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A Joint Longitudinal-Survival Model with Possible Cure: An Analysis of
Patient Outcomes on the Liver Transplant Waiting List

Abstract
Data from transplant patients has many unique characteristics that can cause problems with statistical
modeling. The patient's underlying disease / health trajectory is known to affect both longitudinal biomarker
values and the probability of both death and transplant. In liver transplant patients, biomarker values show a
sharp exponential increase in the days preceding death or transplant. Patients who receive transplants show an
immediate drop in biomarker values post-transplant, followed by an exponential decrease. Patients' survival
probabilities also change post-transplant, with dependencies on pre-transplant biomarker values. To properly
incorporate these clinical features, we developed a joint longitudinal-survival model that links an exponential
growth-decay longitudinal model to a modified cure survival model. This allows us to evaluate patient
biomarker trajectories and survival times both pre- and post-transplant. The models are linked by patient-level
shared random effects that appear in the biomarker trajectories and the frailties of the survival functions.
Estimates are obtained via the EM algorithm, with random effects integrated out of the complete data
likelihood function using adaptive quadrature techniques. Simulations show our model performs reasonably
well under a variety of conditions. We demonstrate our methods using liver transplant data from the United
Network of Organ Sharing (UNOS). We use total serum bilirubin as our longitudinal outcome, with age at
waitlisting and gender as linear covariates. Gender is used as a covariate in the survival model both pre- and
post-transplant.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Epidemiology & Biostatistics

First Advisor
Sarah J. Ratcliffe

Keywords
cure model, informative dropout, joint model, liver, transplant

Subject Categories
Biostatistics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/588

http://repository.upenn.edu/edissertations/588?utm_source=repository.upenn.edu%2Fedissertations%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages


A JOINT LONGITUDINAL-SURVIVAL MODEL WITH POSSIBLE CURE: AN
ANALYSIS OF PATIENT OUTCOMES ON THE LIVER TRANSPLANT

WAITING LIST

Arwin M. Thomasson

A DISSERTATION

in

Epidemiology and Biostatistics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2012

Supervisor of Dissertation

Signature

Sarah J. Ratcliffe, Associate Professor of Biostatistics

Graduate Group Chairperson

Signature

Daniel Heitjan, Professor of Biostatistics

Dissertation Committee

Justine Shults, Associate Professor of Biostatistics

J. Richard Landis, Professor of Biostatistics

Peter Reese, Assistant Professor of Medicine and Biostatstics

Peter Abt, Assistant Professor of Surgery



A JOINT LONGITUDINAL-SURVIVAL MODEL WITH POSSIBLE CURE: AN
ANALYSIS OF PATIENT OUTCOMES ON THE LIVER TRANSPLANT
WAITING LIST

c© COPYRIGHT

2012

Arwin M. Thomasson

This work is licensed under the
Creative Commons Attribution
NonCommercial-ShareAlike 3.0
License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/



ACKNOWLEDGEMENT

I would like to thank the members of my committee: Drs. Sarah Ratcliffe, Justine

Shults, J. Richard Landis, Peter Reese, and Peter Abt, and the faculty and staff in the

division of Biostatistics. I would also like to thank the late Dr. Thomas Ten Have for

his invaluable contributions to the development of this dissertation. My appreciation

goes to Dr. David Goldberg for providing data and clinical insight. Thanks to my

family and friends, as well, for being so patient and supportive throughout my many

years of schooling.

This work was supported in part by Health Resources and Services Administration

contract 234-2005-37011C. The content is the responsibility of the authors alone and

does not necessarily reflect the views or policies of the Department of Health and

Human Services, nor does mention of trade names, commercial products, or organi-

zations imply endorsement by the U.S. Government.

This work was funded by the Renal and Urologic Biostatistics Training Grant (DK-

060455).

iii



ABSTRACT

A JOINT LONGITUDINAL-SURVIVAL MODEL WITH POSSIBLE CURE: AN

ANALYSIS OF PATIENT OUTCOMES ON THE LIVER TRANSPLANT

WAITING LIST

Arwin M. Thomasson

Sarah J. Ratcliffe

Data from transplant patients has many unique characteristics that can cause prob-

lems with statistical modeling. The patient’s underlying disease / health trajectory

is known to affect both longitudinal biomarker values and the probability of both

death and transplant. In liver transplant patients, biomarker values show a sharp

exponential increase in the days preceding death or transplant. Patients who receive

transplants show an immediate drop in biomarker values post-transplant, followed by

an exponential decrease. Patients’ survival probabilities also change post-transplant,

with dependencies on pre-transplant biomarker values. To properly incorporate these

clinical features, we developed a joint longitudinal-survival model that links an ex-

ponential growth-decay longitudinal model to a modified cure survival model. This

allows us to evaluate patient biomarker trajectories and survival times both pre- and

post-transplant. The models are linked by patient-level shared random effects that

appear in the biomarker trajectories and the frailties of the survival functions. Esti-

mates are obtained via the EM algorithm, with random effects integrated out of the

complete data likelihood function using adaptive quadrature techniques. Simulations

show our model performs reasonably well under a variety of conditions. We demon-

strate our methods using liver transplant data from the United Network of Organ
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Sharing (UNOS). We use total serum bilirubin as our longitudinal outcome, with age

at waitlisting and gender as linear covariates. Gender is used as a covariate in the

survival model both pre- and post-transplant.
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CHAPTER 1

Introduction

Transplant waiting list data is a relatively new resource to researchers. National

transplant registry data was not collected until 1987. (Contrast this with other stud-

ies, such as the United States census, the Framingham Heart Study, and the Nurses’

Health Study, which began in 1790, 1948, and 1976, respectively.) In 1984, Congress

passed the National Organ Transplant Act (NOTA). NOTA created the national

transplant registry, which is now called the Organ Procurement and Transplantation

Network (OPTN). The United Network of Organ Sharing (UNOS) was given a federal

contract in 1986 to manage OPTN. More detailed information can be found on the

OPTN website (http://optn.transplant.frsa.gov).

This registry (henceforth known as the UNOS registry) contains data about all pa-

tients who are waitlisted for an organ transplant. This data includes both demo-

graphic and medical information. Each organ has its own set of relevant biomarker

values which can be used to measure organ function and can serve as surrogates to

indicate underlying illness and overall health status. For example, on the liver trans-

plant waiting list, patients’ bilirubin levels are collected to measure liver function. In

contrast, forced vital capacity (FEV) is used to assess the lung function of patients

on the lung transplant waiting list.

Transplant data have many interesting features that can present challenges with sta-

tistical methods typically used to analyze transplant data. It is reasonable to hy-

pothesize that patients’ longitudinal biomarker values are related to survival times

in complex ways. Sicker patients may be more likely to die or be removed from the
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waiting list. Healthier patients may be passed over for transplants in favor of giving

organs to others in a more critical situation. This relationship is not necessarily ac-

knowledged in simple statistical analyses. A more complex model is often required

to properly analyze this data. Joint statistical models that incorporate “informative

dropout” are more appropriate for analyzing this type of data (Little and Rubin,

1987).

Transplant data has additional complications that cause issues even when joint mod-

els are used to account for informative dropout. For example, some (but not all) of

the patients on the waiting list for an organ will receive a transplant. Transplant

is expected to change a patient’s survival time (i.e. transplant changes a patient’s

relative hazard of death). This violates the key assumption of constant relative haz-

ards in the Cox proportional hazard model, commonly used to model patient survival

times (e.g. Wulfsohn and Tsiatis, 1997; Hsieh et al., 2006).

In this dissertation, we develop a joint longitudinal-survival model that addresses

these challenges of modeling transplant data. This new model allows for non-linear

biomarker trajectories, as well as the possibility of patient health improvement via

transplant. Use of a two-part survival model avoids the assumption of non-constant

relative hazards in patients who receive transplants.

1.1. Modeling transplant data

Transplant data has many characteristics that make it somewhat difficult to model.

Researchers must consider the impact of inclusion/exclusion criteria, censoring pro-

cesses, possible cure via medical intervention, and missing longitudinal data. Though

these issues do show up in other types of studies, they do not often appear simulta-

neously.
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Figure 1.1: Survival outcomes

Added to waitlist No transplant 
Censored at end of study 

Transplant 
Censored at end of study 

Transplant 
Died before end of study 

Transplant
Censored before end of study 

No transplant 
Censored before end of study 

No transplant 
Died before end of study 

After patients are placed on the transplant waiting list, they can experience a variety

of different outcomes (illustrated in Figure 1.1). Patients may or may not receive

a transplant, and patients can either die or be censored from the study. This gives

us four different outcome possibilities: died before receiving transplant, censored

before receiving transplant, died after receiving transplant, or censored after receiving

transplant.

Patients can leave the study for “random” or “non-random” reasons. For example,

a patient may move far away and have to switch care providers. This would be

considered a random dropout, since the patient’s decision to move is likely unrelated

to his disease process. In contrast, a patient could stop participating in the study

because he is too sick to make it to his follow-up appointments. This would be

considered non-random since the patient’s reasons for dropout are directly related to

his disease process. A more in-depth discussion of the implications of patient dropout

3



can be found in Chapter 2.

In studies of transplant data, researchers often focus primarily on pre- or post-

transplant data, but not both (Merion et al., 2003; Crowley and Hu, 1977). This

is not necessarily the best study design. It is possible that healthier patients or pa-

tients with other desirable characteristics (e.g. a common blood type) are more likely

to be selected for transplant (Crowley and Hu, 1977). These patients are therefore

more likely to be censored in a pre-transplant study, and are more likely to enroll in a

post-transplant study. Assuming random patient dropout is clearly not appropriate

here. Care must be taken when setting up study assumptions, as incorrect assump-

tions about patients’ dropout processes could change inference results (Heitjan, 1993).

Another potential pitfall arises in the fact that pre-transplant risk factors can affect

post-transplant outcomes. Baliga et al. (1992) showed that pre-transplant factors,

such as the need for pre-transplant dialysis, are associated with poor post-transplant

outcomes, such as a higher risk of post-transplant sepsis and death. A common

method of incorporating pre-transplant data into post-transplant analysis is to in-

clude summary measures of pre-transplant activity. For example, Hariharan et al.

(2002) and Chertow et al. (1996) considered pre-transplant interventions (e.g. blood

transfusions and dialysis) and panel reactive antibody (PRA) levels in the recipient

(a measure of immune response) as potential factors affecting post-transplant out-

comes. Although proper in intent, this strategy does not capture the changes in

patient biomarker values. These changes may be of interest in pre-transplant studies

as well as post-transplant studies. Merion et al. (2003) showed that the rate of change

in a patient’s liver function is an important predictor of mortality on the waiting list.

Wu et al. (2010) demonstrated that the slope of changes in post-transplant renal

function is predictive of graft survival. It is reasonable to suspect that pre-transplant

4



biomarker trajectories could be related to post-transplant outcomes. At this time,

models that incorporate these trajectory features have not been developed.

Additional complications arise when the goal of a study is to compare pre- and post-

transplant outcomes. A commonly-used method is to model the data as two separate

cohorts. Bloom et al. (2005) demonstrated this process. Analysis of pre-transplant

mortality is assessed using all patients’ pre-transplant data. Patients in this group

are censored at the time of transplant. Post-transplant mortality is then analyzed

using post-transplant data from any patient who received a transplant. Though this

method allows for the comparison of pre- and post-transplant survival outcomes, it

ignores the fact that the two analysis groups overlap. Since they contain some of the

same patients, they are likely not completely independent.

To properly analyze patient survival times, we must acknowledge two issues. First,

patients who receive transplants can still die, but they are presumably less likely to

die post-transplant than those patients who do not receive transplants. Second, not

all patients will receive transplants. Law et al. (2002) and Li et al. (2010) assumed

that each patient had some probability of being cured by treatment. The survival

times for patients who were not cured were modeled using a Cox proportional hazards

model. These cure models allow for the potential difference in survival probabilities for

patients who are cured. Unfortunately, cure models make some assumptions that are

inappropriate for transplant data. First, cure models assume that all patients receive

the treatment. Second, these models assume that patients who are “cured” cannot

die from the disease being treated (Baker, 1978). Therefore, standard cure models

do not allow for us to draw conclusions about pre- and post-transplant survival, nor

will they allow us to compare treated and untreated patients.

Like most longitudinal analyses, studies using transplant data have to overcome the

5



problem of missing data. Authors use a variety of approaches to deal with the problem

of patient dropout in longitudinal studies of transplant data. Fann et al. (2002) and

Felder-Puig et al. (2006) used multiple imputation (MI) to analyze data from adult

and pediatric bone marrow transplant patients, respectively. MI relies on relationships

between the variables in the dataset. For example, suppose we have a simple dataset

that contains a patient’s weight, height, and age. For patients with missing values for

height, we could use MI to predict the missing height values using patients’ weights

and/or ages. MI methods are useful tools when neither the dropout mechanism nor

the actual missing values are of interest (Little and Rubin, 1987). In the case of

transplant data, however, we are interested in both the dropout process (death) and

the missing data (potential future biomarker values).

Another method used to deal with missing data is last observation carried forward

(LOCF) (Pocock, 1984). LOCF imputes a subject’s missing observations with the last

observed value for that subject. Clearly, this method has a high potential for improper

inference. Biased parameter estimates and underestimated variance are particular

problems. (Saha and Jones (2009) discussed these issues in depth.) Furthermore, like

MI, LOCF does not allow for inference about the dropout process or the missing data

values.

Joint models, which allow for inference about both submodels, are needed. These

models are discussed in detail in Chapter 2.

1.2. Liver transplant data

UNOS is a widely-used source of transplant data. When subjects are initially wait-

listed for an organ transplant, they are entered into the UNOS database. Patient

records are updated occasionally, with the frequency of updates depending on the
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type of organ. For liver transplant patients, UNOS requires updates with varying

frequency, based upon patients’ Model for End-Stage Liver Disease (MELD) scores.

MELD scores are used to predict 90-day mortality for patients on the liver transplant

waiting list, with higher scores indicating a higher probability of death (Wiesner et al.,

2003). UNOS uses this information to rank patients and determine liver distribution

policies (Kamath et al., 2001).

The MELD score combines three different biomarker values: serum creatinine (Cr),

serum total bilirubin (TBIL), and the international normalized ratio of prothrombin

time (commonly referred to as INR). MELD scores are calculated using the following

formula:

MELD = 3.78 · log [TBIL] + 11.2 · log [INR] + 9.57 · log [Cr] + 6.43

Any MELD component with a value of less than 1 is replaced with 1, to prevent

negative scores. Adjustments are also made for patients who have been on dialysis

in the past week. For those patients, 4.0 is used as the value for serum creatinine.

MELD scores are rounded to the nearest whole integer, and are capped at a value of

40.

MELD scores are used to predict pre-transplant survival times of patients and are

unfortunately not validated for use post-transplant. Since we are interested in both

pre- and post-transplant data, we have chosen to use a single component of the

MELD score, bilirubin, for our analysis. INR, serum creatinine, or another continuous

biomarker could also be a valid longitudinal outcome.

A potential source of bias in the data comes from the fact that MELD scores (and

therefore bilirubin, INR, and creatinine values) are, by law, updated more often for

7



sicker patients (UNOS, 2002). To avoid this bias, we limited the analysis to pa-

tients for whom we could augment the UNOS data with data from the Hospital of

the University of Pennsylvania (HUP). This gives us more observations per subject,

regardless of health status. We collected data from all patients waitlisted at HUP

between February 27, 2002, and May 13, 2011. The start date was chosen because

that is the day on which UNOS began using MELD scores to rank all patients on the

waitlist. Data are collected more consistently after that point. Our initial dataset

consisted of 1,387 patients, each with a minimum of four observations. Patients who

did not receive transplants were followed for a maximum of five years. Patients who

received transplants were followed either for five years post-waitlisting, or from time

of waitlisting until three years post transplant, whichever came first.

Samples of this data were used to demonstrate the methods in Chapters 3 and 4.

Demographic and baseline summaries of these samples are given in Tables 3.4 and

4.4.

1.3. Discussion

The unique characteristics of transplant data clearly require the use of advanced

statistical techniques that allow for a link between longitudinal and survival outcomes.

In this dissertation, we develop a method for combining longitudinal and survival data

in the presence of possible patient cure. Using a shared parameter model, we link

the longitudinal and survival submodels via random effects that appear in both the

subject-specific longitudinal trajectories and survival frailties.

In this chapter, we have outlined the unique issues associated with transplant data,

as well as some authors’ attempts to analyze it. We have also provided a discussion

of the need for joint modeling of data with informative dropout.
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In the remainder of this dissertation, we develop a joint longitudinal-survival model

to analyze liver transplant data. Chapter 2 gives a thorough background of the issue

of informative dropout and what statistical models can be used to compensate for it.

Chapter 3 develops an initial joint model, where patients are assumed to be cured

post-transplant. Chapter 4 extends the model in Chapter 3 to include the possibility

of post-transplant death. We demonstrate our methods using liver transplant data

from the United Network of Organ Sharing and the Hospital of the University of

Pennsylvania. Chapter 5 summarizes the methods developed and the implications for

the analysis of transplant data.
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CHAPTER 2

Informative Dropout

Missing data is a challenge that exists in almost every kind of study. The validity

of many standard longitudinal analysis methods depends on the randomness of the

dropout process (Diggle et al., 2002). In real data, this may or may not be the case.

Missingness can occur due to several different processes, each of which has different

implications for the statistical analysis of the data.

2.1. Missingness patterns

Missingness can be classified as missing completely at random (MCAR), missing

at random (MAR), or not missing at random (NMAR). These patterns are defined

by what portions (if any) of the observed data are dependent on the missing data

(Rubin, 1976). Let Y be the complete data. We can then divide Y into two subsets:

the observed data Yobs and the unobserved data Ymiss. R is a vector of indicator

variables describing the missingness pattern of the data. Let fY (Yobs,Ymiss) be the

probability density function (PDF) of Y and fR (R | Yobs,Ymiss) be the missingness

process.

We can write the joint PDF of Y and R as

fY,R (Yobs,Ymiss,R) = fY (Yobs,Ymiss) fR (R | Yobs,Ymiss) (2.1.1)

10



We integrate the missing data out of the full PDF.

fYobs,R (Yobs,R) =

∫
fY,R (Yobs,Ymiss,R) dYmiss

=

∫
fY (Yobs,Ymiss) fR (R | Yobs,Ymiss) dYmiss (2.1.2)

This gives us the PDF for the observed data.

2.1.1. Missing completely at random

If the data are MCAR, the missingness process depends on neither the observed nor

the missing data. This gives us the following simplification for (2.1.2).

fYobs,R (Yobs,R) =

∫
fY (Yobs,Ymiss) fR (R | Yobs,Ymiss) dYmiss

=

∫
fY (Yobs,Ymiss) fR (R) dYmiss

= fR (R)

∫
fY (Yobs,Ymiss) dYmiss

= fR (R) fY (Yobs) (2.1.3)

Maximum likelihood theory seeks to maximize the likelihood with respect to our data,

so maximizing (2.1.3) with respect to Yobs is equivalent to maximizing

f ∗
Yobs,R

= C · fY (Yobs) (2.1.4)

where C is a constant. This is true because fR (R) does not depend on Yobs. There-

fore, if the data are MCAR, all standard longitudinal methods can be used. This

kind of missingness is considered “ignorable”.

11



2.1.2. Missing at random

For MAR data, the missingness process can depend on Yobs, but not on Ymiss. This

more relaxed assumption still allows us to simplify (2.1.2), though not quite as much

as with MCAR data.

fYobs,R (Yobs,R) =

∫
fY (Yobs,Ymiss) fR (R | Yobs,Ymiss) dYmiss

=

∫
fY (Yobs,Ymiss) fR (R | Yobs) dYmiss

= fR (R | Yobs)

∫
fY (Yobs,Ymiss) dYmiss

= fR (R | Yobs) fY (Yobs) (2.1.5)

Missingness in MAR data is still considered to be “ignorable”. Diggle et al. (2002)

noted that standard likelihood-based longitudinal analyses, such as generalized linear

mixed models, can still be used with MAR data, though there is a potential for a loss

in efficiency. Analyses that rely on other methods of estimation, such as generalized

estimating equations (GEE), cannot be used. Using GEE with MAR data can lead

to parameter estimates with a bias as high as 50% (Touloumi et al., 2001).

2.1.3. Not missing at random

If data are NMAR, the missingness process depends on both Yobs and Ymiss. No

simplification can be made to (2.1.2). This missingness is considered “non-ignorable”

or “informative”. NMAR data requires the use of a joint longitudinal-missingness

model in order to obtain proper parameter estimates.
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2.2. Analysis methods

Little and Rubin (1987) defined four broad (somewhat overlapping) classes of proce-

dures used to compensate for missing data.

1. Complete-case analysis

Complete-case analysis is a very straightforward method of dealing with missing

data. Subjects with any missing data are simply excluded from analysis. This

simplicity comes at a cost, however. Little and Rubin (1987) noted that the

loss of information from excluded subjects can result in less precise estimates,

or, even worse, severe bias in parameter estimates.

2. Probability weighting

Probability weighting treats the missing data patterns as if they were part of the

sampling design. The data are then analyzed using methods similar to standard

stratified analysis. Chand and Rothwell (1977) give an example of a standard

stratified data analysis. Slight changes must be made to “true” stratified analysis

methods to account for increased variance (since the sampling weights are not

actually fixed by design). There is also still a potential for estimate bias, if the

data are NMAR (Little and Rubin, 1987).

3. Missing-value imputation

Imputation methods “fill in” missing data values using fully-observed data. Last

observation carried forward (LOCF) and multiple imputation (MI), discussed

in Section 1.1, are two examples of imputation procedures. Imputation meth-

ods have many of the same pitfalls as complete-case methods. If the data are

NMAR, parameter estimates are subject to bias (Lavori et al., 1995; Sterne

et al., 2009) and incorrect standard errors (Lavori et al., 1995).
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4. Model-based procedures

Model-based missing data analysis requires the specification of a model for both

the outcome and the missingness process (Little and Rubin, 1987). A variety

of model-based procedures are discussed in the remainder of this chapter.

Methods for dealing with NMAR data arose out of the need for proper study design

and data analysis in longitudinal trials. In many of these trials, it is reasonable

to suspect that patient dropout could depend on patients’ longitudinal outcomes.

For example, the outcome for the Intermittent Positive Pressure Breathing (IPPB)

trial was patients’ longitudinal measurements of forced expiratory volume (FEV).

Wu and Carroll (1988) showed that dropout from the IPPB trial was not random.

Patients with low initial FEVs or rapid rates of decline in FEV were more likely to

die. Similar issues were encountered in the Modification of Diet in Renal Disease

(MDRD) trial. The outcome for the MDRD trial was patient kidney function, as

measured by glomerular filtration rate (GFR). Patients with very low GFRs were

more likely to be removed from the study due to death, beginning dialysis, or kidney

transplant (Beck et al., 1991). Similar challenges are encountered when analyzing

data from many different areas of study, including AIDS (De Gruttola and Tu, 1994),

opiate addiction (Follmann and Wu, 1995), pain relief (Pulkstenis et al., 1998), and

prostate cancer (Law et al., 2002).

There are two standard classes of joint models: selection and pattern-mixture models.

The types of models differ with respect to which parts of the complete-data likelihood

are conditional and which are marginal. For the following discussion, we assume

that we have data with repeated longitudinal observations, Yobs, and dropout time

information, t. Dropout is governed by some random process R.
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2.2.1. Pattern-mixture models

Pattern-mixture models assume that patient longitudinal outcomes are conditional

on the drop-out process (Little, 1993). Analysis is done by stratifying subjects on

dropout time and combining the within-stratum models to form an overall marginal

longitudinal model.

fYobs,t (Yobs, t) =

∫
fY (Yobs | t,R) fR (R | t) ft (t) dR (2.2.1)

This model is robust to misspecification, though it has the consequence of modeling

the longitudinal data as conditional on the dropout process. This is a reasonable

strategy in some cases, in particular when dealing with survey non-response. With

non-response, we generally assume that patients with similar patterns of responses to

some survey questions will have similar responses to other survey questions. There-

fore, we can use the information from subjects with fully-observed responses to “fill

in” the subjects with missing data. This is the justification for the method of multiple

imputation, where the fully-observed data is used to predict the values for the missing

data (Little and Rubin, 1987).

Conditioning the longitudinal model on future dropout is not always reasonable,

though, particularly if the end goal of analysis is to develop a predictive model.

In a predictive model, the subject’s dropout time would be some unknown future

event. A pattern-mixture model would clearly be unreasonable in a predictive model,

since we would be attempting to predict an unknown outcome based on an unknown

predictor (future dropout time). This model also prevents us from explicitly modeling

the dropout process. The dropout process may be of interest if, for example, subject

dropout is related to subject survival times.

15



2.2.2. Selection models

Selection models assume the drop-out process is conditional on patient longitudinal

outcomes. Results are obtained by modeling the available data and adding on a

conditional missingness model (Laird and Ware, 1982).

fYobs,t (Yobs, t) =

∫
fY (Yobs) ft (t | Yobs,R) fR (R) dR (2.2.2)

Selection models have the advantage of not conditioning analysis on future, unknown

dropout times. However, they are not robust to violations of the assumption of normal

longitudinal errors, or to misspecification of the dropout process (Little and Rubin,

1987).

2.2.3. Shared-parameter models

Shared-parameter models are a specific case of selection models. They have become

a very popular method of dealing with informative dropout. Shared-parameter mod-

els treat the longitudinal and survival submodels as conditionally independent given

underlying shared random effects. These random effects contribute to both the lon-

gitudinal and survival portions of the model (Ratcliffe et al., 2004).

fYobs,t (Yobs, t) =

∫
fY (Yobs | R) ft (t | R) fR (R) dR (2.2.3)

The conditional independence assumption means that shared-parameter models are

fairly straightforward to understand and explain. Both the longitudinal trajectories

and dropout processes can be modeled explicitly. The longitudinal trajectories and

dropout processes can, in theory, be modeled using any type of statistical submodel.
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Several specific combinations have been proposed.

Early work with shared-parameter models focused on joint models with tractable,

closed-form parameter estimates. Schluchter (1992) and De Gruttola and Tu (1994)

employed multivariate normal models for patient biomarker trajectories and a one-to-

one normalizing transformation of patient survival times. Both authors assumed that

the shared random effects are normally distributed. This allowed for straightforward

calculation of parameter estimates thought the use of the EM algorithm (Dempster

et al., 1977).

Both authors modeled patient biomarker values using a standard linear mixed effects

model:

Y i = X iα+Ziri + εi (2.2.4)

where εi ∼ N (0, σ2
εIi), X i and Zi are both known, subject-specific design matrices,

and α and ri are vectors of unknown fixed and random parameters, respectively.

Transformed patient survival times were also modeled using a random effects model:

Ti = wT
i ζ + λri + τi (2.2.5)

where τi ∼ N (0, s2), wi is a known design vector, ζ and λ are unknown fixed param-

eters, and ri is the shared link between this survival time model and (2.2.4) above.

17



These models give the following observed-data likelihood:

Lobs =
n∏

i=1

[∫

ri

φ
(
Y i | ri,α, σ2

ε

) (
φ
(
ti | ri, ζ,λ, s

2
))δi=1

×
(
1− Φ

(
ti | ri, ζ,λ, s

2
))δi=0

φ (ri) dri

]

(2.2.6)

where ti is the minimum of a patient’s death (Ti) and censoring (Ci) time, δi is

an indicator for death (1) or censoring (0), and n is the total number of subjects.

φ (·) and Φ (·) are the PDF and cumulative density function (CDF) of the normal

distribution, respectively.

Other authors have extended the methods proposed by Schluchter (1992) and De Grut-

tola and Tu (1994) to include non-linear longitudinal trajectories. For example, Chen

et al. (2004) modeled patient immune response using either a linear or quadratic

trajectory. Linear and quadratic models are not appropriate for transplant data, as

neither model can capture a rapid growth or decay in biomarker values. Biomarker

trajectories should be modeled using a more flexible trajectory. Specifically, exponen-

tial trajectories are often a reasonable representation of disease progress (Law et al.,

2002). This exponential growth-decay model can capture the quick increases and

decreases in biomarker values experienced by transplant patients. Non-parametric

models have also been used. Elmi et al. (2011) proposed a B-spline for modeling

longitudinal trajectories. B-splines are particularly useful when all patients are ob-

served at regular intervals. Unfortunately, transplant patients are observed at many

different times which vary from patient to patient. Furthermore, patients tend to

have more observations clustered around the time of transplant. Use of a B-spline

in this situation would therefore require patient-level knots to be used. The model

would be very complex, both computationally and intuitively.
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A popular choice for modeling non-normal patient dropout is a Cox proportional

hazards model (Wu and Carroll, 1988; Law et al., 2002; Yu et al., 2004; Liu et al.,

2004; Tsiatis and Davidian, 2004). Cox models allow the researcher to estimate haz-

ard ratios, relative risks, and odds ratios without requiring assumptions to be made

about patients’ baseline hazards (Cox, 1972). Wulfsohn and Tsiatis (1997) proposed

a linear process with subject-specific random slopes and intercepts for the longitudi-

nal trajectories, and a Cox model for survival times. As with the methods discussed

above, the authors assumed that the random effects were normally distributed. The

proposed longitudinal model is

Y i = α0i + α1iui + ei (2.2.7)

where ei ∼ N (0, σ2
εI i), ui is the vector of observation times for subject i, and α0i

and α1i follow a subject-specific bivariate normal distribution. Thus,




α0i

α1i



 ∼ N








α0

α1



 , s2αI2



 (2.2.8)

This is a slight extension of the longitudinal models proposed by Schluchter (1992) and

De Gruttola and Tu (1994). Wulfsohn and Tsiatis (1997) modeled the longitudinal

trajectories as fixed values measured with error. Patient survival times are analyzed

using a Cox proportional hazard model.

λ (t) = λ0 (t) exp (ζ (α0i + α1it)) (2.2.9)
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The two models above lead to the following observed data likelihood:

Lobs =
n∏

i=1

[∫ ∞

−∞

(
mi∏

j=1

φ (yij | αi)

)

× [λ0 (ti) exp (ζ (α0i + α1iti))]
δi=1 exp

(
−
∫ ti

0

λ0 (u) exp (β (α0i + α1iu)) du

)

× φ (αi)

]

(2.2.10)

where ti is the minimum of survival and censoring time, δi is an indicator of death

or censoring, and φ (·) is the normal PDF. n and mi are the number of subjects and

observations per subject, respectively.

Simple Cox regression models do not adequately model the survival processes of trans-

plant patients, however. Cox models assume that the likelihood of death increases as

the study progresses, which is clearly not the case with patients who receive some sort

of treatment intervention (Cox, 1972). It is reasonable to suspect that the probability

of death for a patient who receives a treatment would be lower than that of a patient

who does not receive a treatment. We must allow for this change in survival probabil-

ities in our analysis. One method of doing this would be to use a cure model (Baker,

1978). Cure models assume that there are latent “cured” and “susceptible” groups.

Given a treatment, patients in the cured group experience a quick improvement in

health and are classified as “long-term survivors”. Susceptible patients may or may not

die over the course of the study. Though cure models do accommodate the possibility

of a change in death risk post-transplant, they ignore two key features of transplant

data. First, patients who receive transplants can indeed die post-transplant. Second,

not every patient in the study will receive a transplant.

Other proposed models for patient dropout include discrete dropout times (Wu and
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Carroll, 1988) and a logistic dropout process (Elmi, 2009). These models are not

appropriate for transplant data, as the data contains continuous survival times.

2.3. Conclusion

In this chapter, we have discussed the issue of informative dropout in longitudi-

nal studies. We have presented two classes of methods for dealing with informative

dropout: pattern mixture models and selection models. We also discussed the history

and evolution of the shared parameter model (a special case of a selection model).

The methods discussed in this chapter do not allow for all of the issues associated with

transplant data. A valid model for transplant data would need to incorporate non-

linear longitudinal trajectories which could differ pre- and post-transplant, survival

probabilities which differ pre- and post-transplant, and a link that connects the pre-

and post-transplant models. No such model currently exists.

In the following chapters, we will develop a model that compensates for the particular

issues presented by transplant data.
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CHAPTER 3

A Joint Longitudinal-Survival Model with

Post-Transplant Cure

3.1. Introduction

Data from transplant patients have many interesting and unique characteristics. The

data often contain both repeated longitudinal measurements as well as patient survival

information. Unfortunately, studies using this kind of data often focus on either the

longitudinal measurements (e.g., Karam et al., 2003) or patient survival (e.g. Gonwa

et al., 1995). However, it has been shown that longitudinal and survival information

are not independent (Kim et al., 2008). Ignoring the informative link between the two

types of data can lead to biased parameter estimates, or, in extreme cases, incorrect

inference (Diggle et al., 2002). Joint modeling should be used to analyze transplant

data. Linking longitudinal and survival information allows for better inference. In this

chapter, we develop a joint longitudinal-survival model that incorporates both patient

survival information and longitudinal health trajectories. We use liver transplant data

(discussed in Section 1.2) from the United Network of Organ Sharing (UNOS) and

the Hospital of the University of Pennsylvania (HUP) to demonstrate this model.

Many authors have acknowledged the need for joint modeling. For example, Schluchter

(1992); De Gruttola and Tu (1994); Yu et al. (2004); Chen et al. (2004), and Law

et al. (2002) all proposed models for simultaneously analyzing longitudinal and sur-

vival information. These models all incorporated the idea of informative dropout

into their analysis (Tsiatis and Davidian, 2004). There are three factors that must

be considered in developing a joint model: the longitudinal submodel, the survival
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submodel, and the link between the two submodels.

The model link is important, as it determines how the longitudinal and survival

submodels interact. Authors have proposed a variety of different links. One straight-

forward approach is to include the longitudinal biomarker values as a time-varying

covariate in the survival model (Yu et al., 2004). Unfortunately, this does not allow

for inference to be made about the longitudinal biomarker values (since a covariate

cannot be an outcome). Another approach is to assume that the patients can be

divided into latent classes, with each class having its own survival and longitudinal

models (Chen et al., 2004). This approach groups patients based on some future, un-

known dropout time. This is undesirable if we wish to develop a dynamic prediction

model. Therefore, both of these approaches are inappropriate for transplant data.

We believe that there are random effects that contribute to both the survival and

longitudinal models. We include shared patient-level random effects in both the longi-

tudinal and survival submodels. Law et al. (2002) used a somewhat similar approach.

The authors assumed that patient longitudinal trajectories follow a trajectory gov-

erned by patient-specific, normally-distributed random effects. The patient-specific

biomarker trajectories and the population-averaged expected value of the random ef-

fects were included as covariates in the survival model. Unlike Law et al. (2002), we

assume a mixed-effects model for the longitudinal trajectories. We also do not assume

normality of the random effects. Further, we assume that patients who receive treat-

ment are certainly cured (i.e. for patients who receive transplants, the probability of

survival is 1). (Note that this is not a clinically reasonable assumption. We relax this

assumption in Chapter 4.)

As with standard longitudinal modeling, the options for which longitudinal model to

use depend heavily on the type of data being examined. Ten Have et al. (2000) chose
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an ordinal logistic model to analyze functional status data, while Chen et al. (2004)

used a linear or quadratic model for melanoma data. Based on exploratory data

analysis, we believe that our biomarker data follows a U-shaped (but not quadratic)

trajectory. One option is to model this data non-parametrically using a B-spline as

proposed by Elmi et al. (2011). However, B-splines are computationally intensive and

difficult to interpret. Therefore, we will focus on a mixture of exponentials, similar to

the model proposed by Law et al. (2002). This will allow us to have an interpretable

parametric model.

A variety of survival submodels are also available, though not all are appropriate for

transplant data. Many authors advocate the use of a Cox proportional hazards model

(Cox, 1972; Liu et al., 2004; Law et al., 2002). A Cox model is reasonable for survival

data where each subject has an increasing risk of death as the study progresses.

These models also assume that, were the study to last for an infinite amount of time,

all subjects would die. This assumption is invalid in the case of transplant data.

Subjects have the possibility of receiving a transplant, and likely have a very different

survival mechanism post-transplant than they did pre-transplant. Li et al. (2010);

Law et al. (2002) and Chen et al. (2004) used cure models in their analysis. Cure

models assume that, after receiving a treatment, some patients will be “cured” and

cannot experience death. A simple cure model is still inadequate for transplant data,

however. Cure models assume that all patients receive an intervention, which is not

true of transplant candidates. Therefore, we must develop a modified cure model,

which allows some patient to receive treatment and experience disease cure, while

other patients continue the study untreated and potentially die.

In this chapter, we develop a shared-parameter longitudinal-survival model. Pa-

tient dropout and survival are modeled using a modified cure model. Longitudinal
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biomarker trajectories are modeled using a mixture of exponentials. The two sub-

models are linked by shared random effects that are present in both the longitudinal

trajectory model and the frailty term in the survival model.

We present our model and estimation procedures in Section 3.2. We then demonstrate

our methods in Section 3.4 using data from the combined UNOS/HUP dataset. Fi-

nally, we present a simulation study in Section 3.3.

3.2. Model

Let Y i be the (mi × 1) vector denoting the observed longitudinal outcomes for patient

i = 1, . . . , n, and ui be the corresponding observation times. Let ti be the observed

failure time for patient i, where ti is the minimum of Ti, the true survival time,

and Ci, the censoring time. As is standard practice, we define an event indicator

δi = I (Ti ≤ Ci).

A second indicator, τi, represents whether or not a patient receives a transplant. It is

defined as 1 (for patients who receive transplants) and 0 otherwise. tTXi is the time

of transplant for patient i, where applicable. For patients who received transplants,

ti and tTXi are equivalent.

3.2.1. Submodels

We assume that each patient has a biomarker trajectory represented by a non-linear

random-effects exponential decay-growth process similar to the one originally pro-

posed by Law et al. (2002). We modify the model slightly by including both random
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and fixed effects, rather than just random effects, in the longitudinal model.

Y i (ui) = (X iα)T +
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)) + εi (3.2.1)

where εi ∼ N (0, σ2
εI) and exp (rji) follows a gamma distribution that will depend on

the linking process used. α is a (p× 1) vector of fixed effects. rji is the j = 1, . . . , 4

random effect for patient i.

The pre-transplant amplitude parameter, β1, is interpreted as the average baseline

starting value for the biomarker measurements. The parameters α and r1i are ad-

ditional fixed effects and random effects, respectively, that determine a subject’s

deviation from the overall population average. Similarly, β3 and r3i are the fixed and

random components of the instantaneous change in biomarker values brought on by

a patient receiving a transplant. The parameters β2 and β4 are population-averaged

growth/decay terms. Random effects r2i and r4i that are of the same signs as β2

and β4 indicate that a patient’s biomarker values are changing at a faster rate than

the expected population average. Conversely, random effects of opposite signs as the

population parameters indicate that a patient’s biomarker values are changing at a

slower rate than the overall population’s.

For the survival portion of our model, we use a cure model similar to the one proposed

by Li et al. (2010):

Si (uik) =






πi, τi = 1, uik ≥ tTXi

(1− πi) exp (−uikbi exp (Xωiζω)) , otherwise
(3.2.2)

Unlike Li et al. (2010), we assume that patients who received transplants are cer-
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tainly cured and cannot experience a decline in health. Therefore, patients receiving

transplants have a cure probability of 1 (i.e. πi = 1.)

We define

bi = γ1 exp (r1i) + γ2 exp (r2i) (3.2.3)

as a subject-specific frailty which links the longitudinal and survival submodels. This

frailty is influenced by both the amplitude and growth rate of a patient’s biomarker

trajectory. We assume γ1 + γ2 = 1 so that we can interpret γ1 and γ2 as weighting

factors. These weights represent the relative influence of pre-transplant longitudinal

amplitude and growth rate on patient frailty. This also ensures that bi = 1 when

r1i = r2i = 0 (meaning the frailty has no influence on the survival probability). The

survival parameter, ζω, is a set of linear predictors that affects a patient’s likelihood of

death prior to transplant. Larger values of ζω indicate a higher probability of death.

Similarly to Li et al. (2010), we require bi ∼ Γ (θ−1, θ−1). By the properties of the

gamma distribution, it follows that exp (rji) ∼ Γ
(

γj
θ ,

θ
γj

)
. We can then derive the

distribution of rji using a change of variables. Let exp (rji) = Rji, so rji = log (Rji) =

g (Rji). Let fR (Rji) be the distribution of Rji. The derivation of the distribution of
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rji, h (rji) follows.

h (rji) =

∣∣∣∣
d

drji

(
g−1 (Rji)

)∣∣∣∣ · fR
(
g−1 (Rji)

)

=

∣∣∣∣
d

drji
(exp (rji))

∣∣∣∣ · fR (exp (rji))

= exp (rji) ·
(exp (rji))

γj
θ −1 exp

(
− exp (rji)

γj
θ

)

(
θ
γj

)γj
θ
Γ
(γj

θ

)

=
(exp (rji))

γj
θ

(
θ
γj

) γj
θ
exp

(γj
θ exp (rji)

)
Γ
(γj

θ

) (3.2.4)

Recall that γ3 and γ4 are present in our longitudinal submodel. These parameters have

a similar interpretation as γ1 and γ2. However, they are related to post-transplant

outcomes (of interest in Chapter 4). This model does not investigate post-transplant

survival. Thus, γ3 and γ4 are not estimated here and will be arbitrarily set to 0.4 and

0.6, respectively. Since these parameters are ultimately integrated out of the model

during estimation, the arbitrary values do not appreciably affect the estimated values

of the other model parameters.

3.2.2. Estimation

Parameter estimates are obtained using an EM-based algorithm. The EM algorithm

uses the complete-data likelihood to find the maximum likelihood estimates in the

M-step and the expectations of the sufficient statistics in the E-step.

For simplicity’s sake, we divide our likelihood into three portions, each corresponding

to a different set of patient outcomes.
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1. Patient receives a transplant (τi = 1, δi = 0)

Lτi=1,δi=0 = S( (ti | ri,Xi) g (Y i | X i, ri)h (ri | X i) (3.2.5)

2. Patient does not receive a transplant, but death is not observed (τi = 0, δi = 0)

Lτi=0,δi=0 = S∗ (ti | ri,Xi) g (Y i | X i, ri)h (ri | X i) (3.2.6)

3. Patient does not receive a transplant, and death is observed (τi = 0, δi = 1)

Lτi=0,δi=1 = λ∗ (ti | ri)S
∗ (ti | X i, ri) g (Y i | X i, ri)h (ri | X i) (3.2.7)

where

S( (ti | ri,X i) = exp (−tibi exp (Xωiζω))

g (Y i | X i, ri) =
1

(2π)m/2 (σ2
ε )

1/2
exp

[
− 1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)]
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h (ri | X i) =




2∏

j=1

(exp (rji))
γj
θ

(
θ
γj

) γj
θ
exp

(γj
θ exp (rji)

)
Γ
(γj

θ

)





×




4∏

j=3

(exp (rji))
γj
θ

(
θ
γj

) γj
θ
exp

(γj
θ exp (rji)

)
Γ
(γj

θ

)





I(τi=1)

λ∗ (ti | ri) = bi exp (Xωiζω)
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Combining (3.2.5), (3.2.6), and (3.2.7) gives us our full complete-data likelihood.

L =
n∏

i=1

[
Lτi=1,δi=0

I(τi=1)I(δi=0)Lτi=0,δi=0
I(τi=0)I(δi=0)Lτi=0,δi=1

I(τi=0)I(δi=1)
]

=
n∏

i=1




exp (−tibi exp (Xωiζω))

× [bi exp (Xωiζω)]
δi=1

× 1

(2π)m/2 (σ2
ε )

1/2
exp

[
− 1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)]

×




2∏

j=1

(exp (rji))
γj
θ

(
θ
γj

)γj
θ
exp

(γj
θ exp (rji)

)
Γ
(γj

θ

)





×




4∏

j=3

(exp (rji))
γj
θ

(
θ
γj

)γj
θ
exp

(γj
θ exp (rji)

)
Γ
(γj

θ

)





I(τi=1)



(3.2.8)
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This gives us the following complete-data log-likelihood:

l =
n∑

i=1

{

−tibi exp (Xωiζω)

+ I (δi = 1) (log bi +Xωiζω)

− m

2
log (2π)− 1

2
log σ2

ε −
1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
)

+
2∑

j=1

[
γj
θ
rji −

γj
θ
exp (rji)−

γj
θ
log

(
θ

γj

)
− logΓ

(γj
θ

)]

+ I (τi = 1)
4∑

j=3

[
γj
θ
rji −

γj
θ
exp (rji)−

γj
θ
log

(
θ

γj

)
− log Γ

(γj
θ

)]}

(3.2.9)

For the M-step of the algorithm, we can use the principles of maximum likelihood to

determine closed-form estimates for α, β, and σ2
ε .

The most straightforward way to derive the estimate for α is to note that our model

can be re-parameterized with respect to α. Let

Y ∗
i = Y i −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))

and

X∗
i = 1− exp (− (β2 + r2i)ui)
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Then

Y ∗
i = (X∗

iα)T + εi (3.2.10)

We apply standard formulas for ordinary least squares regression to (3.2.10) and

obtain the following parameter estimate for α.

α̂ =
1

n

n∑

i=1

E

[(
(X∗

i )
T X∗

i

)−1
X∗

iY
∗
i

]

=
1

n

n∑

i=1

E

[[
((1− exp (− (β2 + r2i)ui))X i)

T ((1− exp (− (β2 + r2i)ui))X i)
]−1

× ((1− exp (− (β2 + r2i)ui))X i)
T

×
(
Y i − (β1 + r1i) exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)
]

(3.2.11)

Solving for β1 is also very simple. First, we simplify the complete-data log-likelihood.

lα,β = − 1

2σ2
ε

· 1
n

n∑

i=1

[
1

mi

mi∑

k=1

[
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
]2
]
+ Cα.β

(3.2.12)

where Cα,β represents all the parts of the log-likelihood that do not contain α or β.
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We then calculate the partial derivative of (3.2.12) with respect to β1.

∂lα,β
∂β1

∝ 1

n

n∑

i=1

[
1

mi

mi∑

k=1

[
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))

]

◦ exp ((β2 + r2i)ui)

]

(3.2.13)

where a ◦ b is the Hadamard product of vectors a and b. Setting (3.2.13) equal to

zero and solving for β1, we find the parameter estimate for β1.

β̂1 =
1

n

n∑

i=1

E

[
1

mi

mi∑

k=1

[[
Y i − (X iα)T

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
]

◦ exp ((β2 + r2i)ui)− r1i + (X iα)T
]]

(3.2.14)

The parameter estimate for β2 is slightly more complicated to calculate, but can still

be done rather easily. We first take the partial derivative of (3.2.12) with respect to

β2.

∂lα,β
∂β2

∝ 1

n

n∑

i=1

[
1

mi

mi∑

k=1

[
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))

]

◦
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

]

(3.2.15)
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Setting (3.2.15) equal to zero and solving for β2 gives us

β̂2 =
1

n

n∑

i=1

E

[
1

mi

mi∑

k=1

log

[
1

ui ◦
(
β1 + r1i − (X iα)T

)
exp (−r2iui)

(
Y i − (X iα)T

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))

)]]
(3.2.16)

Similar approaches are used to solve for β3 and β4 estimates.

β̂3 =






1∑
I (τi = 1)

n∑

i=1

E

[
1∑

I (ui ≥ tTXi)

mi∑

k=1

[(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

)

× exp (− (β4 + r4i)ui)− r3i
]]

, τi = 1

0, otherwise

(3.2.17)

β̂4 =






1∑
I (τi = 1)

n∑

i=1

E

[
1∑

I (ui ≥ tTXi)

×
mi∑

k=1

log

[
1

ui ◦ (β3 + r3i) exp (r4iui)

×
(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

)
]]

, τi = 1

0, otherwise

(3.2.18)
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Although we have closed-form estimates for all of the longitudinal submodel param-

eters, estimates for α, β2, and β4 are calculated via the fminsearch function in

MATLAB. The fminsearch algorithm finds the minimum of a multivariable func-

tion using unconstrained nonlinear optimization. It is more computationally stable

than using the closed-form estimates directly, due to the relationship between the

closed-form estimates and observation times. We use fminsearch to solve

[
α̂, β̂2, β̂4

]T
= argmin E [lα,β (α, β2, β4)] (3.2.19)

Calculating all parameter estimates via fminsearch would be overly time-consuming.

Therefore, estimates for β1 and β3 will be calculated using (3.2.14) and (3.2.17).

We estimate variance by subtracting subject-level expected values from subject ob-

served values.

σ̂2
ε =

1

n

n∑

i=1

1

mi
(Y i − E [Y i]) (Y i − E [Y i])

T (3.2.20)

where

E [Y i] = E
[
(X iα)T +

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
]

Estimates for γ, ζω, and θ cannot be derived in a closed form. We will approxi-

mate them using the MATLAB fmincon function (which uses constrained nonlinear
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optimization) to solve

[
γ̂1, γ̂2, ζ̂ω, θ̂

]T
= argmin E [lγ,ζω ,θ (γ1, γ2, ζω, θ)] (3.2.21)

where

lγ,ζω ,θ =
n∑

i=1

{
−tibi exp (Xωiζω)

+ I (δi = 1) (log bi +Xωiζω)

+
2∑

j=1

[
γj
θ
rji −

γj
θ
exp (rji)−

γj
θ
log

(
θ

γj

)
− log Γ

(γj
θ

)]

+ I (τi = 1)
4∑

j=3

[
γj
θ
rji −

γj
θ
exp (rji)−

γj
θ
log

(
θ

γj

)
− log Γ

(γj
θ

)]}

(3.2.22)

The E-step will evaluate the following integral:

E [f (ri)] =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

f (ri) h (ri) dr1idr2idr3idr4i (3.2.23)

where f (ri) is any sufficient statistic. Expanding equations (3.2.14) and (3.2.17)

gives us the following sufficient statistics:

r1i r3i

exp (r2iui) exp (−r4iui)

exp (r2iui) exp (r4iui) exp (−r2iui) exp (−r4iui)

r3i exp (r2iui) exp (r4iui) r1i exp (−r2iui) exp (−r4iui)
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We will use adaptive Gaussian quadrature (AGQ) to determine the numerical value of

(3.2.23) (Pinheiro and Chao, 2006). This method requires integration over a normal

distribution. Since our random effects are not normally distributed, we the standard-

ization methods proposed in Liu and Yu (2008). The resulting integral is

E [f (ri)] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
f (ri)

h (ri)

φ (ri)

)
φ (ri) dr1idr2idr3idr4i (3.2.24)

where φ (ri) is a standard multivariate normal distribution for ri.

It is clearly not tractable to solve (3.2.24) analytically, so we will approximate it with

the following sum:

E [f (ri)] ≈
∑

k

∑

k

∑

k

∑

k

[f (ri,k) h∗ (ri,k) w1kw2kw3kw4k] (3.2.25)

where wjk is the kth weight for the j = 1, . . . , 4 random effect and h∗ (ri,k) =
h(ri,k)
φ(ri,k)

.

3.3. Simulations

Simulations were done to evaluate model performance under a variety of conditions.

These conditions varied the percentage of patients who received transplants. Datasets

were simulated under each condition, with each containing 500 patients. Data were

simulated in the following manner:

1. Exponentiated subject-specific random effects were calculated using a gamma

distribution, where

exp (rji) ∼ Γ

(
γj
θ
,
θ

γj

)
j = 1, . . . , 4

Subject-specific random effects were calculated by taking the natural log of the
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exponentiated random effects, i.e. rji = log (exp (rji)).

2. Patient-specific pre-transplant frailties were calculated

bi = γ1 exp (r1i) + γ2 exp (r2i)

3. Pre-transplant survival times were simulated using the methods proposed by

Bender et al. (2005)

Ti = − logU

bi exp (Xωiζω)

where U is a standard uniform random variable

4. A random sample of patients who would be “offered” transplants was deter-

mined.

τi ∼ Binomial (n, pTx)

where pTx is the percentage of patients who will be offered transplants. Subject-

specific transplant times were calculated, so that tTXi = 0.99× Ti

5. Patient survival/censoring status was determined

[ti, δi] =






[min (Ti, Cend) , Ti ≤ Cend] , τi = 0

[tTXi , 0] , τi = 1

where Cend is the end time of the study
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6. Longitudinal data was simulated for all subjects

yik =






[
(X iα)T +

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i) uik)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i)

× exp ((β4 + r4i) (uik − tTXi)) + σ2
ε

]
, τi = 1

(X iα)T +
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i) uik) , τi = 0, uik ≤ ti

missing, otherwise

Some simulations also utilized “independent” data. Longitudinal data were simulated

using an independent mixed-effects exponential growth-decay model. Survival data

were simulated using a Cox model that was unlinked to the longitudinal model.

Using the data simulated under a joint model, we compared the results of our joint

model to the results of a fully-independent model. We assumed a transplant rate

of 20%. The fully-independent model separately fitted a mixed-effects exponential

growth-decay model to all of the longitudinal data, and a Cox proportional hazard

model to the pre-transplant survival data. Results of the simulations are shown in

Table 3.1. Longitudinal parameter estimates are relatively unbiased, regardless of

whether a joint or independent model is used. This is to be expected. Liu (2011)

show that fixed (i.e. not time-varying) estimates will be fairly unbiased even when

analysis is done using a correctly-specified mixed-effects independent model. Survival

estimates are similar on average in both models.

Using data simulated under an independent model, we compare our joint model to

an independent model. Data were simulated assuming that 50% of patients received

transplants. Results are shown in Table 3.2. Again, estimates for the longitudinal

40



Table 3.1: Simulation results for joint vs. indep. model, when joint model is true
Joint model Independent model

Parameter Truth Est. (SE) Est. (SE)
α1 0.1 0.10 (0.0001) 0.10 (0.0001)
α2 2 2.03 (0.007) 2.03 (0.007)
β1 6 6.00 (0.0007) 6.00 (0.0007)
β2 0.5 0.49 (0.001) 0.49 (0.001)
β3 -2 -2.00 (0.003) -2.00 (0.003)
β4 0.2 0.21 (0.003) 0.21 (0.003)
γ1 0.2 0.19 (0.001) 0.19 (0.001)
γ2 0.8 0.81 (0.001) 0.81 (0.001)
θ 0.03 0.03 (0.0002) 0.03 (0.0002)
ζω -2 -2.15 (0.02) -2.01 (0.02)
σ2
ε 1 1.00 (0.001) 1.00 (0.001)

trajectory parameters are relatively unbiased for both models. Our new joint model

over-estimated the fixed-effect survival parameters. This is to be expected, since the

model is misspecified.

The results of a comparison of model performance under a variety of conditions are

shown in Table 3.3. Simulation results show that the longitudinal submodel does

reasonably well across all conditions. The quality of the pre-transplant survival esti-

mates deteriorates as the percentage of patients receiving transplants increases. This

is understandable, since we have assumed that patients who receive transplants can-

not die. Therefore, a high proportion of patients receiving transplants implies that

only a small amount of pre-transplant survival information is available.

A more complicated model does not make much of a difference in the quality of param-

eter estimation when we are only interested in pre-transplant survival. The end goal of

this dissertation, however, is to draw conclusions about both pre- and post-transplant

survival times, while incorporating information from longitudinal biomarker values.

Therefore, proper estimation of survival parameters is very important. In this chap-
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Table 3.2: Simulation results for joint vs. indep. model, when indep. model is true
Joint model Independent model

Parameter Truth Est. (SE) Est. (SE)
α1 0.1 0.10 (0.0001) 0.10 (0.0001)
α2 2 2.04 (0.007) 2.04 (0.007)
β1 6 6.00 (0.0007) 6.00 (0.0007)
β2 0.5 0.49 (0.001) 0.49 (0.001)
β3 -2 -2.00 (0.002) -2.00 (0.002)
β4 0.2 0.21 (0.002) 0.21 (0.002)
γ1 0.2 0.19 (0.001) 0.19 (0.001)
γ2 0.8 0.81 (0.001) 0.81 (0.001)
θ 0.03 0.03 (0.0002) 0.03 (0.0002)
ζω -2 -2.54 (0.05) -1.76 (0.03)
σ2
ε 1 1.00 (0.001) 1.00 (0.001)

Table 3.3: Simulation results for model performance across varying conditions
20% Tx 50% Tx 90% Tx

Parameter Truth Est. (SE) Est. (SE) Est. (SE)
α1 0.1 0.10 (0.0001) 0.10 (0.0001) 0.10 (0.0001)
α2 2 2.03 (0.007) 2.04 (0.006) 2.05 (0.008)
β1 6 6.00 (0.0007) 6.00 (0.0008) 6.00 (0.0007)
β2 0.5 0.49 (0.001) 0.49 (0.001) 0.49 (0.002)
β3 -2 -2.00 (0.003) -2.00 (0.002) -2.00 (0.002)
β4 0.2 0.21 (0.003) 0.21 (0.002) 0.21 (0.002)
γ1 0.2 0.19 (0.001) 0.19 (0.001) 0.19 (0.003)
γ2 0.8 0.81 (0.001) 0.81 (0.001) 0.81 (0.003)
θ 0.03 0.03 (0.0002) 0.03 (0.0002) 0.03 (0.0004)
ζω -2 -2.15 (0.02) -2.54 (0.04) -4.49 (0.33)
σ2
ε 0.25 1.00 (0.001) 1.00 (0.002) 1.00 (0.001)
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ter, we demonstrate that our model performs equally as well as an independent model.

In Chapter 4, we will examine the implications of ignoring pre-transplant survival and

biomarker information when making inferences about post-transplant survival.

3.4. Application

The United Network of Organ Sharing (UNOS) registry collects data on every patient

who is on the waiting list for an organ transplant. Patient history, baseline, and

demographic variables are recorded at the time of waitlisting. Updates to the registry

occur with varying frequency (based on organ, illness severity, and other factors).

Patients who receive a transplant will also have an entry in the UNOS registry.

Liver transplant patients have their records updated every time they receive an update

to their Model for End-stage Liver Disease (MELD) score. MELD scores have been

used to rank waitlisted patients since February 27, 2002. Law requires that MELD

scores are updated more often for sicker patients (UNOS, 2002), which could cause

bias in statistical inference. In an attempt to avoid this potential bias, we merged

UNOS data with data from the Hospital of the University of Pennsylvania (HUP).

The resulting dataset had more observations per subject, regardless of disease severity.

An in-depth discussion of the motivations and creation of the UNOS/HUP dataset

can be found in Section 1.2.

In this chapter, we assume that patients who receive transplants are definitely cured

and therefore cannot die. Table 3.4 shows the percentage of death and censoring, as

well as average follow-up and survival times. Patients were followed for a maximum of

five years (1826 days) post-waitlisting. Our analytic dataset (referred to as Subset 1)

consisted of 500 patients waitlisted for a liver transplant at HUP between February,

27, 2002, and May, 13, 2011. Approximately 30% of our patients received transplants
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Table 3.4: Descriptive statistics for UNOS/HUP Subset 1
Tx group No Tx group Total

n (%) 171 (34) 329 (66) 500
Number censored (%) 171 (100) 231 (70) 402 (80)
Number dead (%) - 98 (30) -
Mean follow-up time 3.1 years 2.5 years 2.7 years
Median time to Tx 5.9 months - -
Median observable survival time! - 5.0 years -

Male gender (%) 114 (67) 248 (75) 362 (72)
Mean age at WLing (years) 53.7 52.6 53.0

! - Due to censoring, the median observed survival time is equal to the maximum survival time

during this timeframe, with a median waiting time of 6.5 months. Of the patients

who did not receive transplants, approximately 30% were observed to have died by

the end of the study. Average follow-up time for all subjects was 2.7 years, with

transplanted patients having longer follow-up times than those who did not have a

transplant (3.1 vs. 2.5 years). Demographics (gender and age at waitlisting) were

similar for both groups.

Transplant data has unique characteristics that must be considered when forming a

statistical model (see Section 1.1). Figure 3.1 illustrates some of these characteris-

tics. Sicker patients (indicated by higher bilirubin levels) may be more likely to be

removed from the waitlist or die. In addition, we expect that patients who receive a

transplant will see an improvement in health and a lower likelihood of death. Visual

comparison between patients who did and did not die show that survivors who did

not receive transplants tend to have lower, steadier bilirubin levels. Patients with

drastic increases in their bilirubin levels (or those who are waitlisted with higher

levels initially) are more likely to either die or receive a transplant. This highlights

the possibility of informative dropout. Patients who receive transplants also have a

noticeable improvement in liver function (as indicated by a drop in bilirubin levels)
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Figure 3.1: Bilirubin trajectories (UNOS/HUP Subset 1)
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post-transplant.

We model this data using the methods developed in Section 3.2. For this analysis, we

include age at waitlisting and gender as linear terms in the longitudinal submodel and

gender as the explanatory variable in the survival submodel. A set of 100 bootstraps

were run to determine standard errors for the estimates (Efron, 1982). Results from

15 of the bootstraps were excluded from the calculations in Table 3.5 due to outliers in

the parameter estimates. Results indicate that age at waitlisting does not significantly

affect bilirubin levels (0.53 mg/dL increase in bilirubin level for each additional year;

95% CI = [-1.55,2.61]). Male gender has a small, but significant, effect on bilirubin

values (0.16 mg/dL higher than women; 95% CI = [0.10,0.22]).
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Table 3.5: Data analysis results for UNOS/HUP Subset 1
Joint model Independent model

Parameter Est. (Bootstrap SE) Est. (Bootstrap SE)
α1 (age at WLing) 0.53 (1.06) 0.56 (1.04)
α2 (male gender) 0.16 (0.03) 0.16 (0.03)
β1 3.42 (0.02) 3.42 (0.02)
β2 -0.79 (0.05) -0.79 (0.05)
β3 54.11 (102.33) 46.33 (99.18)
β4 -9.89 (9.70) -9.91 (9.37)
γ1 0.20 (0.001) 0.20 (0.009)
γ2 0.80 (0.001) 0.80 (0.009)
θ 0.08 (0.005) 0.07 (0.005)
ζω (male gender) -0.70 (0.007) -0.07 (0.02)
σ2
ε 13.09 (0.25) 13.09 (0.24)

The remaining longitudinal parameter estimates show an overall average bilirubin

level of 3.42 mg/dL at waitlisting (95% CI = [3.38,3.46]). Patients who do not receive

transplants have increasing bilirubin levels, as indicated by the negative value of β2.

This is reasonable, since patients are expected to become more ill as their time on the

waiting list increases. For this data, post-transplant trajectories are not significantly

different from pre-transplant trajectories. The estimates for β3 and β4 are both non-

significant. Our results show that male transplant recipients are less likely to die on

the waiting list (hazard ratio = exp (−0.70) = 0.50). This agrees with the findings of

Moylan et al. (2008). (Mindikoglu et al. (2010) note that this disparity may actually

be due to differences in kidney function. Though this warrants further investigation,

our data do not allow for proper consideration of the effect of kidney function.)

We also fitted independent longitudinal and survival models to the data in order to

assess the sensitivity of the results to the model link. The independent model gives

a highly attenuated estimate for pre-transplant survival. This indicates that, under

“real world” conditions, the implications of using a joint model versus an independent

model are even more pronounced than in idealized simulations.
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3.5. Discussion

In this chapter, we have developed a joint longitudinal-survival model that incor-

porates patient cure post-transplant. This model combines a non-linear exponential

growth-decay model with a modified cure model in order to investigate the relation-

ship between longitudinal trajectories (both pre- and post-transplant) and survival

times pre-transplant. We assume that all patients who receive transplants are cured.

This model does well under a variety of circumstances. We also show that the model

performs as well as an independent model. This result is key to the extensions that

will be presented in Chapter 4.
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CHAPTER 4

A Joint Longitudinal-Survival Model with Possible

Post-Transplant Death

4.1. Introduction

Data from transplant patients has many characteristics that can make it difficult to

model properly. To investigate both patient survival and longitudinal health trajecto-

ries, we must overcome the “standard” issues with both kinds of models: non-random

dropout in longitudinal and survival studies, proportional hazards or distributional

assumptions about survival times, etc. (Diggle et al., 2002; Cox, 1972). In addition,

it is reasonable to suspect that there is some sort of link between patients’ longitudi-

nal trajectories and survival processes. It is not sufficient to model the longitudinal

trajectories and survival times with independent models. Failing to acknowledge the

potential link could lead to biased parameter estimates and possibly incorrect infer-

ence (Diggle et al., 2002). We must incorporate the presence of non-random dropout

(or “informative missingness”) into our analysis (Little and Rubin, 1987). To do this,

we need to use a joint longitudinal-survival model (discussed in detail in Chapter 2).

The need for joint modeling has been acknowledged by researchers in fields other than

transplantation. Yu et al. (2004); Chen et al. (2004) and Law et al. (2002) developed

joint models for dealing with informative dropout. These authors propose models

with a variety of different submodels and model links. The choice of longitudinal and

survival submodels, as well as the choice of model link, depends on the type of study

data.
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Many different longitudinal models have been considered. Methods have been de-

veloped for both continuous and non-continuous data. Ten Have et al. (2000) used

an ordinal logistic model to analyze ordinal functional status data. For continuous

data, parametric and non-parametric models have been proposed (Chen et al., 2004;

Elmi et al., 2011; Law et al., 2002). The model developed by Chen et al. (2004)

can be used for linear or quadratic data. A more complex parametric exponential

growth-decay model was proposed by Law et al. (2002). Elmi et al. (2011) used a

non-parametric B-spline to model labor and delivery data. None of these models

fully address the features of transplant data. Non-continunous models are clearly not

appropriate for continunous biomarkers. Linear and quadratic models do not cap-

ture the quick increases and decreases that occur in transplant patients’ biomarker

values. B-splines can capture these dynamic features. However, B-splines can be

computationally intensive and difficult to interpret. A useful model for longitudinal

biomarkers in transplant data is the exponential growth-decay process proposed by

Law et al. (2002). This model can incorporate exponential increases and decreases in

biomarker values, as well as an immediate drop in values post-transplant. Law et al.

(2002)’s model is not entirely appropriate, however, so we will modify Law et al.

(2002)’s model slightly. We remove the assumption of normally-distributed random

effects. We also include both fixed and random effects in our longitudinal model.

((Law et al., 2002) treats patient longitudinal trajectory effects as random.)

The informative dropout process is often assumed to be a survival process (Liu et al.,

2004; Law et al., 2002; Chen et al., 2004), though it can be any dichotomous outcome.

Elmi (2009) proposed a logistic model for the dropout process. Most often, though,

authors use a Cox proportional hazards model to analyze patient survival times.

Law et al. (2002) and Chen et al. (2004) modified the Cox model to incorporate the
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possibility of patient cure. Standard Cox models assume a decreasing probability of

death (Cox, 1972). This assumption is not appropriate in the case of transplant data,

since we expect patients to have a change in health post-transplant. Cure models

allow for this change in hazard of death (Baker, 1978). Cure models are not entirely

adequate for transplant data, however. These models assume that all patients receive

a treatment, and that those who are “cured” cannot die from the disease being treated.

Not all waitlisted patients will receive transplants, and not all patients who receive

transplant will survive long-term. Therefore, we take the “spirit” of a cure model and

adapt it to include two different Cox models – one for pre-transplant survival and one

for post-transplant survival. The two Cox models are related via a frailty term that

appears in both models.

The link between the longitudinal and survival models determines how the survival

process and longitudinal trajectories affect one another. A simple way to link the two

models is to include the longitudinal trajectories as a time-varying covariate in the

survival model (Yu et al., 2004). Though this is straightforward, it does not allow

us to explicitly model the longitudinal process as an outcome. If the longitudinal

outcome is of interest, patients can be divided into latent classes with class-specific

longitudinal and survival models (Chen et al., 2004). However, it is not possible to

determine a patient’s class ahead of time. Therefore, it is more appropriate to model

transplant data using a shared parameter model, where patient-level random effects

are present in both the longitudinal and survival models. (Shared parameter models

are discussed in detail in Section 2.2.)

In this chapter, we extend the joint model proposed in Chapter 3. We link an ex-

ponential growth-decay longitudinal submodel to a modified cure submodel using

patient-level random effects. We then demonstrate our model using liver transplant
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data from the United Network of Organ Sharing (UNOS) and the Hospital of the

University of Pennsylvania (HUP) in Section 4.4. (This dataset is discussed in detail

in Section 1.2.)

4.2. Model

For this model, we use the same variables described in Section 3.2, with some small

additions. We add in another patient-level design matrix, Xπi, which is associated

with a patient’s post-transplant survival. We also modify our assumptions regarding

the distribution of the random effects.

4.2.1. Submodels

As in Chapter 3, we assume that each patient has a biomarker trajectory represented

by a non-linear exponential decay-growth process similar to the model proposed by

Law et al. (2002).

Y i (ui) = (X iα)T +
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)) + εi (4.2.1)

where εi ∼ N (0, σ2
εI). α is a (p× 1) vector of fixed effects. rji, the j = 1, . . . , 4

random effect for patient i, is assumed to be log-gamma distributed.

The interpretation of the longitudinal submodel parameters is discussed in Section

3.2. The first amplitude parameter, β1, is the overall population average bilirubin level

at time of waitlisting. The linear term, α, represents how an individual’s covariate

values affect his initial bilirubin level. The second amplitude parameter, β3, is the

average change in bilirubin levels post-transplant. The exponential rate terms, β2

and β4, are the growth rates pre- and post-transplant, respectively.

51



We change our proposed survival model by incorporating the possibility of patient

death post-transplant. Thus,

Si (uik) =






exp (− (uik − tTXi) b2i exp (Xπiζπ)) , τi = 1, uik ≥ tTXi

exp (−uikb1i exp (Xωiζω)) , otherwise
(4.2.2)

where

b1i = γ1 exp (r1i) + γ2 exp (r2i)

b2i = cb1i + (1− c) (γ3 exp (r3i) + γ4 exp (r4i))

As in Section 3.2, ζω is a set of parameters that affect pre-transplant survival. Sim-

ilarly, ζπ is a set of linear predictors that are related to patients’ post-transplant

survival probabilities. The frailties b1i and b2i influence pre- and post-transplant

survival functions, respectively. The post-transplant frailty, b2i, incorporates b1i in

the post-transplant survival function. The weighting parameter, c, determines the

relative effect of pre- and post-transplant random effects on post-transplant survival.

The change in the survival model gives us a more clinically-relevant model, as it

allows for the possibility of post-transplant death. For patients who do not receive a

transplant, a single Cox model represents their survival times. Patients who receive

transplants have a survival function that changes at the time of transplant. The

frailty in the second survival model, b2i, links pre- and post-transplant survival by

combining the pre-transplant frailty with post-transplant random effects.

As in Chapter 3, we place distributional restrictions on b1i and b2i. We assume

b1i ∼ Γ (θ−1, θ) and b2i ∼ Γ
(
(cθ)−1 , cθ

)
. By the properties of the gamma distribution,
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it follows that

exp (r1i) ∼ Γ

(
1

2θ
,
θ

γ1

)

exp (r2i) ∼ Γ

(
1

2θ
,
θ

γ2

)

exp (r3i) ∼ Γ

(
1− c

2cθ
,

cθ

(1− c) γ3

)

exp (r4i) ∼ Γ

(
1− c

2cθ
,

cθ

(1− c) γ4

)

Therefore,

h (rji) =






(exp(rji))
1
2θ

(
θ
γj

) 1
2θ

exp(
γj
θ exp(rji))Γ( 1

2θ )
, j = 1, 2

(exp(rji))
1−c
2cθ

(
cθ

(1−c)γj

) 1−c
2cθ

exp

(
(1−c)γj

cθ exp(rji)

)
Γ( 1−c

2cθ )
, j = 3, 4

(4.2.3)

4.2.2. Estimation

Parameter estimates are obtained using an EM-based algorithm. The EM algorithm

uses the complete-data likelihood to find the maximum likelihood estimates in the

M-step and the expectations of the sufficient statistics in the E-step.

For simplicity’s sake, we divide our likelihood into four portions, each corresponding

to a different set of patient outcomes.
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1. Patient receives a transplant, and death is not observed (τi = 1, δi = 0)

Lτi=1,δi=0 = S(
Tx (ti | ri,Xi) g (Y i | X i, ri)h (ri | X i) hTx (ri | X i) (4.2.4)

2. Patient receives a transplant, and death is observed (τi = 1, δi = 1)

Lτi=1,δi=1 = λ∗
Tx (ti | ri)S

∗
Tx (ti | X i, ri) g (Y i | X i, ri)h (ri | X i) hTx (ri | X i)

(4.2.5)

3. Patient does not receive a transplant, and death is not observed (τi = 0, δi = 0)

Lτi=0,δi=0 = S∗ (ti | ri,Xi) g (Y i | X i, ri)h (ri | X i) (4.2.6)

4. Patient does not receive a transplant, and death is observed (τi = 0, δi = 1)

Lτi=0,δi=1 = λ∗ (ti | ri)S
∗ (ti | X i, ri) g (Y i | X i, ri)h (ri | X i) (4.2.7)

where

S( (ti | ri,X i) = exp (−tib1i exp (Xωiζω))

λ∗ (ti | ri) = b1i exp (Xωiζω)

S(
Tx (ti | ri,X i) = exp (− (ti − tTXi) b2i exp (Xπiζπ)) exp (−tTXib1i exp (Xωiζω))
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λ∗
Tx (ti | ri) = b2i exp (Xπiζπ)

g (Y i | X i, ri) =
1

(2π)m/2 (σ2
ε )

1/2
exp

[
− 1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)]

h (ri | X i) = h (r1i)h (r2i)

hTx (ri | X i) = h (r3i)h (r4i)
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Combining (4.2.4), (4.2.5), (4.2.6), and (4.2.7) gives us our full complete-data likeli-

hood.

L =
n∏

i=1

[
Lτi=1,δi=0

I(τi=1)I(δi=0)Lτi=1,δi=1
I(τi=1)I(δi=1)Lτi=0,δi=0

I(τi=0)I(δi=0)

× Lτi=0,δi=1
I(τi=0)I(δi=1)

]

=
n∏

i=1




(exp (−tib1i exp (Xωiζω)))

I(τi=0)

×
[
exp (−tTXib1i exp (Xωiζω)) exp (− (ti − tTXi) b2i exp (Xπiζπ))

]I(τi=1)

× [b1i exp (Xωiζω)]
τi=0,δi=1

× [b2i exp (Xπiζπ)]
τi=1,δi=1

× 1

(2π)m/2 (σ2
ε )

1/2
exp

[
− 1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)]

×




2∏

j=1

(exp (rji))
1
2θ

(
θ
γj

) 1
2θ
exp

(γj
θ exp (rji)

)
Γ
(

1
2θ

)





×




4∏

j=3

(exp (rji))
1−c
2cθ

(
cθ

(1−c)γj

) 1−c
2cθ

exp
(

(1−c)γj
cθ exp (rji)

)
Γ
(
1−c
2cθ

)





I(τi=1)




(4.2.8)

56



This gives us the following complete-data log-likelihood:

l =
n∑

i=1

{

−I (τi = 0) tib1i exp (Xωiζω)

− I (τi = 1) [tTXib1i exp (Xωiζω) (ti − tTXi) b2i exp (Xπiζπ)]

+ I (τi = 0, δi = 1) [log b1i +Xωiζω]

+ I (τi = 1, δi = 1) [log b2i +Xπiζπ]

− m

2
log (2π)− 1

2
log σ2

ε −
1

2σ2
ε

(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
)T

×
(
Y i − (X iα)T −

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
)

+
2∑

j=1

[
1

2θ
rji −

γj
θ
exp (rji)−

1

2θ
log

(
θ

γj

)
− logΓ

(
1

2θ

)]

+ I (τi = 1)
4∑

j=3

[
1− c

2cθ
rji −

(1− c) γj
cθ

exp (rji)−
1− c

2cθ
log

(
cθ

(1− c) γj

)

− logΓ

(
1− c

2cθ

)]}

(4.2.9)
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Parameter estimates are calculated in the same way as (3.2.11), (3.2.14), (3.2.16),

(3.2.17), and (3.2.18) in Section 3.2. Therefore, the longitudinal parameter estimates

are

α̂ =
1

n

n∑

i=1

E

[(
(X∗

i )
T X∗

i

)−1
X∗

iY
∗
i

]

=
1

n

n∑

i=1

E

[[
((1− exp (− (β2 + r2i)ui))X i)

T ((1− exp (− (β2 + r2i)ui))X i)
]−1

× ((1− exp (− (β2 + r2i)ui))X i)
T

×
(
Y i − (β1 + r1i) exp (− (β2 + r2i)ui)

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)
]

(4.2.10)

β̂1 =
1

n

n∑

i=1

E

[
1

mi

mi∑

k=1

[(
Y i − (X iα)T

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)

× exp ((β2 + r2i)ui)− r1i + (X iα)T
]]

(4.2.11)

β̂2 =
1

n

n∑

i=1

E

[
1

mi

mi∑

k=1

log

[
1

ui ◦
(
β1 + r1i − (X iα)T

)
exp (−r2iui)

×
(
Y i − (X iα)T

− I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
)]]

(4.2.12)
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β̂3 =






1∑
I (τi = 1)

n∑

i=1

E

[
1∑

I (ui ≥ tTXi)

mi∑

k=1

[(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

)

× exp (− (β4 + r4i)ui)− r3i
]]

, τi = 1

0, otherwise

(4.2.13)

β̂4 =






1∑
I (τi = 1)

n∑

i=1

E

[
1∑

I (ui ≥ tTXi)

×
mi∑

k=1

log

[
1

ui ◦ (β3 + r3i) exp (r4iui)

×
(
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

)]]

, τi = 1

0, otherwise

(4.2.14)

Estimates for α, β2, and β3 are calculated using numerical approximation techniques,

due to the relationship between the closed-form estimates and observation times.

We use MATLAB’s fminsearch function (an unconstrained nonlinear optimization
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routine) to solve

[
α̂, β̂2, β̂4

]T
= argmin E [lα,β (α, β2, β4)] (4.2.15)

where

lα,β = − 1

2σ2
ε

· 1
n

n∑

i=1

[
1

mi

mi∑

k=1

[
Y i − (X iα)T

−
(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

− (I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi)))
]2
]
+ Cα.β

(4.2.16)

and Cα,β represents all the parts of the log-likelihood that do not contain α or β.

(Note that this is the same equation as (3.2.12).)

Calculating all parameter estimates via fminsearch would be overly time-

consuming. Therefore, as in Chapter 3, estimates for β1 and β3 will be calculated

using (4.2.11) and (4.2.13).

We estimate variance by subtracting subject-level expected values from subject ob-

served values.

σ̂2
ε =

1

n

n∑

i=1

1

mi
(Y i − E [Y i]) (Y i − E [Y i])

T (4.2.17)
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where

E [Y i] = E
[
(X iα)T +

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i)ui)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i) exp ((β4 + r4i) (ui − tTXi))
]

Estimates for γ, ζω, ζπ, and θ cannot be derived in a closed form. We will approximate

them using the fmincon function in MATLAB to solve

[
γ̂, ζ̂ω, ζ̂π, θ̂, ĉ

]T
= argmin E [lγ,ζω ,ζπ,θ,c (γ, ζω, ζπ, θ, c)] (4.2.18)

where

lγ,ζω ,ζπ,θ,c =
n∑

i=1

{
−I (τi = 0) tib1i exp (Xωiζω)

− I (τi = 1) (tTXib1i exp (Xωiζω) (ti − tTXi) b2i exp (Xπiζπ))

+ I (τi = 0, δi = 1) (log b1i +Xωiζω)

+ I (τi = 1, δi = 1) (log b2i +Xπiζπ)

+
2∑

j=1

[
1

2θ
rji −

γj
θ
exp (rji)−

1

2θ
log

(
θ

γj

)
− log Γ

(
1

2θ

)]

+ I (τi = 1)
4∑

j=3

[
1− c

2cθ
rji −

(1− c) γj
cθ

exp (rji)

− 1− c

2cθ
log

(
cθ

(1− c) γj

)
− log Γ

(
1− c

2cθ

)]}

(4.2.19)

fmincon is similar to fminsearch, except that it uses constrained nonlinear optimiza-

tion to solve a scalar function.
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As in Chapter 3, the E-step will evaluate the following integral:

E [f (ri)] =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

f (ri) h (ri) dr1idr2idr3idr4i (4.2.20)

where f (ri) is any sufficient statistic. Expanding (4.2.11) and (4.2.13) gives us the

following sufficient statistics:

r1i r3i

exp (r2iui) exp (−r4iui)

exp (r2iui) exp (r4iui) exp (−r2iui) exp (−r4iui)

r3i exp (r2iui) exp (r4iui) r1i exp (−r2iui) exp (−r4iui)

We will use adaptive Gaussian quadrature (AGQ) to determine the numerical value of

(4.2.20) (Pinheiro and Chao, 2006). This method requires integration over a normal

distribution. Since our random effects are not normally distributed, we the standard-

ization methods proposed in Liu and Yu (2008). The resulting integral is:

E [f (ri)] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
f (ri)

h (ri)

φ (ri)

)
φ (ri) dr1idr2idr3idr4i (4.2.21)

where φ (ri) is a standard multivariate normal distribution for ri.

It is clearly not tractable to solve (4.2.21) analytically, so we will approximate it with

the following sum:

E [f (ri)] ≈
∑

k

∑

k

∑

k

∑

k

[f (ri,k) h∗ (ri,k) w1kw2kw3kw4k] (4.2.22)

where wjk is the kth weight for the j = 1, . . . , 4 random effect and h∗ (ri,k) =
h(ri,k)
φ(ri,k)

.
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4.3. Simulations

To investigate the performance of our model, we analyzed 100 simulated datasets,

with a sample size of n = 500 each. The model was tested under three different con-

ditions, and compared to an independent model (where longitudinal, pre-transplant

survival, and post-transplant survival were all considered independent of one another).

Subjects were followed for five years after waitlisting and were required to have at

least two observations pre- and post-transplant (with a minimum of four observations

total).

Data simulations involved several steps:

1. Exponentiated subject-specific random effects were calculated using a gamma

distribution, where

exp (rji) ∼ Γ

(
1

2θ
,
θ

γj

)
j = 1, 2

exp (rji) ∼ Γ

(
1− c

2cθ
,

cθ

(1− c) γj

)
j = 3.4

Subject specific random effects were calculated by taking the natural log of the

exponentiated random effects, i.e. rji = log (exp (rji)).

2. Patient-specific pre-transplant frailties were calculated

b1i = γ1 exp (r1i) + γ2 exp (r2i)

3. Pre-transplant survival times were simulated using the methods proposed by
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Bender et al. (2005)

Ti = − logU

b1i exp (Xωiζω)

where U is a standard uniform random variable

4. A random sample of patients who would be “offered” transplants was deter-

mined.

τi ∼ Binomial (n, pTx)

where pTx is the percentage of patients who will be offered transplants. Subject-

specific transplant times were calculated, so that tTXi = 0.99× Ti

5. Patient pre-transplant survival/censoring status was determined for patients

who did not receive transplants

[ti, δi] = [min (Ti, Cend) , Ti ≤ Cend]

where Cend is the end time of the study

6. Post-transplant survival/censoring times were determined for patients who re-

ceived transplants using a similar process as described above

(a) Patient-specific post-transplant frailties were calculated

b2i = cb1i + (1− c) (γ3 exp (r3i) + γ4 exp (r4i))
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(b) Post-transplant survival times were simulated

T Tx
i = − logU

b2i exp (Xπiζπ)
+ tTXi

(c) Patient post-transplant survival/censoring status was determined

[ti, δi] =
[
min

(
T Tx
i , Cend

)
, T Tx

i ≤ Cend
]

7. Longitudinal data was simulated for all subjects

yik =






[
(X iα)T +

(
β1 + r1i − (X iα)T

)
exp (− (β2 + r2i) uik)

+ I (τi = 1, ui ≥ tTXi) (β3 + r3i)

× exp ((β4 + r4i) (uik − tTXi)) + σ2
ε

]
, uik ≤ ti

missing, otherwise

Data simulated from a joint model were used to compare the joint model results with

that of an independent model, as in Chapter 3. Results of the simulations are shown

in Table 4.1. As in Chapter 3, we see that the model generally does well estimating

the longitudinal trajectory parameters, and again is not very different from the in-

dependent model. This is to be expected in models with no time-varying covariates

(Liu, 2011). On average, the joint model performs better when estimating post-

transplant survival, while the independent model performs better when estimating

pre-transplant survival. The mean bias difference in pre-transplant survival estimates

is small, though. On average, the independent model pre-transplant estimates have

a 0.76% lower bias than the joint model estimates. The joint model has advantages
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Table 4.1: Simulation results for joint vs. indep. model, when joint model is true
Joint model Independent model

Parameter Truth Est. (SE) Est. (SE)
α1 0.3 0.29 (0.0004) 0.29 (0.0004)
α2 3.5 3.40 (0.03) 3.42 (0.03)
β1 4 4.02 (0.01) 4.00 (0.01)
β2 -0.1 -0.10 (0.0003) -0.10 (0.0003)
β3 -4 -3.83 (0.05) -3.87 (0.05)
β4 -1 -0.98 (0.005) -0.99 (0.004)
γ1 0.55 0.56 (0.0008) 0.56 (0.0007)
γ2 0.4 0.38 (0.0004) 0.39 (0.0004)
γ3 0.25 0.26 (0.002) 0.26 (0.002)
γ4 0.2 0.21 (0.001) 0.21 (0.001)
θ 0.03 0.02 (0.0003) 0.02 (0.0004)
c 0.75 0.79 (0.003) 0.78 (0.003)
ζω -2 -2.14 (0.009) -1.92 (0.01)
ζπ -3 -3.16 (0.16) -3.24 (0.17)
σ2
ε 1 1.13 (0.02) 1.17 (0.02)

over the independent model when estimating post-transplant survival parameters.

For post-transplant survival, the joint model estimates have about 3% less bias than

the independent model estimates. Sharing information across the submodels clearly

improves our estimation abilities.

Data were also simulated assuming independent submodels. These data were used to

compare the joint model results with that of an independent model. It is important

to note that it is impossible to simulate fully-independent data. Patients who receive

transplants must always survive to transplant. Therefore, pre- and post-transplant

survival are inevitably linked. This implies that both the joint model and the fully-

independent model are misspecified. We present the fully-independent results in order

to compare our model against “standard practice.”

Results of the simulations are shown in Table 4.2. Results from one of the simulations

were excluded from the calculations in Table 4.2 due to outliers in the parameter
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Table 4.2: Simulation results for joint vs. indep. model, when indep. model is true
Joint model Independent model

Parameter Truth Est. (SE) Est. (SE)
α1 0.3 0.29 (0.0005) 0.29 (0.0005)
α2 3.5 3.36 (0.02) 3.35 (0.02)
β1 4 4.12 (0.01) 4.09 (0.02)
β2 -0.1 -0.10 (0.0005) -0.10 (0.0005)
β3 -4 -3.82 (0.10) -3.90 (0.10)
β4 -1 -0.99 (0.003) -0.99 (0.003)
γ1 0.55 0.56 (0.001) 0.57 (0.001)
γ2 0.4 0.37 (0.0005) 0.38 (0.0005)
γ3 0.25 0.26 (0.001) 0.26 (0.001)
γ4 0.2 0.21 (0.0006) 0.21 (0.0006)
θ 0.03 0.02 (0.0002) 0.02 (0.0003)
c 0.75 0.77 (0.002) 0.78 (0.002)
ζω -2 -2.83 (0.02) -1.33 (0.02)
ζπ -3 -2.99 (0.03) -2.30 (0.03)
σ2
ε 1 1.19 (0.03) 1.24 (0.03)

estimates. We see that the longitudinal parameter estimates are generally unbiased

for both the joint and independent models. Pre-transplant survival estimates are

biased for both the independent and joint models, which is to be expected, since both

models are misspecified. Bias is also present in the independent model post-transplant

survival estimates. In contrast, the joint model produces unbiased post-transplant

survival estimates, even under a misspecified model.

Another simulation was done to compare the performance of the model under various

conditions, as defined by the number of patients who receive transplants. Results of

that simulation are shown in Table 4.3. Longitudinal parameter values are estimated

well in all simulated situations. Some differences in the pre-transplant survival pa-

rameter estimates appear as the percentage of transplanted patients increase. This

is due to the relative lack of pre-transplant information under those conditions. It is

also important to note that a transplant percentage of 90% is unreasonable clinically.
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Table 4.3: Simulation results for model performance across varying conditions
20% Tx 50% Tx 90% Tx

Parameter Truth Est. (SE) Est. (SE) Est. (SE)
α1 0.3 0.29 (0.0004) 0.29 (0.0004) 0.29 (0.0006)
α2 3.5 3.40 (0.03) 3.37 (0.03) 3.33 (0.02)
β1 4 4.02 (0.009) 4.04 (0.008) 4.08 (0.017)
β2 -0.1 -0.10 (0.0003) -0.10 (0.0003) -0.10 (0.0005)
β3 -4 -3.83 (0.05) -3.76 (0.04) -3.82 (0.06)
β4 -1 -0.98 (0.005) -0.98 (0.001) -0.99 (0.003)
γ1 0.55 0.56 (0.0008) 0.56 (0.0009) 0.56 (0.0012)
γ2 0.4 0.38 (0.0004) 0.38 (0.0006) 0.37 (0.0008)
γ3 0.25 0.26 (0.002) 0.26 (0.001) 0.26 (0.001)
γ4 0.2 0.20 (0.0010) 0.21 (0.0007) 0.21 (0.0005)
θ 0.03 0.02 (0.0003) 0.02 (0.0003) 0.02 (0.0003)
c 0.75 0.79 (0.003) 0.79 (0.002) 0.79 (0.002)
ζω -2 -2.14 (0.009) -2.59 (0.02) -4.18 (0.04)
ζπ -3 -3.16 (0.16) -2.93 (0.03) -2.84 (0.02)
σ2
ε 1 1.13 (0.02) 1.10 (0.01) 1.16 (0.03)

Percentages ranging from 20-50% are much more reasonable.

4.4. Application

In this chapter, we modify the assumptions made in Chapter 3 to include the possi-

bility of post-transplant death. Descriptive statistics for this dataset (referred to as

Subset 2) are found in Table 4.4. Patients were followed for a maximum of five years

(1826 days) post-waitlisting, or three years (1096 days) post-transplant, whichever

was shorter. The analysis dataset contained 500 patients who were waitlisted for a

liver transplant at HUP between February, 27, 2002, and May, 13, 2011. Approxi-

mately 30% of our patients received transplants during this timeframe. Of the patients

who did not receive transplants, approximately 30% were observed to have died by

the end of the study. Of the patients who did receive transplants, approximately

13% were observed to have died within three years of transplant. Average follow-up

time for all subjects was 2.2 years, with transplanted patients having longer follow-up
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Table 4.4: Descriptive statistics for UNOS/HUP Subset 2
Tx group No Tx group Total

n (%) 166 (33) 334 (67) 500
Number censored (%) 144 (87) 244 (73) 388 (78)
Number dead (%) 22 (13) 90 (27) 112 (22)
Mean follow-up time 2.6 years 2.0 years 2.2 years
Median time to Tx 5.6 months - -
Median observable survival time! 4.7 years 5 years 5 years

Male gender (%) 117 (71) 223 (67) 340 (68)
Mean age at WLing (years) 51.6 53.2 52.7

! - Due to censoring, the median observed survival time is equal to the maximum survival time

times than those who did not receive a transplant (2.6 vs. 2.0 years). Median time to

transplant was 5.6 months. Median survival times could not be accurately calculated

due to censoring. Demographics (gender and age at waitlisting) were similar for both

groups.

As discussed in Section 1.1, transplant data has many characteristics that pose chal-

lenges with statistical modeling. Figure 4.1 highlights some of these characteristics.

Prior to transplant, patients who have a spike in bilirubin levels (indicating a wors-

ening of disease), are more likely to die or receive a transplant. Post-transplant, a

similar pattern holds. Patients who experience a large spike in bilirubin levels post-

transplant are more likely to die. These spikes prior to either transplant or death

indicate that patients are not dying or being offered transplanted in a random fash-

ion. Sicker patients appear to be more likely to receive transplants or die. The

exponential growth-decay model lets us capture this increase in bilirubin values pre-

transplant, as well as the immediate drop and exponential decrease post-transplant.

Modifying a standard cure model to include both a pre- and post-transplant Cox sur-

vival model allows us to analyze survival times pre- as well as post-transplant. The

shared random effects in the model link the longitudinal biomarker values to pre- and
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Figure 4.1: Bilirubin trajectories (UNOS/HUP Subset 2)
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post-transplant survival.

Results for our data analysis are shown in Table 4.5. Standard errors were calculated

via 100 bootstrap iterations (Efron, 1982). Results from one of the bootstraps were

excluded from the calculations in Table 4.5 due to outliers in the parameter estimates.

As in Section 3.4, we include both gender and age at waitlisting as covariates in the

longitudinal model. Gender alone is a covariate in both the pre- and post-transplant

survival models. Our results show that male gender and age at waitlisting are signif-

icantly related to patient bilirubin values. Males and older individuals have higher

bilirubin values (3.97 mg/dL, 95% CI = [3.32,4.62]; and 0.26 mg/dL/year, 95% CI
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Table 4.5: Data analysis results for UNOS/HUP Subset 2
Joint model Independent model

Parameter Est. (Bootstrap SE) Est. (Bootstrap SE)
α1 (male gender) 3.97 (0.33) 3.99 (0.32)
α2 (age at WLing) 0.26 (0.006) 0.26 (0.006)
β1 4.08 (0.04) 4.09 (0.04)
β2 -0.13 (0.001) -0.13 (0.001)
β3 -4.37 (0.11) -4.34 (0.12)
β4 -1.01 (0.02) -1.01 (0.02)
γ1 0.55 (0.0001) 0.55 (0.0001)
γ2 0.43 (0.0003) 0.43 (0.0003)
γ3 0.24 (0.0007) 0.24 (0.0007)
γ4 0.21 (0.0004) 0.21 (0.0004)
θ 0.005 (0.0001) 0.005 (0.0001)
c 0.96 (0.0008) 0.96 (0.0008)
ζω (male gender) -2.25 (0.01) -0.10 (0.02)
ζπ (male gender) -2.96 (0.03) -0.34 (0.18)
σ2
ε 16.69 (0.36) 16.70 (0.35)

= [0.25,0.27], respectively). Estimates for β1 and β2 indicate that patients have an

average bilirubin level of 4.08 mg/dL at waitlisting, and that patients experience

an average gradual increase in bilirubin levels pre-transplant (growth rate = 0.13

mg/dL). Estimates of post-transplant parameters β3 and β4 indicate that patients

experience a drop in bilirubin levels of 4.37 mg/dL post-transplant, followed by a

decrease over time (growth rate = -1.01 mg/dL).

Survival parameter estimates indicate that males are significantly less likely than

females to die both pre- and post-transplant (hazard ratio = 0.11 and 0.05, respec-

tively.) This confirms analyses done by Mindikoglu et al. (2010) and Hariharan et al.

(2002), where the authors found higher survival rates for males on the waiting list

and post-transplant.

A comparison of the joint model results with those from a fully-independent “stan-

dard practice” analysis reveals an interesting result. Estimates for both pre- and
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post-transplant survival are drastically attenuated. Futhermore, the independent

model gives non-significant results for post-transplant survival. This highlights the

importance of carefully choosing an inference method, as conclusions can differ across

methods.

4.5. Discussion

In this chapter, we modified the model proposed in Chapter 3 to include the possi-

bility of post-transplant death. We again use an exponential growth-decay curve to

represent patient longitudinal trajectories. We change the survival function by adding

in a second Cox model for patient survival post-transplant. We have shown that this

model does reasonably well under varying conditions defined by different transplant

percentages. Post-transplant survival estimates are improved in our model as com-

pared with the independent model.
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CHAPTER 5

Conclusion

In this dissertation, we introduce a joint longitudinal-survival model. This model is

developed to address the complex and underappreciated statistical issues presented

by data from transplant patients. We review the history and issues associated with

transplant data in Chapter 1. In Chapter 2, we discuss the problem of informative

dropout and the models used to compensate for it.

In Chapter 3, we propose an exponential growth-decay longitudinal submodel and a

modified cure submodel to investigate pre-treatment survival times. These submodels

are linked by shared random effects that appear in both patients’ longitudinal trajec-

tories and their pre-transplant survival frailties. Patients who receive transplants are

assumed to be “cured” and cannot die during the study. We demonstrate our model

using liver transplant data from the United Network of Organ Sharing (UNOS) and

the Hospital of the University of Pennsylvania (HUP). Serum total bilirubin is our

longitudinal outcome, with age at waitlisting and gender being considered as covari-

ates in the submodels. Simulations show that our model is more efficient than a Cox

model for estimating parameters related to patient survival.

In Chapter 4, we extend our model to include the possibility of post-transplant patient

death. To do this, we modify the cure submodel to contain two Cox models, one for

pre-transplant survival and another for post-transplant survival. We continue to

model the longitudinal trajectories using an exponential growth-decay curve. The

longitudinal and survival submodels are linked by shared random effects, which are

present in patient-specific longitudinal trajectories as well as in the frailties of the two
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Cox models. We again apply our methods to liver transplant data from UNOS and

HUP. We consider patients’ serum total bilirubin values as the longitudinal outcome of

interest. Pre- and post-transplant survival times are investigated as well. Our model

shows an improvement in the estimation of the survival parameters, as compared with

an independent model. An important future goal of this work is to predict patient

survival times; therefore, it is critical that our proposed joint model performs better

than an independent model when determining estimates for survival parameters.

Many opportunities exist for extending this model. Future directions are primarily

aimed at developing a model that is more clinically relevant and useful to patients.

Proposed extensions include:

1. Multivariate outcomes

Multivariate outcomes are of interest since one biomarker alone may not ade-

quately capture a patient’s health status. Specifically, we know that liver trans-

plant patients’ MELD scores are made up of three different biomarkers: serum

total bilirubin, serum creatinine, and INR. Though the MELD score is not vali-

dated post-transplant, these biomarkers are likely still relevant post-transplant

(e.g. Wu et al., 2010).

2. Repeated events

Liu et al. (2004) developed a joint model that considers the effect of a recurrent

event (hospitalization) on a terminal event (death). This is of obvious value in

a transplant setting, where patients may experience a variety of repeated events

of interest (e.g. hospitalization, acute rejection, infection). Terminal events to

consider could be death or re-transplant.

3. Value censoring
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Value censoring happens when observations are missing due to exceeding some

threshold. This can happen when biomarker values are above or below some

detectable limit (Wu, 2004). For example, MELD scores are value-censored by

UNOS, as they are capped at 40. Statistically, this problem is dealt with via a

Tobit model (Tobin, 1958).

4. Multiple types of transplant

Different types of transplants are available to patients. Organs can come from

“standard criteria” donors (SCD) or from “expanded criteria” donors (ECD).

ECD organs have characteristics that may make them associated with poorer

outcomes than SCD organs (Metzger et al., 2003). Patients can also receive

organs from donors with an increased risk of viral infection (called CDC organs).

There is debate as to whether or not the extra risk associated with ECD and

CDC organs is of practical significance, considering the long wait times for

transplants(Amin et al., 2004; Reese et al., 2009).

5. Predictive model / Point-and-click software

A predictive model would be of most use for clinicians. Rizopoulos (2011) pro-

posed a model for dynamic prediction relating longitudinal CD4 counts to a

patient’s probability of death. A similar model (that incorporates any or all

of the above extensions) could be developed and could be of great use clin-

ically, particularly if point-and-click software were made available (de Leeuw

and Zeileis).

The models presented in this dissertation are a decided improvement on standard

independent and joint analysis methods. The methods we propose allow for more

accurate and precise estimation of factors that affect patient survival times after

being placed on the liver transplant waiting list. These models provide us with the
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tools needed to properly analyze patient data from the time of waitlisting, past the

time of transplant, and on to possible post-transplant death. Extensions of these

models could be used to create effective clinical tools that would be used to counsel

patients on their healthcare options.
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APPENDIX

Abbreviations

NOTA National Organ Transplant Act

OPTN Organ Procurement and Transplantation Network

UNOS United Network of Organ Sharing

HUP Hospital of the University of Pennsylvania

MELD Model for End-Stage Liver Disease

Cr Serum creatinine

TBIL Total serum bilirubin

INR International normalized ratio (of prothrombin time)

Tx Transplant

WL Waitlisting
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Table of Notation

Variable Dimension Description

Y i mi × 1 Subject-specific longitudinal measures

ui mi × 1 Subject-specific observation times

α p× 1 Fixed effects for longitudinal model

Σ = σ2
ε I mi ×mi Covariance matrix for longitudinal measures

X i m× p Covariates for fixed effects

ζπ pπ × 1 Fixed effects for subject-specific probability of death

post-transplant (Chapter 4)

Xπi pπ × 1 Covariates for probability of death post-transplant

(Chapter 4)

ζω pω × 1 Fixed effects for subject-specific probability of death

pre-transplant

Xωi pω × 1 Covariates for probability of death pre-transplant

ri 4× 1 Subject-specific random effects

γ 4× 1 Fixed effects relating subject-specific random effects

to subject-specific frailty

ti 1× 1 Subject survival time

bi 1× 1 Subject-specific pre-transplant frailty (Chapter 3)

b2i 1× 1 Subject-specific pre-transplant frailty (Chapter 4)

b1i 1× 1 Subject-specific post-transplant frailty (Chapter 4)

c 1× 1 Weighting factor that relates pre- and post-transplant

survival (Chapter 4)
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