be 

possible to overexpress the DNA binding factor of interest throughout the embryo 

to increase the number of protein:DNA binding events available for analysis. 

However, care must be taken in the interpretation of overexpression 

experiments, particularly due to the difficulty in controlling the spatio-temporal 

expression of injected mRNAs. In this case, it may be possible to refine further 

overexpression approaches by driving tissue-specific expression of the DNA-

binding factor of interest, either by plasmid DNA injection or transgenesis. 
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2.2.8: Concluding Remarks 

 

 We have reported a ChIP assay protocol amenable to early Xenopus 

embryo research, have demonstrated examples of its implementation, and have 

outlined methods to optimize several aspects of the protocol. We strongly 

encourage repeating the optimization experiments shown in Figure 2.1 when 

different conditions or embryo stages are used, as we find this is the most critical 

aspect of the protocol in our hands. We expect that ChIP will become a useful 

tool within the Xenopus community, allowing for the identification of direct 

protein-DNA interactions, which, in the past, have been indirectly surmised, 

usually by plasmid-based reporter gene assays or by the combination of 

overexpressed, hormone inducible chimeras and cycloheximide treatment. In 

addition, this technique will allow for many unanswered questions in 

developmental biology to be addressed, including the systematic analysis of 

gene regulatory networks and the investigation of the function of chromatin 

modifications during early vertebrate embryogenesis. 

 

2.3: Experimental Procedures 

 

ChIP experiments are designed similarly to common immunoprecipitations 

(IPs), which include both experimental and control IPs and a sample of the pre-IP 

(input) material, generally 1%. This protocol has been used successfully with as 

few as 50 stage 8, 1000-cell embryos (5x104 cells total) per IP (or an equivalent 
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amount of explanted tissues from later-stage embryos). Therefore, 100 embryos 

are required for a basic ChIP if early blastula stage is used. If preliminary 

experiments demonstrate weak signal strength, the number of embryos can be 

increased at the investigator’s discretion. 

ChIP requires high-quality antibodies that will specifically 

immunoprecipitate the antigen in 0.1% SDS and maintain the interaction 

throughout several washes of increasing stringency. Because the IP material is 

also highly crosslinked, certain antigens may be masked to a greater extent than 

under native conditions. Since this protocol is amenable to the use of 

microinjected samples, N- or C- terminal tagged proteins of interest can be used 

if an antibody doesn’t perform as expected, or if one is unavailable. We have 

successfully used both Myc- and HA-tagged proteins in this way, and 

recommend the use of polyclonal rather than monoclonal antisera, when 

possible. 

 

2.3.1: ChIP Protocol 

 

This protocol was developed to detect occupancy of transcription factors at target 

gene promoters during blastula and early gastrula stages. It is divided into five 

sections, each of which can be completed easily in one day: “Sample 

Preparation,” “Days 1-3,” and “PCR.” Points that can be shortened to accelerate 

sample preparation will be noted.  

 



 51 

Sample Preparation: Embryos are cultured to the desired stage and fixed in 

formaldehyde. This will crosslink proteins to one another and to DNA (Orlando et 

al., 1997). Fixation is quenched by washing with glycine, yielding a sample ready 

for ChIP. 

 

Materials: 

-Standard Xenopus embryo culture and microinjection materials (Sive et 

al., 2000) 

-Phosphate Buffered Saline (PBS): (Per liter) 8g NaCl, 0.2g KCl, 1.44g 

Na2HPO4, 0.24g KH2PO4, pH 7.4 (Maniatis et al., 1982). 

-Formaldehyde (37% stock, Molecular Biology Grade, Thermo Fisher 

BP531); 1% Formaldehyde in PBS working solution: 676µl 

formaldehyde per 25ml PBS 

-0.125M Glycine in PBS: Mix 235mg Glycine (Sigma G7125) per 25ml 

PBS 

-1.5ml microcentrifuge tubes (Eppendorf 02236411) 

 

Time: Following culture to the desired stage, up to 1 hour to crosslink, and 

20 minutes to quench, wash, and distribute samples to tubes. 

 

Procedure: At the desired stage, embryos are fixed/crosslinked in 1% 

formaldehyde/ PBS for up to 1 hour (see Results and Figure 2.1a). Agitation is 

not necessary. Crosslinking is stopped by a 10-minute wash in 0.125M Glycine/ 
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PBS, followed by three washes in PBS. Fixed embryos are transferred to 

microcentrifuge tubes (50 per tube), excess PBS is removed, and they may be 

either frozen at -80°C for at least 3 months or processed for ChIP immediately 

(Day 1 protocol).  

 

Day 1: Samples are homogenized and crosslinked chromatin is sheared to 

<1000bp fragments by sonication. Samples are then pre-cleared and the primary 

antibody incubation is performed overnight. 

 

Materials: 

-RIPA buffer (4°C, 1.25ml per set of 50 embryos): 50mM Tris-HCl, pH 7.4, 

1% Igepal CA-630 (NP-40) (Sigma I3021), 0.25% Na-

Deoxycholate, 150mM NaCl, 1mM EDTA, 0.1% SDS, 0.5mM DTT, 

5mM Na-Butyrate, Protease Inhibitor Cocktail (Sigma P8340), 

Phosphatase Inhibitor Cocktail I (Sigma P2850), Phosphatase 

Inhibitor Cocktail II (Sigma P5726). 

-20ml 5% Bovine Serum Albumin (BSA fraction V, Sigma A9647) in PBS 

(see above) 

-15ml conical tubes with caps (Thermo Fisher 14-959-70C) 

-Recombinant Protein G-Agarose (100µl per set of 50 embryos) 

(Invitrogen 15920-010) 

-Kontes Pellet Pestles (Thermo Fisher K749521-1590) 

-Cold centrifuge capable of 14,000g 
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-Kimwipes (Thermo Fisher 06-666) 

-Nutator or end-over-end rotator (at 4°C) to mix samples 

-Sonicator (Branson Sonifier 250 or equivalent, with a microtip horn) 

-Safe-Lock 1.5ml microcentrifuge tubes (Eppendorf 2260002-8) 

-TES Buffer: 50mM Tris-HCl pH 8.0, 10mM EDTA, 1% SDS (store at room 

temperature) 

-Control and Experimental Antibodies 

 

 Time: 1.5 hours for homogenization and shearing, 1 hour preclear, 

overnight primary incubation 

 

 Procedure: 

1) Thaw crosslinked embryos for 15 minutes on ice. 

2) Prepare blocked protein-G agarose while the embryos are thawing. 

Dispense enough protein-G agarose for each IP (plus an extra 50µl) into 

each of two 15ml conical tubes. Mark the volume’s height on the side of 

the tube with a marker. Add 10ml 5%BSA/ PBS to each tube and incubate 

at 4°C with mixing for at least 1 hour prior to use. 

3) Add 600ul 4°C RIPA buffer to the fixed embryos.  

4) Homogenize the fixed embryos with a pellet pestle: gently disrupt the 

embryo pellet, and then vigorously homogenize each sample for 30 

seconds. Proceed through all the samples, using different pestles for each 

set of embryos, and then repeat the homogenization once again. The 
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sample will become a uniform gray color with a fine particulate 

consistency. No large embryo fragments should remain. 

5) Incubate embryos on ice for at least 10 minutes beginning from the time of 

initial homogenization. 

6) Centrifuge at 14,000g for 10 minutes at 4°C. 

7) Discard the supernatant and wipe the wall of the tube above the pellet with 

a kimwipe to remove lipid residue. 

8) Add 650µl 4°C RIPA to the pellet and re-homogenize vigorously, ensuring 

that no coarse fragments of pellet remain. 

9) Sonicate sample (see Results and Discussion). 

10) Centrifuge for 10 minutes at 4°C at 14,000g. 

11) Transfer the supernatant (600µl recovery is typical) into pre-chilled, clean 

1.5ml microcentrifuge tubes. The supernatant contains the sheared 

chromatin and should appear medium-yellow without any debris. The 

pellet should be compact, and will have a top layer of dark pigment, with a 

bottom yellowish, yolky layer. 

12) To prepare Input Samples: In a safe-lock tube, combine 195µl TES buffer 

and 5µl sheared chromatin. These samples will be processed once the IPs 

are complete. Freeze at -80°C. 

13) Centrifuge one of the 15ml conicals containing the blocked protein-G 

agarose at 1000g for 5 minutes. Remove excess 5%BSA/ PBS to the level 

of the original bead volume (marked on the side of the tube). 

14) Gently resuspend the blocked beads by low speed vortexing.  
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15) Pre-clearing: Dispense 50µl blocked beads to each sample of sheared 

chromatin, mixing the beads by pipetting before removing them from the 

15ml conical to ensure equal distribution between samples. Mixing by 

vortexing each time is not recommended. 

16) Incubate the samples at 4°C with mixing for 1 hour. 

17) Centrifuge at 1000g for 1 minute at 4°C. 

18) Transfer 580µl pre-cleared, sheared chromatin to a pre-chilled 1.5ml tube. 

Avoid transferring any beads. 

19) Begin the immunoprecipitation: Add the appropriate amount of antibody or 

control serum to each sample. Amounts will need to be determined 

empirically. In the examples here, 1µg affinity purified IgG, or 5µl whole 

serum, per sample was optimal. 

20) Incubate samples overnight at 4°C with mixing. (To shorten sample 

preparation time, the antibody incubation could be reduced to a minimum 

of 1 hour, followed by continuation with the Day 2 Protocol. Appropriate 

minimum conditions will have to be determined empirically.) 

 

Day 2: Immunocomplexes are precipitated, washed extensively, and eluted. 

Crosslinks are reversed and proteins are digested. 

 

 Materials: 

-Blocked protein-G agarose (see above) 
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-Wash Buffer I: 20mM Tris-HCl pH 8.0, 0.1% SDS, 1% Triton X-100, 2mM 

EDTA, 150mM NaCl 

-Wash Buffer II: (Wash Buffer I, with 500mM NaCl) 

-Wash Buffer III: 10mM Tris pH 8.0, 0.25M LiCl, 1% Igepal CA-630 (NP-

40), 1% Na-Deoxycholate, 1mM EDTA 

-Wash Buffer IV: (TE buffer) 10mM Tris-HCl pH 8.0, 1mM EDTA 

-1ml syringe fitted to a vacuum aspirator 

-20-gauge syringe needles 

-26-gauge syringe needles 

-TES Buffer (see above) 

-Safe-lock tubes (see above) 

-Hybridization oven or water bath set at 65°C 

-Proteinase K/ Glycogen Solution: 15mg/ml Proteinase K, 6mg/ml 

GlycoBlue (Ambion AM9515), PBS, 30% Glycerol 

 

 Time: 1 hour for immune complex precipitation, 2 hours for the washes 

and elution, followed by an overnight crosslink reversal/ proteinase K digestion. 

 

 Procedure: 

1) Centrifuge samples at 14,000g for 5 minutes at 4°C and transfer 

supernatants (560µl) to pre-chilled 1.5ml microcentrifuge tubes. This will 

remove insoluble precipitates that may have formed during the overnight 

incubation. 
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2) Repeat steps 13-17 of the Day 1 procedure with the second 15ml conical 

tube of pre-blocked protein-G agarose. 

3) To Wash: Each wash consists of a 1-minute spin at 1000g in a 4°C 

centrifuge to pellet the immunocomplexes, removal of supernatant via 

aspiration with a 20-gauge needle, addition of 1ml wash buffer (see 

below), and incubation at 4°C with mixing for 5 minutes. 

a. Wash for a total of 8 times, using 2 washes each with buffers I 

through IV. 

b. If high background is observed, it may help to do 3 washes with 

each of the buffers, or to increase the wash time to 10 minutes. 

4) Following the washes, aspirate the supernatant with a 26-gauge needle, 

inserting it into the beads at the end to completely remove any residual 

wash buffer. If necessary, perform a quick additional spin and repeat 

aspiration to ensure all of the supernatant has been removed. 

5) Add 220µl TES buffer to the beads and vortex vigorously for 5 seconds. 

6) Elution: Incubate the samples at 65°C for 10 minutes, vortexing each 

sample vigorously for 5 seconds every 2 minutes. 

7) During this time, the frozen input samples should be thawed and vortexed 

to resuspend any precipitated SDS. IP and input samples are processed 

in the same manner for the rest of the procedure. 

8) Centrifuge the samples at 14,000g at room temperature for 1 minute. 

9) Transfer 200ul of the eluted IP supernatant to a safe-lock tube. Do not 

transfer any beads. 
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10) Add 7µl Proteinase K/ Glycogen solution to each sample. 

11) Incubate the samples at 65°C overnight to reverse crosslinks and digest 

proteins. (Other protocols suggest that a 4-hour incubation is sufficient to 

reverse crosslinks and digest. One could try this to shorten this step.) 

 

Day 3: DNA is purified from the samples, RNase-treated, and finally re-purified 

through a spin-column. 

 

 Materials: 

 -Phenol/Chloroform/Isoamyl Alcohol (Thermo Fisher BP1752) 

 -Sterile MilliQ (or equivalent) H2O 

-TE-Saturated Chloroform (Mix equal parts TE buffer (10mM Tris-HCl 

pH8.0, 1mM EDTA) and Chloroform (Thermo Fisher BP1145) and 

allow the phases to separate. Use the lower, organic phase) 

 -5M NaCl 

 -100%, 70% Ethanol 

-RNase A/ TE buffer (Dilute RNase A (100mg/ml stock solution, Roche 

10109169001) to 2mg/ml in TE buffer) 

 -Qiagen PCR Purification Kit (Qiagen 28104) 

 

 Time: 1.5 hours for phenol/chloroform extraction and ethanol precipitation, 

1 hour for RNase treatment, and 15 minutes for spin-column purification. 
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 Procedure: 

1) Add 200µl phenol/chloroform/isoamyl alcohol to each sample, vortex 

vigorously, and centrifuge at 14,000g for 1 minute at room temperature.  

2) Transfer 200µl of the upper, aqueous phase to a clean 1.5ml 

microcentrifuge tube. 

3) Add 200µl sterile milliQ water to the lower, organic phase. Vortex the 

sample vigorously and centrifuge at 14,000g for 1 minute at room 

temperature. 

4) Add 200µl of the second aqueous phase to the first aqueous phase. 

5) Add 350µl TE-saturated chloroform to each sample, vortex vigorously, 

shake, and centrifuge at 14,000g for 1 minute at room temperature. 

6) Transfer 350µl of the aqueous phase to a clean 1.5ml tube. 

7) Add 14µl 5M NaCl to each sample. Vortex to mix and do a quick spin. 

8) Add 920µl room temperature, 100% ethanol to each sample. 

9) Mix well by inversion and incubate the samples at –80°C for 30 minutes. 

10) Centrifuge at 14,000g for 15 minutes at 4°C. A blue pellet should form at 

the bottom of the tube. If not, vortex the tube and repeat centrifugation. 

11) Discard the supernatant. 

12) Wash samples by adding 1ml 70% ethanol, mixing by inversion, and 

centrifuge at 14,000g for 5 minutes at 4°C. 

13) Discard the supernatant. 

14) Resuspend pellets in 100µl RNase A / TE. 

15) Incubate samples at 37°C for 1 hour. 
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16) Add 500µl Qiagen Buffer PB to each sample.  

17) Mix well and briefly spin down. 

18) Transfer each 600µl sample to a Qiagen PCR Purification Kit column. 

19) Follow the kit protocol for PCR Purification, eluting in 50µl buffer EB. 

20) The eluate from the Qiagen PCR Purification kit is now ready for analysis 

by PCR. 

 

2.3.2: PCR 

 

PCR Primers: For nested PCR, primer sequences were designed with 

MacVector 9.0, with default settings except that the primer melting temperature 

was reduced from 55°C to 50°C. Amplicon length is ideally between 100-180bp. 

Primers are defined as “nested” if the inner primer pairs have 5 or more unique 3’ 

nucleotides. The numbering of the primer sets represents the midpoint of the 

amplicon, relative to the predicted translational start site (ATG). The inner Xmlc2 

primer was previously reported (Park et al., 2005). Xnr6 (-118): Outer/Forward 5’- 

TCT GAG GTG TGA GGT ATA TGA AAG G -3’; Outer/Reverse 5’- TGG GGC 

TCT TGA AAA CTG AAA TG -3’; Inner/Forward 5’- GGT AGA TGA AAG GCT 

GAC AGG TGT G -3’; Inner/Reverse 5’- GGC TGT TGA AAA CTG AAA TGA 

AGC -3’. Xnr6 (-1280): Outer/Forward 5’- AAA AGG AGT CTA TGA GAA GTG 

GC -3’; Outer/Reverse 5’- TGA GAA TAC AGT AAG GAG GGG C -3’; 

Inner/Forward 5’- GGA TAA TGG GTT TCT GGA TAA CTG -3’; Inner/Reverse 

5’- GGT GAT GCT AAA GGT GAG ATG G -3’. Xnr6 (-2349): Outer/Forward 5’- 
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ACA CCC CCT GCT CCC CCG -3’; Outer/Reverse 5’- GCA AAA CAA TCC CAC 

CCA G -3’; Inner/Forward 5’- GGT ACT TCC GCC ACT GAA AG -3’; 

Inner/Reverse 5’- AGA CCC CTA TCC AGA AAA TCT C -3’. Xnr1 (-221): 

Outer/Forward 5’- TCT GAG GTG TGA GGT ATA TGA AAG G -3’; 

Outer/Reverse 5’- TGG GGC TCT TGA AAA CTG AAA TG -3’; Inner/Forward 5’- 

GGT AGA TGA AAG GCT GAC AGG TGT G -3’; Inner/Reverse 5’- GGC TGT 

TGA AAA CTG AAA TGA AGC -3’. Xmlc2 (-118): Outer/Forward 5’- TGG GAT 

ATT TTA CTG AAC ACA ATG -3’; Outer/Reverse 5’- CGT CCT GTG CCA CCT 

AAT G -3’; Inner/Forward 5’- GAA TGT TAG CCC TTG TGC TCT T -3’; 

Inner/Reverse 5’- GGA AAG TTC TCT TGA TCA TTT TA -3’.  

 For QPCR, primers were 18 to 30 nucleotides long with an approximate 

melting temperature of 60°C. Amplicon length was between 80-120bp. The 

following QPCR primer sets were used. Goosecoid (-224): Forward 5’- AAT GAC 

AGC CAA CAG CTC AGA GGA CA -3’; Reverse 5’- TCG CAG ACT CTC CCT 

GTA GTT ATT CAC A -3’. EF1α (-335): Forward 5’- GTC TCG GCC CCT AAA 

TAT GA -3’; Reverse 5’- CAG CTC CCA GCT CTT TTG TC -3’. Siamois (-303): 

Forward 5’- GGG ACT TTG AAG TCT TGC CA -3’; Reverse 5’- TCT GAT GAC 

ACG TGT TTC CC -3’. For QPCR of Xnr6 (-118) and Xmlc2 (-118), the “outer” 

primer sets were used (see above). 

 

Nested PCR: ChIP DNA is subjected to two sequential PCR reactions of 20 

cycles each using Promega GoTaq Flexi DNA Polymerase (M8295). For the first, 

“outer,” PCR reaction, the final conditions are: 25µl total volume, containing 2µl 
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ChIP DNA sample, 1X Clear Reaction Buffer, 1.5mM MgCl2, 0.1mM dNTP 

(each), 0.63U GoTaq Polymerase, and 4ng/µl each “outer” primer.  

PCR was performed in a MJ Research Tetrad thermal cycler. Cycling 

parameters are as follows: 95°C for 3 minutes, followed by 20 cycles of [95°C for 

30 seconds, 50°C for 30 seconds, and 72°C for 60 seconds], ending with 72°C 

for 10 minutes. The low annealing temperature is to accommodate the low C/G 

content of Xenopus laevis intergenic DNA.  

 The second, “inner” PCR reactions are identical to the “outer” PCR 

reactions except the template is 2µl of the complete “outer” PCR reaction, and 

the “inner” primer sets are used instead of the “outer” ones. In addition, the green 

PCR reaction buffer that comes with the polymerase can be used instead of the 

clear one, since it doubles as a loading buffer for electrophoresis. PCR products 

(15-20µl) are visualized by 3% agarose electrophoresis in 1x TAE with ethidium 

bromide. To facilitate handling of high-percentage agarose, a 1 to 3, low-melt to 

normal agarose mix is used. 

 Radiolabeling the “inner” PCR reaction can increase the limit of detection. 

To radiolabel, add 0.1µl α32P-dCTP (3pmol at 3000Ci/mmol) to each “inner” PCR 

reaction. PCR products (10µl) are then resolved by 6% polyacrylamide 

electrophoresis in 0.5x TBE and visualized with a Phosphorimager. 

 It may be useful to include genomic DNA standards to assess the 

efficiency of PCR amplification. For the experiment in Figure 2.2B, genomic DNA 

was isolated from adult male liver (~0.5mg fragment) similarly to the ChIP DNA 

purification, except samples were ethanol precipitated following RNase treatment 
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and resuspended in 200µl TE buffer. The DNA concentration was determined by 

absorbance at 260nm. The estimated mass of a karyotypically “haploid” Xenopus 

laevis genome (3.175pg) (Green and Sessions, 1991; Wickbom, 1945) was used 

to calculate approximate copy number. The possible amplification by PCR of 

duplicated genomic loci was not considered in this estimate. 

 

Quantitative PCR and Analysis: The QPCR reaction conditions are: 20µl total 

volume with 1X SYBR green master mix (Applied Biosystems, 4367659), 1µl 

ChIP DNA sample, and 5ng/µl each primer. If the QPCR yield is low, the amount 

of ChIP DNA per reaction can be increased. Amplification was performed with an 

Applied Biosystems Step One Plus machine, using the standard SYBR green 

program with an initial melt stage at 95°C for 10 minutes, followed by at least 40 

cycles of 95°C for 15 seconds and 60°C for one minute. The run is finished by a 

melt curve from 95°C to 60°C to ensure PCR product purity.  

Data are analyzed by the ΔΔC(t) (or Livak) method (reviewed in (Taneyhill 

and Adams, 2008)). Once a threshold cycle (C(t)) number is calculated for each 

sample, ΔC(t) is calculated by normalizing the IP values to the input values for 

each condition by subtracting input values from each corresponding ChIP value 

[ΔC(t) = ChIP C(t) – Input C(t)]. ΔΔC(t) is next calculated by subtracting the ΔC(t) 

for uninjected samples from the ΔC(t) for experimental samples [ΔΔC(t) = 

ΔC(t)experimental – ΔC(t) uninjected]. Once ΔΔC(t) is determined, the fold change 

between samples can be determined by using the formula [Fold Change (FC) = 
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2[-ΔΔC(t)]]  (Taneyhill and Adams, 2008). To calculate the quantity of IP-ed DNA as 

a percentage of the original input material, the following formula is used: [% Input 

= 2 [-ΔC(t)] x initial percentage input] (Frank et al., 2001; Taneyhill and Adams, 

2008). Once several experiments have been analyzed, data can be combined to 

calculate standard error and be subjected to further statistical analysis  

 

2.3.3: Cloning of additional Xnr6a genomic sequence 

 

Additional genomic sequence for the Xnr6a locus was obtained by screening a 

Xenopus laevis genomic library (kind gift of Dr. Steven Klein) with a probe 

corresponding to the 5’ end of the available Xnr6 sequence (Genbank 

AY050648, bases 292-712). A 15kb clone containing the Xnr6a genomic locus 

was isolated, sequenced, and deposited in Genbank (accession number: 

FJ468558). 

 

2.3.4: Western Blotting 

 

Following elution of the immunoprecipitates (Day 2, step 9) a portion of the eluted 

material can be analyzed by western blot to determine IP efficiency. Western 

blotting is performed according to standard protocols, except that samples are 

mixed 1:1 with standard 2x Laemmli Sample Buffer (4% SDS, 20% Glycerol, 

0.125M Tris-HCl pH 6.8, 0.004% Bromophenol Blue, 0.2M Dithiothreitol) and 
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heated to 95°C for 30 minutes to reverse the crosslinks. A portion of the input 

material can also be included as a control. 

 

2.3.5: Antibodies 

 

The rabbit anti-β-catenin antiserum was raised against the 145 N-terminal amino 

acids of Xenopus β-catenin (Cocalico Laboratories; Reamstown, PA). Anti 

acetylated H3 (di-acetylated H3K9/K14, (06-599)) and polyclonal anti-myc (06-

549) were purchased from Millipore. Purified normal rabbit IgG was purchased 

from Pierce (31235). 
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Chapter 3: β-catenin Primes Organizer Gene Expression By 
Recruiting a Histone H3 Arginine 8 Methyltransferase, Prmt2 

 

3.1: Introduction 

 The earliest events in embryonic development are controlled by maternal 

factors until the activation of the zygotic genome. In Xenopus, Drosophila, and 

Zebrafish, zygotic genome activation occurs several hours and cell divisions 

following fertilization, at the midblastula transition (MBT) (Edgar et al., 1986; 

Kane and Kimmel, 1993; Newport and Kirschner, 1982a). Before the MBT, the 

zygotic genome is largely repressed, stemming in part from competition between 

chromatin deposition and transcription complex assembly at promoters 

(Almouzni and Wolffe, 1995; Prioleau et al., 1995; Prioleau et al., 1994). 

Nevertheless, essential steps in embryonic patterning are accomplished during 

this time and embryos emerge from this period having begun the process of 

regional specification. 

The Wnt/β-catenin pathway mediates the earliest cell fate decision in 

amphibian embryogenesis, the establishment of the dorso-ventral axis. During 

the first cell cycle, a displacement of cortical cytoplasm asymmetrically activates 

Wnt signaling in the future dorsal half of the embryo (Miller et al., 1999; Tao et 

al., 2005). This stabilizes β-catenin, resulting in its accumulation and nuclear 

translocation. In the nucleus, β-catenin localizes to target genes by interacting 

with Tcf/Lef DNA-binding proteins (Molenaar et al., 1996) and activates 

transcription by recruiting transcriptional coactivators to these sites (Barker et al., 
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2001; Hecht et al., 2000; Koh et al., 2002; Major et al., 2008; Mosimann et al., 

2006; Sierra et al., 2006). β-catenin is required during pre-MBT stages for the 

later expression of dorsal determinants that give rise to the Spemann organizer 

(Heasman et al., 2000). Thus, dorsal specification by β-catenin occurs under 

conditions of global transcriptional repression. 

 Several observations suggest that β-catenin primes organizer gene 

promoters for activation well in advance of the large-scale initiation of zygotic 

gene expression such that they reach the MBT poised for immediate expression. 

Activation of β-catenin before the MBT initiates a dorsal gene expression 

program, whereas activation at the MBT or beyond results in ventrolateral gene 

expression, reflecting the different roles of the maternal (pre-MBT) and zygotic 

(post-MBT) Wnt pathways (Christian and Moon, 1993; Kao et al., 1986; 

Yamaguchi and Shinagawa, 1989). During the pre-MBT period, β-catenin is 

asymmetrically localized in dorsal progenitors prior to the 64-cell stage (Kofron et 

al., 2007; Larabell et al., 1997). Furthermore, dorsal specification by β-catenin is 

complete by the end of the 32-cell stage of development, six cell divisions before 

the MBT, as β-catenin activity must be inhibited before the 32-cell stage in order 

to block dorsal specification (Heasman et al., 2000; Yang et al., 2002b). 

Interestingly, transient inhibition of RNA Polymerase II (Pol II) activity between 

the 4- and 32-cell stages delays dorsal specification by β-catenin, further 

suggesting a requirement for Pol II function in dorsal specification before the 

MBT. In support of this observation, the β-catenin target genes Xnr5 and Xnr6 

are transcribed before the MBT, shortly after the completion of dorsal 
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specification (Yang et al., 2002b). However, not all maternal β-catenin target 

genes are transcribed early, including the homeobox transcription factors siamois 

and twin, and nodal related 3 (xnr3) (Yang et al., 2002b). These observations 

raise the possibility that β-catenin functions early to establish a heritable, 

transcriptionally poised state that results in the later expression of dorsal 

determinants such as siamois and xnr3. 

 We have investigated the chromatin architecture of β-catenin target genes 

before the MBT, and report that β-catenin primes target promoters for activation 

at the onset of zygotic gene expression. Before the MBT, β-catenin target 

promoters associate with C-terminal domain phosphorylated Pol II and histone 

modifications that correlate with an active transcriptional state, such as histone 

H3 acetylated at lysine 9 and 14 (AcH3), and trimethylated at lysine 4 

(H3K4me3), independently of their level of mRNA expression. Deposition of 

H3K4me3, in particular, requires both pre-MBT β-catenin and Pol II function. In 

these early embryos, β-catenin interacts with a methyltransferase activity 

directed at Histone H3 arginine 8, which we ascribe to the arginine 

methyltransferase Prmt2. β-catenin recruits Prmt2 to target promoters before the 

MBT and this is necessary and sufficient to drive dorsal specification. We 

therefore provide the first direct evidence for a complex pre-transcriptional 

mechanism at work in early embryos to pre-set patterns of gene expression, and 

provide an initial analysis of chromatin architecture during this critical period of 

development. 
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3.2: Results 

The maternal Wnt/β-catenin pathway in Xenopus (and zebrafish) specifies 

dorsal cell fates before the MBT, under conditions of global transcriptional 

repression. Two classes of dorsal genes are expressed in response to maternal 

β-catenin (Yang et al., 2002b). For the first class of genes, exemplified by 

siamois and xnr3, mRNA expression is first detected at the MBT (Figure 3.1A). 

The second class of genes, exemplified by xnr5 and xnr6, is transcribed as early 

as the 256-cell stage, bypassing pre-MBT global transcriptional repression 

(Figure 3.1A). 

Maternal β-catenin is required for dorsal specification and to activate 

dorsally restricted genes expressed both before and after the MBT, but it is not 

yet clear which of these targets are required for dorsal development. Siamois 

was originally identified by its ability to induce complete secondary axes and to 

rescue dorsal development in ventralized embryos (Lemaire et al., 1995), 

whereas combined loss of siamois and the closely related gene twin blocks 

dorsal development (Ishibashi et al., 2008), indicating that siamois and twin play 

essential and instructive roles in the induction of dorsal fate. However, these 

experiments were performed in the presence of maternal β-catenin, leaving open 

the possibility that dorsal development depends on additional targets of maternal 

Wnt/β-catenin signaling. If the primary function of pre-MBT β-catenin activity is to 

induce siamois (and twin) expression, then siamois over-expression should be 
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Figure 3.1: β-catenin regulation of Wnt target genes before the MBT. 

(A) An RT-PCR time course of early embryonic stages demonstrates the onset of expression for 

maternal β-catenin target genes (Siamois, Xnr3, Xnr5, and Xnr6). Maternally expressed Ornithine 

decarboxylase (Odc) and Prmt2 are shown as controls for loading. Odc (-RT) indicates no 

reverse transcriptase, as a control for genomic DNA contamination. 

(B) Siamois expression fully rescues β-catenin depleted embryos. Embryos (N=30) were injected 

with the β-catenin morpholino (ii) and either 2pg siamois (iii) or 300pg β-catenin (iv) mRNAs. 

Control (i) and injected tadpoles were scored for development of dorsal tissues. Rescue was 

observed in >95% of mRNA-injected embryos. 

(C) Wnt/β-catenin activity must be inhibited before the 32-cell stage (stage 6) to prevent Siamois 

mRNA expression after the MBT. Embryos were injected into two dorsal blastomeres at the 4-cell 

stage with 500pg ΔNTcf3-GR mRNA. Wnt/β-catenin activity was inhibited by addition of 

dexamethasone (Dex) to the culture medium at the indicated stages. Siamois mRNA expression 

was measured by RT-PCR at stage 10 and compared to the loading control EF1α. 

(D) β-catenin binds organizer gene promoters before the MBT. Pre-MBT occupancy of maternal 

β-catenin target promoters (Siamois, Xnr3, and Xnr5), or a zygotic β-catenin target promoter 

(Myf5) by either acetylated histone H3 (AcH3) or β-catenin was observed by ChIP on 1000-cell 

stage embryos. Myosin light chain 2 (Mlc2): negative control locus. “Input” indicates chromatin 

prior to ChIP. 
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sufficient to rescue dorsal development in β-catenin-depleted embryos. To test 

this, β-catenin was depleted by injection of a morpholino oligonucleotide (MO), 

which completely blocked dorsal development (Figure 3.1B, panel ii), as 

described previously (Heasman et al., 2000); expression of siamois in these 

embryos rescued dorsal developmental to the same extent as β-catenin itself 

(Figure 3.1B, panels iii and iv). Therefore, establishment of zygotic siamois 

expression represents the essential patterning event driven by the maternal 

Wnt/β-catenin pathway. 

 It is paradoxical, then, to consider how a transcription factor such as β-

catenin functions to pattern the embryonic axes during a period of global 

transcriptional repression. One possibility is that, while β-catenin is present 

throughout cleavage stages, it only activates target genes such as siamois and 

xnr3 at the MBT. This seems unlikely, as we have shown previously that dorsal 

specification by β-catenin is complete by the end of the 32-cell stage (Yang et al., 

2002b). However, those experiments did not directly address the requirement for 

early β-catenin function in the induction of siamois transcription at the MBT. We 

have therefore tested the sensitivity of siamois expression to inhibition of β-

catenin activity before the MBT. Using a dexamethasone-inducible dominant-

negative TCF3 (ΔNTcf3-GR), we find that, while inhibition of β-catenin at the 4-

cell stage significantly reduces siamois expression after the MBT, inhibition at the 

32-cell stage has little or no effect (Figure 3.1C), suggesting that the 32-cell 
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stage embryo has already received a signal from β-catenin to activate the 

expression of siamois after the MBT.  

 

3.2.1: β-catenin establishes poised chromatin architecture at target promoters 

before the midblastula transition. 

 

 We therefore hypothesized that β-catenin binds to target promoters during 

this early time and establishes a heritable “mark” that is later interpreted at the 

MBT as a signal to transcribe the associated loci. To test this, we performed 

chromatin immunoprecipitation (ChIP) assays (Blythe et al., 2009) for β-catenin 

in pre-MBT embryos (Figure 3.1D). As expected, β-catenin binds promoters of 

target genes that are transcribed before the MBT. More importantly, β-catenin 

also binds—before the MBT—to promoters of late-responding maternal Wnt 

target genes, despite a lack of mRNA accumulation for siamois and xnr3. In 

contrast, before the MBT, β-catenin does not bind a cluster of Tcf/Lef binding 

sites flanking the zygotic Wnt target gene myf5 (Yang et al., 2002a), although it 

binds these sites after the MBT (Figure 3.1D and data not shown). Interestingly, 

the promoters of all genes tested—maternal and zygotic β-catenin target genes 

and a negative control locus, myosin light chain 2 (mlc2)—associate with 

acetylated H3 (AcH3) before the MBT. This latter observation was unexpected 

and suggests that, before the MBT, the chromatin surrounding inactive promoters 

nevertheless bears typical euchromatic landmarks. Most importantly, despite 

conditions of global transcriptional repression and the rapid cleavage divisions of 
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the early embryo, β-catenin has access to and binds the promoters of genes 

critical for dorsal specification. 

 In addition to AcH3 (Figure 3.1D) and AcH4 (data not shown), β-catenin 

target promoters associate before the MBT with modified histones that correlate 

with active transcription: Histone H3 trimethyl-lysine 4 (H3K4me3) (Figure 3.2A) 

and H3 dimethyl-lysine 4 (data not shown). Importantly, β-catenin is necessary 

for H3K4 methylation, as depletion of β-catenin reduces H3K4 di- and tri-

methylation at the siamois and xnr3 promoters (Figure 3.2B and data not shown). 

In addition, inhibition of β-catenin activity by ΔNTcf3 reduces β-catenin binding to 

the siamois and xnr3 promoters and blocks H3K4 trimethylation (Figure 3.2C). In 

contrast, ΔNTcf3 has less of an effect on AcH3 at the siamois and xnr3 

promoters, suggesting that pre-MBT acetylation at siamois and xnr3 is 

established, at least in part, independently of β-catenin. 

Pre-MBT β-catenin activity is sensitive to inhibition of RNA Pol II (Yang et 

al., 2002b). Pol II is also required for β-catenin-mediated H3K4 methylation in 

Drosophila (Parker et al., 2008). We therefore investigated whether Pol II is 

required to establish active chromatin architecture at β-catenin target promoters 

before MBT. Transcriptionally initiating Pol II is typically phosphorylated at serine 

5 within the C-terminal domain (CTD) heptapeptide repeats, whereas phospho-

serine 2 in the Pol II CTD correlates with transcriptional elongation (Sims et al., 

2004). Although embryos are transcriptionally repressed prior to the MBT, both  

 

 



Figure 3.2

D
4 

ce
lls

32
 c

el
ls

12
8 

ce
lls

50
0 

ce
lls

20
00

 c
el

ls

La
te

 B
la

st
ul

a

p-Ser2

p-Ser5

Hypo-phos. 
Westerns: RNA Pol II CTD

A

Se
ru

m

b-
C

at
en

in

H
3K

4m
e3

0.
1%

 In
pu

t

1%
 In

pu
t

Siamois

Xnr3

Xnr5

Xnr6

Mlc2

ChIP
B

Input

ChIP
Siamois

Input

ChIP
Xnr3

Input

ChIP
Mlc2

:b-MO- +-

H
3K

4m
e3

H
3K

4m
e3

Ig
G

F

Siamois
a amanitin

control

Xnr3
a amanitin

control

H
3K

4m
e3

b-
ca

te
ni

n

A
cH

3

Se
ru

m

0.
1%

 In
pu

t

1%
 In

pu
t

ChIPE
:b-MO- +-

Po
l I

I
Ig

G

Po
l I

I

Input
ChIP

Mlc2

Input
ChIP

Xnr3

Input

ChIP
Siamois

Mlc2
control

DNTcf3

Xnr3
control

DNTcf3

Siamois
control

DNTcf3

H
3K

4m
e3

b-
ca

te
ni

n

A
cH

3

Se
ru

m

0.
1%

 In
pu

t

1%
 In

pu
t

ChIPC

75



 76 

 
Figure 3.2: β-catenin establishes active chromatin architecture at target 

promoters before the MBT. 

(A) The promoters of β-catenin target genes associate with histone H3 trimethylated at K4 

(H3K4me3). Promoter occupancy by either β-catenin or H3K4me3 was observed by ChIP on 

1000-cell stage embryos. 

(B) β-catenin is necessary for H3K4me3 accumulation at target promoters. 1000-cell stage 

control and β-catenin depleted (β-MO) embryos were subjected to ChIP for H3K4me3. All sibling 

β-MO embryos were completely ventralized at later stages (not shown). 

(C) H3K4me3, but not AcH3, requires β-catenin function. MBT-stage control (upper panel for 

each gene) and ΔNTcf3 mRNA-injected (500pg, lower panels) embryos were subjected to ChIP 

for β-catenin, AcH3, and H3K4me3. 

(D) Initiating and elongating forms of RNA Polymerase II are present in pre-MBT embryos. Whole 

embryo lysates were separated by SDS-PAGE and western blots were performed using 

antibodies to phosphoserine 2, phosphoserine 5, and hypo-phosphorylated isoforms of the RNA 

Polymerase II C-terminal heptapeptide repeats. 

(E) Initiating RNA Pol II binds the siamois and xnr3 promoters before MBT, independently of β-

catenin. 1000-cell stage control and β-catenin depleted (β-MO) embryos were subjected to ChIP 

for RNA Pol II (p-Ser5). All sibling β-MO embryos were completely ventralized at later stages (not 

shown). 

(F) RNA Pol II function is necessary for H3K4 trimethylation at β-catenin target promoters. MBT-

stage control (upper panels) and α-amanitin injected (10ng, lower panels) embryos were 

subjected to ChIP for β-catenin, AcH3, and H3K4me3.
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initiating (p-Ser5) and elongating (p-Ser2) forms of Pol II are present in the 

embryo throughout pre-MBT stages (Figure 3.2D), suggesting that a subset of 

Pol II is phosphorylated in a manner that correlates with active transcription. This 

differs from a previous report of limited Pol II p-Ser5 and p-Ser2 before the MBT 

(Palancade et al., 2001). However, the experiments presented here were 

performed using whole cell lysates and additional phosphatase inhibitors, which 

may account for the increased detection of phospho-Pol II before the MBT. 

Furthermore, H3K4 methylation also correlates with occupancy of initiating Pol II 

(Ng et al., 2003b). Interestingly, before the MBT, Pol II (p-Ser5) also occupies the 

promoters of siamois and xnr3, although this interaction is independent of β-

catenin (Figure 3.2E). This result raises the possibility that in addition to β-

catenin, functional Pol II is required to establish methylated H3K4 at target 

promoters. To test this, we measured MBT-stage methylation of H3K4 at β-

catenin targets following treatment with the Pol II inhibitor α-amanitin (Figure 

3.2F). Inhibition of Pol II greatly reduces H3K4me3 at the siamois and xnr3 

promoters, but does not affect binding of β-catenin or H3 acetylation. 

Collectively, these results indicate that β-catenin and Pol II collaborate to 

establish H3K4 methylation at β-catenin target promoters before the MBT. These 

promoters additionally bear several marks of transcriptional activation—acetyl-

Histone H3/H4 and Pol II (p-Ser5)—that are established independently of β-

catenin. These observations support a model in which β-catenin directs the 
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establishment of poised chromatin architecture at target gene loci before the 

MBT. 

Transcriptionally poised loci are typically marked by initiated, yet stalled 

RNA Pol II (p-Ser5), H3K9/14 acetylation, and H3K4me3 in the absence of active 

mRNA expression (Guenther et al., 2007). In pre-MBT embryos, the lack of 

siamois and xnr3 mRNA could reflect the establishment of a bona fide poised 

state at these genes; alternatively, these genes could be maintained in a silent 

state due to global transcriptional silencing in the pre-MBT embryo. In general, 

global transcriptional silencing in pre-MBT embryos stems from rapid chromatin 

assembly at genes that suppresses the function of the basal transcriptional 

apparatus (Prioleau et al., 1994). Additionally, constraints on gene specific trans-

activators further suppress precocious zygotic gene expression before the MBT 

(Almouzni and Wolffe, 1995). Because we observe binding of β-catenin and Pol II 

(pSer-5) at these promoters, this suggests that the lack of mRNA expression for 

siamois and xnr3 is not due to impaired assembly of the transcriptional 

apparatus, nor on an inability of β-catenin to access promoters. Additionally, 

other β-catenin target genes (xnr5 and xnr6) also bind β-catenin, accumulate 

H3K4me3, and are transcribed before the MBT (Figure 3.1A, 3.2A), which 

indicates that the mechanisms that prevent siamois and xnr3 expression regulate 

events downstream of Pol II recruitment and transcriptional initiation. 

Alternatively, the otherwise “active” siamois and xnr3 loci could nonetheless be 

suppressed by the lack of an interphase during the pre-MBT cell cycle, as is seen 

for a subset of loci in pre-MBT Xenopus and Drosophila embryos (Edgar et al., 
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1986; Kimelman et al., 1987). Therefore, we tested this by treating embryos with 

the translational inhibitor cycloheximide (CHX), which arrests the pre-MBT cell 

cycle in a G2-like state within one cell cycle after treatment (Miake-Lye et al., 

1983). Compared to control embryos, CHX-arrested embryos do not precociously 

express siamois at stage 8 (Figure 3.3A). Additionally, CHX treatment does not 

impair the expression of the pre-MBT gene xnr6 at stage 8, nor does it affect the 

onset of expression of the post-MBT zygotic genes siamois and vent2, although 

the embryos are clearly arrested with sub-MBT cell numbers (Figure 3.3B, 

compare stage 8.5 control and +CHX embryos). Therefore, the chromatin 

architecture at the siamois and xnr3 loci indicates that these loci are 

transcriptionally poised before the MBT, which is maintained transcriptionally 

silent independently of the pre-MBT cell cycle. 

 

3.2.2: β-catenin associates with a Histone H3 (R8) methyltransferase activity in 

early Xenopus embryos. 

 

 We next sought to characterize the nature of β-catenin activity in 

cleavage-stage embryos. β-catenin interacts with a number of factors involved in 

transcriptional control and chromatin remodeling (Barker et al., 2001; Hecht et 

al., 2000; Koh et al., 2002; Sierra et al., 2006; Takemaru and Moon, 2000), but 

whether any of these proteins represent obligate β-catenin cofactors or instead 

interact with β-catenin in a tissue or context-dependent manner is unclear. We  
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Figure 3.3: Pre-MBT expression of siamois is not suppressed by the lack of 

an interphase. 

(A) Embryos were treated with cycloheximide (CHX, 200µg/ul) in the culture medium beginning at 

the 256/500-cell stage (late Stage 7.5). Control and CHX-treated embryos were collected one 

hour before, at, or one hour after the MBT (Stage 8, 8.5, and 9, respectively) for RT-PCR 

expression analysis of the indicated markers. 

(B) Representative images of control and CHX-treated embryos were collected at the stages 

used for marker gene analysis. Stage 8 embryos (0.5 hr post treatment) already show cell cycle 

arrest, and no cell divisions take place following entry into the 1000-cell stage (Stage 8). 
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hypothesized that, during dorsal specification, β-catenin interacts with a 

chromatin-modifying activity that functions to establish active chromatin 

architecture at target promoters. 

 To identify β-catenin-associated chromatin modifying activities in 8- to 32-

cell stage embryos, we immunoprecipitated β-catenin and performed in vitro 

histone acetyl- or methyl-transferase (HAT or HMT) assays (Figure 3.4). During 

the period when β-catenin activates the expression of dorsal determinants (prior 

to the 32-cell stage), β-catenin interacts with a HMT activity that specifically 

methylates Histone H3 but not H4 (Figure 3.4A). Under these assay conditions, 

we were unable to detect an associated HAT activity (Figure 3.4B). β-catenin is 

predicted to interact with several functionally different macromolecular complexes 

(Gottardi and Gumbiner, 2001). To determine whether the β-catenin associated 

HMT (β-cat/HMT) activity associates with a subset of β-catenin complexes, we 

performed size exclusion chromatography followed by β-catenin IP/HMT assays 

on pooled fractions. β-catenin complexes have a broad molecular weight (MW) 

distribution in early embryos (Figure 3.4C, peak MW ~500kD), consistent with 

results from other experimental systems (Papkoff et al., 1996; Stewart and 

Nelson, 1997). The β-cat/HMT activity, however, is restricted to the highest MW 

fractions (Figure 3.4D, average MW~1.5MDa). The β-cat/HMT activity peak is 

also distinct from the peak HMT activity in the input pooled fractions (average 

MW ~350kD). Therefore, the β-cat/HMT resides in a high-MW complex. 
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Figure 3.4: β-catenin associates with a histone methyltransferase activity 

before the MBT. 

(A) β-catenin from 16-cell stage embryos specifically associates with a histone H3 

methyltransferase (HMT). β-catenin was immunoprecipitated from 16-cell embryos and histone 

methyltransferase (HMT) activity was visualized by fluorography (1 day exposure) for 

incorporation of [3H] methyl groups into calf thymus histones (top panel). Equal loading of 

histones is shown by coomassie staining (lower panel). “Input” represents HMT activity in embryo 

lystes, with activity toward both H3 and H4. 

(B) β-catenin does not interact with a histone acetyltransferase activity in 16-cell stage embryos. 

Conditions were similar as described for panel A, except that [3H] acetyl CoA was substituted for 

[3H] SAM. The fluorography image is a 12-day exposure. The input embryo lysates have apparent 

HAT activity directed against each of the four histone substrates. 

(C and D) HMT activity associates with only a fraction of embryonic β-catenin. 8- to 32-cell stage 

embryo lysates were separated by S400-HR size exclusion chromatography (SEC) and the size 

distribution of β-catenin was determined by western blot (B). The image in (B) is a composite of 

three images all taken at the same exposure. β-catenin positive fractions were pooled as 

indicated, and immunoprecipitated as in A. β-catenin-associated HMT activity (C, top panels) was 

measured relative to activity in the pooled fractions prior to IP (C, lower panels). The average 

molecular weight of β-cat/HMT (1500kDa) was estimated relative to the elution profile of 

standards. The fraction predicted to contain monomeric β-catenin (90kD, fraction 50) is indicated. 
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To identify the residue on histone H3 targeted by the β-cat/HMT complex, 

we performed β-catenin IP/HMT assays using as the substrate recombinant H3.3 

(rH3.3) with alanine point mutations at candidate target residues (Figure 3.5A) on 

the H3 N-terminal tail previously shown to be methylated: arginines (R) 2, 8, 17, 

26 and lysines (K) 4 and 9 (Bedford and Clarke, 2009; Kouzarides, 2007). As 

with H3, the β-cat/HMT significantly methylates rH3.3(WT) over background. 

Importantly, mutation of K4 has no effect on H3 methylation in this assay, 

suggesting that in early Xenopus embryos, β-catenin indirectly establishes H3K4 

methylation at target promoters (Figure 3.2). These observations also rule out 

R2, 17, and 26 as major methyl acceptor sites for the β-cat/HMT.  In contrast, 

mutation of either R8 or K9 prevents H3 methylation by the β-cat/HMT. To 

confirm this observation, we performed β-catenin IP/HMT assays using Histone 

H3 peptides pre-modified at either R8 (asymmetric dimethyl) or K9 (acetyl and 

trimethyl). The β-cat/HMT methylates the unmodified H3 (1-15) peptide (Figure 

3.5B, lane 2) to a similar level as full-length H3 (data not shown). However, 

modification of either R8 or K9 prevents methylation by the β-cat/HMT (Figure 

3.5B, lanes 3, 6, and 7). Thus, in addition to targeting either position R8 or K9, 

the β-cat/HMT is also sensitive to the modification status of these residues. 

H3K9 methylation is generally associated with heterochromatin and 

transcriptional repression (Kouzarides, 2007), and is therefore an unlikely target 

residue for the β-cat/HMT. Several ChIP experiments failed to detect di- or tri- 
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Figure 3.5: The β-catenin associated methyltransferase targets R8 on the 

Histone H3 tail. 

(A) β-cat/HMT activity requires R8 and K9 on the histone H3 tail. β-catenin IP/HMT assays were 

performed on either wild type (WT) recombinant H3.3 or H3.3 with the indicated point mutations.  

(B) The β-cat/HMT methylates a site within the first 15 residues of the H3 tail and is sensitive to 

modification of both R8 and K9. β-catenin IP/HMT assays were performed on peptides 

corresponding to unmodified H3 (aa 1-15, lanes 1&2), asymmetrically dimethylated R8 (aa 1-15, 

lane 3), unmodified H3 (aa 1-21, lanes 4&5), acetylated K9 (aa 1-20, lane 6) and trimethylated K9 

(aa 1-24, lane 7). 

(C) Activation of β-catenin has no effect on H3K9 methylation at the Siamois promoter. MBT-

stage control and lithium chloride treated (LiCl, 300mM for 10 minutes, 1 hour prior to harvest) 

embryos were subjected to ChIP for either mono- or tri-methylated H3K9 (K9me1 and K9me3 

respectively) using native, non-crosslinked chromatin. 

(D) An anti-H3R8me2a antibody recognizes histone H3 in stage 19 Xenopus acid extracts by 

western blot (upper 3 panels). A 200-fold molar excess of the R8me2a H3 peptide (aa 1-15) 

blocked immunoreactivity (”R8me2a”; 3rd panel), whereas the unmodified H3 peptide (“Unmod.”; 

2nd panel) did not significantly reduce immunoreactivity, demonstrating antibody specificity for the 

R8me2a modification. 

 (E) Activation of β-catenin increases asymmetric H3R8 dimethylation at the Siamois promoter. 

ChIP was performed as described in panel C, using instead either asymmetrically- or 

symmetrically-dimethylated H3R8 (H3R8me2a or H3R8me2s, respectively). 
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methylated H3K9 at the siamois and xnr3 promoters between the 1000-cell stage 

and MBT, and H3K9me1 levels were not sensitive to changes in β-catenin 

activity (Figure 3.5C and data not shown). On the other hand, the effect of H3R8 

methylation on transcriptional control is poorly understood. To test whether β-

catenin activity regulates H3R8 methylation at target promoters, we generated an 

antibody to asymmetrically dimethylated H3R8 (H3R8me2a). The H3R8me2a 

antiserum was depleted of antibodies to unmodified H3 and affinity purified with 

the R8me2a peptide. The purified antibody specifically detects R8me2a-modified 

H3 by dot blot (data not shown) and by competitive western blot (Figure 3.5D), 

which also confirms that the H3R8me2a modification occurs in vivo. 

Subsequently, we measured H3R8 methylation at the siamois promoter by ChIP. 

H3R8me2a associates with the siamois promoter at the MBT, and symmetric 

H3R8 dimethylation (H3R8me2s) is not detected (Figure 3.5E). To test whether 

association of H3R8me2a correlates with β-catenin activity, we exposed pre-MBT 

embryos to a pulse of lithium chloride (LiCl), which stabilizes β-catenin 

throughout the embryo, resulting in a radially expanded domain of dorsal 

progenitors (Kao et al., 1986). One hour after the LiCl pulse, H3R8me2a 

increased dramatically at the siamois and xnr3 promoters (Figure 3.5E and data 

not shown), indicating that H3R8 methylation correlates positively with β-catenin 

activity. From these results, we conclude that the β-cat/HMT asymmetrically 

dimethylates H3R8 and is sensitive to the modification state of H3K9. Our results 
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also indicate that β-catenin interacts with a type I (asymmetric) arginine histone 

methyltransferase in early Xenopus embryos. 

 

3.2.3: β-catenin recruits the arginine methyltransferase Prmt2 to target loci 

 

We undertook a candidate-based approach to identify the β-catenin-

associated arginine methyltransferase. Of the ten members of the protein 

arginine methyltransferase (Prmt) family (Figure 3.6A), three have been shown to 

methylate histone H3 in vitro: Carm1, Prmt5, and Prmt6 (asterisks in Figure 3.6A) 

(Guccione et al., 2007; Hyllus et al., 2007; Pal et al., 2004; Schurter et al., 2001). 

Of these, only the type II, symmetric methyltransferase Prmt5 has been shown to 

target specifically R8. We tested candidates for interaction with β-catenin by 

expressing myc-tagged Prmts in Xenopus embryos and IP-ing β-catenin. By this 

approach, none of the Prmts known to methylate H3 (Carm1, Prmt5, and Prmt6) 

co-IP-ed with β-catenin (data not shown). However, Prmt2, which is most closely 

related to Carm1 and Prmt6, co-IPs with β-catenin in blastula stage embryos 

(Figure 3.6B). We also confirmed that Prmt2 is maternally expressed (Figure 

3.1A). Although recombinant β-catenin and Prmt2 do not interact directly in vitro 

(data not shown), GST-tagged Prmt2 interacts with β-catenin in Xenopus embryo 

lysates in a temperature and ATP-dependent manner (Figure 3.6C).  Thus, β-

catenin and Prmt2 interact in early Xenopus embryos and require an unknown 

catalytic activity to assemble in a complex. 

 



Figure 3.6

A

B C

*

*
*

IP
: S

er
um

IB:Myc-Prmt2

IP
: b

-c
at

en
in

IB:b-catenin

0.
2%

 In
pu

t

IB:b-catenin

Coomassie

<GST:Prmt2

<GST

GST+
GST:Prmt2+ + +
ATP++ +
AMP-PNP+
Temperature30° 30° 30° 4°

90



 91 

 
Figure 3.6: β-catenin interacts with the arginine methyltransferase Prmt2. 

(A) Phylogenetic analysis of the Prmt family (Clustal, Gonnet Matrix) demonstrating the 

relationship between human (Hs) PRMTs 1-9(4q31) and FBXO11 with Prmt2 from mouse (Mm), 

Xenopus laevis (Xl), and zebrafish (Dr). Asterisks indicate PRMTs that are known to methylate 

histone H3 in vitro. 

(B) Prmt2 interacts with β-catenin in early Xenopus embryos. Myc-tagged mouse Prmt2 (500pg) 

was expressed in Xenopus embryos, and embryo lysates were immunoprecipitated with anti-β-

catenin or pre-immune serum and subjected to western blot with either anti-myc (upper panel) or 

anti-β-catenin antibodies. 

(C) Prmt2 and β-catenin interact in an ATP-dependent manner. Embryo lysates (16-cell) were 

incubated for 1 hour with GST-Prmt2 beads at 4° or 30°C and with ATP or the nonhydrolyzable 

ATP analog AMP-PNP. Bound proteins were eluted and β-catenin was visualized by western blot 

(upper panel). GST beads alone were used as a negative control and the relative amounts of bait 

proteins in each lane were visualized by coomassie staining (bottom, arrowheads). “Input” 

indicates 16-cell embryo lysate. 
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By sequence, Prmt2 is most closely related to the type I 

methyltransferases Carm1 and Prmt6 (Figure 3.6A), but its substrate preference 

has not been determined because recombinant Prmt2 does not have activity in 

vitro (Scott et al., 1998). Also, to our knowledge, HMT activity associated with 

endogenous Prmt2 has not been reported. Interestingly, endogenous Prmt2 IP-

ed from mouse embryonic stem cells methylates histone H3 (Figure 3.7A). 

Likewise, myc-Prmt2 expressed in Xenopus embryos methylates histone H3, and 

this activity requires H3R8 (Figure 3.7B). In these experiments, Prmt2 IPs 

contain HMT activity towards histone H3, reflecting either the activity of Prmt2 

itself or the activity of another HMT that co-IPs with Prmt2. Further investigation 

will be required to determine the factors that regulate endogenous Prmt2 

catalysis. 

Importantly, Prmt2 binds the siamois promoter in pre-MBT embryos 

(Figure 3.7C) as determined by ChIP. Since Prmt2 and β-catenin interact, we 

also tested whether depletion of β-catenin could reduce Prmt2 binding at this 

promoter. Indeed, β-catenin knockdown results in reduced Prmt2 occupancy at 

the siamois promoter, suggesting that β-catenin recruits Prmt2 to target 

promoters. We therefore conclude that Prmt2 represents the HMT activity that 

associates with β-catenin in early Xenopus embryos based on the observations 

that β-catenin interacts with Prmt2, Prmt2 has a HMT activity directed at H3 that 

is sensitive to the R8A mutation, and β-catenin recruits Prmt2 to target genes 

during the pre-MBT period. 
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Figure 3.7: Prmt2 methylates histone H3 and is recruited by β-catenin to the 

Siamois promoter before the MBT. 

(A) Endogenous Prmt2 methylates histone H3. Endogenous Prmt2 from a mouse embryonic stem 

cell culture was immunoprecipitated and subjected to an IP/HMT assay using recombinant H3.3 

as a substrate. Rabbit IgG was used as a negative control. 

(B) Histone H3 R8 is necessary for Prmt2 HMT activity. Myc-Prmt2 was immunoprecipitated from 

32- to 128-cell Xenopus embryos expressing Myc-tagged Prmt2 and HMT activity was measured 

using wild-type (WT) or R8A histone H3.3 as substrates. Non-injected embryos served as 

negative controls. 

(C) β-catenin-dependent interaction of Prmt2 with the Siamois promoter. Wild type or β-MO 

injected, 1000-cell embryos expressing Myc-Prmt2  were subjected to ChIP using the anti-Myc-

tag antibody. Non-injected embryos served as a negative control. In addition, the specificity of 

ChIP was confirmed by including a 200-fold excess of the Myc-peptide (lane 3) in the IP. 
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3.2.4: Directing Prmt2 to β-catenin target promoters is sufficient to drive dorsal 

specification in the absence of β-catenin 

 

We determined whether Prmt2 activity at β-catenin target genes is 

sufficient to specify dorsal cell fates. β-catenin interacts with chromatin via the 

Tcf/Lef family of DNA-binding factors (Behrens et al., 1996; Molenaar et al., 

1996), and previous investigations have exploited this interaction to target factors 

of interest to Tcf/Lef binding sites and test their effects on target gene expression 

(Vleminckx et al., 1999). Therefore, we generated chimeric proteins (Figure 3.8A) 

between Prmt2 and the DNA binding domain of Lef-1 (ΔNLef1), reasoning that 

we could direct Prmt2 to target genes and evaluate its effect on dorsal 

specification. Chimeras between ΔNLef1 and Carm1, Prmt5, or Prmt6 were also 

generated as controls. All chimeric proteins were expressed to similar levels in 

blastula stage embryos (data not shown). 

Targeting Prmt2 to β-catenin target genes is sufficient to rescue dorsal 

specification in β-catenin depleted embryos (Figure 3.8B). Embryos depleted for 

β-catenin develop with a typical “ventralized” phenotype (Figure 3.8B ii; also 

figure 1B ii), whereas expression of the Prmt2:ΔNLef1 chimera in β-catenin-

depleted embryos restores the full range of dorsal and anterior structures (Figure 

3.8B iii), remarkably similar to control embryos (Figure 7B i), albeit typically with a 

single eye (86% rescue, N=172).  Importantly, expression of Prmt2:ΔNLef1 also 

rescues organizer gene expression to a greater extent than the ΔNLef1 DNA  
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Figure 3.8: Directing Prmt2 to β-catenin target gene promoters is sufficient 

to drive dorsal specification. 

(A) Schematic of the Prmt2:ΔNLef1 chimeric construct. To direct Prmt2 to Tcf/Lef DNA binding 

sites, the DNA-binding HMG domain of mouse Lef1 was fused to the C-terminus of mouse 

6xMyc-Prmt2. 

(B) Targeting Prmt2 to Tcf/Lef binding sites is sufficient to rescue dorsal specification in β-catenin 

depleted embryos. Embryos were depleted for β-catenin (β-MO) and subsequently injected with 

500pg of either Prmt2:ΔNLef1 (iii) or Prmt5:ΔNLef1 (iv) mRNA. Rescue of β-MO-induced 

ventralization (ii) was measured at tadpole stages. Note the rescue of the anterior-most, dorsally 

derived cement gland and eye in panel iii, compared to control, non-injected embryos (i). The 

percentages in the upper right corner of each panel indicate the frequency at which the 

phenotypes shown were observed. 

(C) Prmt2:ΔNLef1 rescues expression of Siamois and Xnr3 in β-catenin depleted embryos. 

Embryos were depleted for β-catenin (β-MO) and subsequently injected with Prmt2:ΔNLef1 or 

ΔNLef1 mRNA. Expression of Siamois and Xnr3 was measured by RT-PCR at stage 10. EF1α 

expression is shown as a loading control. 

(D) Carm1 does not rescue dorsal specification in β-catenin depleted embryos. Injections and RT-

PCR were performed as described for panels B and C to compare the extent of rescue by 

Prmt2:ΔNLef1 and Carm1:ΔNLef1 (500pg, each mRNA). 
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binding domain alone, as determined by RT-PCR on gastrula-stage embryos 

(Figure 3.8C). 

To test whether the Prmt2 rescue of β-catenin depletion is due to its 

potential catalytic activity, we mutated the S-adenosylmethionine (SAM) binding 

domain (Qi et al., 2002). In our hands, this mutation did not interfere with Prmt2 

catalytic activity as determined in an IP/HMT assay, where mutant Prmt2 was co-

expressed with wild type, endogenous Prmt2 (data not shown). Crystallographic 

and biochemical evidence suggest that Prmts function as obligate dimers or 

oligomers (Weiss et al., 2000). It is likely that our Prmt2 mutants retain HMT 

activity due to complex formation with endogenous, catalytically active Prmt2. As 

an alternative approach, we tested whether other Prmts, with distinct predicted 

Histone H3 target residues, were similarly able to rescue dorsal specification in 

β-catenin depleted embryos. 

Prmt5 shares target residue specificity with Prmt2, but symmetrically 

dimethylates H3R8 (Pal et al., 2004), and the Prmt5:ΔNLef1 chimera is unable to 

rescue dorsal specification in β-catenin depleted embryos (Figure 3.8B iv—0% 

Rescue, N=31)). On the other hand, the robust transcriptional activator Carm1 

asymmetrically methylates H3 R2, R17, and R26, with only a weak activity 

towards R8 (Chen et al., 2000; Schurter et al., 2001). Expression of the 

Carm1:ΔNLef1 chimera is toxic to embryos shortly after gastrulation, so 

phenotypic rescue could not be scored. However, at gastrula stages, the 
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Carm1:ΔNLef1 chimera does not rescue siamois and xnr3 expression by RT-

PCR, compared to the Prmt2 chimera (Figure 3.8D). Finally, Prmt6, which targets 

H3R2 (Guccione et al., 2007; Hyllus et al., 2007), also did not rescue dorsal 

specification (not shown, 0% rescue, N=30). Thus, of all the Prmts tested, only 

the recruitment of Prmt2 to β-catenin target promoters is sufficient to rescue 

dorsal specification, demonstrating the unique role of Prmt2 in the regulatory 

events that establish the transcriptional network driving dorsal development in 

Xenopus embryogenesis. 

 

3.2.5: Prmt2 is necessary for dorsal specification and for conferring resistance to 

ΔNTcf3 before the MBT∗ 

 

Finally, we tested whether Prmt2 is necessary for the activation of β-

catenin target gene expression at the MBT. We designed a morpholino 

oligonucleotide to block the translation of Prmt2 (Prmt2MO). Because Prmt2 is 

expressed maternally, zygotic injection of Prmt2MO will only prevent de novo 

translation of maternal Prmt2 mRNA, yet pre-existing maternal Prmt2 protein will 

persist and remain functional in early embryos. Therefore, we have tested the 

role of Prmt2 during dorsal specification by depleting oocytes of Prmt2 and 

generating maternal Prmt2-depleted embryos by the host-transfer method (Mir 

                                            
∗
 The results in this section are to be considered preliminary as of the submission of this 

dissertation (September, 2009) and represent ongoing research being performed prior to the 
resubmission of this work for publication per the request of our reviewers. 
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and Heasman, 2008). Maternal Prmt2-depleted embryos displayed Prmt2MO 

dose-dependent arrest of cleavage-stage development compared to control (non-

injected) and β-catenin-depleted (β-MO) embryos (Figure 3.9A). This indicates 

that Prmt2 has broader roles in development beyond its contribution to dorsal 

specification. We measured the effect of Prmt2 depletion on siamois and xnr3 

expression in embryos receiving the lowest dose of Prmt2MO (10ng) as the 

majority of these embryos appeared morphologically normal at the MBT (Figure 

3.9B, right side). Similarly to β-catenin depletion, depletion of maternal Prmt2 

significantly reduces siamois and xnr3 expression after the MBT (Figure 3.9B). 

Unfortunately, these embryos fail to survive past gastrula stages, thus we were 

unable to determine the morphological consequences of maternal Prmt2 

depletion. Nonetheless, our results are consistent with a model where 

recruitment by β-catenin of the H3R8 HMT Prmt2 is necessary for the 

establishment of the dorsal gene expression program. 

Zygotic depletion of Prmt2 results in highly penetrant lethality at the 

gastrula-stage (Figure 3.10A and B), so that evaluation of later morphological 

defects is also not feasible. Because this phenotype is rescued by injection of 

Prmt2 mRNA and is not seen with a control morpholino, we conclude that this 

lethal phenotype is specific and reflects additional critical functions for Prmt2, for 

example a more general role in the regulation of chromatin structure. Unlike the 

maternal depletion, zygotic depletion of Prmt2 does not significantly affect 

expression of β-catenin target genes in early gastrulae (Figure 3.10C lane 10, 

and data not shown). Nonetheless, we tested whether zygotic Prmt2 depletion 
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could enhance a weak β-catenin loss of function phenotype. Because the period 

of competency for embryos to become ventralized by ΔNTcf3-GR coincides with 

the interaction between β-catenin and Prmt2 (4 to 32-cell stage, Figure 3.1C and 

Figure 3.10C, lanes 3-5), we tested whether zygotic depletion of Prmt2 could 

enhance Wnt pathway inhibition by ΔNTcf3-GR at the 32-cell stage. Indeed, 

Prmt2 depletion enhances the weak inhibition of siamois expression by ΔNTcf3-

GR activated at the 32-cell stage (lanes 6 & 7), and this is rescued by co-

expression of Prmt2 mRNA (lanes 8 & 9). These results further support our 

observation that recruitment of Prmt2 is critical for the establishment of the dorsal 

developmental program. Since non-β-catenin bound Tcf3 functions primarily as a 

transcriptional repressor in early Xenopus embryogenesis (Houston et al., 2002) 

and that poised loci behave as insulator elements (Chopra et al., 2009), we 

propose a model where β-catenin’s recruitment of Prmt2 to promoters 

establishes poised chromatin architecture that is refractory to transcriptional 

repression by ΔNTcf3 (or non-β-catenin-bound, wild type Tcf3). Future 

investigations will examine the mechanism whereby establishment of H3R8me2a 

is able to counteract ΔNTcf3-mediated transcriptional repression. 



Siamois

Xnr3

Maternal 
Depletion

H
os

t (
-R

T)

Figure 3.9

A
100%

0%

20%

40%

60%

80%

Pr
e-

M
BT

 A
rr

es
t

Control b-cat Prmt2

Maternal Depletion

Control

b-catenin (-)

Prmt2 (-)

H
os

t

C
on

tro
l

b-
ca

te
ni

n

Pr
m

t2

ODC

B

Control

b-catenin (-)

Prmt2 (-)

Early
Blastula

Mid
Blastula

Stage 9

102



 103 

 
Figure 3.9: Maternal Depletion of Prmt2 Suppresses Dorsal Gene 

Expression. 

(A) Maternal depletion of Prmt2 results in a dose-dependent pre-MBT cell cycle arrest phenotype. 

Maternal depletion by host transfer was performed with injection of 10ng β-MO or 10-, 20-, or 

40ng Prmt2MO. Compared to control (non-injected) and β-MO injected embryos, Prmt2MO 

injected embryos arrest dose dependently during early development. Pictured at right are 

representative images of control, β-catenin depleted, and Prmt2 depleted (40ng) embryos. 

(B) Maternal Prmt2 depletion suppresses dorsal gene expression. Expression of siamois and 

xnr3 was measured by RT-PCR in morphologically normal control, β-catenin depleted, and Prmt2 

depleted (10ng) embryos (representative embryos pictured at right) compared to host embryos 

(not pictured). Similarly to β-catenin depletion, maternal Prmt2 depletion reduces siamois and 

xnr3 expression after the MBT (stage 9). ODC is shown as a loading control. 
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Figure 3.10: Zygotic Prmt2 depletion is gastrula-stage lethal, and enhances 

a weak β-catenin loss-of-function phenotype. 

(A) Zygotic Prmt2MO injection is gastrula-stage lethal. Representative animal (top) and vegetal 

(bottom) views of injected embryos demonstrates that, compared to controls (left), Prmt2MO 

injection (40ng, center) results in abnormal cellular morphology, cell lysis, and embryonic death at 

sibling stage 11-12. Co-expression of Prmt2 mRNA (500pg, right) rescues gastrula-stage 

lethality. 

(B) Gastrula-stage lethality in Prmt2MO-injected embryos is specific for loss of Prmt2 function. 

The histogram quantifies gastrula stage lethality in non-injected (column 1), control morpholino- 

(column 2, 40ng), and Prmt2MO-injected (column 3, 40ng) embryos from three independent 

experiments. Greater than 80% of Prmt2MO-injected embryos fail to survive gastrulation, and this 

phenotype is rescued dose-dependently by Prmt2 mRNA (column 4: low dose, 100-200pg 

mRNA; column 5: high dose 400-600pg mRNA). 

(C) Zygotic depletion of Prmt2 enhances a weak β-catenin loss of function phenotype. Control 

and Prmt2MO-injected (40ng) embryos were injected with either ΔNTcf-GR (500pg) or ΔNTcf-GR 

and Prmt2 mRNA (500pg each), treated with dexamethasone at either the late 4-cell stage (4 

c.s.) or the late 32-cell stage (32 c.s.), and collected for marker analysis at stage 10. Compared to 

non-injected controls (lane 2) or no-dexamethasone controls (lanes 3, 6, & 8), siamois expression 

is strongly reduced by ΔNTcf-GR activation at the 4-cell stage but not at the 32-cell stage. Zygotic 

depletion of Prmt2 enhances repression of siamois expression by 32-cell stage activated ΔNTcf-

GR (lane 7). Co-expression of Prmt2 mRNA suppresses the effect of zygotic Prmt2 depletion on 

ΔNTcf-GR function (lane 9). Zygotic depletion of Prmt2 alone has no effect on siamois expression 

at stage 10 (lane 10). 
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3.3: Discussion 

 

This work identifies a complex pre-transcriptional mechanism underlying 

cell fate specification in early embryos, and also represents the first detailed 

analysis of chromatin architecture at endogenous loci prior to the MBT. We 

demonstrate that β-catenin functions to establish poised chromatin architecture 

at its target genes under conditions of global transcriptional repression. 

Additionally, β-catenin interacts with the H3R8 HMT Prmt2 between the 4- and 

32-cell stages. Recruitment of Prmt2 to organizer gene promoters before the 

MBT is both necessary and sufficient to establish the dorsal gene expression 

program. The constellation of marks established at organizer gene promoters 

suggests a mechanism for transcriptional poising that may play a critical role in 

early embryogenesis. The following sections summarize major topics that will be 

discussed in greater depth in Chapter 4. 

 

3.3.1: H3R8 Methylation and the Histone Code 

 

A remaining question is what role asymmetric H3R8 methylation plays in 

either the establishment or maintenance of active chromatin architecture, in 

particular H3K4 methylation. The Histone Code Hypothesis postulates that 

histone modifications function combinatorially to regulate events such as 

transcriptional activation (Strahl and Allis, 2000). Along these lines, H3R8 
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methylation could recruit downstream complexes containing an H3K4 HMT, 

resulting in the subsequent methylation of H3K4. Although factors that “read” 

H3R8me2a have yet to be identified, histone arginine methylation influences the 

patterns of histone tail modifications [reviewed in (Bedford and Clarke, 2009), 

and see below]. Alternatively, H3R8 methylation could inhibit the activity of a 

repressive factor, such as an H3K4 de-methylase, which would otherwise 

maintain promoter transcriptional repression. In support of this model, H3R8 

methylation has been shown to inhibit de-methylation of K4 by LSD-1 (Forneris et 

al., 2006). In addition, we observe that β-catenin mediated H3R8 methylation is 

sensitive to the modification state of the neighboring residue, K9, as also 

observed for the symmetric H3R8 HMT Prmt5 (Pal et al., 2004). Similarly, Prmt1, 

whose methylation of Histone H4R3 potentiates downstream H4 acetylation, will 

not methylate a pre-acetylated H4 tail (Wang et al., 2001). Conversely, H3K9 

methylation by the HMT G9a is inhibited by methylation of H3R8 (Rathert et al., 

2008). These observations suggest that H3 R8 and K9 antagonism represents a 

critical regulatory node underlying the interpretation of the Histone Code, where 

asymmetric methylation of R8 activates and K9 represses gene expression. We 

speculate that antagonistic H3K9 methylation could thus represent a mechanism 

to restrict the expression domains of dorsal determinants in early embryos. 
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3.3.2: Pre-Setting Patterns of Gene Expression in the Embryo 

 

Transcriptional poising occurs in eukaryotes from yeast to mammals in a 

wide range of contexts (Bernstein et al., 2006; Guenther et al., 2007; Muse et al., 

2007; Radonjic et al., 2005; Rougvie and Lis, 1988; Zeitlinger et al., 2007). A 

promoter is poised when it bears hallmarks of transcriptional activity in the 

absence of detectable mRNA expression, either due to polymerase 

pausing/stalling or the presence of counteracting chromatin modifications 

(Margaritis and Holstege, 2008). While pre-MBT Xenopus embryos are fully 

transcriptionally competent (Prioleau et al., 1994), several overlapping 

mechanisms dominantly suppress zygotic gene expression [reviewed in 

(Veenstra, 2002)]. For example, a plasmid with the minimal myc promoter will 

establish active patterns of DNase-hypersensitivity before the MBT and can 

interact with DNA-binding factors to establish a committed but repressed 

chromatin structure (Prioleau et al., 1995). Interfering with these repressive 

activities can reveal a suppressed pro-transcriptional activity. Depleting embryos 

of the DNA methyltransferase Dnmt1 causes the precocious expression of many 

genes, suggesting that these genes are poised for activation prior to the MBT, 

but are prevented from being transcribed due to the counteracting influence of 

Dnmt1 and DNA methylation (Stancheva and Meehan, 2000). Also, active 

chromatin architecture can be inherited epigenetically through the pre-MBT 

period and embryos generated from transplantation of transcriptionally active 
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nuclei will display pre-MBT expression of genes that were active in the original 

donor cells (Ng and Gurdon, 2005). This transcriptional memory is linked to 

chromatin modifications that correlate with active transcription, particularly the 

incorporation of the histone variant H3.3 (Ng and Gurdon, 2008). In sum, these 

observations demonstrate the competency of pre-MBT embryos to establish and 

maintain active-but-repressed (i.e. poised) chromatin. 

This work extends these observations by demonstrating that 

transcriptional poising underlies pre-MBT dorso-ventral cell fate specification. 

Before the MBT, β-catenin interacts with target promoters, resulting in 

methylation of H3R8 and, in collaboration with Pol II, H3K4. H3K4me3, in 

particular, correlates with active gene expression (Santos-Rosa et al., 2002), but 

has also been observed at poised loci (Bernstein et al., 2006; Guenther et al., 

2007). The Wnt pathway component Pygopus binds methylated H3K4 via its 

PHD domain (Fiedler et al., 2008). Pygopus is also absolutely required for 

dorsoventral specification (Belenkaya et al., 2002), further raising the possibility 

that Pygopus functions downstream of H3K4 methylation to activate dorsal gene 

expression at the MBT. Another common feature of transcriptionally poised loci is 

the occupancy of stalled Pol II, which we also observe at siamois and xnr3 before 

the MBT (Figure 2E). The identity of the counteracting repressive influence at 

these loci is currently unknown, but our results are consistent with a model where 

regulated entry into the elongation phase of transcription accounts for pre-MBT 

gene repression at the siamois and xnr3 loci. 
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The pre-MBT β-catenin target genes have a brief period of competency to 

become transcriptionally repressed by ΔNTcf3, which is sensitive to both Pol II 

inhibition and depletion of Prmt2 [(Yang et al., 2002b) and Figure 3.10C]. We 

conclude that this competency is linked to the establishment of poised chromatin 

architecture at β-catenin target genes. Since transcriptionally poised loci can 

behave as chromatin insulators (Chopra et al., 2009), we propose that the poised 

chromatin architecture of the siamois and xnr3 loci serves the dual purpose of 

marking these genes for activation at the MBT, and for antagonizing the possible 

down-regulation of these genes by transcriptional repressors, such as non-

liganded Tcf3. 

 

3.3.3: Context-dependent chromatin modifying activities for β-catenin? 

 

Our work also indicates that, in early embryos, β-catenin associates with a 

large complex that contains HMT activity (Figure 3.4). Numerous studies have 

identified association of β-catenin with other chromatin modifying and remodeling 

factors. A recent genome-wide screen for β-catenin interactors in colorectal 

carcinoma cell lines (Major et al., 2008) confirmed several of these interactions 

and identified novel complex members. Notably, the Histone H4 arginine 

methyltransferase Prmt1 was identified as part of the extended β-catenin 

interaction network. Carm1 has also been shown to interact with β-catenin in the 

context of androgen receptor signaling (Koh et al., 2002). In pre-MBT embryos, 

β-catenin interacts with Prmt2, but not with Carm1 or Prmt1, suggesting that the 
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β-catenin/chromatin remodeling complex associates with different Prmt family 

members in a context-dependent manner. Additionally, in colon cancer cell lines, 

the β-catenin/chromatin remodeling complex contains the MLL family of H3K4 

methyltransferases (Major et al., 2008; Sierra et al., 2006). Our analysis indicates 

that, in early Xenopus embryos, the primary HMT activity associated with β-

catenin is directed at H3R8, but the possibility remains that β-catenin interacts 

with MLL family members in later developmental stages. A systematic 

comparison of these complexes from diverse tissue sources and developmental 

stages will be necessary to investigate this possibility further. 
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Chapter 4: Conclusions and Future Directions 

 

 In this work, I have addressed how the Wnt/β-catenin signaling pathway 

functions before the MBT to specify dorsal cell fates. I have uncovered a 

mechanism of transcriptional poising that underlies the activation of critical dorsal 

determinants, which illustrates a multi-step process for the activation of gene 

expression where trans-activator function is uncoupled from the transcriptional 

response. Because a number of additional genes are induced immediately 

following the activation of zygotic gene expression at the MBT, this mechanism of 

transcriptional poising may extend to other gene regulatory networks that 

function in the early embryo. Furthermore, this work suggests that regulated 

entry into productive transcriptional elongation may serve as a mechanism for 

regulating the onset of zygotic gene expression at the MBT. In the following 

section, these conclusions will be explored in greater depth, and follow-up 

experiments will be suggested to expand this work in several new directions. 

 

4.1 Accounting for pre-MBT β-catenin activity: Prmt2 function 

 

 Shortly following the activation of the Wnt/β-catenin pathway in future 

dorsal blastomeres, β-catenin functions to poise its target genes for activation at 

the MBT. β-catenin recruits a large complex to target gene promoters that 

includes the H3R8 methyltransferase Prmt2, which is both necessary and 

sufficient to activate dorsal gene expression after the MBT. In particular, Prmt2’s 
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function at pre-MBT promoters appears to prevent transcriptional repression by 

non-β-catenin bound Tcf3, suggesting that H3R8 methylation counteracts an 

antagonistic (and not yet identified) activity associated with Tcf3. In addition to 

this mark, β-catenin target gene promoters are also bound by RNA Pol II, and are 

acetylated at H3K9/K14, and methylated at H3K4. Of these additional 

modifications, H3K4 methylation requires both RNA Pol II and β-catenin function 

in order to be established. Since I have no evidence that early (pre-32-cell stage) 

β-catenin complexes have any H3K4 HMT activity, I propose that H3K4 

methylation is established at target gene promoters downstream of H3R8 

methylation. However, my analysis has not determined whether H3K4 

methylation is dependent on prior H3R8 methylation, or whether these 

modifications function independently of one another to promote gene activation 

downstream of β-catenin. Thus, it will be critical to evaluate whether targeting 

Prmt2 to β-catenin target gene promoters is sufficient to establish H3K4me3 

before the MBT, as this will determine whether establishment of H3K4 

methylation is indeed dependent on prior H3R8 methylation. Thus, three models 

to account for the role of H3R8 methylation at β-catenin target genes are 

presented below. 

 

4.1.1 The H3R8me2 “reader”/ H3K4me3 “writer” hypothesis 

 

As discussed in Chapter 3, several models could account for H3R8-

dependent H3K4 methylation, where methylated H3R8 could serve either to 
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recruit a H3K4 HMT, or to prevent removal of this mark by a H3K4 demethylase, 

or to prevent the establishment of repressive chromatin modifications. The first 

model stems from a prediction of the “Histone Code” hypothesis, where histone 

modifications function combinatorially to influence gene expression (Strahl and 

Allis, 2000). Along these lines, histone modifications serve as ligands that recruit 

additional chromatin remodeling complexes, such that a pre-existing modification 

is “read” in order to “write” additional modifications or to recruit transcriptional-

regulatory factors. Therefore, it is possible that H3R8 methylation directly 

functions in the establishment of H3K4 methylation at promoters, by serving as a 

ligand for a H3K4 HMT complex. Identifying a candidate H3R8 “reader” and 

H3K4 “writer” complex could begin with a biochemical purification of complexes 

that preferentially bind H3R8me2-modified but not non-modified H3 tail peptides. 

These complexes could be screened for in vitro H3K4-dependent HMT activity, 

followed by large-scale purification and identification of co-purified proteins by 

mass spectroscopy. If preliminary experiments were to suggest that early 

embryos express factors that preferentially bind to H3R8-methylated H3 

peptides, identification of these factors would be informative as well. While 

numerous factors bind H3 methylated at lysine residues (Ruthenburg et al., 

2007), fewer methyl-arginine binding factors have so far been identified. In these 

few cases, the methyl-arginine binding factors contain Tudor domains (Côté and 

Richard, 2005; Vagin et al., 2009), but no interactions between arginine-

methylated histone tails have been shown for these factors. Pursuing this model 

would thus likely identify a novel H3-directed methyl-arginine reader. 
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Furthermore, if the reader were also to bind a H3K4 HMT, this would support the 

hypothesis that H3R8 methylation can serve as a scaffold for the recruitment of 

additional chromatin modifying activities. The proposed role of H3R8 reading and 

H3K4 methylation in dorsal specification could be tested further by loss of 

function for these identified factors. 

 

4.1.2 The H3R8me2 “lock” hypothesis 

 

 While the first model provides a direct mechanism for the establishment of 

H3K4 methylation in response to β-catenin dependent H3R8 methylation, it is 

also possible that H3K4 methylation is established independently of H3R8 

methylation, which instead functions in a protective role. Thus, H3R8 methylation 

could prevent the activity of a H3K4 demethylase, thereby “locking-in” H3K4me3 

at promoters and preserving this mark for the eventual activation of β-catenin 

target genes. H3R8 methylation prevents demethylation of H3K4 by LSD1 in 

cultured cells, but it is unknown whether this is also the case in an embryonic 

setting (Forneris et al., 2006). Interestingly, Tcf3 interacts with the co-repressor 

complex CtBP (Brannon et al., 1999), which has been shown by others to contain 

LSD1 [named NPAO in (Shi et al., 2003)]. Thus, it will be interesting to determine 

whether Tcf3 interacts with LSD1 in pre-MBT embryos, as this could nicely link 

this proposed mechanism for H3R8 methylation with the effects of Prmt2 

depletion on transcriptional repression by ΔNTcf3 (Chapter 3, Figure 3.10). 

Preliminary studies could determine whether Tcf3 physically interacts with LSD1 
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or other H3K4 demethylases. Subsequent experiments could screen for MBT-

stage binding of known H3K4 demethylases to the siamois and xnr3 promoters 

either in ventral blastomeres or in β-catenin depleted embryos. Alternatively, 

candidate demethylases could be pre-screened for sensitivity to H3R8 

methylation by in vitro demethylation assays (Shi et al., 2004; Whetstine et al., 

2006). This model predicts that loss of function for this R8-sensitive demethylase 

would result in expanded dorsal gene expression, so in vitro results could be 

confirmed in an embryonic context as well. However, loss of function for H3K4 

demethylases may likely demonstrate similar pleiotropy as seen with the 

depletion of Prmt2. 

Notably, this second model does not directly account for the mechanism 

whereby H3K4 methylation is established at poised β-catenin target promoters. I 

have shown that, in addition to β-catenin, RNA Pol II phosphorylated at CTD 

serine 5 binds the siamois and xnr3 promoters and that RNA Pol II function is 

also necessary for the deposition of H3K4me3. In budding yeast, the COMPASS 

complex, containing the Set1 HMT, catalyzes promoter H3K4 methylation 

(Krogan et al., 2002). In yeast, as in metazoans, H3K4me3 is largely restricted to 

the 5’ end of genes. This 5’ restriction of H3K4me3 reflects the interaction of 

COMPASS with initiating (CTD Ser5-phosphorylated) but not elongating (CTD 

Ser2-phosphorylated) RNA Pol II (Krogan et al., 2003; Ng et al., 2003b). 

COMPASS is recruited to RNA Pol II by the Paf1 protein complex, which is itself 

a critical factor for mediating the switch between initiation- and elongation-phases 

of transcription (Krogan et al., 2003; Shi et al., 1996). Besides recruiting 
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COMPASS to RNA Pol II, Paf1 further potentiates H3K4 methylation by recruiting 

the Rad6/Bre complex. Rad6 ubiquitylates H2B, and this is a prerequisite for 

promoter H3K4 methylation and transcriptional activation (Dover et al., 2002; Ng 

et al., 2003a; Wood et al., 2003). Importantly, in Drosophila, β-catenin has been 

shown to interact with the Paf1 complex, and this interaction is necessary for the 

full transcriptional output of the Wnt/β-catenin pathway (Mosimann et al., 2006). 

Were β-catenin to recruit Paf1 to poised loci before the MBT, Paf1 could serve as 

a means to bridge directly β-catenin with the RNA Pol II complex. β-catenin could 

present stalled RNA Pol II with the Paf1 complex, which would subsequently 

promote both H2B ubiquitylation and H3K4 methylation. Future work will address 

whether β-catenin recruits Paf1 to poised loci, and whether these promoters are 

also marked by H2B ubiquitylation. Since Paf1 also mediates the transition from 

transcriptional initiation to elongation, it will be intriguing to determine whether β-

catenin recruits Paf1 to poised loci, which are presumed to be stalled between 

initiation and elongation. 

Alternatively, I have not ruled out that β-catenin itself eventually recruits a 

H3K4 HMT following its initial binding to promoters. Indeed, β-catenin has been 

shown to interact with metazoan homologs of the yeast Set1 protein, the MLL 

family of Histone H3K4 HMTs, thereby directing H3K4 methylation to target gene 

promoters (Major et al., 2008; Sierra et al., 2006). In Xenopus embryos, I do not 

detect any β-catenin associated H3K4-directed HMT activity prior to the 32-cell 

stage of development. Thus, to develop this hypothesis, it is necessary to 
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consider a model where chromatin-remodeling complexes are interchanged on 

the C-terminal transactivation domain (CTA) of β-catenin.  

While experimental evidence for shuttling of factors on the β-catenin CTA 

is lacking, this hypothesis has been suggested elsewhere (Mosimann et al., 

2006). This hypothesis is appealing because a large number of factors that 

interact directly with overlapping portions of the β-catenin CTA have been 

identified in several experimental systems, and it is difficult to account for how 

they could all interact simultaneously. In certain examples, it is clear that they do 

not: the β-catenin CTA has been shown to interact with the p300/CBP histone 

acetyltransferases (HATs) (Hecht et al., 2000; Takemaru and Moon, 2000), yet 

little or no β-catenin associated HAT activity is detected in either pre-MBT 

Xenopus embryos (Chapter 3), or in a colon carcinoma cell line (Sierra et al., 

2006). This suggests that β-catenin could interact with any number of its potential 

partners in a context-dependent manner, and furthermore that these factors 

could switch during either the early and late phases of the transcriptional cycle, 

or over the course of embryonic development.  

I have developed a method for isolating a subpopulation of cellular β-

catenin that contains chromatin-modifying activity. The possibility of factor 

switching on the β-catenin CTA could be addressed by comparing this complex 

across different timepoints in development, for example to determine if the CTA 

ever gains HAT activity, or switches between a H3R8- and H3K4- HMT activity. 

Interestingly, Prmt2 and β-catenin interact in an ATP-dependent manner 

(Chapter 3), suggesting that β-catenin’s acquisition of an H3R8-directed HMT 



 119 

activity is a regulated process. This complex assembly assay provides a starting 

point for further investigation of the factors that could regulate the characteristics 

of β-catenin chromatin modifying activities. Additional experiments could test for 

the requirement of serine/threonine or tyrosine kinase activites for Prmt2 and β-

catenin to interact by adding specific phosphatases or kinase inhibitors to the in 

vitro complex assembly reactions. If kinase activity is necessary for complex 

assembly, identification of target proteins could begin by including [32P]-γATP in 

the complex assembly reactions, which would radiolabel target phosphorylated 

proteins within the complex, and facilitate their eventual identification. 

Additionally, based on the in vitro inhibitor / phosphatase experiments, it may be 

possible to hypothesize which class of kinase is responsible for mediating 

complex assembly. In this case, a role for such a kinase during dorsal 

specification could be tested in vivo by loss of function analysis. Alternatively, an 

ATP-dependent chaperone activity could be required to assemble the β-

catenin/Prmt2 complex. If this were the case, a biochemical approach could be 

taken to identify the putative chaperone, beginning with the fractionation of the 

cell lysate followed by mass spectroscopy on fractions capable of mediating the 

complex assembly reaction. 

 

4.1.3 The H3R8 / H3K9 competition hypothesis 

 

Finally, Prmt2-mediated H3R8 methylation could prevent establishment of 

transcriptionally repressive chromatin modifications–such as H3K9 methylation– 
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at β-catenin-bound promoters. H3K9 methylation is a critical component of 

constitutive and facultative heterochromatin (Shilatifard, 2006). H3K9-methylated 

nucleosomes serve as binding sites for the HP1 family of transcriptional 

repressors, thereby functioning as a fundamental building block for gene 

silencing. I observe that β-catenin mediated H3R8 methylation is sensitive to the 

modification status of the neighboring residue (K9) (Chapter 3), which has also 

been observed for the symmetric H3R8 HMT Prmt5 (Pal et al., 2004). 

Conversely, H3R8 methylation inhibits the methylation of H3K9 by the HMT G9A 

(Rathert et al., 2008). Therefore, the antagonism between modifications at H3R8 

and K9 observed in other model systems suggests a similar regulatory 

mechanism could underlie β-catenin’s activity in early Xenopus embryos. In this 

model, promoters not marked by methylated H3R8 would be subject to H3K9 

methylation and packaging into heterochromatin, thereby silencing their 

expression and providing a mechanism to prevent misexpression of these genes 

during subsequent iterations of the Wnt/β-catenin pathway.  

This model provides an attractive explanation for the embryo’s 

competency to activate dorsal gene expression in response to the Wnt/β-catenin 

pathway. Before the MBT, the entire embryo is competent to activate the dorsal 

gene expression program in response to the Wnt/β-catenin pathway, but the 

embryo undergoes a change in competency to respond to this pathway at the 

MBT (Darken and Wilson, 2001; Hamilton et al., 2001; Kao et al., 1986; 

Yamaguchi and Shinagawa, 1989). This is also evident in the embryo’s 

endogenous gene expression patterns, as dorsal determinants activated by 
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maternal Wnt signaling are not expressed in the ventrolateral compartment of the 

embryo upon activation of zygotic Wnt8. The competence of the embryo to 

activate dorsal gene expression may be reflected in the following: before the 

MBT, in the absence of β-catenin activity, promoters are nonetheless marked by 

H3K9/K14 acetylation, and bind CTD Ser5-phosphorylated Pol II, which 

suggests—at the very least—open chromatin architecture that is capable of 

binding (and eventually being activated by) β-catenin (Chapter 3, see Figure 3.2). 

It would be interesting to investigate whether the promoters that fail to bind β-

catenin but are nonetheless maintained in an open state before the MBT become 

transcriptionally silenced or if they persist in an open conformation after the MBT. 

Similarly, the lack of H3K9-me2 and -me3 at promoters and the ability of β-

catenin to establish H3R8me2 until at least an hour before the MBT could reflect 

this competency as well (Chapter 3). Unfortunately, I have not yet determined 

whether these properties of β-catenin target gene promoters change after the 

MBT. However, on the basis of this model, I predict that –after the MBT– non-

utilized maternal β-catenin target gene promoters will lose their open 

conformation and become packaged in transcriptionally silent heterochromatin 

that is refractory to H3R8 methylation. Future work will address whether this 

chromatin-based mechanism underlies the competency for the embryo to 

activate the dorsal gene expression program. 

This model also stipulates that an additional factor be recruited to β-

catenin target genes after the MBT in order to silence them by methylating H3K9. 

Two candidates for this post-MBT repressor are BMP-activated Smad1/5 and 
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non-β-catenin bound Tcf3. Smad1 has been shown to interact with the H3K9 

HMT Suv39H1 in certain contexts (Frontelo et al., 2004), although this result has 

not been confirmed in Xenopus. The BMP pathway, however, is the major 

ventralizing pathway in post-MBT embryos. Notably, the BMP pathway is 

activated in embryos at the MBT, at the time when the embryo loses competence 

to activate dorsal gene expression in response to the Wnt/β-catenin pathway 

(Lee et al., 2001). However, preventing Smad1/5 phosphorylation by depleting 

embryos of all three major BMP ligands (BMP2 -4, and -7) does not result in a 

strong dorsalized, maternal β-catenin gain of function phenotype, as would be 

expected if Smad1 was solely necessary for regulating the competence of 

embryos to respond to the Wnt/β-catenin pathway (Reversade et al., 2005). On 

the other hand, while Tcf3 has not (yet) been demonstrated to interact with a 

H3K9 methyltransferase, depletion of maternal Tcf3 dorsalizes embryos, 

indicating that the primary function of maternal Tcf3 is to prevent ectopic 

activation of dorsal gene expression (Houston et al., 2002). Indeed, Tcf3-

depleted embryos activate Siamois and Xnr3 expression in the ectodermal 

animal cap after the MBT, which is not expected to have substantial Wnt/β-

catenin activity even after the MBT (Houston et al., 2002). In light of my model, 

this could be explained by the failure to close the open chromatin structure of 

these genes, resulting in their incidental and opportunistic expression throughout 

the embryo. These observations are supported by studies on the Siamois 

promoter, where deletion of Tcf3 binding sites results not in the failure to activate 

expression on the dorsal side of the embryo, but rather ectopic ventral 
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expression (Brannon et al., 1997). Non-liganded Tcf3 does interact with co-

repressor complexes that are displaced from chromatin following β-catenin 

binding (Brannon et al., 1999; Roose et al., 1998). Since H3K9 HMTs have been 

shown to be an integral part of certain co-repressor complexes (Schultz et al., 

2002; Vaute et al., 2002), it is possible that the interaction of Tcf3 with a H3K9 

HMT has simply gone unnoticed. 

If the BMP pathway is responsible for modulating the competence of the 

embryo to respond to the Wnt/β-catenin pathway, then I predict that embryos 

lacking BMP pathway activity will become dorsalized following activation of the 

Wnt pathway even after the MBT. While BMP2/4/7-depleted embryos are not 

severely dorsalized, it is possible that these embryos are also impaired in zygotic 

Wnt8 expression, which would remove the main source of ventral zygotic β-

catenin from the embryo (Reversade et al., 2005). These experiments could be 

repeated, with additional treatment of embryos with lithium chloride (LiCl) before 

and after MBT. Treatment before MBT will dorsalize embryos, whereas control 

embryos are not dorsalized by post-MBT treatment. If I impair the switch in 

competency to activate dorsal gene expression by depleting BMP2/4/7, then it is 

expected that post-MBT LiCl treatment will result in dorsalized embryos. It is also 

possible that targeting an H3K9 demethylase to Tcf/Lef binding sites could 

extend the competency of the embryo to activate dorsal gene expression in 

response to LiCl treatment, regardless of the recruiting factor. Since it is already 

known that depletion of Tcf3 results in ectopic dorsal gene expression (Houston 

et al., 2002), I could determine whether Tcf3 interacts with a H3K9 HMT activity 
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after the MBT. If this were to be the case, then the associated HMT could be 

identified by mass spectroscopy or by screening candidate factors, followed by 

loss of function analysis to determine whether Tcf3-mediated H3K9 methylation 

underlies the embryo’s competency to activate dorsal gene expression in 

response to the Wnt/β-catenin pathway. 

 

4.1.4 Concluding remarks: the function of H3R8 methylation at β-catenin target 

genes before the MBT. 

 

 I have outlined three distinct models to account for the function of pre-

MBT Prmt2-mediated H3R8 methylation at β-catenin target gene promoters. In 

summary, H3R8 methylation could serve either as an intermediate modification 

that recruits a H3K4 HMT, thus directly contributing to poised chromatin 

architecture, or by protecting poised loci from counteracting repressive factors. 

These models are not mutually exclusive: for example, it is not difficult to imagine 

that H3R8 methylation could both contribute to H3K4 methylation and eventually 

prevent its removal later in development. As such, pursuing the preliminary 

experiments outlined for each model will likely elucidate the role of this histone 

modification during dorsal specification, and will also establish a model for the 

chromatin-based regulation of cell fate specification during early embryogenesis. 

Importantly, the models in which H3R8 methylation protects promoters from 

inactivation raise the possibility that that the competence to respond to 

developmental signals is regulated at the level of chromatin. These models also 
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underscore the apparent importance of H3K4 methylation in establishment of 

poised chromatin architecture. β-catenin activity is required for establishment of 

H3K4 methylation at target gene promoters, functioning either directly or 

indirectly (as described above). In the following section, I will address β-catenin’s 

role in the establishment of poised chromatin architecture, and consider the 

functional implications of promoter H3K4 methylation in pre-MBT embryos. 

 

4.2 Poised chromatin architecture 

 

 Transcriptional poising represents a widespread mechanism of post-

initiation control of gene expression. Transcriptionally poised loci are bound by 

RNA Pol II phosphorylated at CTD serine 5, and are marked by histone 

modifications that correlate with transcriptional initiation, H3K9/K14 acetylation 

and H3K4 trimethylation (Guenther et al., 2007; Margaritis and Holstege, 2008). 

As such, these loci are thought to have undergone successful pre-initiation 

complex formation, and the preliminary steps of transcriptional initiation. Poised 

RNA Pol II is typically stalled downstream of the promoter, at a checkpoint 

between the initiation to elongation phases of transcription (Saunders et al., 

2006). Alternatively, RNA Pol II can be retained at the promoter, unable to 

progress beyond the “promoter clearance” phase of transcriptional initiation 

(Saunders et al., 2006). Finally, recent evidence suggests that poised loci can 

also undergo misregulated transcription throughout the entire gene, producing 

unstable, non-spliced transcripts due to a failure to recruit RNA processing 
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factors associated with the entry into the productive elongation phase of 

transcription (Hargreaves et al., 2009). In the case of pre-MBT poised loci, I 

observe CTD Ser5 phosphorylation of RNA Pol II, which suggests that the 

polymerase complex has undergone promoter escape and is either stalled or 

engaged in misregulated transcription. In the context of poised gene regulation, 

gene-specific trans-activators (such as c-Myc, HSF, and NFκB) typically function 

by recruiting elongation factors to otherwise poised loci, thereby releasing RNA 

Pol II from promoter-proximal stalling (Eberhardy and Farnham, 2001, 2002; 

Hargreaves et al., 2009; Lis and Wu, 1993). One significant observation that 

arises from my work is that β-catenin does not appear to function to release RNA 

Pol II from stalling at poised promoters; rather, β-catenin functions to establish 

fully poised chromatin architecture before the MBT. 

 In the absence of β-catenin, dorsal target gene promoters have certain 

elements of poised chromatin architecture –stalled RNA Pol II and H3K9/K14 

acetylation– but lack H3K4 trimethylation. Thus, in the absence of β-catenin, 

these promoters could be said to be “incompletely poised”. As discussed above 

(Chapter 4.1.3), this incompletely poised chromatin architecture indicates that 

these promoters are maintained in an open conformation, and maintenance of 

this basal, open state could possibly underlie the embryo’s competence to 

activate the expression of these genes.  

Upon activation, β-catenin binds to these open promoters and, in 

collaboration with RNA Pol II, introduces the final component of poised chromatin 

architecture, H3K4 trimethylation. As discussed above (Section 4.1), H3K4 
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trimethylation could be established at these promoters either directly or indirectly 

by β-catenin. Unfortunately, little is known about the role of H3K4 trimethylation 

in the context of transcriptional poising. This mark is characteristically established 

at sites of transcriptional initiation, yet H3K4 methylation also coordinates the 

recruitment of 3’ RNA processing machinery (reference), indicating a role for this 

modification throughout the transcriptional cycle. In the case of poised loci, it is 

not clear if acquisition of H3K4 trimethylation simply coincides with the extent that 

RNA Pol II has entered into the transcription cycle, or whether this mark plays an 

active role in the regulated maintenance of transcriptional poising. Along these 

lines, binding of β-catenin could advance RNA Pol II one step further in the 

initiation process, coincidentally establishing H3K4 methylation in the process. 

Alternatively, binding of β-catenin and establishment of H3K4 methylation could 

establish a landmark at poised promoters to facilitate their release into productive 

elongation. This raises the question of what mechanism maintains stalling before 

the MBT, and which factors function to release the poised polymerase at the 

MBT. In the following section I will discuss a generalized model for the 

maintenance of poised RNA Pol II and consider how β-catenin function 

contributes to this state. 
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4.2.1 β-catenin, H3K4me3, and ISWI: a potential regulatory node in poised 

chromatin architecture? 

 

The sequence of events for the establishment, maintenance, and 

activation of transcriptionally poised loci has been characterized in the most 

detail for the Drosophila heat shock promoters. One critical factor for establishing 

poised chromatin architecture is the ATP-dependent chromatin remodeler ISWI 

(Tsukiyama), which is initially recruited by pioneering factors in order to open 

chromatin structure and promote pre-initiation complex formation. Notably, ISWI 

has additional roles throughout the transcriptional cycle, both mediating 

pausing/stalling of RNA Pol II at the transition between initiation and elongation, 

and coordinating 3’ processing events later in elongation [reviewed in (Sims et 

al., 2004)]. It is conceivable that ISWI complexes are transferred from one 

recruitment site to another as ISWI carries out these distinct functions. 

Importantly, ISWI could be recruited by H3K4me3 to newly initiated RNA Pol II 

(Santos-Rosa et al., 2003; Wysocka et al., 2006). Based on my observation that 

β-catenin is necessary for H3K4me3 at poised promoters, and observations from 

others that ISWI interacts both physically and genetically with β-catenin (Liu et 

al., 2008; Sierra et al., 2006), I propose that establishment of H3K4me3 by β-

catenin could serve as a molecular switch to recruit factors, such as ISWI, that 

directly regulate RNA Pol II stalling. In the following section, I will present a 
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synthesis of observations from several model systems both to discuss poised 

chromatin architecture, and to demonstrate the basis for this new hypothesis. 

The establishment of poised chromatin architecture at the Drosophila 

hsp70 locus begins with the binding of GAGA factor [Trithorax-like and perhaps 

others (Biggin and Tjian, 1988; Farkas et al., 1994; Granok et al., 1995)], which 

opens chromatin structure and allows pre-initiation complex factors to bind the 

promoter (Shopland et al., 1995). GAGA factor recruits the chromatin-remodeling 

complex NURF (which contains the ATP-dependent remodeler ISWI) to 

promoters thereby opening chromatin and establishing of DNase hypersensitive 

sites at poised loci (Lu et al., 1992; Tsukiyama et al., 1995; Tsukiyama and Wu, 

1995). Additionally, GAGA factor interacts with a subunit of TFIID, Taf3, and 

could thereby nucleate preinitiation complex assembly directly (Chopra et al., 

2008). This role extends beyond the regulation of the hsp70 locus, as recent 

genome-wide study in Drosophila found GAGA factor associated with a majority 

of poised loci (Lee et al., 2008). GAGA factor also remains associated with 

chromatin throughout the cell cycle, and therefore stably marks poised loci 

through subsequent cell divisions (O'Brien et al., 1995; Raff et al., 1994). Beyond 

its role in establishing poised chromatin architecture, GAGA factor is critical for 

restricting the spreading of heterochromatin, as GAGA factor mutants enhance 

position effect variegation (Farkas et al., 1994). Alternatively, the role of GAGA 

factor in establishing boundaries between silent and active chromatin could stem 

from its role in transcriptional poising, as poised loci also function as insulator 

elements (Chopra et al., 2009). Thus, GAGA factor pioneers the establishment of 



 130 

open chromatin structure at poised loci via recruitment of NURF/ISWI, which 

facilitates the formation of a paused or stalled polymerase complex. 

 Despite extensive characterization of GAGA factor in Drosophila, there is 

no clear vertebrate homolog for GAGA factor/Trithorax-like on the basis of 

sequence conservation. Nevertheless, the role of GAGA factors in establishing a 

poised state is likely conserved as the c-myc promoter in mouse, human, and 

(most importantly) Xenopus also contains GAGA-binding sites necessary for 

formation of DNase-hypersensitivity and to establish transcriptional poising 

(Asselin et al., 1989; Krumm et al., 1992; Miller et al., 1989; Prioleau et al., 1995; 

Pyrc et al., 1992). Notably, the siamois promoter also contains at least one 

putative GAGA-binding site (bases 88-95 in Genbank AF016226), although its 

requirement for siamois expression has not been tested. Since, in the absence of 

β-catenin, the siamois and xnr3 promoters are nonetheless maintained in an 

“incompletely poised” state, it is likely that a GAGA-like pioneer factor functions 

upstream of β-catenin to open chromatin (via recruitment of NURF) and to 

nucleate preinitiation complex formation.  

In yeast, ISWI (Isw1p) regulates the transition between the initiation and 

elongation phases in transcription, serving to regulate both polymerase stalling 

and transcriptional elongation via distinct complex subunits (Morillon et al., 2003). 

These multiple functions of Isw1p likely require unique recruitment mechanisms 

to target the promoter or both the initiating and elongating RNA Pol II complexes. 

The yeast Isw1b complex, which consists of Isw1p and two additional proteins, 

Ioc2p and Ioc4p, mediates promoter proximal pausing. Besides serving to 
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establish open chromatin structure via ATP-dependent nucleosome remodeling, 

the Isw1b complex also interacts directly with RNA Pol II CTD kinase complex 

TFIIH (via Ioc2p), thereby mediating RNA Pol II CTD phosphorylation at serine 5 

(Morillon et al., 2003). Yeast mutant for the Ioc2p subunit fail to phosphorylate 

serine 5 of the CTD and prematurely enter the elongation phase of transcription 

by bypassing promoter proximal stalling. This observation underscores the 

critical function of CTD serine 5 phosphorylation to coordinate the transition from 

transcriptional initiation to elongation. Interestingly, the other Isw1b complex 

subunit Ioc4 regulates the elongation phase of transcription, indicating that the 

Isw1b complex plays several roles over the course of the transcription cycle 

(Morillon et al., 2003). While the Drosophila NURF and yeast Isw1b complexes 

are molecularly distinct, both complexes contain the highly conserved ATP-

dependent chromatin-remodeling subunit ISWI, and are proposed to regulate the 

stalling checkpoint between initiation and elongation. Thus, in the case of poised 

loci, NURF/ISWI could have at least two phases of activity. In the first phase, 

NURF is recruited by GAGA factor in order to open chromatin structure and 

mediate CTD serine 5 phosphorylation by recruiting TFIIH. In the second phase, 

NURF is transferred to the initiated RNA Pol II complex to mediate stalling. 

NURF may therefore require an additional recruitment mechanism for its transfer 

from the GAGA factor to the newly initiated RNA Pol II complex. 

Phosphorylation of the RNA Pol II CTD at serine 5 is obligatory for 

transcriptional poising (Schwartz et al., 2003) and recruits several complexes 

required for transcriptional regulation including H3K4 methyltransferases and 
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critical mediators of transcriptional stalling NELF and DSIF (see below). As 

discussed above (Section 4.1.2) the Paf1 complex mediates the interaction 

between serine 5 phosphorylated RNA Pol II and the H3K4 HMT complex, 

COMPASS, and this function is conserved for the MLL H3K4 HMT complex. 

Additionally, as described above (Section 4.1.2) β-catenin could function to 

present the Paf1 complex to newly initiated (CTD serine 5 phosphorylated) RNA 

Pol II, or could recruit the MLL complex directly in order to establish H3K4me3 at 

poised promoters. This establishment of H3K4me3 at promoters could serve as a 

tether for the NURF complex at promoters independently of GAGA factor, as the 

NURF complex subunit BPTF selectively binds H3K4me3 through its plant 

homeodomain (PHD) motif (Wysocka et al., 2006). Recruitment of ISWI 

complexes to H3K4me3 is conserved, as yeast Isw1b is also recruited to this 

mark (Santos-Rosa et al., 2003), perhaps via the PHD motif in Isw1b subunit 

Ioc2. Since β-catenin also interacts with ISWI itself (Sierra et al., 2006), β-catenin 

could alternatively recruit NURF to the stalled polymerase complex by 

transferring it to H3K4 methylated nucleosomes. Consequently, establishment of 

H3K4me3 at promoters could transfer NURF from pioneering factors to newly 

initiated, CTD serine 5 phosphorylated RNA Pol II. Therefore, I propose that by 

establishment of H3K4me3 at poised promoters, β-catenin functions to promote 

the transfer of NURF/ISWI from a GAGA-like pioneer factor to newly initiated 

RNA Pol II complexes in order to regulate RNA Pol II stalling. 

RNA Pol II stalling is mediated by the dual action of the negative 

elongation factor (NELF) (Andrulis et al., 2000; Muse et al., 2007; Wu et al., 
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2003), and by the positioning of nucleosomes that hinder further progression 

along the DNA template [reviewed in (Gilmour, 2009)]. NELF mediates stalling by 

forming a complex with CTD serine 5-phosphorylated RNA Pol II and the positive 

elongation factor complex DSIF. When bound by NELF, DSIF is unable to 

promote transcriptional elongation. The positive elongation factor complex p-

TEFb (Cdk9/CyclinT) relieves NELF-mediated stalling by phosphorylating DSIF, 

RNA Pol II CTD serine 2, and NELF, which results in the dissociation of NELF 

from the complex and entry of RNA Pol II into productive elongation [reviewed in 

(Sims et al., 2004)]. In the case of the Drosophila heat shock promoters, 

recruitment of p-TEFb is sufficient to release the stalled polymerase (Lis et al., 

2000). However, the sufficiency of p-TEFb to release stalled RNA Pol II does not 

rule out nucleosome positioning from playing a role in RNA Pol II stalling. In 

yeast, the Spt4 subunit of DSIF genetically interacts with ISWI to suppress RNA 

Pol II stalling (Morillon et al., 2003). This suggests that, upon derepression by p-

TEFb, DSIF could stimulate entry into transcriptional elongation by activating 

NURF-dependent chromatin remodeling downstream of the stalled polymerase 

complex. Thus, interaction with H3K4me3 could bring NURF into proximity with 

newly initiated RNA Pol II to serve a dual function: to mediate the stalling 

checkpoint, and to facilitate the eventual release of RNA Pol II into productive 

elongation. 

Due to its role in establishing open chromatin architecture, and potential 

roles in halting RNA Pol II at the stalling checkpoint, and eventually promoting 

the entry into transcriptional elongation, the NURF/ISWI chromatin-remodeling 



 134 

complex could serve as a central hub for coordinating the establishment, 

maintenance, and transcriptional activation of poised chromatin architecture. I 

propose that establishment of H3K4me3 is essential for bridging the early, 

pioneering phase of NURF function to its later, transcriptional-regulatory function. 

To follow up on this hypothesis, initial experiments could determine whether 

NURF subunits interact with pre-MBT poised promoters, and whether this 

interaction is β-catenin dependent. While NURF is initially recruited to poised 

promoters by the pioneering GAGA factor, it is unknown how NURF is 

subsequently transferred to the stalled RNA Pol II complex. In the case of pre-

MBT poised promoters, it is conceivable that β-catenin binding and H3K4 

trimethylation serves as a switch to recruit NURF to the initiated RNA Pol II 

complex. This hypothesis predicts that loss of function for maternal ISWI will 

severely impair dorsal specification. Additionally, loss of function for maternal 

BPTF, the H3K4me3-binding subunit of NURF, could allow for a dissection of the 

proposed dual phases of NURF function during transcriptional poising. Pursuing 

this hypothesis would likely elaborate on the multiple observed roles of yeast 

ISWI complexes during the transcriptional cycle, and test the model that 

H3K4me3 serves as a critical switch that regulates transcriptional poising. 

 

4.3 Transcriptional Poising and Cell Fate Determination 

 

 My work indicates that transcriptional poising underlies dorsal specification 

during Xenopus embryogenesis. In particular, the critical dorsal determinant, β-
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catenin contributes to the establishment of poised chromatin architecture before 

the MBT, thereby marking genes for activation at the MBT. In general, this 

reflects a multi-step process of transcriptional activation, where initial pioneering 

factors open chromatin and promote preinitiation complex formation, and 

sequence-specific trans-activators are subsequently recruited either to establish 

transcriptional poising (e.g. pre-MBT β-catenin), or to release poised loci into 

productive elongation [e.g. c-Myc, NFκB, HSF (Eberhardy and Farnham, 2001, 

2002; Hargreaves et al., 2009; Lis and Wu, 1993)]. I speculate that the initial, 

pioneered and open chromatin structure reflects the competency of an embryo to 

activate particular gene regulatory networks, and furthermore suggest that 

factors such as β-catenin direct cell fate specification by “locking in” this 

permissive chromatin structure. Essential to this model is the prediction that while 

factors like β-catenin direct cell fate specification by poising genes for activation, 

additional factors are necessary for releasing poised polymerase into productive 

elongation. In addition, I also speculate that the loss of competency to activate 

certain gene regulatory networks is accompanied by the closing of the pioneered, 

open chromatin structure. By establishing transcriptional poising, β-catenin 

serves a dual purpose: to promote the expression of target genes in response to 

secondary activating signals, and to protect these genes from transcriptional 

silencing caused by antagonistic regulatory mechanisms. 

 In light of my results, does transcriptional poising represent a major 

mechanism underlying zygotic genome activation at the MBT? As I have only 

focused on the output of a single gene regulatory network at the MBT, this 
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question remains open. Poising, however, is an attractive mechanism to explain 

the rapid induction of zygotic gene expression at the MBT, and extending this 

observation beyond the Wnt signaling pathway is certainly possible with current 

experimental approaches. The most common approach to identifying poised loci 

is to perform ChIP for RNA Pol II followed by deep sequencing of enriched 

genomic DNA [ChIP-seq, e.g., (Guenther et al., 2007; Muse et al., 2007; 

Zeitlinger et al., 2007)]. In the case of early Xenopus embryos, this approach 

could be impractical for several reasons, one being the limit of sensitivity for the 

ChIP-seq procedure, and the other being the lack of a whole genome sequence. 

To circumvent the lack of a Xenopus laevis genomic sequence, I could perform 

the experiment in Xenopus tropicalis or Zebrafish, however this will not alleviate 

the potential inherent limitation in ChIP-seq sensitivity. As an alternative 

approach, I could exploit the observation of Lis and colleagues (Lee et al., 1992; 

Rougvie and Lis, 1988) that in nuclear run-on experiments poised loci will 

produce transcripts in the presence of the detergent sarkosyl. Nuclei from pre-

MBT embryos could be collected and subjected to nuclear run-on experiments in 

the absence and presence of sarkosyl, and poised loci would be determined by 

identifying sarkosyl-dependent transcripts by deep sequencing. While this 

procedure may also be limited by sensitivity, there is less of a limit on input 

material for the collection of nuclei as there is on the number of embryos that can 

easily be used in a ChIP experiment, so it would be more practical to scale-up a 

nuclear run-on experiment. The nuclear run-on approach would have the added 

benefit of identifying loci that are transcribed before the MBT, as they would be 
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transcribed in the absence of sarkosyl. Again, the lack of a genome sequence for 

laevis could be limiting in this case as well, so experiments could be performed in 

alternative model systems. 

 

4.3.1 p-TEFb before the MBT, a clue from primordial germ cells? 

 

 I propose that the establishment of a poised state promotes the rapid 

induction of target gene expression once the embryo reaches MBT. This 

additionally suggests that at least a subset of immediate-early zygotic genes are 

maintained silent during the pre-MBT period by regulated entry into productive 

elongation. This raises the additional question of how positive elongation factors 

such as p-TEFb are regulated before the MBT, and by what mechanism they are 

recruited to poised promoters upon activation of the zygotic genome. Notably, the 

Drosophila MBT regulator Smaug regulates the expression of p-TEFb subunits 

(Cdk9/CyclinT) (Benoit et al., 2009), supporting the idea that positive elongation 

factors are limiting in the pre-MBT embryo. In addition, p-TEFb is a critical 

regulatory target in the transcriptionally quiescent primordial germ cells of both 

Drosophila and C. elegans (Hanyu-Nakamura et al., 2008; Martinho et al., 2004; 

Zhang et al., 2003). P-TEFb activates transcriptional elongation by 

phosphorylating NELF, DSIF and RNA Pol II CTD serine 2, thus relieving NELF-

mediated RNA Pol II stalling [reviewed in (Sims et al., 2004)]. P-TEFb is inhibited 

in primordial germ cells in C. elegans by PIE-1 (Ghosh and Seydoux, 2008; 

Zhang et al., 2003) and in Drosophila by the unrelated Polar Granule Component 
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(Pgc) protein (Hanyu-Nakamura et al., 2008; Martinho et al., 2004). Early 

evidence suggests that Pgc prevents p-TEFb recruitment to chromatin by 

sequestration, possibly in the cytoplasm (Hanyu-Nakamura et al., 2008). 

Unfortunately, little has been done on p-TEFb regulation in Xenopus. In light of 

the mechanisms described for p-TEFb regulation in transcriptionally quiescent 

primordial germ cells, it would be informative to determine, before the MBT, 

whether Cdk9 is catalytically active, or whether Cdk9 is sequestered in the 

cytosol. Since we have observed pre-MBT transcription of the xnr5 and xnr6 

genes that is sensitive to the p-TEFb inhibitor DRB, this suggests that p-TEFb is 

not globally inactivated in early Xenopus embryos (Yang et al., 2002b). 

Interestingly, while pre-MBT embryos are mostly transcriptionally quiescent, a 

whole embryo lysate is capable of performing in vitro transcription (Prioleau et 

al., 1994; Toyoda and Wolffe, 1992). This suggests that interfering with the 

subcellular organization of the embryo is sufficient to circumvent pre-MBT 

transcriptional quiescence, perhaps due to sequestration of critical elongation 

factors, such as p-TEFb, in the cytoplasm. Finally, it is very likely that 

transcriptional poising underlies the apparent transcriptional silence of Drosophila 

and C. elegans primordial germ cells, although this has yet to be formally 

demonstrated. The functional conservation of regulatory mechanisms for the 

inhibition or p-TEFb and RNA Pol II elongation, coupled with the observation that 

RNA Pol II CTD serine 5 (but not serine 2) phosphorylation is present in 

primordial germ cells from each species (Seydoux and Dunn, 1997) strongly 
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suggests that genomic silencing in fly and worm germ cells is mediated by post-

initiation regulatory mechanisms. 

 

4.3.2 Poising and Gene Regulatory Networks 

 

 In the context of gene regulatory networks, transcriptional poising adds an 

additional dimension to the interpretation of regulatory circuits. Typically, the 

successive programs of differential gene expression that comprise cell fate 

specification and differentiation are explained by linear relationships between 

transcription activators and their genomic targets. In this case, the establishment 

of a particular lineage would follow a genetic sequence of ABC, where early 

factors (A) represent “master regulators” of a developmental program which 

activate the expression of intermediate factors (B) that ultimately induce the 

expression of cell-type specific genes, characteristic of a fully differentiated 

lineage (C). Since transcriptional poising represents an uncoupling of trans-

activator recruitment and a genomic transcriptional response, this suggests that 

the relationship between genes in a regulatory network need not be linear. While 

the activity of master regulators could still promote the expression of the 

intermediate factors, it is possible that master regulators could also function to 

promote the expression of cell-type specific genes (C) by poising them for 

activation by the intermediate factors (B). This is particularly attractive if one 

considers that intermediate factors could have several genomic targets (such that 

genes C and D have binding sites for B, yet BC not D), and thus poising by 
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master regulators could ensure the expression of the proper target. This would 

be observed as the recycling of a signaling pathway or master regulator 

throughout a gene regulatory network, indicated by the constant genetic 

requirement for a factor to establish a lineage. This could be represented by 

AB, (A+B)C. In this case, it would not be known whether A’s role in activating 

C in concert with B is due to a physical requirement for A at the C promoter, or to 

transcriptional poising by A earlier in development.  

Experimentally, this distinction could be parsed out by examining the 

temporal requirement for a recycled master regulator over the course of 

differentiation. This is similar to my analysis of β-catenin function during dorsal 

specification using a hormone inducible dominant-negative TCF, where I find that 

β-catenin functions early, but not late in the establishment of dorsal gene 

expression (Chapter 3). Interestingly, β-catenin may play a similar role during 

mammalian hematopoiesis. While β-catenin has been shown to function during 

T- and B-cell development (Reya et al., 2000; van de Wetering et al., 2002; Xu et 

al., 2003), and during the self-renewal of hematopoietic stem cells (Reya et al., 

2003), β-catenin must be deleted early, prior to lineage specification, in order to 

perturb hematopoiesis (Zhao et al., 2007). Deletion of β-catenin after the 

establishment of the lineage does not impair ongoing hematopoiesis (Cobas et 

al., 2004; Koch et al., 2008). This suggests that the early, embryonic function of 

β-catenin is sufficient to mediate β-catenin-dependent cell fate decisions 

throughout the lifespan of the animal, as hematopoiesis is not affected by 

conditional knock out of β-catenin in adults. Hypothesizing that β-catenin poises 
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promoters of hematopoietic lineage determinants could help account for the 

differences in the temporal requirements for β-catenin during blood development. 

To address this hypothesis, β-catenin promoter occupancy in hematopoietic stem 

cells could be examined by ChIP-seq, to determine whether β-catenin associates 

with both “intermediate factor” and “cell-type specific gene” promoters. Were β-

catenin to interact with the promoters of cell-type specific gene promoters in 

advance of their expression, this would support a role for β-catenin in poising 

these genes for eventual activation. Follow-up work could determine whether, in 

fact, poised chromatin architecture is established at these genes in an “early” β-

catenin dependent manner, by comparing RNA Pol II distribution in primary 

hematopoietic stem cells collected from control, “early-deleted” β-catenin, and 

“late-deleted” β-catenin mice. Discovering additional evidence of transcriptional 

poising as a critical regulatory mechanism during cell fate specification would 

lead to numerous new avenues of investigation towards the elucidation of 

chromatin-based mechanisms for developmental patterning. 
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Appendix: Materials and Methods 

Embryo collection and microinjection 

Embryo collection, manipulation, and microinjection was performed 

according to standard protocols (Sive et al., 2000). The β-catenin morpholino 

(Heasman et al., 2000) was heated to 65°C for 5 minutes and kept at room 

temperature prior to microinjection (20ng per blastomere at the 2-cell stage). For 

β-catenin morpholino rescue experiments, the morpholino was injected 

separately (at the 2-cell stage) from the rescuing construct (2 “dorsal” cells at the 

late 2 to 4-cell stage) to prevent precipitation of either component. We note that it 

was necessary to inject Prmt-ΔNLef1 mRNAs into the proximal sub-equatorial 

zone (4:00 position) to achieve rescue. Injection of Prmt-ΔNLef1 fusions was 

toxic to embryos when injected above the equatorial zone. The Prmt2 morpholino 

(5’- TGTCATTCCGTTCTGTATCTCTCCC -3’) was reconstituted in H2O and 

stored at room temperature (as per the manufacturer’s instructions) and working 

solutions were prepared in 0.1x MMR (final). Heating the Prmt2MO prior to 

injection was not necessary. For zygotic Prmt2 depletion, room temperature 1-

cell stage embryos were injected once, equatorially, with 40ng Prmt2MO. 

Rescuing injections were performed separately, injecting mouse Myc-Prmt2 

mRNA into both cells of a 2-cell embryo equatorially. The indicated amounts of 

mRNA specify the total amount injected per embryo. 

The maternal Prmt2 depletion was performed essentially as described (Mir 

and Heasman, 2008). Manually defolliculated oocytes (>100 per group) were 

injected with 10, 20, or 40ng Prmt2MO or 10ng β-catenin MO and cultured for 24 
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hours prior to maturation with 2µM progesterone for 8-10 hours. Matured injected 

oocytes (and non-injected controls) were transferred to host females and 

collected at 1-hour intervals in high salt embryo collection medium (Mir and 

Heasman, 2008) and in vitro fertilized en masse. 

Pre-MBT embryos were rigorously staged by timing all cell divisions 

(formation of cleavage furrows) between the 2-cell and 64-cell stage that 

occurred at room temperature, followed by calculation of the average cell cycle 

period (which varied from 22 to 26 minutes per cycle, depending on the batch of 

embryos). From these calculations, later pre-MBT stages were accurately 

predicted. 

 

Plasmids, in vitro transcription, and recombinant protein purification 

All plasmid constructs were generated in the vector pCS2+MT (Rupp et 

al., 1994) except where indicated. I.M.A.G.E. Consortium [LLNL] cDNA clones 

were obtained from Open Biosystems (Lennon et al., 1996). mRNA was 

synthesized by in vitro transcription using the SP6 mMessage mMachine kit 

(Ambion). All recombinant proteins were expressed and purified from BL21 

Codon+RIL (Stratagene). Log-phase cells were grown in LB broth at 37°C and 

induced with 1mM IPTG for 3 hours prior to harvest. Purification of recombinant 

H3.3 was performed as previously reported (Himpel et al., 1999). Point mutations 

were generated with the Quikchange Site Directed Mutagenesis Kit (Stratagene). 

GST and GST:Prmt2 were purified under native conditions and retained on the 

glutathione sepharose beads for later use. 
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β-catenin-GFP (pCS2+): Full-length Xenopus β-catenin was PCR amplified and 

subcloned between the BamHI and EcoRI sites upstream of EGFP in the vector 

pCS2+ EGFP. 

Siamois (pCS2+) was reported in (Kessler, 1997) 

ΔNTcf3-GR (pCS2+): was reported in (Yang et al., 2002b) as ΔβTGR.  

ΔNLef1: the HMG domain from mouse Lef1 (NM_010703.3 base pairs 1792 to 

2176) was amplified from Lef1-ER pcDNA3 (Aoki et al., 1999) adding 5’ XbaI and 

3’ NheI sites using Forward 5’- CGA GCC TCT AGA ACC TCA GGT CAA ACA 

GGA GCA C -3’; Reverse 5’- TAT AGT GCT AGC TCA GAT GTA GGC AGC 

TGT CA -3’. The resulting insert was subcloned into the XbaI site of pCS2+MT in 

frame with the 6x Myc Tag insert. This plasmid was used for the subcloning of 

Prmt candidates between the Myc and ΔNLef1 inserts.  

Myc-Prmt2: the mouse Prmt2 coding sequence, lacking the start and stop 

codons, was amplified from IMAGE clone 40107558 adding 5’ EcoRI and 3’ XhoI 

sites using Forward 5’- GGA CTT GAA TTC AGA GGC ACC AGG AGA AGG 

TCC -3’; Reverse 5’- TAG GGA CTC GAG CCT CCA GAG AGG AAA GAC C -3’. 

The resultant insert was subcloned into either pCS2+MT or pCS2+MT ΔNLef1. 

Myc-Carm1: the mouse Carm1 coding sequence, lacking the start and stop 

codons, was amplified from IMAGE clone 4935077, adding 5’ and 3’ EcoRI sites 

using Forward 5’- GGA CTT GAA TTC AGC AGC GGC GGC AGC GAC GGC 

GGT G-3’; Reverse 5’- GGC CTT GAA TTC AAA CTC CCA TAG TGC ATG GTG 

TTG GTC -3’. The resulting insert was subcloned into either pCS2+MT, or 

pCS2+MT ΔNLef1.  
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Myc-Prmt5: the mouse Prmt5 coding sequence, lacking the start and stop 

codons, was amplified from IMAGE clone 5321370 adding a 5’ EcoRI site and a 

3’ XhoI site using Forward 5’- GGA CTT GAA TTC AGC GGC GAT GGC AGT 

CGG A -3’; Reverse 5’- TAG AGG CTC GAG GAG GCC TTA GGT ATA GGA 

GCG -3’. The resulting insert was subcloned into either pCS2+MT or pCS2+MT 

ΔNLef1. 

Myc-Prmt6: the mouse Prmt6 coding sequence, lacking the start and stop 

codons, was amplified from IMAGE clone 5067159 adding a 5’ EcoRI site and a 

3’ XbaI site using Forward 5’- GGA CTT GAA TTC ATC GCT GAG CAA GAA 

AAG AA -3’; Reverse 5’- ATG TGG TCT AGA GGG TCC TCC ACA GCA AAG 

TC -3’. The resultant insert was subcloned into either pCS2+ or pCS2+MT 

ΔNLef1. 

HA-H3.3-His6 (pET29): Xenopus H3.3 was amplified from IMAGE 4683607 

adding a 5’ BamHI sequence, a start codon, and a HA tag; and a 3’ XhoI site 

using Forward 5’- AAA GGA TCC ATG TAC CCA TAC GAT GTG CCA GAT TAC 

GCT GCT CGT ACA AAG CAG AC -3’; Reverse 5’- AAA CTC GAG TTA AGC 

ACG TTC CCC ACG -3’. The resultant insert was subcloned into pCS2+. To 

subclone into pET29, HA-H3.3 was amplified from pCS2+ HA-H3.3 changing the 

5’ restriction site to NdeI using Forward 5’- AAA AAA CAT ATG TAC CCA TAC 

GAT GTG -3’; Reverse 5’- AAA CTC GAG AGC ACG TTC CCC ACG -3’. The 

resultant insert was subcloned into pET29b. Mutagenesis primers available upon 

request. 
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GST:Prmt2 (pGEX5): The Prmt2 insert from Prmt2 pCS2+MT was excised with 

EcoRI and XhoI and subcloned into pGEX5x3, downstream and in-frame with the 

GST tag. The pGEX5x3 vector alone was used to synthesize recombinant GST. 

 

Sequencing of Xenopus Prmt2 

Searching both full-length cDNA and EST databases, we were unable to 

identify a distinct laevis Prmt2 transcript, but were able to identify Prmt2 

homologs in both Xenopus tropicalis and Danio rerio. The tropicalis mRNA 

sequence was used to identify a singlet laevis EST 3’ sequence deposited in the 

NCBI trace archives (EC276656). This EST corresponds to an I.M.A.G.E. clone 

(8532662), which we obtained and sequenced. This clone represents a full-

length cDNA for Xenopus laevis Prmt2b (see below, RT-PCR), containing the 

entire predicted open reading frame and 5’ UTR. (The full-length sequence will 

be submitted to Genbank). 

 

RT-PCR 

RNA extraction, first strand synthesis, and PCR were performed as 

previously reported (Yang et al., 2002b). Purified RNA (5 embryos/sample) was 

DNase treated and re-purified by RNeasy (Qiagen). cDNAs were random primed 

from approximately 2.5µg (2/5ths embryo equivalent) of total RNA, and 

radiolabeled PCR was performed using the Promega GoTaq Flexi polymerase. 

The Xenopus laevis Prmt2 primer set was forward 5’- TTG CCA AAC CCC AGC 

CAG ACT A -3’; reverse 5’- AGT TCC AGG TGC CCT TGT TCT TCT -3’. This 
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primer set amplifies two products from early Xenopus embryos. The upper band 

corresponds to Prmt2a (298bp) as the parental tropicalis allele has additional 

sequence within the predicted amplicon. The lower band corresponds to the 

predicted RT-PCR product, Prmt2b (227bp). All other RT-PCR primer sets were 

as reported in (Yang et al., 2002b). 

 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation assays were performed exactly as 

described in (Blythe et al. 2009) with the exception of the experiments pictured in 

Figure 3.5C and E, which was performed on non-crosslinked chromatin, and 

omitting phosphatase inhibitors from the lysis buffer. Under these conditions, 

limited sonication produced sheared chromatin of 500bp average size. 

Nested radiolabeled PCR was performed to amplify ChIPped DNA using 

the following primer sets. The outer Siamois and inner Mlc2 primer sets were first 

reported in (Park et al., 2005). 

Siamois: Outer Forward 5’- GAA GTC TTG CCA ACT TCT CTC A -3’; Outer 

Reverse 5’- GTC CTT TGA TGA TTC TGA TGA C -3’; Inner Forward 5’- CCA 

ACT TCT CTC ACT CAG TC -3’; Inner Reverse 5’- TTT CCC TTG ATC TTG 

CCC -3’. 

Xnr3: Outer Forward 5’- ATA GCT TTA ATG TGC CAC AAT CTA C -3’; Outer 

Reverse 5’- GTA CAG TCT TGG GAG TTC CCT G -3’; Inner Forward 5’- CAT 

AAA GGC AAA TGG TTT CTG C -3’; Inner Reverse 5’- TTA TAC TGG GAT 

GGA CAG AGG C -3’. 
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Xnr5: Outer Forward 5’- GTA ATA GTG AGA GGT GCC AGT TG -3’; Outer 

Reverse 5’- CAG GTG ACA GGT TCC CTA ATC -3’; Inner Forward 5’- GGT 

GCC AGT TGC CCA AGC -3’; Inner Reverse 5’- TGG AAC CAA GGA GAA AAT 

CC -3’. 

Xnr6: Outer Forward 5’- TCT GAG GTG TGA GGT ATA TGA AAG G -3’; Outer 

Reverse 5’- TGG GGC TCT TGA AAA CTG AAA TG -3’; Inner Forward 5’- GGT 

AGA TGA AAG GCT GAC AGG TGT G -3’; Inner Reverse 5’- GGC TGT TGA 

AAA CTG AAA TGA AGC -3’. 

Mlc2: Outer Forward 5’- TGG GAT ATT TTA CTG AAC ACA ATG -3’; Outer 

Reverse 5’- CGT CCT GTG CCA CCT AAT G -3’; Inner Forward 5’- GAA TGT 

TAG CCC TTG TGC TCT T -3’; Inner Reverse 5’- GGA AAG TTC TCT TGA TCA 

TTT TA -3’. 

Myf5: Outer Forward 5’- GCC ATA AGC CTC CTG AAC G -3’; Outer Reverse 5’- 

GCT GAA GAA GCC ATT GGT TTC -3’; Inner Forward 5’- CGT GTA TGT GTC 

TCT GGG TAG C -3’; Inner Reverse 5’- CAT TGG TTT CTG TTT GGA CTC C -

3’. 

Anti-H3R8me2a was generated by Cocalico Biologicals (Reamstown, PA) 

by immunizing rabbits with the H3 (1-15) R8me2a peptide and affinity purified as 

described in the text. The antibody limit of detection was ~1pmol H3R8me2a (1-

15) by dot blot (not shown). Anti-β-catenin was described in (Blythe et al. 2009). 

Anti-H3acK9/14 (06-599) and -H3K4me3 (07-473) were purchased from 

Millipore. Anti-Pol II p-Ser5 (39233) was purchased from Active Motif. Anti-

H3R8me2s was a kind gift of Said Sif (Ohio State University) (Pal et al., 2004). 
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Note: the anti-H3K4me3 antibody is no longer available from Millipore, but similar 

results were obtained with antibodies from both Abcam (ab8580) and Active Motif 

(39159). 

 

Immunological Techniques 

With the exception of the experiment in Figure 3.2D, embryos were 

homogenized in HKM Buffer (20mM Hepes pH7.9, 100mM KCl, 0.2mM EDTA, 

12.5mM MgCl2, 10% Glycerol, 0.5mM DTT) and suppliemented with Protease 

Inhibitor Cocktail (Sigma P8340) and Phosphatase Inhibitor Cocktail I and II 

(Sigma P2850 and P5726). Homogenates were centrifuged for 10 minutes at 

4°C. Supernatants were collected and adjusted to 150mM KCl and 0.2% NP-40. 

Lysates were filtered through a 0.45mm cellulose acetate syringe filter (Millipore) 

to clear particulate material. Immunoprecipitations were performed with 1mg 

affinity purified or 5ml whole antiserum, and a corresponding amount of control 

antiserum. Antibody incubations were overnight at 4°C with mixing. The following 

morning, samples were centrifuged at 14,000xg for 10 minutes to pellet any 

precipitated materials and supernatants were transferred to a new tube prior to 

the addition of 50µl recombinant protein-G agarose (Invitrogen 15920-010). IPs 

were washed 5x in HNMZ buffer (50mM Hepes pH7.9, 150mM NaCl, 12.5mM 

MgCl2, 0.5mM EDTA, 40uM ZnSO4, 0.5% Tween-20, 10% Glycerol) (Sierra et al., 

2006). Nitrocellulose was used for western blot transfer and immunoblotting was 

performed with primary antibody dilutions of 1:2000 into phosphate buffered 

saline, 0.1% Tween-20, 5%BSA (Fraction V). 1:5000 dilutions of HRP-linked 
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secondary antibody were used, substituting nonfat milk (Carnation) for BSA in 

the buffer. Westerns were developed using ECL (GE Healthcare). 

GST Pulldown experiments were performed by first pre-clearing a 100 

embryo equivalent of a 16-cell stage lysate with glutathione sepharose 4B (GE 

Healthcare). This partially cleared an abundant endogenous glutathione binding 

factor from lysates (residual binding is seen at the bottom of the lower panel of 

Figure 5C). Pre-cleared lysates were incubated with either GST- or GST:Prmt2-

glutathione beads for 1 hour as described in the text. Bound complexes were 

washed five times in HNMZ buffer as described above prior to analysis by SDS-

PAGE and western blot. 

For the experiment in Figure 3.2D, whole embryo lysates were made in 

RIPA buffer (50mM Tris-HCl, pH 7.4, 0.1% SDS, 1% NP-40, 0.25% Na-

Deoxycholate, 150mM NaCl, 1mM EDTA, 0.5mM DTT, and Sigma Protease and 

Phosphatase Inhibitors). Antibodies to the Pol II CTD (H5, H14, and 8WG16) 

were purchased from Covance. H5 and H14 were unable to detect Pol II in 

lambda-phosphatase-treated extracts, confirming the specificity of these 

antibodies for phospho-Pol II (data not shown). Omitting phosphatase inhibitors 

from the lysis buffer eliminated H5 immunoreactivity, and reduced H14 

immunoreactivity (not shown). 

 

IP/Histone Acetyl- and Methyl-transferase Activity Assays 

 β-catenin was immunoprecipitated from a 100-embryo HKM lysate 

(volume 1ml) using 5µl anti-β-catenin serum. Myc-Prmt2 was immunoprecipitated 
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from a 50-embryo HKM lysate using 1µg affinity purified anti-Myc antibody 

(Sigma C3956). Endogenous Prmt2 was immunoprecipitated from a 

semiconfluent mouse embryonic stem cell culture (including feeder cells) lysed in 

HKM buffer (+0.2% NP-40, 150mM KCl final, one 10cm dish per IP) using 5µl of 

anti-Prmt2 antibody (Aviva Systems Biology ARP40196_T100). IPs were washed 

as described above, and precipitated immune complexes were adjusted to 50mM 

Tris-HCl (pH8.8), 0.5mM DTT, 1:100-diluted Protease Inhibitor Cocktail, HMT 

substrate and 1uCi [methyl 3H]-S-Adenosyl Methionine (Perkin Elmer NET155H) 

or 1uCi [acetyl 3H]-CoA (Perkin Elmer NET290) in a final volume of 20µl. Either 

5µg Calf Thymus Histones (Sigma H9250), or 2.5µg recombinant H3.3 was used 

as a substrate in each reaction. HMT Assay reactions were incubated at 30°C for 

1 hour and were stopped by addition of 20µl 2x SDS-PAGE sample buffer and 

boiling for 10 minutes. Reaction products (50%) were separated by 12% SDS-

PAGE and coomassie stained to visualize total protein. Stained gels were 

digitally scanned prior to 30’ incubation in Amplify Fluorographic Reagent (GE 

Healthcare NAMP-100). Amplified gels were dried and exposed to film at -80°C 

for 1 to 3 days prior to developing. 

IP/HMT assays on peptide substrates were performed as described above 

except 5µg Histone Tail Peptide was used per reaction, products were separated 

by 16.5% Tris-Tricine electrophoresis, and gels were fixed for 1 hour in 5% 

glutaraldehyde prior to coomassie staining. Peptide synthesis of unmodified and 

R8me2a H3 (1-15) was performed by the Proteomics Resource Center of the 

Rockefeller University. Additional modified peptides were purchased from 
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AnaSpec: Unmodified H3 1-21 (#61701), H3 K9 acetyl 1-20 (#63680), and H3 

K9me3 1-24 (#63679). 

 

Size exclusion chromatography 

A 400µl of a 1 embryo/µl HKM lysate (adjusted to 150mM KCl, 0.2% NP-40 and 

filtered; see above) was loaded onto a pre-calibrated, 15x1.5cm Sephacryl S-400 

HR column (GE Healthcare, separation range 20 to 8000kDa) and developed in 

(50mM Tris-HCl pH7.4, 150mM KCl), collecting 400µl fractions. A portion of each 

fraction was analyzed by western blot for β-catenin, and the remainder was 

pooled and subjected to IP/HMT analysis. Relative molecular weights were 

calculated according to the elution profiles of molecular weight standards: (Blue 

Dextran ~2000kDa), (Thyroglobulin 669kDa), (β-amylase 200kD), and (Alcohol 

dehydrogenase 150kD). Using embryo extracts, the void volume was observed 

to be 33% CV (Fraction 22) by measuring A280.  
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