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Cyclin-Dependent Kinase 2 Regulates Foxp3 and Regulatory T Cell
Function

Abstract
Foxp3 is a transcription factor required for the development and function of regulatory T cells (Treg).
Humans lacking functional Foxp3 are afflicted with uncontrolled systemic autoimmunity. How the Foxp3
protein is regulated post-translationally is unclear. Our previous studies demonstrate cyclin-dependent kinase
2 (CDK2) controls Foxp3+Treg function, but the mechanism by which this occurred was not identified. The
CDKs are primarily thought to control cell cycle progression. However, recent studies suggest only CDK1 is
required for normal mammalian cell cycle, raising questions about the biological role of the other CDKs.
Specifically, mice genetically deficient in CDK2 are viable with no significant defects in cell cycle. We probed
the Foxp3 sequence for the presence of CDK motifs, finding four such sites in the amino terminus. We
confirmed that Foxp3 is phosphorylated by CDK2 using an in vitro kinase assay and mass spectrometry, as
well as a phospho-specific antibody that recognizes one of the phosphorylated Foxp3-CDK motifs. We
generated a mutant of Foxp3 lacking all four CDK motifs, which has increased half-life compared to wild-type
Foxp3. CD4+ T cells transduced with a Foxp3-CDK motif mutant have increased function compared to cells
transduced with wild-type Foxp3 as measured by induction and repression of canonical Foxp3 target genes, as
well as the ability to suppress conventional T cell proliferation. These data suggest CDKs negatively regulate
Foxp3 protein stability, which has an impact on Foxp3 function. To determine when the CDK cascade was
actively regulating Foxp3 in vivo we investigated the role of the CDK2 inhibitor, p27kip1. Recent data shows
TGFβ signaling drives expression of p27kip1 in B cells. TGFβ is also required for extrathymic induction of
Foxp3 in conventional CD4+ T cells. We show that conventional T cells, which have high CDK2 activity and
minimal p27kip1 expression, induce large amounts of p27kip1 along with Foxp3 in the presence of TGFβ.
Additionally, T cells lacking p27kip1 have defective TGFβ-dependent Foxp3 induction. We hypothesize that
TGFβ signaling is required to activate p27kip1 and stabilize Foxp3 protein levels in developing iTreg by
repressing CDK2.
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ABSTRACT

CYCLIN-DEPENDENT KINASE 2 REGULATES FOXP3 AND REGULATORY T CELL FUNCTION

Peter A. Morawski

Andrew D. Wells

 Foxp3 is a transcription factor required for the development and function of regulatory T 

cells (Treg). Humans lacking functional Foxp3 are afflicted with uncontrolled systemic 

autoimmunity. How the Foxp3 protein is regulated post-translationally is unclear. Our previous 

studies demonstrate cyclin-dependent kinase 2 (CDK2) controls Foxp3+Treg function, but the 

mechanism by which this occurred was not identified. The CDKs are primarily thought to control 

cell  cycle progression. However, recent studies suggest only CDK1 is required for normal 

mammalian cell  cycle, raising questions about the biological  role of the other CDKs. Specifically, 

mice genetically deficient in CDK2 are viable with no significant defects in cell cycle. We probed 

the Foxp3 sequence for the presence of CDK motifs, finding four such sites in the amino 

terminus. We confirmed that Foxp3 is phosphorylated by CDK2 using an in vitro kinase assay 

and mass spectrometry, as well  as a phospho-specific  antibody that recognizes one of the 

phosphorylated Foxp3-CDK motifs. We generated a mutant of Foxp3 lacking all  four CDK motifs, 

which has increased half-life compared to wild-type Foxp3. CD4+ T cells transduced with a 

Foxp3-CDK motif mutant have increased function compared to cells transduced with wild-type 

Foxp3 as measured by induction and repression of canonical Foxp3 target genes, as well  as the 

ability to suppress conventional T  cell proliferation. These data suggest CDKs negatively regulate 

Foxp3 protein stability, which has an impact on Foxp3 function. To determine when the CDK 

cascade was actively regulating Foxp3 in vivo we investigated the role of the CDK2 inhibitor, 

p27kip1. Recent data shows TGFβ signaling drives expression of p27kip1 in B cells. TGFβ is also 

required for extrathymic induction of Foxp3 in conventional CD4+ T cells. We show that 

conventional T cells, which have high CDK2 activity and minimal p27kip1 expression, induce large 

amounts of p27kip1 along with Foxp3 in the presence of TGFβ. Additionally, T cells lacking p27kip1 

have defective TGFβ-dependent Foxp3 induction. We hypothesize that TGFβ signaling is 
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required to activate p27kip1 and stabilize Foxp3 protein levels in developing iTreg by repressing 

CDK2.
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PREFACE

 Forty-five months ago I started this project I called “Foxp3 analysis for CDK2 

phosphorylation site”, on the first page of my first Wells lab notebook. It turned out to be a long 

battle with science, filled with struggles and successes. This paper is the report of those forty-five 

months. It does not accurately tally the countless hours spent in the lab, nor does it rightly 

express the emotions felt battling alongside my fellow scientists and friends; the joy of creativity 

and problem-solving, the hope for good results, the sadness and frustration that came with each 

failed attempt. Nevertheless, I am proud of those forty-five months and the progress I made, 

which is laid out on the following pages.
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CHAPTER 1 - Cyclin-dependent kinases in T cell biology

Summary

 Cyclin-dependent kinases (CDK), their partnering cyclins, and inhibitors have been 

studied primarily as components of the cell cycle, regulating its initiation, DNA replication, growth, 

and mitosis. Clonal  expansion of an antigen-specific T lymphocyte was thought to depend heavily 

on the CDK cascade directing cell  cycle progression. CDK-driven cell  division was also linked to 

the generation of a productive T  cell effector response, while kinase inhibitory proteins were 

shown to be essential for the onset of anergy and tolerance. In the last decade, genetic  studies 

indicated that only CDK1 is absolutely required for normal cell cycle progression in most tissues. 

As a result, the focus has shifted to elucidating the cell cycle independent roles for CDKs and 

their inhibitors in T cell  biology. In this chapter, we will  discuss the understood and changing roles 

of the CDK family in T lymphocyte division, expansion, and function. This will establish a 

groundwork for our hypothesis on the role of CDK2 and its inhibitor, p27kip1 in the regulation of T 

cell tolerance.
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The cyclin dependent kinase family & the classical view of cell cycle progression

 The cyclin dependent kinases (CDK) are a family of serine/threonine, proline-directed 

kinases engaged in a large number of different cellular processes. Full-length CDK3 is absent 

from all inbred mouse strains due to a truncation mutant (1); CDK5 is predominantly known as a 

neuron-specific  kinase (2), but is now appreciated to have a role in T cell function (3); CDK7, -8, 

and -9, regulate transcriptional  complex formation; CDK1, -2, -4, and -6, the interphase and 

mitotic  CDKs, act with their partnering cyclins to engage a complex kinase cascade that drives 

cell  cycle progression (4). Cyclin-dependent kinase inhibitors (CKI) of the ink (i.e. p18ink4c) and 

cip/kip (i.e. p27kip1) families are known to physically interact with and antagonize the activity of 

these CDKs. This thesis will focus mainly on CDK2 and its inhibitor p27kip1 in T lymphocytes.

  During the cell cycle, a series of sequential, CDK-directed phosphorylation events allow 

the cell  to pass critical cell cycle checkpoints, resulting in DNA replication, growth and mitosis (4). 

D-type cyclins are rapidly induced in response to mitogenic  stimuli  and decline quickly upon 

withdrawal of these stimuli  (5). Mitogenic  stimuli  also reduce expression of D-type cyclin inhibitors 

p15ink4b and p18ink4c, freeing CDK4 and CDK6, which are stably expressed, to drive G1 

progression (6). CDK4/6-cyclin D complexes reduce the activity of Rb, a negative regulator of S 

phase entry, by a phosphorylation-dependent mechanism, release E2F to induce cyclin E (7, 8). 

Next, mitogen induced CDK2 and cyclin E partner to target the degradation of their inhibitor 

p27kip1 which is highly expressed in quiescent cells, while also phosphorylating Rb on sites 

distinct from CDK4/6 (9). CDK2-cyclin E also phosphorylates histone H1 and activates the SWI/

SNF complex, affecting chromatin condensation, then induces a number of factors involved in 

augmented histone synthesis, centrosome duplication, and protein organization at origins of DNA 

replication (10, 11). Once these steps are completed a restriction point has been passed. 

Removal of mitogenic  stimuli  before this step will  reverse cell cycle progression, but once a cell 

has begun DNA replication it is irreversibly committed to completing division (12, 13). During S 

phase, CDK2-cycE induce cyclin A, which then takes over as the predominant partner of CDK2 

(14). Together, CDK2-cycA increase the stability of complexes involved in mitosis, ensuring only 

one round of DNA replication occurs during each round of division. Later, during G2/M, CDK1 is 
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induced and partners with both cyclin A and cyclin B (15-18). Together, these complexes regulate 

completion of mitosis and the cell cycle. 

 The complexities of the cell cycle kinase cascade were first studied using fibroblasts and 

transformed epithelial cells, which continuously cycle, and their division can only be stopped by 

abnormal methods such as nutrient starvation or harsh drug treatment. Like fibroblasts, 

lymphocytes provide an easily controllable way to study the cell  cycle. They are easily 

manipulated through the provided mitogenic signals, and enter a natural quiescent state upon the 

removal of mitogens, allowing cell cycle synchronization (19).

T lymphocyte cell cycle: How essential are the CDKs?

 Lymphocyte cell cycle progression is required for clonal  expansion, which is a critical  

aspect of an antigen-specific immune response. An activated lymphocyte expands to create 

progeny all sharing the same antigen specificity while those lymphocytes bearing receptors for 

self molecules are being deleted at an early stage (20). Additionally, while a T lymphocyte 

depends on antigen, costimulatory, and growth factor receptor signaling to begin clonal 

expansion, these signals are also required to regulate its differentiation and function (21-24). 

These early studies led to the hypothesis that cyclin-dependent kinases and their partnering 

cyclins are essential for clonal expansion, differentiation, and effector function of lymphocytes, 

through the regulation of the cell cycle.

 Genetic deletion studies were used to confirm the role of cell cycle proteins. None of the 

cyclin knockout animals had any serious immune defects except for those lacking cyclin D3, 

which is required for normal  hematopoietic development (25). Mice lacking CDK1 are not able to 

develop at the embryonic stage due to the loss of DNA rereplication (26). Surprisingly, mice 

lacking either CDK2 (27), CDK4 (28), or CDK6 (29) are all viable and progress through the cell 

cycle normally in most tissues and cells including T lymphocytes. CDK2, for example, is not 

required for normal thymocyte development (30) or mature T lymphocyte clonal expansion (31). 

 The fact that CDKs are only required for normal proliferation in certain cells was very 

unexpected. CDK2 is required for meiosis, and mice lacking CDK2 are rendered sterile because 

of cell cycle defects in spermatocytes (32), although oocyte cycling depends only on CDK1 (33). 
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CDK4 is essential for pancreatic beta cell  proliferation and pituitary lactotrophs (28). CDK6 is 

needed for normal erythroid cell development (29). Additionally, some tissue development 

requires multiple CDKs. Cardiomyocyte development is defective in CDK2-CDK4 double knock 

out mice, resulting in embryonic  lethality (34). If, instead, CDK2 and CDK4 are deleted after 

cardiomyocyte development, the mice are viable with no major cell cycle defects (35). CDK4 and 

CDK6 double knock mice out have defects in hematopoiesis, but are otherwise normal (29). Mice 

lacking CDK2, -4, and -6 die at E15.5 and contain decreased liver cellularity as well as 

cardiomyocyte and hematopoietic  cell  defects (36). MEFs taken from these mice cycle without 

major defects and can be immortalized, but cycle slower than wild type controls with an increased 

requirement for growth factors. These data suggest that only CDK1 is absolutely required for 

normal cell cycle progression in most tissues and cells, including T lymphocytes.

T cell anergy and tolerance and the cell cycle

 In the mid-1990s, immunologists began to employ powerful fluorescent dye approaches 

to trackd cell  division of individual lymphocytes during clonal expansion, both in vitro and in vivo. 

One of these dyes, carboxyfluorescein succinimidyl ester (CFSE) (37), segregates uniformly 

between daughter cells upon division and is stably maintained for up to ten days in culture (38). 

Studies using CFSE revealed that expression of T cell  differentiation markers and effector 

cytokines was cell  division dependent (21-23). The number of proliferating cells was shown to 

depend on TCR signaling, while costimulatory and growth factor receptor signaling accounted for 

the number of divisions each cell  completed, and the quality of their effector response (38). 

Upregulation of effector differentiation markers CD44, CD45RB, and CD62L, as well as 

production of key effector cytokines, IFNγ and IL-4, are produced after the third cell division (21, 

23). Additionally, the progression of cell  cycle, along with the expression of these effector 

cytokines, contribute to the epigenetic stability of the activated lymphocyte, increasing activating 

histone acetylation and decreasing inhibitory DNA methylation marks (23).

 T lymphocytes that complete more cell  divisions become an activated cytokine-producing 

effector population upon secondary challenge with antigen. Reciprocally, if cell  division was 

limited during initial activation, using CTLA4-Ig costimulatory blockade, the T lymphocytes are 
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hyporesponsive upon restimulation, and rendered anergic  (38, 39). Anergy can be induced during 

CD4+ T cell activation by pharmacologically blocking G1 progression (40, 41) or IL-2R signaling 

(42, 43). However, pharmacologic block during S phase fails to induce anergy in T cells. These 

data suggest the G1 to S phase transition is critical for anergy avoidance. CDK2 and p27kip1 were 

therefore hypothesized to regulate anergy because of their supposed role in regulating G1 to S 

phase cell  cycle restriction point. Surprisingly, although CDK2 is dispensable for G1 to S phase 

transition because of compensation by CDK1 (44), both CDK2 and p27kip1 were found to be 

involved in T cell  anergy and tolerance, suggesting they were involved in cell  cycle independent 

roles. 

p27kip1 regulates T cell anergy

 The CDK inhibitor p27kip1 is highly expressed in quiescent naive T lymphocytes, and upon 

activation forms a scaffold that permits cyclin D-CDK4/6 complex formation, which is required for 

egress from G0. Afterwards, p27kip1 is rapidly degraded in a CDK2-dependent manner in 

response to CD28 signaling (4, 45). Anergic  T cells maintain elevated expression of p27kip1 (38, 

45-47), while T cells lacking p27kip1 are resistant to anergy, and become effectors in response to 

TCR stimulus in the absence of costimulation (47, 48). This anergy avoidance can occur within 24 

hours, showing it is not dependent on cell  division. Additionally, the il2 gene, which is 

epigenetically silenced in anergic cells, remains epigenetically poised in p27kip1-/- T cells 

stimulated under anergizing conditions. These data suggest p27kip1 is a sensor of CD28 signals, 

and is required to regulate T cell clonal anergy independent of the cell cycle.

CDK inhibitory proteins regulate T cell tolerance

 Tolerant T cells induce high levels of the CDK inhibitory protein, p27kip1. Mice lacking 

p27kip1 were unable to tolerize to MHC mismatched grafts during systemic costimulatory blockade 

using antiCD28 and antiCD40 (49). Normally, this regimen of costimulatory blockade is sufficient 

to induce long-term allograft tolerance in mice (50). However, in the absence of p27kip1, rejection 

occurred rapidly. Cardiac  grafts were flooded with IFNγ-producing CD4+ T cells that mediated 

pathology, accompanied by systemic allospecific  lymphocyte expansion. These data are 

5



consistent with in vitro studies of p27kip1-deficient T cells showing a role in effector differentiation, 

and they suggest p27kip1 is not only involved in T cell  anergy in vitro, but also T cell tolerance in 

vivo.

 Mixed roles in tolerance have been shown for the CDK inhibitory protein, p21cip1. Mice 

lacking p21cip on different genetic  backgrounds demonstrate in one case decreased self-

reactivity (51), and in another an increased proclivity for autoimmunity (52, 53). These opposing 

results are not necessarily mutually exclusive. Deletion of p21cip1 on the lupus-prone BXSB strain 

quelled disease progression by inducing a number of pro-apoptotic pathways driving the 

programmed death of activated autoreactive lymphocytes (51). Contrarily, p21cip1 deletion on a 

C57BL/6 background caused a lupus-like disease in aged female animals highlighted by 

increased CD4+ T cell  activity, anti-nuclear antibody production, and glomerulonephritis (52, 53). 

It is possible that p21cip1 controls apoptotic  pathways in autoreactive cells, but also regulates 

CDK1- or CDK2-mediated substrate phosphorylation that is part of an important, but yet 

unappreciated tolerance pathway. The studies implicating p21cip1 as a tolerance factor did not 

establish a biochemical component to the developing autoimmunity, including no mention of 

whether CDK activity or a CDK substrate was dysregulated in the absence of the inhibitor. These 

remain possibilities that require further study. 

CDK2 regulates T cell effector function & tolerance 

 How does p27kip1 induce or maintain anergy? One possibility is through association with 

JAB1, a c-Jun co-activator. This interaction inhibits AP-1 transactivation and thereby il2 

transcription (45). Another possibility is by CDK2 inhibition. CDK2 interacts with numerous 

proteins involved in il2 gene expression. CDK2 is found in complex with NFκB (54), the co-

activator and histone acetyltransferase p300/CBP (55), and subunits of the RNA polymerase 

holoenzyme complex TFIIB and RNApolα (56). CDK2 can phosphorylate Sp1 (57), and Smad3 

(58), which all  regulate the il2 gene. Smad3 activity is dyregulated in T cells lacking p27kip1, which 

is an integral reason for their anergy resistance (48). Additionally, CDK2-/- T cells have defects in 

IL-2 production (31). These data suggest cell cycle independent routes of anergy regulation by 

the p27kip1-CDK2 axis. 
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 T cell anergy and tolerance are regulated in part by the expression and activity of the 

CDK inhibitor p27kip1 as described above. In the absence of p27kip1, T cells fail to anergize in vitro, 

or to form tolerance to heterotopic  heart grafts in vivo even in the presence of CD28 and CD40L 

costimulatory blockade. One way p27kip1 could be mediating tolerance is through inhibition of its 

major target, CDK2. Mice with a germ line deletion of CDK2 are viable with no major cell cycle 

defects (27). Apart from normal fibroblast cell cycle progression, CDK2-/- mice also have normal 

lymphocyte development (30) and proliferation (31). In conventional  CD4+ T cells, CDK2 is 

required to sustain normal production of the cytokines IL-2 and IFNγ (31). T cells lacking CDK2 

activity either because of genetic deletion, through knockdown by shRNA, or in response to a 

small molecule inhibitor, produce less IL-2 and IFNγ than their wild type counterparts, a 

phenotype that is exaggerated in restimulated anergic cells. 

 In vivo, CDK2-/- mice are able to tolerize to heterotopic heart transplants from fully 

mismatched donors under conditions that lead to rejection in wild type controls. 

Immunohistochemical staining of surviving grafts from CDK2-/- recipients revealed a 5-fold 

decrease in the number of infiltrating IFNγ producing T cells compared to wild type recipients. 

Wild type recipients also have grafts containing high expression of CDK2 and cyclin A. These 

data suggest CDK2 is important for the differentiation and effector function of CD4+ T  cells, and 

that the CDK pathway is highly active during allograft rejection.

 The long term allograft survival achieved in the absence of CDK2 can be partially 

explained by the role of this kinase in conventional  T  cell differentiation and function. However, 

CDK2 could also affect the balance between immunity and tolerance by acting on regulatory T 

cells. Immunohistochemical  staining of surviving grafts from CDK2-/- recipients revealed a 

substantial  amount of Foxp3, the regulatory T cell  lineage specifying transcription factor (31). 

These data suggest a potential role for CDK2-mediated control  of Foxp3 and regulatory T cell 

driven tolerance. Consistent with this notion, regulatory T cells from mice lacking CDK2 have an 

increased ability to suppress proliferation of conventional CD4+ T  cells in vitro, and are better at 

ameliorating T cell-mediated colitis than their wild type counterparts (31). These results show that 

CDK2 regulates the function of regulatory T cells, and that there may also be an effect on Foxp3 

expression, but more analysis is necessary to determine the mechanism by which CDK2 is 
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acting. We hypothesize that Foxp3 is a CDK2 substrate, and that CDK2 kinase activity negatively 

regulates the expression of Foxp3. This central idea became the basis for my thesis work. How I 

tested this hypothesis is presented in the following two data Chapters.
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CHAPTER 2 - Foxp3 protein stability is regulated by CDK2

SUMMARY

 Foxp3 is a transcription factor required for the development of regulatory T cells (Treg). 

Mice and humans with a loss of Foxp3 function suffer from uncontrolled autoimmunity and 

inflammatory disease. Expression of Foxp3 is required for Treg development, but whether Foxp3 

activity is further subject to regulation by extracellular signals is unclear. Foxp3 contains four 

cyclin-dependent kinase (CDK) motifs (Ser/Thr-Pro) within the N-terminal repressor domain, and 

we show that CDK2 can partner with cyclin E to phosphorylate Foxp3 at these sites. Consistent 

with our previous demonstration that CDK2 negatively regulates Treg function, we find that 

mutation of the serine or threonine at each CDK motif to alanine (S/T>A) results in enhanced 

Foxp3 protein stability in CD4+ T  cells. T cells expressing the S/T>A mutant of Foxp3 showed 

enhanced induction (e.g., CD25) and repression (e.g., Il2) of canonical  Foxp3-responsive genes, 

exhibited an increased capacity to suppress conventional T  cell  proliferation in vitro, and were 

highly effective at ameliorating colitis in an in vivo model of inflammatory bowel disease. These 

results indicate that CDK2 negatively regulates the stability and activity of Foxp3, and implicate 

CDK-coupled receptor signal transduction in the control of regulatory T cell function and stability.
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Introduction

 Foxp3, a forkhead box transcription factor, mediates the development of regulatory T 

cells (Treg), which are involved in immune regulation and tolerance (59-63). Foxp3 translocates 

to the nucleus to bind DNA and induce (CD25, Gitr, Ctla4) or repress (Il2, Il4, Ifnγ) the expression 

of various genes. Foxp3 regulates accessibility of these target genes by recruitment of chromatin 

remodeling factors, which will epigenetically poise or silence certain genes (64, 65). The activity 

of many transcription factors that contribute to T cell  differentiation and function is controlled by 

antigen, costimulatory, or growth factor receptor signaling (24), however, to what extent 

extracellular signals regulate Foxp3 function is largely unclear. A number of studies have recently 

described Foxp3 post-translational modification. Acetylated Foxp3 was first identified in response 

to TGFβ signaling (66). TIP60, p300, and sirtuin-1 were later also shown to regulate the 

acetylation status of Foxp3 (65, 67-69). Acetylation of Foxp3 affects its stability (68) and ability to 

bind to promoters (66). Other stimuli, such as hypoxia, also affect Foxp3 protein expression. The 

hypoxia induced factor 1α (HIF-1α) can regulate Foxp3 ubiquitination and stability in developing 

Th17 cells (70). Whether Foxp3 is regulated post-translationally by a specific kinase cascade, 

however, is not known.

 Our analysis shows the primary amino acid sequence of murine Foxp3 contains multiple 

putative kinase motifs, including four cyclin-dependent kinase substrate motifs concentrated 

within the N-terminal repressor domain. Our previous studies showed that CDK2-deficient Treg 

are more suppressive than wild type Treg, as measured by the ability to suppress the proliferation 

of conventional CD4+ T cells in vitro, and to ameliorate colitis in an in vivo mouse model  of 

inflammatory bowel disease (31). These findings demonstrate an important role for CDK2 in Treg 

biology, but did not establish the mechanism by which CDK2 functions in these cells. Considering 

the presence of multiple CDK motifs in the Foxp3 primary sequence, we hypothesized that CDK2 

may influence Treg function through phosphorylation-dependent regulation of Foxp3.

 In this current study, we find that CDK2 can phosphorylate Foxp3, and that mutation of 

the N-terminal CDK motifs increases the half-life, steady-state level, and transcriptional  activity of 

Foxp3. Furthermore, T cells expressing CDK mutant Foxp3 exhibit increased suppressive 
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function compared to cells expressing wild type Foxp3. Our results indicate that CDK2 activity 

controls Treg suppressive function through setting the amount of Foxp3 available in the cell.
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Materials and Methods

 Mice  - Female C57BL/6 (H-2b) and Rag1-deficient mice on a C57BL/6 background were 

purchased from The Jackson laboratory and maintained in our specific pathogen free facility 

according to ULAR- and AALAC-approved institutional  guidelines on animal care and usage. All 

mice were used at 6-14 weeks of age.

 Full-length Foxp3 purification - Murine Foxp3 cDNA was amplified from wild type C57BL/

6 thymus using the following primers: Foxp3 Fwd 5-ccggaattcatgcccaaccctaggccag-3’, Foxp3 Rev 

5-ccgctcgagtcaagggcagggattggagc-3’. The PCR amplified DNA was then cloned into the protein 

expression plasmid 6xHis-pET-28a (Novagen). E.coli strain BL21 was transformed with 6xHis-

Foxp3-pET28a. A single bacterial colony was inoculated in LB containing kanamycin (50µg/mL). 

The bacterial culture was grown at 37°C and Foxp3 expression induced with IPTG (0.5mM, 12h, 

30°C). For the purification of the 6xHis-Foxp3 recombinant protein, cells were harvested from 

500mL culture and the recombinant protein was purified using Nickel-nitrilotriacetic acid resin by 

affinity chromatography under native conditions.

 In Vitro Kinase Assay - 0.5µg 6xHis-Foxp3 or 1µg control Histone H1 (Roche) was 

incubated with CDK2-cycE (Millipore) and 5µCi γ32P-ATP (Perkin-Elmer) in kinase buffer for 30 

min at 30°C. The reaction was stopped with 1x SDS-PAGE lysis buffer and analyzed by SDS-

PAGE. The gel  was dried and exposed to x-ray film. Roscovitine (Cell Signaling) was used to 

inhibit CDK2 activity. 

 Mass spectrometry - 6xHis-Foxp3 was incubated with CDK2-cycE and cold ATP and 

analyzed by SDS-PAGE. The Foxp3 band was then excised, destained, reduced with DTT, 

alkylated with iodoacetamide (Sigma Aldrich), and digested in-gel  with trypsin. The extracted 

tryptic  peptides were analyzed by reverse phase HPLC mass spectrometry using an LTQ-

Orbitrap mass spectrometer. The assignment of phosphate to product ions identified was made 

using a Mascot search of MS2 data against the Oniprot mouse protein sequence database.

 Site directed mutagenesis - Ser/Thr>Ala-Foxp3 mutant was generated using the 

Stratagene QuickChangeII site-directed mutagenesis kit. Mutagenesis primers used: S19A-Fwd 

5'-cttggcccttggcccagccccaggag-3', S19A-Rev 5'-ctcctggggctgggccaagggccaag-3', S88A-Fwd 5'-

ccgactaggtcccgcaccccacctaca-3', S88A-Rev 5'-tgtaggtggggtgcgggacctagtcgg-3, T114A-Fwd 5'-
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gcccatgcccaggcccctgtgctcc-3', T114A-Rev 5'-ggagcacaggggcctgggcatgggc-3', T175A-Fwd 5'-

cccacgctcgggtgcacccaggaaaga-3', T175A-Rev 5'-tctttcctgggtgcacccgagcgtggg-3'.

 In vivo phosphorylation - HEK293 cells were transfected (Lipofectamine 2000, 

Invitrogen). 48h post-transfection cells were harvested, lysed, and subjected to FLAG 

immunoprecipitation according to manufacturer protocol (Sigma Aldrich). Lysis buffer was 

supplemented with protease and phosphatase inhibitor cocktail (Sigma Aldrich) and β-

glycerophosphate (Sigma Aldrich). Where indicated cells were treated with the proteosome 

inhibitor MG132 (Sigma Aldrich) and the CDK2 inhibitor Roscovitine (Sigma Aldrich). Affinity 

purified p+Ser19 Foxp3 rabbit polyclonal  antibody (Yenzym) was used to detect phosphorylated 

species of Foxp3.

 Peptide dot blot - Lyophilized Foxp3 peptide (aa12-24) either unmodified or 

phosphorylated at serine 19, was resuspended at 10mg/mL and serially diluted with PBS. 

Amounts of peptide from 500µg to 0.05ng were placed on nitrocellulose in log10 dilutions. 

Western blot was then performed using p+Ser19-Foxp3 (Yenzym). 

  Retroviral  Transduction - Murine Foxp3 cDNA was amplified from wild type C57BL/6 

thymus and cloned into the murine stem cell virus (MSCV)-based retroviral vector (13) expressing 

the reporter gene GFP, MIGR, or human NGFR (CD271), MINR, and containing an in-frame, N-

terminal  FLAG epitope. For generation of retrovirus, constructs were cotransfected 

(Lipofectamine 2000, Invitrogen) with the pCLeco (Invitrogen) helper plasmid into the 293T-based 

Phoenix ecotropic  packaging cell line (provided by G. Nolan, Stanford University). Wild type 

C57BL/6 CD4+CD25- naive T cells were activated with 3ng/mL phorbol 12-myristate 13-acetate 

(Sigma Aldrich), 1uM ionomycin (Sigma Aldrich), and 10U/mL IL-2 (Roche) for 24h, washed, and 

transduced by spinfection (71) with supernatants from 48h transfected Phoenix cells. Transduced 

cells were expanded in IL-2 for 3-4 days. CD4+ T cell  transduction efficiencies were ≥90%. 

Where necessary, transduced T cells were purified to near 100% purity using vector reporter 

markers.

 FACS, ELISA, qPCR, and Western blot analysis of transduced cells - Before analysis, 

transduced cells were restimulated 4-6 hours with 1µg/mL CD3 (2C11, BioXCell), 1µg/mL CD28 

(37.51, BioXCell), and IL-2 (10U/ml, Roche). FACS analysis was performed on a Beckman 
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Coulter Cyan ADP. Cells were stained for FACS analysis with conjugated mouse anti-Foxp3-APC 

(FJK-16s, eBiosciences), mouse anti-CD25-APCcy7 (PC61, BioLegend), anti-NGFR-PE (CD271, 

BD Pharmigen), and anti-CD4-PacificBlue (GK1.5, BioLegend). Supernatants from restimulated 

cells were harvested and probed for levels of Il2 protein by ELISA according to the manufacturer 

protocol (eBiosciences kit). Manufacturer protocols were used to for kits to extract RNA from 

transduced cells (Qiagen) and convert into cDNA (BioRad). Relative Foxp3 and Il2 message 

levels were determined following quantitative PCR using according to the 2ddCt method after 

normalization to actin. Whole cell extracts were generated using the radioimmune precipitation 

buffer lysis kit (Sigma Aldrich) and run on precast 10% SDS-PAGE Criterion gels (BioRad). 

Western blots were performed using mouse/rat anti-Foxp3 (FJK-16s, eBiosciences) and rabbit 

anti-p+Ser19-Foxp3 (Yenzym). 

 Stability assay - Following restimulation of transduced cells with CD3, CD28, and IL-2, 

cells were harvested, washed, and replated in the presence of 25µg/mL cycloheximide (Sigma 

Aldrich). Cells were harvested at indicated time points, and whole cell extracts were prepared and 

analyzed for expression of Foxp3 by western blot as described above.

 In Vitro Treg Suppression - CD4+CD25- (Tconv), and CD90-negative APC were isolated 

from splenocytes of wild type C57BL/6 mice using magnetic  bead-conjugated mAbs (Miltenyi). 

APC (1 x 105) were irradiated (1000 radians, 3 minutes) and plated onto 96-well round-bottomed 

plates along with Tconv effector cells (5 x 104/well) labeled with CellTrace (Invitrogen Molecular 

Probes, Violet CFSE equivalent) and 4µg/ml  soluble anti-CD3 mAb. T cells transduced with 

empty vector control, wild type-Foxp3, or Ser/Thr>Ala-Foxp3 (serving as suppressor Treg) cells 

were added to each well in varying ratios to Tconv cells and cultured for 72h. After 3 days, 

suppression of responder cell proliferation was measured by flow cytometry to assess the degree 

of inhibition of CellTrace (Invitrogen, violet CFSE equivalent) dilution as previously published (38).

 Adoptive Transfer Colitis - To induce experimental colitis, conventional CD4+25- T cells 

were purified from naive, wild type C57BL/6 mice and adoptively transferred (1 x 106, i.v.) into 

Rag1-/- B6 recipients (72, 73). Twenty-one days from the initial transfer, groups of three to seven 

mice then received either PBS, or T cells transduced with empty vector control, wild type-Foxp3, 

or Ser/Thr>Ala-Foxp3 mutant (2 x 106, i.p.). Recipients were weighed and observed for symptoms 
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of diarrhea approximately every two days. At the end of the experiment, spleens, mesenteric 

lymph nodes, and intestines were harvested for examination of gross pathology, and histology.

 Gross pathology - Colitis-induced animals were sacrificed and analyzed for signs of gross 

pathology using a modified version of established methods (74). Scores of 0 (no colitis) to 4 

(worst disease) were assigned according to colon rigidity, visible inflammation, and presence of 

blood in intestines, as well as diarrhea, and presence of fat tissue.

 Histopathology - Intestines from colitis-induced animals were fixed in formaldehyde, 

imbedded in paraffin, sliced, stained with hematoxylin and eosin, and mounted onto glass slides 

for histological analysis. Blinded evaluation of H&E-stained paraffin sections was performed by a 

pathologist and scored using established criteria (75) to reach a maximum colitis score of 23. The 

criteria and scoring used were: Inflammation: 0-3, Mucin depletion: 0-2, Reactive epithelial 

changes: 0-3, Number of intraepithelial lymphocytes: 0-3, Crypt architectural  distortion: 0-3, 

Number of inflammatory foci per 10 high power field: 1-3, Inflammatory activity: 0-2, transmural 

inflammation: 0-2, Mucosal ulceration: 0-2.

 Statistical  analysis - All p values were calculated by Student’s paired t test using Prism 

software (GraphPad).
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Results

Foxp3 is phosphorylated by CDK2

 We analyzed the Foxp3 amino acid sequence as a primary approach to identifying 

potential  sites of post-translational modification. We found many putative kinase binding 

elements, including a cluster of four cyclin-dependent kinase (CDK) motifs, Ser/Thr-Pro (Fig. 1). 

We recently demonstrated that cyclin-dependent kinase 2 is a negative regulator of Foxp3+ Treg 

function, but a biochemical basis was not established (31). The presence of multiple CDK motifs 

in Foxp3 suggests CDK2 might control Treg function through a phosphorylation-dependent 

mechanism. The Foxp3 CDK motifs are concentrated in the N-terminal  half of the protein. This 

segment of Foxp3 (aa1-198) is necessary and sufficient for repression of the Il2 gene, and is 

therefore referred to as a ‘repressor’ domain (76, 77). This domain contains no defined structural 

motifs, so how it contributes to Foxp3 function is not understood.

 To test whether CDK2 can phosphorylate Foxp3, we purified full-length recombinant 

Foxp3 (Fig. 2a) and performed standard in vitro kinase assays. Recombinant CDK2 together with 

its G1/S phase binding partner cyclin E was able to phosphorylate Foxp3, and the reaction could 

be abrogated by the CDK inhibitor roscovitine (Fig. 2b). To map the residues phosphorylated by 

CDK2-cyclin E, we performed the kinase reaction with cold ATP and subjected the purified Foxp3 

substrate to RP-HPLC mass spectrometry (MS). Product ions b14 and y9 from the peptide 

PAKPMAPSLALGPSPGVLPSWK (Fig. 2c) contain an 80 Dalton increase in their expected mass-

to-charge (m/z) ratio, indicative of a phosphate group at the serine followed by the proline (aa 19). 

Product ions containing only the other serine residues in the peptide do not contain an 80 Dalton 

increase in m/z, and are therefore not phosphorylated (Fig. 2c,e). An 80 Dalton increase is also 

found in the fragment ion b5 from the peptide SGTPRKDSNLLAAPQGSYPLLANGVCK (Fig. 

2d,f). The absence of earlier b-series ions or later y-series ions for this peptide precludes specific 

assignment of the phosphate group to the first serine (aa 173) or threonine (aa 175) residue in 

the peptide. However, CDK2 is an obligate proline-directed kinase, and therefore must be acting 

on threonine 175. The phosphorylation of the other two CDK target residues, serine 88 and 

threonine 114, was not determined as peptides containing these residues could not be isolated 

during enzymatic  digestion preceding RP-HPLC. None of the other serine or threonine residues in 
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Foxp3 outside these motifs were phosphorylated by CDK2 (data not shown). These data suggest 

that Foxp3 is phosphorylated by CDK2 on at least two of its CDK motifs, Ser19 and Thr175.

 We next generated an antibody that recognizes an N-terminal Foxp3 peptide - aa12-24, 

PSLALGPpSPGVLP - containing phosphorylated serine 19. To confirm that the antibody detects 

only phosphorylated serine 19, we performed a dot blot using serial  dilutions of unphosphorylated 

and phosphorylated peptide (Fig. 3a). Our results demonstrate that our antibody only recognizes 

p+Ser19, with the limit of detection in the nanogram range. To determine whether Foxp3 can be 

phosphorylated on S19 in an in vivo, cellular environment, we transfected HEK293 cells with a 

control  FLAG-tagged vector, wild type Foxp3, or a mutant of Foxp3 in which the serine or 

threonine of all  four CDK motifs was mutated to alanine (Ser/Thr>Ala). After 48h, transfected cells 

were harvested and lysed in the presence of both phosphatase and proteosome inhibitors. FLAG 

immunoprecipitation (IP) was performed on all lysates. Whole cell extracts and FLAG-IP eluate 

were analyzed by western blot for phosphorylated and total Foxp3 (Fig. 3b). Wild type Foxp3 

transfected cell lysates and FLAG-IP eluates contain a species of Foxp3 phosphorylated on S19, 

as detected using the p+Ser19-Foxp3 antibody. No phosphorylated Foxp3 was detected in 

extracts from Ser/Thr>Ala mutant Foxp3. These data demonstrate Foxp3 is phosphorylated at 

Ser19 CDK motif by endogenous cellular machinery. However, because the p+Ser-Foxp3 and 

Foxp3 antibodies recognize different epitopes it is not possible to quantify relative amount of 

phosphorylated Foxp3 relative to the total pool.

CDK motifs contribute to Foxp3 protein stability

 Kinase activity and phosphorylation can be coupled to protein stability (78). To test 

whether Foxp3 N-terminal CDK motifs contribute to protein stability, conventional CD4+CD25- T 

lymphocytes were transduced with MSCV-based retroviral  vectors encoding wild type Foxp3, or 

the Ser/Thr>Ala Foxp3 mutant (Fig. 4a). We treated empty vector-, wild type Foxp3-, or Ser/

Thr>Ala-Foxp3-transduced CD4+ T  cells with cycloheximide (CHX) and measured Foxp3 protein 

levels over time (Fig. 4b). Wild type Foxp3 was expressed at high levels following transduction, 

however, inhibition of protein synthesis with CHX revealed rapid turnover of Foxp3 within five 

hours with a half-life of 2 to 3 hours. Ser/Thr>Ala-Foxp3 exhibited increased protein stability; 
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following treatment with CHX the S/T>A(ble)-Foxp3 mutant showed a significantly increased half-

life of 8 to 9 hours as compared to wild type Foxp3 (Fig. 4c). Importantly, the transcription of S/

T>A(ble)-Foxp3 is not elevated over that of wild type-Foxp3 (Fig. 4d). These data indicate that 

CDK phosphorylation motifs are involved in the regulation of Foxp3 protein stability.

CDK motifs are important for Foxp3-dependent genetic events

 Foxp3 drives a specific  transcriptional program including the induction of genes like the 

alpha chain of the Il2 receptor, CD25, and the repression of cytokine genes such as Il2. To 

determine whether these CDK motifs affect the transcriptional  activity of Foxp3 we compared 

CD4+25- naive T cells transduced with either wild type or S/T>A(ble)-Foxp3 mutant. Wild type 

Foxp3 induced an expected Treg-like signature (59) including high Foxp3 expression, elevated 

CD25 levels, and decreased Il2 production as compared to cells transduced with empty vector. 

Mutation of all  four CDK motifs resulted in significant elevation of Foxp3 and CD25 protein levels 

(Fig. 5a), as well  as enhanced repression of Il2 message (Fig. 5b) and protein (Fig. 5c) as 

compared to wild type. These data suggest the CDK motifs negatively regulate Foxp3 function.

S/T>A(ble)-Foxp3 expressing cells have increased suppressive function

 Mutation of the N-terminal  CDK motifs in Foxp3 resulted in elevated protein stability and 

increased Foxp3-transcriptional  activity. Therefore, we next asked whether T cells expressing the 

S/T>A(ble) mutant of Foxp3 exhibited a gain of suppressive function. To test this, we used a 

standard, anti-CD3-driven in vitro Treg suppression assay (79). CD4+ T cells expressing wild type 

Foxp3 were able to suppress the proliferation of conventional T cells compared to empty vector-

transduced control cells. However, cells expressing the S/T>A(ble) mutant showed significantly 

elevated suppressive capacity compared to cells expressing wild type (Fig. 6). From these 

results, we conclude that the N-terminal CDK motifs restrain Foxp3 activity and suppressive 

function.

 To test whether the N-terminal  CDK motifs contribute to the anti-inflammatory capacity of 

Foxp3-expressing cells in vivo, we used an adoptive transfer model of inflammatory bowel 

disease (IBD) (72, 73). Immunodeficient Rag1-/- mice were injected with congenically marked 
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(CD45.1+) naive CD4+CD25- T cells and allowed to develop colitis highlighted by diarrhea and 

weight loss (Fig. 7a). Three weeks after the initial injection, animals were adoptively transferred 

with congenically marked (CD45.2+) CD4+ T cells transduced with wild type or S/T>A(ble) mutant 

Foxp3. Control mice receiving either PBS or empty vector-transduced cells developed a severe 

wasting disease including significant and rapid weight loss (Fig 7a). These animals had Foxp3+ 

cells in the mesenteric lymph nodes (Fig. 7b), but the expression was restricted to a 

CD45.1+NGFR- pool (data not shown), representing a population of in vivo induced Foxp3+ cells, 

which were not sufficient to ameliorate disease. Control  mice also developed diarrhea, intestinal 

wall thickening, and intestinal inflammation and ulceration, including destruction of intestinal 

architecture as measured by gross and histopathological  analysis (Fig. 7c,d). As previously 

shown (59), mice treated with transduced CD4+ T cells expressing wild type Foxp3 regained 

weight, no longer exhibited diarrhea, showed decreased intestinal thickness and rigidity, 

decreased inflammation and restored intestinal architecture. Mice that received S/T>A(ble) 

mutant-expressing cells experienced a similar degree of weight gain and restored intestinal 

architecture as compared to wild type treated mice. However, animals that received S/T>A 

mutant-expressing cells exhibited significantly less colon rigidity and hemorrhaging, and 

increased mesenteric fat tissue mass as compared to mice receiving wild type Foxp3 transduced 

cells (Fig. 7d). This decrease in gross pathology was accompanied by an elevated frequency of 

Foxp3+ donor cells in the mesenteric lymph nodes of S/T>A(ble)-Foxp3 treated animals (Fig. 7b). 

In addition, mice receiving mutant-expressing cells exhibited fewer outward signs of morbidity; 

they were more ambulant and had normal grooming behaviors (data not shown), while animals 

that received wild-type Foxp3-expressing cells were more hunched, less active, and did not 

exhibit normal grooming behavior. These data demonstrate that Foxp3 CDK motifs are not 

required for the suppressive activity of Foxp3-expressing cells in vivo, but rather, function to 

temper Treg anti-inflammatory activity.
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Discussion

 Foxp3 is a transcription factor necessary for the development of regulatory T cells (59, 

61-63). It recruits chromatin remodeling factors to the nucleus to induce or repress the expression 

of multiple genes (64), but to what extent Foxp3 is subject to regulation by extracellular signals 

remains unclear. Foxp3 can be acetylated by Tip60 and p300, increasing its stability (65, 67, 68). 

This effect is countered by the histone deacetylase, sirtuin-1 (67, 69), which negatively affects 

Foxp3+ Treg function (80). The histone acetyl transferase p300 competes for lysine residues with 

E3 ubiquitin ligase activity; acetylation, or mutation of target lysine residues to arginine increases 

Foxp3 stability by inhibiting ubiquitination (67). Foxp3 degradation can also be directed by HIF-1α 

through a ubiquitin-mediated mechanism. This occurs under hypoxic conditions during Th17 

development (70). Phosphorylation of Foxp3 was recently shown to occur at serine 418, affecting 

Foxp3 transcriptional activity (81). However, the kinase responsible for this modification was not 

identified. We previously showed cyclin-dependent kinase 2 (CDK2) opposes Treg suppressive 

function both in vitro and in vivo, but did not determine a mechanism by which CDK2 acts in 

Tregs (31). We hypothesize that CDK2 modifies Foxp3, and controls Treg function by a 

phosphorylation-dependent mechanism. Our analysis reveals four putative CDK motifs in the 

Foxp3 amino acid sequence. We demonstrate CDK2 phosphorylates Foxp3, and that the CDK 

motifs are required in a process that opposes Foxp3 protein stability and activity. This suggests 

that Foxp3 is subject to regulation by a kinase cascade, and that the effects of this 

phosphorylation oppose its function.

 Cyclin-dependent kinases are ubiquitously expressed, growth factor receptor-coupled 

enzymes primarily thought to drive cell cycle progression (82, 83). CDK2 and its binding partner 

cyclin E were initially described to be indispensable for progression past the G1-S phase 

checkpoint of cell cycle (84). CDK1, however, is now known to be sufficient for cell cycle 

progression in most cell  types, and can compensate for the absence of other interphase CDK, 

(44, 85, 86). For example, CDK2-/- mice are viable and present virtually no defect in mouse 

embryonic fibroblast cell  cycle progression (27, 32). T lymphocyte development (30) and 

proliferation (31) are also normal  in the absence of CDK2. These findings suggest that CDK2 

could have cell  cycle-independent roles in T lymphocytes. We have previously identified such a 
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role, showing CDK2 regulates Treg suppressive function (31). Considering our current data we 

predict CDK2 affects Treg function through phosphorylation and destabilization of Foxp3. 

However, our studies do not rule out whether other CDKs are acting on Foxp3, as they all 

recognize the same motif. More work will need to be performed to dissect the effect of each CDK 

on Foxp3.

 Our data suggest Foxp3 is a CDK2 substrate in T lymphocytes, but when is CDK2 active 

in the cell? Thymic derived regulatory T cells have stable long-term expression of Foxp3 (87) and 

may not be subject to regulation by CDKs. Interestingly, a thymic  Treg does repress CDK1, 

CDK2, and CDK6 expression (88). This could be an adapted mechanism to regulate these kinase 

cascades, and maintain Foxp3 stability. Foxp3 can also be induced peripherally in conventional T 

cells (89) providing an influx of suppressive cells. CDK2 is active in conventional  T cells (31), 

driving differentiation and cytokine production, and our current data suggest CDK2 negatively 

affects Foxp3 stability. Therefore, we predict that to generate an extra-thymic Treg, the cell  must 

not only induce Foxp3, but must also oppose CDK2 activity. Consistent with this idea, TGFβ 

signaling not only induces Foxp3 expression (89), but is known to induce p27kip1, an inhibitor of 

CDK2 (90, 91). In murine B cells, TGFβ induces p27kip1, which results in increased association 

with CDK2 and decreased CDK2 kinase activity (91). We hypothesize that TGFβ-induced p27kip1 

reinforces the extrathymic Treg cell fate by opposing CDK2-mediated destabilization of Foxp3.

 How are CDK motifs involved in regulating Foxp3 stability and function? One possibility is 

through phosphorylation-dependent ubiquitination. There are numerous examples of this type of 

crosstalk, in which phosphorylation at one residue can prime ubiquitination at a nearby lysine. 

Such peptides are referred to as phospho-degrons (78). CDK2 phosphorylation has already been 

linked to this process, pairing with the E3 ligase SCF/Fwb7 to target cyclin E for degradation (92). 

We propose the CDK motifs and nearby lysine residues cooperate to form a phospho-degron that 

regulates phosphorylation-dependent ubiquitination and degradation of Foxp3. This hypothesis is 

consistent with our data showing S/T>A(ble)-Foxp3 has increased stability as compared to wild 

type Foxp3. It is also possible that the Foxp3-CDK motifs are involved in subnuclear localization 

or nuclear export, leading to subsequent cytoplasmic degradation. The CDK2 inhibitor p27kip1 is 

degraded in this manner (93, 94). Either of these possibilities is consistent with our data.
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 Our data show that CDK2 negatively regulates Treg suppressive function (31), likely 

through phosphorylation-dependent destabilization of Foxp3. Furthermore, we propose that 

Foxp3 CDK motifs act to moderate the cell-extrinsic  anti-inflammatory activity of Foxp3. 

Modulating CDK2 activity could therefore be used to affect the balance between immunity and 

tolerance. Rosocovitine (seliciclib), a pharmacologic  inhibitor that targets CDK2, CDK7, and 

CDK9 (95), is in clinical trials to treat cancer (96), and was shown to ameliorate graft-versus-host 

disease in mice (97). CDK2 may therefore be a relevant target in the treatment of autoimmunity 

or during transplantation.
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Figures 

FIGURE 1

Murine Foxp3 contains four putative CDK consensus binding sites. Analysis of the murine 

Foxp3 sequence revealed the presence of four putative cyclin-dependent kinase motifs (Ser/Thr-

Pro, S/T-P) in the N-terminal ‘repressor’ domain. Also shown are the Foxp3 zinc  finger (ZNF), 

leucine zipper (ZIP), and forkhead domains (FKH).
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FIGURE 2
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Foxp3 is phosphorylated by CDK2 in vitro. A, Recombinant 6xHis-Foxp3 was purified as 

described under “Materials and Methods”. B, A standard in vitro kinase assay was performed 

using 6xHis-Foxp3 (500ng) or control substrate Histone H1 (1µg), and recombinant CDK2-cycE.  

Roscovitine was used to inhibit CDK2 activity. The autoradiograms shown are representative of 

three separate experiments. C,D, Purified 6xHis-Foxp3 was digested with trypsin and the 

resulting peptides were analyzed by RP-HPLC mass spectrometry. Tandem MS spectra for Foxp3 

phospho-peptides shown. b- and y-series ions are shown in red and blue, respectively, and ions 

involving neutral loss of the elements of phosphoric acid, water, or ammonia are shown in green. 

Phosphorylation site assignments are made for serine 19 (C) and threonine 175 (D). E,F 

Complete ion fragmentation for Foxp3 phospho-peptides shown. Phosphorylation site 

assignments are made for serine 19 (E) and threonine 175 (F) The data shown are from two 

separate mass spectrometry runs with parent error <5ppm.
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FIGURE 3

Foxp3 is phosphorylated at CDK motifs in vivo. A, Foxp3 peptide (aa12-24) containing either 

unmodified or phosphorylated serine 19 was serially diluted and used for a dot blot assay. 

Membranes containing diluted peptides were probed with p+Ser19-Foxp3 antibody. B, HEK293 

cells were transfected with vector control, wild type Foxp3, or S/T>A-Foxp3 mutant. Whole cell 

extracts were prepared at 48h post-transfection. FLAG immunoprecipitation and western blotting 

was performed as described under “Materials and Methods”. Phosphorylated and total Foxp3 is 

shown. Data are representative of three separate experiments.
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FIGURE 4

Foxp3 lacking CDK consensus elements has increased protein stability. A, CD4+25- T 

lymphocytes were transduced with vector control, wild type Foxp3, or the S/T>A-Foxp3 mutant. 

B, Transduced cells were rested overnight and restimulated for 4 hours with plate-bound CD3 

and CD28 antibodies, incubated with 25µg/mL cycloheximide (CHX), and harvested at indicated 

times. Whole cell  extracts from treated cells were analyzed by SDS-PAGE blotted to membranes, 

and probed with Foxp3 antibody. One representative image of three experiments is shown. C, 

Average stability of wild type and S/T>A-Foxp3 over three experiments is shown. Half-life was 

calculated based on these values. Error bars are S.E.M. for biological replicate cultures. D, Foxp3 

transcription normalized to actin is shown. Message level is represented in arbitrary units, before 

addition of CHX to transduced cells.
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FIGURE 5

Mutation of the N-terminal CDK motifs results in enhanced Foxp3 expression and 

transcriptional function. A. CD4+25- T lymphocytes were transduced with wild type or S/T>A

(ble) Foxp3, restimulated as in Figure 4, and Foxp3 and CD25 expression was assessed by flow 

cytometry. The mean-fluorescence intensity (MFI) of each parameter was calculated and 

graphed. B, Supernatants from restimulated cells in ‘A’ were assessed for Il2 production by 

ELISA. C, Il2 transcription normalized to actin is shown. Message level  is represented in arbitrary 

units. The data shown are representative of at least two experiments. Error bars are S.E.M. for 

biological replicate cultures. **p<0.01, ***p<0.001.
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FIGURE 6

S/T>A(ble)-Foxp3 exhibits enhanced suppressive function in vitro. CD4+25- T lymphocytes 

transduced with wild type or S/T>A(ble) Foxp3 were used as suppressors in a standard in vitro 

Treg suppression assay against conventional  CD4+25- T cells labeled with CellTrace to track cell 

division. Suppressors and effectors were cultured with irradiated wild type APCs and soluble CD3 

for 72 hours. Proliferation data shown are gated on CD4+ lymphocytes. Percent suppression was 

calculated as previously described [1]. Data are representative of two separate experiments. 

Error bars are S.E.M. for biological replicate cultures. **p<0.01, ***p<0.001.
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FIGURE 7

Anti-inflammatory activity of S/T>A(ble) mutant Foxp3 in vivo. Rag1-/- mice were injected i.v. 

with 1 x 106 conventional CD4+25- T lymphocytes to induce colitis. After 21 days, mice were 

administered a therapeutic  injection i.p. with 2 x 106 transduced cells (vector, wild type-Foxp3, or 

S/T>A(ble)-Foxp3) or a PBS control. A, Mice were weighed every 2-3 days until day 70 post initial 

injection. B, Mice were sacrificed and mesenteric lymph node cells were harvested and stained 

for CD4 and Foxp3. Shown is percentage Foxp3+ gated on CD4+ lymphocytes. C, Large 

intestines were harvested, prepared for histological  analysis, and histopathological  scoring was 

performed blinded. D, Gross pathological analysis of sacrificed mice was performed and scored 

as described under “Materials and Methods”. Each group contained 3-7 mice.
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CHAPTER 3 - p27kip1 is required for extra thymic Treg cell generation

Summary

 Regulatory T cells (Treg) are required to maintain immune homeostasis and tolerance. 

The development and function of these cells depend on the expression of the forkhead box 

transcription factor, Foxp3. Thymic  derived, ‘natural’ Treg have highly stable genetic  expression of 

Foxp3. Extra-thymic, ‘induced’ Treg, however, contain a much less stable Foxp3 gene. While the 

genetic stability of Foxp3 in each type of Treg has been studied extensively, an understanding of 

the protein stability of Foxp3 is still  lacking. Previously, we showed that Foxp3 is phosphorylated 

by the cyclin-dependent kinase 2 (CDK2), which leads to a decrease in protein half-life. Our 

current data show that the CDK2 inhibitor p27kip1 is induced in extra-thymic Treg by the same 

signal that turns on Foxp3 expression. In the absence of p27kip1 the conversion of CD4+ T cells 

into Foxp3-expressing suppressive cells is deficient, and can be partially reversed by the 

pharmacologic repression of CDK2. Additionally, we find that natural, thymic-derived Treg, 

downregulate CDK2 expression, and their suppressive function does not depend on the 

expression of p27kip1. These results indicate that induction of p27kip1 is required for normal 

expression of the Foxp3 protein during extra-thymic Treg development, and that thymic-derived 

Treg may have developed a mechanism to oppose CDK activity. 
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Introduction

 Foxp3 is a forkhead box transcription factor necessary for the development of 

immunosuppressive regulatory T cells (Treg) (59, 61, 62). Normal  Treg development and function 

depends on Foxp3, while loss or mutation of the gene results in severe autoimmunity in mice and 

humans (61, 98). Suppressive T cells were first identified as having thymic origin (99) and are 

referred to as natural Treg (nTreg). Expression of the Foxp3 gene in nTreg is highly stable as a 

result of demethylation of the intergenic region, CNS2, which occurs during thymic development 

(100-103). Foxp3 can also be induced peripherally in CD4+25- conventional T  cells (Tconv) in 

response to costimulation with TCR signaling and transforming growth factor β (TGFβ) (89). 

Peripherally induced Treg (iTreg), have inherently less stable Foxp3, which does not undergo the 

same degree of demethylation at CNS2 found in nTreg (104). Reports have now emerged 

citing novel  regulatory elements controlling peripheral Treg stability at sites of antigen exposure 

(105) or in tumors (106). These data show different protein networks can coordinate to affect 

stability of the peripheral Treg population, but do not specifically address the issue of Foxp3 

protein stability within the cell.

 We recently demonstrated that cyclin-dependent kinase 2 (CDK2) deficient Treg have a 

gain in suppressive function, and mice lacking CDK2 are better at accepting MHC-mismatched 

heart allografts (31). Importantly, CDK2-/- T cells exhibit normal cell  cycle progression (31), and 

CDK1 is now known to be the only CDK both necessary and sufficient for normal cell cycle 

progression in mammals (36). Additionally, we found that Foxp3 protein stability is negatively 

regulated by cyclin-dependent kinase 2 (CDK2); Foxp3 lacking CDK putative motifs has an 

increased half-life and a resulting gain in function (107). These data suggest that CDK2 restricts 

Foxp3 protein stability and Treg function. What remains unclear is under what circumstance the 

CDK2 pathway is active in a Treg, and how might it be regulated.

 One known mechanism of CDK2 regulation is through inhibition by p27kip1 (4). We 

previously published that p27kip1 is required for the acquisition of tolerance to mismatched heart 

allografts (49), although we did not look extensively at Treg in this model. p27kip1 can be induced 

in B lymphocytes in a TGFβ-dependent manner (91), but it is unclear if this is true in T 

lymphocytes. Importantly, TGFβ is the same signal  that drives Foxp3 expression in this iTreg (89). 
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Our data indicate that the CDK2 inhibitor p27kip1 is induced in developing iTreg in response to 

TGFβ. Additionally, we find that p27kip1-/- T  cells have a defect in iTreg conversion as compared to 

wild type iTreg. However, when analyzing nTreg from these animals in a colitis model, we find no 

suppressive defect. Together, our data suggest p27kip1 plays an important role in iTreg, but not 

nTreg. These findings represent an important step in appreciating the complex nature of Treg 

biology.
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Materials and Methods

 Mice  - Female C57BL/6 (H-2b) and Rag1-deficient mice on a C57BL/6 background were 

purchased from The Jackson laboratory and maintained in our specific  pathogen free facility. 

p27kip1-/- (H-2b) mice were bred in-house by crossing p27kip1+/- females with p27kip1-/- males 

(108). Absence of both copies of the p27kip1 gene (cdknlb) in progeny was confirmed by PCR. 

Animals were housed according to ULAR- and AALAC-approved institutional guidelines on animal 

care and usage. All mice were used at 6-14 weeks of age.

 Generation of induced regulatory T cells - CD4+25- conventional T cells were isolated 

from splenocytes of wild type and p27kip1-/- animals by magnetic bead-conjugated mAbs 

(Miltenyi). Purified Tconv cells were incubated for 2-3 days on 5µg/mL plate-bound CD3 (2C11, 

BioXCell) and CD28 (37.51, BioXCell) along with indicated amounts of TGFβ (Peprotech), 50U/

mL IL-2 (Roche), and 5µg/mL blocking Abs against IL-4 and IFNγ (BioXCell). Cells receiving no 

TGFβ are considered undifferentiated (Th0).

 Western blot analysis and FACS analysis of Treg - Before analysis, iTreg cells were 

restimulated 4 hours with 3ng/mL phorbol 12-myristate 13-acetate (Sigma Aldrich) and 1uM 

Ionomycin (Sigma Aldrich). FACS analysis was performed on a Beckman Coulter Cyan ADP. 

Cells were stained for FACS analysis with conjugated mouse anti-Foxp3-PE (FJK-16s, 

eBiosciences), mouse anti-IL-2-Pacific Blue (JES6-5H4, BioLegend), and anti-CD4-APC (GK1.5, 

BioLegend). Cell  fixation was performed according to manufacturer protocols. Where indicated, 

0.2µM roscovitine (Sigma Aldrich) was used to inhibit the activity of CDK2. Whole cell  extracts 

were generated using the radioimmune precipitation buffer lysis kit (Sigma Aldrich) and run on 

precast 10% SDS-PAGE Criterion gels (BioRad). Western blots were performed using rabbit anti-

p+Ser19-Foxp3 (Yenzym), mouse/rat anti-Foxp3 (FJK-16s, eBiosciences), rabbit anti-CDK2 

(78B2-Cell Signaling), goat anti-actin (C-11, Santa Cruz), and p27kip1 (2552, Cell Signaling). 

 Detection of phosphorylated Foxp3 - CD4+25- Tconv were converted into Foxp3+ iTreg. 

After 72h cells were harvested and lysed. Lysis buffer was supplemented with protease and 

phosphatase inhibitor cocktail (Sigma Aldrich) and β-glycerophosphate (Sigma Aldrich). Affinity 

purified p+Ser19 Foxp3 rabbit polyclonal  antibody (Yenzym) was used to detect phosphorylated 

species of Foxp3.
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 Adoptive Transfer Colitis - To induce experimental colitis, conventional CD4+25- T cells 

were purified from naive, wild type C57BL/6 mice and adoptively transferred (1 x 106, i.v.) into 

Rag1-/- B6 recipients (72, 73), Groups of four or five mice received either simultaneous injection 

of wild type or p27kip1-/- CD4+25+Foxp3+ Treg (2 x 106, i.v.), or were left untreated. Recipients 

were weighed and observed for symptoms of diarrhea approximately every two days. At the end 

of the experiment, spleens, mesenteric lymph nodes, and intestines were harvested for 

examination of gross pathology.

 Gross pathology - Colitis-induced animals were sacrificed and analyzed for signs of gross 

pathology using a modified version of established methods (74). Scores of 0 (no colitis) to 4 

(worst disease) were assigned according to colon rigidity, visible inflammation, and presence of 

blood in intestines, as well as diarrhea, and presence of fat tissue.

 Statistical  analysis - All p values were calculated by Student’s paired t test using Prism 

software (GraphPad).
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Results

Induced regulatory T cells contain phosphorylated Foxp3

 We previously showed that CDK2 phosphorylates Foxp3 at serine 19 and threonine 175 

using an in vitro kinase assay and mass spectrometry (107). In that study, we also generated an 

antibody reagent against the phosphorylated serine-19 of Foxp3 (p+Ser19-Foxp3), and confirmed 

that this modification occurs in a cell  transfected with wild type Foxp3, but not a mutant Foxp3 

lacking the CDK motifs. What remained uncertain was whether this modification occurred in 

Foxp3+ T cells. To test this we probed whole cell  extracts from undifferentiated CD4+25- Th0 

cells or extra-thymic induced regulatory T cells (iTreg) for the presence of p+Ser19-Foxp3. We 

found that iTreg, contain a pool of p+Ser19-Foxp3 (Fig. 8a). Wild type iTreg express CDK2 at 

levels appreciable to Tconv cells (Fig. 8b). These data suggest Foxp3 is phosphorylated at a CDK 

motifs and that CDK2 is present in an iTreg.  

Induced regulatory T cells upregulate p27kip1 to regulate Foxp3 induction

 One potential  mechanism of suppressing CDK2 activity is through induction of its 

inhibitor, p27kip1. Typically, p27kip1 is elevated in quiescent cells, inhibiting cell  cycle progression, 

then rapidly degraded in response to mitogenic  stimuli  to allow cycling (4). We analyzed whole 

cell  extracts from Tconv, and iTreg cells for the expression of p27kip1. Activated Tconv express low 

amounts of p27kip1, while iTreg induce large amounts of the cell  cycle inhibitor (Fig. 9). Our iTreg 

data are consistent with reports showing TGFβ-dependent induction of p27kip1 in B cells (91). 

 TGFβ signaling is sufficient to induce Foxp3 expression in CD4+25- conventional T cells 

(89). Our data in Figure 9 demonstrate that TGFβ also simultaneously elevates the expression of 

the CDK2 inhibitor, p27kip1 in Tconv. We also know that Foxp3 is phosphorylated at a CDK motif 

(Fig. 8), and that this modification destabilizes the protein (107). We therefore asked whether 

expression of p27kip1 in developing iTreg is required for normal Foxp3 protein expression. We 

performed a standard in vitro iTreg conversion assay, incubating both wild type and p27kip1-/- 

CD4+25- Tconv cells with varying amounts of TGFβ. Consistent with the literature, wild type 

Tconv cells produce high levels of Foxp3 in response to this milieu of signals (Fig. 10a). However, 

p27kip1-deficient Tconv cells upregulated significantly less Foxp3 compared to their wild type 
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counterparts. This deficiency is evident both in the total number of Foxp3 expressing cells (Fig. 

10b) as well  as the intensity of Foxp3 protein expression on a per cell basis (Fig. 10c). 

Additionally, p27kip1-/- iTreg exhibit suboptimal repression of IL-2 compared to their wild type 

counterparts (Fig. 10e,f). These data suggest that normal Foxp3 protein expression and 

repressive activity in iTreg depends on the induction of p27kip1. 

p27kip1 reinforces Foxp3 protein stability in iTreg 

 Genetic deletion of p27kip1 results in decreased Foxp3 expression in developing iTreg 

(Fig. 10). Additionally, we know CDK2 phosphorylation decreases Foxp3 protein stability (107). 

Therefore, we asked whether increased CDK2 activity in p27kip1-/- iTreg could account for the 

changes in Foxp3 protein expression. To do this, we performed the standard in vitro iTreg 

conversion assay using wild-type and p27kip1-/- Tconv cells, in the presence or absence of the 

CDK2 small  molecule inhibitor, roscovitine. At nanomolar doses, roscovitine treatment of wild type 

iTreg cultures led to a small  increase in Foxp3 expression as compared to untreated cells (Fig. 

11). These data suggest CDK2 is active in an iTreg. This idea is consistently represented by our 

data showing CDK2 activity in wild type iTreg as determined by detectable levels of p+Ser19-

Foxp3 (Fig. 8). p27kip1-/- iTreg cultures treated with roscovitine also showed a small  gain in the 

amount of Foxp3 expression compared to untreated cells, and the gain was larger than that seen 

in wild type treated cells (Fig. 11). These data suggest that there is more CDK2 activity in 

p27kip1-/- than wild type iTreg, and support the conclusion that p27kip1 assists developing iTreg to 

prevent CDK2 activity and stabilize their Foxp3 protein expression.

 

Natural regulatory T cells do not require p27kip1 for their function 

 Our data show p27kip1 is required to for the expression of Foxp3 during iTreg 

development. We wanted to know whether nTreg also had any reliance on p27kip1. To test this we 

harvested CD4+25+Foxp3+ nTreg from naive wild type and p27kip1-/- mice. We observed no 

differences in the total number of nTreg between wild type and p27kip1-/- animals (data not 

shown). We then used the nTreg as suppressor cells in an adoptive transfer model of colitis. We 

found both wild type and p27kip1-/- animals are equally capable of suppressing the proliferation of 
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inflammatory CD4+ conventional T cells in this model. This is clear both from the similarity in their 

weight curve (Fig. 12a) and gross colitis score (Fig. 12b). We also analyzed nTreg for the 

expression of CDK2 by Western blot and found that relative to Tconv, wild type nTreg 

downregulate CDK2 expression (Fig. 13). This finding is consistent with a previous report that 

nTreg restrict the expression of CDK1, CDK2, and CDK6 (88). Together, these data suggest that 

nTreg do not require p27kip1 for their function, but instead have adapted a mechanism to restrict 

the activity of the CDK family.
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Discussion

 Foxp3+ regulatory T cells are required to maintain immune homeostasis and tolerance 

(60, 98, 109). These suppressive cells can be generated from developing thymoctyes, nTreg (99), 

or from mature peripheral CD4+25- conventional  T  cells in response to costimulation with TCR 

and TGFβ signals, iTreg (89). The expression of Foxp3 in nTreg is inherently stable as a result of 

demethylation of the Foxp3 intergenic region, CNS2 (100-103). Contrarily, the Foxp3 gene in 

iTreg does not undergo extensive stabilizing demethylation at CNS2 (104), although treatment 

with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine can force a more stable 

phenotype (110). Normally, however, iTreg are considered a particularly ‘plastic’ T cell lineage, as 

they can be differentiated into various other T cell  subsets, such as Th17 cells, given the right 

cytokine milieu (111). It has been suggested that depending on whether the iTreg were generated 

in an inflammatory environment or not can also affect their stability (112). The studies performed 

have focused on the state of the Foxp3 gene. What remains largely unaddressed is how the 

stability of the Foxp3 protein, and the networks that regulate it contribute to the function and 

stability of the Treg lineage.

 We performed a cursory examination of nTreg from p27kip1-/- animals. Our data suggests 

that nTreg do not depend on p27kip1 for their suppressive function. Interestingly, nTreg do 

downregulate the expression of CDK2 relative to Tconv cells. A recent study also shows thymic-

derived nTreg repress the expression of CDK1, CDK2, and CDK6 (88). While CNS2 

demethylation of Foxp3 stabilizes the gene in nTreg, tempering the expression of the CDK family 

represents a possible mechanism by which nTreg can ensure stable Foxp3 protein expression 

and maintenance of tolerance without reliance on p27kip1. 

 On the other hand, iTreg certainly rely on p27kip1 for their development and function. The 

data we present in this study indicate that induced regulatory T cells express a population of 

Foxp3 that is phosphorylated by CDK2. We previously showed that CDK2 negatively regulates 

Foxp3 protein stability in a phosphorylation-dependent manner, resulting in decreased Foxp3 

function (107). This suggests that CDK2 activity in an iTreg regulates Foxp3 stability. How does 

an iTreg modulate this activity of CDK2? One possibility is through utilization of the CDK2 

inhibitor p27kip1 which actively regulates the activity of CDK2 protein in the cell. Previous studies 
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show that p27kip1 transcription is responsive to TGFβ signaling in B lymphocytes (91). This is 

intriguing as TGFβ is also the primary signal required for extra-thymic induction of Foxp3 (89). We 

confirmed that conventional T cells also induce p27kip1 in response to TGFβ, and that mice 

genetically deficient for p27kip1 have a significant defect in iTreg conversion. Based on these data 

we suggest p27kip1 is induced in iTreg as a switch to modulate CDK2 activity, contributing to 

stable Foxp3 expression and suppressive capacity. 

 Furthermore, in an attempt to balance immunity and tolerance a cell could modulate the 

relative expression of p27kip1 to allow for either a more stable iTreg, or favor destabilization and 

conversion into another CD4+ T cell subset. The iTreg-Th17 division is a well documented 

example of the need for plasticity during an immune response (24), and the pivotal role played by 

TGFβ in the development of both of these lineages is apparent (113). Interestingly, another 

cytokine that drives Th17 differentiation, IL-6, is known to induce p27kip1 expression in neurons 

(114). We have preliminary data indicating that p27kip1 is required for normal development of the 

Th17 lineage (Morawski, Wells unpublished observations), but it remains unclear if IL-6 affects 

p27kip1 in T lymphocytes. The CDK2-p27kip1 axis may therefore be important for multiple aspects 

of T cell biology. 
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Figures

Figure 8

Foxp3 is phosphorylated in vivo. A, CD4+ conventional  T cells (Tconv) were incubated on plate 

bound CD3 and CD28 with TGFβ, IL-2, and blocking antibodies against IFNγ, IL-4, and IL-12, to 

generate induced regulatory T cells (iTreg) as described under "Materials and Methods". After 

72h, iTreg were harvested and whole cell  extracts prepared. Western blot analysis was performed 

as described under “Materials and Methods”. Phosphorylated and total Foxp3 is shown. B, Tconv 

and iTreg cells were prepared as in ‘A’ and analyzed for CDK2 and β-actin. Tconv cells from 

CDK2-/- animals are used as a control. Data are representative of two separate experiments.
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Figure 9

TGFβ signaling induces p27kip1 in T cells. Tconv were incubated on plate bound CD3 and 

CD28 with cytokines and blocking antibodies to generate iTreg or undifferentiated Th0 cells as 

described under "Materials and Methods". Tconv and iTreg were harvested after 72h and whole 

cell  extracts prepared. Western blot analysis was performed as described under “Materials and 

Methods”. Membranes were probed for differential expression of the CDK inhibitor, p27kip1. 

Expression of β-actin serves as a loading control. Data are representative of two separate 

experiments.
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Figure 10
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p27kip1 is required for normal TGFβ-dependent Foxp3 induction. A, Wild type and p27kip1-

deficient Tconv were incubated on plate bound CD3 and CD28 with cytokines and blocking 

antibodies to generate iTreg or undifferentiated Th0 as described under "Materials and Methods". 

Stimulated cells were harvested after 72h and prepared for flow cytometry as described under 

"Materials and Methods". Expression of Foxp3 and CD4 are shown. B, Total number of Foxp3 

expressing cells was enumerated and graphed. C, Foxp3 mean-fluorescence intensity (MFI) was 

calculated and graphed. D, Expression of IL-2 and CD4 are shown. E, IL-2 MFI was calculated 

and graphed. The data shown are representative of at least two experiments. Error bars are 

S.E.M. for biological replicate cultures. **p<0.01, ***p<0.001.
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Figure 11

Inhibiting CDK2 increases Foxp3 expression in developing iTreg. Wild type and p27kip1-

deficient Tconv were incubated on plate bound CD3 and CD28 with cytokines and blocking 

antibodies to generate iTreg as described under "Materials and Methods". During conversion, 

cells were incubated in the presence or absence of roscovitine. Stimulated cells were harvested 

after 48h and prepared for flow cytometry as described under "Materials and Methods". Foxp3 

intensity of staining and percent expression is shown. Error bars indicate S.E.M. for three 

experimental replicates. Data are representative of one experiment.
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Figure 12

Suppression by natural regulatory T cells does not require p27kip1. Rag1-/- mice were 

injected i.v. with 1 x 106 conventional CD4+25- T lymphocytes to induce colitis. Simultaneously, 

groups of mice were injected i.v. with either 1 x 106 wild type or p27kip1-/- CD4+25+ nTreg to 

prevent disease, or were left untreated. A, Mice were weighed every 2-3 days until  day 60 post 

injection. B, Gross pathological analysis of sacrificed mice was performed and scored as 

described under “Materials and Methods”. Each group contained 4-5 mice.
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Figure 13

Natural regulatory T cells downregulate CDK2. Wild type and CDK2-/- splenocytes, as well as 

wild type Tconv and nTreg were purified from mice, stimulated overnight with PMA, Ionomycin, 

and IL-2, harvested and used to prepare whole cell extracts. A, Western blot analysis was 

performed as described under “Materials and Methods”. Membranes were probed for differential 

expression of CDK2. Expression of β-actin serves as a loading control. B, Relative expression of 

CDK2 between wild type Tconv and nTreg cells was adjusted for differences in loading and 

graphed. Data are representative of one experiment.
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CHAPTER 4 - Discussion & Future Directions 

- 

The breadth of the CDK2-p27kip1 axis in T cells
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Cyclin-dependent kinases: A brief review of how we got here 

 Induction of cyclin-dependent kinase 2 (CDK2) in T cells is dependent on both CD28 and 

IL-2 signals (4, 115-117), and was originally thought to be required for normal G1 to S phase 

progression of the cell cycle. Recent genetic studies have demonstrated that only CDK1 is 

required for normal cell cycle progression in most tissues (35, 36). Specifically, animals lacking 

CDK2 have a major defect in meioses, causing sterility (32), but have normal cell  cycle 

progression in nearly all other tissues, including T lymphocytes (31), because of the 

compensatory function of CDK1.

 Our initial studies on cell cycle proteins found that competent CD4+ effector T cells could 

be distinguished from anergic ones based on the number of cell divisions undergone by each 

following costimulation with TCR engagement (38, 46). Simultaneously, reports emerged showing 

that cyclin/kinase-inhibitory proteins (cip/kip), such as p27kip1 and p21cip1, were induced during, 

and could participate in anergy induction (40, 45, 48). We showed that p27kip1 is required for 

anergy in vitro (47), and for the formation of tolerance to fully MHC mismatched heart allografts 

(49). These studies also showed that p27kip1 has only a mild effect on the clonal expansion of a T 

cell, but is required to regulate the production of effector cytokines by allospecific  effector T cells. 

We also have new data demonstrating that p27kip1-/- Tconv are more difficult to suppress than 

wild type control  Tconv (Fig. 14). We must test whether this is the result of dysregulated clonal 

expansion or effector cytokine production in the absence of p27kip1. 

 These data suggested that effector differentiation and tolerance induction, but not cell 

division were the primary processes regulated by p27kip1. Based on this idea, we predicted that 

CDK2 would have the opposite function. Indeed, we found that CDK2 deficient mice are 

susceptible to transplant tolerance (31). Furthermore, while CDK2-/- T  lymphocytes had normal 

cell  cycle progression, their regulatory T cells (Treg) had increased suppressive function in vivo 

compared to wild type counterparts. These data showed CDK2 negatively regulated transplant 

tolerance and Treg function, although the mechanism remained unclear. Because Treg 

development and function are driven primarily by the transcription factor Foxp3, and because 

CDK2 is by definition a kinase, we hypothesized that CDK2 might phosphorylate Foxp3 as a way 

to exert influence on the entire Treg lineage. 

50



 The data in Chapter 2 demonstrate the validity of our hypothesis. Foxp3 contains putative 

CDK motifs, and is phosphorylated on at least two of these sites (107). The phosphorylation 

decreases Foxp3 protein stability and function. In Chapter 3, we show the in vivo relevance of our 

biochemical  finding. The CDK2 inhibitor p27kip1 is required for stable expression of Foxp3 in 

developing extra-thymic induced Treg (iTreg), and the activity of CDK2 may play a role in 

regulating this process. Simultaneously, we find that CDK2 is downregulated in thymic-derived 

natural Treg (nTreg), and that p27kip1 is not required for normal nTreg suppressive function. 

Together, the data presented in this thesis support the original hypothesis that CDK2 has a critical 

cell  cycle independent role that controls tolerance and Treg function. However, much work 

remains unfinished as we attempt to understand more aspects of the biology. Below I will outline 

several models that encapsulate our data, make predictions based on these models, and attempt 

to assimilate all these ideas into the larger scope of T cell immunology.

The biochemistry of Foxp3 stability

 There is little understood about the post-translational modification of Foxp3. Our data 

presents the first example of a specific kinase cascade acting on this transcription factor (107). 

The conclusions from that study stated CDK2 phosphorylation of Foxp3 led to destabilization of 

the protein (Fig. 15a), and subsequent decreases in induction (e.g. CD25) or repression (e.g. il2) 

of canonical  Foxp3 genes (Fig. 15b), as well as loss of suppressive function (Fig. 15c). Of these 

conclusions, the most important one, regarding stability of the Foxp3 protein, is also the one 

around which the most questions still remain. 

 Crosstalk between post-translational  modifications represents an important step in the 

regulation of the function and fate of a protein. Acetylation of a substrate competes with 

ubiquitination at the same lysine residues, while phosphorylation at one site can enhance the 

likelihood of a nearby ubiquitination (78). We hypothesize that CDK2 phosphorylation of Foxp3 

leads to a ubiquitin-mediated destabilization, but we have not yet demonstrated that Foxp3 

contains a CDK2-generated phospho-degron. We do know that CDK2 activity is a prerequisite for 

the SCF/Fwb7-mediated ubiquitination and degradation of Cyclin E (92) and Skp2-mediated 

ubiquitination and degradation of p27kip1 (118), which we believe could be how CDK2 targets 
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Foxp3 for degradation. Foxp3 is subject to proteasomal degradation following ubiquitin 

modification (119). The specific  E3 ligase has not been identified, but the deubiquitin enzyme 

(DUB) that reverses this process is USP7. This ubiquitin-mediated degradation is thought to be 

dependent on p300 and SIRT1 regulated acetylation (68, 69). Moving forward we must ask 

whether CDK2 phosphorylation of Foxp3 is an added part of this degradation program, and how 

this additional modification could lead to degradation. Phosphorylation could cause a 

conformational shift (120) or change in local electrostatic  charges (121) that favors binding with 

an E3 ligase over an acetyl  transferase. Alternatively, phosphorylation could affect protein 

localization. Could p+Foxp3 be subject to nuclear export and directed towards a cytoplasmic 

proteasome like p27kip1 (93, 94)? Perhaps CDK2 drives the sub-nuclear trafficking of Foxp3 

towards nuclear degradation machinery (122)? These are all  possibilities that should be 

accounted for, which could suggest additional  pharmacologic  routes by which Foxp3, and thereby 

Treg stability, can be modulated in vivo.

When is CDK2 active in a T lymphocyte?

 The biggest question emerging from our study on CDK2-dependent regulation of Foxp3 

stability is regarding under what circumstances CDK2 engages Foxp3. From our previous work 

we know CDK2 is highly active in CD4+ T lymphocytes that infiltrate and reject cardiac  allografts. 

CDK2 reinforces the production of IFNγ in infiltrating T cells, and negatively affecting suppressive 

function (31). In neither of these examples, however, were we looking for the presence of 

phosphorylated Foxp3. Our recent efforts, laid out in Chapter 3, aim to understand where and 

when CDK2 acts upon Foxp3. A strong hint came from a published study showing p27kip1 could 

be induced in B lymphocytes by TGFβ signaling (91). We showed that TGFβ, which is the primary 

signal required for the extra-thymic induction of Foxp3 in conventional T  cells (Tconv) (89), 

simultaneously induces p27kip1 in Tconv, and is required for normal  development of iTreg. 

Furthermore, iTreg contain a population of CDK2-phosphorylated Foxp3, and pharmacologic 

inhibition of CDK2 in iTreg strengthens the expression of Foxp3. These data provide an in vivo 

link to our earlier biochemical data. Therefore, we propose a model in which simultaneous 

induction of Foxp3 and p27kip1 by TGFβ in a T cell (Fig. 16a) concomitantly serves to initiate the 
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Treg genetic  program (Fig. 16b), and to quell CDK2 activity, thus reducing effector cytokine 

production and allowing greater Foxp3 protein stability (Fig. 16).

 Our data support this adjusted model of TGFβ requirement for iTreg generation, but 

several key pieces are still missing. First, we must confirm whether the effect we see on Foxp3 

expression in p27kip1-/- iTreg is exclusively post-translational. We know that the CDK motif mutant 

of Foxp3 has increased protein stability with no change in transcription of the gene, but we have 

not yet shown a supporting result in iTreg. We will use both wild type and p27kip1-/- iTreg to 

measure the comparative message level  of Foxp3, and to test the stability of the protein in the 

presence of cycloheximide with and without continued TGFβ signaling. Our data also suggest that 

in the absence of p27kip1 there is a loss of iTreg function, as the converted cells produce more 

autocrine IL-2 than wild type controls. However, a complete demonstration of the suppressive 

capacity of iTreg with or without p27kip1 expression is required, and will  be performed using our 

previously described in vitro and in vivo models.

 Because of the finding that TGFβ drives p27kip1 expression, our studies have focused on 

iTreg, however, we have begun to account for the roles of CDK2 and p27kip1 in nTreg as well. Our 

data show nTreg suppressive function is normal  in the absence of p27kip1. One explanation for 

why nTreg do not require p27kip1 to inhibit CDK2 and stabilize their Foxp3 pool is simply that 

nTreg do not express very much CDK2. Indeed, we show that compared to Tconv, nTreg from 

wild type animals express about two-fold less CDK2. This is consistent with data from another lab 

showing nTreg not only down regulate CDK2, but CDK1 and CDK6 as well (88). A possible 

mechanism by which this occurs is that Foxp3 binds to and represses CDK genes as it does 

cytokine genes. We believe that repression of CDK family members by nTreg is an adapted 

mechanism to protect the Foxp3 protein, one that makes much sense. The stability of the Foxp3 

gene is specifically enhanced in developing thymic Treg to generate a more lasting suppressive 

lineage (100-103). If Foxp3 is not present in nTreg then severe autoimmunity will result in an 

early death in humans (61, 98). We believe that this is a case in which the nTreg simply cannot 

afford to have high CDK2 activity, which would drive Foxp3 instability and potentially destroy the 

balance of immunity and tolerance. 
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How far does the influence of the CDK2-p27kip1 axis extend? 

 Unlike, nTreg, iTreg are appreciated to be naturally unstable. For an iTreg, to be able to 

modulate Foxp3 expression through regulation of the CDK pathway could be advantageous. It 

provides a mechanism to assist in lineage plasticity depending on the needs of the organism for a 

more inflammatory or suppressive environment. A cell could modulate CDK2 activity, and thus 

Foxp3 expression, allowing either for a more stable iTreg, or for destabilization and subsequent 

conversion into another CD4+ T cell subset. The Th17-iTreg dichotomy is a well documented 

example of the need for plasticity during an immune response (24), and the pivotal role played by 

TGFβ in the development of both of these lineages is apparent (113). Interestingly, we have 

preliminary data indicating that p27kip1 is also required for normal development of the Th17 

lineage, although how this is mediated remains unclear (Morawski, Wells unpublished 

observations).  

 There are still other signaling events that must be considered that alter the expression of 

p27kip1. Retinoic acid, which drives Foxp3 expression in the gut (123), and is understood to have 

a reciprocal  role in the iTreg-Th17 axis (124), like TGFβ, has been shown to induce (125, 126) 

and stabilize (127) the expression of p27kip1. Contrarily, IL-6 signaling is known to oppose 

expression of Foxp3 in favor of STAT3-driven expression of RORγt, the master transcription 

factor of the Th17 lineage (110, 128). It is not known whether IL-6 has any affect on the Foxp3 

protein, and while IL-6 was shown to drive p27kip1 expression in neurons (114), it is unclear if this 

is the case in T lymphocytes. We hypothesize that inflammatory stimuli inhibit p27kip1, and oppose 

Foxp3 expression and stability, leading to lineage plasticity (Fig. 16). Many factors are involved in 

the iTreg-Th17 developmental axis, and we believe that p27kip1 can be linked to many of them. 

More work must be done to dissect the potential  effects of TGFβ, retinoic acid, and IL-6 on 

p27kip1, and how they may contribute collectively to the development and plasticity of iTreg and 

Th17 cells. 

 Immunity and peripheral tolerance can be altered in part by the relative balance of iTreg 

and Th17 cells. A failure to properly stabilize Foxp3+ iTreg could lead to a breakdown of this 

immune homeostasis and result in autoimmunity. Our data support the important and novel 

consideration that the CDK2-p27kip1 axis is involved in this balance (31, 49, 107). A number of 
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studies from other groups demonstrate a role for CDK2 and p27kip1 in various autoimmune 

disorders. 

 Pemphigus vulgaris (PV) is part of a family of blistering autoimmune diseases where 

pathology is linked to CDK2 activity (129). Inhibition of CDK2 by siRNA or roscovitine treatment 

could prevent blister formation in epithelial  cells and modulate disease in mouse models of PV. 

The authors conclude that CDK2 is critical for the organization of intracellular signaling during PV 

progression, but do not propose a mechanism. Other studies demonstrated that p27kip1 is 

downregulated in thyroid epithelial  cells during Hashimoto’s thyroiditis (HT) (130), and in tissue 

samples from human systemic  lupus erythematosus patients (SLE) (131). The study on HT 

contains no definitive mechanism to explain the involvement of p27kip1. The study on p27kip1 on 

SLE shows hyperactive PI3K/Akt/mTOR signaling in diseased patient samples, as well as 

increased cell arrest after S phase and high apoptosis. PI3K/Akt/mTOR signaling is known to be 

detrimental to Treg, as pharmacologic inhibition with rapamycin can stabilize Treg cells (132). 

Interestingly, many SLE patients also have a deficiency in the generation of extra-thymic iTreg, 

rendering them less capable of controlling autoreactive lymphocytes (133). According to our 

model, dysregulated p27kip1 expression and subsequent elevation of CDK2 activity can explain 

the iTreg conversion defect SLE patients. This regulation of iTreg conversion in SLE patients is 

consistent with our findings from p27kip1 deficient animals in Chapter 3. Interestingly, aged 

p27kip1-/- animals develop signs of lupus-like disease including an elevated serum titer of dsDNA 

antibodies, and glomerulonephritis (134). Our data combined with evidence from several  other 

labs makes a strong case for the importance of the CDK2-p27kip1 axis in the prevention and 

development of autoimmunity. What remains uncertain is why the CDK2-p27kip1 axis is 

dysregulated in patients with an autoimmune disorder like SLE. 

 In response to costimulation and IL-2 signals, CDK2 will  target p27kip1 for nuclear export 

and degradation following a series of phosphorylations (93, 118, 135). The GTPase, Ras-related 

protein 1 (RAPL), can protect p27kip1 from this fate in lymphocytes (136). Interestingly, animals 

deficient in RAPL have trouble controlling the development of autoimmunity. This network of 

signals represent one location where the breakdown of p27kip1 regulation could occur, and 

increase susceptibility to autoimmunity. Additionally, it is known that the inflammatory cytokines 
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that are excessively produced during autoimmunity contribute to worsening of disease by 

dysregulating the balance of iTreg and Th17 cells. For example, IL-6 produced by autoreactive T 

and B lymphocytes is known to oppose Foxp3 expression and drive reprogramming of iTreg into 

Th17 cells (110, 128). SLE patients with defects in iTreg conversion have subsequently high 

numbers of inflammatory Th17 cells (137), an imbalance thought to contribute to renal 

pathogenesis. We propose that the inflammatory signals that drive lineage imbalance and 

disease do so through an effect on CDK2 or p27kip1 expression. More experiments must be 

performed to fully understand the regulation of the CDK2-p27kip1 axis in the context of the iTreg-

Th17 paradigm.

  How is the CDK2-p27kip1 axis regulated in vivo during an inflammatory response? A 

biologically relevant example to answer this question is the CD103+ dendritic cell (DC). CD103 

expression on a DC is induced by TGFβ and IL-2 signals (138). It can also be induced and 

maintained by signaling from CCR9 (139). CCR9 is critical  for DC homing in the gut and 

interaction with the lamina propria (140), which primes DC to be “non inflammatory” (141) through 

a mechanism that is poorly understood. CD103+ DC induce expression of Foxp3 in conventional 

T cells through production TGFβ and rentinoic acid (RA) (142) driving tolerance during 

inflammatory bowel disease (IBD) (143, 144). Contrarily, CD103-negative DC home to the 

mesenteric  lymph nodes and produce large amounts of inflammatory cytokines including IL-6, 

which destabilizes resident iTreg (142). Thus, the balance of immunity and tolerance in IBD can 

depend on the presence or absence of CD103+DC. We propose that the cytokine production of 

each of these two DC subsets not only induces the gene programs of iTreg or Th17, but also 

regulates the stability of Foxp3, and thereby the balance of immunity and tolerance (Fig. 17).

A broader view of CDK activity and regulation in T cells

 Foxp3 is not the only protein regulated by CDKs in T cells. Numerous other proteins 

critical for T  cell function are known CDK substrates, many of them transcription factors. CDK2 

and CDK4 regulate Smad3 antiproliferative function (58). The effect of phosphorylation at these 

motifs is transcriptional, as Smad3-/- cells as well as mutant Smad3 protein lacking the three 

CDK putative motifs both had an increased ability to induce the cell  cycle inhibitor p15 and 
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consequently to arrest proliferation. CDK8 controls STAT1-dependent cytokine production by 

phosphorylation S727 of the STAT transcriptional activation domain (145), which was required for 

DNA binding to the IFNγ promoter and activation of that gene. CDK5 is involved in T  cell 

activation and migration (3). CDK5 phosphorylates coronin1a at threonine 418, driving normal 

actin polymerization and migration towards CCL-19, allowing efficient T  cell  activation. Finally, 

CDK6 is required for Notch-dependent proliferation and differentiation, as well as Akt-driven 

tumorigenesis (146). These effects are dependent the kinase domain of CDK6 (147), but no 

substrates have been named to explain the mechanism. However, no CDK6 substrates have yet 

been named to explain the exact mechanism. These data demonstrate how the CDK family can 

regulate critical  signaling pathways using kinase-dependent mechanisms. However, it remains 

unclear if CDK modification has any affect on protein stability in these examples, as we show with 

Foxp3. In addition, many other important T  cell  transcription factors contain CDK motifs including 

Tbet, GATA3, RORgt, STAT3, Runx1, Ikaros, DNMT3a, c-Jun, c-Fos, NFAT1, NFAT2. We believe 

that CDK activity could be part of a critical regulatory network controlling T cell  function, lineage 

specification and stability.

Inhibiting the CDK pathway for clinical benefits

 A wide range of important roles for CDKs in T cell biology, including proliferation, effector 

function, and tolerance have been published including our work presented in the chapters of this 

Thesis. Modulating CDK activity could be a good way to affect the balance between immunity and 

tolerance in T  cells. A number of drugs now exist that specifically target the CDK family, or certain 

members of that family. Roscovitine is a pharmacologic inhibitor that targets CDK2, CDK7, and 

CDK9 (95), and at higher doses can affect the entire CDK family. This drug is in clinical trials to 

treat cancer (96), and was shown to ameliorate graft-versus-host disease in mice (97). 

Interestingly, roscovitine can also redirect Th17 cells to the iTreg lineage by reinforcing Foxp3 

expression (148).

 A potential problem with roscovitine is that it can block global transcription by restricting 

CDK7 and CDK9 activity (149), which are involved in RNA polymerase II phosphorylation (150), 

and required for transcriptional  complex formation and elongation (151). While roscovitine does 
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not completely block transcription (152) it does causes complex changes in mRNA levels (153), 

which could prove problematic during clinical trials. 

 High sequence homology in the active site of all  CDKs explains why roscovitine cannot 

distinguish between cell cycle and transcriptional CDKs (149). However, there have been 

successful attempts to generate inhibitors with selectivity for certain CDKs. Purine bioisosteres of 

roscovitine can enhance the desired biological  or physical properties of roscovitine without 

making significant changes to its chemical structure, and thus its efficacy (154). For example, 

olomoucine II is a roscovitine analog that contains an additional hydroxyl modification resulting in 

a tenfold increase in CDK9 inhibition without any differential affects on other CDKs (155). The 

roscovitine bioisostere pyrazolo has good anti-proliferative properties and bound more specifically 

to CDK2 (156). Recent research also identified bioisosteres even more potent than roscovitine 

such as CVT313, H717, and purvalanols (157).

 There are many current CDK inhibitors in clinical  trials showing varied degrees of 

success (158). The data we present in this Thesis suggests that these inhibitors may have 

additional  effects on protein stability and Treg function that were not previously appreciated. 

Additional  development of roscovitine analogs and integration into clinical  trials may therefore be 

highly relevant in the treatment of autoimmunity or during transplantation.
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Figures

Figure 14

FIGURE 14. The ability of Treg to suppress conventional T cells depends on expression of 

p27kip1. Rag1-/- mice were injected i.v. with 1 x 106 conventional CD4+25- T lymphocytes from 

wild type and p27kip1-/- mice to induce colitis. Simultaneously, groups of mice were injected i.v. 

with 1 x 106 wild type CD4+25+ nTreg to prevent disease, or were left untreated. A, Mice were 

weighed every 2-3 days until day 60 post injection. B, Gross pathological analysis of sacrificed 

mice was performed and scored as described previously. Each group contained 4-5 mice. 
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Figure 15

FIGURE 15. CDK2 phosphorylation of Foxp3 affects stability and function. CDK2 is induced in 

response to IL-2 and costimulatory signals. Together with cyclin E, CDK2 phosphorylates Foxp3, 

destabilizing the protein, leading to proteasomal degradation or possible changes in localization 

(A). The changes of steady-state Foxp3 levels in response to phosphorylation affect the ability of 

Foxp3 to induce and repress target genes (B), and suppress the proliferation of conventional T 

cells (C).
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Figure 16

FIGURE 16. Multiple signals target p27kip1 in T  cells. Foxp3 and the CDK2 inhibitor p27kip1 are 

induced by TGFβ signaling (A). Our data suggest p27kip1 is required to oppose CDK2 activity and 

stabilize the Foxp3 protein and ensure a more stable iTreg genetic program. IL-6 is a cytokine 

signal known to oppose the expression of Foxp3, causing dedifferentiation of iTreg and 

supporting the development of Th17 cells. It is unclear how IL-6 affects p27kip1 in T cells. It is 

possible that p27kip1 is a switch controlling Foxp3 stability and lineage plasticity (B).
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Figure 17
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FIGURE 17. Regulation of the CDK2-p27kip1 axis affects the balance of immunity and tolerance. 

A, CD103+ dendritic  cells (DC) are primed to be tolerogenic in the gut by epithelial cells of the 

colonic lamina propria expressing CCR9, or by T cells making IL-2 and TGFβ. The CD103+ DC 

then home to the mesenteric lymph node (MLN) and drive iTreg conversion. CD103- DC remain 

inflammatory, travel to the MLN where they support an inflammatory situation driven by Th17 

cells. B, CD103-dependent DC regulation of Th17-iTreg plasticity is a physiological  example of 

how the CDK2-p27kip1 axis could be engaged by cytokine signaling in vivo. Additional regulation 

of CDK2-p27kip1 expression could be achieved through expression of factors like RAPL and 

Skp2.
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