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ABSTRACT

SHORTEST GEOMETRIC PATHS ANALYSIS IN STRUCTURAL BIOLOGY

Ryan G. Coleman

Kim A. Sharp

The surface of a macromolecule, such as a protein, represents the contact point of

any interaction that molecule has with solvent, ions, small molecules or other

macromolecules. Analyzing the surface of macromolecules has a rich history but

analyzing the distances from this surface to other surfaces or volumes has not been

extensively explored. Many important questions can be answered quantitatively

through these analyses. These include: what is the depth of a pocket or groove on

the surface? what is the overall depth of the protein? how deeply are atoms buried

from the surface? where are the tunnels in a protein? where are the pockets and

what are their shapes? A single algorithm to solve one graph problem, namely

Dijkstra’s shortest paths algorithm, forms the basis for algorithms to answer these

many questions. Many distances can be measured, for instance the distance from the

convex hull to the molecular surface while avoiding the interior of the surface is

defined as Travel Depth. Alternatively, the distance from the surface to every atom

can be measured, giving a measure of the Burial Depth of given residues. Measuring

the minimum distance to the protein surface for all points in solvent, combined with
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topological guidance, allows tunnels to be located. Analyzing the surface from the

deepest Travel Depth upwards allows pockets to be catalogued over the entire

protein surface for additional shape analysis. Ligand binding sites in proteins are

significantly deep, though this does not affect the binding affinity. Hyperthermostable

proteins have a less deep surface but bury atoms more deeply, forming more

spherical shapes than their mesophilic counterparts. Tunnels through proteins can be

identified, for the first time tunnels that are winding or bifurcated can be analyzed.

Pockets can be found all over the protein surface and these pockets can be tracked

through time series, mutational series, or over protein families. All of these results

are new and for the first time provide quantitative and statistical verification of some

previous hypotheses about protein shape.
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Chapter 1

Introduction

The amazing property of macromolecules, especially proteins, is that they form

precise three dimensional structures by folding. These three dimensional structures

are the active forms which perform all the necessary biochemistry to maintain life in

all forms. These structures have a specific shape, which along with other properties

like charge determine the specific activity and function of each protein. This thesis

examines new methods of analyzing the shape of these macromolecules and the

results obtained from such methods.

Atomic Radii and Macromolecular Surfaces

There is a rich history of treating atoms as spheres and constructing surface models

that model the solute/solvent boundary in structural biology. The van der Waals

radius of an atom is a model that allows the size of atoms or molecules to be

understood in terms of spheres that cannot overlap due to steric constraints. The

intermolecular force that leads to this radius was postulated by Johannes Diderik van

der Waals when he developed a model that showed liquids and gases could be made

of the same matter, given that molecules existed and they had this finite size and

some attraction to each other 1; 2. For all work done in this thesis, the radii of the

atoms involved (mainly the heavy atoms in biological molecules: carbon, nitrogen,

oxygen, phosphorus and sulfur) were those previously shown to give good liquid and
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gas kinetic properties and  critical densities and packing among other desirable

properties 3.

The van der Waals radii are used to represent a macromolecule as a set of

overlapping spheres in their specific position determined by how the macromolecule

is folded. By choosing a probe to represent solvent, commonly sized between 1.2Å

and 1.8Å, a surface can be constructed that represents the boundary between solute

and solvent. The surface can be constructed from the center of the probe sphere, as

it moves as close as possible to the macromolecule (the solvent accessible surface),

or it can be constructed from the front of probe sphere (the molecular surface). An

early review on the subject of these surfaces and the areas and volumes is by

Richards 4. Many other advances in surface generation and analysis have been

forthcoming5; 6; 7; 8; 9; 10; 11; 12.  As the probe radius varies, the position of normal

protein atoms leads to a fractal surface 13. Using these surfaces to analyze protein-

water interactions has been reviewed by Levitt and Park 14 and Raschke 15. Overall,

any new analysis must be automated and fast to analyze the genomic scale data now

present in the Protein Data Bank 16.

Many analyses have been done on various aspects of these surfaces, particularly

examining the exposed surface area of the atoms. However, relatively little work has

been done with methods relying on distances from these surfaces to other surfaces

or features. This is likely due to the complicated nature of the molecular surface, it is

like no other surface in nature as there are no straight lines, no flat shapes, and due

in part to the fractal nature. Though some work has been done on measuring the

distance of each atom to the surface (or to a surface atom) 17; 18; 19; 20; 21; 22, very
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little other work has been done owing to the complicated algorithmic nature of the

problem. The distance of each atom to the surface is the simplest to implement, as

there are no disallowed regions and it can be computed trivially by comparing the

distance of each atom center to all surface atoms.

In this thesis, various different distances from and to this molecular surface are

computed, using a grid representation and Dijkstra’s shortest paths algorithm 23 to

approximate the distances. This allows computation of the distance of the molecular

surface from the convex hull while avoiding the molecular interior, a useful

construction that allows computation of what is called Travel Depth throughout this

work. This allows for the first time the depth of pockets on the protein surface to be

computed. Also, the distance of each atom from the molecular surface can be

computed within this framework. Finally, the distance from the molecular surface

into solvent can be computed, leaving ridges of maximal distance in the solvent that

can be exploited along with topological guidance to find tunnels all the way through

these surfaces.

In the rest of this introduction, some background on the computational geometry

and graph theory techniques used is given, followed by some background on the

various application areas to be examined along with a brief preview of the methods

and results.
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Computational Geometry and Graph Theory

The exact methods of constructing surfaces used for this work uses one of two

methods, either a gaussian approximation method designed to mimic the reentrant

molecular surface24 or a variation of the inkblot algorithm that colors grid points

within the van der Waals plus probe radius and then erases those within the probe

radius of the surface to model the reentrant probe surface.  Both methods use a grid

spaced at a resolution, typically 1Å, and produce a fully triangulated surface,

something which not all methods do. The various algorithms present here work on

these triangulated surfaces and their underlying grids, however the algorithms could

be modified to run on any triangulated surface by imposing a grid or other structure

to represent the volume.

In several algorithms used here, the convex hull surface of this molecular surface is

also calculated. In three dimensions, the Qhull code, which is algorithmically optimal

and also very fast in practice, 25 was used. The convex hull is the smallest surface

with no invaginations or dimples that encloses the underlying surface or point set. In

two dimensions it can be visualized by wrapping a rubberband around a set of

points, in three dimensions the surface is that of a rubber ball stretched around

points 26; 27.

From here, the general outline of the algorithms is to set a surface or set of points as

the initiator, where all distances are set to zero. The next step is to set the allowed

regions where the distance can propagate and the edges in the geometric graph that

are traversable. Finally, an ending set of points or surface can be selected, however
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this is unnecessary. From here, the algorithm proceeds to compute the shortest

paths from the initiation set to all other allowed points 23. This is accomplished by

using one data structure that holds the list of unseen points and another that is the

tree of connections already made. The exact nature of these data structures changes

the computational complexity of the algorithm but does not affect the results, for

review see relevant chapters of the text of Cormen et al 28. By keeping track of the

closest points not yet seen and adding the closest point, the algorithm runs until all

points have been seen or the termination surface has been reached. Since this

problem has optimal subproblems, that is the shortest distance from A to C that

passes through B is the shortest distance from A to B added to the distance from B

to C, this algorithm can be completed quickly in terms of computational complexity

as well as real computer time. This algorithm is referred to as multiple source

shortest paths, Dijkstra’s shortest paths or just shortest paths.

Note that the general problem of computing shortest paths in three dimensions with

obstacles has been shown to be NP-hard 29, in other words it is likely that no

polynomial time solution exists as it would mean polynomial time solutions exist to

many other common problems thought to be exponential. However, as the

construction of this proof involves creating obstacles of very fine complexity, we

avoid this lower bound since proteins, while fractal in nature, have obstacles of a

finite nature, the lower limit of size is that of the atomic radii involved.
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Surface Depth

Many features of macromolecules are often referred to as deep or shallow. Grooves

in DNA are often referred to as deeper or shallower and qualitative depths were

assigned to the various canonical forms 30; 31 32. No quantitative measure of this

depth existed. Also, many binding sites in enzymes are called deep, or binding sites

of protein-protein interactions are called shallow, again this qualitative description

had little physical meaning and no quantitative method.

Chapter 2 is a description of the algorithm invented to quantitatively measure the

depth of the protein surface including that of pockets, grooves and even tunnels.

Briefly, this involves computing the distance from the convex hull to the

macromolecular surface, while avoiding the molecule interior. This algorithm

measures the depth to all points on the molecular surface and the entire

intermediate volume between the molecular surface and the convex hull. Several

applications are included, for instance examining a large set of protein-ligand co-

crystal structures with experimental binding affinity data 33; 34. Understanding the

structural features of binding sites is important for many reasons. The structural

basis of affinity between a protein and its ligand is a very important problem, since

this could lead to the ability to design tighter binding drugs. Also importantly, the

surface can be visualized, providing excellent graphics that aid in understanding and

viewing complicated three dimensional surfaces in two dimensions. The Travel Depth

computation, as this procedure is named, is completely automated once a molecular

surface has been generated. This chapter is a based on previously published work 35.
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Concurrent with this work on Travel Depth, a procedure to compute distances from a

point of interest to the convex hull was published, called CAVER 36. This procedure is

different in several ways, first it requires the user to input a point of interest from

which the distance to the convex hull is calculated. Second, surfaces are not

explicitly constructed, instead a modified shortest paths algorithm finds the path that

passes as far from the atoms as possible on the way to the convex hull. This

procedure does not compute the distance to all surface and intermediate volume

points, and cannot aid in visualization of the surface by coloring according to depth.

Finally, no genomic scale analysis was completed. Any analysis possible with CAVER

is possible with Travel depth, however the inverse is not true.

Ion Channels and Pores

Ion channels and pores are membrane spanning proteins that allow substrates to

pass from one side of the membrane to the other. The process of membrane

transport is extremely important biologically, and is involved in many processes like

nutrient import or signaling. Though progress in determining their structures is

behind that of soluble proteins, the number of structures is rising at similar rates

now 37; 38, and numbers more than 200.

Finding the holes that allow these substrates to pass presents a challenge

computational task even once the structure is known. Some ions are very small,

smaller than the heavy atoms that make up the proteins themselves. These tunnels

often vary in diameter as they pass through the membrane, for instance they usually

have a narrow region that functions as the selectivity filter that specifically allows
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only one type of ion to pass through. These paths may not follow a straight line,

though the original potassium channel structure does 39.

The previous work on finding and analyzing these holes is called HOLE 40; 41. HOLE

needs a starting point and direction, but proceeds from there by finding the largest

circle that can be placed in each z-slice through the protein in the direction given.

This procedure works well when very small steps are taken and when the starting

point and direction are given correctly. However, it cannot identify paths that take a

winding route and cannot deal with bifurcated paths. Also, it will attempt to identify a

hole in the protein even when none exists, no topological checking is done to ensure

that each path is through a hole.

In Chapter 3, the method called CHUNNEL is presented. The first step in CHUNNEL is

to measure the shortest distance from the protein surface to all solvent points, which

leaves a maximal ridge in three dimensions near the centers of all tunnels. This is

combined with several topological procedures to guide the hole finding procedure

and ensure that each hole is actually a hole and that each hole found is topologically

distinct from all others found. This procedure works for all holes regardless of the

path complexity through the protein and how many branches are encountered. Also,

this procedure is completely automated, given a surface constructed it reports all the

holes in that surface. Many analyses are completed, the most prominent being a

complete catalog of all transmembrane proteins and their holes 42. This chapter has

been published previously 43.
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Concurrent with CHUNNEL, several other methods were published and are discussed

here. MOLE 44 is an extension of CAVER 36, which again computes distances from a

point of interest provided by the user to the convex hull, along a path optimized to

be far from the atoms. Instead of using a grid as before, the new path points are at

Voronoi vertices 45 created from the protein atoms. Again, user input is required and

no topology checking is completed, so paths are not guaranteed to be topologically

distinct. MolAxis is similar in approach in that it uses Voronoi vertices instead of grid

points, but again, user input is required to find the paths and no topological checks

are done on paths found to ensure that they are tunnels46. Neither of these methods

can perform the fully automatic analysis enabled by CHUNNEL, neither are run on

the entire set of transmembrane protein structures for instance, neither find the

complete set of topologically distinct holes.

Using Voronoi vertices created from atom centers is however an interesting

technique. Since a Voronoi edge exists where any three atom centers are

equidistant, an edge will be present throughout the length of any tunnel, connecting

Voronoi vertices of atoms lining the tunnel. This seems possibly superior to using

grid points, as very fine grids may be necessary to find the smallest tunnels of

interest, for instance chloride channels. Combining the Voronoi methods with the

methods to compute the distance from the surface into solvent and topological

checking would likely be the a good combination approach, and is discussed in

Chapter 6 with other future work.
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Thermostability

The structural basis for thermostability of protein structures has been examined from

many perspectives. Proteins from hyperthermophilic organisms maintain their

stability even at temperatures as high as 80 degrees C. Understanding the structural

basis for thermostability is important due to the many applications like protein

design47. Examinations of the differences between these structures and those from

mesophiles have commonly included analyzing the differences in exposed surface

area 48; 49; 50; 51; 52; 53; 54; 55. However, few if any studies have examined the

distribution of residue burial, or distance from the atoms to the molecular surface.

Also, no study had examined the number or depth of pockets, or more generally, the

overall shape differences between hyperthermostable proteins and mesostable

homologues.

Both Burial Depth, the distance of each atom to the molecular surface, and Travel

Depth, the distance of the molecular surface from the convex hull avoiding the

protein interior, were used to analyze a dataset of thermostable and mesostable

pairs of proteins 51. These analyses are presented in Chapter 4, leading to the

conclusion that hyperthermostable proteins are more spherical, in that they have

fewer pockets and fewer deep pockets, and they bury atoms more deeply from the

surface. This work was published previously 56; 57.

Protein Pockets

Pockets, like depth, are an oft-discussed but ill-defined feature of protein surfaces.

Finding potential pockets to evaluate their possibility for ligand binding is just one of
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many applications where a good pocket definition is necessary. The field of functional

site location, similarity between sites and docking ligands into those sites is reviewed

by Campbell et al 58.

In Chapter 5  the CLIPPERS method is introduced. Building on top of the Travel

Depth analysis, CLIPPERS analyzes all pockets on the protein surface, using a very

liberal definiton of pocket, which generates a hierarchy of nested pockets that

completely cover the protein surface. After finding pockets, their shape features are

easily computed, and pockets can then be compared and clustered. Pockets can be

tracked throughout transition pathways with time, across mutations, with different

binding partners, or across diverse families of protein structures. This work will be

published as all other work in this thesis has been59. There are many other pocket

finding methods, reviewed in Chapter 4, however CLIPPERS is the first to completely

cover the protein surface with pockets and also to compare them based on shape

alone, not alignments or by residues.

Summary

By using the shortest paths method on geometric graphs, distances between

surfaces and/or volumes can be easily quantified. These distances, along with other

techniques, allow algorithms that can measure the depth of an entire

macromolecular surface, or the depth of all the atoms within the surface. Also, these

distances form the basis for methods to automatically catalog and measure both

tunnels and pockets in proteins. This thesis presents all these algorithms and
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applications, all made possible through consistent application of the shortest paths

algorithm and additional supplementary algorithms.
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Chapter 2

The bulk of this chapter was previously published 35.

Summary

Depth is a term frequently applied to the shape and surface of macromolecules,

describing for example the grooves in deoxyribonucleic acid (DNA), the shape of an

enzyme active site, or the binding site for a small molecule in a protein. Yet depth is

a difficult property to define rigorously in a macromolecule, and few computational

tools exist to quantify this notion, to visualize it, or analyze the results. We present

our notion of travel depth, simply put the physical distance a solvent molecule would

have to travel from a surface point to a suitably defined reference surface. To define

the reference surface, we use the limiting form of the molecular surface with

increasing probe size: the convex hull. We then present a fast, robust approximation

algorithm to compute travel depth to every surface point. The travel depth is useful

because it works for pockets of any size and complexity. It also works for two

interesting special cases. First, it works on the grooves in DNA, which are unbounded

in one direction. Second, it works on the case of tunnels, that is pockets which have

no 'bottom', but go through the entire macromolecule. Our algorithm makes it

straightforward to quantify discussions of depth when analyzing structures.  High-

throughput analysis of macromolecule depth is also enabled by our algorithm. This is

demonstrated by analyzing a database of protein-small molecule binding pockets,

and the distribution of bound magnesium ions in RNA structures. These analyses



14

show significant, but subtle effects of depth on ligand binding localization and

strength.

Introduction

Depth is a term frequently applied to the shape and surface of macromolecules. For

example, enzyme active sites are routinely described as shallow or deep. Small

ligand binding sites on proteins are also frequently described in term of depth. Depth

is just one facet of the property 'binding pocket shape' one would like to define

quantitatively, to aid for example, in screening a large library of potential ligands, or

in docking of a candidate ligand. Groove depth is one of the fundamental terms used

to describe the differences in structure of the A, B and Z forms of DNA 30; 31; 60. In

spite of the common use of the term depth, it is a surprisingly difficult property to

define rigorously in a macromolecule. Discussions of depth in the literature, although

intuitively reasonable, are usually qualitative. The concept of depth is thus difficult to

subject to rigorous analysis or to extract the most information from.  A large part of

the difficulty in analyzing depth is due to the complexity and range of shapes

adopted by macromolecules. Protein surfaces are fractal in nature 13, adding to the

difficulty.  To illustrate some of the difficulties, consider first the issue of a reference

point or level. In geodesy, mountain peaks and ocean depths are referenced to the

mean sea level, providing a standard reference level (Although not without regional

difficulties: mean sea level either side of the Panamanian isthmus differs

considerably, for example). There is no equivalent to mean sea level in a molecule.

Second, consider the case of deep pockets involving overhangs or that re-approach

the molecule surface at some point away from their origin. Euclidean distance of the
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bottom of the pocket to the nearest surface, while easy to define and compute, will

be a very misleading and grossly underestimating measure of depth. These

difficulties are reflected in the fact that there are few computational tools to quantify

the concept of depth, to visualize it, or analyze the results. To address this problem,

we present here our notion of travel depth, simply put the physical distance a

solvent molecule would have to travel from a surface point to a suitably defined

reference surface. The concept of travel depth was designed to avoid the 'short

circuiting' error described above, and also to solve the problem of a reference level.

We first define the concept of travel depth, and the reference level used by it, then

present a fast, robust approximation algorithm to compute travel depth to every

surface point. Selected examples using very different molecular shapes are used to

demonstrate that our definition of depth works for special cases, and that it conforms

to our intuition, so confirming that we have introduced a 'good' definition for depth

and that our approximate numerical implementation of it is reasonable. We then

describe some applications of our algorithm, including a high throughput application

to a small molecule binding database.

Theory and Methods

Definition of travel depth

Any measure of depth must start with the questions: Depth of what, and from what?

In this work, we are concerned with the depth of any point on the molecule's

surface. Two definitions of surface predominate for macromolecules, the solvent

accessible surface 4, and the molecular surface 7. In both cases a crucial parameter is
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the probe radius, which is almost universally taken to be that of water (usually

values between 1.4Å and 1.8Å are used). Many algorithms exist for computing these

idealized surfaces. Most, but not all, produce a triangulated form of the surface,

primarily for display using standard computer graphic routines 10; 12; 24; 61. Our

algorithm assumes a simple closed triangulated surface. The surface must be

orientable and connected, though these are not strong requirements; The latter

disallows only cavities. For the broadest applicability of our method, we make no

other assumption about how the surface was produced, or what it should look like. In

practice we use the molecular surface as generated by the algorithm in the GRASP

macromolecular graphics program 24 implemented as a stand-alone program 62 using

a probe radius of 1.8Å and standard atomic radii 3. Though we test only this surface

generation scheme and the resulting triangulated surfaces, our definition and

algorithm generalize to any triangulated surface generation scheme.

Our definition of travel depth is that for each point on the molecular surface, the

travel depth is the minimum distance a solvent probe would have to travel through

the solvent from that surface point to get to the reference level. A natural and

parameter independent reference level is provided by the convex hull of the

molecular surface. The convex hull is a standard construct in computational

geometry. In three dimensions, the convex hull is the smallest volume convex

polyhedron that contains all the surface points 25; 26; 27. In terms of molecular

surfaces, the convex hull is equivalent to the molecular surface produced by an

infinite solvent probe radius. Algorithms and code for convex hull computation have

been well studied and are fast and reliable 25; 26; 27.
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The next step is to compute the minimal distance from every surface point to the

convex hull while respecting the boundary of the molecular surface. In other words,

the travel path along which the distance is computed must lie outside the molecular

surface in the solvent. We note that computing such a minimal distance between two

points while avoiding obstacles is exactly the shortest path planning problem

commonly encountered in robotics, and that an exact solution to the problem is NP-

hard. Our solution, described below, is to approximate this minimal distance in such

a way that it was easy to code and run in a short time so that we could establish

what the depth measure would look like on real examples, and whether it would be

useful in structural analysis.   

Calculation of travel depth: Preprocessing

The first step is to remove cavities, defined as completely enclosed solvent pockets

in the molecular surface. The triangles that represent these cavities are removed

from the surface and are not used in later calculations. Since there is no way for the

solvent probe to travel from a closed cavity surface to the convex hull without

passing through the macromolecule itself, travel depth does not apply to these

surfaces. We note, though, that simple Euclidean distance to the nearest part of the

external molecular surface would provide a satisfactory definition of the minimum

depth of a closed cavity.

Two important pre-processing steps are done at this stage. First, the longest edge of

any triangle in the surface is found and the length saved for later. Also, all the points

on the surface are put into an two-dimensional orthogonal range search tree
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structure oriented along one grid axis 26. This helps improve the running time, as

described later, but it is non-essential to the algorithm.

Calculation of travel depth: Mapping onto Grid

The macromolecule and a region of the surrounding solvent are embedded in a cubic

grid of dimensions K x L x M.  For convenience, the grid extends to one grid cube

beyond the minimum and maximum coordinate of the molecular surface in each

orthogonal direction, so that the border is completely outside the surface. The

default grid spacing used in our algorithm is 1Å, however the algorithm and code

generalize to any spacing. The only consideration is for the spacing to be small

enough to approximate well the topology of the given molecular surface. For

instance, when a probe radius P=1.8Å is used, as in our surfaces, the maximum

concavity of any section of the molecular surface is limited to that of the probe

radius. From this, a maximum allowable grid spacing, G, can be calculated from the

formula

! 

G = 2P 3  (2-1)

This grid spacing ensures that any concave depression in the surface is represented

by at least one grid center. Using the same formula with the smallest atom radius

used to construct the molecular surface leads to another bound on the grid spacing

to guarantee that any convex protrusion is represented by at least one grid point.

Again, 1Å is well within this limit for most commonly used radii for heavy atoms (the

smallest such atom commonly found in biomolecules is oxygen, with a radius of
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1.4Å). This assumption ignores problems caused by a very coarse surface, though

this assumption is relaxed and a solution to problems caused by this in our algorithm

are discussed later.

The next step of the algorithm is to find the convex hull of the molecular surface.

There are many O(n log n) algorithms for computing the convex hull in three

dimensions. We use available code from Qhull or Quickhull, an optimized and robust

package 25.

Calculation of travel depth: Classifying Grid Points

After construction of the convex hull each point lying at the center of each grid cube

must be checked to see whether it lies inside or outside the convex hull and inside or

outside the molecular surface. The convex hull can be represented as a list of

outward facing triangles. A sufficient check for being outside the convex hull is to

check the point against each triangle and surface normal to see which side it is on. A

point that is outside any convex hull triangle is outside the entire convex hull. Doing

this check for each point in the grid is sufficient to determine which points are

outside the convex hull and which are inside. Next, points inside the convex hull are

assigned to either the outside or the inside of the molecular surface. This step is the

most time consuming portion of the entire algorithm. The problem is that

determining whether a point is inside or outside a general triangulated surface

requires global information. It is not sufficient to check a point against every surface

triangle. However, an appropriate geometric property can be used to solve this

problem quite efficiently: Any line drawn completely through the molecular surface
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will intersect an even number of triangles. Lines are constructed in one orthogonal

direction of the grid such that they each pass through a set of grid points. Moving

from grid point to grid point along this line from one side of the grid until the first

triangle is met assigns all those points to the outside. Each time a triangle is

encountered, the inside/outside assignment switches. This procedure is continued

until the opposite side of the grid is reached. In this manner, when a complete set of

lines through the grid in one direction have been processed, the correct assignment

has been made for all the points. In practice, since a line of grid points is used in this

step, all their inside or outside checks can be done at once: Each triangle from the

surface can be checked to see if it intersects this line, and to find the point of

intersection if it exists. After this, the previously described procedure can be used to

determine on which side of the surface each point on that line lies.

Naïvely, each triangle could be tested against each line. However, a more efficient

procedure which drastically cuts down the number of intersection checks uses both

of the preprocessing steps mentioned earlier. After picking a dimension along which

the lines will be constructed, the other two dimensions are chosen as the orthogonal

directions to construct a 2 dimensional orthogonal range search tree from all the

surface points. This polynomial time construction allows queries that consist of any

orthogonal, or grid-aligned, rectangle which return all the points in that area 26. This

is used in conjunction with the precomputed longest edge length, to quickly find all

triangles that possibly intersect the line of interest, by querying the square centered

around the line's axis plus and minus the longest edge length. Only triangles that

have all three points in this square possibly intersect the line of interest, and this



21

Figure 2-1 Travel Depth 2D example

Two schematic two-dimensional examples of the Travel Depth Algorithm. Left: an

example of a piece of a macromolecule, the grid superimposed on it, and class

assignments made: outside convex hull (class O), inside the molecular surface but

containing at least one molecular surface point (class S), inside molecular surface

and not containing any molecular surface points (class I), and between the convex

hull and molecular surface (class B). Right: the travel depths assigned to each grid

square, note the diagonal paths lead to non-integer travel depths.
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test quickly reduces the number of triangle intersection checks that must be done.

Though these checks each take constant time, they can be very slow, as they involve

evaluating several matrix determinants. To unambiguously determine inside and

outside, our algorithm assumes that these lines will not intersect a triangle across its

face, or through a single vertex. These special cases, if they occur, are easy to

detect and the points can be slightly perturbed until the ambiguity no longer occur.

At this point each grid cube has been classified into one of four categories based on

the location of its center and whether it contains any molecular surface points. Either

outside the convex hull (class O), between the convex hull and molecular surface

(class B), inside the molecular surface but containing a molecular surface point (class

S) or finally inside the molecular surface but containing no molecular surface points

(class I). A small example is shown in the left panel of Figure 2-1. Class I cubes are

ignored in the rest of this work, as no depth needs to be calculated for them.

Calculation of travel depth: Assignment of Travel Depth to Grid Points

It remains to approximate the minimum distance that a probe sphere would need to

travel to get from each surface point to the convex hull. This travel depth is assigned

to class B and S points recursively, as follows. All grid cubes of class O are assigned

a travel depth of zero. All cubes of class B and S are initially assigned an unreachably

large value, e.g. KxLxM, indicating that no depth has yet been determined for those

cubes. For each grid cube i of class B or class S, its travel depth di is set to the sum

of the travel depth of its neighboring grid cube, dj, plus the distance to that

neighboring cube, dist(i,j) (vide infra). If the cube has more than one neighbor with
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assigned depth, which is usually the case, the neighbor that results in the minimum

depth di is chosen.  Symbolically.

! 

di =
j

min(d j + dist(i, j))  (2-2)

where j ranges over all neighbors of i. This procedure is repeated until no new depth

assignments are made.

A key requirement to correctly propagate depth with respect to the topology of the

molecular surface is the appropriate definition of neighboring cubes in equation 2-2.

For a class O or B cube, any of the 26 immediately adjacent cubes of class O, B or S

are considered neighbors. Additionally molecular surface edges which have an

endpoint in a class O or B cube and another endpoint in a class O, B, or S cube make

those two cubes neighbors. For class S grid cubes, any adjacent cube of class O or B

is a neighbor. However, for a class S cube only class S grid cubes that are connected

to it by a molecular surface edge are considered neighbors, even if the two S class

cubes are adjacent. There may be adjacent class S grid cubes that do not have a

molecular surface edge between them, for example when two distant parts of the

molecular surface approach each other very closely without meeting. It is important

not to propagate the travel depth across this gap.

The neighbor distances in equation 2-2 are defined as follows: Each grid cube has 6

adjacent cubes that share one face, 12 adjacent cubes that share only an edge and 8

adjacent cubes that share only a vertex. The distances to these three types of

adjacent cube are the Euclidean distances between cube centers, 1, !2, and !3 grid
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units respectively. Additionally, cubes of class S can have additional neighbors

defined by edges of the molecular surface which have endpoints in the two grid

cubes, i and j. Their distance is also the Euclidean distance between the grid cube

centers.

Starting from the class O grid cubes with depth 0, the neighboring grid cubes are

assigned a depth according to equation 2-2, then the neighbors of the neighbors are

assigned and so on. In this way the depth propagates in towards the molecular

surface, and into the class S cubes, but it does not propagate through the

macromolecule since the depth assignment is not propagated into class I cubes. This

is illustrated in the right panel of Figure 2-1. After the assignment phase terminates,

the depth is converted from grid units into a physical distance by multiplying by the

grid spacing. This results in a calculation of the shortest paths from the class O cubes

to all class B and class S cubes, given the neighbor and distance definitions above.

The depth assignment phase of the algorithm is speeded up by using Dijkstra’s

algorithm for shortest paths on a graph 28 and using available code that implements

a key component of that algorithm, a priority heap. Dijkstra’s algorithm keeps track

of the vertices in the graph (grid cubes) which have already been assigned a travel

depth, and the shortest path from these assigned grid cubes to the rest of the grid

cubes. The priority heap keeps track of the unassigned grid cubes that can be

assigned a travel depth, and efficiently updates and finds the current shortest travel

depth grid cube that has yet to be processed. In practice, we use a priority heap that

has reasonable amortized performance and was compatible with the rest of our code

63
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At this stage, all that remains is to assign each surface point a depth based on the

grid cube it is located in, resulting in a computed travel depth for each point on the

surface. The travel depth is also computed for all the grid cubes B between the

molecular surface and the convex hull as well as the grid cubes I that contain surface

points. Although the travel depth assignment of points between the convex hull and

the molecular surface is not used in the applications of travel depth described here, it

is a property that may prove useful in future applications like docking.

Presentation of results

To visualize the results of our algorithm we used the macromolecular graphics

package PyMOL 64. The triangulated molecular surface can easily be read into this

program, along with travel depth values, and a red-green-blue color gradient

assigned to each point of the surface based on travel depth. Red represents a travel

depth of zero, with increasing depth indicated as the color changes from green to

blue. The depth represented by blue is set either to the maximum value for that

molecule, or to a fixed value to compare of a set of molecules. Color values at each

point along each edge and triangle are interpolated using the standard approach to

produce a smooth visualization of depth 64; 65. Further refinements, such as

displaying only surface in a certain range of depth may be useful for particular

applications, and are straightforward with our algorithm.

Robustness, errors and timing analysis

Depending on the size of the macromolecule and the resolution at which the

molecular surface is generated, the input surface to the travel depth algorithm might
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be quite coarse. In this case regions of the surface may not conform well to the

estimates of maximum concavity. This may result in small crevices or tunnels which

violate the maximum concavity assumption. These errors are accounted for by the

molecular surface edges that define grid cube adjacencies. The only level of

coarseness that may cause a problem is where two parts of the surface approach

each other very closely, less than the grid spacing. In these cases, the travel depth

would propagate between these surfaces when it should not. However, to violate this

assumption requires a violation of the maximum convexity assumption, which

corresponds to a severe underestimation of the size of an atom or adjacent atoms

forming such a barrier.

There are two sources of error in our approximation algorithm, each of which can be

reduced at the cost of increasing the running time of the algorithm.  The first source

of error comes from the grid orientation.  The approximate distance can be

overestimated if a significant part of the path traveled is diagonal with respect to the

grid axes. The worst case is when the actual distance should be down two grid units

and over one grid unit in both other directions, the path length here is !6, while the

approximation given is 1 grid unit down and then one diagonal step of length !3.

This type of error leads to an error factor at most (1+!3)/(!6), or roughly 1.11 times

the actual shortest path length. Rotating the grid axes and re-running the algorithm

and taking the minimum computed in either orientation would reduce this error,

although we found that for the applications described here it has not been necessary.
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The second source of error lies in the discretization of the distance, again from the

use of the grid cubes to approximate the distance.  Using smaller grid cubes, at a

cost of increasing the running time, can reduce this error.  In practice, there is little

reason to get an extremely accurate measure of this distance, as there are already

sources of uncertainty regarding the travel depth property, and indeed in the

molecular surface construct itself. It would be hard to argue that differences of some

small travel depth distance like 1Å had any real physical meaning.

Our algorithm has both a reasonable asymptotic running time when the complexity is

analyzed, and a reasonable running time in practice. Also, following the philosophy of

keeping the code as simple as possible, time spent coding and debugging was

minimized, available pieces of code like PyMOL 64 and a priority heap 63 were used

when possible.

We have highlighted the practical runtime issues throughout the description of the

algorithm. The algorithm also has a reasonable running time when analyzed

asymptotically 28. Without the orthogonal range search tree speedup mentioned, the

running time is

(2-3)

where p is the number of points on the molecular surface, c is the number of

triangles on the convex hull, t is the number of triangles on the molecular surface, d

is the number of grid cubes in any dimension, and e is the number of edges, which is

! 

O plog p + cd 3 + (t + d)d2 + (d3 + e)logd3( )
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linear in terms of t and d3. The first term in equation 2-3 comes from the convex hull

construction, the second term from the checks for each grid cube to see if it is inside

or outside the convex hull. The third term comes from the checks to see if each grid

cube is inside or outside the molecular surface. The fourth term is the cost of the

propagation step using the shortest path algorithm and amortized time cost priority

heap.

With the orthogonal range search tree speedup in place, there are two additional

components to consider, the O(t) steps to find the longest triangle edge, the O(t log

t) steps to build the orthogonal range search tree (faster algorithms exist, but are

harder to code 26). The O((t+d)d2) term to check each grid cube becomes O((log2(t)

+ k + d)d2) step to do a range search query and then k checks must be done, where

k is the number of triangles returned from the range search. Also, it should be noted

as was later revealed by our timing analysis that the orthogonal range search idea

should probably be applied to the inside/outside convex hull routine, changing the

O(cd3) time into O(c log c + ((log2(c) + d)d2)) as the time for the convex hull checks

now outweighs the time for the molecular surface checks as we have it implemented.

At the heart of this analysis is the fact that if we halve the grid spacing used, our

algorithm gets worse by a factor of 8, since there are twice as many grid cubes in

each dimension. This is one reason grid distances smaller than 1 Å are never

considered. Though they could be calculated they are impractical. Fortunately this

analysis shows us that the overall speed of the slowest steps in practice, that is

checking whether each grid cube is inside or outside the various surfaces, can be

made to grow only with the squared logarithm of the number of triangles, plus the
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factor k  representing how many triangles are returned from an average range

query. Though an initial penalty must be paid, this provides an overall faster

approach as the number of triangles increases. This allows us to use very fine

triangulated surfaces and still maintain reasonable runtimes, or use very coarse

triangulated surfaces to get good exploratory results.

To give some estimate of the processing time involved, we provide the following

timing analysis, conducted using one processor of a dual processor machine (Intel

2.4 GHz chip, 4797 BogoMIPS, 1 gigabyte RAM) running RedHat Linux 9.0. Different

parts of the algorithm were timed separately. Two test PDB files were used, s a

representative small protein, cyclic bovine pancreatic trypsin inhibitor, PDB code

1K6U. To represent larger more complicated proteins, the 6 chain biological unit of

pertussis toxin was used, taken from PDB code 1PRT. For these two samples we

constructed molecular surfaces of varying fineness, the number of triangles in each

is reported, along with times in seconds for each of the three main phases of our

algorithm. All these results are shown in Table 2-1. It should be noted that while the

orthogonal range search tree speedup was in place for the molecular surface, it was

not in place for the convex hull code here.

We note that during even the largest test case examined, only about 200 megabytes

of available memory were in use, suggesting that memory usage is not a limiting

factor in our algorithm, even though no formal asymptotic space analysis was

conducted. The runtime for the large example at fine granularity represents an

extreme case, one which would typically only be undertaken for a figure. The
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Table 2-1 Timing analysis of travel depth code

PDB Code 1K6U 1PRT

Level of Detail coarse medium fine coarse medium fine

Number of Triangles 3644 8148 30896 5940 13780 57836

Inside/outside

Convex Hull (s) 14 21 53 14 241 443

Inside/outside

Molecular Surface (s) 4 5 12 5 48 153

Depth Assignment(s) 9 10 15 9 126 149

Total Time (min) 1 1 2 1 7 13
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statistical analyses were done at a more medium granularity setting, which proved

sufficient.

Results

The first tests of the travel depth algorithm were designed to see if the definition

conformed to one’s qualitative intuition about depth in macromolecules. In other

words, is the definition of travel depth reasonable and useful? We used a variety of

structures that had qualitatively different surface topographies. The first is duplex

DNA, to which the term groove depth is commonly applied.  We evaluated the depth

of the major and minor grooves in A, B and Z canonical forms of DNA. 15 base pairs

of A-T were generated with the routine NUCGEN  66 in canonical A form, crystal

structures 1BNA67 and 3ZNA 32; 68 were used for the B and Z forms respectively. It

should be noted the structure 3ZNA was constructed by duplicating base pairs

present in the crystal to achieve the length shown, and is therefore considered a

theoretical model in the PDB. Our travel depth algorithm gives intuitively reasonable

results, shown in Figure 2-2. All surfaces are colored from red (travel depth 0 Å) to

green (travel depth 7 Å), then finally to blue (travel depth 14 Å). It is clear that the

major and minor grooves of the B-form are nearly the same depth, whereas the

major groove of the A-form is much deeper than the minor groove of A-form or

either groove of the B-form. Also, what would usually be the minor groove has

turned into a very deep groove in the Z-form, and the major groove has almost no

depth. We summarize these results quantitatively in Table 2-2. This is in good

agreement with the standard description of these grooves 30; 31; 60. Specifically, “in A-

DNA the helix axis passes by the major groove side of each base pair, making that
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Figure 2-2 Travel Depth of DNA

Travel Depth coded molecular surface of the three canonical forms of DNA, from left

to right, A, B, and Z. All surfaces are colored from red (travel depth 0Å) to green

(travel depth 7 Å), then finally to blue (travel depth 14 Å) as indicated by the color

bar legend.
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Table 2-2 Travel Depths of Selected Macromolecular Featuresa

Major Groove

Max Depth

Minor

Groove Max

Depth

Major

Groove

Average

Depth

Minor Groove

Average Depth

A-DNA 13.7 5.0 8.6 3.6

B-DNA 10.0 9.1 4.6 5.6

Z-DNA 4.2 10.8 2.0 6.5

Binding Site

Average Depth

Binding Site

Max Depth

Tunnel

Depth at

Center

Ring Around

Tunnel Depth

Tunnel (1A0Q) 10.6 18.0 23.0 18.0

Horseradish Peroxidase

(1ATJ) 18.8 24.0

Streptavidin-Biotin

(1MK5) 8.5 10.0

aDepths in Ångstroms.
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Figure 2-3 Travel Depth of Streptavidin

An example binding pocket color coded by travel depth.  This example is PDB code

1MK5, a biotin/streptavidin complex, the biotin binding site has a maximum travel

depth of 10Å. Additionally, the edges of the convex hull are shown.
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groove very deep, the minor groove shallow…” 30. Also, B-DNA is described: “This

means that major and minor grooves are of comparable depth…” 30. Finally, Z-DNA is

described: “With the helix axis passing down the minor groove, that groove is

extremely deep, whereas the major-groove edge of each base pair is pushed out to

the perimeter of the helix, giving the groove zero depth” 30.

To further illustrate that our algorithm is intuitively correct, we show three other

examples. First, a simple well-known pocket was analyzed, that of streptavidin

bound to biotin (PDB code 1MK5). The result is shown in Figure 2-3. This clearly

illustrates that travel depth can quantitate a pocket near the surface. Next, a tunnel

is shown in Figure 2-4 from the FAB fragment (PDB code 1A0Q 69). The travel depth

algorithm works well in this case. Despite the fact the tunnel has no bottom the

middle of the tunnel is correctly identified as the deepest point. Also, the tunnel in

Figure 2-4 is additionally characterized by the maximum distance for which a solid

connected ring of surface points exists all the way around the tunnel, which is 18 Å.

Finally, horseradish peroxidase (PDB code 1ATJ) is shown, which has a very deep

active site. Figure 2-5 shows the result, which illustrates a case where a purely

Euclidean distance algorithm would fail, as the deepest part of the pocket is closer to

the other side of the protein than the one the substrate must enter from. A summary

of various features on these previous six examples is shown in Table 2-2.

As an example of a high throughput data base application of the travel depth

algorithm, we examined the small molecule binding structural database PDBbind 33;

34. All 900 structures were used from the 2003 refined set 34. The proteins each bind

a single small molecule ligand, and have binding data associated with the complex,
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Figure 2-4 Travel Depth on a Tunnel

(Preceeding Page) An example tunnel color coded by travel depth.  This is a FAB

fragment from PDB code 1A0Q. The top view looks down on the tunnel, the bottom

view is a side view that has been cutaway through the tunnel.

Figure 2-5 Travel Depth on a Deep Pocket

(Following Page) An example deep pocket color coded by travel depth. Two views of

horseradish peroxidase, taken from PDB code 1ATJ. The bottom view is a cutaway

showing one view of the pocket with a maximum depth near the ligand of 24 Å . A

straight line Euclidean metric from the deepest point of this pocket would travel

through the protein to the wrong side.
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as well as separate files for protein and ligand. Binding data for this set is from either

the dissociation constant ( –log Kd) or competitive inhibitor concentration (- log Ki),

both referred to here for brevity as –log K. This database was chosen over other

available options because the structures and binding data had been hand checked

and gathered from original sources, and the structure files were easily accessible,

downloadable in modified, in clean form within one archive file. This allowed us to

perform the analysis with only minor conversion of data formats, and no further

editing or checking of input files. We note that 13 of these structures had ligands

completely enclosed in cavities, inaccessible to solvent, and therefore only 887

structures were used whenever the ligand site was analyzed.  The protein atom

coordinates were used to construct the molecular surface at a medium setting of

surface coarseness. We assume that sampling the travel depth at these surface

points gives us an accurate and representative picture of the depth of the protein, or

of a ligand binding site for instance. Under this assumption, averaging the travel

depth across the surface points is an acceptable way to measure the overall travel

depth of a protein, as is done later.

To test the hypothesis that ligands are in deeper pockets rather than shallower

pockets, the protein surface points were divided into two classes, those near ligand

atoms representing the binding site, and the rest. For each atom in the ligand, the

single nearest surface point was found and included in the binding site if it was

within an arbitrary threshold of 4Å. This method gave a simple way of partitioning

the surface into the binding site and the rest of the surface, erring on the side of

including too few surface points in the binding site.  The results are shown in Figure
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Figure 2-6 Travel Depths of Protein Surface and Binding Site

Average travel depth of entire protein surface plotted against average travel depth of

just the binding site, db for each structure in the PDBbind dataset. The y=x line is

shown on the figure.
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2-6.  In the figure, for each protein the average depth of the binding site surface, db,

is plotted against the average depth of non-binding site surface, dn. The vast

majority of the points lie above the x=y line indicated on the figure, demonstrating

that the binding site is almost always a pocket, as expected.

Next, the distribution of depths of ligand binding sites was compared to the

distribution of the overall surfaces, across the entire 887 complexes. For comparison,

a small control dataset with proteins not known to bind any ligands was analyzed as

well 70. We note that 1TGF was left out of the control dataset since it is no longer in

the PDB. We removed the waters, ions and buffers found in these control structures

for the analysis. The histograms showing the depths of the surface points in each

category over the entire dataset are shown in Figure 2-7. The since the number of

surface points in each set is so different, the data has been normalized so that the

area under each curve is equal. The figure shows there is a clear but not complete

preference for deeper points to be near a ligand binding site. Interestingly, the width

of the histogram for proteins that bind a ligand is greater than that for the control,

'non-binding' proteins. This indicates that binding proteins tend to have a rougher, or

more corrugated surface. This raises the possibility that some proteins are

intrinsically more ‘bindable’ than others due to the kind of surface topography they

have.

Finally, to calculate the statistical significance that the ligands had some bias to be

near deeper surface points, a permutation p-value test was conducted.  For each

protein, the complete set of surface points was assembled, including both the ligand

binding site and the rest of the surface. From this set, a random selection of points
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Figure 2-7 Travel Depth Histogram

A histogram comparing travel depths of different structure subsets: A control set

with no known ligands, the PDBbind set, and just the binding pockets of  the

PDBbind set. The control and binding pocket curves have been normalized so the

area under each curve equals that of the PDBbind set.
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equal in number to those in the ligand binding site was taken, and the average depth

found.  This random selection was repeated five million times. The p-value is  the

number of times this selection had greater than the average depth of the true ligand

binding site db divided by the number of random sets. With five million random

permutations, the lower bound on the possible p-value is 2x10-7.  This test gives a

good measure of whether the ligand bound to each protein is bound in a deep pocket

more often that random. A more complete estimate would use all the potential ligand

binding sites on the surface, and calculate the average depth for each. However,

generating all the possible ligand binding sites is a rather complicated problem, one

which is usually solved by only sampling some of the possible binding sites 71; 72.

The complete results of the permutation tests on the PDBbind dataset are given as

Table A-1, along with the average depth of the binding site. To summarize the

results, 13 of 900 structures contained ligands that were completely enclosed in

cavities, inaccessible to the outside solvent. Excluding those in cavities, 48 of 887

structures had a p-value greater than 0.05, so the remaining 839 structures had

ligands which were in significantly deep pockets under this criteria. Under the

strictest requirement tested, that of having a p-value less than 2x10-7, 688 of 887

structures had ligands buried in these significantly deep pockets.

In Figure 2-8 we examine the relationship between protein size and average surface

depth using the PDBbind data set. As a robust measure of protein size that could

easily be computed for the entire data set we used the total number of heavy atoms.

Assuming very similar packing densities for all proteins, number of heavy atoms

should be proportional to protein volume. Depth data were plotted against the cube
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Figure 2-8 Travel Depth Correlated with Size

Average travel depth of the entire protein (") and just the binding site (o) plotted vs.

the cube root of the number of heavy atoms, for proteins in the PDBbind dataset.

Lines show linear least squares fits for the entire protein (y=0.55x –2.72, R2=0.84)

and for the binding site (y=1.54x–8.13, R2=0.47).
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root of the number of heavy atoms since for a largely globular set of proteins this

metric should scale well with the linear dimension of the protein. Indeed, for the

mean surface depth averaged over the entire protein surface there is an excellent

linear correlation (R2=0.84). Thus average depth increases linearly with protein size.

Not surprisingly, larger proteins can have deeper pockets, but for the average depth

to increase with protein size larger proteins must also have more pockets of

significant depth, i.e. be rougher. The scaling law indicates that average travel depth

is an indicator of overall surface roughness, and a good reflection of the fractal

nature of the protein surface, as was discovered previously by analysis of surface

area13. The fact that the fractal nature of the protein surface also emerges from a

quite different analysis based on depth provides additional validation of the concept

of travel depth.  Looking at depth data from just the ligand binding sites, there is still

some correlation with protein size, but the significantly smaller variance in travel

depth is explained by protein size (R2=0.47). This may include effects from the

smaller amount of averaging involved in using a small subset of the protein surface.

A straightforward question to answer with the binding affinity data from the PDBbind

dataset is whether binding affinity of the ligand (-log K) correlates with the average

travel depth at which the ligand is bound. A priori, one might expect deeper pockets

to have greater affinity, based on the idea that a deeper pocket would make more

interactions with the ligand.  On the other hand, the amount of surface area one

could bury or interactions one could make when binding a small ligand is limited by

the ligand size. For a given amount of surface burial or number of interactions, one

might expect deeper pockets to be less favorable as the long range electrostatic
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Figure 2-9 Travel Depth versus Affinity

Mean ligand binding site travel depth, db, plotted against experimental binding

affinity for the PDBbind dataset.  Only ligands bound significantly deep (p-value <

2x10-7) are shown in this analysis. Line shows the linear least squares fit, with (y=-

0.39x + 16.5, R2=0.0199). Inset shows the same plot for complexes that bury less

than 500 Å2, 400 Å2, and 350Å2 respectively.
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desolvation penalty would be greater. In anticipation of these effects, we computed

the change in solvent accessible surface area upon ligand binding, dA, for each of the

887 complexes in the database, in addition to travel depths. The change in surface

area was obtained from the surface area of the entire complex minus that of the

protein and the ligand alone, calculated using the program SURFCV 62. Binding

affinity, buried surface area and travel depth data for the set of 887 complexes is

given in Table A-1.  The average travel depth of the binding pocket, db, is plotted

against the binding affinity in Figure 2-9 for the entire binding data set. A linear fit

regression was conducted, and the R2 values were very close to 0, indicating that

none of the variation in binding affinity can be explained by the depth. Even using

only those ligands binding in a very significantly deep pocket as judged from the p-

value being less than 2x10-7, no clear relationship is seen. However, if the data is

restricted to those ligands that bury less than 500Å2 of surface area, there is a

significant positive correlation between depth and affinity of R=0.23. Restricting the

area burial still further to <400Å2 and then <350Å2 increases the positive correlation

to R=0.34 and R=0.47 respectively, with a positive slope of about 2.5 (Inset, Figure

2-9). Although the amount of data at lower areas is sharply reduced, the trend is

clearly that affinity depends on depth when the area buried by the ligand is low. This

indicates that there is no simple dependence of binding affinity upon depth, because

of factors such as surface area burial and no doubt other factors alluded to above.

To extract the broad trend in binding affinity, the affinity data was modeled as a two

variable function of buried area and depth,  -log K = f(dA,db). Using the 2-

dimensional data smoothing function in Origin 73 a piecewise linear approximate

f(dA,db) was constructed using a 10x10 interpolation matrix with weighted
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Figure 2-10 Travel Depth, Buried Area, Affinity

The binding affinity from the PDBbind dataset, -log K, described as a function of two

variables, average travel depth of the binding pocket, db and surface area buried

upon binding, dA as –log K = f(dA,db). f(dA,db) is plotted as both a grey scale

colored surface in 3-D and as a grey scale 2-D contour plot in the upper part of the

figure. Determination of f(dA,db) is described in the text.
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averaging.  The resulting function f(dA,db) is plotted as a surface in the three

dimensions of –log K, dA and db in Figure 2-10. For additional clarity the figure also

depicts f(dA,db) as a gray scale contour plot in the upper projection of the figure.

Considering first the effect of buried surface area, at small to medium depth the

affinity shows an initial approximately linear increase, followed by a plateau. This

general trend follows closely that seen in earlier broad surveys of the effect of ligand

size 74. At the greater travel depths, there are very few compounds, and the range of

observed buried areas is sharply restricted to small values so no trend is discernable.

Considering now the effect of travel depth, for small burial areas greater travel depth

does appear to increase the binding affinity. For larger amounts of buried area, the

affinity is insensitive to the average binding pocket depth. Overall, the highest

binding affinities occur at comparatively low buried surface area and high travel

depth, though there is not much data in this region.  These results are of course

broad trends which 'average out' the effects of specific interactions, shape effects,

etc. in each complex, but the analysis demonstrates the kind of questions one can

now examine quantitatively with a good measure of depth. As a final interesting

note, we show just the mean ligand binding site travel depth against the number of

ligand heavy atoms in Figure 2-11.

Considering further the argument that binding pocket depth would primarily affect

the polar desolvation contribution to binding, this contribution would be larger for

charged ligands such as ions than for neutral ligands. For charged ligands, the

desolvation term would be larger for more highly charged ligands.  This implies that

if such an effect of depth on binding affinity exists, it would be more important for
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Figure 2-11 Binding Site Travel Depth versus Ligand Size

The mean travel depth of the ligand binding site is graphed against the number of

heavy ligand atoms for all PDBbind structures.
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divalent ion ligands than for monovalent ion or neutral ligands.  Most RNA structures

require the divalent ion Mg++ to fold and maintain a stable structure, and the

growing number of RNA structures with bound magnesium ions allows one to analyze

where the magnesium is binding, and how such binding might be related to surface

depth. For these reasons we next investigated magnesium binding to RNA structures.

We first extracted all RNA PDB entries with magnesium bound. After careful checking

of the structures, and eliminating cases where the magnesium ions were bound to

non-RNA molecules in the complex, we were left with a set of 29 structures. No

pruning by similarity was performed: there are several tRNA structures, several

dimerization site initiation points, and several pseudoknots, for instance. The

following PDB codes were in our final set: 1EVV, 1F27, 1FIR, 1I7J, 1I9V, 1K9W,

1KXK, 1O3Z, 1TN2, 1TRA, 1XP7, 1XPE, 1XPF, 1Y73, 1Y95, 1Y99, 1YKV, 2B8R, 2B8S,

301D, 310D, 3TRA, 430D, 462D, 468D, 469D, 470D, 471D, 4TNA 16. These

structures contained 249 magnesium ions that were bound to RNA, or closer to RNA

than to other molecules in the PDB structure.  We broke down surface points on the

RNA structures into five types, based on the nearest atom. The five types are

phosphate, sugar, and three nucleotide groups, the major groove, minor groove, and

other. Non-standard nucleotides found commonly in tRNA were grouped in with the

other group in the analysis, since they do not have standard hydrogen bonding

patterns and usually do not conform to the major/minor groove distinction.

Figure 2-12 shows an example tRNA structure with one magnesium bound, PDB

Code 1FIR. The color scale on this runs to 17.6 Å in depth at the deepest blue. Figure

2-13 shows the distribution of surface depths where magnesium ions are bound
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Figure 2-12 Travel Depth of tRNA

An example tRNA structure (PDB code 1FIR). A magnesium ion is shown as a purple

sphere.
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within 4Å of surface points, broken down into the five categories. Figure 2-14 shows

the relative frequency of binding at each depth and category data by normalizing the

curves in Figure 2-13 by the number of surface points at each travel depth in each of

the five categories. The normalized data is cut off at depths > 13 Å since more than

half the category/structure combinations either had no data representing that level,

or the number of points was so small as to be statistically insignificant. The major

feature from this analysis is the significant amount of Mg2+ binding near major

groove atoms at a depth of 9 Å.  This is apparent even without normalization. The

binding of magnesium to the major groove at a travel depth of 9 Å is present in 18 of

the 29 structures in our sample. These 18 structures represent a variety of

structures in our limited test set, as do the 11 structures that do not contain

magnesium bound at that travel depth.

The relatively high frequency of magnesium binding to the phosphate backbone

category at depths " 4-12Å seen in Figure 2-14, appears somewhat significant in the

context of the RNA structural database available at this time  (Figure 2-13).  Looking

at the overall frequency/depth distribution without regard to category, one can see a

fairly uniform distribution of depths from 0-12Å, though the three peaks, two for

phosphate regions and one for the major groove seem significant.  The relatively

uniform distribution, with ions occurring quite frequently at depths up to 10Å

indicates that there is little depth dependency to the desolvation penalty. This

probably follows from the fact that RNA structures tend to be quite open and highly

solvated compared to protein structures, even in deep pocket or groove regions, as

exemplified by tRNA in Figure 2-12. As described previously, the
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Figure 2-13  Travel Depth of magnesium binding surface in RNA structures

Frequency  of each of 5 classes of surface points at given travel depths. Points are

counted if within 4Å of a magnesium ion.
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Figure 2-14  Normalized depth of magnesium binding surface in RNA

structures

Points are counted if within 4Å of a magnesium ion. Frequency  of each of 5 classes

of surface points at given travel depths, each point was normalized by the overall

number of surface points of that class at that travel depth. Data is only shown where

at least half the classes/structures had data at that depth, in other words equal to or

below 13Å.
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irregular shape of the molecular surface influences the electrostatic potential,

creating pockets away from the immediate vicinity of the phosphate groups where

cations are likely to bind 75. Our analysis supports the idea that these pockets occur

relatively often in major grooves, and they are distributed around a specific travel

depth of about 10Å.

As a final example of the use of travel depth we consider the problem of

automatically identifying ligand binding pockets. This is a difficult problem, and the

latest methods, which rely to a large extent on pocket volume, still encounter

problems identifying extremely buried pockets 76. Deeply buried pockets are often

not the largest by volume. A different way of solving this problem involves clustering

surface points within some distance of the centroid of the protein atoms 77, which is

another way of incorporating depth information. The centroid method requires

careful selection of the appropriate domain or subset of atoms to give sensible

results, and so it is not straightforward to apply in large, multi-domain proteins. We

examine the case of the FS4 cluster ligand binding site in PDB entry 1H2R, which is

reported as problematic 76. There are five separate ligands: three different iron-sulfur

clusters, a nickel-iron active center and a magnesium ion.  This protein's overall

average depth of molecular surface is 8.7 Å. Examining this depth in terms of our

earlier analysis of protein size against average travel depth, this is more than an

angstrom deeper than the trendline. This means, for a protein of this size a rugged

surface. Our travel depth algorithm gives average depths of the ligand binding sites

as 27.6 Å, 22.9 Å, 38.5 Å, 18.6 Å, and 42.1 Å respective to the five ligands indicated

in the structure by the abbreviations: FS3, FS4_1, FS4_2, MG, NFE. Figure 2-15
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Figure 2-15  Travel Depth of Very Deep Pockets

A sample case where pocket volume does not correlate well to ligand binding sites 76.

PDB code 1H2R, NiFe hydrogenase is shown in two views. In one, gray ribbons are

shown with the 4 ligands and magnesium ion in light blue. The other view, from the

same perspective shows the surface colored by travel depth, only the surface with

travel depth greater than 16Å is shown, cavities have also been removed for clarity.
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shows this structure and the travel depth colored surface. All ligands except

magnesium are significantly deeper than the average depth, and they would clearly

demark these regions in a blind search. However it is notable that the deepest

pocket contains no ligand. This example suggests that combining depth and volume

would significantly improve binding site identification in cases where pocket volume

alone fails.

Discussion

We have introduced here a quantitative, robust and useful definition of the depth of

any region of a triangulated surface of a molecule.  We have also implemented this

definition with an approximate, though sufficiently accurate and fast algorithm. This

implementation is suitable for quantitatively analyzing individual molecules or large

databases of molecules.  The algorithm satisfactorily quantifies binding pockets in

proteins as intended. Interestingly, travel depth also works for two difficult cases for

which it was not specifically designed. The first is for grooves in DNA, which present

an interesting case since the grooves are unbounded in one direction. Second, our

algorithm works in the case of tunnels, that is pockets that have no 'bottom', but go

through the entire macromolecule.

Our definition of travel depth differs significantly from depth measures used in

previous work. Other definitions have been proposed based on the difference

between molecular surfaces of varying smoothness. GRASP 24 has a macro called

Molecular Elevation which produces the difference between the normal molecular

surface and a molecular surface generated with a probe radius of 10 Å 78. APROPOS
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used a smoothed Euclidean difference between two alpha-shapes to locate binding

sites 70; 72. To define the reference surface, we use the limiting form of the molecular

surface with infinite probe size, the convex hull. Both the GRASP macro and

APROPOS program compute a simple Euclidean distance, ignoring the complicated

surface structure of the macromolecule. The travel depth defined here, in contrast,

uses a non-Euclidean, macromolecule-avoiding distance. While a Euclidean distance

agrees with our definition in cases where the paths to the convex hull are simple

non-macromolecule intersecting straight lines, it differs when the macromolecule

contains overhangs and narrow tunnels to interior binding sites. This occurs

frequently in proteins: over all surface points in the PDBbind dataset used in our

analysis, about 52% of the surface points had a higher travel distance than Euclidean

distance, and 5% of the surface points had a difference above 5Å. Moreover, most of

the large errors occur in pockets, which are the regions of most interest. The

APROPOS definition of depth is also not taken from molecular surface points, and has

been highly tuned to detect binding sites. Our method is more general than these; it

can calculate depths for any molecular surface, it works for pockets of any size and

complexity, it can also calculate depths for the volume between the convex hull and

the molecular surface.

Additionally, our definition is quite different from the notion of Extreme Elevation 79.

The extreme elevation is a height distance between any two points on the surface,

and the algorithm finds all points that are local maxima of such a function.  These

pairs of points that maximize the elevation could be used in some applications,

however it does not define a general notion of depth for every surface point, as a
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point could be in several pairs. The extreme elevation method also has a high

asymptotic complexity, but has been shown to help generate possible poses in

docking applications 80.

Our algorithm for solving the shortest path problem is significantly different from

previous work. The related shortest path planning problem in three dimensions was

shown to be in the class NP-hard with respect to the obstacle complexity 29, however

some approximation algorithms have been proposed 81; 82. The previous

approximation algorithms usually subdivide each edge of the polyhedral obstacle into

smaller pieces, then compute visibility maps among vertices. The code required to

compute visibility maps in three dimensions is complex. Moreover, the computation

time is large. Other previous approaches, which we did not use, are conformal or

constrained meshing, fast marching methods, and proximity depth. If a reasonable

quality conformal mesh could be generated between the molecular surface and the

convex hull it would be easy to apply multiple source shortest paths to compute

minimum travel distances 83. There is a large amount of previous work on fast

marching methods, algorithms to grow expanding boundaries. Again, the algorithms

and code to implement these approaches are complex 84.  Also, producing the

intermediate conformal mesh given an arbitrary triangulated molecular surface may

be difficult unless constraints are applied to the latter. Such constraints may impose

undesirable compromises on the type and resolution of molecular surfaces that could

be handled. In this context, our minimal travel distance algorithm can be viewed as a

discretized fast marching method, or a approximation to a conformal mesh generator

constrained to a cubic lattice, although for our purposes it need not fully implement
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either of these intermediate constructs. Finally, our work is most similar to the

notion of proximity depth, which has been developed for various proximity graphs

where edges exist between close points 85. In contrast we generate our points and

weighted connectivity in different and explicit ways, and specifically exclude certain

edges, those passing through the macromolecular surface.

In its actual implementation, our travel depth approximation algorithm has several

advantages: It works on any orientable and connected triangulated surface, it is

relatively easy to code, it has polynomial complexity and it has practical computation

times. The result is at most a constant multiplicative factor worse than the true

travel depth and this constant can be controlled to a degree. In application to several

different kinds of macromolecular surface, including analysis of DNA groove depth,

our measure agrees with previous qualitative descriptions, and one’s intuition when

looking at structures.

The significance of having only polynomial complexity and practical computation time

is that the algorithm is practical for high-throughput analysis for large

macromolecules. Our analysis of the PDBbind database of 900 protein-ligand

complexes required less than a week of computation time on a single computer,

encompassing all aspects of the computation: surface generation, travel depth

computation, and all statistical analyses.

In analyzing the protein database, the travel depth algorithm revealed two important

features. First, proteins with known ligand binding sites have a different depth

distribution profile than those without known binding sites. Those with ligand binding



62

sites have a wider profile at low depths with a higher tail at high travel depths.

Second, protein size as a function of the cube root of the number of atoms explains a

lot of the variation in overall travel depth from protein to protein; A clear linear

correlation between depth and size is present.

The travel depth analysis was used to show that ligands tend to bind in deeper

pockets. Moreover, when this analysis is combined with surface area calculations, it

shows that binding in deeper pockets has a significant effect on binding affinity when

surface area burial is low.Though the picture is not yet completely clear, this specific

two factor effect has not been suspected before. As is apparent from the contour

depiction of f(dA,db) in Figure 2-10 there are no complexes with both large buried

surface area and great depth.  Again this is unanticipated, and it may reflect some

intrinsic constraints for good ligand binding in proteins. Although the PDBBind

database is quite large, with diverse ligands and protein sizes, the lack of large dA/db

could also reflect limitations of the PDBbind dataset. If complexes with this

combination of dA and db, are discovered, along with more structures with low buried

surface area and high travel depth, the relation between dA, db and binding affinity

could be better understood.  As confirmation, the mean Travel Depth against ligand

size calculated as number of heavy atoms is shown in Figure 2-11, which confirms

that large ligands do not bury deeply, at least in this dataset.

In addition, we analyzed the influence of travel depth on magnesium binding to RNA

structures. Our preliminary conclusion is that there is little effect of desolvation in

deeper ion binding sites. Also, perhaps surprisingly, a significant number of Mg ions

bind closer to the major groove than to the phosphate groups, in contrast to one’s
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naïve expectation based on charge complementarity.  Since the RNA structural

database at present is rather small compared to that of proteins, more data is

needed to make the picture clearer.

It has been well established that the substrate binding and enzyme active site of a

protein is commonly located in the pocket with the largest or second largest volume

58; 72. However, there are some cases where neither of the largest pockets by volume

contain the enzyme active site 86. Some of these cases are peptide recognition sites

that are commonly spread across the surface of the enzyme. However, other cases

where the ligand lies in a deep, small pocket may benefit from taking depth of the

pocket into account 86. Our general analysis showing that many structures have

ligands that bind in significantly deep pockets reinforces this conclusion.  These

issues are part of the larger problem of automatic identification of ligand binding

sites.  We considered one difficult example in this area 76 as an illustration of how the

travel depth analysis can help. In addition, travel depth may help in the further

problem of discriminating between different kinds of active sites.

Having a quantitative definition of travel depth also now allows one to combine this

property of the surface with other features for analysis. Other surface features

include volume, surface area 62; 72, curvature 87, and chemical features like

electrostatics 88. Together with sequence properties like conservation 76; 89, these

combined analysis of all these features may allow for excellent overall prediction of

ligand binding site location. A recent example of this kind of analysis shows the

importance of having a good fast quantitative definition of depth. 90. Depth analysis
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would also be useful in structural genomics projects where little functional

information is known about a new structure.

Future Directions

The algorithm we develop here for measuring depth of macromolecular surfaces is a

discretized approximation of a multiple shortest paths (MSP).  The paths are initiated

at the convex hull, and terminated at the molecular surface. We chose the convex

hull as a natural and practical reference point to initiate the MSP, but we note that

other choices are possible. Among the class of convex surfaces, an ellipsoidal or

spherical surface completely enclosing the molecule is another possibility for a

reference level.  Some choice must be made of how far outside the molecule this

surface, however, which introduces another arbitrary parameter. One expects that

an ellipsoidal initiation surface suitably chosen and aligned to the molecule’s axes of

inertia would provide much the same rank ordering of depths as the convex hull.

Alternatively, as a non-convex shape, one could use a molecular surface created with

a large probe radius as the reference level.

Additionally, varying the probe radius used to generate the molecular surface would

be another straightforward variant of our method. Our algorithm works for any

triangulated surface with reasonable constraints. A larger probe radius might mimic,

for example the larger size of a ligand molecule groups compared to water. Indeed,

the default use of water-sized probes to create the molecular surface is a standard

caveat in this area. For instance, minimal distance paths may travel through water
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tunnels to active sites, though the path a larger ligand may travel would be different,

and probably longer.

More generally, our travel distance implementation of MSP could be used as a

measure of shortest avoiding distance in a variety of applications to macromolecules.

For example:

1. In cases where a particular protein pocket is accessible by more than one

pathway or ‘tunnel’, traveling back along the steepest descent of travel depth

values, or simply recording the last step taken to arrive at each grid cube,

would provide the shortest ‘escape’ route and its length.

2. Examining the union of all such escape routes from a ligand binding site could

also give interesting information, for instance, examining the number of grid

cubes with varying depth from 0 upwards could yield information about the

steepness or width of the tunnel.

3. Taking the molecular surface as the initiation surface, and propagating the

travel distance inside the molecular surface until it self terminates (when all

the grid points inside the surface have been assigned) the algorithm would

assign a depth, with respect to the nearest surface point, to every part inside

the molecule.  Applications of this depth include quantifying the depth of

burial of side chains in a protein core. This analysis would be similar to the

notion of atom depth 18 and likely yield similar results. Identification of the

peaks and ridges of this burial depth would provide an approximation of the
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medial axis of the molecule surface.  The medial axis is a powerful, but hard

to compute construct and descriptor of surfaces 27.

4. Picking one part of a molecular surface as the initiation, the other parts of the

molecular surface as terminators, and propagating the paths outside the

molecule, the travel distance would provide the shortest distance between

two sites on a protein. Application to the analysis of substrates that must

diffuse between different sites on multi enzyme complexes 91; 92 suggests

itself.  Elaborating further, by choosing every site of the protein in turn as the

initiator, a two-dimensional matrix of minimum avoiding distances between

every pair of surface patches can be built up, providing a detailed descriptor

of the surface topology.

5. In the case of ion channel proteins and other pore or tunnel containing

proteins, if the entire molecular surface is used for initiation, and the paths

propagated outside the surface, paths will either self terminate in the tunnel,

or can be truncated a suitable large distance from the surface. The ‘ridge’ of

maximum distance (essentially an everted equivalent of the medial axis with

the role of inside and outside exchanged) will run through the tunnel or pore.

This ridge identifies both the locus of the center of the pore, and its width.

This could provide an alternative to the standard algorithm to automatically

characterize the ion channel pores 40; 41.

In summary, we have introduced a quantitative measure of molecular surface depth

called travel depth. Depth, though an intuitive concept, is in fact hard to define and
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calculate prima facie. We show here it can be calculated in an efficient manner for

many types of macromolecules (DNA, RNA, and proteins), and that it works on a

variety of surface topographies (channels, tunnels, pockets). The ability to quantify a

key surface property, depth, allows us to address several interesting questions about

macromolecule shape. These include a quantitative analysis of groove depth in DNA

and RNA, the relationship of pocket depth to binding affinity, the relationship

between protein size and average surface depth, and the automatic identification of

binding pockets. In conclusion, we hope that this measure of travel depth will be a

useful tool in many areas of structural analysis of biomolecules.
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Chapter 3

This chapter was previously published 43.

Summary

We describe a new algorithm, CHUNNEL, to automatically find, characterize and

display tunnels or pores in proteins. The correctness and accuracy of the algorithm is

verified on a constructed set of proteins, and used to analyze large sets of real

proteins. The verification set contains proteins with artificially created pores of

known path and width profile.  The previous benchmark algorithm, HOLE, is

compared with the new algorithm. Results show that the major advantage of the new

algorithm is that it can successfully find and characterize tunnels with no a priori

guidance or clues about the location of the tunnel mouth, and it will successfully find

multiple tunnels if present. CHUNNEL can also be used in conjunction with HOLE,

using the former to prime HOLE, and the latter to track and characterize the pores.

Analysis was conducted on families of membrane protein structures culled from the

protein databank as well as on a set of trans-membrane proteins with predicted

membrane-aqueous phase interfaces, yielding the first completely automated

examination of tunnels through membrane proteins, including tunnels that exit in the

membrane bilayer.
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Introduction

Proteins adopt three-dimensional structures with complex shapes and surface

topography. These topographical features, such as clefts, flaps and tunnels often

have important functional roles. We define here the term tunnel or pore to mean a

hole that goes completely through the protein, thus having two entrances or mouths.

Many proteins contain tunnels or pores that are of physiological importance, the

primary examples being membrane protein ion channels, pumps, porins and

transporters. While some channels have a single simple tunnel structure, there are

also more complicated structures, for example the mechano-sensitive channel of

small conductance (MscS)93. Also, proteins like the ring clamp protein 94, the

ribosome 95 and other proteins involved in transcription have topological features

including pores that are important for interactions with DNA strands. Spastin has a

central pore which is involved in microtubule severing by pulling the end of the

tubulin polypeptide through the pore 96. Some enzymes like rubisco also have

tunnels through them 97. At least one enzyme, acetylcholinesterase has a tunnel

observed under simulation with distinct exits for the two products 98. Photosystem II

has three tunnels leading to the active site, theorized to be pathways for water,

oxygen and protons 99. Finding, cataloging, and measuring these tunnels is important

in understanding their function. The ability to do this automatically is an important

step towards automation of structural genomics, or characterizing new protein

structures. While less than 400 high-resolution structures of trans-membrane

proteins are currently known, and of these only about 150 are unique 38, many
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advances in techniques should increase this number 100, particularly as membrane

proteins become targets of large scale structural genomics projects 101 Comparisons

to the growth of globular proteins in the PDB suggest around 2200 membrane

protein structures will be deposited by 2025 37. Additionally, as new examples of

subclasses of membrane protein structures are found, accurate homology modeling

studies become possible 102. Tunnel analysis will increasingly be needed as these

structures will no doubt include many new pumps, pores, channels and transporters.

The seminal work in characterizing protein tunnels was the development of the HOLE

algorithm 40. The algorithm has been applied very successfully to analysis of ion

channels, in which the position and orientation of the pore (normal to the

membrane) is known a priori, and can be used to 'prime' the HOLE search algorithm.

The algorithm is less able to deal with arbitrarily positioned tunnels or multiple pores,

and it is difficult to automate since it needs some initial user guidance.  Additionally

when multiple tunnels are present, HOLE or variations of HOLE were not able to find

the ‘correct’ tunnel among several in some ribosomal structures 95. There has been

some work in calculating cavities and their volumes or volumes of portions of tunnels

95; 103. Additionally, CAVER functions like a 3D version of HOLE in some respects, but

it still needs a starting hint to find a tunnel, and it is primarily geared towards finding

paths out from a pocket, not tunnels all the way through proteins 36; 104. However, no

further work in automatically identifying tunnels has taken place since the

introduction of HOLE. This attests to the difficulty of developing a completely

automated, general tunnel finding/measuring algorithm. We present such an

algorithm, which we call CHUNNEL, then describe the principles of both topology and
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geometry on which it works. We then test CHUNNEL on a set of proteins with

artificially generated pores of known path and width, and on various membrane

proteins with tunnels from the PDB database 38; 42. Tests of the HOLE algorithm were

also performed on the same test set in order to compare the two algorithms, and

show that CHUNNEL has a markedly improved ability to find tunnels automatically.

We also show that CHUNNEL can be used to prime HOLE, which can then trace and

characterize the pore. We also use CHUNNEL to find qualitatively new tunnels, for

instance those that exit within the membrane bilayer, which have not been found or

examined previously.

Methods

General outline of the approach

The procedure developed here for finding and characterizing tunnels is an outgrowth

of our previous work characterizing depths of pockets, grooves, tunnels and other

surface features in macromolecules using a measure known as Travel Depth 35. The

Travel Depth of a point on the molecular surface is defined as the shortest path

through the solvent to that point from a reference surface (specifically the convex

hull of the protein). The shortest paths algorithm 23, specifically the generalization

we call multiple source shortest paths (MSSP) 28, is used to compute the travel

depth, and it is implemented by discretizing space on a cubic grid. Following the

application of the MSSP algorithm all surface points have been assigned travel

depths 35. In addition, the travel depths of all solvent grid points lying between the

convex hull and the molecular surface are known.
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The impetus to develop a tunnel-characterizing algorithm from this work had two

sources. First, although the Travel Depth algorithm was designed to characterize

pockets and clefts, an unexpected benefit is that it also measures the depth of both

the lumen and the surface of a pore 35.  Second, the MSSP algorithm proves to be a

general-purpose algorithm for calculating volume avoiding, shortest distance

pathways. If the MSSP algorithm is started at the molecular surface, and the

distances are propagated outwards in the solvent, then the 'Travel Out' distance

assignment will self terminate in tunnels, forming a 'ridge' or everted medial axis in

3-dimensions. These two observations suggested that by starting at a maximum in

Travel Depth and Travel Out distance, and following ridges in Travel Out distance of

decreasing Travel Depth in two 'opposite' directions one would trace out the path

along the center of a pore. The Travel Out distance along this path gives the radius

of the pore at each point.  In practice, using just these two distance functions it is

difficult to automatically distinguish the difference between the bottom of a pocket

and the center of a tunnel. It is also difficult follow a ridge of distance in three

dimensions, especially with the discretization of space required to implement any

algorithm. This problem, sometimes referred to as thinning, shape skeleton or

medial axis, is complicated even in two dimensions 105; 106; 107 and can only be

approximated in three dimensions 108. Hence to implement this approach it is

necessary to first ensure the starting point is in a pore, and then correctly follow the

pore out in both directions. In addition, if there are multiple pores, one needs to

reliably identify starting points and propagation 'directions' for all of them. We

achieve this through topological and geometric analysis of the molecular surface.
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Figure 3-1 Surface Triangulation

Part of the triangulated surface passing through a grid cube. Of note is that all

surface points lie exactly between two grid points.
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Generation and preprocessing of the surface

We start with the generation of the molecular surface (MS), using the algorithm in

the GRASP macromolecular graphics program 24 implemented as a stand-alone

program. Standard atomic radii 3 are used to generate the MS with a probe radius of

1.2Å.  This is a somewhat smaller probe radius than used previously, in order to

treat ion channels: The permeant ions can have radii less than the standard probe

radius of 1.8Å used for water. The modified GRASP surfacing algorithm first maps the

molecule onto a cubic grid. It then produces a closed triangulated surface, for which

the vertex coordinates, vertex connectivity, triangle normals and triangle

connectivity are known. All cavities, defined as smaller disjoint sets of connected

triangles, are discarded. In addition, because of the way this surface is generated,

the volume inside and outside the molecular surface is already discretized on a cubic

grid whose vertices are labeled as in or out (Figure 3-1). The vertices of the surface

triangles also lie on edges joining inside and outside vertices of the volume grid,

while triangle edges cross the surfaces of grid cubes or lie completely within a single

grid cube (Figure 3-1). This well defined relation between surface and volume

discretization is key to the successful implementation of the tunnel finding algorithm,

as the latter uses both surface and volume properties. The final step in the surface

generation/preprocessing is to generate the Convex hull, using the Qhull algorithm

25, which also generates a closed, triangulated surface.
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Figure 3-2 Expanding Discs

A) A 1-torus showing the original starting triangle for ‘disc’ region D (1), a partially

region D (2), and the final maximally expanded region D and the corresponding

leftover minimal strip S (3). The minimal strip S is also shown separately for clarity.

B) A minimal strip S for a 2-torus.
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Enumeration and localization of pores

Triangulation of the molecular surface (after discarding cavities) immediately

provides the number of tunnels or handles present, through the Euler relation:

V + F – E –2 + 2N = 0 (3-1)

where V, F, E are the number of triangle vertices, face, edges respectively, and N is

the number of handles, so the surface is an N-torus. Although the number of tunnels

is known from this topological invariant, there is no indication of their location. With

a complex protein surface, it is often difficult to find them even using 3-D modeling

graphics.

The first step to localization of the tunnels is to 'remove' from the surface a maximal

region of triangles, D, that is topologically equivalent to a disc. A triangle is picked at

random to start D, and neighboring triangles are removed until it is impossible to

remove another triangle and have the boundary of D remain a simple, closed, non-

intersecting path, Figure 3-2a. The remaining triangles form a closed strip of

triangles, S, one triangle wide with 2N loops. The loops come in N pairs of which one

runs around each pore (an A-loop), and one runs through each pore (a T-loop).

Figures 3-2a and 3-2b shows a residual strip S for a torus (1-torus) and for a 2-

torus.
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Figure 3-3 Example 2-torus

Front and back views of a real 2-torus and the resulting strip S broken into 4 colored

loops, showing how the loops meander over the surface.
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On a complicated protein surface, the path of S is usually very irregular and far from

minimal in length (Figure 3-3). This divagation is usually great enough that one

cannot at this point reliably categorize a loop as A or T just from the coordinates and

orientation of the constituent triangles.  In particular, there is no requirement for the

A-loops to be anywhere near either the center or the narrowest part of a pore.

Obtaining a ‘tight’ loop of triangles around a pore

The next step is to regularize or 'tighten' S around the pores, and then find a set of N

A-loops that are topologically distinct and go around each pore in the surface. A

careful combination of topology (to ensure that the A-loops found are distinct) and

geometry (to ensure that such loops are tight) must be employed to accomplish this

goal as neither approach by itself would work. First the triangles of S are

decomposed into 2N sets SL, L=(1...2N) one for each loop. (Some triangles may be

part of more than one loop).  Using the MSSP algorithm, neighboring triangles are

sequentially added to a loop SL (it is 'fattened up') until its edges wrap around and

meet at some point (Figure 3-4a). Because triangles are added in order of minimum

neighbor distance from the original strip one can trace back neighboring triangles

from the meeting edge along the shortest path to SL. The set of trace-back triangles

form another one triangle wide strip S'L which is the complement of SL: If SL is an A-

loop, then S'L is a T-loop, and vice versa. At this point one can automatically and

reliably classify such a loop as A-type or T-type from its triangle surface normals, by

checking whether they point toward each other (A-loop) or away from each other (T-

loop). A ‘regularized’ A-loop runs around the narrowest part of a pore because of the

shortest paths property of the MSSP and so it more tightly delineates a pore.
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Figure 3-4 Expanding Loops

A) A T-loop (bold line) whose two boundary are sequentially advanced across the

surface (light lines), to eventually meet (at arrows). Traceback according to the

shortest paths algorithm (along arrows) yields a regular A-loop. B) Two T-loops

which both regularize to form A-loops around the same pore a. No A-loops are

formed around pore b in this case, so pores must be processed and capped one at a

time.
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Identifying two distinct directions in a pore

Having generated and identified a regularized A-loop, the next step is to

unambiguously define the two distinct 'directions' from the A-loop out to the two

tunnel mouths. We achieve this by building a 'plug' in the A-loop starting from the

strip of triangles S’L forming the regular A-loop. This strip has two edges G and H

(Figure 3-5a). We collect two sets of grid points G and H such that any point in G is

closer to a vertex in G than any vertex in H and vice versa for members of H.

Additionally, any grid point g in G has at least one neighboring grid point h in H, and

vice versa. The sets G and H are defined as the opposite sides of the plug.  This

procedure constructs an oriented, ‘leak proof plug’ across the pore circled by the

regular loop S’L.  It is leak proof in the sense that there is no way to pass from one

side of this region of the grid to the other staying in the solvent without passing

through at least grid point from either side. It is oriented because we know from

which edge of S'L a plug point derived. Thus the plug separates one side of the pore

lumen from the other (Figure 3-5a).

In some cases, a regular A-loop will produce a plug that extends out beyond the

convex hull. This interferes with the later path-finding procedure but this is easy to

correct by generating new loops and new corresponding regular loops using a

different random initial triangle. Plugs that do not extend beyond the convex hull will

be referred to as valid.
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Figure 3-5 Plug Example and Topologically Distinct Paths

A) 2-D representation of a plug. Shown are the surface (dotted and heavy lines) and

the volume grid (light lines). (O) Bounding vertices G and H respectively of the

regular A-loop. ( ) The final plug vertices, with fill indicating sides. B-D) All possible

topological cases for a 2-torus: b) two completely separate pores, c) two pores that

share one endpoint, d) one pore that bifurcates in the middle.
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Ensuring a complete and non-redundant set of A-loops

Since it is possible for an unregularized T-loop to pass through two pores, or for two

such T-loops to pass through the same pore, it is possible that the regularized A-

loops derived from them would not completely and non-redundantly girdle the N

pores. This possibility is illustrated for the simple case of a 2-torus with one narrow

pore and one wider pore. If both the loops around the handles ‘find’ a regularized

loop around the narrower pore, the wider pore will not have a corresponding

regularized loop (Figure 3-4b). The solution is to apply the regularization procedure

recursively, ‘masking’ off each pore as it is identified and plugged. A pore is masked

off by removing the triangles S'L of its regularized A-loop and creating two caps of

new surface triangles joined the boundary edges A and B, updating the connectivity

information of the surface triangulation as necessary. The remaining surface is now

an (N-1)-torus. The procedure of residual strip generation, A-loop regularization,

plug generation, and masking off is repeated until all N pores have been processed.

We note that in practice this recursive step is the slowest step of our algorithm, as it

has a quadratic dependence on the number of handles in the surface and a linear

dependence on the number of grid points and surface triangles.

This set of N regularized A-loops with valid plugs contains one loop around each pore

in the original surface, and one valid plug in each pore. Additionally, simple checks

are done to ensure that all loops are in the original surface, that is they do not

contain triangles that were added or removed in the pore masking step.
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Generating a path through a pore

Each plug is used in turn as the starting point to generate two ‘half’ paths out of the

pore, one in each direction, terminating at the convex hull. The two ‘half’ paths start

from plug points on opposite sides. This ensures that the complete path really

traverses the pore (i.e. can’t double back and emerge from the same end it started

from).

First the MSSP algorithm is used to assign a Travel Depth and Travel Out distance to

each solvent grid point between the convex hull and the molecular surface. The

initiating surfaces for this are the convex hull and the molecular surface respectively.

Next the plug point on one side with the maximum Travel Out is identified. Starting

from this point a branch-and-bound search algorithm 28 is used on the Travel Out

distance, with higher distances taking precedence, leading to a path that passes as

close to the center of the tunnel as possible, following the ridge of maximal Travel

Out distance. The path is terminated at the first grid point encountered outside the

convex hull. In cases where multiple plug grid points have the same maximum value,

each path is traced out and the one with the highest minimum value of Travel Out is

kept, i.e. the one with the widest choke-point. This procedure is repeated on the

other side of the plug. To connect the two half-paths, the two plug grid point maxima

(one from each plug side ) are connected in a branch-and-bound search, since this

again gives a path that maintains the highest minimum Travel Out distance. We note

that maximizing some minimum metric has been successfully applied to finding

topological paths before 109. Our approach here is similar to the approach of CAVER
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36; 104. Our concept of Travel Out distance is the same as the rmax function from

CAVER, though the methods used to compute them are different. However, in

contrast to a branch-and-bound search to maximize the minimum radius of the path,

CAVER uses a modified shortest paths search to find a path out, which would seem

to maximize the total radius passed through, this differs from our paths.

Building all topological paths through the pores

In cases where there is more than one pore, the set of half-paths generated by the

branch and bound algorithm may be combined in different ways to form alternative

full paths (Figure 3-5b). For example a Y-shaped or branched tunnel has three

entrances, A, B, C and one can define three full paths A-B, A-C and B-C, which share

segments (Figure 3-5c). Finding one path per entrance/exit combination is not

sufficient to get all topologically distinct (non-looping) paths. A path is defined

uniquely only by the entrance, exit, and plug maxima through which it passes.

Therefore all plug-to-mouth half-paths are added to a tree, which is then re-

processed to get individual full paths. This reprocessing attempts to connect all

combinations of points in the tree by all possible non-cycling paths. This gives all the

possible topological paths of interest. The potential number of such pathways grows

exponentially with the number of pores in the protein surface, however most

structures do not have the maximum number of pathways, in fact many have only

one pathway per pore, for instance when none of the pores intersect.
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Checking that paths traverse pores

An important final step in the path generation approach is to check each potential

path to ensure that it passes through an actual topological pore in the protein. This

prevents false positives. This is accomplished by using the set of tight A-loops, S’L. If

a path passes through at least one of these loops then it passes through a pore in

the protein. Starting with the loop of connected triangle vertices forming one border

of a loop strip, A  (Figure 3-5a), it is triangulated by arbitrarily selecting one point as

the common base point, creating triangles using the other points, and then checking

whether each path segment intersects with any of these triangles. An odd number of

intersections means this path goes through this loop, and therefore through a pore of

the protein surface. We note that in theory a path could pass through more than one

pore before encountering the convex hull. Currently only one passage is reported,

though all passages could be reported with slight additional processing.

In summary, the above procedure results in a complete list of topologically distinct

paths. Multiple paths can then be prioritized based on several geometric properties

described below.

Test set of protein pores

Having a set of protein structures with realistic and known pores created in them is

desirable for two reasons. First, to check the accuracy of the algorithm. Second, to

test the algorithm without accessing the limited number of real pore and ion channel

structures in the training phase. For this purpose, we created a set of ‘punctured’ or

drilled structures. Starting with larger structures (> 100 residues) from the PDBbind
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database 33; 34, pores were punctured from one side of the protein to the other by

moving a sphere in a biased random walk (using a Von Mises Distribution 110) from

one side of the convex hull to another, removing all atoms overlapped by the sphere

at any point.  The radius of the sphere at each step was picked randomly from a

Gaussian distribution and restricted to be between 2Å and 4Å.  The bias for the Von

Mises Distribution was set to either 2/3 or 2, which creates relatively straight or a

somewhat winding paths, respectively. This procedure was conducted a few times for

each protein, then the resulting punctured structures were examined by hand to

weed out some pathological cases. 86 relatively straight, and 55 winding, punctured

structures were produced. Of this total of 141 known pore cases, a randomly chosen

set of 100 were used during the development of the algorithm to identify errors and

make improvements. The remaining 41 were reserved until the final version of the

algorithm was developed, in order to provide an unbiased estimate of accuracy.

It should be noted that these structures have a reasonable exterior and a reasonable

channel through them, but the composition of the interior side chains is severely

disrupted by this puncturing process. Characterizing the pores using residue

identities or other structural motif methods would not make sense. As the algorithm

presented here relies only on gross topological and geometric features and uses

atoms, not residues, to create the surface, it is acceptable to use these punctured

structures for training and testing. A probe radius of 1.2Å was used when making the

molecular surfaces for these structures. This is much lower than the minimum radius

of the created pores, to ensure that some additional pores would be present. Also

1.2Å should be small enough for most real ion channel use, so this value was used
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throughout training and testing, and in all further analyses except where noted.

However, this radius could be changed in future applications as nothing in the

training or testing procedure is materially dependent upon this parameter.

Quantifying and checking pores

A pore is fully characterized geometrically by the locus of the pore center and the

width at each point (the maximum radius sphere that can be placed at this point).

Other properties that are of interest include the length, the minimum radius over the

entire length, the first minimum radius found from each end, and the maximum

radius between the latter two minima. 40. Additional geometric metrics are also

computed as different properties may play roles of varying importance depending on

the physiological function of the protein. To get some estimate of the uniformity of

the path, the number of local minima is determined. The maximum travel depth is

also computed, providing an alternative measure of path length. To estimate how

direct a route the path takes, its length is divided by the distance ‘as the crow flies’

between the ends, which will be 1 for a perfectly straight route and higher than 1 for

a route that takes a more circuitous path. This is called the winding metric. Given the

path and its radius at each point it is straightforward to identify residues lining the

path, or any particular subsection such as a choke point by identifying residues

within the pore radius plus some additional distance threshold. The threshold of 4Å

was used for all analysis presented here, but this cutoff is under user control.

CHUNNEL calculates and outputs each of these metrics for each pore, along with a

listing of each tunnel’s entrance and exit, and the plug(s) each path passed through,
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which together uniquely identify the tunnels in a multiple tunnel structure. Finally,

CHUNNEL sorts the list of tunnels in order of decreasing minimum radius.

For test cases with known pore paths and radii we designed several measures to

check how closely a computed path matched the known path. Since paths are drilled

and found by independent algorithms, each with a finite path point resolution, there

isn’t necessarily a one-to-one mapping between points on the known and computed

paths. In the following measures, for any pair-wise comparison each computed point

is mapped to the closest known point.

1) Root mean square deviation between known and computed paths. This was

computed using either equal weighting (Prms) or weighting by one over the radius of

the known path (Wrms). Wrms weights the narrow sections of the tunnel over the

typically wider mouths, as the former are usually more important to get right.

2) Span. We first determine all the points on the known path that are mapped onto

by at least one computed path point. The two extremal mapped points are identified,

and the span is defined as the fraction of the known path that lies between these two

points.

By examining these measures, we can show how closely the paths computed by

CHUNNEL are to the known paths in the drilled training and test structures,

additionally we can compare the performance of CHUNNEL to the performance of

HOLE.



89

Table 3-1 Representative Timings and Algorithm Statistics

Sample A Sample B Sample C

Number of Atoms 388 2148 4380

Number of Handles 1 7 15

Number of Triangles 5564 37520 63832

Number of Nodes 16943 207703 479422

Number of Paths Found 1 11 156

Count Handles (s) 0.001 0.005 0.008

Travel Out (s) 1.1 58.5 222.7

Get Loops and Plugs (s) 2.1 249.0 1454.5

Find Paths (s) 0.001 0.2 2.0

Total including I/O (min) 0.6 16.1 239.4
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Computational requirements

The overall algorithmic complexity of finding tunnels is quadratic in terms of the

topological complexity, linear in terms of the number of grid points and quadratic in

terms of the number of triangles. Outputting all possible paths is exponential in

terms of the topological complexity since there are potentially that many possible

paths, however in most cases there are far fewer paths than this.  To give an

estimate of the practical runtimes involved, we performed some timings using  one

processor of a dual processor machine (Intel 3.06 GHz chip, 6094 BogoMIPS, 2

gigabytes RAM) running GNU/Linux Fedora Core 4. The results are shown in Table 3-

1. The relationship between topological complexity and total processing time can be

seen. Though no formal computational space analysis was performed, many

hundreds of megabytes of RAM were often in use. Our code currently writes output

files compatible with PyMOL, though customization for other programs is possible.

Results

Verification and Accuracy of the Algorithm

The CHUNNEL algorithm was developed on the drilled training set of proteins with

known pores. The goal here was to reserve all real structures and the drilled test set

of known pores for analysis only after the algorithm was completely developed and

we could successfully identify the known pores in the training set. We note that of

the 100 training cases, only 10 had a single tunnel. Multiple tunnels commonly arise

during drilling when, as atoms overlapping a drill sphere are removed, an additional



91

Figure 3-6 Finding Training Set Holes Montage

A montage of 9 (of 100) sample training set cases. The known path is shown in

black, the best path according to the lowest Prms is shown in light grey (almost

white) spheres, the surface is shown in cutaway. The top 3 cases have Prms < 1Å.

The second row of 3 all have Prms of  1.9 Å. The third row shows two examples with

Prms of 4.7 Å and then (on the right) a Prms of 6 Å. Figures were produced using

customized PyMOL 64.



92

exit is created. These extra mouths are no different qualitatively from the known

tunnel, except their exact path is not known. The CHUNNEL algorithm finds all

tunnels but for purposes of testing the algorithm we focus on how accurately the

single known path is found.  Identifying which of the computed tunnels is the correct

one for comparison with the known tunnel is straightforward from either visual

inspection, or by its significantly lower Prms.

To interpret the accuracy of CHUNNEL is necessary to know what different values of

the measures described previously (Prms, Wrms, Span) actually mean in terms of

deviations between computed and known paths. In Figure 3-6, a montage of 9

examples from the training set is shown. In each image, the tunnel is shown via the

surface, which has been clipped for visibility, along with both the known and

calculated path. The examples were chosen to represent three ranges of Prms

values. The first row highlights computed paths that are essentially perfect, they are

very close to the known paths from end to end: The Prms values are less than 1Å. In

the second row, three examples with Prms values of about 1.9Å are shown. In the

leftmost of these, both ends are slightly incorrect, in the other two examples, one

end is moderately incorrect. However, these inaccuracies are in the mouths of

tunnels, where the lack of a well-defined pore makes it harder to completely and

accurately follow the entire length of the path. In the bottom row are examples

chosen from the worst performance on the training set. The leftmost two examples

have Prms values of 4.7 Å and in both cases the computed path deviates from the

known path in one mouth. Again these inaccuracies can be attributed to wide mouths

and since the paths are still in the correct mouth they are not a cause for concern.
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Figure 3-7 Performance on Training/Test Sets

The best Prms (#) and Wrms ( ) found by CHUNNEL for the 100 training cases and

41 test cases in the known pore set.
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The rightmost example on the bottom row has a Prms of 6Å and there are

inaccuracies in both mouths. The Wrms for all these examples is lower than the

Prms, the top row is in the range of 0.4Å to 0.7Å, the middle row’s range is 1Å to

1.7Å, and the bottom row’s range is 2.5Å to 3.4Å. The range of values for Span on

these examples goes from the nearly perfect upper left example with 0.97 to the

middle left example with a value of 0.60. The Span values for the bottom row are all

greater than this worst case value of 0.60.

With an understanding of the meaning of specific values for the various measures we

can examine the performance on the training and test sets of known paths. In Figure

3-7 we show the best Prms and Wrms values for the training and test set. Most Prms

values are less than 2Å and most Wrms values are less than 1.5Å, indicating that

they have almost the entire path correct. There are however, a number of cases

where wide mouths cause the computed path to have a high Prms and Wrms from

the known path. In Figure 3-8 the Span values across the training and test sets are

shown. Again, most paths are found with high accuracy. Those that are less accurate

have inaccuracies in one or two mouths, but the central part of the path is found

correctly in all cases, indicated by  Span values > 58% in all cases.  There are no

significant differences in average Prms, Wrms and Span between the training and

test sets for our method, indicating that CHUNNEL was not over-trained to perform

well only on the training set.

In Figure 3-9 we compare the performance of our method with that of HOLE 40.

Considering first the performance of HOLE in many cases it does poorly, often giving

Wrms values of 6-10Å, and even Wrms>10Å, values that indicate partial or complete
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Figure 3-8 Span across Training/Test Sets

The best Span (#) found by CHUNNEL for the 100 training cases and 41 test cases in

the known pore set.
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Figure 3-9 Comparison of CHUNNEL and HOLE

A histogram of weighted pore path error, Wrms, between CHUNNEL and HOLE using

the combined known-pore training and test sets. (light gray) minimum Prms path

from CHUNNEL. (black) HOLE, no hint. (medium gray) minimum Prms path from

HOLE given several plug points with maximal Travel Out Distance found using

CHUNNEL. Note that above 10Å the results are put into a single bin.
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failure to find the path respectively. In contrast, CHUNNEL gives Wrms#2Å for the

majority of cases, indicating the entire path is correct, or there is at most a small

error in one of the mouths. In all other cases CHUNNEL gives 2Å<Wrms#7Å, usually

from an error in following the wide mouths. In the process of running CHUNNEL, it

identifies the plug points with the maximum travel out depth, i.e. point in the middle

of a narrow part of each tunnel. Illustrating a possible way to combine both

CHUNNEL and HOLE, these plug positions were used to initialize the latter. With this

hint, HOLE produces values of Wrms#3Å for most of the paths. However, the results

are no better than using CHUNNEL for both initiation and generation of paths. In

summary, HOLE can perform well when given a hint from the plug generation from

CHUNNEL, but in fact getting to this point is really the bulk of the CHUNNEL

algorithm. Once a good starting point is found for the tunnel, HOLE and CHUNNEL

follow the paths out with similar accuracy.

Application to the Porin membrane protein family

A likely use for our method is to predict the paths of tunnels in membrane proteins.

The number of structures of membrane proteins determined through experimental

methods, like those of the PDB database in general, is on the rise. The difficulties in

obtaining structural data for membrane proteins are being overcome by various

methods and membrane proteins will likely become the focus of future structural

genomics projects 111. We used part of a hand-collated database of membrane

proteins 38, which on October 1st 2007 had 278 structures representing 132 unique

proteins. In this database structures are broken down into groups based on fold and

known function, which aids closer analysis. One such sub-group contains the Porins,
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which provide the molecular basis for membrane permeability. These porins are

found in  bacteria, and allow promiscuous or specific transport through the outer

membrane 112. CHUNNEL was used to analyze the porin family, as defined by the

beta-barreled porin fold 113. We examined the subset comprised of homotrimers plus

structurally related monomers. In each case the complete biological unit was

examined. Overall we examined 17 structures 38, including two structures which were

analyzed with bound ligands and then again with the ligands removed, for a total of

19 cases 114; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126. In five of these cases, the

physiologically relevant tunnel was blocked either by a structural rearrangement, a

peptide or a ligand. Either no paths were found by CHUNNEL or non-physiological

paths were found with a very small minimum radius and length, instances where

small adventitious pores are created by particular side chain conformations near the

surface of the protein. In the other 14 cases the path with the largest minimum

radius, ranked first by CHUNNEL, was the physiologically relevant and significant

tunnel. Most of the structures are homotrimers, so there are 3 ‘correct’ tunnels,

which are all found by CHUNNEL.

It is interesting to note that when viewing the van der Waals representation of the

homotrimeric Porins, there is a small gap in the middle of the trimer interface which

appears to be a tunnel. However, due to the size of the solvent probe there is no

tunnel in molecular surface surfaces and therefore CHUNNEL does not find any paths

through this middle region. The first tunnel found in each of the 14 successful cases

has a minimum radius of between 1.4 Å and 4.3 Å. The low end of this range is PDB

code 2O4V, a porin adapted to phosphate transfer, with the bound phosphate
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Figure 3-10 Radius Change Along Porin Paths

A graph showing the path radius profile for the first found path from three homo-

trimeric porins, PDB entries 1E54, 2OMF, and 1PRN.
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removed 126. This makes sense as phosphate is the smallest specific ligand bound to

any of the porins that are not promiscuous transporters. The other bound ligands

once removed have paths with larger minimum radii of 1.93 Å for glucose in 2MPR

123, 1.93 Å for malate in 2FGR 118, and 2.4 Å for sucrose in 1A0S 125. Of course the

minimum tunnel radius is obviously not the only factor contributing to specificity in

these cases, as many other nonspecific porins have tunnels with similar radii. The

two cases of PDB codes 2IWV and 2IWW represent a pH-dependent folding change

that blocks the pore 122. When unblocked the minimum radius is 2.25 Å, when

blocked 2 paths formed by side chains on the exterior are found, but no paths are

found through the pore.

To further illustrate the ease with which our code allows paths of related proteins to

be compared, we compare three of these homotrimeric porins with a small minimum

radius (1.9 Å) 117, a medium minimum radius of 3.1 Å 119, and a large minimum

radius of 4.3 Å 115. The first found path for each is shown in Figures 3-10 and 3-11.

In Figure 3-10, the radius is graphed against the distance from the beginning of the

path, and the minimum point is easy to recognize. In Figure 3-11, the structures

with the found paths are shown in increasing size of minimum radius from top to

bottom.

As a final example from the porin set we analyzed the makeup of residues lining the

entire tunnel and each choke point, using the 14 non-blocked structures.  A distance

threshold of 4Å from the radius of the pore was used to define lining residues. The

enrichment factor for each residue was calculated as the fractional occurrence of that

residue lining the path divided by its fractional occurrence over the entire 14 porin
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Figure 3-11 Porin Paths

Pore paths (light blue spheres) of three homo-trimeric porins. The molecular surface

is color coded according to Travel Depth. The minimum pore radius for each protein,

from top to bottom, is 1.9Å  (1E54), 3.1Å (2OMF) and 4.3Å (1PRN).
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Figure 3-12 Residue Enrichment for Porins

The residue makeup of 14 porins. Shown is the enrichment for either the entire path

or the choke point, where enrichment is calculated as the percentage of each residue

in the path or choke point divided by the percentage of each residue in the entire 14

porin set.
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set. This is shown in Figure 3-12. There is the expected enrichment of polar residues

lining the pores, along with a notable enrichment of Arg, Tyr, Glu and Pro residues at

choke-points.

Application to Aquaporin

We also examined the integral membrane protein Aquaporin, (which is not a member

of the porin family) using CHUNNEL, as this protein presents a challenge for

structural analysis of this type due to its complexity, and the small width of the

water pores. Each of the 4 units has a tunnel and there is a central tunnel created

between them 127. It is debatable whether or not the central tunnel has physiological

importance, so it is important to catalog and compare all the tunnels.  We used the

aquaporin structure, PDB code 1J4N 128. In the analysis we found that since the

water channels are very small they are missed using the default CHUNNEL probe

radius of 1.2Å for surface generation. Hence we used a smaller probe radius of 1.0 Å.

However, this creates many small adventitious tunnels where side-chains just barely

touch, particularly on the cystoplasmic face of the structure, and a surface with 37

pores results. Many of the 37 pores result from the alternate mouths for all 5

important tunnels on the cytoplasmic side of the protein. Due to the hole-ridden

cytoplasmic face of the surface and the different exit/plug combinatorics one can

generate hundreds of alternative pore-transiting paths from the half-paths produced

by CHUNNEL. The central channel, formed by tetramerization, has a minimum radius

of 1.97 Å. The 4 water channel paths  found by CHUNNEL have minimum radii of

0.74 Å. Note that this minimum radius is lower than the probe radius used to
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Figure 3-13 The 5 Paths in Aquaporin

The 4 water channels and central channel of an aquaporin, PDB code 1J4N. Each

path shown as a series of spheres. The molecular surface is shown in wireframe. The

extracellular side of the protein is facing up and towards the viewer. At the bottom,

some of the many alternate mouths on the cytoplasmic side of the protein can be

seen.
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construct the surface, due to the finite resolution of the surface and volume

discretization. These five paths are shown in Figure 3-13.

Application to other transmembrane proteins

As a final application for CHUNNEL, we analyzed a larger set of trans-membrane

proteins. To do this, we used a set of 192 structures from the OPM database 42.

These trans-membrane structures were gathered from the PDB and their positions

within the membrane bilayer were calculated computationally and compared with

experiment when possible 129. We chose the OPM database and methodology since it

included not just alpha helices but beta barrels as well, unlike some metrics which

were designed for helical trans-membrane proteins only 130. We accessed this

database and used the 192 trans-membrane structures available on January 28,

2008. We removed waters and hetero atoms from the PDB files, which contain

complete biological units 42. Our goal was first to generate all pore paths using

CHUNNEL. Second, to identify the subset of CHUNNEL paths which pass exactly once

through the membrane bilayer, using the bilayer boundary information of Lomize et

al. Third, to identify tunnels that exit within the membrane bilayer. We presume that

the bilayer transiting pores would be of greatest physiological importance. The OPM

data set also contains many structures for which no physiological path is expected to

be found using the CHUNNEL method, including those involved proton channels or

proton pumps, as well as GPCRs.

No information on the placement of these structures in the lipid bilayer is used in the

CHUNNEL algorithm. This information is used to sort the found paths only after
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Table 3-2 Numbers of Tunnels of Various Types in the OPM database

 
 

Entire

OPM

Alpha-

helical

Beta-

barrel NR25Ad NR25Bd

Entire

OPM,

Radius >

1.8

Alpha-

helical,

Radius >

1.8

Beta-

barrel,

Radius >

1.8

 
Total
Structures 192 140 52      

# of Paths 284 173 111 121 51 82 40 42

Putative
Physiologicala

# of
Structures 52 26 26 19 14 35 19 16

# of Paths 1232 1199 33   284 274 10

One Side Exitb
# of
Structures 73 69 4   30 29 1

# of Paths 446 415 31   87 84 3

Two Side Exitsb
# of
Structures 51 49 2   19 18 1

# of Paths 108 86 22   63 55 8

Side Branchc
# of
Structures 13 12 1   10 9 1

aMembrane-transiting

bOne or both ends of tunnel exit within bilayer.

cBranch off a membrane-transiting path that exits within the bilayer.

dNonredundant set with maximum 25% sequence similarity of proteins with alpha

(NR25A) or beta (NR25B) motif.
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Figure 3-14 Residue Enrichment of Transmembrane Paths in OPM

The residue makeup of the putative physiological paths in the trans-membrane part

of the OPM database42. Shown is the enrichment for either the entire path or the

choke point, where enrichment is calculated as the percentage of each residue in the

path or choke point divided by the percentage of each residue in the entire trans-

membrane set.



108

processing is complete. Note that while the OPM methodology is limited to flat

symmetric membranes, our analysis could be repeated for more general definitions

of membrane barriers, for instance by the use of elastic theory to define the

lipid/water interface 131.

After processing the OPM database with CHUNNEL, 284 membrane-transiting,

putative physiological paths were found in 52 unique structures, indicating that

multiple tunnels are the rule rather than the exception (Table 3-2). Accounting for

degeneracy of paths due to multimeric proteins, there are 175 unique membrane-

transiting paths in 52 unique monomers/proteins. In 28 of these structures, there is

a single unique path per monomer. The mean length of these putative physiological

paths is 126±51Å, much greater than the width of the membrane bilayer (usually 25-

30Å). There are two reasons for this. First, the paths must pass through not just the

lipid barrier, but the whole protein, to reach the convex hull of the protein. Second

the paths are usually not straight, the data set having a mean winding metric of

1.68±0.5.  The path width minima over the set have a mean of 1.35±1.8Å which is

within the expected physiological range considering that 1.2Å probes were used to

construct these surfaces. Enrichments for residues found near the choke point and

near the entire path were calculated relative to the residue composition of the entire

OPM trans-membrane database. These enrichments are shown in Figure 3-14. There

is an overall enrichment of the charged amino acids, particularly Arg, Glu and to a

lesser extent, Lys, and an enrichment of the polar aromatic residue Tyr. For a finer

analysis, the structures were split into either alpha-helical or beta-barreled classes,

and pruned to a maximum of 25% mutual pairwise sequence identity using
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Figure 3-15 Residue Enrichment in Alpha Helical OPM

Residue enrichment for pores and choke points of alpha helical motif proteins of the

OPM database42,  pruned to 25% sequence similarity using PISCES 132.
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Figure 3-16 Residue Enrichment in Beta Barrel OPM

Residue enrichment for pores and choke points of beta barrel motif proteins of the

OPM database42,  pruned to 25% sequence similarity using PISCES132.
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PISCES132. The results are shown in Figures 3-15 and 3-16. Removal of sequence

homologous duplicates insures that these graphs reflect real pore amino acid

preferences, not just sequence conservation.  The same 4-5 residues show

enrichment, but interestingly, the degree of enrichment is much greater in the beta-

barrel class than the alpha-helical class.

Additionally, there is a surprisingly large number of paths, 4879, that do not pass

through both membrane barriers once. This shows the power and importance of the

membrane barrier data of Lomize et al. 42 in analyzing membrane protein pores.

From this set of paths, we analyzed three interesting subsets: 1) Those that start on

one side of the membrane bilayer and emerge within the bilayer. 2) Those that start

and end within the bilayer. 3) The branches of membrane-transiting putative

physiological tunnels that terminate within the bilayer. Other classes of paths, such

as those that lie entirely within a region on one side of the membrane, were not

analyzed. Since we are also interested in paths that could potentially contain water,

we separately identified tunnels whose minimum radius is greater than 1.8Å, the

commonly accepted upper limit on the size of a water. The numbers of such tunnels

and what kind of structures they are found in (alpha-helical or beta-barrel) are

summarized in Table 3-2. When examining the data graphically we notice that when

side exits lie very close to the membrane surface they may exit the protein outside

the membrane but reach the convex hull at a point inside the membrane, in which

case they are classified as exiting inside the bilayer. The reverse situation also

occasionally occurs. This introduces some ambiguity into the classification of intra-

membrane side exits, and some degree of uncertainty in the numbers tabulated in
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Figure 3-17 Paths in a Complicated Membrane Protein

The mechanosensitive channel of small conductance (MscS), PDB code 2OAU, shown

with the membrane barriers in red and blue disks. The complete tree of paths is

shown in blue spheres, the end points in red spheres. Some of the branched tunnels

shown in green. At left, no protein is shown for clarity, at right, the Travel Depth

surface is shown.
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Table 3-2. In specific proteins of interest, the ambiguity is easily resolved using

graphical analysis.

The overall message from the data in Table 3-2 is that complicated tunnel

topologies, defined as multiple membrane transiting paths, paths with intra-

membrane exits, and branches with intra-membrane exits are not rare. For example

side tunnels and branched tunnels, although not ubiquitous, are quite common. Of

particular interest is that they are much more common in alpha-helical domains than

in beta-barrel domains. As a good example of a complicated tunnel structure, we

show the Mechano-sensitive channel of small conductance (MscS)93 in Figure 3-17,

showing the complete tree structure of the tunnels and some of the intra-membrane

branched tunnels as well.

Preferences for residues lining intra-membrane exiting and side branching tunnels

were also examined. The most interesting case appears to be the paths and choke

points of the tunnels that branch off of physiological tunnels that exit inside the

membrane. Strikingly, a strong, five-fold enrichment for Trp is shown (Figure 3-18).

Even using the residue composition of the protein regions just within the membrane

barriers, the enrichment of Trp in these branch paths is still over 2-fold, and near

choke points is still almost 3.5-fold. It has been noted that in many membrane

protein structures tryptophan is often found near the polar head group, and head-

group/acyl chain interfaces regions of bilayers 130; 133. Together these data imply that

side branches preferentially exit in this polar/apolar transition region of the

membrane. Significant amounts of water within the membrane are also observed in
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Figure 3-18 Residue Enrichment For Branched Side Tunnels

Enrichment of residues near the branches of putative physiological tunnels that exit

into the membrane bilayer.
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the head-group/acyl chain interface region 134. It is thus likely that these side branch

exits are accessible to some water.

Discussion and Future Work

We have presented here the implementation and testing of a new algorithm,

CHUNNEL, to automatically find and characterizes pores in proteins. The main

contribution of CHUNNEL is the ability to identify and catalog all the tunnels through

a given surface, which neither HOLE 40, CAVER 36; 104 nor other work 95; 103 could

accomplish automatically. Though CHUNNEL is markedly slower than HOLE due to

complicated geometrical and topological computations, the results are worth it for

various applications. Moreover, complete automation is necessary for analyzing more

than a handful of structures, and for the membrane protein databases. These

databases are growing at a steady pace due in part to structural genomics projects

101. Our analysis of the trans-membrane portion of the OPM database 42 is the first

large-scale, automated analysis of channels that pass through the membrane barrier.

A second contribution of CHUNNEL is the ability to easily analyze structure and

residue composition of the pores. Some studies on smaller classes of trans-

membrane proteins have been conducted, for instance on aquaporins and related

proteins 102; 135. These studies highlighted the arginine/aromatic selectivity filter. Our

results on a much larger OPM data set confirm this pattern of residue enrichment:

Both arginine and tyrosine are highly enriched at choke points in the larger set,

shown in Figure 3-14. Arginine is also highly enriched in the choke points of the

unrelated outer membrane porin family, shown in Figure 3-12. We also partitioned
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membrane proteins of the OPM trans-membrane database into the two alpha helix

and beta barrel motif subsets. The analysis of the residue enrichment shows

significant differences between these two motifs (Figures 3-13 and 3-14

respectively). The beta barrel motif has a less uniform distribution, showing stronger

preferences for Arg, Glu, Lys and Met than the alpha helix motif. In other words the

alpha helix subset seems to favor a wider variety of amino acids in choke points than

the beta barrel subset. The reasons for this marked difference in amino acid

preferences with structural motif are unknown at this time. Possible factors include

evolutionary and environment constraints, since the beta-barrel trans-membrane

proteins are only found (so far) in the outer membrane of bacteria. Since there is still

a small number of non-homologous proteins with trans-membrane paths in either

class (14 beta barrels 19 alpha helices), these difference may be due in part to

normal statistical fluctuations. As the database expands in future, this question can

be easily revisited, due to the automated nature of CHUNNEL.

Another striking finding is the sheer number of tunnels and tunnel branches in

membrane proteins, both membrane transiting, and non-transiting.  While additional

channels in the extra-membrane portions of membrane proteins have been noted, to

our knowledge, the analysis here is the first to draw attention to and analyze the

multitude of intra-membrane exiting channels. In part this is a consequence of

HOLE’s intrinsic design for finding linear tunnels: These side or branched tunnels

would not be found with previous methods. Regarding the physiological importance

of these additional tunnels and branches, this can be systematically evaluated based

on the tunnel type:



117

1. Both exits in the aqueous phase, and transiting the membrane once. This is

the 'classical' tunnel of putative physiological function, subject of numerous

analyses. Presumably at least one such channel must exist in the 'open' state

for the protein to function. The exception is for proton or electron transport

across the membrane, which can occur through 'wires' or chains of donors

and acceptors. Here, due to the small size of the permeant entity, no actual

tunnel may exist.

2. Both exits in the aqueous phase, not transiting the membrane, i.e. confined

to the extra-membrane region on one side of the membrane. This is not likely

to have any functional importance.

3. A branch off a membrane transiting tunnel, with the exit in the aqueous

phase. If the selectivity filter, or highest energy barrier controlling the flux is

in the common part of the tunnel, before the branch, then the extra mouth is

likely to have a small effect, otherwise an extra branch would create a 'short-

circuit' The extra entrance may however increase the probability of the

substrate finding the channel, which at low concentrations could increase the

rate. Multiple entrances may also play a role if multi-substrate interactions,

such as ion-ion interactions, are important in conduction 136.

4. A branch off a membrane transiting tunnel, with the exit in the membrane

interior.  For an ionic or polar substrate, presumably the solvation penalty for

exiting in the membrane, compared to the aqueous phase, is so high that

conductance is minimal. Effectively the apolar part of the membrane 'plugs'
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such leaks. This may explain why such tunnels are relatively common, as

there is little evolutionary pressure for a protein to evolve a structure that is

completely leak-proof alone. However, there is a propensity for such tunnels

to exit in the transitional region between acyl tails and head groups, where

there is a significant amount of water. Thus a sufficient degree of hydration to

allow leakage currents cannot be ruled out. The existence of such water filled

side tunnels also has implications for the interpretation of membrane

structure probing experiments such as cys-labelling and spin labelling

mapping of water accessible and inaccessible regions 137; 138; 139. Regions may

be accessible to the probes, but inside the membrane. In a solubilized form of

KcsA, waters can be seen to exit and enter through these side tunnels under

molecular dynamics simulations 140. Finally, since any such tunnels with a

minimum radius of 1.8Å or greater are presumably filled with water, this may

play a role in the energetics and dynamics of substrate permeation. First, by

providing an additional reservoir of water in the interior of the channel that

could help hydrate ions. Due to the long range nature of the electrostatic

interaction, this water need not actually be touching the ion, or even in the

main channel to be energetically significant. The energetic effects need not be

limited to the permeant ion. Voltage sensing of channels require that charge

elements be moved in the membrane, and the energy of this would be

affected by nearby water 141. Second, in allowing water to flow in or out in

response to substrate movement. In many cases the main channel is narrow

enough that substrates and waters must move in file, requiring concerted
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movements and limiting conductance 136. Additional water passages ahead or

behind the substrate could facilitate motion.

5. One or both exits inside the membrane region. These could play a role in

allowing  the interaction between membrane soluble carriers and channel

permeant species. Examples of the former include the apolar quinones that

interact with the bc(1) complex 142.

Clearly more analysis of such epiphytic channels needs to be done in specific cases

to investigate their functional importance.

Future work in this area includes calculation of additional metrics and pore

properties, with the aim of possibly distinguishing non-physiological tunnels from ion

channels and pores from the structure in the absence of relevant experimental data.

While the influence of some geometric properties on various properties of tunnels,

particularly ion channels 143, has been conducted, there is still much work to be done

in this area, in part because the databases are still developing, in part from lack of

fully automated, reliable pore finding. A single metric used here, the largest

minimum radius, correctly identified the physiological tunnels in the porin set.

However, a complete set of geometric features, as well as other physical features will

no doubt be necessary if we are to identify physiological tunnels of other classes of

protein. In this regard, we point out that CHUNNEL, like HOLE and CAVER, does not

provide much assistance in finding the paths of proton channels. Proton channels

function in a different manner than ion channels in that the proton is not necessarily

transferred through an open tunnel 144. Thus reducing the probe radius is of no help.
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CHUNNEL uses a set probe radius, chosen in advance to be smaller than the smallest

permeant specie of the channel(s) being analyzed. An interesting alternative is to

use methods taken from the alpha-shape filter idea 11. This would allow one to find a

probe radius where the first topological tunnel emerges. However finding additional

tunnels would require complete recomputation of the CHUNNEL procedure as the

alpha-shape filter changes, effectively decreasing the probe radius and changing the

entire surface. This is currently beyond practical computational capabilities. For this

reason as well as reliance on previous code for surface generation we currently

implement a fixed, user controlled probe radius parameter, rather than an

automated method.

Further work in both the algorithm and the implementation remains to be done. The

quadratic dependence of the algorithmic complexity on the number of holes is

acceptable, but should be improved as the program can take hours to run if the

surface has many holes. The worst combination is an extremely large complicated

structure and a very small probe radius, these prove to be impractical to run on

desktop workstations. Improvement here may also make the automated probe

radius option discussed above feasible.

The methods developed here to find a topologically complete and geometrically

distinct set of loops could prove useful in other applications. The ability to remove

the handles from an n-torus and turn it into a topological sphere is a powerful

method in many fields of computational geometry, for instance to use spherical

harmonic methods 145. Since our removals are done to cap tunnels roughly at their

narrowest point, the caps are geometrically well placed. For other applications it may



121

be better to remove handles by cutting the handles at their narrowest point, or

possibly a mix of cutting handles and capping tunnels. For instance, removing each

handle by doing the smallest amount of changes would result in the closest thing to

a topological sphere for a given protein surface, which would be useful for algorithms

that only work on topological spheres, for instance mapping complicated topological

spheres to geometric spheres 146.

In summary, we introduce a method, CHUNNEL, that automatically finds starting

points and paths for all possible topological tunnels through a macromolecular

surface. This improves upon the mostly, but not completely automated methods of

HOLE 40 and CAVER 36; 104. Starting points found using our method can be used by

these other methods as well, in fact a hybrid approach may be advantageous for

some applications. We show that we can find all known paths in a constructed data

set of drilled tunnels and show examples and some overall analysis from a set of

trans-membrane proteins 42, including automatic identification of residues found near

the tunnels or in the choke points.      
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Chapter 4

This chapter is based on previously published work 57

Summary

Organisms evolved at high temperatures must maintain their proteins’ structures in

the face of increased thermal disorder. This challenge results in differences in residue

utilization and overall structure. Focusing on thermostable/mesostable pairs of

homologous structures, we have examined these differences using novel geometric

measures: specifically Burial Depth (distance from the molecular surface to each

atom) and Travel Depth (distance from the convex hull to the molecular surface that

avoids the protein interior). These along with common metrics like packing and

Wadell Sphericity are used to gain insight into the constraints experienced by

thermophiles.

Mean Travel Depth of hyperthermostable proteins is significantly less than that of

their mesostable counterparts, indicating smaller, less numerous and less deep

pockets. The mean Burial Depth of hyperthermostable proteins is significantly higher

than that of mesostable proteins indicating that they bury more atoms further from

the surface. The Burial Depth can also be tracked on the individual residue level,

adding a finer level of detail to the standard exposed surface area analysis.
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Hyperthermostable proteins for the first time are shown to be more spherical than

their mesostable homologues, regardless of when and how they adapted to extreme

temperature. Additionally, residue specific Burial Depth examinations reveal that

charged residues stay unburied, most other residues are slightly more buried and

Alanine is more significantly buried in hyperthermostable proteins.

Introduction

It seems likely that hyperthermophilic archaea occupy positions near the root of the

phylogenetic tree of life. However, there is still some debate as to whether life

originated in hyperthermophilic conditions 147; 148; 149. Nevertheless, life has adapted

to many niche temperatures. Of these, the high temperature niche is the most

puzzling to explain from a thermodynamic perspective, due to the increased thermal

disorder that favours denatured or unfolded states. In addition to insights into

fundamentals of protein stability, the discovery of thermostable variants of many

enzymes has led to many practical applications 47. Understanding how these variants

achieve thermostability could lead to new ways to design proteins for greater

thermostability, among other applications.

Inspired by recent work examining protein structures from a range of environmental

temperatures from mesophiles to hyperthermophiles 51 we wanted to examine the

overall shape and structural features of these proteins using recent advances in

protein shape analysis. Additionally, we wanted to perform a more detailed analysis

of structure at the residue level. With the ongoing determination of structural data
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on many homologues from various thermophiles and mesophiles, such overall

structural differences can now be examined with increasing statistical resolution.

Many structural features that could lead to increased thermostability have been

examined previously, and diverse factors have been found to differ between

thermostable proteins and mesostable proteins with varying degrees of significance.

The picture is further complicated when considering the extremity of the temperature

(thermophiles vs. hyperthermophiles) 51; 52 and the evolutionary background of the

organism- ancient (original?) thermophiles vs. acquired themophilicity 150. Structural

factors that have been studied include increased hydrogen bonding in thermostable

proteins 48; 53; 55; 150; 151; 152, an increase in the frequency of ion pairs and electrostatic

contributions in thermostable proteins 48; 51; 52; 53; 55; 152; 153; 154; 155; 156 and an increase

in the amount of certain apolar contacts 157. Differences in unfolding have been

studied by various methods 150; 158 including differences in rotamer states 51; 156. Also

the differences in solvent exposed surface area have been examined 48; 49; 50; 51; 52; 53;

54; 55. Van der Waals interactions, the amount of packing, and the number and size of

cavities have been examined but lead to conflicting conclusions 53; 150; 152; 156; 159. This

is only a brief review of the structural features examined on multiple sets of protein

pairs; Many other features have been examined, but only on single pairs of protein

structures or by sequence based analysis.

Surprisingly, there has been no definitive study of overall shape and geometry

differences, such as sphericity, arising from environmental temperature differences.

This work addresses this by examining the overall geometric structure of

thermostable proteins. In addition, we perform a finer resolution analysis of surface
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exposure. Previous work 48; 49; 50; 52 examined the solvent exposed surface area

changes per atom type, residue, or residue group. Some studies examined just the

nonpolar exposed surface area changes 51 or the differing counts of residues that

were exposed or buried according to a cutoff of solvent accessible area 53. Only one

previous study accounted for the overall shape changes by correcting the surface

areas examined 55. In this study, we not only identify residues that are buried, but

we examine how deeply they are buried, using the distance to nearest point on the

protein surface, or ‘Burial Depth.’ We also use Travel Depth 35 to examine the overall

structure of the pockets and clefts of the proteins. Combined, these two depth

measures provide complementary measures of how spherical the proteins are, if they

are closer to ideal spheres or if they have more indentations, dimples and clefts.

We use a collated data set 51 which contains homologous structures from both

mesophiles and several kinds of thermophiles. Both moderate thermophiles (45° C to

80° C)  and hyperthermophiles  (above 80° C) are examined. Additionally, we break

the class of hyperthermophiles into two subsets, the Ancient hyperthermophiles that

have been hyperthermophiles for their entire evolutionary history 160, and Recent

hyperthermophiles like Thermotoga maritima that only recently became

hyperthermophiles 149; 161. This follows the lead of previous work where a similar split

in the class of hyperthermophiles was used 150.
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Materials and Methods

Data Collection

We use the recent data set of Greaves and Warwicker 51 that contains pairs

consisting of a thermostable protein and a homologous mesostable protein. We use

primarily the ‘67’ set of data since these structures have pairs with chain lengths

differing by 30 residues or less. Only such similarly sized structures are appropriate

for most shape analysis. We do, however, use the larger ‘291’ set for some

additional analyses that do not depend on overall protein size. We examine both the

moderate thermophiles and hyperthermophiles, and in addition we examine two

subsets of the hyperthermophiles, the Ancient and Recent. The only organism in the

dataset known to have recently adapted to extreme high temperatures is

Thermotoga Maritima 149; 150; 161. To be counted as Recent in our analysis, the protein

must be from T. maritima, additionally it must not be from an Archaeal lateral gene

transfer 161. Each protein from T. maritima in the 67 set 51 has closest relatives from

other bacteria and is therefore presumably not from lateral gene transfer from an

already hyperthermophilic archaea. There are 12 pairs in the Recent-mesophile set,

and 18 pairs in the Ancient-mesophile set, for a total of 30 pairs in the Combined

hyperthermophile-mesophile set. There are 37 pairs in the moderate thermophile-

mesophile set.

Files of single domains as specified 51 were downloaded from the Protein Data Bank

16. In the case of multiple NMR structures, the structure closest to the average

structure was used as representative of the set. All waters were removed from
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crystal structures. Hydrogens are assigned a radius of zero in our van der Waals radii

set 3, effectively ignoring them for all analyses. A 1.8Å probe radius was used for all

packing, surface construction, Travel Depth, Burial Depth analyses, as this is

consistent with a water sphere. For the Burial Depth and Travel Depth analyses

cavities are removed after surfaces were constructed.

Packing

Protein packing can be calculated by using the Voronoi construction 9; 162; 163; 164; 165;

166. A Voronoi cell is defined as the volume that is closer to the given atom (or point

in the more general sense) than any other atom 26; 45. Defining the packing as the

percentage of the volume of the Voronoi Cell filled by the van der Waals volume of

the atom, packing is well-defined for completely buried or interior atoms. However,

surface atoms have infinite Voronoi cells which must be restricted if a meaningful

measure of their packing is to be computed. Methods of ‘capping’ the Voronoi cells of

surface atoms include using the molecular surface as the bounding volume 167 or

using crystallographic waters 9; 163; 166; 168. Availability of sufficient crystallographic

waters to cap depends on the resolution of the structure and how it was refined.

Moreover, waters are entirely absent from NMR determined structures. For these

reasons we decided to analyse surface and buried atoms separately. For the former

we used the solvent accessible surface of each atom to generate the Voronoi cell

capping. The solvent accessible surface is generated from van der Waals radius plus

probe radius, so it lies a constant distance from the atom regardless of protein

shape. However this method of capping is somewhat arbitrary, as are other methods

used to determine the packing of surface atoms.  For this reason, in detailed
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comparisons of packing, we believe it is more reliable to use just the interior atoms,

which are bounded on all sides by identically defined and generated surfaces.

Travel Depth

Previously, Travel Depth was established as a useful measure of depth of the

molecular surface for examining pockets and ligand binding sites as well as the

overall depth of the surface 35. Travel Depth is defined as the minimum distance from

any surface point to the convex hull avoiding the protein interior, and is calculated

using the Multiple Source Shortest Paths (MSSP) algorithm 23. The original

implementation has been improved for speed, flexibility and additional features 43.

Burial Depth

Atom burial depth has been used several times previously to analyze protein

structure, although somewhat varying definitions exist in the literature, depending

upon the exact implementation and desired use 19; 20; 21 17; 22; 169, see the review of

Pintar et al 18. However no measure of burial depth has previously been applied to

analyzing differences in thermostable and mesostable structures. A closely related

method uses burial and counting nearby hydrophobic residues to discriminate native

folds from decoys 170. Another related concept is that of centrality or closeness of a

graph connecting nearby atoms, used in various applications 171 77; 172 173; 174. Atom

Burial Depth is defined here as the distance of the atom to the nearest point on the

molecular surface. It is most efficiently calculated by starting from the molecular

surface and labelling sequentially deeper points into the protein interior, using the

same MSSP algorithm as for Travel Depth 35; 43.
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Interatomic Distances, Wadell Sphericity, Convex Hull

Volume

We also examined several other shape metrics to see if they could discriminate

between thermostable and mesostable proteins. The first was the mean interatomic

distance. In principle this could be sensitive to how spherical and well-packed the

folded structure is, with the advantage that it is exceptionally simple to compute,

requiring only atomic coordinates, not the protein surface. The second metric was

the convex hull volume, which would be larger if the protein structure is more spread

out, or less ‘compact’ at the larger, molecular scale. We note that compact is a

pervasive yet ambiguous term in the literature on thermostable proteins. It has been

used to refer to the efficiency of packing as measured by a Voronoi or similar

analysis. It has also been used to refer to the number of contacts of a certain type,

for instance hydrogen bonds, van der Waals contacts, etc. Finally it could refer to the

extent of a protein, how ‘splayed out’ it is. Here we use compactness only in this

sense, as defined by the convex hull volume. All other usages can be replaced by

better terms.

The third metric, used previously to evaluate roundness of rocks and crystals, is

Wadell Sphericity 175, a dimensionless ratio of volume and surface area designed to

have an upper bound of 1 (perfectly spherical), and decreasing to 0 the further from

perfectly spherical the shape is. The formula for this ratio is given by Equation 4-1

and it was calculated exactly from our triangulated molecular surfaces.
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Statistical Tests

Statistical significance is evaluated by permutation testing, by randomly switching

(or not switching) the labels on each thermostable and mesostable pair and

recomputing the difference in means of each metric across each category, and

evaluating if the original difference is extremal to each permuted difference 176. We

used two individual one-tailed tests, meaning the permuted means found are

checked to see if they are less than or greater than the original. In all cases the

lower p-value is reported. Each statistical test reported was done using 1,000,000

permutations in the case of overall tests and 10,000 permutations in the case of

residue-specific tests. Importantly, in residue specific tests, the overall difference in

means was used as a correction factor to the difference in means when analyzing

which residues become more buried or unburied. A standard threshold of 0.05 was

used as a cutoff for significance.

Results

Packing, Mean Distance, Convex Hull Volume and

Wadell Sphericity

The packing analysis was performed on each atom in each structure, the results

were separately accumulated over either all buried or all surface atoms in each
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Figure 4-1 Packing in Hyperthermostable Proteins

Packing percentage in the buried category comparison between Recent or Ancient

hyperthermostable vs. matched mesostable proteins for completely buried atoms.
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protein and the mean of these numbers and the combined mean over all atoms was

used to evaluate significance. Packing of recent and ancient hyperthermostable

proteins is compared with their mesostable counterparts in Figures 4-1a and 4-1b for

the buried and surface atoms, respectively. The results are summarized in Table 4-1

for the various thermostable categories compared to their mesostable counterparts.

No significant differences were found in packing of interior atoms for any

thermostable set. Surface atoms, however, are significantly more tightly packed in

both the ancient and combined hyperthermostable proteins.

The mean of the interatomic distance was computed across all heavy atoms, the

results between the various thermostable proteins and their matched mesostable

proteins are summarized in Table 4-1 and the results for the hyperthermostable

categories are shown in Figure 4-2. No significant differences were found for any

thermostable set. The convex hull volume, a metric for the overall extent of the

protein also showed no significant difference in any category, again shown in Table

4-1.

The Wadell Sphericity 175 of each protein surface was computed by calculating the

area and volume of the triangulated surfaces, and the dimensionless ratio given by

Eq. 1 computed. The results are shown in Figure 4-3 and summarized in Table 4-1.

Hyperthermostable proteins are significantly more spherical than their mesostable

counterparts.  No difference is found for moderate thermostable proteins.

Wadell Sphericity is size independent so the analysis was also conducted on the ‘291’

set 51. The difference in mean Wadell Sphericity between the 144 pairs of
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Table 4-1  Summary of Differences in Mean Values of Geometric Measures

Geometric

Measurea

Moderate

Thermostable

Recent Hyper-

thermostable

Ancient Hyper-

thermostable

All Hyper-

thermostable

Number of Pairs 37 12 18 30

Packing of Buried

Atoms (%)

0.44

(0.06)

-0.10

(0.39)

0.16

(0.28)

0.06

(0.39)

Packing of Surface

Atoms (%)

-0.01

(0.24)

0.28

(0.16)

0.59

(<0.01)

0.47

(<0.01)

Mean Interatomic

Distance (Å)

0.08

(0.38)

-0.40

(0.27)

-0.50

(0.12)

-0.40

(0.08)

Convex Hull

Volume (Å3)

5

(0.5)

-1739

(0.3)

-3321

(0.08)

-2688

(0.06)

Volume (Å3) -430 1310 289 697
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(0.12) (0.07) (0.33) (0.08)

Surface Area (Å2) -143

(0.23)

-227

(0.27)

-533

(<0.01)

-411

(0.02)

Wadelll Sphericity 0.002

(0.42)

0.027

(0.05)

0.039

(<0.01)

0.034

(<0.01)

Mean Travel

Depth (Å)

-0.06

(0.34)

-0.40

(0.05)

-0.50

(<0.01)

-0.46

(<0.01)

Mean Travel

Depth/H1/3 (Å) b

-0.001

(0.41)

-0.044

(0.03)

-0.047

(<0.01)

-0.065

(<0.01)

Mean Burial

Depth (Å)

0.12

(0.10)

0.13

(0.01)

0.12

(<0.01)

0.13

(<0.01)

a Data is shown as the mean of the thermostable category minus the mean of the

mesostable category. Statistical p-values for the lower of the two one-tailed tests follow

in parentheses. Values with a p-value below the significance threshold of 0.05 are

shown in bold.

b Mean Travel Depth divided by the cube root of the number of heavy atoms in the

molecule, H.



135

Figure 4-2 Interatomic Distances in Hyperthermostable Proteins

The mean interatomic distance compared across Recent or Ancient

hyperthermostable vs. matched mesostable proteins.
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Figure 4-3 Wadell Sphericity in Hyperthermostable Proteins

Wadell Sphericity compared between Recent or Ancient hyperthermostable vs.

matched mesostable proteins.
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hyperthermostable-mesostable structures was 0.035, with p<<0.001. These results

indicate that in the larger set of hyperthermostable proteins, they too have become

more spherical.

Travel Depth and Burial Depth

The Travel Depth analysis was conducted on each protein structure. The mean Travel

Depth, Tav, was computed by averaging over all surface points as described

previously 35.  This mean was used to compare the various thermostable categories

with their mesostable homologues, the results are shown in Figure 4-4 and

summarized in Table 4-1. Hyperthermostable proteins have significantly smaller

values of Tav, indicating a less convoluted surface. Since the maximum depth of a

pocket is limited by the linear dimensions of the molecule, variation in size of

proteins potentially complicates the interpretation of average travel depth. The

volume of the protein is closely proportional to the number of heavy atoms, H, so

H1/3 provides a convenient measure of the average linear dimension of the molecule.

Indeed Figure 4-5 shows that on average, travel depth increases linearly with the

linear extent of the protein, for mesostable, thermostable, and hyperthermostable

proteins.  The scaled average travel depth, Tav/H
1/3 thus provides a good measure of

the relative roughness of the molecule, in a fractal sense, as shown before on a

larger class of small molecule binding proteins 35. Differences in scaled average

travel depth,Tav/H
1/3, are summarized in Table 4-1, and are also significantly smaller

for both hyperthermostable categories.
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Figure 4-4 Travel Depth in Thermostable Proteins

Mean Travel Depth compared between (a) Moderate thermostable (b)

Hyperthermostable and the respective matched mesostable proteins.
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Figure 4-5 Size-Scaled Travel Depth in Thermostable Proteins

Mean Travel Depth is plotted vs. the cube root of the number of heavy atoms. (a)

Moderate thermostable and the matched mesostable proteins. (b)

Hyperthermostable and the matched mesostable proteins. Trendlines for each set are

shown on the figure.
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The Mean Burial Depth of all atoms in each protein structure was computed and the

results are summarized in Table 4-1. Atoms are significantly more deeply buried in

hyperthermostable proteins, by slightly more than a tenth of an Ångstrom. This is a

very small difference, but it is an average over a large number of atoms, and it is

statistically significant. The consistently deeper burial of atoms in hyperthermostable

proteins is made more evident in complete histograms of Burial Depth accumulated

over all atoms types, shown in Figure 4-6. The histogram for both hyperthermostable

classes is consistently shifted to the right, indicating greater burial depth. This

rightward shift is even clearer in the cumulative difference histogram. If just the C$

atom of each residue (Ca for glycine) is used for the burial depth analysis, very

similar histograms, means, and p-values result. So for this kind of analysis the single

atom burial is a good proxy for that of the entire residue.

Both smaller mean travel depths, and greater mean burial depths in

hyperthermostable proteins indicate a more spherical shape in hyperthermostable

proteins as compared to mesostable proteins. This is illustrated graphically for an

ancient hyperthermostable-mesostable matched pair of protein structures of

Phosphoserine Phosphatase in Figure 4-7. The molecular surface on the left is

colored by Travel Depth, while the right hand bond representation is colored by

Burial Depth. The hyperthermostable protein (upper panels) clearly has more red

colored (shallow) surface, and more red colored (deeply buried) atoms.

Since the size scale Travel Depth metric, Tav/H
1/3, largely removes the effect of

protein size, one can compare mesostable and thermostable proteins that differ

substantially in size, for which there are more proteins to compare. This metric was
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Figure 4-6 Burial Depth in Hyperthermostable Proteins

The figures show normalized counts of all atoms vs. burial depth for the

thermostable and mesostable proteins, the difference in frequency distributions

(Thermostable-Mesostable), and the cumulative frequency difference distribution. (a)

Ancient hyperthermostable vs. matched mesostable proteins. (b) Recent

hyperthermostable vs. matched mesostable proteins.
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Figure 4-7 Example Structure Pair Colored by Travel Depth and Burial Depth

An example matched pair of protein structures: hyperthermostable Phosphoserine

Phosphatase (top, PDB code 1L7M177) and mesostable Phosphoserine Phosphatase

(bottom, PDB code 1NNL178). At left, the molecular surface is colored by increasing

Travel Depth from red to green to blue. At right the wireframe representation is

colored by increasing Burial Depth from blue to green to red. Images were generated

using a customized PyMOL 64.
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applied to the substantially larger ‘291’ set of  144 hyperthermostable-mesostable

pairs 51, and the results are shown in Figure 4-8. While there is considerable scatter,

the data again show that hyperthermostable proteins have significantly shallower

surfaces, as can be seen in the linear trendlines. By analyzing the means of the

ratios Tav/H
1/3, a statistical analysis was performed, resulting in a p-value of 5.6 x 10-

5 indicating that the differences are significant.

In order to check the sensitivity of the Burial Depth and Travel Depth analysis to

slightly different structures, we ran the analyses on a complete set of NMR structures

forming one hyperthermostable-mesostable pair. The structures chosen were PDB

codes 1JDQ and 1JE3 179. Each had 20 models. The mean Burial Depth had standard

deviations of only 0.017Å for both the hyperthermostable and mesostable protein.

Since the mean difference in burial depth from Table 4-1 is nearly ten fold greater,

this indicates that the Burial Depth analysis is not very sensitive to changes in which

NMR structure was used. The mean Travel Depth had standard deviations of 0.24 Å

and 0.13 Å for these two molecules, , which is smaller than the difference in means

(0.5Å), also showing that Travel Depth is also not very sensitive to which NMR

structure is used. Use of a single NMR structure out of the complete set of models

seems reasonable.

The differences in burial depth of each specific residue type were also examined by

comparing burials of the C$ atom (Ca for Glycine). Results are shown in Figure 4-9 for

each of the 4 thermostable-mesostable classes. P-values for these individual residue

burial differences were calculated by permutation, as described in the methods

section. In computing the P-values, computed mean burial differences we first
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Figure 4-8 Size-Scaled Travel Depth for the Larger Hyperthermostable Set

Along the x-axis is the cube root of the heavy atom count, along the y-axis is the

mean Travel Depth. Data for the ‘291’ set of  144 hyperthermostable proteins and

matched mesostable proteins is shown along with trendlines and p-values. The mean

of the ratios for the hyperthermostable proteins is 0.445 and for mesostable proteins

the mean is 0.472, the p-value of this difference is 5.6 x 10-5.
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corrected by subtracting the difference in mean Burial Depth of C$ atoms (Ca for

Glycine) over all residue types as described above. These corrections were 0.028,

0.13, 0.135, and 0.126 for the moderate thermostable, hyperthermostable, recent

and ancient classes respectively. Residues with significant differences (p<0.05) are

indicated by their p-values on the figure.

The hyperthermostable-mesostable dataset has the largest amount of significant

differences as shown in Figure 4-9b. Alanine shows the largest change and is

significantly more buried in hyperthermostable proteins as shown in detail in Figure

4-10. Cysteine, Tryptophan and Valine show large trends to being more buried, but

these changes are not statistically significant according to the analysis, after

correcting for overall depth differences. Six residues are less buried in the

hyperthermostable proteins. Given that the correction factors are all positive (all

residues on average are more buried in hyperthermostable proteins) it would be

more correct to say that these six residues stay unburied in hyperthermostable

proteins while all other residues get slightly more buried and alanine is much more

buried. These 6 residues are the 4 charged residues (Aspartic Acid, Glutamic Acid,

Lysine and Arginine) as well as Histidine and Asparagine. Note that Histidine can also

likely to be charged as the pKa is near physiological conditions. Since Asparagine is

chemically labile at high temperatures 52 and may spontaneously deaminate to

Aspartate, probably all the residues we find less buried in hyperthermostable

proteins are charged. Only one that may be considered charged at high

temperatures (Glutamine, chemically labile at high temperatures forming Glutamic

Acid) is not less buried. This result is consistent with previous studies indicating
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Figure 4-9 Residue Specific Burial Depth in Thermostable Proteins

The difference in Burial Depth for the C$ atom of each residue type (Ca for Glycine),

expressed as Thermostable minus the matched Mesostable proteins.  Significantly

more buried residues are shown in black, significantly less buried residues are shown

in white, p-values for significant differences are shown above or below each bar.

These p-values were corrected for the overall Burial Depth differences seen between

each thermostable-mesostable set. (a) Moderate Thermostable. (b) All

Hyperthermostable. (c) Recent Hyperthermostable. (d) Ancient Hyperthermostable.
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increased ion pairs and ion pair networks in thermostable proteins 48; 51; 52; 152; 153; 154;

155.

Recent and Ancient hyperthermophiles, as subsets of the entire hyperthermophile

set, yield similar results as the latter (Figures 4-9c and 4-9d respectively).

Interestingly, though Alanine is more buried in the Ancient class, it is not significant

according to the statistical analysis, with a p-value of 0.15. However, four of the

above six ‘charged’ amino acids are also significantly less buried in the Ancient class.

In the Recent class, Alanine is significantly more buried, the difference being even

more pronounced than in the combined data. Again, four of the six ‘charged’ amino

acids are significantly less buried, although it is a different four from the Ancient

category. We emphasize that these are significant differences in residue burial that

do not show up with just a surface/interior binary data analysis 51; 53.

The distribution of burial depth of individual residue types that are significantly more

or less buried in hyperthermostable proteins was examined in more detail by

comparing the complete probability distribution histogram of burial depths. Results

are shown in Figure 4-10 for just for one especially interesting case, alanine. Alanine

was found to be significantly depleted overall in hyperthermostable proteins, while at

the same time less exposed 51. It has been suggested that this relative enrichment of

buried alanine is due to the zero side chain entropy cost 51. Our results also show

that alanine is depleted near the surface of hyperthermostable proteins compared to

mesostable proteins, and moreover that it is enriched right into the protein core (i.e.

at Burial depths down to 6Å).
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Figure 4-10 Histogram of Burial Depth of Alanine

Normalized frequency histograms of Burial Depth of the C$ atom for Alanine for

mesostable and all hyperthermostable proteins.
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Discussion

We examined ten different metrics of protein ‘shape’, using three sets of

thermophile-mesophile pairs: Moderate thermophiles, ancient hyperthermophiles and

recent hyperthermophiles, 67 pairs of proteins in all. Each thermostable protein was

matched to the mesostable homologue of similar size, in order to increase the

statistical resolution of the comparisons. For the moderate thermophile–mesophile

set none of the metrics were significantly different. For the hyperthermophiles,

significant differences in several metrics were found, including packing of surface

atoms, surface area, Wadell Sphericity, travel depth and burial depth. Of these, only

Wadell Sphericity, travel depth and burial depth were significantly different in both

recent and ancient hyperthermostable proteins.

Hyperthermostable proteins on average have a higher Wadell sphericity, have fewer

and or less deep pockets on their surface, and their residues are on average more

deeply buried than in their mesostable counterparts. Taken together, these three

metrics provide the first quantitative evidence that hyperthermostable proteins are

more spherical. The fact that moderate thermostable proteins show no significant

differences in overall shape while hyperthermostable proteins do is in line with

previous reports moderate thermophiles and hyperthermophiles have achieved their

necessary thermostability by different mechanisms 51. We cannot rule out the

possibility that some other shape metric would reveal differences between moderate

thermostable proteins and their mesostable counterparts. However, given the fact

that several of the shape metrics do reveal differences for hyperthermostable

proteins, we conclude that adaptation to moderately elevated temperatures requires
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changes at the individual residue level that need produce little change in gross

physical aspects of the proteins to achieve the necessary moderate increase in

stability.

We consider now in more detail what the individual metrics reveal. Regarding

packing efficiency, the most reliable metric is that for buried atoms, and this shows

no significant difference between hyperthermostable and mesostable proteins. The

similarity in interior packing is consistent with other analyses 159.  It is interesting to

note that the observed increase in hydrogen bonding at higher temperatures does

not correlate with increased packing in the interior 48; 150; 151; 152. The packing of

surface atoms is greater on average in one class, ancient hyperthermostable proteins

and the superclass of all hyperthermostable proteins. This is consistent with some

evidence that surface residues have more contacts in thermostable proteins than

mesostable proteins 53. However, the conclusion that in one class surface atoms are

better packed must be qualified. The definition of packing of surface atoms is not

agreed on, and another definition may lead to different results. This ambiguity is

illustrated by considering the absolute values of the packing efficiency. Moreover,

surface atom packing is confounded by curvature effects in some definitions. In our

method, for example, exposed atoms near convex surfaces will have lower packing

than exposed atoms near flat or concave surfaces.

Hyperthermostable proteins in all categories (Ancient, Recent and Combined) have

significantly smaller mean Travel Depth and mean size-scaled Travel Depth than

their mesostable counterparts, indicating fewer and shallower surface pockets. Using

the size-scaled travel depth metric, we also find that hyperthermostable proteins
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have shallower and fewer surface pockets in a larger set of 144 protein pairs. This is

one piece of evidence that hyperthermostable proteins are more spherical. The

second piece of evidence for increased sphericity is that all hyperthermostable

categories have higher mean Burial Depth than mesostable proteins, indicating that

they bury more atoms overall. This agrees with increased hydrogen bonding 48; 150;

151; 152, increased apolar contact area 157 and increased van der Waals contacts 150;

152; 159. This increased contact area that manifests across several types of

interactions (hydrogen bonding, apolar, van der Waals) is reflected in the overall

increase in burial depth.

The third metric related to overall sphericity of the protein is the Wadell Sphericity

measure 175, which is simply a dimensionless ratio of volume to area, scaled so that

its upper bound value of 1 indicates a perfect sphere. This measure is significantly

increased for all three hyperthermophile categories: recent, ancient, and combined.

We note that this ratio is considerably more sensitive than changes in volume or

surface area alone. There is no significant difference in volume for any thermostable

category, while a significant difference in area is only seen in ancient and combined

hyperthermostable proteins.

The significant differences in these three metrics lead to the conclusion that

hyperthermostable proteins are more spherical than their mesostable homologues.

This difference is consistent across both Ancient and Recent hyperthermostable

proteins, despite the different evolutionary paths those organisms have used to

achieve thermostability 150.



152

While mean travel depth, mean burial depth and Wadell Sphericity all indicate

increased sphericity in hyperthermostable proteins, they are by no means

synonymous since they each reveal different, complementary, aspects of protein

shape.  Each is useful in analysing shapes as complex as those adopted by proteins

since each can distinguish some feature that the other cannot. This is illustrated

schematically in Figure 4-11, which depicts two idealised structures with identical

volume and surface area (and hence Wadell sphericity), but with different mean

travel depth and burial depth. The structure with one large pocket has less deeply

buried atoms, and greater mean travel depth than the structure with four smaller

pockets. In this case depth measures are more discriminating than Wadell

Sphericity. On the other hand, the mean Travel Depth of any convex shape is zero,

while the Wadell Sphericity (and mean burial depth) vary depending upon the shape,

so the latter two would be more discriminating. Burial depth has the additional bonus

of being able to examine changes in specific residues, whereas Wadell Sphericity

only measures total changes in volume and surface area. Combining information

from these complementary metrics can reveal other aspects of shape. Returning to

Figure 4-11, we see that at constant Wadell sphericity the structure with a smaller

mean travel depth has a more convoluted, one might say, ‘rougher’ surface. A

straightforward measure of the roughness of the protein surface is not possible,

however, when both Wadell sphericity and Travel Depth are different, as in the

hyperthermostable-mesostable comparison.  Here, as Figure 4-7 illustrates, the

hyperthermostable protein has a smaller mean travel depth, and increased Wadell

sphericity, and visually at least, has a less ‘rough’ surface.
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Figure 4-11 Equal Wadell Sphericity, Different Travel Depth and Burial

Depth Example

2D Schematic indicating two shapes with equal volume and surface area, and hence

equal Wadell Sphericity, but different mean Travel Depths and different mean Burial

Depths. The ‘U’ shaped volume on the left has a greater mean and maximum Travel

Depth than the ‘X’ shaped volume on the right. The ‘X’ has a higher mean Burial

Depth, evident simply by observing the center square is not adjacent to the surface

whereas all squares in the ‘U’ are adjacent.
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The Burial Depth and Travel Depth analyses while fast, do require computing and

working with a molecular surface and therefore take some significant calculation

time. We attempted to come up with a faster measure that would also capture the

different in ‘spherical property’ between mesostable and hyperthermostable proteins.

To this end we calculated the interatomic distances between all pairs of heavy atoms

in the proteins and examined the differences in the means. We found no significant

differences as shown in Figure 4-2 and Table 4-1.  In retrospect, the failure of the

mean interatomic distance to detect differences makes sense as it reflects to a great

extent the packing, which is not significantly different.  In summary, the failure of

interior packing and interatomic distances to differentiate thermostable from

mesostable proteins shows that the Travel Depth and Burial Depth analyses are

necessary to measure the spherical property.

The shapes proteins adopt have profound energetic effects on both charge-solvent

and charge-charge interactions, and both travel depth and burial depth report on

this. Greater burial depth indicates that more atoms are buried further from solvent.

Although many of the deeply buried residues will have apolar sidechains, the

backbone of each residue is still polar. Burying the backbone partial charges further

from solvent lessens their favorable long range electrostatic with the higher dielectric

solvent, increasing the desolvation penalty- these charges are less stable. Similarly a

charged group at the bottom of a deep pocket, as measured by Travel Depth, will on

average has less high dielectric solvent near it, and more low dielectric protein than

a charge at the bottom of a shallow pocket, even though their solvent accessible

surface areas are the same. Charges at the bottom of a deep pocket have a greater
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desolvation penalty and therefore are less stable. This is a manifestation of

electrostatic focusing  180. Considering now a favourable charge-charge interaction,

increased burial depth or increased travel depth will strengthen it, thereby having

the opposite effect on the protein’s stability. The reason is the same. There is less

effective solvent interaction with the deeper charges, so less dielectric screening.

Fine tuning and balancing these competing effects is one possible way for stability to

be controlled in the transition between mesophile and thermophile, and a reason why

travel depth and burial depth show significant differences.

Examination of the burial depth of specific residues (Figure 4-9) adds another

dimension to the previous surface area change analyses 48; 49; 50; 51; 52, which

measured changes in solvent accessible surface area. Surface accessibility analysis

on the same dataset used here led to the conclusion that Alanine and Proline have

less surface non-polar area exposed in both moderate thermostable and

hyperthermostable proteins, and that phenylalanine, methionine, tyrosine and

tryptophan have more exposed non-polar surface area in the higher temperature

classes 51. In contrast, we find here that Alanine is buried significantly more deeply in

the hyperthermostable proteins, while there is no appreciable change in the

moderate thermostable proteins. Proline is more buried in hyperthermostable

proteins, but not significantly more buried after correcting for overall burial, and

again, no appreciable change is seen in the moderate thermostable proteins. Our

disagreement with the result of the four residues having more exposed non-polar

surface area could be due to two factors: The previous analysis was only of the

nonpolar surface area and changes in surface area may not be directly comparable to
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counting residues at each burial depth. For instance a residue on the surface in our

analysis will have the same burial depth no matter the local environment, however a

concave region could result in less surface area where a convex region could result in

more area.

Our examination of charged versus polar surface area show that there are indeed

differences between the thermostable and mesostable proteins, as first indicated by

Cambillau et al 49. Charged residues are less buried in hyperthermostable proteins

and half the polar residues (Serine and Threonine) are more buried, consistent with

observed changes in surface area.  However, the other polar residues (Asparagine

and Glutamine) are significantly less buried, which disagrees with the surface area

results. Since surface area changes are analyzed as percentages, difference overall

surface areas between hyperthermostable and mesostable proteins does not account

for this. These unburied residues, even though they are higher in number, may in

fact expose less surface area. Regardless of the disagreement on polar residues,

charged residues show large changes consistent across both surface area 49 51 and

burial depth analyses.

In the moderate thermostable proteins, shown in Figure 4-9a, the changes are the

least pronounced of any of the four categories examined. However, two residues still

show up as significantly different: Glutamine is more buried and arginine is less

buried, something that could not be detected in previous analysis of nonpolar surface

area.
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Our residue-specific results can most easily be compared to results that used an

interior/exterior definition based on surface area and then counted residues in these

classes to see how they differed between thermophiles and mesophiles 53. In that

study, the interior counts showed very little changes, while the exterior showed

many changes, though the significances were not analyzed statistically. Lysine,

arginine, and glutaminic acid had increased exterior numbers in thermostable

proteins, which our analysis would agree with as those residues remain unburied or

become less buried in hyperthermostable proteins. Alanine, asparagine, aspartic

acid, glutamine, threonine, serine and histidine all have less exterior residues in

thermostable proteins. We agree on alanine’s decreased exterior presence (and

increased burial), but disagree on the other residues found less frequently on the

exterior. This could be due to the differing data sets, use of a full spectrum of burial

depths vs. a binary cutoff, or statistical variation.

A possible application for the burial depth preferences in hyperthermostable proteins

is thermostable protein design. The amino acid burial preferences could be

incorporated into models and design strategies. Additionally, using mesostable

protein structures as a starting point, a design pipeline could incorporate the Travel

Depth and Burial Depth analyses of the spherical property to find structures that

bury more atoms and have fewer/smaller pockets. Obviously, a good protein design

strategy is required as a starting point as it is not just the spherical property that

ensures a protein is highly thermostable. A suggested pipeline would be to find many

backbones 181, repack the native mesostable sidechains and mutations chosen from

residue-specific Burial Depth changes 182, then evaluate the many possibilities to find



158

proteins that are spherical but preserve the active site or desired function. Then

traditional protein design tools, such as 183, could be used to find further mutations

that enhance the stability of the new backbone, and could be modified to include

residue burial depth preferences of hyperthermostable proteins. This method is

obviously an addition to already existing approaches for thermostable protein design

184; 185; 186; 187.

When interpreting differences between thermostable and mesostable proteins,

organism sources should be considered, as temperature is not the only difference

between these organisms. In the hyperthermophilic set of 30 structures, 9 organisms

are represented. At least one is a piezophile, but many are not, so it is doubtful that

we are seeing results from changes due to adaptation to high pressure. However, all

these hyperthermophiles are unicellular and many of the mesophile homologues

come from multicellular organisms. At this point there is no evidence that this

systematic difference is reflected at the level of protein structure, but it is a caveat

nevertheless.

Another important caveat of our analysis (indeed of any type of analysis of the PDB

database) is the experimental temperature at which the structures were determined.

Protein crystal structures are now almost always solved at extremely low

temperatures (ca. 130K). Even older structures or typical NMR structures are solved

at room temperature, far from the environmental temperatures of

hyperthermophiles. This could have several effects. Obviously at higher

temperatures, the configurational entropy of the side chains will be higher and will

explore more states. This could have some influence on hyperthermostability, as
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demonstrated by simulations showing that the charged residues in a

hyperthermostable protein are able to interact cooperatively during the

conformational fluctuations 188. Our results that hyperthermostable proteins are more

spherical could indicate a preference for finding conformations that have reduced

flexibility, since the higher number of interactions will limit the number of states

available, consistent with reduced rotameric states in hyperthermostable proteins 51.

These results are also consistent with results showing that mutations that support

hyperthermostability are distributed throughout the protein and cause subtle

changes in dynamics and distributed changes in stability 189; 190. However, without

structures solved at the ambient temperatures for mesophiles and

hyperthermophiles, it is difficult to say how our results would be affected. The effect

of experimental conditions on structures is a caveat of any research based on PDB

structures 16.

Finally, in any discussion of thermostable proteins, it is important to note that the

language used throughout almost all the literature (and in this work!) implies that

previously mesophilic organisms have adapted to higher temperatures resulting in

the hyperthermostable proteins. This is probably not the case147; 148 except in specific

cases like T. maritima 149; 161. If the ‘hot origin’ of life theory is correct, then a

common ancestor organism for these proteins was a hyperthermophile, though some

organisms (and therefore their proteins) adapted to mesophilic conditions and then

re-adapted to hyperthermophilic conditions 149; 161. While this does not affect the

observed differences and their statistical significance, this ‘meso-centric’ view does

shade their evolutionary interpretation. Most mesostable proteins whose temperature
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dependence of stability has been examined in detail show a maximum in stability not

too far from their working temperature with a substantial decrease in stability with

increasing temperature above 45oC. This tends frame the question in terms of how

this stability profile is changed in thermostable proteins to ensure stability at high

temperatures. This could be achieved by a) shifting the maximum of stability to a

higher temperature, b) being more stable at all temperatures, c) reducing the rate at

which stability decreases with temperature (or some combination of these effects).

Viewed, however, from the perspective of the thermophile as the precursor, cases b)

and c) present no problem in adaptation to mesophilic temperatures, since at these

lower temperatures the thermostable protein is already stable.  In this scenario there

would be no selective pressure, and one would not expect to see pervasive stability

related structure changes of the type observed here. In case a) however,

presumably the stability of a thermostable protein at mesophilic temperatures would

be low enough so that there would be selective pressure to adapt to lower

temperatures, leading to significant stability correlated structure changes. Of course

proteins need enough flexibility and dynamics to function, and cases b) and c) may

result in too much stability at mesophilic temperature for optimal function, in which

case again there would be selective pressure. In a recent review of available

experimental evidence, hyperthermostable proteins used case b) most often, often

combined with case a), whereas moderate thermostable proteins used case b) often

combined with case c), however there is still not a lot of data available 191.

Considerably more data on the temperature stability profiles of matched mesostable-

thermostable pairs is needed to distinguish these cases.
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Conclusion

Protein structures from homologous mesophiles and hyperthermophiles have

diverged due to evolution. Regardless of the age of the adaptation to

hyperthermophilic conditions, the proteins adopt a more spherical structure, namely

they have greater Burial Depth, lesser Travel Depth, and higher Wadell sphericity

than their mesostable counterparts. The interiors of these hyperthermostable

proteins are not more tightly packed, probably because mesostable proteins are

already packed to near crystalline tightness. Rather these proteins have residue side-

chain replacements and structural rearrangements that produce more spherical

proteins. These changes are not detectable by other properties like mean interatomic

distance or convex hull volume. The new metrics of Travel Depth and Burial Depth

analyses are necessary to quantify the spherical property and complement Wadell

Sphericity. All three metrics are applied here to proteins for the first time. In contrast

to hyperthermostable proteins, moderate thermostable proteins do not show any

significant differences in sphericity metric from their mesostable homologues.

Moderate thermostable proteins adaptations to stability clearly do not drive them to

more spherical structures. In this way, our results support the hypothesis that

moderate thermophiles and hyperthermophiles achieve the enhanced stability of

their proteins by different mechanisms.

Additionally, by adding a new dimension to specific residue analysis, distance of

burial instead of the binary buried/exposed metric, key observations about

hyperthermostable proteins can be made, specifically that charged residues stay
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unburied, alanine is considerably more buried and the rest of the amino acids

become slightly more buried.
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Chapter 5

This chapter will be published in the future 59.

Summary

The shape of the protein surface dictates what interactions are possible with other

macromolecules, but defining discrete pockets or possible interaction sites remains

difficult. First, there is the problem of defining the extent of the pocket. Second, one

has to characterize the shape of each pocket. Third, one needs to make quantitative

comparisons between pockets on different proteins. An elegant solution to these

problems is to sort all surface and solvent points by Travel Depth, and then collect a

hierarchical tree of pockets. The connectivity of the tree is determined via the

deepest saddle points between each pair of neighboring pockets. The resulting

pocket surfaces tessellate the entire protein surface, producing a complete inventory

of pockets. This method of identifying pockets also allows one to easily compute

important shape metrics, including the problematic pocket volume, surface area, and

mouth size. Pockets are also annotated with their lining residue lists, polarity, and

other residue based properties. Using this tree and the various shape metrics

pockets can be merged, grouped, or filtered for further analysis. Since this method

includes the entire surface it guarantees that any pocket of interest will be found

among the output pockets, unlike previous methods of pocket identification. The

resulting hierarchy of pockets is easy to visualize and aids users in higher level

analysis. Comparison of pockets is done using the shape metrics, avoiding the shape
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alignment problem. Example applications show that the method facilitates pocket

comparison along mutational or time-dependent series. Pockets from families of

proteins can be examined using multiple pocket tree alignments to see how ligand

binding sites or other pockets have changed with evolution. Our method is called

CLIPPERS, for Complete Liberal Inventory of Protein Pockets Elucidating and

Reporting on Shapes.

Introduction

The shape and properties of the protein surface determine what interactions are

possible with ligands and other macromolecules. Pockets are an important yet

ambiguous feature of this surface. For example the first pass in screening for lead

compounds and drug-like molecules is usually a filter based on the shape of the

binding pocket 192, and shape plays a role in many computational pharmacological

methods as reviewed by Kortagere et al 193. A study of drug-binding pockets found

that most features important to predicting drug-binding were related to size and

shape of the binding pocket, with the chemical properties of secondary importance

90. The surface shape is also important for interactions between protein and water.

This depends, for instance, on how wide or narrow the pocket, or how deep or

shallow the pocket as reviewed by Levitt and Park 14. However, defining discrete

pockets or possible interaction sites remains difficult despite many studies, for

example see the review of Campbell et al. 58. Compounding the problem is that the

shape and location of nearby pockets can affect promiscuity and binding site

diversity 194. The primary difficulty is in defining the border of a pocket, as most

pockets are open to solvent. Those closed to solvent we refer to as buried cavities.
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Buried cavities are more straightforward to locate as they have a well defined extent,

area and volume. In contrast, the border of an open pocket defines its mouth and it

provides the cut-off for determination of the surface area and volume. The border

definition problem for open pockets has been discussed before as a ‘can-of-worms

problem’ 103. Even defining the pocket as a set of residues does not define the

volume or the mouth of the pocket.

Several very different solutions, and therefore pocket definitions, have been

proposed. These include fattening the atoms to close off pockets 103, defining pockets

as clustered sets of spheres 71; 86; 195; 196; 197; 198; 199; 200, by using discrete flow analysis

on alpha-shapes72, and by using a larger probe radius to construct a surface or

alpha-shape that acts as the pocket mouth 70; 90; 201, by examining clusters of lines

through solvent 202; 203, by defining pockets of interest to only fall in a narrow range

of surface areas and shapes and then generating multiple overlapping pockets

covering the protein surface for evaluation 204. Other methods focus only indirectly

on shape, for instance by examining pockets predicted by evolution 89 or by protein

motion changes upon binding 205. Various combinations of these methods are also

employed 76; 206, including methods that find regions where certain combinations of

features are clustered or combined within a statistical framework 207; 208.

A common problem with any specific definition of a pocket or any method for finding

a small number of non-overlapping pockets on a protein is that they may miss the

actual pocket of biological interest. For example defining pockets to be bottlenecks (a

narrowed region of the pocket that defines the mouth) as several methods do will

miss non-bottleneck pockets, such as clefts, entirely. Other methods and definitions
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can also miss certain types of pockets or need parameter adjustment to capture

relevant pockets.
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Figure 5-1 Pockets Example

a) Schematic protein, molecular volume shown in black, the convex hull shown as

red lines. Pockets are labeled and the split line where two sub-pockets are joined is

shown in green. b) Corresponding pocket tree.
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We present here an alternative definition of pockets, one general enough to create

what we call a complete inventory of pockets: In this inventory the entire surface is

tessellated into protein pocket regions, each pocket being organized into a

hierarchical tree of sub-pockets. The basic idea is illustrated in Figure 5-1, and it

described in detail in the methods section. If a protein had a molecular surface which

was convex everywhere, this surface would be identical to what is known as its

convex hull 25. Clearly such a protein would have no pockets, however relaxed the

definition. However a real protein’s molecular surface is not identical to its convex

hull; it lies within the latter surface at many points (Figure 5-1a). Thus in seeking

pockets our attention is directed to both the molecular surface that lies within the

convex hull, and the solvent accessible volume that lies between the two surfaces

(the intermediate volume). It is in this combined surface/volume region that every

protein pocket must lie. The foundation for inventorying the pockets is Travel Depth

35. Travel Depth is an efficient way to determine the shortest distance, traveling only

through solvent, from any point on the molecular surface point or in the intermediate

volume to the convex hull, this distance provides the basis for the inventorying step.

In addition to presenting a new definition of pockets, a new way of comparing

pockets is described. Most algorithms for comparing two binding sites assume the

binding site is known or locate it solely based on proximity to a ligand in the co-

crystal structure. After that most algorithms that use spatial information to come up

with a motif of various chemical properties and their arrangements in space, and rely

on some alignment or geometric hashing technique to compare binding sites based

on these structural motifs 209 206; 210; 211; 212; 213; 214; 215; 216; 217; 218; 219; 220; 221. Motif
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definitions can involve hydrogen bond donors or acceptors, residues, or atom types

based on residues or can involve the complete set of docked substrates 222. Here we

present a new method of comparison of pockets based solely on the shape features.

We first describe the use of Travel Depth to create a complete inventory of protein

pockets, including construction of the complete tree of protein pockets, then we

describe the computation of various pocket metrics and a way to quantitatively

compare pockets. We then show various applications of the methods, including

display of pockets and visualization of pocket properties, analysis of pockets along

mutational and time series of structures, and the clustering of pockets from different

members of evolutionarily related protein families.

Methods

Computation of Travel Depth

This work builds on the concept of Travel Depth, first used to analyze surfaces and

ligand binding sites 35, with subsequent speed and algorithm improvements 43. The

Travel Depth algorithm computes the shortest molecule interior-avoiding paths from

all surface points to the convex hull of a given macromolecule. The algorithm also

computes the Travel Depth of points in the intermediate volume between the

molecular surface and the convex hull. Additionally the algorithm puts the surface

points and volume grid points in a graph structure with the distances between each

point as the edge lengths between adjacent nodes, which aids in later steps. The

outline of the algorithm is as follows:
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Starting with the atomic coordinates, the molecular surface 7 is generated using a

standard 1.2Å solvent probe radius. The convex hull of this surface is generated

using the Qhull algorithm 25. These surfaces are mapped onto an appropriately scaled

cubic grid, and all grid points are assigned to either to the interior of the molecular

surface, outside the convex hull, or between the two surfaces. The Travel Depth of

all molecular surface points and intermediate volume grid points is computed as

described previously using the multiple source shortest paths algorithm 23, avoiding

the interior points.

We extend the original Travel Depth algorithm here to include a definition of Travel

Depth for buried cavities. Previously these cavities were removed completely, which

made analyzing ligands inside them impossible. The extension to buried cavities is

done by adding one ‘virtual’ edge per cavity to connect it to the exterior molecular

surface. This edge connects the closest cavity and exterior surface points. The length

of this edge defines the Burial Depth of that cavity 57. After adding a virtual

connecting edge to each buried cavity the Travel Depth algorithm is applied as

described above. Due to these connecting edges, Travel Depth values are now

propagated to all buried cavity surface points and their enclosed volume grid points.

The rationale for defining the burial depth of a cavity by the shortest distance to the

main surface is that this route would require the least amount of protein motion to

open the cavity to bulk solvent. Of course the protein may open by a different route,

and if experimental or simulation data were available, a more accurate burial depth

estimate could be made. Nevertheless, the closest distance connection is a useful

device to seamlessly include cavities in the analysis of pockets.
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Pocket Inventory

The goal of this step of the algorithm is to enumerate all pockets by analyzing all

regions of the molecular surface that lie below the convex hull. By enumerating all

pockets over the entire protein surface we produce an unbiased collection, rather

than focusing a priori on a subset of possible pockets.

The inventory algorithm has two phases. In the first phase, all surface and

intermediate volume grid points with a defined Travel Depth are put into a list and

that list is sorted so the deepest points are first. Ties are broken randomly, but the

sorted order is kept fixed throughout the algorithm. To keep track of pockets, a

union-find data structure P, is initialized, 223 28. P is essentially a list of lists, each

sub-list containing the surface and volume points belonging to a single pocket, Pj.

Also a tree data structure T, whose nodes will be pockets, is initialized.

In the second phase of the algorithm, each point in the sorted list is examined in

turn, starting with the point with the greatest Travel Depth. For each point, i, there

are three possible cases:

i) The point i has no neighbors already in P. In this case, a new pocket Pj is added to

P, the point i is added to Pj’s list of points, and a new leaf node Pj added to the tree

T. The depth of point i will be the maximum depth of the new pocket.

ii) The point i has neighbor(s) in only one pocket of P, Pk. The point is added to Pk’s

list of points.
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iii) The point i has neighbors in two or more pockets in P, say pockets Pj….Pk. The

point i and the point lists of all sub-pockets Pj….Pk are added into the point list of a

new pocket Pl. The pocket Pl. is added as a new node in T, and the existing sub-

pockets nodes Pj….Pk are indexed as descendents of Pl. The depth of point i will be

simultaneously the minimum depth of all the pockets Pj….Pk and the height of the

deepest saddle point connecting these sub-pockets.

In summary, in this phase of the algorithm there are three possible operations: i)

finding a new pocket, ii) adding to an existing pocket, iii) merging pockets.

Once all points have been examined, the points in all the top level pockets of T are

unioned into a final mother of all pockets which forms the root of T. This pocket

contains all parts of the molecular surface that lie within the convex hull, and the

entire intermediate volume.

The result of the algorithm is therefore a complete tree of pockets, T. Each node of T

is a pocket, and each pocket contains all the volume and surface points of each of its

descendent pockets, plus points specific to itself, i.e. the smaller pockets are nested

inside the larger pockets. Every molecular surface point and intermediate volume

point has been assigned to a pocket and hence to all antecedents of that pocket.

Each saddle point has been assigned to two or more pockets, and the resulting

merged pocket. Each leaf node of this tree represents a pocket containing a single

local maximum in Travel Depth, i.e. a simple pocket. As we ascend the tree, the

pockets become increasingly larger and more complex, with multiple local maxima in

depth (sub-pockets), i.e. they are compound pockets.  The mouth or mouths of a
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given pocket are defined as the union of surface and volume points belonging to that

pocket which are on its boundary. i.e. that have at least one neighbor that is not in

that pocket. Each pocket has other associated shape, physical and protein related

properties as described in the next section.

Pocket Collation

To facilitate collation, filtering, comparison and clustering of pockets, various

features or metrics of each pocket are computed.

First are the global geometric features: volume, surface area, and principal axis

dimensions. Second are the mouth geometric features: number of mouths, mouth

area(s), and largest mouth linear dimension(s). Third are residue based properties:

Lists of residues lining the entire pocket andlining the mouth. Fourth are physico-

chemical properties: including surface area of positively charged, negatively charged,

or neutral (apolar) atoms. Fifth are secondary surface properties: mean curvature

and mean absolute curvature (roughness). The sixth set of properties, unique to this

work, are Travel Depth related: height (maximum Travel Depth – minimum Travel

Depth), mean height (mean Travel Depth – minimum Travel Depth), absolute

maximum Travel Depth.

Curvatures are computed by analyzing the angle between adjacent triangles of the

surface, and these are mapped from edges to points by weighting according to the

length of the edge. This gives local curvatures, not regional curvatures as computed

by other methods 87. The mouth linear dimension and pocket dimensions are
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computed by finding the principal components 224 of the mouth or pocket points and

then measuring the distance along each dimension. The pocket principal dimensions

could be considered similar to finding the global fit of a sphere through all pocket

surface points to judge how open the pocket is 87 225. Partial charges are assigned

using the PARSE parameter set 226, using a cutoff of -0.45 and 0.45 to determine

polarity of lining atoms.

These pocket properties are principally designed for quantitative comparison of

pockets, as described in the next section. We note that these features could also be

used to automate the qualitative classification into pocket types, i.e. bottlenecks,

clefts, tunnels, etc based on ratios of appropriate metrics, although we don’t pursue

that application here.

Another use for these metrics is to identify biological activity associated with various

pockets. This would include assessing the likelihood the pocket is an active site, or if

the pocket is druggable. This application will be pursued in future work.

Pocket Comparison

To compare the shape of two pockets using either the actual surfaces or lining

residue positions requires first, that the surface points or residue atoms of the two

pockets be put into a 1-1 correspondence (aligned). The two objects are then

overlaid using rigid body superposition, to yield the minimum root mean square

deviation (rmsd) for that set of pair alignments.  Since it may not be a priori evident

which parts of each pocket correspond with the other, especially in pure shape
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matching, many alternate alignments may have to be considered until the global

minimum rmsd is found. An alternative is to examine motifs of lining atoms or

residues, which may generate thousands of descriptors which have to be matched.

Thus pocket shape comparison using positional alignment or indirect lining residue

information is fraught with difficulty. In this work each pocket is described by a

modest number of shape descriptors, and our goal is to use these descriptors to

quantitatively compare pockets avoiding the aforementioned alignment problem.

Since the numerical range and units of each descriptor differ widely, we first express

them in dimensionless, normalized units using the information contained in the

pocket tree(s), as follows. For the protein or set of proteins of interest, and their

resulting pocket trees we first select all the relevant shape descriptors for the

particular application. The mean and standard deviation of each descriptor is

calculated over all these trees. Each descriptor for the two pockets to be compared is

turned into a Z-score by subtracting the mean (for that descriptor) and dividing by

the standard deviation (again for that descriptor). Each pocket now has an n-

dimensional vector of Z-scores where n is the number of descriptors. The rectilinear,

or ‘Manhattan’ distance in shape space between two pockets Pi and Pj is defined as

!
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(5-1)

where m

i
Z  is the Z-score of the m’th descriptor of the pocket i.
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The default set of descriptors used for shape comparison in this work are: volume,

surface area, height, mean height, mean curvature, principal dimensions, number of

mouths, mean mouth area and mouth longest dimension.

Use of Z-scores removes differences in numerical range and units for each descriptor

and gives each descriptor equal weight in the final analysis. So for example a

difference in surface area equal to one standard deviation over the set of all pockets

is the same as a difference in one standard deviation in volume. This method of

pocket shape comparison requires no alignment, and hence is extremely rapid. It

does however use the descriptors as a proxy for full shape comparison. False

negative type errors are demonstrably small: If two pockets are significantly

different in a single descriptor, say volume or height, then they really must be

different. Conversely, if two pockets are similar in all descriptors, and the descriptors

are well chosen to represent non-redundant aspects of shape, it is highly likely that

they truly are similar in shape and size. However, it does not preclude the possibility

that the pockets differ in some aspect of shape that is not measured by the

descriptors, so false positive type errors are possible. Using visual examination of

many dozens of pairs of matched pockets we found no egregious examples of this

error, so we judge it uncommon enough to consider this method of shape

comparison robust.

To estimate the descriptor means and standard deviations to compute Z-scores we

use the population of pockets for the protein or protein trees under comparison. An

alternative approach to this internal standard would be means and standard

deviations calculated from a suitable  ‘standard set’ of protein structures. This choice
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of reference will likely have little effect as the means and standard deviations of the

many shape descriptors across several of our data sets were found to be very

similar.

Selecting Unique Pockets

For various applications, it is useful to have a measure of pocket uniqueness. This

was calculated by comparing each pocket in a given tree to all other pockets in that

tree that did not have any lining atoms in common. The distances between the

pocket of interest Pj and all m non-overlapping pockets Pi are computed, and the

uniqueness score of Pj is defined as

!
=

=
m

i ij
j Dm
R

1

11 (5-2)

the mean of the reciprocal distances. Unique pockets will have a low value of

redundancy, R, since there will be no pockets close in shape space. Conversely,

pocket types seen frequently (like small dimples occurring between two or three

neighboring non-bonded atoms) will have a high value of R. The uniqueness score

allows one to filter out ‘uninteresting pockets’ to focus on ones that have a unique

shape and that are therefore more likely to support specific ligand binding.

The uniqueness score is most useful for pockets lower on the pocket tree, where

there are many non-overlapping pockets to compare.  Pockets very high up on the

pocket tree contain large amounts of surface, and there will be few, perhaps no

pockets without any atom overlap. These would correctly get low uniqueness scores,



178

but only because the sample size is small. For this reason, in most applications one

would only use a uniqueness score combined with some suitable upper volume

bound.

The uniqueness filter step in our algorithm takes the place of filtering strategies or

parameter variation employed by other methods to generate only the most

interesting pockets or those likely to be active sites. The difference is that here all

pockets of interest are already contained in the complete pocket tree, so if a

particular filtering step does not pick out the required pockets, one can re-examine

the complete list.

Clustering and Ordering Pockets

With a well defined pocket-pocket distance in shape space it is straightforward to

cluster trees of pockets using standard clustering algorithms. To get useful

clustering, however, we add the uniqueness score R as a penalty into the distance

formula. This penalizes common uninteresting pockets such as dimples, which would

otherwise dominate the clustering. The term in the penalty function used for

clustering, due to a pocket pair A-B is

! 

1

D
AB

"#(R
A

+ R
B
) (5-3)

where DAB is the rectilinear distance in shape space between pockets A and B, and RA

and RB are the two pockets’ uniqueness scores. 

! 

"  is a parameter that can be

adjusted to emphasize different sets of pockets. A low value of %  favors redundant
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pockets, a high 

! 

"  value de-emphasizes the redundant pockets. However, 

! 

"  in no

way affects the number of pockets found or their position in the tree, only the order

in which they are ranked and clustered together. In clustering whole trees we also

exclude pockets with volume less than 25Å3 or more than 2000 Å3. The former are

too small to be of any relevance, while the latter are large compound pockets that

consist of multiple sub-pockets which are already included individually in the

clustering operation.

For applications involving transitions along a single dimension (like a transition

pathway or molecular dynamics run), we found it useful to create minimum spanning

“lines”. These are similar to minimum spanning trees 28; 227 except the maximum

degree of any node is 2 so when the minimum spanning line is fully constructed it

gives a connected series from one end to another, each end being defined as having

degree one. This is an approximation to the Traveling Salesman Problem 28, where

the best solution is one that minimizes the total pocket-pocket distance while visiting

each pocket exactly once.

Output files are created that can can be used to visualize these clusters or minimum

spanning trees in the graph drawing software packages GraphViz 228; 229 and aiSee230.

The aiSee version is annotated with snippets of code that can be used to quickly

display the pockets of interest in PyMOL 64, a common operation. Nodes can be

colored according to which tree they belong to, or by the amount of residue overlap

(ignoring ordering) of each pocket to all adjoining pockets.
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Additionally, heatmaps of the pocket-pocket distance matrix can be created, which

are useful for looking at the variation between sets of pockets of interest or among

pockets from a single tree.

Pocket Selection

Once an entire tree of pockets has been collated, a common task will be to examine

a pocket of interest. This can be done interactively with PyMOL 64 using our

customized scripts. The tree can be followed up or down the branches to look at

progressively larger or smaller pockets.

Another common task is to select a pocket or pockets based on a set of residues of

interest. This is done most simply by computing a Tanimoto type overlap score: the

size of the intersection of the list of residues of interest with the list of pocket lining

residues, divided by the size of the union of the same two lists. Perfect overlap gives

a score of one, no overlap gives zero. The pocket that maximizes the Tanimoto

overlap score, T, is then picked. This part of the procedure is automated. The user

can then use this pocket as a good starting point for an interactive search of related

pockets up and down the tree using PyMol to refine the pocket selection for a specific

application.

A more advanced pocket selection routine for a series of closely related pocket trees

involves the following procedure. One initial pocket is selected from each tree based

on residue overlap using the Tanimoto type score. All pocket-pocket distances for

this pocket set are computed. The pocket with the greatest mean distance to all
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other pockets is removed, and all other pockets from the same tree with at least 0.5

in overlap to the removed pocket are examined to see which has the lowest mean

distance to the other pockets remaining in the set. The one with the lowest mean

distance is added to the set so there remains one pocket from each tree. This

swapping operation is done iteratively until the pockets remain the same even after

examining all pockets in descending order of mean pocket distance. The swapping

optimization potentially involves a large number of steps so the procedure is

terminated if a large cutoff number of swaps is reached though this cutoff was not

reached in our experiments. The swapping optimization leads to a consistent set of

pockets along a transition pathway or a mutational series so the differences can be

analyzed with minimal bias from the initial residue overlap selection step.

Results & Discussion

We now present various application of the CLIPPERS program for finding and

analyzing pockets. As part of this we include several important objective tests of

CLIPPERS. First, we claim to generate pockets for every portion of the surface and

therefore at least one pocket for any given bound ligand should exist. This is tested

on a diverse set of structures with bound ligands, where the resulting pocket trees

are searched for pockets that have a high Tanimoto score between the residues

lining the pocket and the residues near each ligand.

Second, given a series of structural snapshots of a protein undergoing a transition

between two very different conformations, one should be able to follow an evolving

pocket through this transition pathway. More specifically, if the pocket shape
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distance measure is robust, distances between pockets in structures that are

neighbors should be smaller than between non-neighbors. In other words, a

complete reconstruction of the pocket ordering through the transition pathway

should be possible from just the pocket-pocket distance matrix. This is tested in the

section of the paper on adenylate kinase.

Finally, the ability to distinguish between pockets associated with less dramatic

conformational change, such as those in protein tyrosine phosphatase 1b (ptp1b),

can be tested by comparing the pocket-pocket distances between and within

evolutionarily related groups, as demonstrated on  the protein tyrosine

phosphatome.

Comparison of binding site location in SURFNET, CAST

and CLIPPERS

As a comparison to two other widely used approaches to finding pockets, we analyze

a data set of 67 monomeric proteins with diverse enzymatic activity, originally

compiled and analyzed using SURFNET86. SURFNET identifies all active sites at least

partially, but we note that the algorithm has several parameters that were adjusted

to get this recognition. This same data set was also used to test against CAST,

though only 51 of the structures were used 72. 14 structures were excluded since

CAST could not analyze the known binding site since the discrete flow method could

not find the pocket. Two other structures were eliminated in the original CAST work

since they had been superseded in the PDB. We use the newer versions of these two

structures here.
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These 67 monomers were downloaded from the PDB 16. Waters were removed and

ligands were separated for later analysis. Some complexes contained multiple ligands

bound in spatially separated sites. These were split by clustering using a 5Å cutoff,

resulting in 92 individual binding sites in these 67 structures. Special attention was

paid to including non-standard residues with the protein and to identify peptide

ligands correctly. Radii were assigned to the atoms using the radius set of Bondi 3,

which is a standard set in the area of macromolecular analysis. SURFNET does not

use an explicit probe sphere to construct the surface it uses. However CAST does use

a solvent probe sphere, of radius 1.4Å. For CLIPPERS, we used a probe radius of

1.2Å as previously described 43. Since the three methods have different methods of

surface generation, and different radii sets, the surfaces will differ somewhat leading

to minor differences in volumes and surface areas. This may contribute to differences

in results, although the major effect is the method of pocket finding. In collecting

pockets, a lower bound volume cutoff of 25 Å3 was used in CLIPPERS since this

represents the volume of a typical heavy atom. This is the smallest pocket that could

be considered relevant to molecular recognition, as one ion, water, or other heavy

atom could fit into a dimple of that size. Since some structures had ligands in buried

cavities, we included these cavities while computing the pockets, as described in the

methods section. We note that several of these 67 structures have ligands binding in

the non-physiological active site, and some of the active site ligands are much

smaller than the actual substrate, as in PDB code 1PII 231 which contains phosphates

and not the entire substrate and PDB code 1ONC 232 which contains a sulfate in the

active site of an RNase, so while these are valid ligands for the test, they do not

reflect accurately the physiological ligand.
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Considering first the success rate in finding ligand binding pockets the mean number

of pockets per protein generated by CLIPPERS for this dataset of 67 proteins is

431±161. Thus a large number of possible pockets are found covering the entire

surface. To score these pockets, the set of residues within a cutoff of 5Å from any

ligand atom is generated, and then the Tanimoto overlap score of this residue set

with the lining residues of all the CLIPPERS pockets is computed. For all 92 ligands,

at least one pocket is generated with a significant Tanimoto overlap, indicating 100%

success in generating the binding pocket. Selecting the most overlapped pocket for

each ligand, the mean Tanimoto overlap score over the 92 sites was 0.5±0.2, even

though the set contained very exposed sites or sites that bound very small ligands

like sulfate or phosphate. In other words using CLIPPERS there are enough pocket

candidates generated that one finds on average a pocket that overlaps at least 50%,

as identified by proximity to the ligand. This is in contrast to CAST, which fails in 14

cases to define a ligand binding pocket, since the discrete flow method cannot find

pockets without bottleneck mouths. In examining all 92 pockets found for these

ligands, we note that most cases of a low Tanimoto overlap are with ligands that are

bound to a very shallow pocket near the convex hull of the protein. The pockets near

such ligands tend to be less ‘pocket’ like. The Tanimoto overlap score can be less

than 1 if either the pocket is too small or too large. One example is shown in Figure

5-2. The middle panel on the bottom row has a pocket far larger than one would

expect, with a Tanimoto score of 0.25. Despite this poor overlap, CLIPPERS

outperforms CAST which cannot find this ligand at all. Also CAST fails on the ligand

in the upper right panel of Figure 5-2, which CLIPPERS finds easily. Interesting cases

where T<<1 because the pockets are too large are shown in the upper middle and
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the lower right panels of Figure 5-2. Low T scores for this reason are not necessarily

bad: These pockets contain additional volume that could guide the design by

medicinal chemists of more specific or higher affinity ligands by indicating areas

where functional groups can be added. More generally, once having identified a

ligand binding pocket, nearby pockets may be a good target for fragment based drug

design 233; 234; 235; 236; 237; 238; 239 or interaction sites for added groups. Since CLIPPERS

inventories all the pockets and places them in a tree, it facilitates such an approach.

For example one may easily search for ‘siblings’ pockets in the tree: Ones which are

joined by the lowest barriers forming natural routes across which the fragments

would be joined. While CAST and SURFNET can sometimes identify these nearby

pockets, only CLIPPERS identifies all such pockets and the saddle points joining

them.

Comparing now the number, shape and size of pockets generated by the different

methods, CAST typically generate tens of pockets per protein, SURFNET generates

more, typically a hundred or so. CLIPPERS generates considerably more candidate

pockets, usually several hundred per protein, and due to the hierarchical and

inclusive way they are generated, smaller pockets are nested inside larger pockets,

all the way down to the smallest dimple. Neither CAST nor SURFNET generates

overlapping or nested pockets. Both methods also prune the number of possible

pockets to focus on ones that hopefully include the site of interest. In SURFNET this

is done by adjusting the parameters use in the sphere clustering method. In CAST

this is done using the discrete flow technique to join the tetrahedra and decide
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Figure 5-2 Pocket Finding Montage

9 example pockets found using CLIPPERS having the greatest Tanimoto score to

ligand-neighboring residues. From left to right, top to bottom, the structures are PDB

codes 1ADS, 1BYH, 1FUT, 1GPB, 1PDA, 1PPL, 1SMR, 1THG, 2CND. The protein is

shown as grey lines, the ligand is shown in red sticks, the pocket is colored according

to Travel Depth, figure created using PyMOL64.
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where pocket mouths lie. However, in each method the number of pockets is well

correlated with the protein volume, shown for CLIPPERS in Figure 5-3a. In the

SURFNET study, only the volume of the biggest and second biggest clefts were

compared the protein volume. As another comparison to CAST, we show that the

pocket areas and volumes correlate linearly with total protein area and volume,

respectively as shown in Figures 5-3b and 5-3c.

Analyzing the 92 ligand binding pockets further, we find, as with CAST, that there is

no correlation of protein size with binding site pocket size, as measured either by

volume or surface area (Figures 5-4a and 5-4b). The mean of various statistics of

these 92 pockets is as follows: Volume: 530 Å3, Surface Area: 319 Å2, mean Travel

Depth: 12.8 Å, maximum Travel Depth: 17.2 Å, height: 7.2 Å, mean height: 2.8 Å,

mean curvature: 5 degrees, principal dimensions: 16.8Å, 11.6Å, 7.1Å, fraction apolar

surface area, 0.31: fraction negative surface area: 0.25, fraction positive surface

area: 0.44.

Analyzing the mouth statistics in CLIPPERS, there is only one cavity in the set of 92,

83 pockets have single mouths, 5 have 2 mouths, 1 has 3 and 2 have 4. The mean

mouth area is 147.5 Å2 and the mean mouth longest dimension is 14.5 Å. The

relationship between mouth number and pocket volume is shown in Figure 5-4c, as

in CAST there is a slight correlation with mouth number and volume. The relationship

between mouth diameter and mouth area is shown in Figure 5-4d, a line

representing a perfect circle is shown for reference. Most mouths show some
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Figure 5-3 Pocket Finding Comparison

67 protein structures 71 analyzed using CLIPPERS. a) The protein volume compared

with the total number of pockets with volume greater than 25 Å3. b) Protein volume

compared to mean pocket volume for pockets with volume greater than 25 Å3. c)

Protein surface area compared to mean pocket surface area for pockets with volume

greater than 25 Å3.
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deviation from this, many mouths tend to be longer in one dimension than would be

expected of perfectly circular mouths, since our mouths are not constrained to be

bottlenecks as in CAST. This makes sense as mouths of grooves or clefts would by

nature be very elongated. The mouth diameter is measured from point to point and

not necessarily along the Travel Depth isosurface representing the mouth, this

explains the few mouths with diameters smaller than possible for two dimensional

circles.

A major feature of the CLIPPERS program is improved visualization of pockets with

PyMOL64 using customized python scripts. Once pockets have been inventoried and

the resulting pocket data file loaded, each pocket surface can be displayed and

colored individually. The default coloring is by Travel Depth, but other coloring

schemes include pocket size, curvature, electrostatic potential and polarity. Another

feature of CLIPPERS is that the lining atoms can be easily displayed. Several

examples are shown in a montage in Figure 5-2.
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Figure 5-4 Pocket Finding Comparison – Binding Sites and Mouths

92 binding sites in 67 protein structures 71 analyzed using CLIPPERS. a) Protein

volume compared to binding site volume (on log scale). b) Protein surface area

compared to binding site surface area (on log scale). c) Number of mouths compared

to the binding site volume (on log scale). d) Mouth area compared to mouth

diameter (on log-log scale). The line corresponds to perfect circles.
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Adenylate Kinase Transition Pathway

Adenylate kinase undergoes a significant conformational transition between the open

inactive form PDB code 4AKE 240 and the closed active form Pdb code 1AKE 241. This

transition has been modeled by examining various crystal structures at the endpoints

and in the middle of the transition pathway242; 243, or by more extensive experiments

189; 244. We generated a full transition from the closed to open forms using Climber, a

morphing method that takes into account the energy of each structure when

determining the step size to the next structure 245. 82 were generated along the

pathway and analyzed.  The purpose of generating this transition pathway was

twofold. First, to show how CLIPPERS can be used to track and examine pocket

shape changes due to conformational changes. Second, to test the objectivity of the

pocket-pocket distance function. Adjacent pockets in the pathway should have

smaller separations in shape space than pockets further apart in the transition

pathway.

To select the initial CLIPPER pocket series a set of 41 lining residues around the

active site pocket was chosen, and the iterative Tanimoto overlap/swapping

procedure described in Methods was used to pick a single pocket from each of the 82

structures. The resulting pairwise distance matrix was computed for this set of 82

pockets. We then used just this distance matrix, without reference to the known

conformational sequence, to construct the minimum spanning lines of these pockets,

i.e. the pocket sequence that minimized the total neighbor neighbor distance. We
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Figure 5-5 Adenylate Kinase Transition Visualization

The steps of the transition pathway shown from left to right, top to bottom adenylate

kinase changes conformation from closed to open. The pockets found with CLIPPERS

are visualized with Travel Depth.
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then compared this reconstructed sequence with the actual sequence through the

transition pathway.

We varied the descriptors included in the distance function and the distance metric

(Manhattan or Euclidean) to determine which gave us the best reconstructed

pathway. The Manhattan metric provided the best results, along with the following

11 descriptors: 1) surface area 2)volume 3) height 4) mean curvature 5) mouths 6)

longest dimension 7) middle dimension 8) short dimension 9) area of biggest mouth

10) diameter of biggest mouth 11) mean height. The reconstructed ordering of the

minimum spanning line had a Spearman Rank Correlation Coefficient of 0.999 with

the actual ordering, indicating almost perfect ordering. This is excellent considering

the degree of similarity of many pockets to each other in the open form. These 11

descriptors and the Manhattan metric were used for all further pocket-pocket

distance comparisons.

Using the advanced pocket selection criteria that involve iterative swapping of

pockets that have good residue overlap led to a transition pathway of pockets that

was visually smooth and plausible, as shown in Figure 5-5. With this sequence many

useful pocket properties can now be tracked smoothly throughout the entire

transition pathway, as shown in Figure 5-6.

Finally the heatmap of the matrix of pocket-pocket distances across the entire

transition pathway was computed (Figure 5-7). This representation confirms that

adjacent pockets (near the diagonal) have low distances and pockets far away in the

pathway have high distances. One interesting observation is that the open pockets
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Figure 5-6 Adenylate Kinase Transition Properties

Properties of the binding pocket tracked over the transition pathway between the

closed and open adenylate kinase structures. a) Volume, Surface Area, and Area of

Biggest Mouth. b) Height, Mean height, Diameter of Biggest Mouth, principal

dimensions, all in Å, and mean Curvature in degrees.
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Figure 5-7 Adenylate Kinase Heatmap

The differences between all 82 structures along the transition pathway. Upper left

half: root pocket-pocket distance. Lower right half: binding site pocket-pocket

distance. Note that the scale for the two comparisons is different.
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are more similar to each other than the closed and intermediate pockets, indicating

that for a given overall structural change, the pocket shape change is more rapid as

the protein approaches the closed form.

$-lactamase

$-lactamase is the enzyme responsible for bacterial resistance to penicillin and newer

classes of antibiotics like cephalosporins. As such, the protein is under selective

pressure due to the many new antibiotics used and it is of clinical and medicinal

interest. Many mutants have been isolated from patients with resistant bacterial

infections, and the structure of many of these determined. Thus $-lactamase is a

good example of an enzyme whose active site has been well studied, and where high

resolution structures of many active site variants are known. These include the wild-

type 246, structures that have mutations conferring activity against cephalosporins

247, structures that have stabilizing mutations 247; 248, a structure with active site

mutations that should destroy activity but do not due to sidechain and water

rearrangements 249, structures bound to different inhibitors 250, and structures with

inhibitor resistant mutations 251; 252. Not all the mutations are in the active site, for

instance many of the stabilizing mutations are far from the active site.
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Table 5-1 $-lactamase Structure Comparison

PDB

Code

Mutation(s) Liganda Reference Pocket

Distance

to WT

Pocket

Volume

(Å3)

Surface

Area

(Å2)

1XPB WT 246

561 1013

1ESU S235A 246 0.6 519 971

1JWP M182T 247 1.0 475 926

1JWV G238A Yes 247 1.3 394 760

1JWZ E104K/R164S/

M182T

Yes 247

2.3 404 695

1NYY M182T Yes 250 0.9 444 810

1NYM M182T Yes 250 1.7 366 592

1NY0 M182T Yes 250 1.2 407 718
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1NXY M182T Yes 250 1.6 398 695

3CMZ L201P 248 0.9 468 904

1YT4 S130G 249 1.0 432 854

1LHY R244S 251 1.4 445 857

1LI0 M69I/M182T 251 1.4 386 764

1LI9 M69V 251 1.0 436 848

1CK3 N276D 252 1.0 423 786

aSulfate, Phosphate, Potassium and Bicarbonate Ions not included
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15 structures were analyzed as summarized in Table 5-1. Each structure was

downloaded, water and ligands removed, and a surface was created with a probe

radius of 1.2Å. 44 residues were chosen to represent the active site, based on

proximity to one of the ligands. These residues,  numbers 69, 70, 72, 73, 103-105,

107, 127-130, 132, 166-171, 214-220, 234-238, 240-244, 268-273, 275, 276 were

used to find the active site pocket with the Tanimoto overlap method. Pocket

descriptor means and standard deviations were calculated from this data set.

With the refined list of active site pockets, all pocket-pocket distances can be

examined. The pocket distance to the wild-type pocket is shown in Table 5-1. Ten of

the structures have a mutual pocket-pocket distance of less than 1.1 (which is very

low), these are typically mutations not in the active site or mutations or bound

ligands that do not affect the overall shape of the active site. However, very few

(six) of these pocket-pocket distances are less than 0.5. To put this figure of 0.5 in

perspective, if the choice of pockets is refined simply by choosing the lowest distance

regardless of whether the pocket is a ligand binding pocket, the resulting distance is

0.27, giving a rough lower bound to pocket-pocket distances. So a value of 0.5

indicates that each of the structures examined is somewhat different in a small but

significant way.

The five structures that show extreme variation fromm these ten (and sometimes

with each other) are PDB codes 1JWZ, 1ESU, 1XPB, 1LI9 and 1NYM. 1JWZ is a triple

mutant with a bound ligand, one mutation is stabilizing the other mutations increase

activity against cephalosporins, this pocket was observed by hand to be bigger in the

original report 247. Interestingly this is the only pocket that has 2 mouths and a much
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smaller mouth diameter of 17Å. 1XPB and 1ESU are the wildtype protein and a

protein with a mutation that slows down activity against cephalosporins. If the

refinement method is used on the original set of pockets found from residue overlap,

these structures join the group with a low pocket-pocket distance to each other,

indicating there are similar pockets in the tree with slightly rearranged lining

residues. 1NYM is a structure that has the common M182T stabilizing mutation but is

bound to a different inhibitor which mimics a transition states and is slightly smaller

than the other pockets found. Two structures 1NXY and 1NYY have a pocket-pocket

distance of 1.06, without this distance the highest pocket-pocket distance in the

mutually similar set of ten is 0.93. 1LI9 has a mutation that is inhibitor resistant that

makes the pocket slightly larger. Again these join the large group of mutually similar

pockets if the refinement method is used.

Also of interest is 1YT4, an inhibitor resistant mutant that has a lot of

rearrangements in the active site resulting in a differently placed but similarly

shaped pocket. It is likely a technique based on residue motifs would not identify this

pocket as similar due to the extensive rearrangements, despite having the same

shape and function. The volume and surface area for all the active site pockets is

shown in Table 5-1. As many of the structures have the stabilizing M182T mutation,

the structure of just that mutation, 1JWV, along with the structure 1YT4 with the

rearranged but similarly shaped active site, and the very different active site, 1JWZ,

are all shown in Figure 5-8, along with their pocket-pocket distances. Note the

‘failure’ of pure pocket shape distance to discriminate the changes that take place in

the 1YT4 active site, however the similarity is actually a success, even though the
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Figure 5-8 $-lactamase comparisons

Shown are three $-lactamase pockets colored by Travel Depth. The protein is colored

grey, mutations from wild-type are colored yellow, and the ligand is colored red. The

pocket-pocket distance between each pair of pockets is shown.
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residues are very different the pocket shape and enzymatic activity is still very

similar and is identified as such.

Enzyme Pocket Shape

To test the ability of our shape comparison to discern differences between active site

pockets of proteins we used a benchmark dataset used to train a geometric hashing

comparison algorithm based on atoms in the active site 214. This data set contains 79

proteins from 13 diverse protein families. Although the activity and enzyme

classification of these proteins within a family are identical, it is not necessarily true

that binding pocket shapes within one class will be similar. In the original study

describing this dataset, it was possible to cluster these binding sites into the correct

classifications, but knowledge of the binding location was used. In contrast, in the

test here of CLIPPERS, no prior information about the binding site was used in the

clustering. Instead, each family was examined in turn to see if pocket shapes cluster

together. Then these clusters were examined to see if they corresponded to the

ligand binding sites.

First protein structures were downloaded, waters and ligands removed, and

nonstandard amino acids preserved. Then CLIPPERS was run on each protein to

inventory the pockets. To compute shape descriptor Z scores the means and

standard deviations of the descriptors taken from the 67 proteins in the

SURFNET/CAST dataset. For clustering, the penalty score given by Eqn. 3 with 

! 

"=1

was used. Again no sequence or structural alignment of pockets was necessary.

Clustering of the complete pocket trees of two or more proteins in a family proceeds
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by comparing pair wise pocket distances and connecting pocket pairs with an ‘edge’

if their similarity rises above some threshold. As each edge is added to the

clustering, the residue overlap (ignoring residue order) of each distinct cluster was

computed, along with how many structures have a pocket in that cluster. We search

this output for clusters that have pockets representing all structures and that have

the highest residue overlap score otherwise. Each pocket in the cluster is then

examined to see if it corresponds to the ligand binding site. The results are

summarized in Table 5-2. The total number of connections used up to the point

where that cluster is created is also reported.

Eight of the thirteen families are complete successes, the cluster with at least one

pocket from each structure with the highest residue overlap contains pockets

representing each individual binding site. Though the residue overlap scores may not

seem high, considering that mutations and size variation among pockets will affect

this score, they are reasonable in the successful cases. In these cases we presume

the shape and enzymatic activity are linked and note that the relatively simple

scoring system of finding the cluster with at least one pocket from each structure

with the highest residue overlap is sufficient to identify the binding sites for all such

structures.

The cases where this simple scoring scheme fails to identify a cluster of active site

pockets were examined further. In the set of ten serine/threonine kinases, no cluster

with a nonzero overlap score containing pockets from all ten structures existed, and

the highest scoring cluster with nine structures represented was not the binding site.

The highest scoring cluster with four structures represented does indeed contain the



204

Table 5-2 Enzyme Shape Clustering

Enzyme Name Total

Connections

Cluster

Size

Overlap Structures

in Cluster

Found

Ligands

Total

Structures

Aldose reductase 1823 130 0.368 8 8 8

Isocitrate

dehydrogenase 3441 16 0.5 7 7 7

p-Hydroxybenzoate

hydroxylase 640 15 0.73 7 7 7

Kinases

(serine/threonine) 2859 51 0.019 9 0 10

Kinases (tyrosine) 166 2 0.5 2 1 2

Thymidylate kinase 6572 114 0.13 11 11 11

Subtilisin 243 2 0.763 2 2 2

Acid protease 694 26 0.725 7 7 7

Carbonic anhydrase 3140 16 0.444 6 6 6
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Methionine gamma-

lyase 6 2 1 2 0 2

D-Xylose isomerase 3801 32 0.115 8 0 8

Phosphoglycerate

mutase 4990 31 0.507 4 4 4

D-Glutamate ligase

MurD 166 11 0.917 5 0 5
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binding sites from those structures, and has a residue overlap of 0.487. Further

examination of the structures shows that the ones found represent an open

conformation of the binding site, leading to a wide-mouthed but similarly shaped

pocket in those four structures. Other structures in the set of ten for this enzyme

class have a more closed conformation of the binding site, leading to a very different

pocket with a much smaller mouth. So these would not show up in a clustering

scheme based on shape, even though they do cluster together when residue type,

position and known binding site location are the basis of the clustering 214.

The class of tyrosine kinases is represented by only two structures in this dataset.

The highest overlap cluster found only contains one binding site, clustered with a

similarly shaped cleft in the other structure. As there are only two structures in this

cluster, these small clusters of just two pockets are very common and drown out

possible clusters where many similar pockets all cluster together that have lower

residue overlap due to size differences. Also, the binding site shapes of these two

structures are somewhat different, while both bind in a cleft with an open mouth,

one structure has two very deep lobes that extend beyond the volume taken up by

the ligand, the other structure has much less volume below the ligand and no lobes.

So, while CLIPPERS and the simple scoring scheme fail to identify the binding site

here, this is not unreasonable as the binding site is not similarly shaped.

Methionine gamma-lyase has only two structures in this dataset, a cluster is found

containing perfect residue overlap between 8 residues, however this is not the

binding site cluster. D-xylose isomerase has many more structures but again suffers

a similar result, the highest residue overlap cluster is not the binding site. Both these



207

classes share some features: they have multiple binding sites per structure, their

ligands are small, their binding sites are very deep and limited to just the volume

near the ligand. In the methionine gamma-lyase structures, the probe radius of 1.2Å

used appears to be a bit small and some of the ligand is inside the surface, this is

possible where the surrounding protein is packed very closely to many parts of the

ligand. Having multiple binding sites per structure, and having those binding sites be

very small bottleneck pockets means they will be penalized highly by our redundancy

clustering scheme.

The class of D-Glutamate ligase MurD contains five structures and the cluster with

the most overlap is a conserved shallow dimple on the surface. The cluster ranked

3rd by residue overlap contains the five correct binding site pockets in a cluster of

size 54 but with a low residue overlap of 0.211. Since there are 54 pockets in this

cluster, and they are of variable size, the union of their residue counts is from the

largest pocket while the intersection of the residue counts is from the smallest

pocket, accounting for the very low overlap score.

Overall, while other methods can completely cluster these classes correctly 214, they

have prior knowledge of the binding site location. Without binding site location,

CLIPPERS correctly clusters the shapes of about two third of the classes. The other

classes present a challenge for any shape based comparison. While binding and

functional site location is not the major motivation for developing CLIPPERS, we note

that the successes here show promise that additional methods or a better clustering

and scoring system could prove useful. Regardless, similarly shaped binding sites can
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be identified using the clustering and scoring system, a useful test of the pocket

similarity and redundancy formulas.

Protein Tyrosine Phosphatome

Protein tyrosine phosphatases are involved in many functions by specifically

controlling dephosphorylation of their peptide or protein substrates. They share a

conserved fold but have diverse shapes surface properties even across just the

human forms. Recent structural genomics work in addition to previous crystal

structures have presented an excellent opportunity to analyze the entire diverse

class 253 254. Here we add to the previous analyses using CLIPPERS. We refer to the

main site of dephosphorylation activity as the main active site. The  photyrosine

binding site sometimes found near the active site is referred to as the secondary site.

When both sites are present in a single super-pocket found by CLIPPERS we will refer

to this as the joint site. The conserved site putatively assumed to be involved with

protein-protein interaction and regulation will be referred to as the distal site 254.

These sites are challenging since the interaction is between two proteins, so the

binding face may have few deep or well-defined pockets.

32 crystal structures were downloaded that span the human phosphatome as

detailed by Barr et. al. 253. 12 of these were soluble proteins. In the other 20, the

phosphatase domain was in a cytosolic region of a membrane protein. Waters were

removed from each structure, non-standard residues were kept and then ligands and

peptides were removed. Note that no structural alignment is necessary, nor is a

sequence alignment used later to analyze residue conservation of pockets. This is
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done purely on the residue types and counts lining each pocket. To compute shape

descriptor Z scores the means and standard deviations of the descriptors taken from

the 67 proteins in the SURFNET/CAST dataset.

Initially, the soluble and transmembrane classes were analyzed separately. The

pockets from the 12 soluble structures were clustered using the redundancy scores

to (hopefully) give preference to the more interesting and unique active site pockets.

Several 

! 

"  values were used, from 0 (using only the pocket-pocket distances) to 10

(very highly weighting against redundant pockets). When using 

! 

"=0, almost no

active site pockets were identified in the output, when using 

! 

"=10, pockets far from

the active site that were unique to each structure were so heavily weighted that

most other pockets were not present in the clustering output. At 

! 

"=4, there were

several active site or nearby active site pockets as well as many other pockets in the

clustering output, so the 

! 

"=4 clustering result was examined further. An arbitrary

number of connections of 5000 was used to create the output graph shown in Figure

5-9, even at this scale most of the clusters have joined together but the structure

can still be seen in the output graph. Among the output were many main active site

pockets and many joint site pockets that also included the nearby PTP1B-like pocket,

many distal site pockets, some small deep pockets, and many medium sized pockets

varying from very flat to somewhat medium in depth. The medium size and flat to

shallow bowl shaped pockets were clustered together in a large ‘smear’ which is also

connected at this clustering threshold to the main site and joint site pockets.

The small deep pockets had almost very little sequence conservation (all much less

than 0.5) and were located at different places in the structure. 5 of the non-
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Figure 5-9 Protein Tyrosine Phosphatome Non-transmembrane Domain

Comparison

12 structures and the resulting pockets found using CLIPPERS are shown. Only

pockets within 25 Å3 and 2000 Å3 of volume are compared using 

! 

"=4 to weight the

uniqueness score and 5000 connections are shown in dark black lines. Thin grey lines

connect the trees of pockets together. Each node has a border color unique to the

structure. Each node is colored from blue to white to red according to the mean

residue overlap over all connected nodes. This layout was created by aiSee 230.
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transmembrane structures had these pockets, all were in different areas and only

PDB code 1WCH 255 had such a pocket in the main active site. None of these pockets

were very large, the largest in PDB code 2SHP 256 had a volume and surface area of

about 200 Å3 or Å2 respectively, and a maximum and minimum travel depth around

20 and 11 Å. 2SHP also contained an additional similar pocket separate from this

large one, the larger of these pockets are formed by the interface with the N-

terminal SH2 domains, the smaller is in the PTP domain itself. These pockets, except

for the one that is the closed active site found in 1WCH could potentially be sites of

specific allosteric control, though the small size and depth would probably not favor

natural binding partners or designed inhibitors. These pockets are clustered together

at the top of Figure 5-9.

The elongated cluster running diagonally from just below the top to the right of

Figure 5-9 contains main active site pockets, joint pockets and distal pockets. The

upperleft most are the small main active sites alone. In the middle are many joint

pockets. The big cluster at right contains both joint pockets and distal pockets. The

joint pockets usually have a higher residue overlap and are therefore more red than

blue. No pockets representing just the secondary site are in this output, as this is a

shallow pocket and not always present, we assume it does not score well enough to

show up at this arbitrary threshold. The distal pocket clusters near large sometimes

oversized joint pockets (oversized meaning they contain more volume than just the

main active site and secondary site), as they are both shallow and pockets with the

same size can be found amongst the output for some structures. Again this distal

pocket has been found before using computational techniques 254 though it appears
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to have not been confirmed experimentally.

Immediately to the right of the large cluster representing joint and distal pockets in

Figure 5-9 is a small cluster of pockets with medium (around 0.5) residue

conservation. These pockets are not near the distal pocket or the main active site,

but appear to be a collection of pockets that are very long shallow trenches, the

longest principal dimension of one pocket is almost 48Å.

The large unconserved, blue cluster dominating the left of Figure 5-9 is a collection

of either small medium depth bowl-shaped pockets or small flat pockets, few of

which show any residue conservation or spatial proximity. Again, by choosing higher

! 

"  values this cluster will be smaller in the resulting graphs but at the expense of the

interesting main active site and joint pockets.

The 20 receptor structures of protein tyrosine phosphatases 253 were examined and

clustered in a similar manner to the non-transmembrane structures. Again, 

! 

"=4

highlighted the most interesting set of output clusters. 10000 connections were used

to create the output in Figure 5-10. Again we examine the more interesting clusters,

though the large smear contains small pockets of either shallow dimples or close to

flat shapes, and they do not have much residue overlap with their connections.

The cluster at the top left of Figure 5-10 is an interesting case. One of the two

structures involved has pockets representing the main active site, 2A8B. The other

structure, 2FH7, has pockets formed between two domains, it is striking that these

pockets are both very similar in shape. The output cluster is colored white, indicating
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Figure 5-10 Protein Tyrosine Phosphatome Receptor Comparison

20 structures and the resulting pockets found using CLIPPERS are shown. Only

pockets within 25 Å3 and 2000 Å3 of volume are compared using 

! 

"=4 to weight the

uniqueness score and 10000 connections are shown in dark black lines. Thin grey

lines connect the trees of pockets together. Each node has a border color unique to

the structure. Each node is colored from blue to white to red according to the mean

residue overlap over all connected nodes. This layout was created by aiSee 230.
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about 50% residue overlap. The next cluster examined is the one in the center but

above the main cluster. This cluster is comprised solely of pockets formed at the

domain boundaries of just three structures. There is again a fair but more variable of

residue overlap in this cluster.

In the right of Figure 5-10 is a cluster with residue overlap from 0.5 and higher.

Roughly half the cluster seems to be distal sites, the other half is main active sites

with some extra nearby pockets, several structures are represented. The rough half

containing main active sites have slightly higher residue overlaps overall. It may

seem strange that these shapes cluster together as they sometimes did for the non-

transmembrane structures as well, but it makes sense when the shapes are

examined, as both contain one deep pocket and several connected shallow grooves.

At the bottom of Figure 5-10 is a cluster representing all distal pockets or pockets far

from the main active site. These pockets are characterized by many shallow grooves

and at most one deep depression. This cluster shows a lot of residue overlap and 6

structures are represented.

Clustering all thirty-two structures of protein tyrosine phosphatases at best led to a

result where the ‘boring’ small flat dimpled pockets were clustered in one big cluster

and some of the main active site or joint active site pockets were clustered together

in another smaller cluster, further examination of this large clustering was not very

interesting. Note that the thirty-two structures produced well over ten thousand

pockets for over ten million possible connections.
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As a closer examination of the ability of CLIPPERS to discern differences among

related conformations and bound states, four structures of PTP-1b were examined.

These 4 structures all have bound inhibitors that exploit both the main site and the

nearby secondary pocket, though the structures are in different conformations. Two

structures have a closed active site: PDB codes 1PTY 257 and 1Q1M 258. Two

structures have an open active site: 1NNY 259 and 1ONZ 260. 31 residues were chosen

that lie near any of the ligands in the structures and used to choose pockets for

comparison. When the pockets chosen are compared, the open and closed states are

discriminated according to their pocket-pocket distances. The differences between

closed pockets is 0.41, between open pockets is 0.61. The difference between the

two sets range from 1.05 to 1.24. If the refinement method is used to pick pockets

that are as close to each other as possible, these numbers change in magnitude,

dropping to 0.28 and 0.36 within the classes and ranging from 0.68 to 0.86 between

the classes. When the refinement method is used, slightly larger pockets are chosen

for all four structures, indicating that the smaller pockets are less alike than the

larger pockets that contain them. Note that these differences between the sets are

quite small but these pockets are very similar in shape, with the open sites having

higher volumes, surface areas, bigger mouths and longer first principal dimensions

than the closed sites, the other shape descriptors do not vary much. The fraction of

apolar surface area of these pockets is between 0.3 and 0.4, confirming analysis that

the PTP-1b site is not very druggable 199 and that the site is hard to search for using

a formula based on finding hydrophobic concave regions 204. The binding site pockets

are shown in Figure 5-11.
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Figure 5-11 PTP-1b Binding Site Pockets

Pockets from the PTP-1b set of structures colored by Travel Depth, with the ligands

shown in gray and the proteins shown in red. Top two panels: Open form. Bottom

two panels: Closed form.
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Future Work

We present here some of the many potential applications now possible with

CLIPPERS, identifying all pockets, calculating shape properties, and comparing them.

The shape framework and pocket hierarchy could be adapted to many others needs

and applications, for instance to aid in functional site location and predciction 58,

finding druggable binding sites 199; 204; 225 or especially druggable binding spots in

protein-protein interfaces 261; 262; 263; 264; 265, finding sites amenable to fragment based

drug design 233; 234; 235; 236; 237; 238; 239 or identifying transient pockets as proteins

undergo motions 266.

The influence of pocket shape on chemical shape space and ligand shape is obviously

important as well, and perhaps a complete classification of pocket shape will assist or

provide guidance in these areas267; 268; 269; 270; 271; 272; 273. Also, allosteric site discovery

274; 275 204 is a very important application of finding potential binding sites.

Additionally, cataloging protrusions of the protein surface could provide the positive

shape to the negative shape provided here to search for protein-protein binding sites

and partners. This could perhaps be done by using distance from the convex hull

inwards and into the protein surface to catalog each protrusion in the same way

CLIPPERS analyzes pockets.

Conclusion

CLIPPERS is a new computational technique capable of cataloging all the potential

pockets on a protein surface, and this cataloging is done without any tunable
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parameters or user intervention. CLIPPERS passes three objective tests, first, it

always finds a pocket with a reasonable and sometimes high residue Tanimoto score

to bound ligands in a diverse test set of proteins,with a mean score of T=0.5.

Second, it can reconstruct the ordering of pockets formed along a transition pathway

purely from their pocket-pocket distances, as shown in the adenylate kinase

transition pathway. Finally it gives lower pocket-pocket distances within groups of

similar conformations than between them, as is shown with PTP1B.

Many applications need a list of pockets as a starting point for later analysis, some

are presented here including tracking pockets through dynamic changes, comparing

pockets across protein families or across different bound ligands. CLIPPERS provides

excellent visualization and characterization of pocket shape through customized

PyMOL scripts 64 and output of many shape features, including the difficult volume

and mouth descriptors. CLIPPERS computes pocket-pocket distances without doing

full pocket alignments of any kind and clusters pockets according to shape and

uniqueness to visualize the many possible interacting pockets on a set of protein

surfaces. The framework and approach is adaptable. For example it could be

integrated with tools like multiple sequence alignment, so residue overlaps could be

scored based on alignment profiles rather than residue identity scores with a single

sequence. This would be expected to improve the pocket classification of multi-

protein families.
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Chapter 6

Conclusions and Future Work

There are many analyses possible now with the use of the shortest paths algorithm

in the context of surfaces in structural biology, including many applications to

protein-ligand binding, ion channel and pore examination, and the shape of proteins

and their pockets, including changes in shape due to increased thermostability.

These results have generated new hypotheses to be tested experimentally and are

the building blocks of further computational techniques.

Summary of Results

CHUNNEL successfully identifies tunnels in many proteins, with interesting results. In

the porin family, all tunnels are successfully found, the size of the choke points is

correlated with the size of the molecules that can be transported, and the analysis of

the residues involved indicates the as-expected polar residues line the pore, with

arginine, tyrosine, glutamic acid, and proline significantly enriched near the choke

point.

In analyzing the entire set of known transmembrane proteins, significant new facts

were discovered. Many structures contain no putative physiological holes, those that

span both membrane layers, but several membrane spanning segments do contain

these tunnels. Many other kinds of tunnels exist, for instance those that exit within

the bilayer or that transverse from two points interior to the bilayer. Of particular
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note was the discovery of a new class of tunnels which older algorithms like HOLE 40

could never discover; namely branched tunnels. These branches split off a putative

physiological tunnel that spans both membrane bilayers and the branch exits with

the bilayer. As no previous work could discover and classify bifurcated tunnels,

CHUNNEL is the first to identify them. From their size and lining residue makeup, it

would appear these tunnels are not involved in ion transport. They may be water-

filled as they are lined primarily with tryptophan, known to prefer the polar head

groups and water in membrane bilayers  276. These tunnels may be involved in ion

desolvation and resolvation for transport, as many ion channels conduct ions with

fewer waters bound to them than in bulk solvent.

Turning to analyzing hyperthermostable and mesostable homologous pairs of

proteins, there are several interesting results. Most importantly, it was shown that

hyperthermostable proteins have significantly fewer in number and shallower pockets

using Travel Depth analysis.  Also hyperthermostable proteins bury more atoms

further from the surface as a result of the Burial Depth analysis. This combined with

a lack of significant change in buried atom packing, interatomic distances or convex

hull volume leads to the conclusion that hyperthermostable proteins are not better

packed, but instead that they are more spherical. Analysis using Wadell Sphericity

175, applied for the first time to proteins, supports this conclusion.

After correcting for overall differences in burial of atoms, it was shown by a residue-

specific Burial Depth analysis that the charged residues of hyperthermostable

proteins stay unburied significantly. The other residues are more buried, but not by

any significant amount once the correction factor is employed, except for alanine
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which is much more buried in hyperthermostable proteins, consistent with previous

analyses using surface area analyses, for instance that of Greaves and Warwicker 51.

Travel Depth confirms and quantifies many observations about macromolecular

structure. First the relative depths of grooves of the canonical forms of DNA are

shown to match the initial observations of the crystallographers solving the

structures. Using a large database of protein-ligand co-crystal structures 33; 34, a

large portion of binding sites (839 of 887) were shown to be quantitatively and

significantly deeper than would be expected from a random binding site. The depths

of the entire protein, a measure of number and depth of pockets, were shown to

correlate strongly with protein size, also the Travel Depth of the binding sites

correlated with the overall protein size, though to a lesser degree. This is interesting

as the volume of binding sites does not correlate well with protein size using very

different analysis 72 or CLIPPERS. The binding affinity of these protein-ligand

complexes does not generally correlate with depth, as expected since binding affinity

is more affected by other less global descriptors of the binding site.

CLIPPERS inventories and analyzes a nested set of pockets that completely cover a

protein surface. The volume and surface area of these pockets correlates with the

volume and surface area of the entire protein, confirming previous analyses 72 86.

Binding site pocket size however, does not correlate with protein size according to

CLIPPERS and previous work. In contrast however, where previous methods can fail

to find many binding sites 72, CLIPPERS succeeds in finding a set of pockets that

cover the entire surface. For any set of binding site residues, a pocket exists in the

output with a good Tanimoto overlap of lining residues.  CLIPPERS also provides the
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best visualization of pocket surfaces, and the first visualization of pocket depth,

going hand in hand with the excellent protein surface visualization provided by Travel

Depth.

On an objective test of a set of nearby pocket shapes constructed by a transition

pathway of adenylate kinase, the pocket ordering can be reconstructed from shape

similarity alone, providing an objective test of the pocket-pocket shape similarity

distance, done with residue knowledge or alignments. Additionally, it is shown that

the open state pockets of adenylate kinase are all very similar to each other and that

while the structure must continue to transition to the completely open form, the

pocket has already opened up to a likely inactive shape.

Analyzing a set of $-lactamase structures, or a set of protein tyrosine phosphatase

structures, also led to good results in identifying conformational changes that have

functional consequences. For instance a $-lactamase structure with many

rearrangements in the pocket due to mutations still has a very similar shape as

judged by CLIPPERS, this structure has retained activity despite these mutations and

rearrangements. Structures of PTP1B can be discriminated between their open and

closed conformations. Additionally, when sets of enzymes structures are examined,

the active sites of functionally similar enzymes cluster together and can be picked

out using the simple qualification of residue identity and count overlap. In eight of

the thirteen classes examined this simple scoring scheme picks out the active site

pockets for all the enzyme structures in the dataset 214, the other five cases, while

similar in enzyme function, are not always similar in pocket shape.
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Experimental Future Work

Many discoveries from CHUNNEL are bioinformatic in nature, for instance the

enrichment of putatively functional amino acids at choke points in tunnels that span

the membrane bilayer. Many structural and functional techniques have confirmed

how some of these amino acids aid in ion or small molecule transport, but there are

some amino acids whose exact contribution is still unknown. This is part of the

already very active pursuit of understanding the structural and molecular nature of

ion channels and pores.

The discovery of an entirely new class of tryptophan lined channels exiting in

headgroup region that branch from membrane spanning channels opens the door to

many experiments. Are these channels filled with water? Do these channels play a

role in ion desolvation or solvation as most ions seem to be partially or completely

desolvated when passing through the membrane? One system where these channels

exist that is that of the inward rectifying potassium channel 277, and could present a

good model system for experimental validation of this new theory.

In investigating the correlation of shape features and thermostability, many

experiments are possible. One is to verify the effects of residue burial differences

found, by making systematic mutations to design newly thermostable proteins. Also

proteins could be adapted to a more spherical shape by searching for new backbone

conformations and sidechain choices that stabilize the new backbone arrangement,

while retaining the necessary active site shape and function.
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The work here as well as much work with thermostable proteins suggests many

additional experiments. The most prominent of these would be to obtain structures

at more relevant temperatures, as many crystal structures are at cryonic

temperatures. Some NMR experiments are conducted at 35 degrees C, still a far cry

from the optimal conditions of some hyperthermophiles that can exist at

temperatures above 80 degrees C. Having structures or ensembles of structures

solved at these temperatures would aid greatly in understanding the nature of

hyperthermostability.

Additionally, more experimental work correlating the structural and sequence

features (including the shape features from this work) and the method of increased

stability is suggested. Here method is meant be one of the following mechanisms: 1)

a global increase in stability 2) a stability maximum that has been shifted up in

temperature or 3) a higher heat capacity, in other words a wider range of

temperatures at which the protein is stable. It is possible that the shape features

correlate with only one or all of these methods, the available data now is not

conclusive 191.

The work here on depth of pockets suggests several experiments. Are deeper

pockets with similar shapes and conformations more or less hydrophobic? CLIPPERS

could be adapted to find similar shape and residue lined pockets at various depths,

but experimental techniques to determine water affinity at specific sites are still very

difficult. Similar experiments could be done with small molecules, by finding small

molecule binding sites that are similar in all respects except the absolute depth at

which they bind. Again, comparisons between vastly different protein structures and
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experiments on them would necessitate many experiments to be positive of any

findings.

Computational Future Work

The ability of CHUNNEL to find and analyze tunnels is a first step in any automated

process to predict function from structure. A system that could predict the ion or

other substrate would be very useful. This would again be just a first step of a

procedure to find tunnels, predict what they transport, the kind of transport

(transporters, pumps, channels), the conductance rate, and finally the effects of pH

and voltage differential on these properties. Such a fully automated prediction

scheme in likely many years away, especially as the number of membrane protein

structures is still small 37.

Additionally CHUNNEL currently works well for single structures, but finding tunnels

that are never completely open, i.e. transporters, is not possible with the current

techniques. For this, finding tunnels in four dimensions, the fourth being time, will be

necessary, and this severely complicates topological techniques that should augment

any tunnel finding procedure.

Moving from a grid-based volume representation to a Voronoi-based one 45 for

CHUNNEL may prove advantageous, as other methods have done44; 46, though it is

important to keep the topological features of the algorithm since these enable

complete automation and reporting of all topologically distinct paths.
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Finding more mesostable/hyperthermostable pairs of structures to analyze shapes

(and other sequence and structural features) would lead to a better understanding.

Also it would be good to rule out possibly mitigating factors like the multicellular

nature of many of the mesophiles used in the current data set or the few

hyperthermophilic and piezophilic organisms. This requires care in searching the

available database of structures. Also, the shape features discussed here were not

examined in psychrophiles, cold adapted organisms. They could be different in

interesting ways, or the shapes may not change significatly, as found in the

moderate thermophile against mesophile case.

Shape features like curvature 87 or roughness were not examined but could be

significantly different between the various protein types. Also, the depth and shape

of the active sites in the mesostable/hyperthermostable pairs could be examined

with CLIPPERS. Finally, the flexibility of the structures could be examined, or the

multiple conformations that may be present at high temperature, as suggested by

some molecular dynamics simulations 188.

CLIPPERS has opened many new doors: identifying all pockets, calculating shape

properties, and comparing them. The shape framework and pocket hierarchy could

be adapted to many others needs and applications, for instance to aid in functional

site location and predciction 58, finding drugable binding sites 199; 204; 225 or especially

drugable binding spots in protein-protein interfaces 261; 262; 263; 264; 265, finding sites

amenable to fragment based drug design 233; 234; 235; 236; 237; 238; 239 or identifying

transient pockets as proteins undergo motions 266.
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The influence of pocket shape on chemical shape space and ligand shape is obviously

important as well, and perhaps a complete classification of pocket shape will assist or

provide guidance in these areas267; 268; 269; 270; 271; 272; 273. Also, allosteric site discovery

274; 275 204 is a very important application of finding potential binding sites.

Additionally, cataloging protrusions of the protein surface could provide the positive

shape to the negative shape provided here to search for protein-protein binding sites

and partners. This might be done by using distance from the convex hull inwards and

into the protein surface to catalog each protrusion in the same way CLIPPERS

analyzes pockets.

Conclusion

In conclusion, the new algorithms and analyses enabled by Dijkstra’s shortest paths

algorithm23 lead to many new discoveries in structural biology which were not

previously possible. Applications include: protein shape changes due to increased

thermostability, finding and examining ion channels and pores, the depth of binding

sites and how this affects binding affinity, and finally finding and comparing the

shapes of pockets. While analyzing the distances from these various surfaces to each

other or into the molecule or solvent has led to many new and different applications

from the original surface analyses 4, there remain many avenues for inquiry into

macromolecular shape and biological function.
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Appendix A

Table A-1 Travel Depth of the PDBbind Dataset

PDB

Code

Affinity

(pKd)

Average

depth

(overall) (Å)

Average

depth

(binding

site)

(Å)

p-value Buried

Surface

Area (Å2)

# of

ligand

heavy

atoms

10gs 6.4 6.4 14.1 0.00E+00 858 22

11gs 5.82 6.0 14.0 0.00E+00 1027 22

16pk 5.22 5.7 17.9 0.00E+00 910 23

1a07 6.4 4.4 4.5 4.25E-01 591 7

1a08 5.62 3.0 4.8 2.00E-07 740 7

1a0q 7.57 5.8 10.2 2.58E-04 684 17

1a1b 6.4 4.5 5.5 7.35E-02 724 8
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1a1c 6.4 4.5 5.5 6.16E-02 750 8

1a1e 6 4.4 4.9 2.59E-01 728 7

1a30 4.3 3.4 9.7 0.00E+00 790 15

1a42 9.89 4.0 12.1 0.00E+00 710 19

1a4k 8 6.3 9.1 1.73E-03 702 14

1a4m 13 4.5 15.7 0.00E+00 564 19

1a4w 5.92 4.0 8.7 0.00E+00 1070 15

1a50 6.7 5.5 0.0 1.00E+00 623 0

1a69 5.3 6.3 16.7 0.00E+00 571 21

1a7t 1.64 3.8 10.9 0.00E+00 453 14

1a7x 9.7 4.3 11.8 0.00E+00 1295 18

1a94 7.85 3.5 8.8 0.00E+00 1559 15

1a99 5.7 4.1 16.2 0.00E+00 330 19
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1a9m 6.92 3.9 10.0 0.00E+00 1288 15

1aaq 8.4 3.6 10.1 0.00E+00 1264 15

1abf 5.42 3.9 19.2 0.00E+00 379 21

1add 6.74 4.2 15.7 0.00E+00 577 19

1adl 5.36 5.0 13.0 0.00E+00 828 18

1ado 6 6.2 22.1 0.00E+00 329 25

1af6 1.82 9.3 30.5 0.00E+00 536 34

1afk 6.62 3.1 7.1 0.00E+00 662 12

1afl 6.28 3.1 7.4 0.00E+00 673 12

1agm 12 4.8 9.9 0.00E+00 853 18

1ai4 2.5 7.5 32.8 0.00E+00 426 36

1ai5 3.72 7.4 32.9 0.00E+00 451 37

1ai7 4.09 7.5 35.2 0.00E+00 297 38
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1aj6 5.92 4.4 7.0 1.64E-04 780 13

1aj7 3.87 5.4 10.4 6.40E-06 590 16

1ajn 2.63 7.4 32.1 0.00E+00 440 36

1ajp 2.23 7.4 33.2 0.00E+00 400 37

1ajq 4.31 7.5 33.5 0.00E+00 367 38

1ajv 7.72 3.4 11.1 0.00E+00 1167 15

1ajx 7.91 3.3 11.0 0.00E+00 1126 16

1alw 6.52 6.1 9.1 3.39E-02 408 13

1anf 5.46 4.5 15.9 0.00E+00 639 20

1apb 5.82 3.8 19.0 0.00E+00 391 21

1apv 9 4.0 13.1 0.00E+00 1011 18

1apw 8 3.9 13.1 0.00E+00 1001 18

1at6 4.07 2.6 4.9 0.00E+00 702 12
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1atl 6.28 5.5 9.4 2.86E-04 662 15

1avn 3.9 3.9 10.3 6.10E-05 247 14

1awi 4.05 4.8 12.3 0.00E+00 1317 18

1ax0 3.13 4.0 5.2 6.49E-02 432 8

1ax1 3.29 4.0 5.2 5.72E-02 408 9

1ax2 3.99 4.0 4.8 1.04E-01 439 9

1axz 3.2 6.1 6.4 3.77E-01 349 9

1b05 7.12 4.6 0.0 1.00E+00 960 0

1b0h 6.7 6.4 22.8 0.00E+00 1148 26

1b1h 7.03 6.3 22.3 0.00E+00 1097 29

1b2h 4.54 6.7 24.5 0.00E+00 1019 29

1b32 7.1 6.5 24.1 0.00E+00 1044 27

1b3f 6.89 6.7 24.2 0.00E+00 1048 28



266

1b3g 6.7 6.2 24.4 0.00E+00 1001 31

1b3h 6.21 6.2 22.9 0.00E+00 1087 27

1b3l 5.89 6.2 22.9 0.00E+00 874 27

1b40 7.28 6.0 22.8 0.00E+00 1070 29

1b42 4.01 6.7 8.9 1.09E-01 396 12

1b46 5.28 6.0 22.6 0.00E+00 933 28

1b4h 5.46 6.3 23.2 0.00E+00 992 27

1b4z 5.23 6.2 23.7 0.00E+00 983 27

1b51 7.37 6.4 23.0 0.00E+00 929 27

1b52 7.12 6.3 23.0 0.00E+00 966 30

1b55 7.4 6.2 6.9 3.39E-01 589 10

1b58 6.59 6.1 23.4 0.00E+00 1096 29

1b5h 6.01 6.3 23.1 0.00E+00 944 27
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1b5i 7.05 6.3 23.5 0.00E+00 1009 31

1b5j 7.43 5.6 22.6 0.00E+00 1035 27

1b6h 7.82 6.4 23.5 0.00E+00 992 28

1b6j 7.92 4.0 9.4 0.00E+00 1317 15

1b6k 8.74 3.7 9.2 0.00E+00 1317 14

1b6l 8.3 4.0 10.1 0.00E+00 1114 15

1b6m 8.4 3.8 9.7 0.00E+00 1243 14

1b6n 8.4 4.0 10.4 0.00E+00 962 15

1b6o 9.22 3.7 10.0 0.00E+00 955 14

1b6p 8.52 3.8 9.4 0.00E+00 1307 14

1b74 1.3 4.7 18.8 0.00E+00 359 21

1b7h 8.02 6.0 23.4 0.00E+00 1029 28

1b8o 10.64 3.6 12.3 0.00E+00 547 15
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1b8y 7.85 3.4 10.4 0.00E+00 784 13

1b9j 5.96 6.3 22.2 0.00E+00 1014 25

1bai 7.7 4.4 10.9 0.00E+00 1643 17

1bap 6.85 3.9 18.9 0.00E+00 348 21

1bcd 8.7 4.1 17.8 0.00E+00 299 19

1bcj 3.7 8.5 6.8 7.94E-01 365 10

1bcu 5 4.4 10.3 0.00E+00 473 15

1bdq 6.34 3.9 11.4 0.00E+00 1170 15

1bgq 8.57 5.6 13.3 0.00E+00 675 18

1bhf 4.38 3.3 5.0 6.00E-07 891 8

1bhx 6.84 4.7 11.5 0.00E+00 870 16

1bky 3.84 6.6 7.8 2.55E-01 367 10

1bm7 7.52 5.3 17.9 0.00E+00 647 23
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1bma 4.59 4.2 9.6 0.00E+00 860 17

1bn1 9.34 3.8 11.6 0.00E+00 586 18

1bn3 9.89 4.0 11.7 0.00E+00 601 19

1bn4 9.31 3.9 11.5 0.00E+00 588 18

1bnn 10 3.9 11.7 0.00E+00 604 19

1bnq 9.49 3.9 12.5 0.00E+00 694 19

1bnt 9.8 3.9 11.9 0.00E+00 604 18

1bnu 9.7 3.9 12.8 0.00E+00 629 19

1bnv 8.77 3.8 11.3 0.00E+00 675 18

1bnw 9.08 4.2 12.7 0.00E+00 564 19

1bq4 5.22 8.5 11.9 8.65E-02 616 16

1br5 2.7 4.7 13.1 0.00E+00 504 16

1br6 3.22 4.6 13.2 0.00E+00 565 17
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1bra 1.82 6.1 18.9 0.00E+00 368 21

1bv7 9.3 3.8 10.1 0.00E+00 1361 15

1bv9 8.96 3.6 9.9 0.00E+00 1368 15

1bwa 7.6 3.7 10.0 0.00E+00 1368 15

1bwb 7.42 3.6 9.3 0.00E+00 1475 15

1bxo 10 4.1 12.6 0.00E+00 1166 19

1bxq 7.38 3.9 12.0 0.00E+00 1163 18

1byk 5 6.5 16.7 0.00E+00 815 21

1bzc 4.92 3.8 7.3 0.00E+00 699 14

1bzh 6.77 4.3 7.2 0.00E+00 826 14

1bzj 4.66 3.9 9.5 0.00E+00 531 14

1bzy 8.34 7.2 13.6 8.73E-04 684 18

1c1r 7.63 3.5 8.8 2.00E-07 546 14
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1c1u 8.25 4.3 12.9 0.00E+00 682 18

1c1v 7.64 4.4 12.8 0.00E+00 772 18

1c2d 8.28 3.5 9.1 0.00E+00 616 13

1c3x 3.68 8.5 18.3 1.30E-03 495 20

1c4u 10.37 4.7 11.9 0.00E+00 914 17

1c4v 10.8 4.4 11.2 0.00E+00 965 17

1c5c 6.96 6.1 9.8 3.88E-03 633 16

1c5n 4.7 4.7 13.2 0.00E+00 498 16

1c5o 3.49 4.4 14.8 0.00E+00 362 17

1c5p 4.68 3.5 10.5 0.00E+00 365 13

1c5q 6.36 3.3 9.7 0.00E+00 482 13

1c5s 6 3.6 9.9 6.00E-07 417 13

1c5t 4.1 3.6 9.9 1.20E-06 425 14
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1c6y 9.51 3.7 10.3 0.00E+00 1327 14

1c70 10.3 3.7 10.4 0.00E+00 1382 15

1c83 4.85 4.0 8.7 0.00E+00 496 12

1c84 5 3.8 8.9 0.00E+00 524 13

1c86 4.7 3.9 7.8 0.00E+00 528 13

1c87 4.2 4.0 10.3 0.00E+00 496 14

1c88 5.29 3.8 8.5 0.00E+00 519 14

1caq 7.72 3.7 10.1 0.00E+00 946 13

1cbx 6.35 4.5 12.5 1.60E-06 514 18

1ce5 4.74 3.5 10.6 0.00E+00 378 14

1cea 4.96 2.2 3.2 1.46E-02 344 5

1ceb 6 2.2 5.1 0.00E+00 379 8

1cet 2.89 6.2 7.1 2.49E-01 520 13
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1cil 9.43 4.0 12.9 0.00E+00 602 19

1cim 8.82 4.1 13.1 0.00E+00 544 18

1cin 8.73 3.9 13.2 0.00E+00 570 19

1ciz 7.44 3.5 9.8 0.00E+00 946 15

1clu 8.27 3.5 7.3 0.00E+00 789 11

1cnw 7.72 4.1 11.2 0.00E+00 629 19

1cnx 7.37 4.0 11.9 0.00E+00 638 19

1cny 7.85 4.1 11.6 0.00E+00 619 19

1cps 6.66 4.0 10.9 2.00E-07 594 16

1cru 2.3 8.4 21.7 0.00E+00 592 25

1ct8 6.52 6.9 18.0 0.00E+00 934 24

1ctt 4.52 5.6 19.3 0.00E+00 495 23

1ctu 11.92 5.5 19.0 0.00E+00 502 22
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1d09 7.57 8.4 25.3 2.00E-07 506 28

1d1p 3.6 3.3 6.7 0.00E+00 452 13

1d3d 9.09 4.5 10.4 0.00E+00 1047 18

1d3p 6.54 4.6 10.7 0.00E+00 1048 17

1d4k 9.22 3.9 9.3 0.00E+00 1383 14

1d4l 8.77 3.8 10.1 0.00E+00 1213 14

1d4p 6.3 4.4 12.2 0.00E+00 829 18

1d4s 9 3.6 10.4 0.00E+00 1163 15

1d4y 11.1 3.3 10.2 0.00E+00 1207 15

1d5r 1.82 5.2 16.6 0.00E+00 343 19

1d6v 6.17 6.5 12.8 1.80E-06 679 21

1d6w 5.96 4.5 11.6 0.00E+00 939 16

1d7i 3.6 2.7 8.4 0.00E+00 326 11
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1d7j 3.3 2.5 9.4 0.00E+00 293 11

1d9i 9.11 4.8 12.2 0.00E+00 868 17

1db1 9.26 5.1 22.1 0.00E+00 1065 30

1df8 9.7 5.8 14.9 0.00E+00 557 19

1dg9 2.74 3.4 7.4 0.00E+00 473 13

1dhi 7.26 5.5 15.9 0.00E+00 832 23

1dhj 6.55 5.6 16.6 0.00E+00 845 24

1dif 10.66 3.5 9.6 0.00E+00 1478 15

1dl7 6.49 4.0 5.5 1.42E-02 635 10

1dmp 9.55 3.7 11.2 0.00E+00 1098 15

1dqn 8 6.0 14.2 0.00E+00 668 18

1dqx 11.05 5.9 20.0 0.00E+00 686 26

1drj 7.4 4.1 17.8 0.00E+00 310 20
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1drk 6.82 4.0 17.1 0.00E+00 309 19

1dud 4.82 6.0 11.3 2.37E-04 617 15

1duv 11.8 7.7 26.2 0.00E+00 584 29

1dy4 4.36 4.7 18.1 0.00E+00 676 24

1e1v 4.92 4.8 13.2 0.00E+00 618 19

1e1x 5.89 4.9 13.3 0.00E+00 626 20

1e2k 4.94 7.4 18.9 0.00E+00 585 24

1e2l 4.29 7.5 17.7 2.00E-07 586 23

1e2n 4.51 7.4 22.5 0.00E+00 648 26

1e2p 4.57 7.2 17.6 2.00E-07 526 23

1e3v 4.34 4.5 12.0 0.00E+00 684 18

1e4h 8.41 5.3 15.7 6.00E-07 721 21

1e5a 7.64 5.9 16.2 5.50E-05 657 21
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1e66 9.89 5.5 19.6 0.00E+00 698 23

1e6q 3.15 4.7 22.8 0.00E+00 398 25

1e6s 3.22 4.7 22.7 0.00E+00 388 25

1e70 3.05 5.0 23.1 0.00E+00 349 26

1ebg 10.82 7.3 0.0 1.00E+00 310 0

1ec9 3.1 5.1 26.4 0.00E+00 389 29

1ecq 3 5.2 23.6 0.00E+00 386 26

1ecv 4.85 4.0 10.0 0.00E+00 523 13

1eed 4.79 4.3 12.2 0.00E+00 1142 17

1efy 8.22 5.5 18.4 0.00E+00 608 23

1egh 5.7 8.3 18.7 5.76E-04 327 22

1eix 11.06 5.3 20.0 0.00E+00 654 25

1ejn 5.62 4.1 11.6 0.00E+00 690 15
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1ela 6.36 4.1 9.2 0.00E+00 749 15

1elb 7.15 4.1 10.3 0.00E+00 716 16

1elc 6.66 4.0 9.9 0.00E+00 893 17

1eld 6.7 3.8 9.2 0.00E+00 725 14

1ele 6.85 4.0 8.2 0.00E+00 742 14

1elr 4.96 3.6 9.6 0.00E+00 937 14

1els 10.82 7.0 22.1 0.00E+00 350 24

1ent 6.96 4.3 12.2 0.00E+00 1248 17

1eoc 6.05 5.4 15.4 0.00E+00 384 19

1epo 7.96 4.3 13.0 0.00E+00 1208 18

1epp 7.16 4.3 11.6 0.00E+00 1263 17

1epq 8.19 4.4 12.4 0.00E+00 1044 18

1epv 6.89 7.4 23.4 0.00E+00 705 27
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1erb 7.05 4.8 15.5 0.00E+00 916 23

1ets 8.22 5.2 12.6 0.00E+00 959 18

1ett 5.89 4.7 12.6 0.00E+00 845 18

1evh 3.22 3.4 4.8 3.66E-04 749 8

1ex8 6.33 3.7 10.6 0.00E+00 1235 15

1ez9 5.1 4.9 13.0 0.00E+00 837 19

1ezq 9.05 5.1 9.2 2.00E-07 959 16

1f0r 7.66 4.7 9.3 6.00E-07 818 18

1f0s 7.74 4.7 8.6 0.00E+00 778 16

1f0t 6 3.4 8.0 0.00E+00 736 15

1f0u 7.16 3.4 7.2 0.00E+00 843 14

1f2o 1.91 3.1 8.5 0.00E+00 389 12

1f2p 1.9 2.9 9.3 0.00E+00 447 12
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1f3e 6.7 4.7 17.6 0.00E+00 487 21

1f3f 4.67 8.6 11.0 7.82E-02 704 15

1f4e 2.96 5.7 15.9 0.00E+00 563 20

1f4f 4.62 6.0 13.3 0.00E+00 835 18

1f4g 6.48 5.5 12.2 0.00E+00 973 17

1f4x 5.59 5.7 4.4 8.77E-01 522 8

1f57 5.64 3.8 12.9 0.00E+00 315 15

1f5k 3.74 4.2 13.3 0.00E+00 363 17

1f5l 5.28 4.0 12.3 0.00E+00 495 16

1f73 2.39 9.0 28.7 0.00E+00 566 34

1f74 3.05 6.2 20.7 0.00E+00 577 24

1f8a 5 4.3 9.4 0.00E+00 1001 15

1f8b 5.4 4.2 12.1 0.00E+00 594 17
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1f8c 7.4 4.3 12.2 0.00E+00 602 16

1f8d 3.4 4.1 12.2 0.00E+00 608 16

1f8e 4.82 4.3 12.5 0.00E+00 614 16

1f9g 1.28 6.3 20.8 0.00E+00 358 24

1fao 7.37 3.6 4.9 5.52E-02 569 8

1fch 7.15 5.0 14.0 0.00E+00 1160 20

1fcx 7.19 4.8 16.2 0.00E+00 886 21

1fcy 8.52 4.2 15.4 0.00E+00 880 20

1fcz 9.22 4.5 16.4 0.00E+00 859 20

1fd0 8.4 4.8 16.5 0.00E+00 898 21

1fdq 7.27 4.0 11.5 0.00E+00 898 18

1fh7 5.24 3.5 12.3 0.00E+00 491 18

1fh8 6.89 3.7 12.8 0.00E+00 472 17



282

1fh9 6.43 3.5 12.0 0.00E+00 523 17

1fhd 6.82 3.7 12.3 0.00E+00 531 17

1fj4 4.59 6.8 17.1 4.20E-06 543 19

1fjs 9.96 4.9 9.7 0.00E+00 889 17

1fkb 9.7 2.9 6.4 0.00E+00 906 12

1fkf 9.4 4.1 13.2 0.00E+00 1017 18

1fkg 8 2.9 7.7 0.00E+00 727 12

1fkh 8.15 2.8 8.0 0.00E+00 740 12

1fki 7 4.2 7.4 1.20E-06 689 13

1fkn 8.8 5.1 11.8 0.00E+00 1476 18

1fkw 5.05 4.1 15.6 0.00E+00 563 19

1fkx 2.22 4.4 16.1 0.00E+00 567 21

1fl3 6.8 6.4 16.4 0.00E+00 802 25



283

1flr 7 5.9 8.3 1.90E-02 691 13

1fm9 9 7.2 23.2 0.00E+00 1285 30

1fmb 10 4.4 10.6 0.00E+00 1018 17

1fpc 7 4.3 8.8 0.00E+00 978 13

1fpu 7.43 5.3 15.9 0.00E+00 906 20

1fq5 8.4 5.2 12.1 0.00E+00 1469 19

1ftm 7.61 4.5 20.0 0.00E+00 456 22

1fv0 5.93 3.2 7.8 0.00E+00 724 13

1fwu 3.7 2.6 2.5 5.19E-01 416 5

1fwv 3.72 2.8 2.4 8.20E-01 431 5

1fzj 8.1 6.4 10.9 0.00E+00 1664 17

1fzk 8.4 6.8 11.2 0.00E+00 1668 18

1fzm 7.7 6.7 10.2 0.00E+00 1871 19



284

1fzo 7.89 6.6 10.3 4.00E-07 1638 17

1g1d 9.44 4.3 13.3 0.00E+00 569 20

1g2k 7.96 3.6 10.8 0.00E+00 1287 15

1g2l 7.24 4.8 9.2 0.00E+00 931 16

1g2o 10.55 8.0 52.7 0.00E+00 532 56

1g30 6.85 4.4 12.0 0.00E+00 904 18

1g32 6.11 4.4 12.3 0.00E+00 858 17

1g35 8.14 3.7 10.4 0.00E+00 1335 15

1g36 7.17 3.2 8.4 0.00E+00 753 14

1g3b 5.74 3.5 9.5 1.00E-06 476 14

1g3d 5.55 3.7 9.4 4.60E-05 473 15

1g3e 5.38 3.1 10.2 0.00E+00 541 14

1g45 8.64 4.1 13.2 0.00E+00 531 19



285

1g46 8.8 4.0 13.8 0.00E+00 518 19

1g48 8.41 4.0 13.0 0.00E+00 549 20

1g4j 8.7 4.0 13.0 0.00E+00 516 19

1g4o 8.25 4.1 13.3 0.00E+00 519 20

1g52 9.54 4.1 13.0 0.00E+00 576 20

1g53 9.04 4.1 12.9 0.00E+00 579 20

1g54 8.82 4.0 13.1 0.00E+00 586 20

1g7f 5.47 4.2 8.8 0.00E+00 858 15

1g7g 6.6 4.1 7.1 0.00E+00 956 15

1g7q 6.06 6.4 9.9 5.00E-06 1494 16

1g7v 6.4 4.9 11.4 0.00E+00 798 17

1g98 5.7 8.0 20.4 5.20E-06 497 24

1gaf 8 6.1 10.7 5.25E-04 630 17



286

1gar 10 5.4 10.1 0.00E+00 1228 18

1gca 6.7 4.2 25.5 0.00E+00 380 28

1gcz 5.13 5.6 11.2 9.61E-04 487 17

1gdo 4.82 8.2 0.0 1.00E+00 362 0

1ghv 4.35 4.8 12.8 0.00E+00 566 17

1ghw 4.2 4.6 13.2 0.00E+00 606 17

1ghy 8.1 4.3 13.2 0.00E+00 615 17

1ghz 4.8 4.2 8.7 1.06E-04 477 14

1gi1 4.77 3.1 9.5 0.00E+00 507 14

1gi4 7.19 3.6 10.1 0.00E+00 456 14

1gi6 5.31 3.5 9.2 0.00E+00 484 14

1gi7 4.51 4.2 11.8 0.00E+00 487 16

1gi8 5.05 4.3 11.6 0.00E+00 489 15



287

1gi9 5.22 4.1 11.2 0.00E+00 511 15

1gj4 4.07 4.4 12.7 0.00E+00 748 17

1gj5 4.96 4.3 12.9 0.00E+00 721 17

1gj6 6.11 3.3 9.2 0.00E+00 643 14

1gj7 7.89 4.4 11.9 0.00E+00 655 17

1gj8 6.96 4.3 10.7 0.00E+00 631 15

1gj9 7.48 4.3 11.6 0.00E+00 697 16

1gja 5.42 4.3 12.5 0.00E+00 532 16

1gjb 6.35 4.1 11.9 0.00E+00 612 16

1gjc 8.1 4.2 11.5 0.00E+00 613 15

1gjd 5.22 4.1 11.4 0.00E+00 644 16

1gni 8.07 8.3 20.3 0.00E+00 869 25

1gny 4.14 3.4 4.4 2.70E-02 621 9



288

1gpk 5.37 5.2 20.5 0.00E+00 621 26

1gpn 6.48 5.3 20.9 0.00E+00 569 26

1gpy 4.7 11.8 17.8 2.56E-02 493 20

1grp 3.72 7.5 23.7 0.00E+00 373 28

1gu3 4.32 3.0 4.8 1.00E-06 838 10

1gui 6.28 2.9 5.3 0.00E+00 879 12

1gvu 9 4.6 12.4 0.00E+00 1344 19

1gvw 6.96 4.4 12.1 0.00E+00 1290 18

1gvx 7.22 4.8 11.3 0.00E+00 1446 17

1gwm 4.1 3.7 3.5 7.31E-01 893 8

1gyx 2.48 3.8 7.1 3.15E-04 314 10

1gyy 3.64 3.8 7.4 3.50E-05 371 10

1gz9 3.57 3.5 4.4 2.63E-02 574 8



289

1gzc 3.28 3.6 5.8 2.08E-03 411 9

1h0a 5.44 4.2 8.3 0.00E+00 581 12

1h1h 5.22 3.7 9.5 0.00E+00 401 14

1h1p 4.92 6.5 11.9 6.27E-04 627 18

1h1s 8.22 6.3 11.1 1.55E-04 822 17

1h22 9.1 5.1 14.7 0.00E+00 1033 25

1h23 8.35 5.3 16.0 0.00E+00 1072 26

1h46 3.57 5.0 17.2 0.00E+00 660 24

1h4n 4.92 3.9 16.0 0.00E+00 314 18

1h4w 4.66 3.2 11.5 0.00E+00 375 15

1h6h 5.3 4.9 6.5 5.31E-02 602 12

1h9z 5.42 8.9 25.7 0.00E+00 701 31

1ha2 5.54 8.7 25.0 0.00E+00 689 29



290

1hbv 6.37 3.3 9.4 0.00E+00 1255 15

1hef 9 3.6 9.8 0.00E+00 1354 15

1heg 7.74 4.2 10.6 0.00E+00 1210 16

1hfs 8.7 5.5 14.4 0.00E+00 1458 20

1hi3 4.19 3.3 9.2 0.00E+00 540 13

1hi4 4.49 3.1 8.3 0.00E+00 662 13

1hih 8.05 3.5 10.1 0.00E+00 1236 15

1hii 7.28 3.5 10.6 0.00E+00 1244 14

1hiv 9 3.4 9.2 0.00E+00 1495 15

1hk4 5.31 8.6 20.5 0.00E+00 993 24

1hmr 6.55 4.2 11.5 0.00E+00 810 17

1hms 6.37 4.3 11.9 0.00E+00 832 18

1hmt 5.79 4.2 12.2 0.00E+00 801 18



291

1hn2 6 6.8 28.3 0.00E+00 547 31

1hn4 5.3 6.1 21.1 0.00E+00 1161 27

1hos 8.55 3.6 9.6 0.00E+00 1164 15

1hp0 6.7 5.1 19.2 0.00E+00 570 23

1hpo 9.22 3.7 10.7 0.00E+00 995 15

1hps 9.22 3.4 9.5 0.00E+00 1165 15

1hpv 9.22 3.7 11.0 0.00E+00 1107 15

1hpx 9.3 3.5 9.4 0.00E+00 1221 14

1hsg 9.42 3.5 10.2 0.00E+00 1320 15

1hsh 8.61 3.3 9.5 0.00E+00 1329 15

1hsl 7.19 6.0 17.1 0.00E+00 405 19

1hvh 7.96 4.2 11.6 0.00E+00 1174 16

1hvi 10.08 3.6 9.2 0.00E+00 1472 15



292

1hvj 10.46 3.7 9.5 0.00E+00 1459 15

1hvk 10.11 3.5 9.4 0.00E+00 1475 15

1hvl 9 3.6 9.3 0.00E+00 1462 15

1hvr 9.51 3.5 10.8 0.00E+00 1241 15

1hvs 10.3 3.3 9.5 0.00E+00 1420 15

1hwr 8.33 3.4 10.9 0.00E+00 910 15

1hxb 9.92 3.5 10.1 0.00E+00 1267 16

1hxw 10.82 3.5 9.4 0.00E+00 1363 15

1hyo 4.07 7.2 23.2 0.00E+00 410 27

1hyx 7.72 6.3 6.0 6.12E-01 946 13

1i1e 5.03 8.6 4.4 9.24E-01 660 7

1i5r 8.52 5.2 14.9 0.00E+00 1410 19

1i7z 6.4 5.9 9.6 2.94E-04 674 15



293

1i80 6.41 8.0 17.8 1.33E-03 352 21

1i9n 8.66 4.1 13.7 0.00E+00 528 19

1i9p 8.41 4.2 13.0 0.00E+00 590 19

1icj 2.22 7.3 9.2 8.80E-02 805 14

1if7 10.52 4.1 11.8 0.00E+00 650 19

1if8 9.64 4.3 11.8 0.00E+00 633 19

1igb 6.4 5.4 10.9 2.46E-05 566 14

1igj 10 6.1 8.4 8.24E-03 697 17

1ii5 6.62 6.2 17.3 6.00E-07 384 20

1iih 2.89 5.4 13.4 2.00E-07 410 17

1ik4 7.41 8.4 18.6 5.93E-04 358 22

1ikt 3.4 3.6 9.4 0.00E+00 957 16

1imx 3.52 2.8 3.7 3.57E-03 556 7



294

1is0 7 3.0 5.4 0.00E+00 841 8

1it6 8.39 3.7 6.3 0.00E+00 1356 10

1iup 2.54 6.2 6.7 3.72E-01 299 8

1ivp 7.52 3.7 9.2 0.00E+00 1527 15

1iy7 6.19 3.9 11.1 1.40E-06 572 15

1izh 7.7 3.4 9.4 0.00E+00 1369 14

1izi 6.59 3.3 9.2 0.00E+00 1314 15

1j01 6.47 3.4 12.1 0.00E+00 478 17

1j14 4.49 3.3 11.3 0.00E+00 368 14

1j16 3.84 3.6 11.8 0.00E+00 375 14

1j17 5.22 3.9 8.0 6.00E-07 840 15

1j4r 7.72 2.9 7.1 0.00E+00 827 12

1jao 5.92 3.2 7.3 0.00E+00 695 13



295

1jaq 4.48 3.1 7.1 0.00E+00 620 11

1jcx 5.15 5.8 18.1 0.00E+00 723 24

1jd5 6.62 2.9 5.3 0.00E+00 951 10

1jet 7.25 5.6 24.0 0.00E+00 909 30

1jeu 6.82 6.6 23.5 0.00E+00 1042 28

1jev 6.89 6.5 25.0 0.00E+00 1117 30

1jgl 8.7 6.1 9.3 3.26E-03 567 14

1jkx 4.7 5.8 12.0 0.00E+00 1309 16

1jlx 5.55 6.5 8.0 1.01E-01 659 10

1jn2 4.09 4.0 2.2 9.96E-01 414 6

1jn4 4.95 3.1 7.6 0.00E+00 810 11

1joc 4.62 5.6 6.5 2.42E-01 421 8

1jq8 6 3.3 6.8 0.00E+00 1046 13



296

1jq9 8.45 3.4 6.1 0.00E+00 1113 11

1jqd 5.16 4.3 13.6 0.00E+00 782 19

1jqy 4.92 5.5 6.7 1.06E-01 691 10

1jr0 4.92 5.4 5.2 5.81E-01 579 8

1jt1 3.4 3.8 10.9 0.00E+00 402 14

1jwt 7.85 4.7 12.7 0.00E+00 917 18

1jyq 8.7 3.6 4.2 4.38E-02 1038 7

1jys 3.52 4.9 12.4 9.84E-05 373 16

1jzs 6.6 7.7 19.8 0.00E+00 954 27

1k1i 6.58 3.1 8.6 0.00E+00 631 14

1k1j 7.55 3.3 8.1 0.00E+00 737 14

1k1l 6.9 3.5 8.3 0.00E+00 701 14

1k1m 7.4 3.5 8.0 4.00E-07 726 13



297

1k1n 6.82 3.1 7.9 0.00E+00 761 14

1k1y 3.22 6.0 19.2 0.00E+00 988 26

1k21 8.38 4.5 11.5 0.00E+00 906 17

1k22 8.4 4.3 11.5 0.00E+00 846 17

1k4g 5.85 5.1 17.5 0.00E+00 681 21

1k4h 5.11 5.7 18.4 0.00E+00 686 21

1k6c 7.48 4.1 10.4 0.00E+00 1359 15

1k6p 7.36 3.6 10.5 0.00E+00 1417 15

1k6t 7.62 4.0 10.5 0.00E+00 1387 15

1k6v 6.92 3.9 10.3 0.00E+00 1419 15

1k9s 6.52 4.0 10.6 0.00E+00 613 14

1kav 5.82 4.5 7.6 5.18E-05 607 14

1kc7 5.52 8.5 23.2 1.18E-03 321 26



298

1kdk 9.05 4.3 0.0 1.00E+00 665 0

1kel 7.28 6.3 8.7 9.75E-03 637 15

1kf0 2.55 6.5 16.8 0.00E+00 764 20

1kll 5.2 4.5 4.5 4.98E-01 400 8

1koj 6.7 8.0 21.7 0.00E+00 515 25

1kpm 5.8 3.4 6.5 0.00E+00 975 13

1kr3 5 3.8 9.0 0.00E+00 581 14

1ksn 9.4 4.6 8.9 0.00E+00 939 17

1kts 8.35 4.1 11.2 0.00E+00 982 18

1kug 3.8 3.5 8.5 0.00E+00 786 14

1kui 3.77 3.5 8.3 0.00E+00 786 13

1kuk 3.91 3.4 7.5 0.00E+00 823 13

1kv1 5.94 5.3 20.0 0.00E+00 774 24



299

1kv5 4.22 5.1 13.9 6.80E-06 351 18

1kyv 5.92 6.9 14.9 0.00E+00 814 18

1kzk 10.39 3.6 10.8 0.00E+00 1211 15

1kzn 8.92 4.2 7.2 6.80E-06 963 17

1l2s 4.59 4.2 12.4 0.00E+00 517 14

1l5q 3.97 11.4 26.7 0.00E+00 823 33

1l5r 4.77 10.0 30.7 0.00E+00 826 35

1l5s 3.26 11.2 25.5 0.00E+00 815 32

1l7s 9.52 6.0 10.6 1.06E-05 655 16

1l7x 4.04 9.9 30.0 0.00E+00 828 35

1l83 3.4 3.5 15.8 0.00E+00 285 19

1l8b 6.85 4.0 7.5 6.00E-07 699 11

1laf 7.85 4.4 17.7 0.00E+00 444 20



300

1lag 6.3 4.0 17.3 0.00E+00 385 20

1lah 7.52 3.9 18.8 0.00E+00 360 23

1lan 7.22 12.5 47.0 0.00E+00 373 51

1lbf 7.85 3.8 12.1 0.00E+00 743 17

1lbl 7.85 4.1 11.1 0.00E+00 687 16

1lcp 6.64 12.9 47.4 0.00E+00 405 50

1lee 7.74 5.1 14.0 0.00E+00 1142 20

1lf2 7.52 4.8 13.7 0.00E+00 1135 18

1lf9 12 4.8 13.4 0.00E+00 791 21

1lgt 6.1 4.1 15.5 0.00E+00 485 20

1lgw 4 3.5 0.0 1.00E+00 329 0

1li2 4.04 3.3 0.0 1.00E+00 301 0

1li3 4.25 3.4 0.0 1.00E+00 348 0



301

1li6 3.8 3.3 0.0 1.00E+00 298 0

1lke 6.53 4.6 13.7 0.00E+00 809 20

1lkk 6.85 3.2 5.0 0.00E+00 936 9

1lkl 5.81 3.1 4.4 1.38E-04 832 7

1lnm 8.7 4.9 13.8 0.00E+00 786 22

1loq 3.7 6.1 11.9 7.00E-06 616 15

1lor 11.06 5.4 19.0 0.00E+00 673 24

1los 7.19 4.8 13.2 0.00E+00 642 17

1lox 5.52 6.4 22.5 0.00E+00 672 26

1lpg 7.09 4.6 8.9 0.00E+00 987 16

1lpk 7.55 4.3 9.8 0.00E+00 866 17

1lqe 5.82 3.7 8.0 0.00E+00 796 14

1lrh 6.82 5.7 14.1 0.00E+00 524 18



302

1lyb 11.42 7.0 13.5 0.00E+00 1319 19

1lyx 4.54 6.8 16.5 1.80E-06 361 19

1lzq 8.39 3.9 9.6 0.00E+00 1359 15

1m0n 2.22 6.8 25.9 0.00E+00 775 30

1m0o 2.31 10.4 27.6 0.00E+00 774 32

1m0q 2.96 9.5 27.7 0.00E+00 724 34

1m13 7.57 5.6 20.0 0.00E+00 1193 25

1m1b 4.66 6.0 0.0 1.00E+00 348 0

1m21 6.52 5.0 12.8 0.00E+00 959 20

1m2p 6.11 4.9 13.2 0.00E+00 610 19

1m2q 6.1 4.9 14.4 0.00E+00 570 19

1m2r 6.46 4.9 13.2 0.00E+00 593 19

1m2x 4.15 3.6 9.4 0.00E+00 434 13



303

1m48 5.09 3.6 4.4 4.89E-02 719 8

1m4h 9.52 5.1 11.6 0.00E+00 1602 19

1m5j 3.52 4.5 6.1 4.42E-02 354 9

1m5w 4.27 5.4 21.2 0.00E+00 498 25

1m6p 5.1 5.2 7.1 4.08E-02 488 9

1m7d 6.23 6.0 9.1 2.00E-03 828 14

1m7i 5.4 6.0 7.9 1.31E-02 1073 14

1m9n 6.92 9.3 14.1 1.96E-02 671 17

1mai 6.68 3.0 6.6 0.00E+00 513 10

1me8 7.19 7.7 26.4 0.00E+00 623 31

1mes 7.7 3.9 10.8 0.00E+00 1124 15

1met 9.4 3.5 11.1 0.00E+00 1128 15

1meu 6.1 3.3 10.8 0.00E+00 1151 15



304

1mfa 5.04 3.7 5.3 1.33E-03 594 10

1mfd 5.31 5.9 5.3 7.73E-01 620 10

1mfi 5.59 5.6 10.6 2.42E-03 414 14

1mfl 3.89 3.2 5.6 0.00E+00 745 11

1mh5 9.21 5.2 11.9 0.00E+00 834 21

1mj7 8.35 5.9 10.1 5.60E-06 837 19

1mjj 8.74 5.4 10.8 2.00E-07 841 20

1mmp 6.07 3.4 6.5 0.00E+00 715 14

1mmq 7.52 3.2 6.6 0.00E+00 742 13

1mmr 5.4 3.3 7.1 0.00E+00 777 13

1moq 3.46 7.0 14.8 7.60E-04 555 18

1mq5 9 4.6 8.6 0.00E+00 939 16

1mq6 11.15 4.7 8.5 6.00E-07 947 18



305

1mtr 8.4 4.1 10.1 0.00E+00 1239 15

1mx1 4 5.7 21.1 0.00E+00 575 25

1n1m 5.7 11.1 36.5 0.00E+00 456 40

1n1t 3.85 5.8 12.8 4.00E-07 636 17

1n2v 4.08 4.8 17.1 0.00E+00 509 22

1n3i 8.89 7.5 20.2 2.00E-07 584 25

1n43 10.55 5.7 14.3 0.00E+00 549 19

1n46 10.52 6.9 20.7 0.00E+00 817 25

1n4h 6.55 4.7 16.8 0.00E+00 858 21

1n4k 10.05 5.6 9.2 4.59E-04 569 13

1n5r 5.66 5.7 7.6 2.64E-02 714 12

1n9m 10.96 6.8 15.2 0.00E+00 568 20

1nc1 6.12 4.2 13.1 0.00E+00 620 17



306

1nc3 6.12 4.7 14.1 0.00E+00 566 17

1nc9 11.17 6.2 15.1 0.00E+00 576 19

1ndj 12.16 6.0 15.2 0.00E+00 547 19

1nf8 7.82 4.7 18.8 0.00E+00 523 22

1nfu 7.74 4.6 8.4 0.00E+00 792 17

1nfw 8.96 4.7 9.5 2.00E-07 825 17

1nfx 8.52 4.8 9.3 0.00E+00 846 18

1nfy 8.89 4.8 9.6 0.00E+00 836 18

1nhu 5.66 6.8 6.7 4.87E-01 635 12

1niu 7.1 8.1 24.4 0.00E+00 720 29

1nja 6.31 6.5 19.8 0.00E+00 572 25

1njc 5.55 6.5 19.6 0.00E+00 554 24

1nje 3.8 6.7 20.0 0.00E+00 542 24



307

1njj 2.1 5.2 8.2 1.33E-03 739 12

1njs 7.82 4.0 10.0 0.00E+00 976 15

1nl9 5.96 4.3 8.8 0.00E+00 860 13

1nli 3.59 3.7 13.4 0.00E+00 358 17

1nm6 10.05 4.5 9.3 0.00E+00 903 14

1nms 6.7 5.6 10.7 8.60E-06 805 16

1nny 7.66 4.1 8.4 0.00E+00 1177 14

1no6 7.41 4.3 10.2 0.00E+00 604 13

1nq7 6.8 4.7 16.8 0.00E+00 978 24

1nt1 8.89 4.3 10.2 0.00E+00 862 16

1nu3 4 5.1 13.8 0.00E+00 475 17

1nvq 8.25 5.2 12.1 0.00E+00 895 18

1nvr 8.11 5.1 11.8 0.00E+00 877 18



308

1nvs 7.82 5.2 12.3 0.00E+00 787 18

1nw5 5.21 6.1 13.2 0.00E+00 826 18

1nw7 5.09 6.0 12.2 0.00E+00 748 14

1nwl 2.39 4.2 6.8 1.20E-06 787 12

1nz7 7.12 4.4 9.3 0.00E+00 1099 14

1o0f 5.3 3.2 7.3 0.00E+00 560 12

1o0m 5.15 3.2 9.3 0.00E+00 470 13

1o0n 4.09 3.4 9.7 0.00E+00 468 12

1o0o 5.1 3.2 7.4 0.00E+00 427 12

1o1s 7.31 7.1 27.4 0.00E+00 1022 34

1o2g 6.12 4.4 11.0 0.00E+00 765 16

1o2h 6.15 3.6 8.7 0.00E+00 636 14

1o2k 5.7 3.1 8.6 0.00E+00 749 13



309

1o2n 4.38 3.5 9.3 0.00E+00 705 14

1o2o 5 3.8 8.8 0.00E+00 749 14

1o2p 4.85 3.5 8.9 0.00E+00 760 13

1o2q 5.64 3.5 8.8 0.00E+00 667 14

1o2r 5.21 3.3 8.4 0.00E+00 690 13

1o2t 6.89 3.4 9.2 0.00E+00 646 14

1o2x 5.12 3.5 8.6 2.00E-07 620 14

1o2z 5.1 3.7 8.0 0.00E+00 726 14

1o30 5.54 3.3 8.4 0.00E+00 700 14

1o35 5 3.3 8.9 0.00E+00 512 14

1o36 5.07 3.4 8.3 0.00E+00 726 13

1o3c 5.3 3.3 8.9 0.00E+00 626 14

1o3g 6.72 3.3 8.6 0.00E+00 628 14



310

1o3h 6.34 3.5 8.9 2.00E-07 592 13

1o3k 5.57 3.3 8.8 0.00E+00 581 14

1o3l 6.54 3.5 9.1 0.00E+00 609 14

1o3p 6.66 4.0 11.5 0.00E+00 588 16

1o86 9.57 7.5 27.8 0.00E+00 844 32

1o8b 2.68 5.8 12.6 2.00E-06 457 15

1o9d 5.6 4.7 11.3 0.00E+00 973 16

1oai 5 2.4 3.5 1.34E-05 808 9

1obx 5.72 2.7 5.3 0.00E+00 621 8

1ocq 5.19 3.4 7.9 0.00E+00 550 12

1ody 8.1 3.5 9.3 0.00E+00 1520 15

1oe7 5.52 7.2 16.8 0.00E+00 646 23

1oe8 5.52 7.5 17.3 0.00E+00 630 23



311

1ogx 6.09 4.5 12.6 0.00E+00 596 18

1ohr 8.7 3.3 10.5 0.00E+00 1146 15

1oif 7.72 4.4 20.0 0.00E+00 353 22

1oim 5.32 4.4 20.6 0.00E+00 366 24

1okl 6.03 3.9 14.5 0.00E+00 511 18

1okn 8.64 4.0 11.4 0.00E+00 601 18

1oko 4.54 5.1 3.7 8.98E-01 339 6

1ony 6.77 4.3 9.7 0.00E+00 935 15

1onz 5.1 4.3 10.4 0.00E+00 615 14

1ork 8.81 6.6 15.7 0.00E+00 1077 22

1os0 6.03 4.3 12.0 0.00E+00 891 19

1oss 4.79 3.7 10.7 2.00E-07 363 15

1ow4 5.68 5.1 15.2 0.00E+00 670 21



312

1oxn 5.68 6.8 3.7 9.96E-01 635 7

1oxq 6.3 6.7 4.6 9.61E-01 672 8

1oyq 6.96 3.3 7.7 0.00E+00 780 14

1oyt 7.24 4.9 12.3 0.00E+00 860 18

1oz0 7.7 9.9 17.5 1.00E-06 1381 23

1p6d 2.94 3.1 8.0 0.00E+00 750 14

1p6e 2.92 3.1 8.0 0.00E+00 782 14

1pa9 4.6 3.7 8.0 3.40E-06 436 12

1pb8 5.15 5.3 16.7 0.00E+00 268 18

1pb9 3.62 5.2 17.0 0.00E+00 265 18

1pbk 9.05 3.3 7.2 0.00E+00 933 14

1pbq 6.27 7.1 18.7 0.00E+00 529 22

1pdz 3.7 6.6 19.8 2.00E-05 307 23



313

1pgp 5.7 7.7 23.7 0.00E+00 540 26

1ph0 6.92 4.4 9.6 0.00E+00 1004 14

1pip 5 3.5 5.3 1.13E-04 728 10

1pme 9.4 5.2 15.5 0.00E+00 751 20

1pot 5.49 4.5 24.0 0.00E+00 446 29

1ppc 6.16 3.5 8.7 0.00E+00 751 14

1pph 5.92 3.3 8.2 0.00E+00 638 13

1ppi 5.01 4.6 14.4 0.00E+00 1142 22

1ppk 7.66 3.9 12.9 0.00E+00 1034 16

1ppl 8.55 4.0 12.6 0.00E+00 1186 18

1ppm 5.8 3.9 12.0 0.00E+00 1166 18

1pr1 5.3 6.3 14.8 0.00E+00 567 19

1pr5 3.92 6.9 15.6 0.00E+00 573 20



314

1pro 11.3 3.9 11.6 0.00E+00 1154 16

1ps3 2.28 7.2 17.3 7.53E-04 420 20

1pvn 9.3 7.4 0.0 1.00E+00 679 0

1pxh 8.74 4.4 6.5 4.00E-07 1047 14

1pyn 5.49 4.3 9.5 0.00E+00 980 15

1pz5 5.4 5.7 7.7 3.75E-03 1158 14

1q54 5.85 5.4 15.1 0.00E+00 582 20

1q8t 4.76 5.5 19.8 0.00E+00 648 26

1q8u 5.96 5.5 20.2 0.00E+00 677 26

1q8w 5.24 5.6 19.5 0.00E+00 630 25

1qan 4.48 4.3 9.0 0.00E+00 844 14

1qaw 5.12 6.0 12.3 3.02E-04 502 16

1qb1 6.77 3.3 7.3 0.00E+00 812 14



315

1qb6 6.06 3.6 7.9 0.00E+00 693 14

1qb9 7.44 3.3 7.4 0.00E+00 834 14

1qbn 5.85 3.2 8.2 0.00E+00 747 14

1qbo 7.74 3.6 7.6 0.00E+00 818 14

1qbq 8.3 6.6 27.4 0.00E+00 751 35

1qbr 10.57 3.8 10.0 0.00E+00 1342 15

1qbs 9.47 4.3 11.4 0.00E+00 1123 16

1qbt 10.62 3.4 9.4 0.00E+00 1422 15

1qbu 10.24 3.8 10.9 0.00E+00 1184 15

1qbv 5.39 4.4 10.7 0.00E+00 805 15

1qca 5.27 7.6 14.4 0.00E+00 990 21

1qf0 7.38 3.8 12.7 0.00E+00 914 19

1qf1 7.32 3.9 13.4 0.00E+00 788 19



316

1qf2 5.92 3.8 13.0 0.00E+00 742 19

1qft 8.77 4.2 13.4 2.00E-07 343 16

1qhc 7.57 3.1 8.2 0.00E+00 971 13

1qi0 2.35 3.4 5.3 1.32E-03 481 10

1qin 8 5.0 11.4 0.00E+00 993 18

1qiw 7.74 4.7 12.6 0.00E+00 1151 18

1qjb 6.38 7.0 17.8 0.00E+00 1169 24

1qji 4.85 3.2 9.2 0.00E+00 1065 16

1qk3 5.15 9.9 10.7 2.99E-01 686 14

1qk4 4.21 9.3 13.7 2.00E-02 610 18

1qka 5.92 6.3 22.4 0.00E+00 1100 26

1qkb 7.35 5.8 23.5 0.00E+00 955 30

1qpb 1.36 8.5 26.0 0.00E+00 896 33



317

1qq9 2.06 3.1 9.8 0.00E+00 406 12

1qsc 3.68 8.3 4.8 1.00E+00 957 8

1qxk 5.05 4.2 9.0 0.00E+00 943 13

1qy5 6.7 4.6 14.1 0.00E+00 637 19

1r0p 8 5.3 13.2 0.00E+00 860 20

1rbo 10.55 5.3 12.0 0.00E+00 672 16

1rbp 6.72 4.6 15.5 0.00E+00 839 23

1rdi 2.06 4.1 2.4 9.51E-01 216 4

1rdj 1.66 3.7 2.2 9.04E-01 199 3

1rdl 2.24 3.8 2.3 8.73E-01 208 3

1rdn 1.84 3.8 2.4 8.86E-01 283 3

1rgk 4.31 2.6 5.0 2.00E-07 449 8

1rpj 6.48 4.0 16.1 0.00E+00 358 18



318

1sbg 7.74 3.8 10.7 0.00E+00 1181 15

1siv 8.08 3.7 9.8 0.00E+00 1123 15

1sld 6.57 6.9 11.5 0.00E+00 937 18

1sle 6.17 6.6 11.3 2.00E-07 887 19

1slg 3.9 6.3 11.3 0.00E+00 1086 19

1sln 6.64 3.5 7.9 0.00E+00 829 13

1srg 5.3 5.6 14.3 0.00E+00 592 19

1sri 6.08 5.8 15.0 0.00E+00 618 19

1stc 8.1 5.0 17.7 0.00E+00 878 23

1str 4.77 6.6 11.8 0.00E+00 953 19

1sts 5 6.9 11.4 2.00E-06 938 18

1swg 7.36 5.8 12.8 2.00E-07 529 16

1swk 12 6.2 15.5 0.00E+00 548 19



319

1swn 12 6.9 15.0 0.00E+00 577 19

1swp 11 6.2 13.6 0.00E+00 554 19

1swr 6.92 6.0 14.6 0.00E+00 550 19

1tcw 6.02 3.8 8.0 0.00E+00 918 14

1tcx 6.95 3.5 10.8 0.00E+00 1174 15

1tet 6.08 5.7 4.8 6.46E-01 291 7

1thl 6.25 6.5 18.7 0.00E+00 765 24

1tkb 6.1 8.3 27.3 0.00E+00 844 37

1tlp 7.55 3.9 12.4 0.00E+00 816 18

1tmn 7.3 4.1 12.2 0.00E+00 833 18

1tmt 6.24 4.9 12.4 0.00E+00 916 19

1tng 2.93 3.5 10.3 0.00E+00 350 13

1tnh 3.37 3.2 10.6 0.00E+00 351 13



320

1tni 4 3.6 9.6 8.00E-07 400 13

1tnj 1.96 3.5 11.5 0.00E+00 368 14

1tnk 1.49 3.6 11.0 2.00E-07 390 14

1tnl 1.88 3.5 10.9 2.00E-07 377 14

1tom 8.3 4.1 10.0 0.00E+00 784 13

1trd 5.4 4.4 11.1 4.98E-05 392 14

1tsl 6.15 6.9 13.3 4.98E-05 716 18

1tyr 7 3.9 5.6 2.69E-03 541 9

1ugx 5.91 6.5 4.7 9.32E-01 531 8

1uio 4.35 4.5 16.4 0.00E+00 554 20

1umw 6.55 4.2 5.8 4.13E-04 1019 11

1upf 4.6 8.9 13.8 1.01E-01 303 15

1usn 7.74 3.3 7.4 0.00E+00 602 11



321

1uvt 7.64 4.6 10.5 0.00E+00 821 17

1vfn 5.6 7.3 19.1 3.80E-06 350 22

1vot 6.6 4.9 20.1 0.00E+00 612 24

1vwf 5.54 6.9 9.7 3.37E-04 998 17

1vwl 5.63 5.7 13.8 0.00E+00 887 18

1vwn 5.82 6.3 11.3 0.00E+00 930 19

1wdn 6.3 4.2 16.6 0.00E+00 374 20

1wht 3.7 6.4 19.1 0.00E+00 483 22

1xka 6.88 5.2 9.5 2.80E-06 824 16

1xug 7.05 3.3 8.5 0.00E+00 606 14

1yda 6.55 3.9 14.1 0.00E+00 461 19

1ydb 8.24 4.0 14.2 0.00E+00 438 18

1ydd 7.07 4.1 14.9 0.00E+00 469 19



322

1ydr 5.52 5.1 18.1 0.00E+00 619 22

1yds 5.92 5.0 19.0 0.00E+00 597 24

1ydt 7.32 5.1 18.2 0.00E+00 895 24

1yei 7.46 5.7 11.8 1.00E-06 725 19

1yej 7.46 5.7 10.2 2.60E-05 814 19

1zsb 0.6 3.7 14.0 0.00E+00 471 18

2aac 2.22 4.2 12.2 0.00E+00 383 15

2ada 13 4.2 16.2 0.00E+00 555 21

2adm 5.7 5.7 11.8 0.00E+00 808 15

2amv 8.8 9.1 11.3 9.48E-02 724 14

2ans 5.92 5.8 17.5 0.00E+00 672 25

2bpv 7.67 3.5 9.7 0.00E+00 1290 14

2bpy 7.4 3.4 9.9 0.00E+00 1314 15



323

2bza 2.8 3.6 11.2 0.00E+00 344 14

2cgr 7.28 6.1 8.6 1.10E-02 787 15

2cht 5.52 4.5 11.5 4.44E-05 448 14

2csn 4.41 7.3 25.0 0.00E+00 592 28

2ctc 3.89 3.7 12.2 0.00E+00 434 16

2drc 9.89 5.7 16.9 0.00E+00 828 24

2dri 6.89 3.8 17.5 0.00E+00 309 19

2er6 7.22 4.5 11.0 0.00E+00 1462 18

2er9 7.4 4.5 11.7 0.00E+00 1528 17

2fgi 7.34 7.0 13.8 0.00E+00 966 20

2fmb 8.7 4.3 11.0 0.00E+00 1510 16

2gss 4.94 6.0 11.0 1.43E-03 527 17

2gst 6.07 7.2 18.3 0.00E+00 930 26



324

2h4n 8.7 3.8 14.2 0.00E+00 463 19

2izl 6 6.1 15.2 0.00E+00 573 20

2jxr 7.05 4.6 13.6 0.00E+00 1205 19

2mas 4.52 5.2 16.3 0.00E+00 515 20

2olb 5.54 5.8 23.9 0.00E+00 1039 30

2pcp 8.7 5.7 10.5 1.16E-05 609 15

2pri 2.91 12.0 18.0 4.19E-02 508 21

2qwb 2.74 5.5 13.0 0.00E+00 594 17

2qwc 3.55 5.5 13.2 2.00E-07 591 17

2qwd 4.85 5.6 13.1 4.00E-07 591 17

2qwe 7.48 5.4 13.3 0.00E+00 638 17

2qwf 5.67 5.6 12.5 0.00E+00 704 18

2qwg 8.4 5.8 14.0 1.20E-06 636 18



325

2rkm 3.9 6.2 21.9 0.00E+00 780 26

2sim 3.42 4.5 13.0 0.00E+00 587 16

2std 9.85 6.0 0.0 1.00E+00 747 0

2tct 9 6.8 15.8 0.00E+00 871 21

2tmn 5.89 6.6 21.3 0.00E+00 505 27

2tpi 4.31 4.3 8.9 0.00E+00 589 13

2usn 6.51 3.2 7.6 0.00E+00 686 11

2ypi 4.82 6.4 12.0 1.78E-02 367 16

3aid 6.86 4.6 11.2 0.00E+00 1162 15

3amv 7.97 11.8 17.5 8.01E-03 851 22

3er3 7.09 4.3 11.4 0.00E+00 1389 18

3gss 5.82 5.9 13.5 0.00E+00 953 24

3gst 6.72 6.8 19.3 0.00E+00 925 25



326

3jdw 3.6 6.3 18.7 0.00E+00 426 22

3kiv 4.7 2.2 3.6 2.31E-04 355 6

3mag 4.07 6.6 6.6 4.89E-01 377 9

3mbp 6.8 4.9 14.6 0.00E+00 874 20

3mct 4.07 6.6 7.6 2.93E-01 352 10

3pcb 2.4 9.6 23.4 1.79E-02 371 24

3pcc 3.62 9.3 24.0 8.56E-03 373 25

3pce 2 9.6 25.1 1.74E-05 410 28

3pcf 6.05 9.4 25.6 1.22E-05 375 27

3pcg 2.3 9.7 25.8 1.34E-05 399 28

3pch 5.4 9.6 25.3 1.50E-04 369 28

3pcj 7.22 9.6 25.9 1.16E-05 380 28

3pck 6.7 9.5 25.0 9.42E-05 384 27



327

3pcn 3.66 9.7 25.2 1.08E-04 423 27

3std 11.11 7.2 20.1 0.00E+00 802 24

3tmk 6.87 6.2 12.3 0.00E+00 1332 24

43ca 6 3.8 13.0 0.00E+00 348 15

456c 9.77 5.3 9.2 3.12E-05 724 14

4apr 6.7 4.3 13.0 0.00E+00 1234 18

4er1 6.62 4.5 11.7 0.00E+00 1402 17

4er2 9.3 4.3 11.3 0.00E+00 1228 18

4fiv 6.52 3.3 9.0 0.00E+00 1672 15

4mbp 5.64 5.1 13.2 0.00E+00 1077 20

4rsk 4.32 3.5 9.7 0.00E+00 468 13

4sga 7.3 2.6 7.5 0.00E+00 752 11

4std 10.33 6.1 0.0 1.00E+00 756 0



328

4tim 2.16 5.5 13.9 9.60E-06 408 18

4tln 3.72 4.1 14.6 0.00E+00 422 18

4tmk 7.7 4.4 11.7 0.00E+00 1216 20

4tmn 10.17 6.5 21.3 0.00E+00 1013 27

4ts1 4.94 6.2 24.8 0.00E+00 436 28

5abp 6.64 3.8 18.8 0.00E+00 396 21

5apr 7.77 4.6 12.7 0.00E+00 1363 17

5er1 6.02 4.7 10.1 0.00E+00 986 18

5er2 6.57 4.3 10.7 0.00E+00 1571 17

5hvp 7.7 3.4 9.2 0.00E+00 1356 14

5std 10.49 7.2 19.9 0.00E+00 833 25

5tln 6.37 4.0 13.6 0.00E+00 658 18

5tmn 8.04 6.6 21.5 0.00E+00 921 29



329

5tmp 7.47 4.5 11.3 0.00E+00 1398 20

5upj 7.12 3.8 11.9 0.00E+00 714 15

5yas 3.26 3.9 19.1 0.00E+00 345 22

6abp 6.36 4.0 19.6 0.00E+00 356 22

6apr 7.77 4.2 12.5 0.00E+00 1253 19

6cpa 11.52 4.0 8.7 4.00E-06 761 18

6rnt 2.37 2.6 5.2 0.00E+00 491 8

6std 8.64 6.9 20.9 0.00E+00 790 25

6tim 3.21 5.8 14.6 1.40E-06 395 18

6upj 6.32 3.8 11.8 0.00E+00 700 15

7abp 6.46 4.1 19.1 0.00E+00 385 21

7cpa 13.96 3.9 8.1 3.40E-06 835 16

7hvp 9.62 3.8 9.1 0.00E+00 1547 14



330

7kme 4.4 4.2 10.7 0.00E+00 1006 17

7std 10.72 6.8 20.1 0.00E+00 743 24

7upj 8.49 4.3 10.3 0.00E+00 983 15

830c 9.28 3.8 8.5 0.00E+00 755 13

8abp 8 3.9 18.6 0.00E+00 393 20

8cpa 9.15 4.0 9.7 2.00E-07 780 17

8hvp 9 3.9 8.7 0.00E+00 1522 14

966c 7.64 3.4 8.0 0.00E+00 701 12

9abp 8 3.8 17.1 0.00E+00 405 19
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