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arbitrarily precise, infinitely differentiable, approximations of it, thus enabling the use of powerful gradient
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Smooth Operator: Control using the Smooth Robustness of Temporal Logic
Yash Vardhan Pant∗, Houssam Abbas∗, Rahul Mangharam

Abstract— Modern control systems, like controllers for
swarms of quadrotors, must satisfy complex control objectives
while withstanding a wide range of disturbances, from bugs
in their software to attacks on their sensors and changes in
their environments. These requirements go beyond stability and
tracking, and involve temporal and sequencing constraints on
system response to various events. This work formalizes the
requirements as formulas in Metric Temporal Logic (MTL),
and designs a controller that maximizes the robustness of the
MTL formula. Formally, if the system satisfies the formula
with robustness r, then any disturbance of size less than r
cannot cause it to violate the formula. Because robustness
is not differentiable, this work provides arbitrarily precise,
infinitely differentiable, approximations of it, thus enabling the
use of powerful gradient descent optimizers. Experiments on
a temperature control example and a two-quadrotor system
demonstrate that this approach to controller design outper-
forms existing approaches to robustness maximization based on
Mixed Integer Linear Programming and stochastic heuristics.
Moreover, it is not constrained to linear systems.

I. CONTROLLING FOR ROBUSTNESS

The errors in a cyber-physical control system like an
automated air traffic controller can affect both the cyber
components (e.g., software bugs) and physical components
(e.g., sensor failures and attacks) of a system. Under certain
error models, like a bounded disturbance on a sensor reading,
a system can be designed to be robust to that source of error.
In general, however, unforeseen and unmodeled issues will
occur and the controller has to deal with them at runtime. To
help deal with unforeseen problems at runtime, the system’s
controller must make decisions that not only satisfy the
system’s requirements (like a maximum response time to an
event), but satisfy them robustly. Intuitively, the requirements
are robustly satisfied if a disturbance to the system does
not cause it to violate them. This can give a margin of
maneuvarability to the system during which it addresses the
unforeseen problem. Since these problems are, by definition,
unforeseen and unmodeled and only detected by their effect
on the output, the notion of robustness must be computable
using only the output behavior of the system.

Example 1: Air-Traffic Control (ATC) coordinates land-
ing arrivals at an airport. ATCs have very complex rules
to ensure that all airplanes, of different sizes and speeds,
approach the airport and land safely, with sufficient margin to
other airplanes to accommodate emergencies. Sample rules
for the Chicago O’hare airport include (A) When an aircraft
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enters any of 3 designated zones, it must stay between that
zone’s altitude floor and ceiling, and (B) If the airspace is
too busy, an aircraft must remain in either holding zones 6
or 7, until some maximum amount of time expires.

How do we ensure that the ATC system satisfies these
complex rules robustly?

A. The need for temporal logic

The above requirements go beyond traditional control
objectives like stability, tracking, quadratic cost optimization
and reach-while-avoid for which we have well-developed
theory. While these requirements can be directly encoded
from natural language into a Mixed Integer Program (MIP)
by encoding every possibility at each (discrete) time point
with integer variables, such a direct encoding can easily
involve an exorbitant number of variables. For complex re-
quirements, with many variables involved, this encoding pro-
cess can also be error-prone and checking that it corresponds
to the designer’s intent is near impossible. On the other
hand, such control requirements are easily and succinctly
expressed in Metric Temporal Logic (MTL) [1]. MTL is a
formal language for expressing reactive requirements with
constraints on their time of occurrence and sequencing, such
as those of the ATC. The advantage of first expressing the
requirements in MTL is that MTL formulas are more succinct
and legible, and less error-prone, than the corresponding
directly-encoded MIP. In this sense, MTL bridges the gap
between the ease of use of natural language and the rigour
of mathematical formulation. For example, ATC rule (A) can
be formalized with the following MTL formula (� means
‘Always’, q is an aircraft and qz is its altitude).

�(q ∈ Zone1 =⇒ qz ≤ Ceiling1 ∧ qz ≥ Floor1)

Rule (B) can be formalized as follows.

�(Busy =⇒ ♦[t1,t2](q ∈ Holding-6 ∨ q ∈ Holding-7)
U[0,MaxHolding]¬Busy)

This says that Always (�), if airport is Busy, then some-
time t1 to t2 seconds later (♦[t1,t2]), the plane goes into one
of two Holding areas. It stays there Until the airport is not
(¬) busy, which must happen before duration MaxHolding
elapses.

Once the requirements are expressed as an MTL formula,
there are broadly two ways of designing a controller that
satisfies the formula (fulfills the requirements). The first
method automatically creates a MIP from the semantics of
the MTL formula and solves the MIP to yield a satisfying
control sequence [2], [3], [4]. See Related Work and the
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Experiments. The second method, upon which this work
builds, uses the robustness of MTL specifications [5], [6].
Robustness is a rigorous notion that has been used success-
fully for the testing and verification of automotive systems
[7], [8], medical devices [9], and general CPS. Given an MTL
specification ϕ and a system execution x, the robustness
ρϕ(x) of the spec relative to x measures two things: its sign
tells whether x satisfies the spec (ρϕ(x) > 0) or violates it
(ρϕ(x) < 0). Its magnitude |ρϕ(x)| measures how robustly
the spec is satisfied or violated. Namely, any perturbation to
x of size less than |ρϕ(x)| will not cause its truth value
to change relative to ϕ. Thus, the control algorithm can
maximize the robustness over all possible control actions to
determine the next control input.

Unfortunately, the robustness function ρϕ is hard to work
with. In particular, it is non-convex and non-differentiable,
which makes its online optimization a challenge - indeed,
most existing approaches treat it as a black box and apply
heuristics to its optimization (see Related Work below).
These heuristics provide little to no guarantees, have too
many user-set parameters, and don’t have rigorous termina-
tion criteria. On the other hand, gradient descent optimization
algorithms typically offer convergence guarantees to the
function’s (local) minima, have known convergence rates
for certain function classes, usually have a fewer number
of parameters to be set, and important issues like step-size
selection are rigorously addressed.
Contributions. This paper presents smooth (infinitely differ-
entiable) approximations to the robustness function of arbi-
trary MTL formulae. The smooth approximation is proven to
always be within a user-defined error of the true robustness,
and this is illustrated experimentally. This allows running
powerful and rigorous off-the-shelf gradient descent optimiz-
ers. We leverage this to maximize the smooth robustness for
control of a system to robustly satisfy its MTL specification.
Through multiple examples, the proposed control method is
shown to be faster and to yield more robust trajectories than
various current heuristics and MIP-based approaches. The
results are demonstrated on a case study for an autonomous
ATC for two quad-rotors, where the MIP-based approach
fails to yield a satisfying controller. While this work does not
tackle the non-convexity of MTL robustness issue directly,
having an inexpensive gradient optimizer makes it possible
to run an efficient multi-start optimization, increasing the
chances of approaching the global optimum.
Related work. Current approaches to optimizing the ro-
bustness fall into four categories: the use of heuristics like
Simulated Annealing [10], cross-entropy [11] and RRTs [8];
non-smooth optimization [12]; Mixed Integer Linear Pro-
gramming (MILP) [2], [3]; and iterative approximations [13],
[14], [15]. Black-box heuristics are the most commonly used
approach. The clear advantage of these methods is that they
do not require any special form of the objective function:
they simply need to evaluate it at various points of the
search space, and use its value as feedback to decide on
the next point to try. A significant shortcoming is their lack
of guarantees as explained earlier. Because the robustness is
non-smooth, the work in [12] developed an algorithm that
decreases the objective function along its sub-gradient. This

involved a series of conservative approximations and was
restricted to the case of safety formulae. In [2], the authors
encoded the MTL formula as a set of linear and boolean
constraints (when the dynamical system is linear), and used
Gurobi to solve them. MILPs are NP-complete, non-convex,
and do not scale well with the number of variables. The
sophisticated heuristics used to mitigate this make it hard
to characterize their runtimes, which is important in control
- see examples in [2] and this paper. In general, MILP
solvers can only guarantee achieving local optima. Note also
that [2] requires all constraints to be linear, so all atomic
propositions must involve half-spaces (p : a′x ≤ b), which
is not a restriction in the current work. Another MILP based
approach is presented in [3] where constraints are added
when necessary, in order to reduce MILP complexity. The
work closest to this paper is [13], [14]. There, the authors
considered safety formulas, for which the robustness reduces
to the minimum distance between x and the unsafe set U .
By sub-optimally focusing on one point on the trajectory
x, they replaced the objective by a differentiable indicator
function for U and solved the resulting problem with gradient
descent. The use of fast smooth approximations of robustness
circumvents most of the above issues and gets closer to real-
time control by robustness maximization.

II. ROBUSTNESS OF MTL FORMULAE

Consider a discrete-time dynamical system H given by

xt+1 = f(xt, ut) (1)

where x ∈ X ⊂ Rn is the state of the system and u ∈
U ⊂ Rm is its control input. The system’s initial state
x0 takes value from some initial set X0 ⊂ Rn. Given an
initial state x0 and a finite control input sequence u =
(u0, . . . , uT−1), ut ∈ U , a trajectory of the system is the
unique sequence of states x = (x0, . . . , xT ) s.t. for all t,
xt is in X and obeys (1). All temporal intervals that appear
in this paper are implicitly discrete-time, e.g. [a, b] means
[a, b] ∩ N. The set {0, 1, . . . , T} ⊂ N will be abbreviated as
T. For an interval I ⊂ N, let t + I = {t + a | a ∈ I}. The
set of subsets of a set S is denoted P(S). The signal space
XT is the set of all signals x : T → X . The max operator
is written t and min is written u.

A. Metric Temporal Logic (MTL)

The controller of H is designed to make the closed loop
system (1) satisfy a specification expressed in MTL [1].
Formally, let AP be a set of atomic propositions, which can
be thought of as point-wise constraints on the state of the
system. An MTL formula ϕ is built recursively from the
atomic propositions using the following grammar:

ϕ := >|p|¬ϕ|ϕ1 ∧ ϕ2|ϕ1UIϕ2

where I ⊂ R is a time interval. Here, > is the Boolean
True, p is an atomic proposition, ¬ and ∧ are the Boolean
negation and AND operators, respectively, and U is the Until
temporal operator. Informally, ϕ1UIϕ2 means that ϕ1 must
hold until ϕ2 holds, and that the hand-over from ϕ1 to ϕ2

must happen sometime during the interval I . The disjunction
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(∨), implication ( =⇒ ), Always (�) and Eventually (♦)
operators can be defined using the above operators.

Formally, the pointwise semantics of an MTL formula
define what it means for a system trajectory x to satisfy the
formula ϕ. Let O : AP → P(X) be an observation map for
the atomic propositions. The boolean truth value of a formula
ϕ w.r.t. the trajectory x at time t is defined recursively.

Definition 2.1 (MTL semantics):

(x, t) |= > ⇔ >
∀p ∈ AP, (x, t) |=O p ⇔ xt ∈ O(p)

(x, t) |=O ¬ϕ ⇔ ¬(x, t) |=O ϕ
(x, t) |=O ϕ1 ∧ ϕ2 ⇔ (x, t) |=O ϕ1 ∧ (x, t) |=O ϕ2

(x, t) |=O ϕ1UIϕ2 ⇔ ∃t′ ∈ t+ I.(x, t′) |=O ϕ2

∧∀t′′ ∈ (t, t′), (x, t′′) |=O ϕ1

As O is fixed in this paper, it is dropped from the notation.
We say x satisfies ϕ if (x, 0) |= ϕ. All formulas that appear
in this paper have bounded temporal intervals: 0 ≤ inf I <
sup I < +∞. To evaluate whether such a formula ϕ holds on
a given trajectory, only a finite-length prefix of that trajectory
is needed. Its length can be upper-bounded by the horizon of
ϕ, hrz(ϕ) ∈ N, calculable as shown in [16]. For example,
the horizon of �[0,2](♦[2,4]p) is 2+4=6.

B. Robust semantics of MTL

Designing a controller that satisfies the MTL formula ϕ1

is not always enough. In a dynamic environment, where the
system must react to new unforeseen events, it is useful to
have a margin of maneuverability. That is, it is useful to
control the system such that we maximize our degree of
satisfaction of the formula. When unforeseen events occur,
the system can react to them without violating the formula.
This degree of satisfaction can be formally defined and
computed using the robust semantics of MTL. Given a point
x ∈ X and a set A ⊂ X , dist(x,A) := infa∈A |x − a|2 is
the minimum Euclidian distance from x to the closure A of
A.

Definition 2.2 (Robustness[17]): The robustness of ϕ rel-
ative to x at time t is recursively defined as

ρ>(x, t) = +∞

∀p ∈ AP, ρp(x, t) =

{
dist(xt, X \ O(p)), if xt ∈ O(p)
−dist(xt,O(p)), if xt /∈ O(p)

ρ¬ϕ(x, t) = −ρϕ(x, t)

ρϕ1∧ϕ2
(x, t) = ρϕ1

(x, t) u ρϕ2
(x, t)

ρϕ1UIϕ2(x, t) = tt′∈t+TI

(
ρϕ2(x, t′)

l

ut′′∈[t,t′)ρϕ1(x, t′′)
)

When t = 0, we write ρϕ(x) instead of ρϕ(x, 0).
The robustness is a real-valued function of x with the
following important property.

Theorem 2.1: [17] For any x ∈ XT and MTL formula ϕ,
if ρϕ(x, t) < 0 then x violates the spec ϕ at time t, and if
ρϕ(x, t) > 0 then x satisfies ϕ at t. The case ρϕ(x, t) = 0
is inconclusive.

1Strictly, a controller s.t. the closed-loop behavior satisfies the formula.

Thus, we can compute control inputs by maximizing the
robustness over the set of finite input sequences of a certain
length. The obtained sequence u∗ is valid if ρϕ(x, t) is
positive, where x and u∗ obey (1). The larger ρϕ(x, t), the
more robust is the behavior of the system: intuitively, x can
be disturbed and ρϕ might decrease but not go negative.

III. SMOOTH APPROXIMATION

Let ϕ be an MTL formula with horizon N . The goal of
the present work is to solve the following problem Pρ.

Pρ : max
u

ρϕ(x)− γ
N−1∑
k=0

l(xk+1, uk) (2a)

s.t. xk+1 = f(xk, uk), ∀k = 0, . . . , N − 1 (2b)
xk ∈ X, ∀k = 0, . . . , N (2c)
uk ∈ U, ∀k = 0, . . . , N − 1 (2d)
δρϕ(x) ≥ δεmin (2e)

Here, u = (u0, . . . , uN−1), l(xk+1, uk) is a control cost,
e.g. the LQR cost x′kQxk +u′kRuk, and γ ≥ 0 is a trade-off
weight. The scalar εmin ≥ 0 is a desired minimum robustness.
If δ = 0, then this constraint is effectively removed, while
δ = 1 enforces the constraint. Because ρϕ uses the non-
differentiable functions dist, max and min, it is itself non-
differentiable. The next three sub-sections introduce smooth
approximations to each of these functions.

A. Approximating the distance function
The distance function dist(·, U) is in L2(Rn), so it can

be approximated arbitrarily well using a Meyer wavelet
expansion [18]. Specifically, the 1-D Meyer wavelet function
is given in the frequency domain by (i =

√
−1):

ψ̂(ω) =
1√
2π

 sin(π2 ν( 3|ω|
2π − 1))eiω/2 2π/3 ≤ |ω| ≤ 4π/3

cos(π2 ν( 3|ω|
4π − 1))eiω/2, 4π/3 ≤ |ω| ≤ 8π/3

0, otherwise

where ν(x) = 0 if x ≤ 0, 1 if x ≥ 1, and equals x if
0 ≤ x ≤ 1. The time-domain expression for this wavelet is
given in [19] and is infinitely differentiable. An n-D wavelet
can be obtained using the tensor product construction [18].
Let E be the set of vertices of the unit hypercube [0, 1]n. For
every e = (e1, e2, . . . , en) ∈ E and x = (x1, . . . , xn) ∈ Rn,
define Ψe : Rn → R by Ψe(x) = ψe1(x1) . . . ψen(xn).
Given k ∈ Z and j ∈ Zn, a dyadic cube in Rn is a set
of the form I = 2−k(j + [0, 1]n). Let D be the set of all
dyadic cubes in Rn obtained by varying k over Z and j over
Zn. Then {Ψe

I , e ∈ E, I ∈ D} is an orthonormal basis for
L2(Rn) (because the Meyer wavelet itself is orthonormal).
Then every function in L2(Rn) has an expansion

f(x) =
∑
I∈D

∑
e∈E

ceIΨ
e
I(x), ceI := 〈f,Ψe

I〉

with 〈h, g〉 :=
∫
Rn h(x)g(x)dx. The desired approximation

is obtained by truncating this expansion after a finite number
of terms, i.e., by using a finite set D′ ( D

dist(x, U) ≈ d̃istε(x, U) :=
∑
I∈D′

∑
e∈E

ceIΨ
e
I(x) (3)
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where ε is the approximation error magnitude. Using more
coefficients yields a better approximation. The coefficients
ceI := 〈dist(·, U),Ψe

I〉 are calculated offline and stored in a
lookup table for online usage.

B. Smooth max and min
The following standard smooth approximations of m-ary

max and min are used. Let k ≥ 1.

m̃axk(a1, . . . , am) :=
1

k
ln(eka1 + . . .+ ekam) (4)

m̃ink(a1, . . . , am) := −m̃ax(−a1, . . . ,−am) (5)

Suppose k = 1 and that a1 is the largest number. Then ea1 is
even larger than the other eai ’s, and dominates the sum. Thus
m̃ax1(a) u ln ea1 = a1 = max(a). If a1 is not significantly
larger than the rest, the sum is not well-approximated by
ea1 alone. To counter this, the scaling factor k is used: it
amplifies the differences between the numbers. It holds that
for any set of m reals,

0 ≤ m̃axk(a1, . . . , am)−max(a1, . . . , am) ≤ ln(m)/k (6)

0 ≤ min(a1, . . . , am)− m̃ink(a1, . . . , am) ≤ ln(m)/k (7)

with the maximum error is achieved when all the ai’s
are equal. Indeed, assume a1 is the largest number, then
m̃axk(a)− a1 ≤ k−1 ln

(∑
i e

kai

eka1

)
≤ lnm/k.

C. Overall approximation
Putting the pieces together yields the approximation error

for the robustness of any MTL formula.
Theorem 3.1: Consider an MTL formula ϕ and reals ε >

0 and k ≥ 1. Define the smooth robustness ρ̃ϕ, obtained by
substituting d̃istε for dist, m̃axk for max, and m̃ink for
min, in Def. 2.2. Then for any trajectory x, it holds that

|ρϕ(x, t)− ρ̃ϕ(x, t)| ≤ δϕ
where δϕ is (a) independent of the evaluation time t, and (b)
goes to 0 as ε→ 0 and k →∞.
The proof is in on the online technical report [20]. The proof
also gives an explicit computation for δϕ in terms of ε, k and
ϕ, which can be computed beforehand and made as small as
desired.

IV. APPROXIMATION AND CONTROL

We implemented the smooth approximation to the seman-
tics of MTL, and tested it on several examples.

A. Approximation error
We evaluated the robustness ρϕ and its approximation

ρ̃ϕ for five formulae. The horizon N of each formula is
varied, and at each value of N we generate 1000 trajec-
tories of system xk+1 = xk + uk with input and state
saturation, by feeding it random input sequences. Fig. 1
shows the Root Mean Square (RMSE) of the approximation,√

(1/1000)
∑

x(ρϕ(x)− ρ̃ϕ(x))2, and variance bars around
it. As seen, the approximation errors and their variances
are small, showing the accuracy and stability of the smooth
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Always[0,N!1] ¬P1

Always[0,N!1](¬P1 ∨ ¬P2)

Always[0,N!1](¬P1 ∧ ¬P2)

With state in R3, Always[0,N!1] ¬P1

¬P1 U[0,N!1] P2

Fig. 1: Robustness approximation error against formula horizon,
evaluated on 1000 randomly generated trajectories for Example 2.
Unless noted, the systems are 2D. Color in online version.

approximation. Note that while the RMSE increased with the
system dimension (4th formula in Fig. 1), it was observed
that the relative error remained very small i.e. the increase
in error is explained by an increase in the robustness’s
magnitude.

B. Robustness maximization for control
Problem Pρ given in (2) is solved by replacing the true

robustness ρϕ by its smooth approximation ρ̃ϕ, and setting
εmin to the value of the smooth approximation error. We
thus obtain Problem Pρ̃. This approach is labeled Smooth
Operator (SOP).

Optimization solver. Problem Pρ̃ is solved using Sequen-
tial Quadratic Programming (SQP). SQP solves constrained
non-linear optimization problems by creating a sequence of
quadratic approximations to the problem and solving these
approximate problems. SQP enjoys various convergence-to-
(local)-optima properties [21, Section 2.9]. For example, for
SQP to converge to a strict local minimum (a minimum that
is strictly smaller than any objective function value in an
open neighborhood around it), it suffices that 1) all constraint
functions be twice Lipschitz continuously differentiable. In
our case, this includes function f in (2a), and the problems
we solve satisfy this requirement. And, 2) at points in the
search space that lie on the boundary of the inequality-
feasible set there exists a search direction towards the in-
terior of the feasible set that does not violate the equality
constraints [21, Assumption 2.9.1]. This is also true for Pρ̃
since the equality constraints come from the dynamics and
are always enforced for any u.

Solver initialization. To initialize SQP when solving Pρ̃
(i.e., to give it a starting value for u), we can either solve an
inexpensive feasibility linear program with constraints (2b)-
(2d), or generate a random input sequence respecting ut ∈ U .
The resulting initial trajectory could violate the specification
(as it does in every example we study in this paper) and it is
only required to satisfy the dynamics and state constraints.

Comparisons to BluSTL. The tool BluSTL implements
the MILP approach of [2] and is used in the experiments.
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TABLE I: Example 2. Runtimes (mean and standard deviation, in
seconds) for Smooth Operator (SOP) and BluSTL (BlS) in modes
(B) and (R), over 100 runs with random initial states and different
formula horizons N . BluSTL(R) did not finish (see text).

N BlS(B) SOP(B) SOP(R) SOP(R)
20 0.96± 0.82 0.31± 0.13 NA 3.30± 1.25
30 1.37± 1.72 0.33± 0.25 NA 5.85± 2.74
40 3.86± 5.10 0.60± 0.29 NA 12.36± 6.04
50 4.36± 12.97 0.74± 0.30 NA 30.05± 18.23
100 16.77± 27.84 1.21± 0.25 NA 69.70± 13.16
200 53.88± 14.18 4.19± 1.18 NA 126.11± 20.43

It has two modes of operation: mode (B) or Boolean, which
aims at satisfying the specification without maximizing its
robustness, and mode (R) or Robust, which attempts to
maximize robustness. The proposed SOP method optimizes
robustness and so naturally runs in mode (R). SOP emulates
mode (B) by terminating the optimization as soon as ρ̃ϕ ≥
εMeyer, which implies ρϕ ≥ 0. εMeyer can be computed
explicitly using the approach in the online report [20].

Example 2: The linear system xk+1 = xk + uk is con-
trolled to satisfy the specification

ϕ = �[0,20]¬(x ∈ Unsafe) ∧ ♦[0,20](x ∈ Terminal)

with the sets Unsafe = [−1, 1]2 and Terminal = [2, 2.5]2.
The state space is X = [−2.5, 2.5]2, U = [−0.5, 0.5]2.
Unless otherwise indicated, γ = δ = 0 in Eq. (2) to focus on
robustness maximization in this illustrative example. Exper-
iments were run on a quad-core Intel i5 3.2GHz processor
with 24GB RAM, running MATLAB 2016b.

Results. Fig. 2 shows the trajectories of length N = 20
obtained by SOP and BluSTL in modes (B) and (R), starting
from the same initial point x0 = [−2,−2]′. Both BluSTL(B)
and SOP(B) produce satisfying trajectories. The trajectory
from SOP(R) ends in the middle of the terminal set, resulting
in a higher robustness than mode (B), as expected. In mode
(R), BluSTL could not finish a single instance of robustness
maximization within 100 hours on both the above machine
and on a more powerful 8 core Intel Xeon machine with
60GB RAM, leading us to believe that the corresponding
MILP was not tractable.

SOP(R, γ = 0.1) takes into account a control cost
l(xk, uk) = ||xk||22 that penalizes longer trajectories. The
resulting trajectory is shorter but has a lower robustness than
SOP(R, γ = 0), (0.236 vs 0.247).

For further evaluation, we ran 100 instances of the prob-
lem, varying the trajectory’s initial state in [−2.5,−1.5] ×
[−2.5, 2.5]. We also varied the formula horizon N (and hence
the size of the problem) from 20 to 200 time steps. Table I
shows the execution times.

Analysis. As seen in Table I, SOP is consistently faster
than BluSTL in Boolean mode, and displays smaller vari-
ances in runtimes. Note also that the problem solved here
is very similar to the one used in [3], which uses another
MILP-based method. While the underlying dynamics differ
and their numbers are reported on a more power machine,
SOP numbers compare favourably with those in [3].

In (R) mode, across 100 experiments, SOP has an average
ρϕ = 0.247 with a standard deviation less than 0.005. This

Fig. 2: The first 4 trajectories are for Example 2. The last trajectory,
SOP(R, unicycle), is from Example 3. Colors in online version.

gets very close to the upper bound on robustness, which is
0.25. This bound is achieved by a trajectory reaching (in <
20 time steps) the center of the Terminal set while remaining
more than 0.25 distant from Unsafe.

Example 3 (Nonlinear system): Since SQP can handle
non-linear (twice differentiable) constraints, Smooth Oper-
ator can also deal with non-linear dynamics whereas the
MILP-based methods have to linearize the dynamics to
solve the system. The following example shows SOP applied
in a one-shot manner to the unicycle dynamics (ẋt =
vt cos(θt) , ẏt = vt sin(θt) , θ̇t = ut) discretized at 10Hz. For
the specification of Ex. 2, the resulting trajectory of length 20
steps obtained by SOP(R) is shown in Fig. 2, starting from an
initial state of [−2,−2, 0]. The resulting robustness is 0.248,
which is close to the global optimum of 0.25. This shows
that SOP can indeed handle non-linear dynamics without the
need for explicit linearization.

V. CASE STUDIES

This section focuses on evaluating the efficiency of
Smooth Operator (SOP) by testing it on two systems and
comparing to existing approaches.
• SOP in (B)oolean and (R)obust modes.
• BluSTL in modes (B) and (R).
• R-SQP, which uses SQP to optimize the exact non-

smoothed robustness ρϕ.
• SA, which uses Simulated Annealing to optimize ρϕ.
For both case studies, the wavelet approximation to the

distance function is computed off-line. The control problem
(2) is solved as an open-loop, single-shot, finite-horizon
constrained optimization. This is then used in a shrinking
horizon scheme in Sec V-A.1.

The code to reproduce these results can be
found at https://github.com/yashpant/
SmoothOperator0. Future versions of the code will
focus on re-usability of the code.

A. HVAC Control of a building for comfort
The first example is the Heating, Ventilation and Air

Conditioning (HVAC) control of a 4-state model of a single
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TABLE II: HVAC. Runtimes (mean and std deviation, in seconds)
for Smooth Operator (SOP), BluSTL (BlS) and Simulated annealing
(SA) over 100 runs with random initial states. BluSTL (R) could
not find satisfying trajectories.

BlS (B) SOP (B) SOP (R) SA (R)
0.041± 0.002 0.014± 0.002 2.532± 0.26 8.56± 0.31

zone in a building. Such a model is commonly used in
literature for evaluation of predictive control algorithms [22].
The control problem is similar to the example used in [2].
The control horizon is a 24 hour period. The objective is to
bring the zone temperature to a comfortable range, [22, 28]
Celsius, when the zone is occupied during the hours 10-to-
19. The specification is:

ϕ = �[10,19](ZoneTemp ∈ [22, 28]) (8)

Note: For this particular specification, the maximum ro-
bustness is 3, achievable by setting the room temperature
at 25C during the interval [10, 19]. Thus the problem can
be solved by minimizing the cost

∑
10≤k≤19(x4k − 25)2

with linear constraints, which is a problem-specific approach.
SOP, which is a general purpose technique, results in a
robustness which is just 0.02% smaller than the global
optimum. Section V-B shows a specification that cannot be
trivially turned into a quadratic program.

System dynamics. The single-zone model, discretized at
a sampling rate of 1 hour (which is common in building
temperature control) is of the form:

xk+1 = Axk +Buk +Bddk (9)

Here, A, B and Bd matrices are from the hamlab ISE model
[23]. x ∈ R4 is the state of the model, the 4th element of
which is the zone temperature, the others are auxiliary tem-
peratures corresponding to other physical properties of the
zone. The input to the system, u ∈ R1, is the heating/cooling
energy. bd ∈ R3 are disturbances (due to occupancy, outside
temperature, solar radiation) assumed known a priori. The
control problem we solve is of the form in (2), with γ and
δ both set to zero (correspondingly, no cost for control in
BluSTL), and X = [0, 50]4, U = [−1000, 2000].

Results. For comparison across all methods, we run 100
instances of the problem, starting from random initial states
x0 ∈ [20, 21]4. SA, R-SQP and SOP are initialized with the
same initial input sequences u. The final trajectories after
optimization are shown in Fig.3, for x0 = [21, 21, 21, 21]′.
To reduce clutter, trajectories from SA and R-SQP in mode
(B) are not shown.

Analysis. In Boolean mode, SOP, BluSTL, and SA all find
satisfying trajectories across all 100 instances, while R-SQP
does not find one for any run and always exits at a local
minimum. Execution times for SOP and BluSTL are shown
in Table II, while the runtimes for SA (B) are 3.7 ± 2.3s.
R-SQP has run-times in the order of minutes.

In Robust mode, SOP and SA both result in trajectories
that satisfy ϕ, with an average robustness of 2.99 and
2.88 respectively. On the other hand, R-SQP often returns
violating trajectories (average ρϕ = −0.1492). Somewhat
surprisingly, BluSTL does not manage to find a satisfying
trajectory (average ρ = −2.71) for any of the 100 runs. One
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Fig. 3: Zone temperatures. The green rectangle shows the com-
fortable temperature limit of 22-28 C, applicable during time steps
10-19 (when the building is occupied). Color in online version.

particular instance is shown in Fig. 3. As shown in Table
II, SOP takes 2.5s on average. SA(R) takes 8.56 ± 0.31s
on average. R-SQP again takes minutes on average to return
non-satisfying trajectories across all 100 runs.

1) Shrinking horizon implementation: SOP can also be
applied online in a shrinking horizon fashion similar to [2].
The control horizon in Eq. (2) equals the formula horizon N .
For each time step k = 0, . . . , N , problem (2) is solved while
constraining the previously applied inputs and states (for
times steps < k) to their actual values. In this scheme, the
length of the optimization remains N , but the number of free
variables keeps on shrinking as k increases. For initializing
SOP at each time step, the sequence of inputs computed at
time k−1 is used as a feasible solution for the optimization at
time k. We implemented this scheme for the HVAC control
problem with additional unknown disturbances in dk term
of Eq. (9). These disturbances (in R3) are uniform random
variables centred around the known dk with an interval of
10% of element wise magnitude of dk. This can be thought
of as prediction errors in the disturbances like solar radiation
and outside temperature. Over 100 runs with random initial
states as before, the online application of SOP (in robust
mode) resulted in an average robustness value of 2.91. In
terms of execution time, the first iteration takes times of
the order of those in table II, and subsequent iterations take
a fraction of that time (average for one instance 0.0151s).
This is because we re-use the input sequence at time k − 1
as an initial guess for the solver at time k. Since at the
initial time step we have achieved near global robustness
maxima, the subsequent SQP optimizations terminate much
faster while the formulation takes into account change in the
state due to disturbance values by making small changes to
the input sequence being computed at time k > 0. The high
value of average robustness and the small execution time per
iteration show the applicability of SOP as an online closed
loop control method.

B. Autonomous ATC for quad-rotors

Air Traffic Control (ATC) offers many opportunities for
automation to allow safer and more efficient landing patterns.
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The constraints of ATC are complex and contain many safety
rules [24]. In this example we formalize a subset of such
rules, similar to those in example 1, for an autonomous ATC
for quad-rotors in MTL. We demonstrate how the smoothed
robustness is used to generate control strategies for safely
and robustly manoeuvring two quad-rotors in an enclosed
airspace with an obstacle.

The specification. The specification for the autonomous
ATC with two quad-rotors is:

ϕ = ♦[0,N−1](q1 ∈ Terminal) ∧ ♦[0,N−1](q2 ∈ Terminal)∧
�[0,N−1](q1 ∈ Zone1 =⇒ z1 ∈ [1, 5])∧
�[0,N−1](q2 ∈ Zone1 =⇒ z2 ∈ [1, 5])∧
�[0,N−1](q1 ∈ Zone2 =⇒ z1 ∈ [0, 3])∧
�[0,N−1](q2 ∈ Zone2 =⇒ z2 ∈ [0, 3])∧
�[0,N−1](¬(q1 ∈ Unsafe)) ∧ �[0,N−1](¬(q2 ∈ Unsafe))∧
�[0,N−1](||q1 − q2||22 ≥ d2min) (10a)

Here q1 and q2 refer to the position of the two quad-rotors
in (x, y, z)-space, and z1 and z2 refer to their altitude. The
specification says that, within a horizon of N steps, both
quad-rotors should: a) Eventually visit the terminal zone (e.g.
to refuel or drop package), b) Follow altitude rules in two
zones, Zone1 and Zone2 which have different altitude floors
and ceilings, c) Avoid the Unsafe set, and d) always maintain
a safe distance between each other (dmin).

Note that turning the specification into constraints for
the control problem is no longer simple. This is due to
the ♦ operator, which would require a MILP formulation
to be accounted for. In addition, the minimum separation
and altitude rules for the two zones cannot be turned into
convex constraints for the optimization. As will be seen
below, our approach allows us to keep the non-convexity
in the cost function, and have convex (linear) constraints on
the optimization problem.

System dynamics. The airspace and associated sets for
the specification ϕ are hyper-rectangles in R3 (visualized in
Fig. 4), except the altitude floor and ceiling limit, which is
in R1. In simulation, dmin is set to 0.2 m.

The quad-rotor dynamics are obtained via linearization
around hover, and discretization at 5-Hz. Similar models have
been used for control of real quad-rotors with success ([25]).
For simulation, we set the mass of either quad-rotor to be
0.5 kg. The corresponding linearized and discretized quad-
rotor dynamics are given in [20]. The state for a quad-rotor
x ∈ R6 consists of the velocities and positions in the x, y, z
co-ordinates respectively. The inputs to the system are the
desired roll angle θ, pitch angle φ and thrust T.

The control problem. For the autonomous ATC problem
for two quad-rotors, we solve (2) with ρ̃ in the objective
instead of ρ. Note, we set γ = 0 here, following logically
from existing ATC rules (see sec.I), which do not have an
air-craft specific cost for fuel, or distance traveled. Because
of this, we can also set δ = 0 and simply maximize (smooth)
robustness (subject to system dynamics and constraints) to
get trajectories that satisfy ϕ. For the control problem (Pρ̃),
X and U represent the bounds on the states (Airspace and
velocity limits) and inputs respectively, for both quad-rotors.
f represents the linearized dynamics applied to two quad-
rotors, and N = 21. The initial state for the first quad-rotor
is [0, 0, 0, 2, 2, 2]′ and for the second, [0, 0, 0, 2,−2, 2]′.

Results. For each approach (except BluSTL), we ran
three optimizations, starting from three different trajectories
to initialize the optimization. This can be thought of as a
multi-start optimization, and these initial trajectories can be
obtained in practice by a fast trajectory generator. All three
initial trajectories have negative robustness, i.e. they violate
ϕ. In this case study, we only aim to maximize robustness,
i.e. operate in the robust mode. BluSTL, in either boolean
or robust mode could not find a solution for this problem
(ran over 100 hours without terminating) and so is excluded
from the rest of this comparison. This suggests that having
a complex specification like the one in this problem, non-
trivial dynamics/horizon length results in a MILP that is
intractable to solve. We believe that this example highlights
a fundamental limitation of MILP based approaches.

Fig.4 shows the three trajectories obtained after applying
SOP, all of which satisfy the specification ϕ. To avoid
visual clutter, we do not show the trajectories obtained from
the other methods on the figure. Instead, we summarize
the results in Table III which shows the true robustness
of the three initial trajectories, and the true robustness for
the trajectories obtained via the three methods, SOP, SA,
and R-SQP. Unlike previous examples, we did not explicitly
compute the gradient of the robustness for ϕ. Because of this
run-times are much slower as MATLAB has to numerically
compute the gradient using finite-differences, resulting in
overheads that were not incurred in the other examples.
Despite this, SOP takes the order of 30 minutes for the
optimization, while SA and R-SQP take over 4 hours to do
so. Including explicit gradients should result in a significant
speed up as was observed for the other examples.

Analysis. It is seen that SOP and R-SQP satisfy ϕ for
all instances, while SA satisfies it only once. Note that
in all three cases, R-SQP results in trajectories with the
same robustness value, which is less than the robustness
value achieved in SOP. We conjecture that this is because
R-SQP is getting stuck at local minima at points of non-
differentiability of the objective (see Ex.2 in [20]). On further
investigation, we also noticed that the robustness value
achieved is due to the segment of the ϕ corresponding to
♦[0,N ](q2 ∈ Terminal). R-SQP does not drive the trajectory
(for quad-rotor 2) deeper inside the set Terminal, unlike
the proposed approach, SOP, even though the minimum
separation property is far from being violated. This lends
credence to our hypothesis of SQP terminating on a local
minima, which is the flag MATLAB’s optimization gives.

TABLE III: Robustness of final trajectory, ρ∗, for 3 runs with
different initial trajectories (x0), none of which satisfy ϕ.

Run ρ(x0) SOP ρ∗[ρ̃∗] SA: ρ∗ R-SQP: ρ∗

1 -0.8803 0.3689 [0.4107] -0.2424 0.1798
2 -0.7832 0.3688 [0.4106] -0.5861 0.1798
3 -0.0399 0.3689 [0.4107] 0.0854 0.1798

VI. DISCUSSION AND CONCLUSIONS

We present a method to obtain smooth (infinity differen-
tiable) approximations to the robustness of MTL formulae,
with bounded and asymptotically decaying approximation
error. Empirically, we show that the approximation error is
indeed small for a variety of commonly used MTL formulae.
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Fig. 4: Trajectories obtained via SQP on smooth robustness, with
three different initial trajectories acting as initial solutions for the
SQP. Note, all 3 trajectories satisfy ϕ. Here, pji refers to the
positions of the ith trajectory for the jth quadrotor. A real-time
playback of trajectories can be seen in https://youtu.be/
FU3Rg1Jb7Fw.

Through several examples, we show how we leverage the
smoothness property of the approximation for solving a
control problem by maximizing the smooth robustness, using
SQP, an off-the-shelf gradient descent optimization tech-
nique. A similar approach can also be used for falsification
by minimizing the smooth robustness over a set of possible
initial states for a closed loop system. We compare our
technique (SOP) to other approaches for robustness maxi-
mization for control of two dynamical systems, with state and
input constraints, and show how our approach consistently
outperforms the other methods. While for most examples,
we solve the control problem in a single-shot, finite horizon
manner, in general, for a real-time implementation, the
problem can be solved in an online manner as in Sec. V-
A.1. Future work will include a C implementation of SOP,
which will allow us to experiment on real platforms, like the
aforementioned quad-rotors, and also expand.
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