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Coffee-Rings and Glasses: Colloids Out of Equilibrium

Abstract
This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the
deposition of particles during evaporation and the glass transition are explored.

In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We
evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic
spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are
deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass
plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface,
forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity
was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform
deposition of ellipsoids and a heterogeneous deposition of spheres.

In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy
materials. ``Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional
chambers at high packing fractions; this system enabled the study of the effects of particle shape on the
vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic
particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of
highly anisotropic particles exhibit a mix of rotational and translational character.

Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We
devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal
glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a
correlated manner. During aging, we observed that the size of these collective rearrangements increases. Thus,
the slowing dynamics of aging appear governed by growing correlated domains of particles required for
relaxation.

Using the same microgel particles, the transformation of a crystal into a glass due to added disorder was
investigated by adding smaller particles into a quasi-two-dimensional colloidal crystal. The crystal-glass
transition bears structural signatures similar to those of the crystal-fluid transition, but also exhibits a sharp
change in dynamic heterogeneity which ``turns-on'' abruptly as a function of increasing disorder.

Finally, we investigated the influence of morphology and size on the vibrational properties of disordered
clusters of colloidal particles. Spectral features of cluster vibrational modes are found to depend strongly on
the average number of nearest neighbors but only weakly on the number of particles in each glassy cluster. The
scaling of the median phonon frequency with nearest neighbor number is reminiscent of athermal simulations
of the jamming transition.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/596

http://repository.upenn.edu/edissertations/596?utm_source=repository.upenn.edu%2Fedissertations%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate Group
Physics & Astronomy

First Advisor
Arjun G. Yodh

Keywords
Experimental Physics, Soft Matter

Subject Categories
Condensed Matter Physics | Physics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/596

http://repository.upenn.edu/edissertations/596?utm_source=repository.upenn.edu%2Fedissertations%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages


COFFEE-RINGS AND GLASSES: COLLOIDS OUT OF

EQUILIBRIUM

Peter Joseph Yunker

A DISSERTATION

in

Physics and Astronomy

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2012

Arjun G. Yodh, James M. Skinner Professor of Science

Supervisor of Dissertation

A.T. Charlie Johnson, Associate Professor of Physics

Graduate Group Chairperson



Dedication
To my family

ii



Acknowledgements

No man is an island, and even if a graduate student lives alone on an island, no thesis is

written alone. I owe a great debt of gratitude to a large number of people. I’ll start with those

who were with me from the beginning, my parents and siblings. Their love and support is an

integral part of who I am today. My parents nurtured my interest in science and technology from

a young age, taught me to figure things out on my own, and encouraged me to find a vocation

that is also my avocation. Next, I must thank my fianceé and best friend, Erin Buckley. Erin is
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ABSTRACT

COFFEE-RINGS AND GLASSES: COLLOIDS OUT OF

EQUILIBRIUM

Peter Joseph Yunker

Arjun G. Yodh

This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena.

Specifically, the deposition of particles during evaporation and the glass transition are explored.

In the first set of experiments, we found that particle shape has a profound effect on particle

deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that

range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops

sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited

uniformly. We also confined drops between glass plates and allowed them to evaporate. During

evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer mem-

branes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase.

This increase in bending rigidity provides a new mechanism that produces a uniform deposition

of ellipsoids and a heterogeneous deposition of spheres.

In the second set of experiments, we employed colloidal suspensions to investigate the char-

acter of glassy materials. “Anisotropic glasses” were investigated with ellipsoidal particles con-

fined to two-dimensional chambers at high packing fractions; this system enabled the study of

the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency

vi



modes in glasses composed of slightly anisotropic particles are found to have predominantly

rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles

exhibit a mix of rotational and translational character.

Aging effects in glasses were explored using suspensions of temperature-sensitive microgel

spheres. We devised a method to rapidly quench from liquid to glass states, and then observed

the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively,

i.e., many particles move in a correlated manner. During aging, we observed that the size of these

collective rearrangements increases. Thus, the slowing dynamics of aging appear governed by

growing correlated domains of particles required for relaxation.

Using the same microgel particles, the transformation of a crystal into a glass due to added

disorder was investigated by adding smaller particles into a quasi-two-dimensional colloidal

crystal. The crystal-glass transition bears structural signatures similar to those of the crystal-

fluid transition, but also exhibits a sharp change in dynamic heterogeneity which “turns-on”

abruptly as a function of increasing disorder.

Finally, we investigated the influence of morphology and size on the vibrational properties

of disordered clusters of colloidal particles. Spectral features of cluster vibrational modes are

found to depend strongly on the average number of nearest neighbors but only weakly on the

number of particles in each glassy cluster. The scaling of the median phonon frequency with

nearest neighbor number is reminiscent of athermal simulations of the jamming transition.
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Chapter 1

Introduction

We live in a nonequilibrium world. Everyday, the sun rises, increasing the local temperature,

and then sets, decreasing the temperature. Vapor condenses overnight, only to evaporate during

the day. Snow melts in the afternoon sun, only to freeze again under the moon. We too are

nonequilibrium systems. We consume food, which is broken down to energy and subsequently

used or stored. Despite their ubiquity, however, generation of an understanding of nonequi-

librium systems represents a major challenge for physicists. Traditional statistical mechanics

is applicable to systems that remain in equilibrium. Thus, carefully constructed experimental

studies of nonequilibrium media are especially valuable. Controlled experiments in this vein

are tools that help guide the effort to develop a non-equilibrium version of statistical mechanics

(e.g., [26, 150]).

Colloids are especially well-suited for the study of nonequilibrium phenomena. The tradi-

tional colloidal suspension consists of solid particles (e.g., polystyrene), typically 1 nm to 100

µm in size, suspended in a fluid (e.g., water). Ink and paint are common examples of such
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colloids. However, colloids are not limited to solids suspended in liquids. Colloids include

emulsions, which are fluids suspended in fluids (e.g., milk), aerosols, which are solid particles

suspended in gases (e.g., dust), and foams, which are gases suspended in liquids (e.g., styro-

foam). Micron-sized colloids are especially useful as they are small enough to experience Brow-

nian motion, but large enough to be easily observed via optical microscopy. In fact, colloidal

experiments offer access to both microscopic and macroscopic information, thus (potentially)

enabling the two to be directly linked. Colloids are remarkably malleable, too. Almost any as-

pect of their microscopic properties can be tuned, from particle shape to interparticle interaction

to particle packing fraction. In fact, some of these parameters can even be changed in situ (e.g.,

particle size [66, 68, 142, 147, 176]).

The great diversity of colloids presents opportunities to perform a multitude of experiments,

but choosing the correct one to match the science sought is challenging. Modification of most

parameters produces only trivial changes. A change in the size of colloidal particles at con-

stant volume fraction, for example, does not qualitatively change the suspension’s structure or

dynamics. Our experimental approach seeks to identify which parameters can induce large qual-

itative changes. For example, particles with different shapes can exhibit different phase dia-

grams (e.g., [60, 180]). Along with particle shape, we are especially interested in confinement

effects, the competition between order and disorder, and the role of “stickiness” in particles

with short-range interparticle interactions. By performing controlled colloidal experiments that

carefully examine the effects of these parameters, we have helped to advance knowledge of

out-of-equilibrium systems.
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In my time at Penn, I have been fortunate to work on a number of fascinating colloidal exper-

iments. This work includes investigations of geometric frustration in buckled colloidal monolay-

ers [68]; use of temperature-sensitive PNIPAM particles to demonstrate structural vestiges of the

athermal jamming transition in a thermal system [191]; studying aging in rapidly quenched aging

glasses [181]; exploration of disorder-induced transitions from crystal-to-glass [182]; measure-

ment of vibrational properties of jammed colloidal glasses [24]; experimental identification of

a class of “soft spots” in colloidal glasses that are likely to rearrange [25]; measurement of the

vibrational properties of glasses composed of anisotropic particles [183]; measurement of the

vibrational properties of disordered colloidal clusters [184]; comparative studies of differences

in correlated rearrangement events in glasses composed of purely repulsive particles and glasses

composed of attractive particles [192]; discovery of the effects of particle shape in evaporating

drops, e.g., on the coffee-ring effect [186]; and exploration of surfactant effects on the drying

of evaporating drops [156]. Very recently, we have explored the role of particle shape in evap-

orating drops in confinement [185], and the growth process of colloidal particles deposited at

the edge of evaporating drops (to be submitted). The rest of this chapter will present a brief

overview of the main topics and results covered in this thesis (i.e., references [181–184,186] and

the confined droplet evaporation work). At the end of the chapter an outline of the organization

of the dissertation is provided.

1.1 Coffee-Ring Effect

If you have spilled a drop of coffee or tea and left it to dry, then you might have observed that the

stain left behind is not uniform, but ring-shaped. Specifically, the stains are darker near the edges
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Figure 1.1: a. Image of the coffee-ring left behind when a drop of a suspension of spheres
evaporates. b. Schematic diagram of the evaporation process depicting capillary flow induced
by pinned edges. If the contact line were free to recede, the drop profile would be preserved
during evaporation (dashed line). However, the contact line remains pinned, and the contact
angle decreases during evaporation (solid line). Thus, a capillary flow is induced, flowing from
the center of the drop to its edges; this flow replenishes fluid at the contact line. c. Image of the
uniform coating left behind when a drop of a suspension of spheres evaporates.

than in the middle (Fig. 1.1). While a stray drop of coffee may seem to be of trivial importance, it

is actually rich with nonequilibrium physics. The so-called coffee-ring effect is the product of the

interplay between fluid dynamics, surface tension, evaporation, diffusion, capillarity, and more.

Understanding the coffee-ring effect requires understanding these complex parameters in a far-

from-equilibrium setting. Briefly, the edges of a drop easily become pinned and cannot recede

towards the middle of a drop, i.e., the diameter of a pinned drop cannot decrease. However, the

edges of a drop are thinner than the middle (Fig. 1.1); thus, water flows from the middle of the

drop to the edge of the drop to replenish what has evaporated away.

Of course, if the coffee-ring effect were only present in coffee and tea, its practical impor-

tance would be nonexistent. In fact, the coffee ring effect is manifest in systems with diverse con-

stituents ranging from large colloids [36–38] to nanoparticles [15] to individual molecules (e.g.,

salt) [89]. Due to its ubiquity, the coffee-ring manages to cause problems in a wide range of prac-

tical applications which call for uniform coatings, such as printing [128], genotyping [46, 47],

and complex assembly [39]. Paint is another system susceptible to the coffee-ring effect. To
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avoid uneven coats, paints often contain a mixture of two different solvents. One is water, which

evaporates quickly, leaving the pigment carrying particles stuck in the second, thicker solvent.

The particles are unable to rearrange in this viscous solvent and are then deposited uniformly.

Unfortunately, this solvent also evaporates relatively slowly (this is one reason why it might be

boring to watch paint dry). While a number of methods to avoid the coffee-ring effect have

been discovered [15,77,83,124,126,171], they typically involve significant modifications of the

system. Thus, finding simple ways to avoid the coffee-ring effect and control particle deposition

during evaporation could greatly benefit a wide range of applications.

To this end, we asked (and answered) a simple question: does particle shape affect particle

deposition [186]? At first glance, it may appear that shape should not matter. Colloidal particles

of any shape are susceptible to the radially outward flow of fluid that drives the coffee-ring effect.

However, changing particle shape dramatically changes the behavior of particles on the air-water

interface. In fact, anisotropic ellipsoids deform the air-water interface while isotropic spheres

do not [16,19,105,106,111,112,127]. Deforming the air-water interface induces a strong inter-

particle capillary attraction between ellipsoids. This causes ellipsoids to form a loosely-packed

network that can cover the entire air-water interface, leaving ellipsoids much more uniformly

distributed when evaporation finishes. Conversely, spheres pack densely at the drop’s edge, pro-

ducing a coffee-ring when evaporation has finished. Thus, particle shape can produce uniform

coatings Fig. 1.1c.

The mechanism that produces a uniform coating requires the presence of an air-water in-

terface that spans the entire area covered by the drop. If a drop is confined between two glass

plates, then the air-water interface is only present at the drop edges Fig. 1.2a. However, we
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Figure 1.2: a. Cartoon depicting droplet evaporating in a confined geometry. The particle-
populated air-water interface and three phase contact lines are labeled. b. Image of the heteroge-
nous deposition of spheres in a confined geometry. c. Image of the homogenous deposition of
ellipsoids in a confined geometry.

found that even if a drop is confined between two glass plates, the spheres are still deposited

heterogeneously, and the ellipsoids are still deposited uniformly [185] Fig. 1.2b,c. During evap-

oration, colloids coat the air-water interface. These particle laden interfaces form “colloidal

monolayer membranes” (CMMs), which can behave elastically [9, 111, 119, 141, 165]. During

evaporation, CMMs are observed to buckle in a manner similar to spherical-shell-shaped elastic

membranes [34,102,131]. By extending the description of buckled spherical elastic membranes

to our quasi-2D geometry [99], we are able to determine the CMM bending rigidity. As particle

anisotropy increases, CMM bending rigidity increases as well. This increase in bending rigidity

is responsible for the shape-dependent differences in particle deposition in confined drops. The

evidence suggests that increased bending rigidity reduces contact line bending and pinning and

induces uniform deposition of ellipsoids.

1.2 Glasses

If you ask the layman to describe glass, they’ll think of windows and cups, and most likely they

will tell you two things: it’s transparent and it’s hard. The transparency of window glass is
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Figure 1.3: The relaxation time, τ , the average time it takes a typical particle in the glass to be
displaced by its diameter increases as packing fraction ϕ increases in a colloidal glass, or as T
decreases (or 1/T increases) in a molecular glass. While τ increases substantially, it does not
change sharply, so the glass transition is defined based on an arbitrary threshold.

understood as a result of an electronic band gap, but the reasons for why glass is hard is an active

field of study. While ordered systems undergo a sharp phase transition from liquid to crystal, the

transition from liquid to glass is defined more arbitrarily. As the glass transition is approached,

particle dynamics dramatically slow down. This is evident from the particle relaxation time (τ ),

i.e., the average time it takes a typical particle in the glass to be displaced by its diameter (see Fig.

1.3). However, τ does not change discontinuously with respect to volume fraction or temperature

and a threshold is arbitrarily selected to define the glass transition point. Compounding this

mystery is the rather surprising number of common physical features observed across a broad

spectrum of jammed or dynamically arrested systems including colloidal suspensions [169],

granular media [2, 168], metallic glasses [148, 149], and polymer glasses [74]. The fact that

systems with such different microscopic constituents behave qualitatively similarly has led to a

search for unifying explanations.
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Figure 1.4: Experimental image of a colloidal glass composed of two sizes of PNIPAM particles
(∼ 1.4 µm and ∼ 1.0 µm in diameter) confined between two glass plates to a quasi-2D chamber.

Colloidal glasses are attractive systems to study (see Fig. 1.4). Like molecular and poly-

mer glasses, colloidal glasses are thermal. However, the motions of individual particles can be

directly resolved in colloidal glasses, unlike molecular and polymer glasses. Colloidal glass

experiments take advantage of this single-particle resolution. For example, collective rearrange-

ments in colloidal glasses were directly imaged, and observed to increase in size as packing

fraction increases [169]. Additionally, the interactions of purely repulsive spherical colloidal

particles are simpler than the complex interactions of polymers and molecules. This simplicity

readily permits direct comparisons with theoretical predictions. Recently, for example, a heroic

colloid experiment which measured particle relaxation times varying from 10−3 seconds to 105

seconds found significant deviations from mode-coupling theory predictions [17]. In a differ-

ent vein, experiments performed with soft particles versus packing fraction have discovered a

predicted structural signature of the jamming transition [191].
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1.2.1 Aging in Glasses

After initial formation, glasses relax via a non-equilibrium process called aging. During aging,

glass dynamics slow dramatically and become more heterogeneous. Thus, glass dynamics de-

pend on elapsed time from the quench, which we refer to as the waiting time, tw. This time

dependence can be seen in the ensemble-averaged particle mean square displacement (MSD)

(Fig. 1.5) [31]. The initial MSD plateau corresponds to particle “in-a-cage” behavior, and the

“upturn” at longer times occurs when these cages rearrange. Notice that as aging time tw in-

creases, the MSD upturn occurs at later times. Here, the upturn time increases by many orders

of magnitude until it finally falls outside the experimental window.
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Figure 1.5: The mean square-displacement (MSD) during aging. As aging time, or waiting time
(tw) increases, the upturn in the MSD occurs at later times. Eventually, the upturn does not occur
within the experimental window.

Despite such an immense change in particle dynamics, the accompanying structural changes

of the colloidal glass have proven difficult to identify [27, 28, 31]. For example, colloidal ex-

periments were performed utilizing magnetic stir bars to “rejuvenate” colloidal glasses [27, 31];
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these experiments did not observe any change in structure, even though they found dramatic de-

creases in dynamics. In their experiments, however, particles continued to flow for a period of

time after the stir bar was turned off, and it was difficult to isolate the effects of aging until the

flow stopped. Interestingly, simulations suggest that if experiments could observe aging at an

earlier time after rejuvenation, they ought to be able to observe structural changes (e.g., [28]).

In the experiments to be presented in this thesis, we rapidly quenched colloidal samples from

the liquid phase to the glass phase via optical heating [181]. We dispersed a small amount of

red dye in a suspension of temperature-sensitive microgel particles, and illuminated the sample

with an intense mercury lamp. The red dye preferentially absorbed the green light from the

lamp. The excited dye molecules then relax nonradiatively, thus increasing the temperature of

the suspension. This temperature increase is enough to drive (melt) the suspension from the glass

phase to the liquid phase. After allowing particles to fluidize, we turn off the lamp. Because the

microscope and the rest of the sample remain at their original low temperature, the excess heat

dissipates rapidly (< 0.1 seconds), and the suspension is quickly quenched back in to the glass

state. At this time, aging begins, and our observation window begins as well.

Thanks to our large observation window (in time), i.e., from the moment the glass is formed

and extending 10, 000 seconds, we were able to observe a variation of short-ranged structural or-

der. More significantly, we observed an increase in the number of fast moving particles involved

in the collective rearrangements (Fig. 1.7) that significantly change a particle’s local neighbor-

hood during aging (Fig. 1.6). This observation provides clues for understanding the slowing

dynamics of aging. Over time, rearrangements become more complex and involve more parti-

cles, and thus occur less often.

10



10-2 10-1 100 101 102 103 104

40

60

80

100

Aging Time [seconds]

 

C
lu

st
er

 S
iz

e

Figure 1.6: The number of fast moving particles involved in the collective rearrangements that
significantly change a particle’s local neighborhood during aging, plotted versus aging time.
Inset: Image of rearranging clusters constructed from experimental data. Green indicates a fast
moving particles. Red indicates a particle whose local neighborhood is significantly changing.

Figure 1.7: a-d. Cartoon of a particle undergoing a cage rearrangement (particle positions taken
from experimental data from Chapter 4). The blue particle undergoes a cage rearrangement.
These rearrangements are the source of dynamic heterogeneity.
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1.2.2 The Crystal-to-Glass Transition

Disorder plays a critical role in traditional melting and freezing phenomena and in the forma-

tion of glasses. Melting from crystal-to-fluid, for example, is a sharp transition accompanied

by loss of orientational and translational order, and by a dramatic decrease in flow resistance

and rearrangement timescale. By contrast, orientational and translational order do not change

significantly at the liquid-to-glass transition, even as viscosity and rearrangement timescale di-

verge [164]; nevertheless frozen-in residual disorder is critical for glass formation.

In two-dimensional glass simulations [65,125,174] and experiments [6,191], it’s common to

use a mixture of particles with two different diameters. Rapid quenches are sufficient to prevent

crystallization and thus a glass forms in three-dimensions [7,8,49,96,115,144,175]. However, in

two-dimensions, crystallization occurs much more easily. Thus an additional amount of disorder

must be present to prevent crystallization. This is often accomplished by mixing two different

sizes of particles (typically with a diameter ratio ∼ 1.4). If there aren’t enough small particles,

then the system will crystallize. Thus, experiments and simulations typically utilize systems

with 25 − 50% small particles. We sought to explore what happens between these two limits.

Specifically, we varied the fraction of small particles from 0 to 0.5, and we followed the colloidal

system as it transitioned from a crystal to a glass (Fig. 1.8).

We found that the transition from crystal-to-glass is much sharper than the transition from

liquid-to-glass [182]. The crystal-to-glass transition bears structural signatures similar to those

of the crystal-to-liquid transition, but also features a sharp change in particle dynamics. At the

transition point, dynamic heterogeneity “turns-on” abruptly. Thus, we may be able to understand

the glass transition as the result of an order-to-disorder transition.
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Figure 1.8: Top: Cartoon demonstrating that by adding small particles, a monodisperse crystal
can transition to a glass. Bottom: Q2, the fraction of mobile particles, plotted versus time for
crystalline samples (red line) and glass samples (black line).

1.2.3 Particle Shape affects Glass Properties

Much of the physics of glasses has been derived from studying dense suspensions of spheres.

Absent friction, the rotation of spheres is unimportant, i.e., for frictionless spheres only trans-

lational degrees of freedom are nontrivial. However, the constituent particles of many glasses

are anisotropic in shape or have orientation-dependent interactions; such anisotropies are sus-

pected to affect many properties of glasses [44, 45, 82, 97, 114, 152]. Therefore, exploration of

glasses composed of anisotropic particles holds potential to uncover new consequences for both

the physical mechanisms of the glass transition and for materials applications [170].

We were thus inspired to investigate the effects of particle shape in glasses [183]. Colloidal

glasses were prepared, composed of ellipsoidal particles confined in two-dimensional chambers
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Figure 1.9: a-c. Experimental images of glasses composed of spheres (a), slightly anisotropic
particles (b), and very anisotropic particles (c). d. Plot of DOS for glasses composed of spheres
(black line), slightly anisotropic particles (red line), and highly anisotropic ellipsoids (blue line).

at high packing fractions (Fig. 1.9). The phonon modes of these ellipsoidal glasses were ex-

tracted from measurements of particle displacement correlations. From these experiments, we

learned that low frequency modes in glasses composed of ellipsoidal particles with major/minor

axis aspect ratios ∼1.1 are observed to have predominantly rotational character. Conversely, low

frequency modes in glasses of ellipsoidal particles with larger aspect ratios (∼3.0) exhibit a mix

of rotational and translational character. All glass samples were characterized by a distribution

of particles with different aspect ratios. Interestingly, even within the same sample it was found

that small-aspect-ratio particles tend to participate relatively more in rotational modes, while

large-aspect-ratio particles tend to participate relatively more in translational modes.
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1.3 Disordered Clusters

Investigations of the glass transition have typically focused on dense suspensions of purely repul-

sive particles. The phase behavior of such systems is controlled by the packing fraction. At low

packing fractions these suspensions are fluids, while at high packing fractions these suspensions

are solids. Conversely, particles with strong short-range attraction can behave like solids even

at low packing fractions (see Fig. 1.10). Specifically, attractive particles can form a gel, which

percolates over large distances and can produce macroscopic mechanical response. They also

can form dense clusters, which have very large local packing fractions. In fact, dense clusters

can look identical to small regions within bulk glasses.

This idea raises some interesting questions. For example, how big does a disordered clus-

ter have to be to behave like a bulk glass? This question is reminiscent of an ancient problem

in philosophy, the Sorites’ paradox. This paradox asks if items can be precisely defined, or if

descriptions are necessarily vague. The traditional statement of this paradox involves a heap of

sand: A large pile of sand can easily be described as a “heap.” If you take one grain away, you

still have a “heap.” However, if you do this enough times, you eventually only have one grain,

which is clearly not a heap. It’s unclear if an exact lower limit can be defined in the number of

grains necessary for a heap. Rather than approach disordered clusters philosophically, we sought

to explore how cluster morphology and cluster size affect the vibrational properties of disordered

materials held together by strong attractive interactions [184]. Since the vibrational properties

of bulk colloidal glasses have already been measured [24], one has a clear result for comparison.

New understanding thus gained elucidates fundamental differences between glassy materials

composed of particles with attractive versus repulsive interactions, uncovers deep connections
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between vibrational spectra, mechanical stability, and the jamming problem, and discovers the

attributes of a disordered cluster that endow it with the properties of bulk glasses. My experi-

ments on clusters, surprisingly, show that the spectra and character of vibrational modes depend

strongly on the average number of neighbors but only very weakly on the number of particles

in the cluster. In other words, a cluster with the same average number of neighbors as a bulk

glass will behave like a bulk glass regardless of the number of particles in the cluster. Further-

more, our observations about the dependence of median phonon frequency on the average nearest

neighbor number parallel concurrent observations about the relationship between local isostatic

structures and the average nearest neighbor number. Cluster vibrational properties thus appear

to be strongly connected to cluster mechanical stability (i.e., the fraction of locally isostatic re-

gions), and the scaling of median frequency with nearest neighbor number is reminiscent of the

behavior of packings of spheres with repulsive interactions at the jamming transition. Compu-

tationally generated random networks of springs corroborate observations and further suggest

that connections between phonon spectra and nearest neighbor number are generic to disordered

networks.

1.4 Technical Advances

Most experiments described in this dissertation utilize relatively standard techniques in new

ways. However, some of the experiments required development of new techniques, or extension

of old ones to new situations. To study aging glasses, we developed a technique that uses optical

heating to rapidly quench microgel suspensions from the liquid phase to the glass phase. In

our phonon studies, we extended a technique that calculates a system’s vibrational modes from
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Figure 1.10: a. Purely repulsive hard spheres form a fluid phase at low packing fractions. b.
Conversely, particles with short-range attraction can form solid phases at low packing fractions,
such as macroscopic gels and locally dense clusters. c. Median vibrational frequency (ωMed

plotted versus average number of nearest neighbors (NN ) for clusters of many different sizes
and shapes. Two regimes are readily identifiable, above and below NN = 2.

17



particle displacements to include a rotational degree of freedom that is required for investigation

of glasses composed of anisotropic particles. Finally, we developed a method to extract elastic

properties of quasi-2D membranes from images of buckled membranes by extension of similar

techniques previously employed for spherical membranes.

1.4.1 Rapid Quenching of Microgel Particle Liquids

In order to study aging, it is desirable to observe a glass starting from just after its formation.

As noted in Section 1.2.1, previous methods of rejuvenating glass prevented observation for tens

or hundreds of seconds after the glass is formed. In order to observe aging at the earliest times,

we developed a method to rapidly quench from liquid to glass through a new experimental twist

utilizing optical heating. A small amount of red dye, is released into the suspension. This dye

absorbs light from a mercury lamp focused through the microscope objective. The sample field

of view lies at the center of the illumination region. There, the temperature is increased by ∼4

degrees in ∼0.1 seconds via light absorption and molecular relaxation processes. The NIPA par-

ticle radii are thus abruptly decreased by ∼0.1 µm, and the local area fraction (ϕA) is decreased

by ∼10%. While the lamp is on, the particles are in the liquid state. The Brownian time of

micron sized particles is ∼1 second, and the lamp is only on for ∼6 seconds, so thermophoretic

effects are avoided. However, everything else (e.g., the rest of the sample, the microscope, etc.)

is held at the original low temperature; thus when the mercury lamp is turned off, the excess

heat rapidly dissipates, and particles swell to their original size in less than 0.1 seconds. The

rapid change from small-ϕA (liquid) to large-ϕA creates a glass. Aging begins (tw = 0 seconds)

once the sample returns to thermal equilibrium and particles have completely returned to their

original size. Thus, this technique enables us to begin watching a glass age immediately after it
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Figure 1.11: a. PNIPAM particles are depicted in cartoon form. When temperature is increased,
PNIPAM particles decrease their diameters. b. Hydrodynamic radius, RH of PNIPAM particles
as a function of T.

1.4.2 Measurement of Phonon Modes for Anisotropic Particles

As introduced in Section 1.2.3, we measured the vibrational properties of ellipsoidal glasses.

Previously, we were among the first researchers to apply displacement correlation matrix meth-

ods to translational degrees of freedom [23, 57, 58, 90]. Those methods work well for suspen-

sions of spheres. However, for anisotropic particles, rotations are important and must be taken

into account. We extracted vibrational properties of ellipsoidal glasses by measuring rotational

and translational displacement correlations. To do so, we extended the procedure for spheres
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( [24]) to incorporate a rotational degree of freedom. Following [18], we expect undamped hard

particles that repel entropically near but below the jamming transition to give rise to solidlike

vibrational behavior on time scales long compared to the collision time but short compared to

the time between particle rearrangement events [57, 58]. Thus, the stiffness matrix arising from

entropic repulsions is directly related to the dynamical matrix characterizing vibrations. By per-

forming this analysis, we found that the vibrational properties of glasses are highly dependent

on particle shape.

1.4.3 Theory of Buckled Quasi-2D Membranes

By analyzing the shape of a buckled spherical membrane, information can be extracted about the

membrane’s elastic properties [99]. However, far less work has been done on disc-shaped mem-

branes, as introduced in in Section 1.1. To understand the elastic properties of the membrane

that forms when a drop is evaporated in confinement (i.e., the elastic properties of the CMMs),

we extended analytical descriptions of elastic membranes to our quasi-2D geometry wherein ob-

servations about bending and buckling geometry are unambiguous. Following [99], we describe

the stretching and bending energy associated with membrane buckling events. The deformation

energy is located within the deflected rim. Membranes buckle in such a way as to minimize their

energy, so we then minimize the total buckling energy with respect to the rim size. As a result of

minimizing the total bending and stretching energy, κ/E = d4/(3r2), where κ is the membrane

bending rigidity, E is the Young’s modulus, d is the rim width, and r is the drop radius. Thus,

by measuring d and r, we can experimentally determine κ/E.
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Figure 1.12: Cartoon representation of a buckling event. The dotted line represents the initial
membrane configuration (before the buckling event).

1.5 Organization

The content of this thesis is organized as follows. We first discuss our investigation of parti-

cle behavior in evaporating drops and the coffee-ring effect (Chapter 2). This work was pub-

lished [186]. We demonstrate that particle shape strongly affects the deposition of particles

during evaporation. Next, we investigate the role of particle shape in evaporating drops in con-

fined geometries, and show how to extract the bending rigidity of the membranes formed by

particles adsorbed on the air-water interface (Chapter 3). This work is published [185]. We

then shift to experiments investigating the behavior of glasses and related transitions. We first

discuss experiments that use optical heating to quench a liquid to a glass; this scheme permits

the detailed study of aging in glasses (Chapter 4). This work is published [181]. Then, we report
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the mechanisms by which crystals transform into glasses as the amount of quenched disorder

increases (Chapter 5). This work is published [182]. In Chapter 6 we investigate the effect of

particle shape on the vibrational modes in glasses composed of ellipsoidal particles. This work

is published [183]. Next, we investigate the effect of particle number and network connectivity

on the vibrational modes in disordered clusters, allowing is to identify when small clusters start

to behave like bulk glasses (Chapter 7). This work is published in [184]. Finally, in Chapter

8 we summarize the work presented in this dissertation, and suggest future directions for the

investigation of nonequilibrium colloids.
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Chapter 2

Coffee Ring Effect Undone by Shape

Dependent Capillary Interactions

2.1 Introduction

When a drop of liquid dries on a solid surface, its solute is deposited in ring-like fashion. This

phenomenon, known as the coffee ring effect [37, 40, 76], is familiar to anyone who has dried a

drop of coffee. During the drying process, drop edges become pinned, and capillary flow outward

from drop center brings suspended particles to the edge as evaporation proceeds. After evapo-

ration, suspended particles are left highly concentrated along the original drop edge. The coffee

ring effect is manifest in systems with diverse constituents ranging from large colloids [36–38]

to nanoparticles [15] to individual molecules [89]. In fact, notwithstanding the many practical

applications for uniform coatings in printing [128], biology [46,47], and complex assembly [39],

the ubiquitous nature of the effect has proven difficult to avoid [15, 77, 83, 124, 126, 171]. Here
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we experimentally show that suspended particle shape matters for coatings and can be used to

eliminate the coffee ring effect. Ellipsoidal particles deposit uniformly during evaporation. The

anisotropic particles significantly deform interfaces, producing strong interparticle capillary in-

teractions [16, 19, 105, 106, 111, 112, 127]. Thus, after the ellipsoids are carried to the air-water

interface by the same outward flow that causes the coffee ring effect for spheres, strong long-

ranged interfacial attractions towards other ellipsoids lead to the formation of loosely-packed

quasi-static or arrested structures on the air-water interface [54, 105, 106, 111]. These structures

prevent the suspended particles from reaching the drop edge and ensure uniform deposition. In-

terestingly, under appropriate conditions, suspensions of spheres mixed with a small number of

ellipsoids also produce uniform deposition.

A drop of evaporating water is a complex, difficult-to-control, non-equilibrium system.

Along with capillary flow, the evaporating drop features a spherical-cap-shaped air-water in-

terface and Marangoni flows induced by small temperature differences between the top of the

drop and the contact line [38]. Attempts to reverse or ameliorate the coffee ring effect have thus

far focused on manipulating capillary flows [15, 77, 83, 124, 126, 171]. In this contribution we

show that uniform coatings during drying can be obtained simply by changing particle shape.

The uniform deposition of ellipsoids after evaporation (Fig. 2.1 a) is readily apparent, and it

stands in stark contrast to the uneven “coffee ring” deposition of spheres (Fig. 2.1 b) in the same

solvent, with the same chemical composition, and experiencing the same capillary flows (Fig.

2.1 c).

A landmark paper by Deegan, et al., captured all of the qualitative theoretical features of the

coffee-ring effect. Essentially, the edges of evaporating drops easily become pinned, and cannot
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Figure 2.1: a. Image of the final distribution of ellipsoids after evaporation. b. Image of the
final distribution of spheres after evaporation. c. Schematic diagram of the evaporation process
depicting capillary flow induced by pinned edges. If the contact line were free to recede, the drop
profile would be preserved during evaporation (dashed line). However, the contact line remains
pinned, and the contact angle decreases during evaporation (solid line). Thus, a capillary flow is
induced, flowing from the center of the drop to its edges; this flow replenishes fluid at the contact
line. d. Droplet-normalized particle number density, ρ/N , plotted as function of radial distance
from center of drop for ellipsoids with various major-minor axis aspect ratios. e. The maximum
local density, ρMax, normalized by the density in the middle of the drop, ρMid, is plotted for all
α. Red lines guide the eye.
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recede, i.e., the drop diameter cannot decrease Fig. 2.2. As the edge of the drop is thinner than

the middle of the drop, fluid must flow from the middle of the drop to the edge of the drop to

replenish the water that has evaporated away. In other words, the water lost due to evaporation,

quantified by the evaporative flux, J , must be canceled by water gained via a flow of fluid,

with flow velocity v. In a square shaped area with length l and height h, Jl2 must be equal to

vlh. To first order, J ∝ v (Fig. 2). By solving the diffusion equation, it can be shown that J

diverges as the edge is approached as J ∝ (R − r)λ, where λ = (π − 2θc)/(2π − 2θc). Thus,

v ∝ (R − r)λ. Additionally, since the drop height, h, decreases approximately linearly over

time, as h ∝ (tf − t). However, the outward flow must cancel the evaporative flux at all times,

so v ∝ (tf − t). Thus, simply be pinning the edges of a drop, a complex radially outward flow

is induced.

Figure 2.2: Schematic diagram of the evaporation process depicting capillary flow induced by
pinned edges. If the contact line were free to recede, the drop profile would be preserved during
evaporation (dashed line). However, the contact line remains pinned, and the contact angle
decreases during evaporation (solid line). Thus, a capillary flow is induced, flowing from the
center of the drop to its edges; this flow replenishes fluid at the contact line.

2.2 Method and Materials

Much of the physics of the coffee ring effect has been demonstrated with micron-sized polystyrene

particles [37]. Here we also utilize such polystyrene particles and simply modify their shape.
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Our experiments employ water drops containing a suspension of micron-sized polystyrene spheres

(Invitrogen) stretched asymmetrically to different aspect ratios [21, 72]. We evaporate the drops

on glass slides (Fisher Scientific) and study suspensions containing particles of the same com-

position, but with different major-minor diameter aspect ratio (α), including spheres (α = 1.0),

slightly deformed spheres (α = 1.05, 1.1, 1.2, 1.5), and ellipsoids (α = 2.5, 3.5); we study

volume fractions (ϕ) that vary from ϕ = 10−4 to 0.2.

a b

Figure 2.3: a. The final distribution of ellipsoids, evaporated from a suspension with initial
volume fraction ϕ = 0.20. b. The final distribution of spheres, evaporated from a suspension
with initial volume fraction ϕ = 0.20.

To create ellipsoidal particles, 1.3 µm diameter polystyrene particles are suspended in a

polyvinyl alcohol (PVA) gel and are heated above the polystyrene melting point (∼100 ◦C),

but below the PVA melting point (∼180 ◦C) [21, 72]. Polystyrene melts in the process, but

the PVA gel only softens. The PVA gel is then pulled so that the spherical cavities containing

liquid polystyrene are stretched into ellipsoidal cavities. When the PVA gel cools, polystyrene

solidifies in the distorted cavities and becomes frozen into an ellipsoidal shape. The hardened gel

dissolves in water, and the PVA is removed via centrifugation. Each sample is centrifuged and

washed with water at least 10 times. We performed a separate set of experiments investigating

the effects PVA has on evaporating drops, in order to ensure the PVA was not affecting our
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results. In these experiments, we carefully controlled the PVA weight percent. We found that if

a sample contains more than 0.5% PVA by weight, then the contact line depins very quickly after

the drop is placed on a glass slide. However, in samples with less than 0.5% PVA by weight, the

contact line behavior is identical to the contact line behavior in drops without PVA. To confirm

that small amounts of PVA do not affect the deposition of spheres, we added PVA (0.45% by

weight) to a suspension of spheres. During evaporation, the contact line remains pinned, and the

spheres exhibit the coffee ring effect. Further, when ellipsoids are diluted by a factor of 100,

and thus the PVA weight percent is decreased by a factor of 100 (to an absolute maximum of

0.05%), the deposition of the spatially uniform deposition of ellipsoids persists. Each iteration of

this process creates ∼109 ellipsoidal particles in ∼50 µl suspensions. The particles are charge-

stabilized, and the resultant suspensions are surfactant-free. Snapshots of experimental particles

are shown in the insets of Fig. 2.1 a, b. The aspect ratio polydispersity is ∼10%. To ensure the

preparation process does not affect particle deposition, our spheres undergo the same procedure,

absent stretching.

2.3 Capillary Interactions

While spheres and ellipsoids behave similarly in bulk fluid (at small packing fractions, far from

any crystalline phases), their behavior is dramatically different on the air-water interface. Specif-

ically, anisotropic particles significantly deform interfaces, producing strong interparticle capil-

lary interactions [16, 19, 105, 106, 111, 112, 127]. These deformations can be understood from

expanded solutions of the Young-Laplace equation. Briefly, the Young-Laplace equation states

∆h = pair − pwater, where ∆ is the Laplacian, h is the height of the air-water interface, pair
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a b

Figure 2.4: a. The final distribution of core-shell polystyrene-PNIPMAM spheres. These
hydrophilic particles exhibit the coffee ring effect. b. The final distribution of core-shell
polystyrene-PNIPMAM ellipsoids. These particles, which are both anisotropic and hydrophilic
do not exhibit the coffee ring effect.

is the pressure in the air, and pwater is the pressure in the water [155]. Gravitational effects can

be ignored for micron-sized polystyrene particles in water, so the pressure change over the inter-

face is 0. For polar coordinates, ∆h(r, ϕ) = (r−1∂rr∂r + r−2∂2ϕ)h(r, ϕ) = 0. This problem is

remarkably similar to electrostatics, and can be solved through separation of variables, i.e., with

the ansatz h(r, ϕ) = R(r)Φ(ϕ). This leads to (r−1∂rr∂rR(r))Φ(ϕ) + (r−2∂2ϕΦ(ϕ))R(r)) = 0.

Since this equation must hold as r and ϕ are varied independently, each term in the equation must

the same constant, leadingly termedm2. Thus, ∂2ϕΦ(ϕ) = m2Φ(ϕ) and r∂rr∂rR(r) = m2R(r),

which are solved by Φ = Amcos(m(ϕ − Bm)) and R = Cmr
−m. The height at the edge of

the particle is then h(r, ϕ) =
∑∞

m=0Dmcos(m(ϕ − Bm)). The monopole term m = 0 corre-

sponds to the height of the interface being uniformly lowered (raised). Thus, it could be relaxed

by simply raising (lowering) the particle. The monopole term is only stable in an external field

(e.g., gravity); since there are no external forces pulling on the particles, this term must be 0.
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The dipole term m = 1 corresponds to the height of the interface being lowered on one side, and

raised on the opposite side. Thus, it could be relaxed by simply rotating the particle, i.e., lowering

the high side and raising the low side. The dipole term is only stable when an external torque is

applied; since there are no external torques acting on the particles, this term must be 0. Therefore,

the lowest allowed term is the quadrupole term (m = 2), i.e., h(r, ϕ) ∝ cos(2(ϕ−B2))A2r
−2.

The above derivation never mentioned anisotropic boundary condition. In fact, the quadru-

ploar form for h(r, ϕ) is applicable in general to any deformation of the air-water interface

(absent external forces and torques). Instead of particle shape, the air-water interface can be

deformed if the three-phase contact line is heterogeneously pinned on a sphere (see Fig. 2.5).

This also produces a quadrupolar profile of the interfacial height. However, the linear size of

deformation from contact-line-roughness is typically smaller than the linear size of deformation

from shape-based-roughness (for example, see reference [127]).

Figure 2.5: Cartoon of a heterogeneously pinned three-phase contact line on a sphere. This
contact-line-roughness deforms the air-water interface with a quadrupolar symmetry, similar to
the shape-based deformations characteristic of ellipsoids.
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2.4 Evaporation of Colloidal Suspensions

During the drying process, the droplet contact line remains pinned in all suspensions, and fluid

(carrying particles) flows outward from drop center to replenish the edges. Spherical particles

are efficiently transported to the edge, either in the bulk or along the air-water interface, leaving a

ring after evaporation is complete. Anisotropic particles (α > 1.0), however, are only transported

toward the edge until they reach the air-water interface. Once at the air-water interface, ellipsoids

experience strong long-ranged attractions to other ellipsoids [16, 19, 105, 106, 111, 112], leading

to the formation of loosely-packed quasi-static or arrested structures at the interface [54]. The

interparticle attraction between ellipsoids on the interface is more than two orders of magnitude

stronger than the attraction between spheres on the interface [127]. Thus, anisotropic particles in

these “open” structures are strongly bound to each other and to the interface, so the energy cost

of deforming, moving, or breaking up these clusters is very large. As a result, ellipsoid mobility

is markedly reduced, and they resist the radially outward flow. Finally, during the last stages of

evaporation, surface flows [77] are observed to carry ellipsoids on the air-water interface from

the drop edges back towards the drop center. This process often leaves a region near the contact

line mostly void (see experimental snapshots Fig. 2.6 g and h). The voided region decreases as

ϕ increases (the aforementioned bump in ρ(r) for α = 1.2 is located at the edge of this voided

region). Thus, when evaporation is complete, anisotropic particles are much more uniformly

deposited on the glass surface than spheres. While spheres also adsorb onto the interface during

evaporation, they do not significantly deform the interface [106]. Therefore, the radially outward

fluid flow continues to push them to the drop’s edge [38]. Fig. 2.1 shows the final deposition,

after evaporation on glass slides at 23 ◦C, of two particle suspensions (ϕ = 0.005, 1 µl) with
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different aspect ratios. Spherical particles are primarily deposited at the original perimeter of the

droplet (Fig. 2.1 b). Ellipsoidal particles are distributed much more uniformly (Fig. 2.1 a).
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Figure 2.6: a-d. Experimental snapshots at different times during the evaporation of a drop of
spheres. e-h. Experimental snapshots at different times during the evaporation of a drop of
ellipsoids with aspect ratio α = 3.5. i. The areal particle density, ρR, located within 20 µm of
the contact line (i.e., drop edge) as a function of time during evaporation. j-m. Images of the
assembly of ellipsoids at the air-water interface over the same time intervals during evaporation.
Loosely-packed structures form on the air-water interface, preventing ellipsoids from reaching
the drop edge. The three phase contact line can be seen in the bottom left corner of these
snapshots.
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2.4.1 Characterization of Particle Deposition

To quantify the behavior shown qualitatively in Fig. 2.1 a and b, we determined the areal number

fraction of particles deposited as a function of radial distance from the drop center (Fig. 2.1 d).

Specifically, image analysis enables counting of the number of particles, Nr, in an area set by

the annulus bounded by radial distances r and r + δr from the original drop center [37, 38];

here δr is ∼8 µm. The areal particle density ρ(r) = Nr/A, with A = π((r + δr)2 − r2).

To further eliminate small sample-to-sample particle density differences, we normalize ρ by the

total number of particles in the drop, N, and thereby report ρ(r)/N as a function of r/R, whereR

is the drop radius. Dilute suspensions (ϕ = 0.005) are utilized to improve image quantification.

For spheres (α = 1.0), ρ/N is ∼70 times larger at r/R ≈ 1 than in the middle of the drop.

Conversely, the density profile of ellipsoidal particles is fairly uniform as a function of r/R,

though there is a slight increase at large r/R. As aspect ratio is increased in between these

extremes, the peak at large r/R decreases. Specifically, a clear coffee ring effect persists for

particles only marginally distorted from their original spherical shape (α = 1.05 and 1.1), but

particles that are slightly more anisotropic (α = 1.2) are deposited uniformly.

To further quantify the peaked deposition of spheres and the more uniform deposition of

ellipsoids, we calculate and plot ρMAX/ρMID (Fig. 2.1 e), where ρMAX is the maximum value

of ρ (typically located at r/R ≈ 1) and ρMID is the average value of ρ in the middle of the drop

(r/R < 0.25). For spheres, ρMAX/ρMID ≈ 70. As aspect ratio increases slightly (α = 1.05

and 1.1) ρMAX/ρMID decreases to ∼ 38 and 13, respectively. For ellipsoids, ρMAX/ρMID

is more than ten times smaller. A second, relatively small aspect-ratio deposition effect is also

observed for the ellipsoids; as α increases above 1.2, ρMAX/ρMID decreases slightly. Note,
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the value of ρMAX/ρMID was observed to be largely independent of initial volume fraction,

i.e., ρMAX/ρMID fluctuated by approximately ±10% as volume fraction changed between ϕ =

10−4 and 0.2.

When the volume fraction is large enough, the drop surface should become saturated with

particles, such that the remaining particles in the bulk are transported to the drop edge. However,

at high volume fractions it becomes difficult to quantify the local particle density. Thus, while the

particles that cannot attach to the interface are likely transported to the drop edge, it is difficult to

demonstrate that this occurs. We evaporated a drop of ellipsoids (α = 3.5) suspended at volume

fraction ϕ = 0.20. An experimental snapshot after evaporation is complete demonstrates that

overall the coffee ring effect is destroyed, but the local density cannot be extracted (Fig. 2.3).

An image of the final distribution of spheres evaporated from a suspension with initial packing

fraction ϕ = 0.20 is included for comparison.

2.4.2 Characterization of Evaporation Process

Quantification of the spatio-temporal evaporation profile of the suspensions provides a first step

towards understanding why ellipsoids are deposited uniformly. To this end, we measure drop

mass of different suspensions (20 µl in volume, 6.0 mm in radius, ϕ = 0.005), during evapora-

tion (Fig. 2.7). (Note, large-volume drops are utilized in this experiment to improve the accuracy

of the evaporation rate measurement.) The drop mass decreases linearly in time, and the mass

rate-of-change of 10.0 µg/s is the same for drops of sphere suspension, drops of ellipsoid sus-

pension, and for drops of water absent colloid. The evaporation behavior is also consistent with

steady-state vapour-diffusion-limited evaporation of a spherical-cap-shaped drop with a pinned

contact line [36, 37].
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Figure 2.7: The mass, m, of drops of different suspensions is plotted versus time, t, for evapo-
rating drops. Suspensions of spheres (α = 1.0 black squares) and ellipsoids (α = 3.5 open red
circles) are shown, as well as a drop of water absent colloids (blue triangles).

To confirm that the contact line remains pinned until the final stage of evaporation, we mea-

sured the radius of the 1 µl drops (ϕ = 0.005) during evaporation by video microscopy (Fig.

2.8). Using this data, the time at which evaporation finishes, tFinal, is readily identified as the

time when the drop radius shrinks to zero. Interestingly, we find the radius decreases by less than

10% until t = 0.8 · tFinal; i.e., the contact line is pinned for the vast majority of the evaporation

time period in all samples. For suspensions of ellipsoids, the contact line becomes partially de-

pinned around t = 0.7 · tFinal, but does not become completely depinned until t = 0.8 · tFinal.

The experiments thus demonstrate that despite similar contact line behavior, capillary flow, and
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evaporation rates, the deposition of spheres and ellipsoids differs significantly.
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Figure 2.8: The radius, R, of drops of different suspensions is plotted versus time, t, for evapo-
rating drops. Suspensions of spheres (α = 1.0 black line) and ellipsoids (α = 3.5 red line) are
shown. To facilitate comparisons, the time is normalized by the time evaporation ends (tFinal),
and R is normalized by the value of R at t = 0 s.

Experimental image snapshots clearly reveal that while spheres are carried to the drop’s

edges (Fig. 2.6 a-d), ellipsoids are carried there to far lesser degree (Fig. 2.6 e-h). We measured

the average areal particle density close to the contact line, ρR =
∫ r=R
r=R−20µm ρ(r)dr as a function

of time (Fig. 2.6 i), and thereby demonstrated that ellipsoid density grows at a slower rate than

sphere density. For spheres, ρR increases linearly until evaporation is complete, with a slope

of 0.54 s−1. The areal density of ellipsoids near the contact line, however, stops growing at

t/tFinal = 0.75; for t/tFinal < 0.75, ρR increases with a slope of 0.15 s−1, less than 1/3 the

36



slope for spheres despite similar evaporation rates, capillary flows, and contact line behaviors.

2.4.3 Particle Behavior during Evaporation

Images of particles near the drop’s contact line (Fig. 2.6 j-m) reveal that unlike spheres, which

are carried from the bulk all the way to the contact line (Fig. 2.9 a-c), most ellipsoids adhere to

the loosely-packed structures at the air-water interface before they reach the contact line (Fig.

2.9 d-f). This capillary attraction has been characterized in prior experiments as long-ranged and

very strong [32,101,103,105,106,127]. The loosely-packed configurations formed by ellipsoids

on the interface are, in fact, structurally similar to those seen in previous experiments of ellip-

soids at flat air-water and water-oil interfaces [105, 106, 111]. They produce a surface viscosity

that is much larger than the bulk viscosity, facilitating ellipsoid resistance to radially outward

flows. Note, spheres also adsorb onto the interface during evaporation. However, spheres do not

strongly deform the interface [106] and they experience a much weaker interparticle attraction

than ellipsoids [127]; thus, radially outward fluid flows push spheres to the drop’s edge [38].

In order to quantify the ability of interfacial aggregates of ellipsoids to resist bulk flow,

we calculated the Boussinesq Number for ellipsoids with α = 3.5. The Boussinesq number,

B0, is the ratio of the surface drag to the bulk drag: B0 = G′

τL where τ is shear stress from

bulk flow, G’ is the elastic modulus of the interfacial layer, and L is the probed lengthscale

[157]. B0 will vary spatially with the local number of ellipsoids on the air-water interface, so

we focus here on a region within 40 µm of the contact line. We first calculated B0 at an early

time (t = 0.1 tF ). The shear stress, calculated from the particle velocity and drop height is

τ ≈ 3 · 10−4 Pa. About 40% of the surface is covered with ellipsoids. Using the surface

coverage area fraction, we obtained the modulus of the interfacial monolayer (G’ ≈ 10·−3 N/m)
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Figure 2.9: For all cartoons, the left panel is a side view at an early time, the right panel is a side
view at a later time, and the center panel is a top view showing particle trajectories in between
those times. a-c. Cartoon depicting capillary flow that carries spheres to the drop’s edge. Spheres
leave a ring-like formation after evaporation. d-f. Cartoon depicting capillary flow that carries
ellipsoids to drop’s surface. Ellipsoids become attached to the air-water interface, where they
form loosely-packed structures. These effects erase the coffee ring effect; the final deposit of
ellipsoids is uniform. g. The deposition of mixtures of spheres and ellipsoids are characterized
by the ratio ρ′ = ρMax/ρMid, where ρMax is the maximum local density and ρMid is the density
in the middle of the drop, as a function of ellipsoid volume fraction, ϕE . Two sizes of particles
are studied: d = 5.0 µm (black squares), d = 0.7 µm (red circles), where d is the particle
diameter. To best capture the evolution of the deposition as ϕE increases, ρ′ is normalized by
ρ′0, the value of ρ′ when there are no ellipsoids present, i.e., ϕE = 0. The coffee ring effect
persists for mixtures of small spheres and ellipsoids, but the coffee ring is destroyed for mixtures
of large spheres and ellipsoids. Error bars represent the statistical uncertainty that results from
finite bin sizes. h-j. Cartoon depicting capillary flow that carries suspensions of spheres and
ellipsoids to the drop’s edge. Spheres that are smaller than the ellipsoid continue to travel all the
way to the edge, and exhibit the coffee ring effect. Spheres larger than the ellipsoids are affected
by deformations of the air-water interface, and join the ellipsoids in loosely packed structures
forming at the interface.
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from previous experimental studies [111]. The probed lengthscale, L, is at most 0.01 m. Thus,

at t = 0.1tF , B0 ∼ 300. This calculation is performed at different times during evaporation, until

the aggregate of ellipsoids begins flowing towards the drop center (Fig. 2.10). The Boussinesq

number grows exponentially with time: B0 ∝ exp( t
0.12tF

). This is expected as τ grows linearly

with particle velocity, which increases by a factor of ∼ 2 during evaporation. However, G′

grows exponentially with the ellipsoidal area fraction [111], and area fraction increases by a

factor of ∼ 3. Thus, the exponential growth of G′ dominates this calculation. Finally, note that

for spheres, B0 < 1.
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Figure 2.10: The Boussinesq number, B0, for ellipsoids with α = 3.5 is plotted versus time, t,
normalized by the time evaporation finishes, tF . The red line is the best exponential fit.

Experimental snapshots of the region within 40 µm of the drop contact line confirm that
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while spheres pack closely at the edge (Fig. 2.11 a), ellipsoids form loosely packed structures

(Fig. 2.11 b), which prevent particles from reaching the contact line. Particles with α = 1.2

and 1.5 pack at higher area fractions than ellipsoids with α > 1.5, resulting in larger values

of ρMAX/ρMID for α = 1.2 and 1.5 and producing the small peak in ρ(r) at r/R = 0.7 for

α = 1.2. The structures on the air-water interface appear to be locally arrested or “jammed” [54],

i.e., particles do not rearrange. Once an ellipsoid joins a collective structure, its position relative

to other ellipsoids changes by less than 20 nm (lower limit of our resolution), and the structure

only rearranges when new particles become attached to the interface.
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Figure 2.11: a-c. Images of a region within 40 µm of the drop contact line, taken at time
t/tFinal = 0.5, for suspensions of spheres (a), suspensions of ellipsoids with α = 3.5 (b), and
ellipsoids with α = 3.5 mixed with a surfactant (SDS) at 0.2% by weight. While spheres pack
closely at the contact line, ellipsoids form loosely packed structures. Added surfactant lowers
the surface tension of the drop, making ellipsoidal particles pack closely at the contact line,
thus restoring the coffee ring effect. For a and b, pictures of the entire drop after evaporation
are shown and the magnified region is indicated. d,e. Confocal projections of suspension of
ellipsoids (α = 2.5) and spheres (d and e, respectively) onto the z-r plane in cylindrical coordi-
nates. While spheres are efficiently transported to the contact line, ellipsoids sit at the air-water
interface.
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To confirm that deformations of the interface are responsible for the uniform deposition of

ellipsoids, we add a small amount of surfactant (sodium dodecyl sulfate, SDS, 0.2% by weight)

to a suspension of ellipsoids with α = 3.5. Surfactant lowers the surface tension of the drop,

thus making interfacial deformations less energetically costly and shorter-range. This restores

the coffee ring effect; ellipsoids pack closely at the contact line (Fig. 2.11 c), in a manner similar

to spheres. The ellipsoids no longer strongly deform the air-water interface and their interactions

with other ellipsoids are correspondingly reduced; as a result, they move more easily along and

on-and-off the interface and are able to pack close to the contact line. (Note, surfactants can

also induce surface flows and depin the contact line. The effect of surfactants in drying drops

was explored in reference [156].) Further, ellipsoids increase the air-water surface tension, as

evidenced by an increase in contact angle. The three-phase contact angle, θC , was measured by

placing a large drop (∼ 100 µl) on a glass slide. Then, a side-view picture was taken, allowing

the contact angle to be measured (Fig. 2.12). Spheres do not modify the contact angle. However,

as α increases, θC increases as well. Specifically, θC increases from ∼ 15◦ for spheres to ∼ 35◦

for ellipsoids with α=3.5 (Fig. 2.10).

We obtain direct evidence that the ellipsoids sit at the air-water interface, using three-dimensional

confocal microscopy. Confocal snapshots are shown in Fig. 2.11 d and e. By integrating the

brightness of each pixel over a period of 0.05 seconds, only particles that are roughly stationary

during this time period appear in the images. Snapshots are then projected onto a side-view of

the drop. The confocal snapshots clearly confirm that ellipsoids sit at the air-water interface (Fig.

2.11 d), while spheres do not and are carried all the way to the contact line (Fig. 2.11 e).
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Figure 2.12: The three-phase contact angle, θC , is plotted versus aspect ratio, α. Inset: Image of
a 100 µl drop of a suspension containing ellipsoids with α = 3.5
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2.4.4 Adsorption Position

To confirm that it is the behavior of ellipsoids at the drop’s edge that produces the uniform

deposition of ellipsoids we measured where ellipsoids adsorb on the air-water interface. Based

on this, we were able to calculate the density of ellipsoids adsorbed on the air-water interface

(ϕ), i.e., the number of ellipsoids on the air-water interface per unit area, versus radial distance

(Fig. 2.13). The majority of particles are deposited at the drop’s edge. In fact, ∼ 84% of

particles adsorb on the air-water interface near the drop’s edge. This is consistent with previous

experiments with spheres, which found that ∼ 10% of spheres adsorb on the air-water interface

in the middle of the drop [36, 38]. Thus, their behavior at the edge of the drop must be what

produces the uniform deposition of ellipsoids.

Figure 2.13: The density of adsorbed ellipsoids (ρ), i.e., the number of adsorbed ellipsoids per
unit area, plotted versus radial position, r. The shaded region contains ∼ 84% of adsorbed
particles.

2.4.5 Single Particle Trajectories

To understand the different behaviors of spheres and ellipsoids at the edge of drying drops, it is

instructive to observe some individual particle trajectories. First, the trajectory of a single sphere

is highlighted in Fig. 2.14. When spheres reach the drop’s edge, their progress is halted by a

wall of spheres already at the drop’s edge. Spheres then pack densely, and cannot rearrange as

43



they “jam” in a ring-shaped configuration. This is demonstrated quantitatively for a few typical

spheres by plotting the distance between the sphere and the drop’s edge (x) versus time (Fig.

2.14 e). Conversely, when ellipsoids reach the drop’s edge, they pack loosely on the air-water

interface (Fig. 2.15). Thus, ellipsoids already at the drop’s edge do not necessarily halt the

progress of ellipsoids that arrive at later times. This can be seen in Fig. 2.15 a-c, as an ellipsoid

approaches the drop’s edge (Fig. 2.15 a), passes underneath a cluster of ellipsoids on the air-

water interface (Fig. 2.15 b), and eventually adsorbs on the air-water interface near the drop’s

edge (Fig. 2.15 c). As evaporation continues, ellipsoids can move along the surface of the drop

towards the drop’s center (Fig. 2.15 d). This is demonstrated quantitatively for a few typical

ellipsoids by plotting x versus time (Fig. 2.15 e).

Figure 2.14: a-d. Images of a drop containing spheres during evaporation at four different times
(t = 1, 6, 26 and 242 seconds). The same sphere is circled in each of the four images. e. The
distance from the drop’s edge (x) for six typical spheres is plotted versus t. Spheres reach the
drop’s edge, and quickly become “jammed,” and cannot rearrange.

2.5 Final Distribution of Other Anisotropic Particles

We have now analyzed three additional types of anisotropic particles. First, we obtained suspen-

sions of spherical and ellipsoidal polystyrene-PNIPMAM core-shell particles, i.e., polystyrene
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Figure 2.15: a-d. Images of a drop containing ellipsoids during evaporation at four different
times (t = 1, 10, 12 and 622 seconds). The same sphere is circled in each of the four images. e.
The distance from the drop’s edge (x) for six typical spheres is plotted versus t. Spheres reach
the drop’s edge, and quickly become “jammed,” and cannot rearrange.

particles coated with PNIPMAM. These suspensions were evaporated at 23 ◦C; at this tem-

perature, PNIPMAM is hydrophilic. The core-shell spheres exhibit the coffee ring effect (Fig.

2.4(a)). Despite their hydrophilicity, the core-shell ellipsoids are deposited evenly. In fact, they

form the same aggregates on the drop surface that polystyrene ellipsoids that are not coated with

PNIPMAM do (Fig. 2.4(b)).

Further, we have evaporated suspensions of actin filaments and Pf1 viruses. In each of these

suspensions, the contact line becomes depinned at very early times. To prevent this, we add a

small amount of 50 nm diameter florescent polystyrene spheres (∼ 1% by weight), which pin

the contact line until the final stage of evaporation (t > 0.8 tF ), and thus exhibit the coffee ring

effect. Both the actin filaments and Pf1 viruses are then deposited uniformly. Note, the mean

major axis length for Pf1 viruses is ∼ 2 µm and the mean major axis length for actin filaments

is ∼ 20 µm.

45



2.6 Mixtures of Spheres and Ellipsoids

Finally, we show that the addition of small numbers of ellipsoids to sphere suspensions can also

destroy the coffee ring effect. If spheres are smaller than ellipsoids, then the coffee ring persists;

if spheres are larger than the ellipsoid minor axis, then the coffee ring is destroyed. To observe

this effect we evaporate drops of suspensions containing both ellipsoids and spheres.

Each suspension contains ellipsoids with α = 3.5, stretched from particles of diameter d =

1.3 µm, and each suspension contains spheres suspended at a volume fraction ϕ = 0.02. Evap-

orative deposits are characterized as a function of ellipsoid volume fraction ϕE via ρ′(ϕE) =

ρMax/ρMid (Fig. 2.9 g). First, we evaporate suspensions containing smaller spheres with d =

0.7 µm along with the ellipsoids at volume fractions ranging from ϕE = 0 to 1.5× 10−4. After

evaporation, the spheres displayed a clear coffee ring, and this coffee ring persists even if more

ellipsoids are added to the initial suspension (Fig. 2.9 g). The coffee ring effect is uninhibited

because spheres that are smaller than the ellipsoids are easily able to move under or through the

loosely packed particle structures and reach the drop’s edge (Fig. 2.9 h-j).

If, instead, we evaporate suspensions containing larger spheres with d = 5.0 µm, along with

the same ellipsoids at the same volume fractions utilized previously, then different phenomena

emerge. When the ellipsoid volume fraction is very small (ϕE ≤ 2.5 × 10−5), the suspensions

still exhibit a clear coffee ring effect. However, at larger ϕE , the coffee ring is diminished, and

it eventually disappears at sufficiently large ϕE , i.e., ϕE ≈ 1.5 × 10−4 (Fig. 2.9 g). In this

case, the larger spheres adsorb onto the air-water interface farther from the drop edge than do the

ellipsoids. In the absence of ellipsoids, the spherical particles form closely-packed aggregates,

but in the presence of ellipsoids they instead join the loosely-packed aggregates, thus eliminating
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the coffee ring effect (Fig. 2.9 h-j). Thus, uniform depositions can potentially be made with

existing suspensions, simply by adding ellipsoids.

2.7 Future Directions

Looking forward, we note that the ability to deposit particles uniformly is desirable in many

applications [128]. Unfortunately, most proposed methods for avoiding the coffee ring effect

require long multistage processes, which can be costly in manufacturing or require use of organic

solvents which are sometimes flammable and toxic (e.g. [15, 77]). Here we have shown that

by exploiting a particle’s shape, a uniform deposit can be easily derived from an evaporating

aqueous solution. The results presented here further suggest that other methods of inducing

strong capillary interactions, e.g., surface roughness [155], may also produce uniform deposits.

Additionally, open questions about the behavior of ellipsoids in drying drops persist. Specif-

ically, one may have thought the drop’s edge would quickly saturate with ellipsoids during evap-

oration. However, ellipsoids migrate towards the drop’s center during evaporation, thus making

room for more ellipsoids to adsorb on the air-water interface near the drop’s edge. It is unclear

why ellipsoids move towards the drop’s center. It could be because of inward fluid flows along

the drop’s surface, or because it is energetically costly to deform the air-water interface close

to the three-phase contact line. Experiments that measure the interaction between an isolated

ellipsoid adsorbed on the air-water interface and the three-phase contact line could potentially

help explain this phenomenon.
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Chapter 3

Influence of particle shape on bending

rigidity of colloidal monolayer

membranes and particle deposition

during droplet evaporation in confined

geometries

3.1 Introduction

When colloidal particles adsorb onto air-water, oil-water, and other such interfaces, novel elastic

membranes are created [111, 119, 141]. The mechanical properties of these colloidal monolayer

membranes (CMMs) can depend on many factors including surface tension, capillary forces, and
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particle size, shape, hydrophobicity, packing, and interaction potential. The resulting interface

phenomenology is rich with physics that influences a wide range of applications from film dry-

ing to Pickering emulsion stabilization [112, 166, 186]. Nevertheless, full understanding of the

elastic character of these membranes remains elusive. Recently, significant progress has been

made towards measurement of the bulk, shear, and Young’s moduli of CMMs, and towards an

understanding of particle-induced interfacial mechanisms [9, 111, 119, 141, 165]. Many effects

due to particle shape, for example, can be qualitatively explained by shape-dependent capillary

interactions [16, 19, 80, 105, 106, 111, 112, 118, 155]; i.e., stiff membranes induced by ellipsoids

at the air-water interface are more difficult to deform [111, 130, 162]. One mechanical property

of CMMs that has not as yet been measured is bending rigidity. Bending rigidity is important,

because the buckling behavior of membranes is controlled by the ratio of bending rigidity (κ)

to Young’s modulus (E) [99], and, as we shall show, the buckling behavior of membranes can

substantially affect phenomena such as particle deposition during droplet evaporation. Unfortu-

nately, such measurements are also difficult because constituent particle diameter is often similar

to CMM deformation size [33].

In this contribution we report measurements of the bending rigidity of various colloidal

monolayer membranes. We introduce a novel method for extracting bending properties of

CMMs which employs evaporating drops in confined geometries and readily permits study of

particle-shape effects. To this end, colloidal drops composed of particles with approximately
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the same chemical composition, but with shapes ranging from spheres to ellipsoids, are con-

fined between two glass plates and left to evaporate (Fig. 3.1 a). During evaporation, the air-

water interface is observed to buckle in a manner similar to spherical-shell-shaped elastic mem-

branes [34,102,131]. To extract membrane bending rigidity, we extend the analytic description of

buckled spherical membranes to our quasi-two-dimensional geometry [99]. We find that CMM

bending rigidity increases with increasing adsorbed-particle shape-anisotropy. Besides measure-

ment of bending rigidity, its consequences on particle deposition during evaporation in confined

geometries are explored. We discover that increased interfacial bending rigidity dramatically

changes particle deposition during evaporation. Spheres can locally pin the three-phase contact

line, which then bends around the pinning site and produces an uneven deposition. Conversely,

the large bending rigidity induced by adsorbed ellipsoids makes deformation of the contact line

energetically costly and ultimately induces uniform deposition. Surprisingly, drops of spheres

doped with small numbers of ellipsoids are also deposited relatively uniformly in these confined

geometries.

3.2 Method and Materials

Our experiments utilize micron-sized polystyrene particles with modified shape, stretched asym-

metrically to different major-minor diameter aspect ratio, α [21, 52, 72]. The colloidal drops are

confined between two glass slides separated by 38.1 µm spacers (Fisher Scientific); qualitatively

similar results are found for chambers made from slightly hydrophobic cover slips. We investi-

gate evaporation of these drops, i.e., suspensions containing particles of the same composition
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Figure 3.1: a. Cartoon depicting droplet evaporating in a confined geometry. The particle-
populated air-water interface and three phase contact lines are labeled. b,c. Examples of buck-
ling events for confined drops containing anisotropic particles with α = 1.2 and 1.5 (b,c, respec-
tively). d. Rim width, d (solid line), is defined here in a magnified image of a buckled region, as
the interface full-width 25 µ m from the vertex of the bent air-water interface (see dashed line).
e. d is plotted versus the square root of the drop radius, r. f. Ratio of the bending rigidity, κ,
to the Young’s modulus, E, is plotted versus α. g. κ versus E, where E comes from previously
reported measurements and calculations. The line represents the best power law fit. h. κ versus
α.
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but with different major-minor diameter aspect ratio, including spheres (α = 1.0), slightly de-

formed spheres (α = 1.2, 1.5), and ellipsoids (α = 2.5, 3.5). The spheres are 1.3µm in diameter;

all ellipsoids are stretched from these same 1.3µm spheres. We primarily study the particle vol-

ume fraction ϕ = 0.01. (Qualitatively similar results are found for volume fractions ranging

from ϕ = 10−4 to 0.05.) At these low volume fractions, particles densely coat the air-water

interface before buckling events occur. The confinement chambers are placed within an optical

microscope wherein evaporation is observed at video rates at a variety of different magnifica-

tions.
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Figure 3.2: Image of the final deposition of particles with major-minor diameter aspect ratio
α = 1.0, 1.2, 1.5, 2.5, 3.5 (a-e, respectively). f. The area fraction covered by particles after
evaporation is complete, f, for suspensions of particles as a function of their aspect ratio α.

During evaporation, the air-water interface deforms and crumples (Fig. 3.1 b and c). The

buckling behaviors exhibited by the ribbon-like CMMs in confined geometries are strongly de-

pendent on the shape of the adsorbed particles, and the buckling events appear similar to those

observed in spherical-shell elastic membranes [99, 167]. Before buckling events occur, particles

are maximally packed near the three-phase contact line, regardless of particle shape. Further,

because the volume fraction is relatively low, membranes essentially contain a monolayer of
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particles, i.e., buckling events occur before multilayer-particle membranes form.
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Figure 3.3: a. Image of a pinned region of the air-water interface (α = 1.0). When the pinned
section does not “snap” off, it leaves behind a channel. b. At a later time (∼100 seconds after (c)),
the channel extends, and more particles flow into it, producing a very heterogeneous deposition.
c. Image of the final deposition of particles with major-minor diameter aspect ratio α = 1.0. The
box indicates the deposit left behind by the event depicted in (a) and (b). d. Image of a colloidal
monolayer near the three phase contact line in a drop containing ellipsoids (α = 3.5). The
three phase contact line is labeled with a dashed line on the left side of the image. Particles are
adsorbed on the air-water interface, forming a monolayer, as evidenced by the fact that particles
become more out of focus, from left to right, as the air-water interface curves. A cartoon below
shows a side view of the experimental image. e. The fraction of area covered by particles, f, for
suspensions of 200 nm diameter spheres doped with different amounts of ellipsoids, represented
by the ellipsoid volume fraction, ϕE .

53



3.3 Theory of Buckled Quasi-2D Membranes

To understand this phenomenon, we quantify the elastic properties of the air-water interface with

adsorbed particles (i.e., the elastic properties of the CMMs). We extend analytical descriptions

of elastic membranes to our quasi-2D geometry wherein observations about bending and buck-

ling geometry are unambiguous. Following [99], we first describe the stretching and bending

energy associated with membrane buckling events. Membrane stretching energy can be written

as ES = 0.5
∫
Eu2dV , where ES is the total membrane stretching energy, E is the 2D Young’s

modulus, u is the strain, and the integrand is integrated over the membrane volume. For a thin,

linearly elastic material, u does not change much in the direction perpendicular to the surface,

so ES
∼= 0.5

∫
Eu2dA, where the integral is calculated over the membrane surface area. The

unstretched region has u = 0. Further, most of the deflected region has u = 0, since its con-

figuration is identical to the undeflected membrane; its curvature is simply inverted (Fig. 3.4 a).

Thus, the only region under strain is the deflected rim (Fig. 3.4 a). If the entire membrane had

experienced a constant radial displacement of ζ, its radius would change from r to r + ζ, and

the circumference would change from 2πr to 2π(r + ζ). Then the membrane strain would be

u = 2πζ/2πr = ζ/r. If, as is the case for our samples, the displacement is confined to a small

region subtended by some angle θ, then the in-plane length of this region changes from θr to

θ(r + ζ), and the total strain in the membrane is u = θζ/θr = ζ/r. This estimate assumes

that the interfacial deflection does not change in the z-direction (out-of-plane), i.e., ∂ζ/∂z ≈ 0.

Thus, ES
∼= 0.5

∫
E(ζ/r)2dA. The integral is performed over an area normal to the glass plates

described byA ≈ dh, where d is the in-plane length of the deflected region, and h is the chamber

height. Thus, ES ≈ 0.5E(ζ/r)2dh.
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Figure 3.4: a. Buckling event cartoon defining rim full-width, d, drop radius, r, interface dis-
placement, ζ, membrane thickness, t, in-plane direction along membrane surface, x̂, angle, θ,
and out-of-plane direction, ẑ. The dotted line represents the initial membrane configuration (be-
fore the buckling event). The regions containing all buckling and stretching energy are shaded.
All un-shaded regions are unstretched and unbent. b. Magnified buckling event cartoon defining
rim full-width, d, and interface displacement, ζ. The regions containing all buckling and stretch-
ing energy are shaded. c. Side view cartoon defining chamber height, h. d. Example of buckling
event for a confined drop containing anisotropic particles with α = 1.5. The rim width, d (solid
line), drop radius, r, interface displacement, ζ, and out-of-plane direction, ẑ, are defined here.
Dashed line indicates initial position of membrane.
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The membrane bending energy can be written as EB = 0.5
∫
κK2

CdA, where EB is the

total bending energy, κ is the bending rigidity, and KC is the membrane curvature. Here, the

curvature is KC ≈ ∂2r(θ)/∂x2, where x is the coordinate in-plane along the membrane. The

first derivative can be written as ∂r(θ)/∂x ≈ ζ/d, as ζ is the change in the membrane position

over a distance of approximately d in the x direction. The second derivative can then be estimated

as ∂2r(θ)/∂x2 ≈ ζ/d2, as the first derivative changes from 0 in the undeflected region to ζ/d

in the deflected region of approximate length d. Therefore, KC ≈ ζ/d2. (This assumes that the

second derivative of the deflection in the z-direction is small, i.e., ∂2ζ/∂z2 ≈ 0.) Again, the

integral is performed over an area described by A ≈ dh. Thus, EB ≈ 0.5κhζ2/d3.

The total energy, ETOT from the deflection is ETOT = ES + EB = 0.5E(ζ/r)2dh +

0.5κhζ2/d3. This energy is located within the deflected rim (with width d). Membranes buckle

in such a way as to minimize their energy. Thus, we next minimize the total deflection energy

with respect to d, i.e., ∂ETOT /∂d = E(ζ/r)2h − 3κhζ2/d4 = 0. As a result of minimizing

the total bending and stretching energy, κ/E = d4/(3r2). Thus, by measuring d and r, we can

experimentally determine κ/E. (Note, ζ drops out of the calculation, i.e., a precise determi-

nation of ζ is not necessary for this calculation, given the assumptions listed above. Also, this

calculation is independent of the depth of the invagination, but it does require that the deflection

minimizes the total membrane energy.)

In practice we measure d as the full-width located 25 µm from the rim vertex (see Fig. 3.1

f). However, the value of d is not very sensitive to measurement protocols. Defining d as the

full-width at 20 µm or 30 µm from the rim vertex changes its value by approximately 10 percent.

This simple approach enables us to extract the ratio of CMM bending rigidity, κ, to its
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Young’s modulus, E, from measurements of d and r. In particular, minimizing the bending

and stretching energy with respect to d yields the relation κ/E = d4/(3r2). With all other

parameters constant, e.g., particle anisotropy, etc., this formula predicts that d ∝
√
r. (Note,

this derivation assumes that the interfacial displacement varies little in the z-direction, i.e., the

air-water interface deflects the same distance at the top, middle, and bottom of the chamber.)

In Fig. 3.1 e we show results from evaporated drops of particles with anisotropy α = 1.2 and

with different initial values of r, plotting d versus
√
r. A good linear relationship is observed

(coefficient of determination, R2 = 0.93), implying that our analysis is self-consistent. Similar

linear results were found for other values of α.

In principle, the air-water interface can be distorted in the z-direction as well as in-plane.

We have previously assumed that these distortions are small. The exact location of the air-water

interface is difficult to directly measure optically; when light enters the sample, it travels through

water, then air, then water again, and finally through air and into the microscope objective.

This strongly distorts confocal images. However, using bright field microscopy, we can identify

the inner and outer position of the air-water interface, allowing us to estimate the radius of

curvature in the z-direction [131] (Fig. 3.5 ). We find that the radius of curvature is approximately

equal to the chamber thickness (∼ 38.3µm ±1µm). We do not observe any change in this

measurement after a buckling event. The relevant partial derivatives are then ∂ζ/∂z ≤ 1/38.3

and ∂ζ/∂z ≤ 1/(38.32), and are thus small.
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Figure 3.5: Experimental image of air-water interface demonstrating how the radius of curvature
is measured. Red lines represent the inner and outer edges of the air-water interface, as shown
in the cartoon below.
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3.4 Dependence of Bending Rigidity on Particle Shape

We thus extract and plot κ/E for evaporating drops of particles with different α (Fig. 3.1 f).

Notice, κ/E increases with increasing α, implying that as α increases, κ increases faster than

E, i.e., κ/E is larger for ellipsoids (α = 2.5 and 3.5) than for spheres (α = 1.0). CMM Young’s

modulus is known to increase with α [9, 111, 119, 141, 165].

To extract the bending rigidity, we need to know the Young’s modulus of the membrane. For

particles with α = 1.0 and 2.5, we are able to use previously reported values of the bulk modulus

[9],B, the shear modulus [111],G′, and the relationshipE = 4BG′/(B+G′) in order to extract

the Young’s modulus. We were unable to find data for α = 1.2, 1.5, or 3.5, so we interpolated

from reported values of B and G′. Using these previously reported values, we obtained E =

0.098, 0.14, 0.22, 0.39, and 0.39 N/m for α = 1.0, 1.2, 1.5, 2.5 and 3.5, respectively.
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Figure 3.6: As a consistency check, d4/(3r2) is plotted versus E. The line represents the best
power law fit.

Utilizing previously reported measurements and calculations of E, we plot κ versus E (Fig.

3.1 g) and find that κ ∝ E2.94(3). This observation is consistent with theoretical models which
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predict κ ∝ E3 [99], however, the full physical origin of this connection is unclear. At first

glance, it seems contradictary to claim that κ/E = d4/(3r2) and κ ∝ E3. However, these

formulae are consistent. A simple elastic model assumes that E = Y t and κ = Y t3, where

Y is the 3D Young’s modulus and t is the membrane thickness [99]. Based on this model,

κ = E3/Y 2, so κ/E = E2/Y 2. Thus, κ/E = E2/Y 2 = d4/(3r2). To test this we plot

d4/(3r2) versus E (Fig. 3.6 ). The best power law fit is d4/(3r2) ∝ E1.92(3), implying that

these two equations are consistent. Note, this implies that Y ≈ 19 kPa for all α, which is

similar to stiff jello (Fig. 3.7 ). Additionally, these values of Y allow us to calculate t (Fig.

3.8 ). The physical interpretations of Y and t are unclear. Finally, we use previously reported

measurements and calculations of E to isolate and estimate CMM bending rigidity (Fig. 3.1 h).

Clearly, membrane bending becomes more difficult with increasing particle anisotropy.
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Figure 3.7: 3D Young’s modulus, Y , is plotted versus aspect ratio, α.
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3.5 Particle Deposition in Confined Geometries

We next turn our attention to the consequences of increased bending rigidity on evaporation

processes in confined geometries, specifically particle deposition during drying. Substantial ef-

fort has now yielded an understanding of the so-called coffee-ring effect and some ability to

control particle deposition from sessile drops [15, 37, 40, 48, 76, 77, 83, 124, 126, 153, 171, 186].

However, much less is known about particle deposition in confined geometries, despite the fact

that many real systems [29, 50, 143] and applications [11, 30] feature evaporation in geometries

wherein the air-water interface is present only at the system edges. Recent experiments have

explored evaporation of confined drops containing spheres [34,86,102,131], and their behaviors

differ dramatically from sessile drops containing spheres. In the confined case, as noted previ-

ously, particles are pushed to the ribbon-like air-fluid interface, and, as evaporation proceeds, the

particle-covered air-water interface often undergoes the buckling events described above.
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Figure 3.8: The calculated membrane thickness, t is plotted versus aspect ratio, α.
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We find that suspended particle shape produces dramatically different depositions as a re-

sult of the varying CMM bending moduli. In Fig. 3.2 a-e, the final deposition of particles is

shown for α = 1.0, 1.2, 1.5, 2.5, 3.5, respectively. Spheres and slightly stretched spheres are

deposited heterogeneously, and anisotropic ellipsoids are distributed relatively more uniformly.

To describe the final deposition of particles more quantitatively, we plot the fraction of initial

droplet area covered by deposited particles after drying, f (as introduced in [36]), as a function

of anisotropy α (Fig. 3.2 f). To compute f, we divide the area into a grid of (8 µm X 8 µm)

squares; a region is considered to be covered, if its area fraction within the square is greater than

0.36. The number of covered regions is then normalized by the total number of squares in the

grid, producing f. Note, for uniformly deposited particles, the area fraction (based on the initial

volume fraction, initial volume, chamber height, and particle size) would be ∼0.4. The fraction

of area covered with particles is observed to increase with α. For α = 1.2 and 1.5, f increases

modestly. For α = 2.5, the deposition is very uniform, and for α = 3.5, virtually the entire area

is covered uniformly.

High magnification images reveal why spheres and slightly stretched particles deposit un-

evenly, while ellipsoids deposit more uniformly (Fig. 3.3 a-d). Spheres and slightly-stretched

spheres often pin the air-water interface, preventing its motion. In fact, spheres can pin the air-

water interface even in very dilute suspensions, i.e., ϕ < 10−4. As evaporation continues, the

CMM interface bends around the pinning site (Fig. 3.3 a). Then, it either pinches off, leaving

particles behind, or it remains connected to the pinned site, leading to water flow into the narrow

channel that has formed; the latter flow carries particles towards the pinning site (Fig. 3.3 a and

b) producing “streaks” of deposited particles (Fig. 3.3 c). Temporal and spatial heterogeneities
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along the interface due to these described effects lead to heterogeneous deposition of spherical

particles during evaporation.

When ellipsoids approach the drop edge, they also adsorb onto the air-water interface form-

ing ribbon-like CMMs (Fig. 3.3 d) [16,19,80,105,106,111,112]. However, the ellipsoids induce

substantial capillary deformations on the air-water interface, creating an elastic membrane with a

high bending rigidity. Ellipsoids can also pin the contact line, but bending of the CMM interface

around a pinned contact line requires an energetically costly rearrangement of ellipsoids ag-

gregated on the CMM, since attractive particle-particle capillary interactions must be overcome

(even at very small ϕ). Conversely, bending of the contact line costs little energy to spheres on

the interface, because sphere-sphere capillary interactions on the interface are much weaker than

for ellipsoids [105,106,127]. As evaporation continues, the ellipsoid-CMM contact line recedes

radially, and the ellipsoids near the contact line are deposited on the substrate. This behavior is

similar to convective assembly techniques wherein the substrate, or a blade over the substrate, is

pulled away from the contact line; a thin film is thus formed that leads to the creation of a mono-

layer (e.g., [98]). The present system, by contrast, has neither moving nor mechanical parts.

Uniform coatings are created essentially as a result of shape-induced capillary attractions which

produce CMMs that are hard to bend.

3.6 Mixtures of Spheres and Ellipsoids

To further elucidate the effects of particle shape on deposition, suspensions of 200 nm spheres

(α=1.0) with ϕ=0.02 were combined with suspensions containing micron-sized ellipsoids (α=3.5)

at lower volume fractions, ϕ= 0 to 4.0 × 10−3. The resulting colloidal drops were evaporated
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in the same confined geometries. The addition of a very small number of ellipsoids has no effect

on the deposition of spheres (ϕ ≤ 1.7 × 10−3). Surprisingly, the addition of a larger, but still

small, number of ellipsoids leads to a uniform deposition of both ellipsoids and spheres, i.e.,

f ≈ 0.8, despite the fact that spheres outnumber ellipsoids by a significant factor (103-104) (Fig.

3.3 e). Apparently, spheres do not prevent ellipsoids from adsorbing on the air-water interface,

and the CMM bending rigidity is dominated by the presence of ellipsoids. Thus, the membrane

still resists bending around pinning sites. This behavior in confined geometries is different than

that of sessile drops wherein it was discovered that if the spheres are larger than the ellipsoids,

then the spheres are distributed uniformly after drying, but if the spheres are smaller than the

ellipsoids, then they exhibit the coffee ring effect [186]. From this perspective, it is somewhat

surprising that small spheres are deposited uniformly from droplets doped with small numbers

of ellipsoids and confined between glass plates.

Again, the high bending modulus produced by ellipsoids on the CMM helps explain the

observations. Both spheres and ellipsoids attach to the air-water interface. Ellipsoids deform the

air-water interface, creating an effective elastic membrane with a high bending rigidity. When

enough ellipsoids are present, pinning and bending the interface becomes energetically costly

and the spheres (and ellipsoids) are deposited as the interface recedes.
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3.7 Summary

To summarize, ellipsoids adsorbed on the air-water interface create an effective elastic mem-

brane, and as particle anisotropy aspect ratio increases, the membrane’s bending rigidity in-

creases faster than its Young modulus. As a result, when a drop of a colloidal suspension evap-

orates in a confined geometry, the different elastic properties produce particle depositions that

are highly dependent on particle shape. This observed increase in bending rigidity with par-

ticle shape aspect ratio holds important consequences for applications of colloidal monolayer

membranes as well. For example, increased bending rigidity may help stabilize interfaces (e.g.,

Pickering emulsions [112]) and thus could be important for many industrial applications, e.g.,

food processing [41, 166]. In a different vein, our observations suggest that CMMs in confined

geometries may be a convenient model system to study buckling processes that are relevant for

other systems, e.g., polymeric membranes [163], biological membranes [53], and nanoparticle

membranes [121].
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Chapter 4

Irreversible Rearrangements,

Correlated Domains and Local

Structure in Aging Glasses

4.1 Introduction

After initial formation, glasses relax via a non-equilibrium process called aging during which

their dynamics slow dramatically and become more heterogeneous. Interestingly, the diverg-

ing relaxation timescales and viscosities characteristic of the glass transition likely derive from

an analogous emergence of heterogeneous particle domains that rearrange in a correlated man-

ner [3]. The structural causes of this so-called dynamic heterogeneity, however, remain elusive.

Recent work has searched for connections between dynamics and structure [88, 117, 138, 148,

160, 168, 169, 174], for example, suggesting short-range crystalline order as a structural cause
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of dynamic heterogeneity [88, 138, 168]. The fruits of this continued search, if attained, will be

directly applicable to the concepts of dynamical arrest as they apply to the glass transition and

will thereby unify physical phenomena observed across a broad spectrum of jammed systems

including colloidal suspensions [169], granular media [2, 168], metallic glasses [148, 149], and

polymer glasses [74].

The slow nature of glass dynamics makes them intrinsically challenging to study, requiring

observations on very short and very long timescales. In this paper we ameliorate the timescale

problem by studying the aging of colloidal glasses immediately after a deep quench [93]. Bidis-

perse suspensions of temperature-sensitive colloidal particles confined in two-dimensions (2D)

are quenched from liquid to glass states. The rapid and deep quench permits study of glass dy-

namics from very short timescales to very long timescales, i.e., over observation times sufficient

for significant structural changes to occur and evolve. Video microscopy measurements reveal

the development of short-range order during aging and establish a direct connection between

locally-ordered particles and dynamic heterogeneity. We discover that most of the fast-moving

particles are not major participants in the aging process. However, a careful analysis of fast

particle dynamics during aging identified an increase in the cluster size of a particular class of

correlated particles, clusters of fast-particles participating in irreversible rearrangements. These

irreversible rearrangements are similar to those recently identified in simulation studies [174].

The increase in irreversible rearrangement cluster size, as well as the observed increase in num-

ber of stable particle configurations, directly leads to the slowing dynamics characteristic of

aging. Additionally, we find that particles with local crystalline order are very unlikely to irre-

versibly rearrange. Thus a direct link between local crystalline order, particle rearrangement,
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and slowing dynamics is experimentally demonstrated.

4.2 Methods and Materials

The experiment employs an aqueous suspension of micron-size poly(N-isopropyl acrylamide)

microgel colloidal spheres (i.e. NIPA particles), whose diameters increase as temperature is re-

duced [132, 142]. The particles are very similar to those used in recent phase transformation

experiments and are described therein [4, 66, 68, 147, 176, 191]. Colloids are especially good

models for studying the local structure of high density systems such as glasses, wherein free

volume considerations determine local packing [22, 137]. A binary mixture of NIPA particles is

sandwiched between two glass cover slips, thereby creating a quasi-2D system (the plate sep-

aration is < 5% greater than the diameter of the large particles [68]). The sample consists of

a mixture of NIPA spheres with small and large diameters, DS = 1.09 µm and DL = 1.55 µm

(for comparison, our resolution is ∼ 0.01 µm), respectively, at temperature T = 28.0 C. Approxi-

mately 45% (by number) of the particles are large. There are ∼4000 particles in the field of view,

and this field of view resides within the middle of a much larger domain containing 325,000

particles. The polydispersity of each particle type is ∼3 percent, and the particle interaction

potentials have been measured to be short-range repulsive with a soft tail [66]. The use of this

binary mixture minimizes the possibility of crystallization, and the softness of the NIPA colloid

interparticle potential, by contrast to that of hard spheres, permits access to area fractions far

above the glass transition [133, 179].
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4.3 Rapid Quenching via Optical Heating

Rapidly quenching from liquid to glass is achieved through a new experimental twist utilizing

optical heating. A small amount of red dye (Chromatech - Chromatint Red 1064), 0.3% by

weight, is released into the suspension. This dye absorbs light from a mercury lamp focused

through the microscope objective. The sample field of view (∼5×10−3 mm2) lies at the center

of the illumination region (∼1 mm2). There, the temperature is increased by ∼4 degrees in ∼0.1

seconds via light absorption and relaxation processes. The NIPA particle radii are thus abruptly

decreased by ∼0.1 µm, and the local area fraction (ϕA) is decreased by ∼10%. While the lamp

is on, the particles are in the liquid state, as evidenced by their diffusive mean-square particle

displacements (MSD): MSD = ⟨∆x2i ⟩ (see Fig. 4.2). The Brownian time of micron sized parti-

cles is ∼1 second, and the lamp is only on for ∼6 seconds, so thermophoretic effects are avoided.

When the mercury lamp is turned off, the excess heat rapidly dissipates, and particles swell to

their original size in less than 0.1 seconds. The rapid change from small-ϕA (liquid) to large-ϕA

creates a glass. Aging begins (tw = 0 seconds) once the sample returns to thermal equilibrium

and particles have completely returned to their original size, which is verified in situ (see next

section).

In order to study aging, we must wait until our suspension has returned to thermal equilib-

rium, and particles are no longer expanding in size. To determine when particles swell to their

original size we look at the size of the particles before, during, and after optical heating. Fig. 4.1

plots the size of the particles versus time, in terms of pixel brightness radius of gyration. The

lamp is turned off at approximately tw = -0.133. At time tw = 0 seconds, the radius of gyration
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of the particles has stopped changing. Thus, our study of aging begins at that time.
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Figure 4.1: Pixel brightness radius of gyration before, during, and after optical heating.

Performing the experimental quench was quite challenging. In particular, selecting the

proper amount of red dye proved to be non-trivial. If not enough red dye in the system, then

less light from the mercury lamp will be absorbed, and the local temperature will not increase

enough to lower the area fraction from that of a glass to that of a liquid. Thus, the quench will

not change the system enough, and much smaller changes will be observed. However, since the

dye is a suspension of small molecules, too much dye could lead to entropic depletion effects,

creating short-range attraction between the NIPA particles. For the experiments described in this

paper, we used ∼0.3% dye, by weight. This amount of dye was sufficient to increase local tem-

perature by ∼4◦ C. To insure that depletion effects were unimportant, we dissolved 0.3% dye by
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weight into a dilute suspension of NIPA particles, and then we measured the particle-particles

interaction potential. No attraction was observed, thus depletion effects were confirmed to be

absent. In-situ, we can screen for depletion effects by watching for particles that stick to the

glass slides. In a quasi-2D system, the depletion force would pin the NIPA particles against the

glass slides. Our particles were not pinned to the glass slides; thus depletion effects are probably

not an issue.

The data contained in this report were collected at five final ϕA ranging from ϕA = 0.81 to

ϕA = 0.84; the data presented in Fig. 4.2-4.9 are taken solely from samples with ϕA = 0.84,

where the effects described below are strongest. This rapid and deep quench is a unique feature

of the NIPA particle experiments which permits measurement of aging over a broad range of

timescales [93] that were not accessible to previous aging experiments [27,31]. A similarly deep

quench was reported recently by Assoud et al. [42]; their experiment used rapid magnetic field

changes to quench long-range repulsive magnetic particles from liquid to crystal states in 2D.

4.4 Aging Dynamics

During aging, glass dynamics depend on elapsed time from the quench, which we refer to as the

waiting time, tw. The ensemble-averaged particle MSD shown for different tw in Fig. 4.2 exhibit

aging dynamics of a typical glass [31]. The initial MSD plateau corresponds to caged particle

behavior, and the “upturn” at longer times occurs when these cages rearrange. As tw increases,

the MSD upturn occurs at later times until it finally falls outside the experimental window.
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Figure 4.2: Mean-square displacement at different times after the quench (tw): the liquid state
before the quench (solid diamonds), tw = 0.25 s (solid circles), 1 s (open triangles), 3.33 s (open
squares), 36 s (solid triangles), 86 s (solid triangles), 143 s (open circles), and 10,000 s (open
diamonds). Solid lines guide the eye, and the dashed line has a slope of 1 on a log-log plot. Inset:
NMSD, the fraction of particles with a given mean-square displacement for 0 ≤ tw ≤ 3 seconds
and ∆t = 0.33 seconds. All particles that irreversibly rearrange have mean-square displacements
that fall in the shaded region.
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Surprisingly, the MSD appears to grow faster than linearly with time for tw = 0.25 seconds

(Fig. 4.2). This could be because stress-relieving rearrangements push particles, resulting in

displacements that are larger than displacements due to Brownian motion. However, this curve

only extends over one decade in ∆t. Thus, there is not sufficient data to fully comment on the

dependence of MSD on ∆t within this regime.

To more fully characterize the dependence of the dynamics on tw, the MSD for two different

lag times (∆t = 3.3 seconds, 33.3 seconds) is plotted versus tw in Fig. 4.3.
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Figure 4.3: The mean-squared displacement versus tw, for ∆t = 3.3 seconds (solid squares) and
∆t = 33.3 seconds (open circles).
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4.5 Irreversible Rearrangements

Constituent particles in glasses tend to rearrange in a correlated manner involving many neigh-

bors [3, 12, 95, 169], making it difficult to determine which particle configuration was initially

unstable by use of mean-square displacements [172, 173]. Thus a different dynamic quantity

that isolates the dynamic heterogeneity essential to relaxation appears to be required, such as the

irreversible rearrangement (IR) [174]. In recent two-dimensional simulations, Widmer-Cooper

et al. identified a class of particles that undergo irreversible rearrangements (IRs) [174]. They

found that if a motional event causes a particle to lose four of its nearest neighbors, then the

particle rarely recovers its initial configuration. These so-defined irreversible rearrangements fa-

cilitate differentiation between affine motions that maintain local structural configurations, and

non-affine motions that contribute to relaxation. Neighbors are calculated using a cutoff distance

defined by the first minimum in the particle pair correlation function [28,62,94]. Defining neigh-

bors by Voronoi tessellation gave qualitatively similar results. Within our experimental time

window, particles never regain their original configurations after losing three nearest neighbors;

thus we say that these particles experience an IR. These particles are among the fastest in the

system (see Fig. 4.2 inset), and less than 1% are large spheres, consistent with prior work [109].

Specifically, another challenge we face in data analysis concerns defining exactly when an

IR occurs for the purpose of calculating clusters of fast particles that contain IRs. This challenge

was resolved by identifying a particle as undergoing an IR from the time it lost its first nearest

neighbor, until the time it loses its third nearest neighbor. To identify every particle that moved

as part of this rearrangement, the lag time, ∆t, that we used to identify the 10% fastest particles
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was varied and the largest cluster size was selected. One may naively expect the cluster size to

simply increase with lag time. However, this is not the case. When the lag time is larger than

the rearrangement time, more motional events are considered when selecting the 10% fastest

particles. Thus, some of the slowest particles that belong to a particular cluster will be lost,

since other unrelated particles will move comparable and larger distances. During aging, ∆t

increases, roughly following a power law of ∆t∼0.8. The lag time ranges from ∆t = 0.33

seconds to ∆t∼1000 seconds.

At the earliest waiting times, tw < 0.5 seconds, at the time of an irreversible rearrangement,

the cluster of fast moving particles contains ∼60% of the particles that will ultimately join in

the correlated domain. However, at these early times there are more than one irreversible rear-

rangement per cluster of fast particles, making it impossible to determine a causal link when tw

< 0.5 seconds. Fortunately, the irreversible rearrangements that occur after tw = 0.5 seconds are

isolated events.

To study the variation in correlated rearrangements with tw, we first determined the num-

ber of IR events occurring as a function of tw (Fig. 4.4 A). The rate of IRs is initially high;

∼90 events occur when tw < 0.4 seconds. However, the rate slows dramatically thereafter, and

only ∼15 events occur over the rest of the experiment. Next, we identified particles that move

much farther than average. The particles moving farther than rC were selected, with rC chosen

so that only 10% of all of the particles satisfy |
−−−−−→
∆r(∆t)| > rC , where |

−−−−−→
∆r(∆t)| is the parti-

cle displacement in time ∆t. Clusters of particles that move farther than rC were identified by

connecting nearest-neighbor pairings of “fast” particles. This definition of “fast” particles and

fast particle clusters has been used previously in experiments [169] and simulations [43, 133].
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The time required for a complete rearrangement varies, so we vary ∆t to maximize the aver-

age number of particles per cluster at each tw (∆t ranges from 0.33 seconds to 20.0 seconds

but is typically ∼0.5 seconds). (See online Supplemental Information.) The average number of

particles per fast cluster versus tw is plotted in Fig. 4.4 B; it actually decreases from ∼5 par-

ticles immediately after the quench, to ∼2 particles at tw = 10,000 s. This result is somewhat

surprising, as previous simulations reported a dynamic length scale that grew during aging [129].
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Figure 4.4: A: NIR, the number of irreversible rearrangements, versus tw. The line is a power
law fit. Inset: Histogram of NC , fast particle cluster sizes, for 0.03 ≤ tw ≤ 3 seconds. The line is
a power law fit. B: Average number of fast particles per cluster for all clusters (black circles) and
the average number of fast particles per cluster for only clusters containing a particle undergoing
an irreversible rearrangement (red circles), versus tw. The line guides the eye. Inset: Snapshot
of the 10% fastest particles at tw = 0.62 seconds, featuring two large clusters. Particles that
irreversibly rearrange are plotted in red.

However, closer inspection reveals that very large clusters exist, some containing ∼100 par-

ticles (Fig. 4.4 A Inset). Interestingly, we found that most of these large clusters contained a

particle undergoing an IR. A snapshot of the 10% fastest particles, featuring two such large clus-

ters, is shown in the inset of Fig. 4.4 B. We calculated the average size of these clusters of fast

particles, all of which contain a particle that underwent an IR. The results are plotted in Fig. 4.4
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B. The average size of these clusters increases from ∼40 particles just after the quench, to ∼100

particles at tw = 10,000 s; the radius of gyration of these clusters correspondingly increases from

∼2.5 µm to ∼4.5 µm. In other words, as the glass ages, more particles must move for IRs to

occur. The observation that clusters of fast moving particles are dramatically larger when an IR

is involved demonstrates an intimate connection between IRs and dynamic heterogeneity. This

effect is reminiscent of the Adam and Gibbs hypothesis, which states that as the glass transition

is approached, the number of correlated particles involved in a rearrangement increases [3, 73].

In the present case, the number of correlated fast particles involved in an irreversible rearrange-

ment event increases with aging. Rearrangements thus become progressively more difficult to

achieve, leading to slow glass dynamics and kinetic arrest (Fig. 4.2).

This growing correlated domain size helps explain why dynamics slow during aging; the

connection between events that dramatically change local configurations (IRs) and large corre-

lated domains reveal the microscopic mechanisms of the large viscosity characteristic of glass.

More particles must move in a correlated manner as glass ages, making these IR events pro-

gressively more difficult to achieve. Because these events involve a more complex network of

particles, they occur less frequently. The upturn in MSD occurs at later times, the relaxation

time increases, or, to put it more simply: the dynamics slow. These complex correlated domains

are the microscopic manifestation of the large viscosity characteristic of glass. Thus, glass has

a large viscosity because many particles are required to move in a correlated manner for an IR,

and relaxation, to occur.

Data derived from different final area fractions displayed similar behavior. The average size

of a cluster containing at least one particle undergoing an IR after tw = 1,000 s, increases from
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∼70 particles at ϕA = 0.81, to ∼100 particles at ϕA = 0.84.

To better understand this growing correlated domain, we calculated the initial coordination

number of particles that irreversibly rearrange, and found that 90% had CN = 5, 5% had CN =

4, and 5% had CN = 6. For comparison, at tw = 10,000 seconds, 60% of all particles have CN

= 6, 31% have CN = 5, 8% have CN = 7, and 1% have CN = 4. This distribution of locally

ordered stable particle configurations provides a structural source for heterogeneous dynamics

in glasses [158].

4.6 Aging Structure

In fact, the enhanced stability of locally ordered particle configurations is evident during aging.

The evolution of the distribution of CN during aging is readily visualized by snapshots of the

glass at different tw and is plotted in Fig. 4.8 A B. Patches of particles with coordination number

CN = 6, i.e. particles with local crystalline order, develop during aging.

Properly identifying coordination number is crucial for the data analysis. Two methods are

commonly used to identify nearest neighbors. Voronoi tessellation identifies a cell around each

particle that contains every point in space closer to the said particle, compared to any other parti-

cle. Thus any two particles whose cells share a border are nearest neighbors. While this approach

provides an entirely unambiguous definition of nearest neighbors, it can assign nearest neighbor

pairings to sets of particles that are not actually in each others’ first coordination shell. For exam-

ple, regions of voids often exist after the quench. Particles that border the voids are sometimes
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identified by Voronoi Tesselation as nearest neighbors with other particles that border the void,

despite the fact that they are separated by relatively large distances. A snapshot of particles near

a void with their corresponding Voronoi cells are shown in Fig. 4.5. Additionally, when glasses

are at relatively high packing fractions, Voronoi Tesselation occasionally identifies two particles

as nearest neighbors even though they are outside of each others’ local environments (Fig. 4.6).

Figure 4.5: Snapshot of particles bordering a void at tw = 0.03 seconds, with their corresponding
Voronoi cells plotted over them.

To avoid the aforementioned issues, we use a different method for identification of nearest

neighbors. We first assign a cutoff distance, rc, based on the pair correlation function, g(r), such

that any particles separated by less than rc are identified as nearest neighbors [28, 62, 94]. Since

the first peak in g(r) represents a particle’s nearest neighbors, rc was set to be the minimum of

g(r) just after the first peak. While this scheme is trivial in a monodisperse system, the situation

becomes more complex in a bidisperse system. Three distinct pair correlation functions can be

calculated. In the bidisperse case we can calculate g(r) exclusively using large particles (gLL),

exclusively using small particles (gSS), or using both large and small particles (gALL) (Fig. 4.7).

In our experiments, the corresponding values of rc were 1.75 µm (gLL), 1.45 µm (gSS), and 1.55

µm (gALL). In this paper we opted to use rc = 1.55, the cutoff distance derived from gLS , to
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define nearest neighbors. A close examination of the data reveals this to be the most sensible

choice, for the following reasons. First, our experiments did not exhibit any phase separation,

∼1% of particles were surrounded exclusively by particles of the same size, making gALL more

representative of a typical local environment than gSS or gLL. We could have chosen gLL for

large-large bonds, gSS for small-small bonds, and gALL for large-small bonds. However, exam-

ination of actual particle configurations shows that this assignment leads to inclusion of nearest

neighbors that are not directly in a particle’s first coordination shell, and leads to exclusion of

nearest neighbors that are clearly in the particle’s first coordination shell (again, see the dotted

particles in Fig. 4.6, which would be identified as nearest neighbors using the cutoff from gLL,

but not from gALL).

Figure 4.6: Snapshot of particles at tw = 0.03 seconds. The particles marked with black dots are
identified to be nearest neighbors by Voronoi Tesselation, or a cutoff distance based on gLL. The
cutoff distance from gLS , represented by the black circles, does not define them to be nearest
neighbors.

Fortunately, the qualitative results presented do not depend on the chosen method. Nev-

ertheless, in this paper, we defined nearest neighbors based on a cutoff from gALL. With this

method, the fraction of particles with 6 nearest neighbors grows from 0.48 to 0.59. For Voronoi
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Tesselation, the fraction of particles with 6 nearest neighbors grows from 0.45 to 0.53. By us-

ing cutoffs from gLL, gALL, and gSS for each type of neighboring pair, the fraction of particles

with 6 nearest neighbors grows from 0.40 to 0.58. When using rc derived from gALL, ∼5% of

irreversibly rearranging particles are identified as initially having 6 nearest neighbors. Using

Voronoi Tesselation, ∼2% of irreversibly rearranging particles are identified as initially having

6 nearest neighbors. Finally, when using rc derived from gLL, gALL, and gSS for each type of

neighboring pair, ∼3% of irreversibly rearranging particles are identified as initially having 6

nearest neighbors.
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Figure 4.7: The pair correlation function for all particles (gLS - solid line), large particles only
(gLL - dotted line), and small particles only (gSS - dashed line).

Both large and small particles exhibit the same trend. The average CN for large particles is

6.1, while the average CN for small particles is 5.8. Large particles, on average, have 3.7 small
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neighbors; small particles have on average 3.5 small neighbors. The number of particles with

CN = 4 or 5 decreases (for both large and small particles), and the number of small particles

with CN = 7 decreases as well. The number of large particles with CN = 7 increases slightly, as

predicted by [79].

tw = 0.1 s tw = 0.36 s

1 Neighbor lost       Initial
Configuration

tw = 0.63 s tw = 0.73 s

1 Neighbor lost 3 Neighbors lost

A B

C

Figure 4.8: A: Snapshot of colloidal glass immediately after the quench, at tw = 0.03 s. Particles
with six nearest neighbors are plotted in blue. B: Snapshot of aged colloidal glass long after the
quench, at tw = 10,000 s. Particles with six nearest neighbors are plotted in blue. C: Example
of an irreversible rearrangement that finishes at tw = 0.67 s. The irreversibly rearranging particle
is blue, its nearest neighbors are green, and nearest neighbors it loses are black. The circle
represents the cutoff distance that defines nearest neighbors.

We found that N6
Ntot

, where N6 is the number of particles with CN = 6 and Ntot is the total

number of particles, increases from ∼0.48 to ∼0.59 during aging. Both large and small particles

exhibit the same trend. The average CN for large particles is 6.1, while the average CN for small

particles is 5.8. Large particles, on average, have 3.7 small neighbors; small particles have on

average 3.5 small neighbors.
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The spatial distribution of locally ordered configurations was studied, and clusters of parti-

cles with CN = 6 were identified by connecting nearest-neighbor pairings. We then identified

the largest cluster of particles with CN = 6 at each tw (Fig. 4.9 B). At tw = 0.03 seconds, 20%

of the particles with CN = 6 are in the largest cluster, at tw = 0.43 seconds, 80% of the particles

with CN = 6 are in the largest cluster and it percolates across the entire field of view (80 µm),

and at tw = 10,000 seconds, almost 100% of the particles with CN = 6 are in the largest cluster.

(Recall, only 15 IRs occur after tw = 0.4 seconds.) This large cluster of particles with CN = 6 is

evident in Fig. 4.8 B.

The number of particles in clusters with CN = 6 increases from 370 particles to 2150 parti-

cles, as described in the main text. The radius of gyration of these clusters grows from ∼6 µm

to ∼20 µm (Fig. 4.3). However, because the cluster percolates across the system at tw = 0.43

seconds, the radius of gyration becomes less meaningful.

The degree of local order is also characterized by the average bond orientational order pa-

rameter [64], ψ6 =
1

NtotCN

∑Ntot
j=1

∑CN
k=1 e

i6θjk . Here θjk is the angle between the x-axis and the

j-k bond between particles j and k; CN is the coordination number of particle j, and Ntot is the

total number of particles. ψ6 is plotted in Fig. 4.9 C, wherein it is apparent that bond orienta-

tional order increases with tw, consistent with previous work [88, 168].

Correlations of ψ6 in space are constructed, yielding the correlation function g6(r=|ri-rj |) =

⟨ψ∗
6i(ri)ψ6j(rj)⟩. We fit the envelope of g6(r) to an exponential (e−r/ξ6) in order to extract a

correlation decay length ξ6 for orientational order (Fig. 4.9 D) [66,88,168]. Initially, ξ6 is ∼0.75
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DS , where DS is the diameter of the small particles. Thus, immediately after the quench, the

bond orientational order of a particle typically has minimal relation to that of its neighbor. How-

ever, after 10,000 seconds, ξ6 increased to ∼DS . After aging, particles typically acquire a similar

amount of orientational bond order as their nearest neighbors. Taken together, the increase in

N6, ψ6, and ξ6 suggest that short-range order increases during aging. Thus the dramatic struc-

tural and dynamic variation that occurs during aging clearly demonstrates that particles with

short-range order are more stable than particle configurations with CN ̸= 6, in agreement with

Tanaka and co-workers [158], as well as with other theories that emphasize the importance of

local structure [108, 160].

4.7 Packing Fraction Dependence

The aging experiment was done for 5 different area fractions. ϕA is calculated based on an

effective particle diameter as the distance where the inter-particle potential is 1kBT at each final

temperature. For the soft NIPA particles employed in the present study, the effective diameter

is typically 10% smaller than the hydrodynamic diameter measured by dynamic light scattering.

N6, ψ6, ξ6, N6C , the fraction of irreversibly rearranging particles that initially have CN = 6

(N6IR), and the average size of clusters of fast particles that contain an irreversibly rearranging

particle after tw = 1,000 s are plotted in Fig. 4.10. The static structural quantities are weakly

correlated with ϕA, typically exhibiting more short-range order as area fraction increases. N6

and ψ6 both increase by ∼10% as ϕA increases from 0.81 to 0.84. However, the orientational

order decay correlation length χ6 changes by ∼26%. Thus, while the samples only gain a little
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Figure 4.9: A: N6
Ntot

, the fraction of particles with a coordination number of 6 versus tw. B: N6C ,
the number of particles in the largest cluster of particles with 6 nearest neighbors versus tw.
C: Bond orientational order parameter, ψ6 versus tw. D: Orientational order correlation decay
length ξ6, extracted from g6, versus tw.
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more short-range order, the amount of orientational order a particle has becomes more correlated

with the amount of orientational order its neighbors have. Irreversible rearrangements have a

stronger ϕA dependence than static structural quantities do. N6IR is ∼500% larger at ϕA =

0.81 than it is at ϕA = 0.84. Thus, while the fraction of particles with short-range order only

increases moderately, particles with short-range order become significantly more stable. The

average number of particles in clusters of fast particles, containing a particle undergoing an IR

increases with ϕA, from ∼70 particles at ϕA = 0.81 to ∼100 particles at ϕA = 0.84. This is

expected due to the Adam-Gibbs hypothesis [3], as well as previous experiments [12, 169] and

simulations [95].

4.8 Summary

To summarize, heterogeneous glass dynamics are governed by domains of fast particles cou-

pled to irreversible rearrangements. As a glass ages, the motion of more particles is required

to accompany these irreversible rearrangement events, thus making relaxation more difficult to

achieve and slowing dynamics. In addition, the fraction of particles with local crystalline order

increases during aging. Particles with local crystalline order are especially stable and unlikely to

irreversibly rearrange. These results exhibit a clear connection to the slowing dynamics charac-

teristic of aging, as well as to the heterogeneous dynamics of glasses.
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Figure 4.10: A: N6, the fraction of particles with CN = 6, at tw = 10,000 s, versus ϕA. B: ψ6 at
tw = 10,000 s, versus ϕA. C: ξ6, the orientational order decay correlation length. D: The fraction
of irreversibly rearranging particles that initially have CN = 6. E: The number of fast particles in
clusters containing an irreversibly rearranging particle after tw = 1,000 s.
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4.9 Future Directions

These experiments point towards a number of open questions. For example, it would be inter-

esting to compare rearrangement events during aging to rearrangements that contribute to the

particle relaxation. This would allow us to determine if IRs move the system towards equilib-

rium, or if they are the events that comprise equilibrium particle relaxation. To facilitate such

a comparison, we could quench to a lower packing fraction which will age to completion. Ini-

tially, the MSD will age like in the data presented in this chapter, but eventually the MSD will

stop changing. If the particle relaxation time is within the experimental window (∼ 100 sec-

onds), we can directly compare the rearrangements that occur after aging to the rearrangements

that occur during aging.
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Chapter 5

Observation of the Disorder-Induced

Crystal-to-Glass Transition

5.1 Introduction

Disorder plays a critical role in traditional melting and freezing phenomena and in the forma-

tion of glasses. Melting from crystal-to-fluid, for example, is a sharp transition accompanied by

loss of orientational and translational order and by a dramatic decrease in flow resistance and

rearrangement timescale [123]. By contrast, orientational and translational order do not change

significantly at the liquid-to-glass transition, even as viscosity and rearrangement timescale di-

verge [164]; nevertheless frozen-in residual disorder is critical for glass formation. An inter-

esting, less-studied but closely related problem [51, 65, 69, 87, 88, 122, 135, 139, 140, 160, 187]

concerns the role played by frustration and disorder in driving the transformation of a crystal

to a glass. Herein we describe experiments which explore this transition, from crystalline solid

89



to glass as a function of quenched disorder. The resultant glassy phases acquire typical prop-

erties such as dynamic heterogeneity [13, 87, 88, 138, 169] and disorder, but the crystal-to-glass

transition is quite sharp, exhibiting features often associated with melting.

Investigations of glass transitions and structural arrest are of broad interest, in part because

the new concepts thus-generated affect understanding of a wide variety of materials across a

wide swath of scientific communities [13, 87, 88, 125, 169, 174, 191], including molecular [149],

colloidal [169], granular [92], and polymeric [74] glasses. The experiments reported in this

contribution relate closely to studies exploring how polydispersity prevents crystallization [7, 8,

49, 96, 115, 144, 175]. Our investigation, however, differs from the above in important ways;

single-particle spatial resolution, for example, permits quantitative exploration of orientational

order and dynamic heterogeneity as a function of packing fraction and disorder across the crystal-

glass transition.

5.2 Methods and Materials

The experiments employ temperature-dependent nearly-hard-sphere binary colloidal suspen-

sions composed of two particle sizes with substantially different diameters [181, 191]. The

number fraction of the smaller diameter ‘dopant’ particles is varied from 0.0 to 0.5, and the

area fraction of the two-dimensional (2D) suspension is varied from ∼0.75 to ∼0.90 at each

dopant concentration. This approach enables us to trace sample evolution as function of in-

creasing quenched disorder at fixed area fraction. Structural correlations associated with orien-

tational order and dynamic correlations associated with particle rearrangements are measured.

The path from crystal to glass is marked by a sharp drop in structural correlations and a sudden
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jump in dynamical correlations. The crystal-glass transition bears structural signatures similar

to the crystal-fluid transition [66,123]: the orientational order correlation function changes form

abruptly from quasi-long-range to short-range at the transition point, and the orientational or-

der susceptibility exhibits a maximum at the transition point. A similarly sharp transition from

homogeneous to heterogeneous dynamics accompanies these structural changes; in particular,

domains of correlated particle rearrangements (i.e., dynamic heterogeneity) appear to turn-on

suddenly, and a dynamic correlation length-scale increases sharply from ∼2 to ∼6 particle di-

ameters across the transition point. The crystal-to-glass transition is thus measured to differ from

the liquid-to-glass transition in qualitative and quantitative ways.

Binary mixtures of repulsive particles have been used as model glasses in experiment [6,110,

181, 191] and simulation [79, 95, 125]. The present experiment employs aqueous suspensions

of micron-size poly(N-isopropyl acrylamide) microgel colloidal spheres (i.e. NIPA particles),

whose diameters increase as temperature is reduced [132, 142]. The particles are very similar to

those used in recent phase transformation experiments and are described therein [4, 66, 68, 147,

176,181,191]. A binary mixture of NIPA particles is sandwiched between two glass cover slips,

creating a quasi-2D system. The sample consists of a mixture of NIPA spheres with small and

large diameters, DS= 1.09 µm and DL= 1.55 µm, respectively, at temperature T = 28.0◦C.

The polydispersity of each particle type is ∼3%, and the particle interaction potentials are short-

range repulsive with a soft tail [66].

We synthesized many bidisperse suspensions with varying small particle number fractions,

nS (i.e. nS= 0.00, 0.01, 0.02, 0.04, 0.05, 0.07, 0.10, 0.15, 0.20, 0.28, 0.50). By adjusting the

sample temperature using a microscope objective heater (BiOptechs), the area fraction, ϕA, was
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readily increased from ϕA ≈ 0.75 to ϕA ≈ 0.90 with a step size of ∼0.01 in ϕA. Fig. 5.1

summarizes nS and ϕA in every sample. Trajectories with varying nS and fixed ϕA can be

constructed by following a horizontal line across the diagram. Data were collected at each ϕA/nS

combination for 3000 seconds at a video rate of 3 frames per second. The field of view was 60

µm by 80 µm and contained ∼2000 particles.

0.0 0.1 0.2 0.3 0.4 0.5
0.75

0.80

0.85

0.90

0.95  Glass
 Crystal
 Liquid

 

 

A

nS

Figure 5.1: Diagram summarizing all collected data. The crystalline phase is plotted with trian-
gles, the glass phase is plotted with crosses, and the liquid phase is plotted with squares. Data
presented in the remainder of the paper come from points touching the dashed line. Experimen-
tal microscope images of sample sub-regions are displayed from suspensions with nS = 0.01,
ϕA = 0.89 (crystal), nS = 0.28, ϕA = 0.90 (glass), and nS = 0.28, ϕA = 0.79 (liquid).
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5.3 Structural Quantities

Orientational order is characterized by the bond orientational order parameter:

ψ6 = 1
NtotCN

∑Ntot
j=1

∑CN
k=1 |ei6θjk |, where θjk is the angle between the x-axis and the j − k

bond between particles j and k, CN is the coordination number of particle j, and Ntot is the

total number of particles. The value of ψ6 at ϕA = 0.85 is plotted as a function of nS in Fig.

5.2 b. As nS increases from 0, ψ6 decays as a power law. Additionally, the areal density of free

disclinations, ND, was measured to increase sharply and then stabilize for larger nS (Fig. 5.2

c). Breakup of dislocations (free and bound) into free disclinations is typically associated with

formation of the liquid phase [66, 123].

To characterize the spatial persistence of orientational order, the correlation function g6(r=|ri-rj |) =

⟨ψ∗
6i(ri)ψ6j(rj)⟩, where ri and rj are the positions of particles i and j, is derived from the data

(Fig. 5.2 d). Two distinct regimes corresponding to crystal and glass are quantitatively identified:

g6 ∼ r−η (quasi-long-range) for the crystalline state (nS < 0.02) and g6 ∼ e
− r

ξ6 (short-range)

for the glass state (nS ≥ 0.02). By contrast, g6 changes very little across the liquid-to-glass

transition [164].

Temporal fluctuations in ψ6 are characterized by the susceptibility: χ6 = Ntot(⟨(ψ6)
2⟩ −

⟨ψ6⟩2) where ψ6 is the average of ψ6 within one image frame (ψ6 =
∑Ntot

i=1 |ψ6|/Ntot), and angle

brackets indicate average over time (see Fig. 5.2 a). To ameliorate finite-size effects, χ6 is cal-

culated in multiple sub-boxes containing different numbers of particles and is then extrapolated

to the infinite size limit [66] (see Online Supporting Material). Interestingly, this susceptibility

reaches its maximum at nS = 0.02, the same value of nS that marks the change from quasi-long-

range orientational order to short-range orientational order (i.e. the dashed line in Fig. 5.2 a-c).
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Figure 5.2: a: The bond orientational order parameter (ψ6) susceptibility, χ6, versus nS , at area
fraction ϕA = 0.85. The dashed line marks nS = 0.02, the point where χ6 reaches its maximum
value. The solid line guides the eye. b: ψ6 versus nS , at area fraction ϕA = 0.85. The solid line
is a power law fit. c: Free disclination density, ND, the number disclinations per µm2, versus nS
at ϕA = 0.85. The solid line guides the eye. d: Envelope of the local maxima of the orientational
order spatial correlation functions g6(r) for nS = 0.00, 0.01, 0.02, 0.05, 0.11, 0.20, 0.28, 0.50,
and packing fraction ϕA = 0.85. The complete (oscillating) g6 is shown for nS = 0.01 (dashed
line).
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Thus the variation of both the correlation length and the orientational order susceptibility, χ6,

suggest a sharp transition between crystal (ordered) and glass (disordered) states as a function of

quenched disorder.

To ameliorate finite-size effects, we calculated χ6 in different size subboxes within the sam-

ple and then extrapolated to the infinite size limit, thus attaining the thermodynamic limit. The χ6

of small subboxes were noisy due to poor statistics; thus before calculating χ6, we randomized

each particles position within the box while leaving its ψ6 untouched. Position randomization

did not affect χ6 in the largest box, but smoothed χ6 in subboxes, averaging over spatial fluc-

tuations while preserving time fluctuations. χ6 is plotted in Fig. 5.3 for N = 2000 particles and

for the N→ ∞ limit. Without this extrapolation, χ6 is noisier, but the transition point is still

resolved.

The sharp decrease in orientational order correlation length, the peak in χ6 (ψ6 suscepti-

bility), and the increase in defects (free disclinations) associated with the liquid state are all

reminiscent of the crystal-liquid transition [66,123], suggesting a distinct transition from crystal-

to-glass via increasing quenched disorder [51,122]. This result stands in contrast to the transition

from liquid-to-glass, where changes in structural correlations are not observed [164]. Thus the

present system appears to be an excellent new model for study of the relationship between struc-

tural order and glass dynamics (e.g., dynamic heterogeneity).

5.4 Dynamic Quantities

To explore dynamical variations with nS , we first compute the two-point self correlation func-

tion: Q2(dL,∆t) = 1
Ntot

∑Ntot
i=1 exp(−

∆r2i
2d2L

) [20]. Here dL is a pre-selected length scale to be
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Figure 5.3: χ6, the ψ6 susceptibility, calculated for N = 2000 (squares) and extrapolated to
N→ ∞ (open circles).
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probed and ∆ri is the distance particle imoves in time ∆t. If a particle moves a distance smaller

than dL, Q2 will be close to 1; if a particle moves a distance greater than dL, Q2 will be close to

0. Plots of Q2 for dL = 0.05 µm are given in Fig. 5.4 a. For the crystalline states (nS < 0.02),

Q2 plateaus and does not decay within the experimental window. Conversely, for glass states,

Q2 decays within the observed time frame, due to the rearrangement of particle cages as the

particles seek new configurations. This effect was first noted in [65].

Small particles are slightly, but not significantly more mobile than large particles at long

times. For example, Q2 is shown in Fig. 5.5 for ϕA = 0.85 and nS = 0.18 for three different

values of dL.

The emergence of domains of correlated rearrangements is central to many different prop-

erties of glasses [13, 87, 88, 138, 169]. This so-called dynamic heterogeneity is characterized

by temporal fluctuations in Q2, and these fluctuations are commonly quantified by the dynamic

susceptibility [2, 13, 20], χ4(dL,∆t) = Ntot(⟨Q2(dL,∆t)
2⟩ − ⟨Q2(dL,∆t)⟩2), as a function of

lengthscale dL and timescale ∆t. Rather than selecting arbitrary length and time scales, χ4 is

calculated for all relevant values of dL and ∆t (shown in Fig. 5.6 for nS = 0.16). From this

plot, the value of dL that maximizes χ4 can be selected. The variation of χ4 with nS , at the

value of dL that maximizes the peak in χ4, is plotted in Fig. 5.4 b for ϕA = 0.85 and nS = 0.0,

0.01, 0.025, 0.07, and 0.16. For nS > 0.02, χ4 exhibits a peak similar to that found in previous

works [1,2,13,20,59]. Conversely, χ4 is small and flat for samples with nS < 0.02, as expected

for crystalline systems.

The maximum value of χ4 (i.e. χ∗
4) is plotted in Fig. 5.7 a for each nS at ϕA = 0.85. In

crystalline suspensions, χ∗
4 is small (∼1). Once nS is increased beyond 0.02, however, χ∗

4 jumps
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Figure 5.4: a: The two-point-correlation function, Q2, is plotted versus ∆t, for dL = 0.05µm
and for nS = 0.00 (solid squares), 0.01 (solid circles), 0.02 (open triangles), 0.07 (open squares),
0.16 (open circles). b: The four-point dynamic susceptibility, χ4, is plotted versus ∆t for the
same values of nS as in a; the value of dL is chosen to maximize peak height.
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Figure 5.5: Q2 versus ∆t for dL = 0.05, 0.25, and 0.86 µm for large particle (open squares) and
small particles (solid squares) at ϕA = 0.85 and nS = 0.16.
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discontinuously to ∼35. As nS is increased still further, χ∗
4 remains fairly constant. This sharp

change is absent in the liquid-glass transition [2, 13]. For comparison we plot χ∗
4 across the

liquid-glass transition in this same experimental system as a function of particle area fraction at

fixed dopant concentration nS = 0.25 (i.e., along the vertical line with nS = 0.25 in Fig. 5.1);

χ∗
4 increases continuously as packing fraction is increased (Fig. 5.7 b), similar to [2, 13].

χ∗
4 can be related to the number of particles participating in a dynamically heterogeneous

event [1]. The sudden variation of χ∗
4 is thus indicative of a sudden increase in the size of domains

of correlated rearranging particles as the system evolves from crystal to glass. When too much

quenched disorder exists in the sample for crystallization to occur, the suspension is pushed

out of equilibrium as it searches for a configuration to minimize its free energy. These search

pathways are constrained by the suspension’s large packing fraction, and rearrangements must

occur in a collective manner. Interestingly, once in the glass phase, further increasing nS moves

χ∗
4 to larger values of dL (Fig. 5.7 c), implying relaxation events are more effective. However, χ∗

4

itself does not increase significantly, thus implying the degree of quenched order has little effect

on the domain size of collective rearrangements (see Online Supplemental Material for further

discussion).

To further characterize the domain size of the correlated rearrangements, we derived spatial

correlations of 1−Q∗
2, yielding the rearrangement spatial correlation function: gQ2(r=|ri-rj |) =

⟨(1−Q∗
2i(ri))(1−Q∗

2j(rj))⟩. Here Q∗
2 is calculated for values of dL and ∆t that maximize χ4,

and thus dynamic heterogeneity. Note that correlations of 1−Q∗
2 relate to rearranging particles,

i.e. particles moving farther than dL. These correlation functions are readily fit by decaying

exponentials (gQ2 ∝ exp(− r
ξQ2

)), and a correlation length, ξQ2 , is thus readily extracted (Fig.
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Figure 5.7: a: The maximum value of χ4, χ∗
4, plotted versus the fraction of small particles,

nS . The solid line is a linear fit, to guide the eye. The dashed line marks nS = 0.02. Inset:
Rearrangement correlation length, ξQ2 , versus nS . The solid line is a linear fit to guide the eye.
The dashed line marks nS = 0.02. b: χ∗

4 plotted versus ϕA for nS = 0.25. The solid line is a
power law fit to guide the eye. c: The maximum value of χ4 is plotted as a function of dL for
four values of nS .
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5.7 a inset). For crystalline samples (nS < 0.02), ξQ2 ∼2DL, implying that when particles

move large distances, only their nearest neighbors move large distances. For glass samples

(nS > 0.02), ξQ2 ∼6DL, implying that when particles move large distances, they do so in

a correlated manner involving many particles. The size of ξQ2 jumps sharply at nS = 0.02,

along with the discontinuous increase in χ∗
4 (during the liquid to glass transition, ξQ2 follows

the same continuous trend as χ∗
4). Thus the onset of dynamic heterogeneity appears nearly

discontinuously.

5.5 Summary

The dynamical transition from crystal to glass is thus characterized by a discontinuous jump

in χ∗
4, the maximum value of the dynamic susceptibility, and a discontinuous increase in spatial

correlation decay length from ∼2DL to ∼6DL. These results stand in contrast to the liquid-glass

transition, during which dynamics change relatively more slowly and continuously. The rapid

onset of glass dynamics occurs at the same value of nS as the structural transition from crystal

to glass. In other words, dynamic heterogeneity appears simultaneously with the disappear-

ance of quasi-long-range orientational order. To conclude, while the liquid-to-glass transition is

somewhat ambiguous and often difficult to define, the crystal-to-glass transition with increasing

quenched disorder appears sharp and unambiguously defined.

5.6 Future Directions

In this work, we explored the effects of holding the diameter ratio constant and varying the small

particle fraction. Future experiments could investigate the crystal-to-glass transition by doing the
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opposite, i.e., holding the small particle fraction constant and varying the diameter ratio. Along

this trajectory, the crystal-to-glass transition might be less sharp.

It would also be interesting to repeat these experiments in three-dimensional samples. Crys-

tallization is highly dependent on dimensionality, so the nature of the crystal-to-glass transi-

tion likely depends on dimensionality as well. For example, in three-dimensions, the phase

transition is first order, and there is a large fluid-crystal coexistence regime that is absent in

two-dimensions. Thus, investigating the crystal-to-glass transition in three-dimensions could

potentially elucidate the effect of dimensionality on the crystal-to-glass transition.
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Chapter 6

Rotational and Translational Phonon

Modes in Glasses Composed of

Ellipsoidal Particles

6.1 Introduction

Although the “glass transition” occurs in a broad array of disordered systems, including molec-

ular [5], polymer [78], granular [2], and colloidal glasses [169], much of the physics of granular

and colloidal glasses has been derived from investigation of the simplest realization, namely

spheres. The constituent particles of many relevant glasses, however, are anisotropic in shape or

have orientation-dependent interactions; such anisotropies are believed to affect many properties

of glasses [44, 45, 82, 97, 114, 152]. Thus, exploration of glasses composed of anisotropic parti-

cles holds potential to uncover new consequences for both the physical mechanisms of the glass

105



transition and for materials applications [170].

In glasses composed of frictionless spherical constituents, rotations of the spheres do not cost

energy. Rotational modes therefore correspond to zero-frequency phonon excitations in the har-

monic approximation. For anisotropic constituents, however, rotations are more energetically

costly and can couple to translations. Glass vibrational properties, including the phonon den-

sity of states, are therefore dependent on the major/minor-axis aspect ratio of the constituent

particles. Simulations of disordered systems with aspect ratios marginally greater than 1.0,

for example, find low energy rotational modes that are largely decoupled from translational

modes [113,189]; apparently, when particles rotate in such systems, neighboring particles rotate

but their positions remain essentially unperturbed.

In this section, we experimentally study glasses composed of ellipsoidal particles with aspect

ratios, α, ranging from 1.0 − 3.0. By extending techniques from recent papers [23, 57, 58, 90]

to rotations, we employ video microscopy to derive the phonon density of states of correspond-

ing “shadow” ellipsoidal glasses with the same geometric configuration and interactions as the

experimental colloidal system but absent damping [23]. We find the spectra and character of

vibrational modes in these disordered media to be highly dependent on particle aspect ratio and

particle aspect ratio distribution. For glasses composed of particles with small median aspect

ratios of ∼1.1, the lower-frequency modes are almost completely rotational in character, while

higher-frequency ones are translational. In glasses of particles with larger aspect ratios (∼3.0),

significant mixing of rotations with translations is observed. In contrast to numerical findings

for zero-temperature systems [113, 189], we find that the very lowest frequency modes for both
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Figure 6.1: a. Distribution of particle aspect ratio, N(α), in samples with peak aspect ratio
αPeak = 1.1. b. Vibrational density of states. Dashed lines separate 3 distinct regimes corre-
sponding to modes in the vector plots displayed in f-h. c. Translational (solid black line) and
rotational (dashed red line) contributions to participation fraction (PF ) plotted versus frequency
ω. d. Participation fraction-averaged aspect ratio, ᾱω, plotted versus frequency ω. e. Participa-
tion ratio (PR) plotted versus frequency ω. f-h. Displacement vector plots of eigenmodes from
lowest frequency (f) to highest (h). The size of each arrow is proportional to the translational
displacement of the particle at that position. The color intensity of each particle is proportional
to the rotational displacement of the particle at that position (with red clockwise, blue counter-
clockwise, faint color is small rotation). Aspect ratio and frequency are specified below each
plot. i. Experimental snapshot.
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systems have a mixed rotational/translational character, independent of aspect ratio.

6.2 Materials and Methods

The experiments employ micron-sized polystyrene particles (Invitrogen) stretched to differ-

ent aspect ratios [21, 52, 72]. Briefly, 3µm diameter polystyrene particles are suspended in a

polyvinyl alcohol (PVA) gel and are then heated above the polystyrene melting point (∼120◦ C)

but below the PVA melting point (∼180◦ C). In the process, the polystyrene melts, but the PVA

gel only softens. The PVA gel is then placed in a vise and stretched. The spherical cavities that

contain liquid polystyrene are stretched into ellipsoidal cavities. When the PVA gel cools, the

polystyrene solidifies in the distorted cavities, and becomes frozen into an ellipsoidal shape. The

hardened gel dissolves in water, and the PVA is easily removed via centrifugation. Each iteration

creates ∼109 ellipsoidal particles in ∼50µL. Experiments are performed on samples stretched

to 110% and 300% of their original size (snapshots of experimental particles are shown in Fig.

6.1 i, Fig. 6.5 i). The stretching scheme produces a distribution of aspect ratios with standard

deviation ∼18%. The distribution of aspect ratios is most important for suspensions that are

only slightly distorted from their initial spherical shape and therefore have greater propensity to

crystallize. The distribution of aspect ratio, N(α), for suspensions with more spherical particles

(Fig. 6.1 a) is peaked at αPeak = 1.1, with mean aspect ratio ᾱ = 1.2, but N(α) also has a

long tail extending to aspect ratios as large as α = 2.0. A similar plot is shown in Fig. 6.5 a for

samples with αPeak = 3.0 and ᾱ = 3.3.

108



Particles are confined between glass plates to quasi-two-dimensional chambers. From sepa-

rate brightness calibration studies, we estimate the chambers to be no more than 5% larger than

the minor axis particle length. In all samples, dynamics are arrested on the particle diameter

lengthscale and the spatial correlation functions of orientational order decay exponentially, with

an average bond-orientational order parameter of 0.3 (0.03) for αPeak = 1.1 (3.0).

6.3 Glasses Composed of Anisotropic Particles

Previous works have noted that the packing fraction at the jamming transition varies with par-

ticle shape [44]. In order to characterize how close our samples are to the jamming transition,

we slowly evaporated water from the sample chamber. Complete evaporation packs particles at

their maximum packing fraction, which is equivalent to the jamming transition for hard parti-

cles. We verified this claim for bidisperse mixtures of spheres of size ratio 1.4, where we find

ϕA,MAX = 0.84(1), as expected. For ellipsoids with αPeak = 1.1, ϕA,MAX = 0.87(1), consis-

tent with [44,45,145], while the sample employed in this paper has ϕA = 0.86(1). For ellipsoids

with αPeak = 3.0, ϕA,MAX = 0.84(1), again consistent with [44, 45, 145], while the sample

employed in this paper has ϕA = 0.83(1). Thus both samples are near, but below, the jamming

transition, with ϕA,MAX − ϕA ≈ 0.01.

As a first step towards elucidation of glass dynamics in these systems, we compute the two-

time self-overlap correlation function: Q2(dL,∆t) = 1
Ntot

∑Ntot
i=1 exp(−

∆ri(∆t)2

2d2L
) (Fig. 6.1 b)

[35]. Here dL is a pre-selected length scale to be probed, Ntot is the total number of particles,

and ∆ri(∆t) is the distance particle i moves in time ∆t. If a particle moves a distance smaller
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than dL, Q2 will remain approximately unity; if a particle moves a distance greater than dL, Q2

will fall to zero. Notice that for glasses of each aspect ratio, Q2(dL = 1.0 µm) decays very little

over the experimental timescale, thereby indicating that glass dynamics are arrested at length

scales of order the particle-size.
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Figure 6.2: The two-point-correlation function, Q2, which probes self overlap, is plotted versus
delay time for ellipsoidal glasses with different aspect ratios. Dynamic arrest is apparent.

To demonstrate the absence of long-range orientational order in these systems, the bond-

orientational order parameter, ψ6 = 1
NtotCN

∑Ntot
j=1 |

∑CN
k=1 e

i6θjk | and its spatial correlation

function g6(r=|ri-rj |) = ⟨ψ∗
6i(ri)ψ6j(rj)⟩ are calculated (Fig. 6.1 c). Here θjk is the angle

between the x-axis and the j−k bond between particles j and k, CN is the coordination number

of particle j, and ri and rj are the positions of particles i and j. g6 decays faster in samples with
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αPeak = 3.8 than it does in samples with αPeak = 1.1. However, g6 decays exponentially in

each sample (see exponential fit line in Fig. 6.3), a signature of structural disorder characteristic

of glasses (e.g. [159]).

To demonstrate the absence of long-range nematic order in these systems, the nematic order

parameter, S =
∑Ntot

j=1 2 ∗ cos(θj)2− 1, where θj is the angle between the orientation of particle

i and the nematic director, and angle brackets represent ensemble averaging, is largely absent.

For an isotropic distribution of orientations, S = 0, and for perfectly aligned particles S = 1. The

mean value of S in our high aspect ratio samples (αPeak = 3.0) is 0.05, and the maximum value

of S is 0.11 (Fig. 6.4 a). The mean value of S in samples with αPeak = 1.1 is 0.00, and the

maximum value of S is 0.25 (Fig. 6.4 b).

6.4 Measurement of Phonon Modes for Anisotropic Particles

We extract vibrational properties by measuring displacement correlations. Specifically, we de-

fine u(t) as the 3N -component vector of the displacements of all particles from their aver-

age positions (x̄, ȳ)and orientations (θ̄)(u(t) = (x(t) − x̄, y(t) − ȳ, θ(t) − θ̄)), and extract

the time-averaged displacement correlation matrix, or covariance matrix, Cij = ⟨uiuj⟩t where

i, j = 1, ..., 3Ntot run over particles, positional and angular coordinates, and the average runs

over time. In the harmonic approximation, the correlation matrix is directly related to the

sample’s stiffness matrix, defined as the matrix of second derivatives of the effective pair in-

teraction potential with respect to particle position and angle displacements. In particular,

(C−1)ijkBT = Kij where Kij is the stiffness matrix. Experiments that measure C therefore

permit us to construct and derive properties of a “shadow” ellipsoidal glass system that has the
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same static properties as our colloidal system (e.g., same correlation matrix, same stiffness ma-

trix, but no damping) [23]. Following [18], we expect undamped hard particles that repel entrop-

ically near but below the jamming transition to give rise to solidlike vibrational behavior on time

scales long compared to the collision time but short compared to the time between particle rear-

rangement events [57, 58]. Thus, the stiffness matrix arising from entropic repulsions is directly

related to the dynamical matrix characterizing vibrations, Dij =
Kij

mij
, wheremij =

√
mimj and

mi is an appropriate measure of inertia. For translational degrees of freedom mi = m, where m

is the particle mass. For rotational degrees of freedom, mi = Ii represents the particle moment

of inertia with respect to axes centered about each particle’s center of mass and pointing in the z-

direction, Ii = m(a2i + b2i )/2, where ai and bi are the major and minor radii of the ith ellipsoid.

The eigenvectors of the dynamical matrix correspond to amplitudes associated with different

phonon modes, and the eigenvalues correspond to the frequencies/energies of the corresponding

modes. Data were collected over 10, 000 seconds so that the number of degrees of freedom,

3N ≈ 2000, is small compared to the number of time frames of ∼ 8000 [23]. Additionally, we

find Kij is far above the noise only for adjacent particles, as expected.

The vibrational density of states, D(ω), is plotted in Fig. 6.1 b for the system with αPeak =

1.1. We see that D(ω) exhibits two distinct peaks. By contrast, zero-temperature simulations

find for α sufficiently close to 1 and for sufficiently small systems close enough to the jamming

transition, that these peaks split completely [113,189]. For ellipsoids with αPeak = 3.0 (Fig. 6.5

b), on the other hand, D(ω) has a single peak, consistent with numerical predictions [113, 189].

Thus, the vibrational spectrum of ellipsoids with small anisotropy is significantly different from

those of spheres or of ellipsoids of higher aspect ratio.
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6.4.1 Error and Uncertainty in Measurement of Phonon Modes

While Kij is far above the noise only for adjacent particles, it is not 0 for non-neighboring par-

ticles. Uncertainty from particle tracking uncertainty leads to an uncertainty in ω of about 750

rad/s. Further, it is possible that small particle rearrangements could induce error in measured

displacement covariance. While we verify that each particle has the same position at the be-

ginning and end of the data collection period within our spatial resolution, rearrangements that

occur just below our noise level could influence the measured fluctuations. Understanding the

sources of noise in the displacement covariance method is an ongoing effort (e.g., [70]) that

holds important consequences for colloidal experiments.

6.5 Phonon Modes for Glasses Composed of Anisotropic Particles

Representative modes are shown in Fig. 6.1 f-h and Fig. 6.5 f-h for samples with αPeak = 1.1

and 3.0, respectively. Modes from all samples can qualitatively be split into 3 regimes.

For αPeak = 1.1, 3 distinct regimes exhibiting different behavior are labelled in Fig. 6.1

b-e. Above ω ≈ 54000 rad/s, i.e., frequencies above the “dip” separating the two peaks in

the density of states (Fig. 6.1 b), the modes in regime 3 are translational in character. The

lowest frequency modes in regime 3 are spatially extended, while the highest frequency modes

are spatially localized, similar to modes in glasses composed of spheres. Modes just above

ω ≈ 54000 rad/s are enriched in longer ellipsoids and have a mixed translational/rotational

character. Modes in regime 2, extending from 1300 . ω . 54000 rad/s, are strongly rotational

in character and are concentrated on small aspect-ratio particles. In regime 1, below ω ≈ 1300

rad/s, modes again have a mixed rotational/translational character and are concentrated on longer
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particles. Regime 1 was not observed in numerical simulations [189] of monodisperse ellipsoid

packings at zero temperature. The likely origin of the new modes are the thermal fluctuations

of particles with larger than average aspect ratios. Specifically, the mean value of elements of

the stiffness matrix connecting particles to their neighbors decreases as aspect ratio increases;

therefore longer ellipsoids are more weakly coupled to their neighbors and are more excited at

low frequency.

Fig. 6.5 b-e show that for αPeak = 3.0, high frequency modes above ω ≈ 3 × 105 rad/s

in regime 3 are translational in character with a nearly average mode-averaged aspect ratio,

resembling those of spheres. Thus, the modes are translational in character, crossing over from

extended to localized at the upper end of the spectrum. Modes with 20000 . ω . 3 × 105

rad/s in regime 2 are extended with a mixed rotational/translational character and are slightly

concentrated on longer ellipsoids at higher frequencies and on shorter ellipsoids at somewhat

lower frequencies. In regime 1, ω . 2× 104 rad/s, modes are again slightly enriched in longer-

aspect ratio particles and are quasilocalized with mixed character translational/rotational.

Note, the behavior of modes at high frequencies (regime 3) is qualitatively very similar in

both systems. Additionally, the qualitative character of modes at the lowest frequencies (regime

2) is very similar in both systems. The largest qualitative differences between large and small

aspect ratios systems occurs in regime 2, where modes have primarily rotational character for

systems with αPeak = 1.1 and modes have mixed translational/rotational character for systems

with αPeak = 3.0. In the rest of the paper, we present quantitative analysis supporting the

qualitative characterization of modes in these systems given above.

To quantitatively decompose modes into their translational and rotational contributions, we
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sum the participation fractions, PF , of translational and rotational vibrations over all particles,

for each mode. The eigenvectors of each mode are normalized such that
∑

m,n eω(m,n)
2 = 1,

wherem runs over all particles and n runs over all coordinates. The participation fraction for par-

ticlem, component n, in mode with frequency ω is then PF (ω) = eω(m,n)
2. Thus, the transla-

tional participation fraction in a mode with frequency ω isPF,XY (ω) =
∑

m=1..N,n=X,Y eω(m,n)
2

and the rotational participation fraction is PF,θ(ω) = 1 − PF,XY (ω) =
∑

m=1..N eω(m, θ)
2.

Translational and rotational participation fractions are plotted in Fig. 6.1 c and Fig. 6.5 c.

To explore effects of polydispersity we measure the eigenvector-weighted ellipsoid aspect

ratio as a function of mode frequency. Specifically, we compute ᾱω =
∑

m,n αmeω(m,n)
2,

where αm is the measured aspect ratio of particle m. ᾱω is thus a measure of the average

particle aspect ratio for the particles participating in mode ω (Fig. 6.1 d and Fig. 6.5 d). For

glasses composed of particles with αPeak = 1.1, the average over all modes of ᾱω is ᾱ =

1.17 (the dotted horizontal line in Fig. 6.1 d). Fig. 6.1 d shows that the modes in regime 1

are concentrated on particles with higher aspect ratios. The rotational modes of regime 2 are

dominated by particles with smaller aspect ratios, while the modes near the crossover between

regimes 2 and 3 tend to be concentrated on particles with larger aspect ratios. It is not surprising

that modes concentrated on long ellipsoids should have a mixed rotational/translational character

since long ellipsoids tend to displace neighboring particles as they rotate. At high frequencies

(ω ≈ 180, 000 rad/s), ᾱω approaches the global mean value of α.

For glasses composed of particles with αPeak = 3.0 (see Fig. 6.5 d), particles with smaller

aspect ratios (∼3.0) tend to participate in intermediate frequency modes while those with larger

aspect ratios (∼3.3) tend to participate in higher frequency modes. Additionally, modes with
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particles with larger aspect ratios tend to participate in the lowest frequencies (ω < 12000 rad/s),

though the variance from mode-to-mode is large (see large error bars in Fig. 6.5 d).

Finally, we quantify the spatial extent of individual modes by computing the participation

ratio, PR(ω) = (
∑

m,n eω(m,n)
2)2/(Ntot

∑
m,n eω(m,n)

4) (Fig. 6.1 e and Fig. 6.5 e). The

participation ratio provides an indication of mode localization in space. If a mode is localized, a

small number of terms will dominate, making
∑

m,n eω(m,n)
4 and (

∑
m,n eω(m,n)

2)2 similar

in size so PR(ω) ≈ 1/N .

Low frequency modes for samples with αPeak = 1.1 have mixed rotational/translational

character. These modes were not seen in zero-temperature simulations in which all particles have

identical aspect ratios [113,189]. These ‘mixed’ modes typically involve larger aspect ratio parti-

cles. To understand why these modes appear at low frequencies, we calculated the average spring

constant connecting a particle’s rotation to its nearest neighbors KiNN =< Kij/mij >NN ,

where <>NN indicates an average over nearest neighbors pairings, i runs over all theta compo-

nents and j runs over all components. We then plotted KiNN as a function of aspect ratio (Fig.

6.4). KiNN decreases as α increases, indicating that the average spring constraining rotation de-

creases as α increases. Smaller spring constants KiNN lead to vibrations at smaller frequencies.

Thus, particles with longer aspect ratios tend to vibrate at lower frequencies.

6.6 Summary

To summarize, low frequency modes in glasses depend strongly on constituent particle aspect

ratio. Rotational modes tend to occur at lower frequencies than translational vibrations, and, for

glasses with aspect ratios ∼1.1, there is a frequency regime in which the spectrum is strongly
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rotational in character. Additionally, even within each sample, particles with smaller aspect

ratios tend to participate more in rotational modes while particles with larger aspect ratios tend to

participate more in translational modes. The distribution of particle aspect ratio, N(α), is thus an

important physical factor affecting phonon modes. Recent work suggests that low-participation-

ratio, low-frequency modes appear to correlate with regions prone to rearrangement or plastic

deformation [174]. Thus, the existence of additional low frequency modes concentrated around

particles with short aspect ratios may have important consequences for the mechanical response

of glasses.
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Chapter 7

Phonon Spectra of Disordered

Colloidal Clusters with Attractive

Interactions

7.1 Introduction

The phase behavior and vibrational properties of ensembles of repulsive particles are determined

largely by packing fraction [75,136]. Samples of monodisperse spheres, for example, gain struc-

tural order and eventually crystallize with increasing packing fraction [75], giving rise to low

frequency plane-wave-like phonon modes important for thermal and mechanical properties. In

a related vein, ensembles of polydisperse spheres gain contacts with increased packing frac-

tion, leading to vitrification [164] and “soft phonon modes” whose properties depend on average

numbers of interparticle contacts [178]. By contrast to these “space-filling” systems, particles
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with strong attractive interactions can form solid-like phases at low macroscopic packing frac-

tions [188]. Dilute gels, for example, mechanically percolate across large distances [104], and

disordered clusters containing relatively few particles often self-assemble into structures with

large local packing fraction [107, 116]. In this paper we explore how cluster morphology and

cluster size affect the vibrational properties of disordered materials held together by strong at-

tractive interactions. New understanding thus gained holds potential to elucidate fundamental

differences between glassy materials composed of particles with attractive versus repulsive in-

teractions, to uncover connections between vibrational spectra, mechanical stability, and the

jamming problem, and to discover those attributes of a disordered cluster that endow it with

bulk-like properties of glasses.

To date, a diverse collection of disordered systems have been observed to display surpris-

ing commonality in their vibrational properties. Such systems include molecular [151], poly-

mer [55], and colloidal glasses [23, 57, 90]. These disordered solids exhibit an excess of low

frequency modes that are believed important for their mechanical and thermal properties [134].

The low frequency modes also appear connected to scaling and mechanical behaviors of repul-

sive spheres near the zero-temperature jamming transition. At the jamming point, such disor-

dered packings are ”isostatic”, i.e., they have exactly the number of contacts per particle required

for mechanical stability; if a single contact is removed, the packing is no longer stable. Interest-

ingly, marginal stability permits particle displacements that maintain isostaticity without energy

cost; these motions are manifest as low frequency “soft” phonon modes [81, 178]. When the

sample packing fraction is increased above the jamming transition, the number of contacts per
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particle increases, the system is stabilized [125], and the number of soft modes is found to de-

crease [178]. In fact, the minimum soft mode frequency has been predicted to increase linearly

with number of contacts per particle above the isostatic requirement [178]. Recent experiments

have found some of these trends in thermal packings of repulsive particles [23,57,90], but appli-

cation of such concepts to systems of particles with attractive interactions has proven difficult.

Packings of attractive particles can achieve isostaticity at arbitrary packing fraction, and even

when they do not have enough contacts to be isostatic as a whole, the attractive systems can still

have local mechanically stable regions [81]. Thus, the study of vibrational properties in clusters

of attractive particles also provides useful clues about underlying mechanisms responsible for

the mechanical properties of disordered solids.

In this contribution we experimentally investigate the influence of cluster morphology and

size on the vibrational properties of disordered clusters of colloidal particles with attractive

interactions. The disordered clusters with high local packing fractions are formed in water-

lutidine (WL) suspensions wherein wetting effects induce fluid mediated attractions between

micron-sized polystyrene particles. Each cluster is characterized by the number of particles

it contains (N), the average number of nearest neighbors (NN), and the number of local iso-

static configurations (NIso). Displacement correlation matrix techniques employed in recent

papers [23, 57, 58, 90] are used to determine phonon spectra in each attractive glass cluster.

Specifically, video microscopy is employed to derive the phonon density of states of correspond-

ing “shadow” attractive glass clusters with the same geometric configuration and interactions as

the ”source” experimental colloidal system but absent damping [23]. Surprisingly, the spectra

and character of vibrational modes depend strongly on the average number of nearest neighbors
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(NN) but only weakly on the number of particles (N) in the glassy cluster. The median phonon

frequency, ωMed, which characterizes the distribution of low and high frequency modes, is ob-

served to be essentially constant for NN < 2 and then grows linearly with NN for NN > 2. This

behavior parallels concurrent observations about local isostatic structures, which are absent in

clusters with NN < 2 and then grow linearly in number for NN> 2. Thus cluster vibrational

properties appear to be strongly connected to cluster mechanical stability (i.e., fraction of locally

isostatic regions), and the scaling of ωMed with NN is reminiscent of the behavior of packings of

spheres with repulsive interactions at the jamming transition. Simulations of random networks

of springs corroborate observations and further suggest that connections between phonon spectra

and nearest neighbor number are generic to disordered networks.
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Figure 7.1: a. Plot summarizing the number of particles, N, and average number of nearest
neighbors, NN, in every cluster. b. Cluster with N = 261 and NN = 3.95. c. Cluster with N =
22 and NN = 3.91. d. Cluster with N = 22 and NN = 4.09. e. Plot of the temperature-dependent
interparticle potential, u(r), induced by near-critical water-lutidine mixtures, as a function of
particle separation at two different temperatures, T = 300.15 K and 306.45 K. f. The number-
fraction of locally isostatic configurations per particle, NIso/N is plotted versus NN. Solid lines
are linear fits within two separate regimes.
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7.2 Methods and Materials

The experiments employ bidisperse suspensions of micron-sized polystyrene particles (Invitro-

gen), with diameters dS = 1.5µm and dL = 1.9µm, and number ratio 1:2, respectively. Binary

mixtures of particles were used to minimize crystallization effects. Particles were suspended in

a mixture of water and 2, 6-lutidine (WL) near its critical composition, i.e., with lutidine mass

fraction of 0.28. Colloidal particles suspended in this near-critical WL binary mixture experience

temperature dependent repulsive or attractive interactions, whose origins can be fluid-mediated

wetting, as in the current experiments, or critical Casimir forces [14,71]. Interparticle potentials

were determined from measurements of the particle pair correlation function with liquid struc-

ture theory and image artifact corrections [67] (Fig. 7.1 a). Many different disordered particle

clusters are created by first suspending particles deep in the repulsive regime (300.15 K), and

then increasing the sample temperature (to 306.5K) in situ. Sample temperature control was

accomplished using an objective heater (Bioptechs) connected to the microscope oil immersion

objective [181, 182, 191]. Particles are confined between two glass coverslips (Fisher) with a

spacing of ∼(1.1 ± 0.05)dL, making the sample system quasi-2D. The glass cell was treated

with NaOH, so the particle-wall interaction potential is repulsive at relevant temperatures [154].

The global area fraction is ∼0.2. Disordered clusters of various sizes and shapes self-assemble.

Other clusters are assembled with aid of laser tweezers [61], either by grabbing particles and

adding them to existing clusters, or by dragging an optical trap across a cluster and forcing rear-

rangements. Samples equilibrated for about six hours, and video data were collected at a rate of

10 frames per second.
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7.3 Characterization of Structure

As noted above, the structure of particle clusters are characterized by several factors including

average number of nearest neighbors per particle and the number of locally isostatic configura-

tions. Neighbors are defined as particles located within a cutoff distance equal to the first min-

imum in the particle pair correlation function. Local isostatic regions consist of three particles

(a, b, and c) that are mutually nearest neighbors (a and be are neighbors, a and c are neighbors,

and b and c are neighbors). A plot summarizing N, NN, and NIso for each cluster studied is

shown in Fig. 7.1, along with experimental snapshots of selected clusters. NN tends to increase

non-monotonically with increasing N for our distribution of cluster sizes. The dependence of

NIso on NN exhibits two regimes. Specifically, NIso/N is 0 for NN< 2, becomes non-zero at

NN= /2, and then grows linearly with NN for NN> 2. Thus, we identify NN= /2 as the ”local

isostatic” point.
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Figure 7.2: a. Median frequency, ωmed, versus average number of nearest neighbors, NN. Two
regimes exist. For NN< 2 ωMed is constant (line is constant fit). For NN> 2 ωMed increases
linearly with NN (line is a linear fit). b. ωmed versus number of particles, N. c. ωmed versus
orientational order parameter, ψ6. d. ωmed versus average total nearest neighbor spring constant,
k.
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7.4 Measurement and Characterization of Phonon Modes

7.4.1 Measurement of Phonon Modes

The vibrational properties of each cluster are extracted by measuring displacement correlations

of the particles within each cluster. Specifically, we define u(t) as the 2N -component vector

of the displacements of all particles from their average positions (x̄, ȳ) and extract the time-

averaged displacement correlation matrix (covariance matrix), Cij = ⟨uiuj⟩t where i, j =

1, ..., 2Ntot run over particles and positional coordinates, and the average runs over time. In

the harmonic approximation, the correlation matrix is directly related to the stiffness matrix, de-

fined as the matrix of second derivatives of the effective pair interaction potential with respect

to particle position displacements. In particular, (C−1)ijkBT = Kij where Kij is the stiffness

matrix. Experiments that measure C therefore permit us to construct and derive properties of

a “shadow” glass system that has the same static properties as our colloidal system (e.g., same

correlation matrix, same stiffness matrix) [23]. Following [18], we expect undamped particles

that repel at short-range to give rise to solid-like vibrational behavior on time scales long com-

pared to particle collision times but short compared to the time between particle rearrangement

events [57, 58]. The stiffness matrix is directly related to the dynamical matrix characterizing

vibrations, Dij =
Kij

mij
, where mij =

√
mimj and mi is the mass of particle i. The eigenvectors

of the dynamical matrix correspond to amplitudes associated with the various phonon modes,

and the eigenvalues correspond to the frequencies/energies of the corresponding modes. Data

were collected over 10, 000 seconds so that the number of degrees of freedom, 8 ≤ 2N ≤ 500,

is small compared to the number of time frames (> 10× 2N ) [23]. Additionally, we find Kij is

far above the noise only for adjacent particles, as expected.
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7.4.2 Error and Uncertainty in Measurement of Phonon Modes

While Kij is far above the noise only for adjacent particles, it is not 0 for non-neighboring par-

ticles. Uncertainty from particle tracking uncertainty leads to an uncertainty in ω of about 750

rad/s. Further, it is possible that small particle rearrangements could induce error in measured

displacement covariance. While we verify that each particle has the same position at the be-

ginning and end of the data collection period within our spatial resolution, rearrangements that

occur just below our noise level could influence the measured fluctuations. Understanding the

sources of noise in the displacement covariance method is an ongoing effort (e.g., [70]) that

holds important consequences for colloidal experiments.

7.4.3 Characterization of Phonon Modes

Comparing the frequency spectra of clusters with small N can be challenging, because not

enough modes are present to clearly identify a traditional “peak” frequency, and fluctuations

can significantly shift the mean mode frequency. Instead, we characterize each cluster’s density

of states by its median frequency, ωmed, i.e. we choose the frequency, ωmed, such that half of the

cluster mode frequencies are smaller than ωmed and half are larger. Plots of ωmed as a function

of average number of nearest neighbors, NN, and as a function of total number of cluster par-

ticles, N (at fixed NN), are shown in Fig. 7.2. Surprisingly, ωmed has little correlation with N.

However, ωmed depends strongly on the average number of nearest neighbors (NN). We observe

two distinct regimes in this case. For NN< /2, ωMed is constant. For NN> 2, ωMed increases

linearly with NN, exhibiting a linear correlation coefficient, R, of R = 0.92 (R = 0.29 for N

and ωMed). Interestingly, the dependence of ωMed on NN is very similar to the dependence of
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the number-fraction of locally isostatic configurations per particle, i.e., NIso/N, on NN. These

observations suggest that the vibrational properties of disordered clusters is strongly dependent

on the presence of locally rigid elements. Note, we also expect to observe a correlation between

ωmed and N for our cluster distribution; this correlation arises because NN increases with N for

typical cluster distributions. Thus the vibrational spectra of a disordered attractive cluster should

become similar to that of a bulk glass as the total number of particles in the cluster increases;

however, the underlying mechanism for this effect depends on the average number of nearest

neighbors in the cluster, rather than total particle number.

The linear dependence of ωmed on NN (NN< 2) is reminiscent of the behavior of hard-

spheres in the vicinity of the zero-temperature jamming transition [178]. In this case, the charac-

teristic frequency of excess quasi-localized or “soft” modes, ω∗, is predicted to increase linearly

with NN when NN>NNC , where NNC is the number of contacts necessary for isostaticity.

Similarly, in our experiments with attractive particles, ωMed increases linearly with NN when

NN> /2 and locally rigid elements are present. Interestingly, in thermal experiments with re-

pulsive particles, ωMed shows a strong linear correlation with ω∗ (R = /0.96), and ωMed has

a strong linear relationship with NN. These observations therefore suggest that similar physics

may control properties of both highly packed glasses composed of particles with repulsive in-

teractions and low (overall) packing fraction disordered clusters composed on particles with

attractive interactions.

In order to further drive home the importance of number of nearest neighbors versus number

of particles in a cluster, consider two clusters that look very different (Fig. 7.1 b and c) but

have almost the same number of average nearest neighbors (NN). These clusters have similar
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characteristic frequencies (i.e., ωMed). On the other hand, two clusters that contain the exact

same number of particles but have different NN (Fig. 7.1 c and d) possess a set of very different

characteristic frequencies. More precisely, the clusters shown in Fig. 7.1 b-d contain N =

261, 22, 22 particles and have NN = 3.95, 3.82, 4.18, respectively. Despite the difference in N,

ωmed is very similar for clusters shown in Fig. 7.1 b and c (ωmed = 3.0 × 105 and 3.1 × 105,

respectively). Conversely, ωmed is quite different for clusters shown in Fig. 7.1 c and d (ωmed =

3.1× 105 and 3.6× 105, respectively).

As per other calculable cluster properties, ωmed does not appear to correlate strongly with

many traditional structural quantities, including the bond orientational order parameter, ψ6, the

average stiffness between nearest neighbor pairs, k̄ = 1/N
∑

i=1..N

∑
j=1..NNi

|Kij |/NNi, and

the cluster perimeter length, i.e., the contour length of cluster exterior. These parameters do not

correlate strongly with ωmed, when NN is held approximately constant (Fig. 7.2 c-e). Thus,

simple ideas for the effects based on surface area or perimeter length are not sufficient to explain

experimental observations. Additionally, the fraction of soft modes does not correlate strongly

with ωmed, when NN is held approximately constant (Fig. 7.2 f).

To identify the number of soft modes, we plotted a histogram of all frequencies from all

clusters; the dip in this histogram at low frequencies identifies a cutoff frequency (Fig. 7.3).

Modes below this frequency (∼ 6 × 105 rad/s), which represent ∼ 10% of the total modes, are

identified as soft modes. The minimum number of soft modes can be calculated by summing

the total number of degrees of freedom, i.e., twice the number of particles, and subtracting the

number of constraints on the system, i.e., the number of nearest neighbor bonds. This procedure,

known as Maxwell counting (e.g., [161]), also predicts that ∼ 10% of the modes should be soft
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Figure 7.3: Histogram of frequencies from all clusters studied. The number of modes at a given
frequency are plotted versus frequency. The vertical line marks the dip in the histogram; modes
with frequencies below this cutoff are identified as soft modes.

The fraction of soft modes correlates with NN (Fig. 7.4) and the fraction of soft modes

correlates with NISO/N (Fig. 7.5). However, these correlations are weaker than the correlation

betweenNN andNISO/N (main text, Fig. 7.1 c). Additionally, the two separate regimes readily

identifiable in plots of NISO/N versus NN and ωmed versus NN , are not apparent in plots

involving the fraction of soft modes.
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Figure 7.4: The fraction of soft modes is plotted versus the average number of nearest neighbors
(NN ). The solid read line represents the best linear fit, and R represents the linear correlation
coefficient.
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Figure 7.5: The fraction of soft modes is plotted versus the number of locally isostatic elements
(NISO) normalized by the number of particles in the cluster (N). The solid read line represents
the best linear fit, and R represents the linear correlation coefficient.
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Figure 7.6: a. Median frequency, ωmed, plotted versus average number of nearest neighbors, NN,
from simulations of random matrices. b. Median frequency, ωmed, plotted versus number of par-
ticles, N, from random matrices with NN= 1 (closed squares), 2 (open circles), 3 (solid circles),
4 (open triangles), 5 (solid triangles), 6 (open squares), 7 (solid squares), 8 (open diamonds),
and 9 (solid diamonds).
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7.5 Computationally Generated Spring Networks

Unfortunately, in real experimental systems, structural parameters cannot be tuned completely

independently. For example, clusters with large N and small NN are very difficult to create. As

a final check on the importance of structural quantities of the attractive clusters other than NN,

the spectra of randomly generated networks of springs were calculated. Random networks of

springs, expressed as matrices, Kij , were generated following a few simple rules that ensure

the matrices only contain information about N and NN [10, 63, 177]. Each element, ij, in the

matrix represents the spring constant between particle/coordinate i and particle/coordinate j.

The number of rows/columns in these symmetric matrices is twice the number of particles, while

the number of off diagonal elements greater than zero is equivalent to the number of nearest

neighbors. Thus N and NN can be varied completely independently. Diagonal elements are

set such that the sum of each row/column is zero, ensuring translational invariance. For every

combination of N and NN, 10, 000 random matrices are generated. ωmed is calculated from

the combination of all generated frequencies (Fig. 7.6). Many of these networks could not be

duplicated in real systems, as nearest neighbor pairings are assigned at random and not based

on proximity. However, ωmed follows the same trends in these simulations as observed in our

experiments. Namely, ωmed has little or no correlation with N (i.e., with NN held constant, ωmed

changes by less than 5%), but it exhibits a very strong correlation with NN (linear correlation

coefficient > 0.99). Thus, ωmed appears to be the result of network connectivity, rather than a

result of specific structure.
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7.6 Summary

In conclusion, the spectra and character of vibrational modes in disordered “attractive” clusters

do not depend strongly on the number of particles in the cluster, but do depend strongly on the

average number of nearest neighbors and the number of locally isostatic configurations. Two

regimes exist. When locally isostatic configurations are present (NN> 2), then an increase in

the number of nearest neighbors in the glass shifted the median frequency to higher frequen-

cies, regardless of the total number of particles in the cluster. When locally isostatic regions

are absent (NN< 2), the median frequency is constant. The fact that ωmed depends on NN, but

not on total number and packing fraction, suggests that these disordered clusters are a useful

model system for network glasses (e.g. silica [56]). Network glasses are composed of parti-

cles (usually molecules) that have directional bond forming interactions which set NN [146],

leading to the formation of solids at low packing fractions. In fact, the vibrational [84] and me-

chanical [190] properties of network glasses depend strongly on NN. Thus, disordered clusters

composed of particles with attractive interactions could serve as a convenient model system for

network glasses and their many applications (e.g. non-crystalline semiconductors [85]).

7.7 Future Directions

Recent experiments investigated three-dimensional clusters [116]. They utilized holographic

microscopy, which enabled them to measure the x-, y-, and z-coordinates of each particle in-

stantaneously. Thus, the vibrational properties of these clusters can measured using the same

technique we used (extended to three translational degrees of freedom). This would allow us to
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experimentally investigate the effects of dimensionality on the vibrational properties of disor-

dered systems.
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Chapter 8

Conclusion / Future Directions

8.1 Summary

Colloids are a versatile tool, capable of producing a wide swath of behaviors. In this disserta-

tion we used colloids to study two broad problems: particle deposition and the glass transition.

Colloids proved to be amenable to both topics. By modifying particle shape, sample geome-

try, and utilizing novel colloids and solvents, we were able to learn new details about complex

nonequilibrium phenomenon.

The first group of experiments concerned the behavior of colloidal particles in evaporating

drops, and the effects of particle shape. We started by evaporating drops of colloidal suspensions

containing particles that range in shape from isotropic spheres to very anisotropic ellipsoids.

Spheres are deposited in a heterogeneous ringlike fashion, also known as the coffee-ring ef-

fect. Conversely, ellipsoids are deposited uniformly. Due to their anisotropic shape, ellipsoids

significantly deform the air-water interface, thus producing strong capillary-based interparticle

attraction. After ellipsoids are carried to the air-water interface by the same outward flow that
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drives the coffee ring effect for spheres, strong interparticle attraction leads to the formation of

loosely-packed open networks of ellipsoids on the drop’s surface. These quasi-static structures

are capable of resisting shear, and thus lead to a more uniform deposition of ellipsoids.

Next, we confined drops of colloidal suspensions between glass plates, and allowed them to

evaporate. After particles coated the air-water interface, it underwent buckling events similar to

those seen in spherical elastic membranes. By analyzing the shape of these buckling events, we

were able to measure elastic properties of these colloidal monolayer membranes (CMMs). The

bending rigidity of CMMs is very dependent on particle shape; specifically, the bending rigidity

increases by more than an order of magnitude as shape anisotropy is increased from isotropic

spheres to anisotropic ellipsoids. This increase in bending rigidity leads to a dramatic difference

in particle deposition. When colloids of any shape reach the drop’s edge, they locally pin the

contact line. For CMMs with low bending rigidity (e.g., spheres), the air-water interface bends

around the local pinning point, leading to the formation of channels that are very dense with

particles. Conversely, CMMs with large bending rigidity (e.g., ellipsoids) do not bend around

local pinning sites; instead, ellipsoids adsorb on the air-water interface and are simply deposited

as the meniscus recedes.

The next group of experiments concerns a different nonequilibriumn system, the glass tran-

sition. In the first experiment of this group, bidisperse colloidal suspensions of temperature-

sensitive microgel spheres were quenched from liquid to glass states by a rapid temperature

drop, achieved via optical heating. Once the particle returned to their original size, the glass was

permitted to age. Irreversible rearrangements were measured. These events dramatically change

a particle’s local environment and appear closely related to dynamic heterogeneity. The rate of
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these irreversible events decreased during aging and the the number of particles required to move

as part of these irreversible rearrangements increased during aging. Thus, the slowing dynamics

of aging were governed by a growing correlated domain of particles required to move for relax-

ation to occur. Additionally, short-range order and a length scale associated with orientational

order both increased during aging.

The second glass transition experiment explored the role of frustration in the formation of

glass by following the crystal-to-glass transition as a function of increasing frustration in quasi-

two-dimensional binary colloidal suspensions. In these experiments, frustration is increased by

adding a smaller species of particles to a crystal of large particles. The crystal-glass transition

was found to be significantly different from the liquid-glass transition in structural and dynamic

ways. In fact, the crystal-to-glass transition is structurally similar to the crystal-to-fluid transi-

tion. At the transition point, the orientational order spatial correlation function decreases sharply

from quasi-long-range to short-range, and the orientational order susceptibility exhibits a max-

imum. However, the crystal-glass transition is also similar to the liquid-to-glass transition, as

dynamic heterogeneity develops. Unlike the liquid-to-glass transition, the dynamic change as-

sociated with the crystal-to-glass transition is sharp: dynamic heterogeneity grows rapidly, and

a dynamic correlation length-scale increases abruptly.

In the fifth overall set of experiments, we investigated the effect of particle shape on the

phonon modes in colloidal glasses. We sythesized colloidal particles that are slightly anisotropic,

and colloidal particles that are significantly anisotropic. By measuring displacement correlations

between particles, we extract vibrational properties of the corresponding “shadow” ellipsoidal
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glass with the same geometric configuration and interactions as the ‘source’ suspension but with-

out damping. Low frequency modes were highly dependent on particle size. For suspensions

of slightly anisotropic particles, low frequency modes were dominated by rotations. For suspen-

sions of significantly anisotropic particles, low frequency modes mixed rotational and transla-

tional character. Due to particle aspect ratio polydispersity, we found that even within the same

sample small-aspect-ratio particles tend to participate more in rotational modes, while large-

aspect-ratio particles tend to participate more in translational modes.

In the final set of experiments, we sought to discover how big a disordered cluster has to be

to behave like a bulk glass. To this end, we investigated the influence of morphology and size

on the vibrational properties of disordered clusters of colloidal particles with attractive interac-

tions. Spectral features of the vibrational modes are found to depend strongly on the average

number of nearest neighbors, NN, but only weakly on the number of particles in each glassy

cluster. Specifically, the median phonon frequency, ωMed, is essentially constant for NN < 2

and then grows linearly with NN for NN > 2. This behavior parallels concurrent observations

about local isostatic structures, which are absent in clusters with NN < 2 and then grow linearly

in number for NN> 2. Thus cluster vibrational properties appear to be strongly connected to

cluster mechanical stability (i.e., fraction of locally isostatic regions), and the scaling of ωMed

with NN is reminiscent of the behavior of packings of spheres with repulsive interactions at

the jamming transition. Simulations of random networks of springs corroborate observations

and further suggest that connections between phonon spectra and nearest neighbor number are

generic to disordered networks. Thus, disordered clusters do not need a certain number of parti-

cles to behave like bulk glasses, but a certain number of neighbors.

142



8.2 Future Work

In this section, we describe ideas for future work with colloids exploring nonequilibrium phe-

nomena.

8.2.1 Adsorption on the Air-Water Interface during Evaporation

When particles reach the edge of an evaporating drop, they adsorb on the air-water interface.

The equilibrium position and contact angle of a particle on an interface is well described by the

Laplace equation, which balances the various surface tensions. However, recent experiments

utilizing high-resolution holographic microscopy found that spheres adsorbed on interfaces ap-

proach their equilibrium contact angles very slowly [91]. In fact, these spheres never reached

their equilibrium contact angles within the experimental window, but approached them logarith-

mically over time. Returning to evaporating drops, do particles in evaporating drops reach their

equilibrium contact angles? Holographic microscopy will not work in this system, as the air-

water interface is not index matched. Understanding the behavior of spheres at the edge of drops

will explain further details of coffee-ring effect, and likely suggest additional methods to alter or

avoid the formation of a coffee-ring.

Instead, we can attempt to answer this question with more traditional experimental tech-

niques. While a drop containing spheres evaporates, we can measure the distance between the

spheres which have adsorbed nearest to the contact line and the contact line itself. This “front

row” of spheres always sits on the glass substrate, which can be confirmed with confocal mi-

croscopy. By using large drops (≥ 2µl), the contact angle (measured in a separate set of ex-

periments) will change very little during the first ∼ 10 seconds of observation, thus keeping the
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geometry of the problem constant. In this way, the contact angle between spheres at the edge

of the drop and the air-water interface can be measured. This experiment can be repeated with

different sizes of spheres to confirm the results. Further, spheres with rough surfaces or varying

surface chemistry can be used to potentially slow the relaxation process.

An extension of this set of experiments could also help us interpret the behavior of colloidal

particles on or near interfaces coated with surfactant. As noted in Chapter 2, adding surfactant

to evaporating drops that contain ellipsoids restores the coffee-ring effect. However, the reason

why ellipsoids are no longer deposited uniformly is unclear. It’s possible that the ellipsoids

adsorb on the interface, but deform it weakly as the surfactant decreases the surface tension. It’s

also possible that the ellipsoids never actually adsorb on the interface, which instead is densely

coated with surfactant. To resolve this question, we could measure the position of spheres in

evaporating drops containing surfactant.

8.2.2 Disordered Clusters as Model Glasses

The vibrational properties of small disordered clusters can be similar to the vibrational properties

of macroscopic glasses (Chapter 7). This result suggests that the same underlying physics may

be controlling vibrational properties in these superficially very different systems. Thus, it would

be interesting to try to study other aspects of dense glasses in small clusters. A small cluster is

less complex than a bulk glass, simply because it has fewer particles and thus fewer degrees of

freedom.

Specifically, the dynamics of a cluster that contains ∼ 100 particles can be observed and

analyzed. If this cluster exhibits dynamic heterogeneity, then the source of these collective re-

arrangements may be easier to isolate than in a typical colloidal glass that has more than 2000
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particles in the field of view alone. Further, by utilizing holographic optical tweezers [61], par-

ticles can be assembled into identical clusters many times, allowing us to collect meaningful

statistics. The configuration of clusters could also be slightly modified with holographic optical

tweezers from one iteration to the next, in an effort to isolate the source of collective rearrange-

ments in glasses. For example, a region that is especially prone to rearrangements could be

rearranged by hand in an effort to stabilize it.

In a different vein, recent experiments investigated three-dimensional clusters [116]. They

utilized holographic microscopy, which enabled them to measure the x-, y-, and z-coordinates

of each particle instantaneously. Thus, the vibrational properties of these clusters can measured

using the same technique we used (extended to three translational degrees of freedom). This

would allow us to experimentally investigate the effects of dimensionality on the vibrational

properties of disordered systems.

8.2.3 Mixing Spheres and Ellipsoids in Colloidal Glasses

We demonstrated in Chapter 6 that particle shape anisotropy has a strong effect on the vibrational

properties of glasses. Further, we showed that even within a sample, particles with slightly dif-

ferent degrees of anisotropy behave differently. Thus, it’s natural to wonder what happens when

spheres are mixed with ellipsoids of varying aspect ratios. To this end, dopant ellipsoids with

various aspect ratios could be added to a glass composed of spherical particles, and the vibra-

tional properties of the glass can be measured. Slightly anisotropic particles are an especially

interesting case. Our previous experiments found that slightly anisotropic particles participate

in low frequency modes with primarily rotational character. Adding a few particles that are

slightly anisotropic to a glass composed of spheres would thus (possibly) create low frequency
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modes that are localized around the anisotropic particles. Recently, it was demonstrated that low

frequency modes in glasses composed of spheres are spatially correlated with regions prone to

rearrangement [25]. Thus, adding slightly anisotropic particles to a glass composed of spherical

particles may induce localized modes that are related to rearrangements. To figure this out, sam-

ples primarily containing spheres mixed with a small number of slightly anisotropic ellipsoids

could be observed for long periods of time until rearrangements occur.

8.2.4 Aging to Completion

It would be interesting to compare rearrangement events during aging to rearrangements that

contribute to the particle relaxation. This would allow us to determine if irreversible rearrange-

ments move the system towards equilibrium, or if they are the events that comprise equilibrium

particle relaxation. To facilitate such a comparison, we could quench to a lower packing fraction

which will age to completion. Initially, the MSD will age like in the data presented in Chapter

4, but eventually the MSD will stop changing. If the particle relaxation time is within the exper-

imental window (∼ 100 seconds), we can directly compare the rearrangements that occur after

aging to the rearrangements that occur during aging.

8.2.5 Evaporation of Drops Containing PNIPAM Particles

At first glance, it may appear that evaporating a drop containing PNIPAM particles will trivially

produce the coffee-ring effect. However, recent experiments have shown that PNIPAM particles

exhibit intriguing properties on interfaces (e.g., the air-water interface) [100, 120]. Specifically,

PNIPAM particles were found to be especially good stabilizers for Pickering emulsions [100].

This is apparently due to the fact that PNIPAM particles flatten upon adsorption [100, 120].
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Thus, the deformations of PNIPAM particles may make them especially susceptible to surface

flows along the drop’s air-water interface, which are typically directed radially inward. Thus, the

coffee-ring effect may be avoided for PNIPAM particles due to changing shape.

Thus, PNIPAM particles might coat the surface of a drop during evaporation. If they do,

monolayer membranes could be created by adding a small amount of cross-linker to a relatively

dilute suspension. Specifically, PNIPAM will coat the air-water interface, forming a densely

packed monolayer. Crosslinking molecules can then connect neighboring particles on the drop’s

surface. Since the PNIPAM particle packing fraction is low, particles are unlikely to be cross-

linked in the bulk fluid.
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