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The Role of REM Sleep in Ocular Dominance Plasticity Consolidation

Abstract
Despite decades of research, the function of sleep remains controversial. One theory is that sleep plays a role
in consolidating plasticity induced during prior waking. Ocular dominance plasticity (ODP) in the cat visual
cortex is induced during waking monocular deprivation (MD) and consolidated during subsequent sleep.
Extracellular signal-regulated kinase (ERK) signaling is required for ODP and is elevated during post-MD
sleep, but its requirement during sleep is unknown. In Chapter 2, we investigated whether ERK activity is
required during sleep for ODP consolidation by inhibiting the upstream activator of ERK (MEK) with
intracortical infusions of U0126 into V1 during post-MD sleep. ERK inhibition abolished ODP consolidation,
as measured by extracellular single unit recording. Furthermore, ERK inhibition reduced phosphorylation of
eukaryotic initiation factor 4E (eIF4E) and post-synaptic density protein 95 (PSD-95) levels. MAP kinase-
interacting kinase 1 (Mnk1) is activated by ERK and directly phosphorylates eIF4E; inhibition of Mnk1
mimicked the effects of ERK inhibition. These results show that activation of the ERK-Mnk1 pathway during
post-MD sleep is required for ODP consolidation, and that this pathway promotes the synthesis of plasticity-
related proteins such as PSD-95. However, sleep can be broadly subdivided into rapid eye movement (REM)
and non-REM (NREM) sleep, but the relative contributions of these states to ODP and the ERK pathway are
unknown. In Chapter 3, we examined whether REM sleep is required for ODP consolidation and ERK
activation by depriving animals of REM sleep following six hours of waking MD. REM sleep deprivation
(RSD) abolished ODP consolidation, as measured by optical imaging of intrinsic cortical signals, and reduced
ERK phosphorylation in V1. These effects were not seen in a group that received NREM-fragmented sleep (as
a control for the nonspecific effects of RSD). Furthermore, ODP and ERK phosphorylation correlated with
the degree of beta-gamma activity in V1 during REM sleep, suggesting that neuronal activity patterns during
REM promote ERK activation and ODP consolidation. Together, the findings in the following chapters
suggest that, following the induction of cortical plasticity during waking, the ERK-Mnk1 pathway is activated
during REM sleep, promoting the synthesis of plasticity-related proteins to consolidate cortical plasticity.
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ABSTRACT 

 

THE ROLE OF REM SLEEP IN OCULAR DOMINANCE PLASTICITY 

CONSOLIDATION 

 

Michelle C. Dumoulin 

Dr. Marcos G. Frank 

 

Despite decades of research, the function of sleep remains controversial.  One 

theory is that sleep plays a role in consolidating plasticity induced during prior waking.  

Ocular dominance plasticity (ODP) in the cat visual cortex is induced during waking 

monocular deprivation (MD) and consolidated during subsequent sleep.  Extracellular 

signal-regulated kinase (ERK) signaling is required for ODP and is elevated during post-

MD sleep, but its requirement during sleep is unknown.  In Chapter 2, we investigated 

whether ERK activity is required during sleep for ODP consolidation by inhibiting the 

upstream activator of ERK (MEK) with intracortical infusions of U0126 into V1 during 

post-MD sleep.  ERK inhibition abolished ODP consolidation, as measured by 

extracellular single unit recording.  Furthermore, ERK inhibition reduced phosphorylation 

of eukaryotic initiation factor 4E (eIF4E) and post-synaptic density protein 95 (PSD-95) 

levels.  MAP kinase-interacting kinase 1 (Mnk1) is activated by ERK and directly 

phosphorylates eIF4E; inhibition of Mnk1 mimicked the effects of ERK inhibition.  These 

results show that activation of the ERK-Mnk1 pathway during post-MD sleep is required 

for ODP consolidation, and that this pathway promotes the synthesis of plasticity-related 
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proteins such as PSD-95.  However, sleep can be broadly subdivided into rapid eye 

movement (REM) and non-REM (NREM) sleep, but the relative contributions of these 

states to ODP and the ERK pathway are unknown.  In Chapter 3, we examined whether 

REM sleep is required for ODP consolidation and ERK activation by depriving animals of 

REM sleep following six hours of waking MD.  REM sleep deprivation (RSD) abolished 

ODP consolidation, as measured by optical imaging of intrinsic cortical signals, and 

reduced ERK phosphorylation in V1.  These effects were not seen in a group that 

received NREM-fragmented sleep (as a control for the nonspecific effects of RSD).  

Furthermore, ODP and ERK phosphorylation correlated with the degree of beta-gamma 

activity in V1 during REM sleep, suggesting that neuronal activity patterns during REM 

promote ERK activation and ODP consolidation.  Together, the findings in the following 

chapters suggest that, following the induction of cortical plasticity during waking, the 

ERK-Mnk1 pathway is activated during REM sleep, promoting the synthesis of plasticity-

related proteins to consolidate cortical plasticity. 
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CHAPTER 1: INTRODUCTION 

 

The function of sleep has long been a topic of debate.  This work will explore the theory 

that plastic changes in brain circuitry are induced by waking experience and 

consolidated during subsequent sleep.  In this chapter, the concepts of learning, 

memory, and brain plasticity will be introduced, and ways in which sleep may influence 

these processes will be discussed. 

 

Learning and Memory.  The ability of organisms to encode, store, and retrieve 

information about their changing environments is critical to survival.  In humans, two 

primary categories of memory exist: declarative (explicit) and non-declarative (implicit).  

Declarative memories include conscious memories for facts and events.  Non-

declarative memories consist of procedural memories for skills, perceptual priming (in 

which exposure to a stimulus influences responses to a later stimulus), associative 

memories (such as classical conditioning), and non-associative reflexive learning 

(reviewed in Squire and Zola, 1996).   

The formation of these different forms of memory involves distinct brain regions.  

Studies of patient H.M, who underwent bilateral hippocampal resection, provided some 

of the first evidence that the hippocampus is required for the formation of new 

declarative memories (Scoville and Milner, 1957).  Interestingly, the hippocampus is only 

required for the retrieval of recently acquired memories, whereas remote memory is 

intact following hippocampal lesions in both human and rodent studies (Scoville and 

Milner, 1957; Anagnostaras et al., 1999).  Evidence suggests that the time-limited role of 
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the hippocampus in memory is due to the redistribution of stored information from the 

hippocampus to other brain regions, such as the cortex, a process referred to as system 

consolidation (Bontempi et al., 1999; Frankland et al., 2004; Frankland and Bontempi, 

2005).  Further studies of hippocampal lesions in an animal model revealed that in 

addition to declarative memory, the hippocampus is also necessary for the formation of 

spatial memory (Morris et al., 1982). 

In contrast with declarative memory, the acquisition of non-declarative memories 

is not impaired by the loss of hippocampal function.  The encoding and storage of these 

memories involves plasticity in extra-hippocampal brain regions such as the striatum, 

cerebellum, amygdala, and/or neocortex, depending on the learning task  (reviewed in 

Squire and Zola, 1996). 

 

Hippocampal Plasticity.  The discovery that the hippocampus plays an important role 

in memory led to the development of models of hippocampal plasticity.  The first of these 

models was repetitive electrical stimulation of the hippocampal perforant path, which 

resulted in the potentiation of responses at hippocampal CA3 synapses in both 

anesthetized and awake rabbits, a phenomenon now referred to as long-term 

potentiation (LTP) (Bliss and Gardner-Medwin, 1973; Bliss and Lømo, 1973).  Additional 

work in hippocampal slices ex vivo has since demonstrated that high frequency 

stimulation induces LTP, whereas low frequency stimulation produces the opposite 

effect, synapse weakening, termed long-term depression (LTD) (Dunwiddie and Lynch, 

1978).  Many forms of hippocampal LTP and LTD, as well as their underlying 

mechanisms, have now been described. 
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Classical forms of both LTP and LTD require N-methyl-D-aspartate (NMDA) 

receptor activation (Collingridge et al., 1983; Dudek and Bear, 1992) and subsequent 

calcium influx (Lynch et al., 1983; Mulkey and Malenka, 1992).  High levels of calcium 

influx during LTP induction activate calcium/calmodulin dependent kinase II (CaMKII) 

and calcium-stimulated adenylyl cyclases 1 and 8, which are required for LTP (Malenka 

et al., 1989; Malinow et al., 1989; Silva et al., 1992; Giese et al., 1998; Wong et al., 

1999).  Cyclic adenosine monophosphate (cAMP) production by adenylyl cyclase 

activates protein kinase A (PKA), which is also necessary for LTP (Matthies and 

Reymann, 1993).  PKA and CaMKII-mediated phosphorylation of 2-amino-3-(3-hydroxy-

5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors during LTP induction increases 

their membrane insertion and trafficking to the synapse, respectively; CaMKII may also 

increase AMPA receptor conductance and open probability (Oh et al., 2006; Correia et 

al., 2008; Lu et al., 2010; Kristensen et al., 2011), increasing the amplitude of excitatory 

postsynaptic currents in response to presynaptic neurotransmitter release.  These 

kinases also promote activation of the extracellular signal-regulated kinase (ERK) 

cascade, which is required for LTP (English and Sweatt, 1997).  The long-term 

stabilization of LTP depends upon both transcription and translation (Stanton and 

Sarvey, 1984); both of these events can occur downstream of ERK activation (via the 

transcription factors CREB and Elk-1, and the Mnk1 translation pathway) (Impey et al., 

1998; Davis and Vanhoutte, 2000; Kelleher et al., 2004; Panja et al., 2009).  In contrast, 

during LTD, low levels of calcium influx activate the protein phosphatases calcineurin 

and protein phosphatase 1 (Mulkey et al., 1993, 1994; Morishita et al., 2001), which can 

dephosphorylate AMPA receptors and promote their endocytosis (Kameyama et al., 

1998; Lee et al., 1998, 2000; Beattie et al., 2000).   
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Given the importance of the neocortex for both procedural learning and long-term 

memory storage, studies of the hippocampus cannot fully explain how learning occurs in 

the intact brain.  During mammalian development, primary sensory areas of the cortex 

undergo periods of heightened plasticity, referred to as ‘critical periods.’  Studying 

cortical plasticity during critical periods allows natural sensory stimuli, rather than 

artificial electrical stimulation, to be easily be applied, and has revealed many principles 

underlying plasticity in the brain.   

 

Visual cortical plasticity.  Plasticity in the primary visual cortex (V1) has been 

extensively studied, and can be induced by several manipulations of visual experience.  

Ocular dominance plasticity (ODP) is a model of visual cortical plasticity that was first 

discovered in kittens (Wiesel and Hubel, 1963a).  In kittens with normal vision, the 

majority of cells in V1 respond to input from either eye.  However, if vision is occluded in 

one eye by suturing the eyelid shut (monocular deprivation, MD) for several days or 

weeks during a critical period of development that begins around postnatal day 28, V1 

neurons become almost exclusively responsive to visual stimuli presented to the non-

deprived eye (Hubel and Wiesel, 1970).  Short (<24 hour) MD causes protein synthesis-

dependent plasticity within layer II/III of V1, whereas longer periods of MD are required 

for plasticity in layer IV and the thalamocortical cells projecting from the lateral 

geniculate nucleus (LGN) in the cat; eventually over the course of MD, cell bodies and 

arborizations of deprived-eye responsive LGN cells shrink (Wiesel and Hubel, 1963b; 

Trachtenberg et al., 2000; Taha and Stryker, 2002) (Figure 1.1).  In contrast, 

thalamocortical plasticity occurs on the same time course as intracortical plasticity in the 

mouse (Liu et al., 2008; Coleman et al., 2010; Khibnik et al., 2010), underscoring the 
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importance of considering the species-specific visual system organization when studying 

ODP.  Nonetheless, many of the cellular and molecular mechanisms underlying ODP 

have been determined and are shared across species. 

Mechanisms of deprived eye response depression.  ODP occurs in distinct 

stages: first, responses to visual stimulation of the deprived eye become depressed, and 

then responses to stimulation of the nondeprived eye are enhanced (Frenkel and Bear, 

2004).  The depression of deprived eye responses in V1 results from decorrelation of 

inputs from the two eyes, rather than loss of retinal illumination or retinal ganglion cell 

firing (Rittenhouse et al., 2006; Linden et al., 2009).  The initial depression of deprived 

eye responses in rodents shares mechanisms of hippocampal LTD, including NMDA 

receptor activation, subsequent dephosphorylation of AMPA receptors, and AMPA 

receptor internalization (Bear et al., 1990; Heynen et al., 2003; Yoon et al., 2009).  

Expression of the immediate early gene encoding the activity regulated cytoskeletal-

associated protein (Arc), which interacts with endocytic machinery to accelerate AMPA 

receptor internalization (Chowdhury et al., 2006), is also required for deprived eye 

response depression during ODP in the mouse (McCurry et al., 2010).  Metabotropic 

glutamate receptor activation is important for LTD in visual cortical slices (Kato, 1993; 

Haruta et al., 1994; Hensch and Stryker, 1996); however, the role of mGluRs in ODP is 

less clear, as blockade of mGluRs does not prevent synapse weakening V1 of the kitten 

in vivo (Hensch and Stryker, 1996).  Further complicating our understanding of plasticity 

in V1 is the possibility that mechanisms for depression may differ between cortical 

layers.  In mouse V1 slices ex vivo, layer II/III LTD requires endocannabinoid CB1 

receptor activation, whereas layer IV LTD requires PKA and AMPA receptor 

endocytosis; both require NMDA receptor activation (Crozier et al., 2007).  
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Endocannabinoid antagonism during ODP in vivo also abolishes depression in layer II/III 

but not layer IV of the mouse (Liu et al., 2008), but it is unclear whether these layer-

specific mechanisms also exist in the cat visual cortex. 

Mechanisms of metaplasticity.  How can a single sensory stimulus (decorrelated 

visual input) produce both depression and potentiation in visual cortical circuits?  The 

theoretical idea that the threshold for synaptic modification slides according to the history 

of synaptic activity has been proposed as an answer to this question (Bienenstock et al., 

1982; Bear et al., 1987).  In support of this hypothesis, decreased activity in V1 neurons 

(by dark rearing) causes a shift in the threshold for plasticity induction, such that the 

optimal stimulation frequency for induction of both LTP and LTD is reduced (Philpot et 

al., 2003, 2007).  One potential mechanism underlying metaplasticity is a shift in the 

NR2A:NR2B subunit ratio of NMDA receptors.  NR2B-containing NMDA receptors have 

slower kinetics compared to NR2A-containing receptors, such that a relative increase in 

NR2B should lower the strength of the stimulus required to induce potentiation (Bear, 

2003).  In support of this idea, decreased activity in visual cortical neurons in vitro and in 

vivo increases levels of NR2B gene expression (Lee et al., 2008).  Furthermore, genetic 

knockout of NR2A lowers the optimal stimulus frequency for both LTP and LTD in slices, 

and ODP induction in NR2A knockout mice in vivo produces immediate potentiation 

rather than depression (Philpot et al., 2007; Cho and Khibnik, 2009).  Together, these 

studies suggest that MD decreases activity in V1 neurons, causing initial LTD.  

Decreased neuronal activity also decreases the NR2A:NR2B ratio, which then lowers 

the threshold for LTP and allows subsequent potentiation to occur.   

Mechanisms of nondeprived eye response potentiation.  Mechanisms of 

potentiation in V1 have been elucidated using both ODP in vivo and LTP in V1 slices ex 
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vivo.  In addition, stimulus-specific response potentiation (SRP) is a plasticity model 

induced in vivo by repeated presentations of the same visual stimulus, which induces 

only LTP in V1 (Cooke and Bear, 2010).  Together, these models have provided insight 

into the mechanisms of non-deprived eye response potentiation during ODP.   

Several well-established molecular mechanisms of LTP are required for ODP.  

For example, work in the cat has shown that protein kinase A (PKA) activation 

downstream of NMDA receptor activation is required for ODP (Beaver et al., 2001).  In 

addition, CaMKIIα activation (by autophosphorylation after Ca2+/calmodulin binding) is 

necessary for ODP in the mouse (Taha et al., 2002), and ERK activation is required in 

the rat for ODP in vivo and LTP in V1 slices ex vivo (DiCristo et al., 2001).  Multiple 

pathways can activate ERK during plasticity, but ERK phosphorylation in V1 due to light 

exposure following a period of dark rearing is dependent upon PKA activity (Cancedda 

et al., 2003), suggesting that PKA may activate ERK during ODP as well.   

Downstream effectors of ERK during neuronal plasticity include gene 

transcription, mRNA translation, ion channel phosphorylation, and cytoskeletal 

alterations (reviewed in Adams and Sweatt, 2002).  A number of lines of evidence 

suggest that ERK promotes gene transcription during ODP.  The transcription factor 

cAMP response element binding protein (CREB) is activated by MD in rodents (Pham et 

al., 1999) and is required for ODP in ferrets (Mower et al., 2002).  CRE-mediated gene 

expression in V1 following light exposure depends upon ERK and PKA activity 

(Cancedda et al., 2003), and ERK is translocated to the nucleus of V1 cells after MD 

(Takamura et al., 2007).  Furthermore, light exposure promotes ERK-dependent mitogen 

and stress activated protein kinase (MSK) and histone H3 phosphorylation, as well as 

and histone H3 and H4 acetylation, events involved in the epigenetic regulation of gene 
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transcription (Putignano et al., 2007).  Together, these results suggest that ERK plays a 

role in gene transcription during plasticity in V1.  One gene that may be transcribed as a 

result is tissue plasminogen activator (tPA), a secreted protease whose mRNA and 

proteolytic activity is elevated during ODP in rodents and whose inhibition impairs ODP 

in kittens and mice (Mataga et al., 1996, 2002).  Proteolysis of extracellular matrix 

components, such as chondroitin sulfate proteoglycans (CSPGs), by tPA may be 

permissive for ODP (Berardi et al., 2003).  However, in cats that were re-exposed to 

binocular vision after a long period of MD, the digestion of CSPGs did not promote the 

recovery of vision in the deprived eye, suggesting that tPA may act on other targets 

(Vorobyov et al., 2013). 

Although ERK appears to play a role in gene transcription during ODP, it may 

also have additional functions.  Light exposure following dark rearing elevates ERK 

phosphorylation in both cell nuclei and dendritic spines in V1, suggesting that ERK may 

act on substrates local to the synapse (Boggio et al., 2007), such as proteins involved in 

translation.  Early ODP in V1 requires translation (Taha and Stryker, 2002), and the time 

course of ERK requirement during LTP in V1 is consistent for a role in protein synthesis 

(DiCristo et al., 2001).  Furthermore, Arc is required for SRP in the mouse, suggesting 

that it plays a role in nondeprived eye response potentiation (McCurry et al., 2010), and 

Arc synthesis requires activation of the ERK-mediated translation pathway for LTP in the 

dentate gyrus in vivo (Panja et al., 2009). These studies suggest that ERK may promote 

the synthesis of plasticity-related proteins required for ODP. 

Interestingly, there are several mechanisms of LTP in the hippocampus that are 

not shared with ODP in V1.  For instance, activation of the Ca2+ stimulated adenylyl 

cyclases 1 and 8, which are required for hippocampal LTP and memory (Wong et al., 
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1999), are not required for ODP (Fischer et al., 2004). Furthermore, protein kinase C 

(PKC) and protein kinase G (PKG), which are required for hippocampal LTP (Lovinger et 

al., 1987; Malinow et al., 1989; Zhuo et al., 1994), are not required for ODP (Beaver et 

al., 2001; Daw and Beaver, 2001). 

Other factors influencing ODP.  The neuronal firing patterns driving long-term 

plastic changes during ODP can be modulated by several factors.  For example, activity 

in local inhibitory circuits can shape neuronal activity.  The critical period for plasticity in 

V1 coincides with maturation of parvalbumin-positive inhibitory cells, and mutations in 

mice that accelerate the maturation of inhibitory networks cause early closure of the 

critical period (DelRio et al., 1994; Huang et al., 1999).  The consequences of the 

maturation of inhibitory circuitry, however are unclear; conflicting reports suggest that the 

early OD shift in GABAergic neurons may be distinct from those of excitatory neurons 

(but see Kameyama et al., 2010).  Using calcium imaging of genetically identified 

GABAergic neruons in mice, GABAergic neurons have been found to shift in the same 

direction as glutamatergic neurons (toward the non-deprived eye), but more slowly, 

during ODP (Gandhi et al., 2008).  In contrast, neuronal recordings of inhibitory fast-

spiking interneurons demonstrate an initial counter-intuitive shift towards the deprived 

eye, followed by a return to binocularity in cats (Aton et al., 2013) or a complete reversal 

to favor the non-deprived eye in mice (Yazaki-Sugiyama et al., 2009).  Differences in 

methodology between these studies may result in sampling of different subsets of 

GABAergic neurons, which may explain these discrepancies, but ultimately the function 

of inhibition during ODP is still unclear.   

Neuromodulatory signaling may also influence ODP.  Long-term local blockade 

of cholinergic M1 (but not nicotinic) acetylcholine receptors, noradrenergic β receptors, or 
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serotonin-1 and -2C receptors in V1 during MD prevents a shift in ocular dominance 

(Shirokawa and Kasamatsu, 1986; Gu and Singer, 1989, 1993, 1995; Wang et al., 

1997).  These effects may be due neuromodulatory inputs activating downstream 

intracellular signaling cascades that intersect with signaling pathways required for ODP.  

Alternatively, neuromodulators may influence activity-dependent signaling pathways by 

altering neuronal activity patterns (reviewed in Gu, 2002).  Similarly, T-type calcium 

channel activation in the cortex alters neuronal firing patterns, and is also required for 

ODP (Uebele et al., 2009).   

Many mechanisms underlying neuronal plasticity have been elucidated.  

However, the brain undergoes dramatic changes in activity across the sleep-wake cycle 

that may influence plasticity.  Therefore, an understanding of how the intact brain 

encodes, stores, and retrieves memories is incomplete without investigating the 

contributions of each arousal state to plasticity.   

 

Sleep.  Sleep is a reversible state of behavioral quiescence with an increased threshold 

for arousal in response to sensory stimuli.  Prior to rigorous scientific investigation, sleep 

was long assumed to be a state of suspended brain activity.  However, this view 

changed when Hans Berger (1929) developed the human electroencephalogram (EEG), 

which measures the summed electrical activity of many cortical neurons.  Berger 

demonstrated that during waking, the brain exhibits high-frequency, low-amplitude 

activity.  EEG recordings in sleeping human subjects subsequently showed that brain 

activity was not absent during sleep, but that the patterns of activity changed to slow, 

high-amplitude oscillations termed delta waves (0.1-4 Hz) and spindles (7-14 Hz) during 

sleep (Loomis et al., 1935a, 1935b; Davis et al., 1937, 1938) (Figure 1.2).  It was later 
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found that delta rhythms could be subdivided into two distinct oscillations, now referred 

to as slow (<1 Hz) and delta (1-4 Hz) rhythms (Steriade et al., 1993).  Intracellular 

recordings during this state show that, like the EEG signal, individual cortical neurons 

oscillate between periods of hyperpolarization with no action potential firing and periods 

of depolarization and rapid action potential firing (Steriade et al., 2001). 

After the discovery of slow brain oscillations during sleep, Aserinsky and 

Kleitman (1953) noticed that human subjects cycle between periods of slow eye 

movements and periods of rapid, jerky eye movements during sleep.  They discovered 

that this ‘rapid eye movement’ (REM) sleep (also referred to as paradoxical sleep, PS) 

was characterized by EEG activity resembling waking (Figure 1.2).  Intracellular 

recordings of cortical neurons in the cat have since shown that individual cortical 

neurons fire tonically, similar to waking, during REM sleep (Steriade et al., 2001).  

Another electrophysiological hallmark of REM sleep is hippocampal theta (5-7 Hz) 

rhythm resembling alert waking (Green and Arduini, 1954; Jouvet et al., 1959).  In 

addition, ponto-geniculo-occipital (PGO) waves are phasic potentials that occur 

sequentially in the pons, LGN, and occipital cortex during REM sleep in cats (Brooks and 

Bizzi, 1963; Mouret et al., 1963), and evidence suggests that similar event also occur in 

humans (McCarley et al., 1983; Peigneux et al., 2001).    Motor tone during REM sleep, 

measured by the electromyogram (EMG), is completely absent with the exception of 

occasional brief muscle twitches (Dement, 1958; Jouvet et al., 1959; Gassel et al., 

1964).    Over the course of a night’s sleep, subjects first enter sleep characterized by 

slow oscillations (now referred to as non-REM (NREM) sleep), followed by REM sleep, 

and cycle between these stages during the night (Dement and Kleitman, 1957). 
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Why sleep?  As a state in which animals are not foraging for food or seeking out 

mates, and are vulnerable to predation, sleep appears disadvantageous.  However, 

sleep-like states have been described in invertebrates, fish, reptiles, amphibians, birds, 

and mammals.  Furthermore, birds and terrestrial mammals exhibit both NREM and 

REM sleep (Siegel, 2008).  The phylogenetic conservation of sleep suggests that it 

serves a vital function, although the identity of this function remains a subject of debate.   

 

Sleep function.  The function of sleep was eloquently described by William 

Shakespeare as “Sleep that knits up the raveled sleave of care/ The death of each day’s 

life, sore labor’s bath, / Balm of hurt minds, great nature’s second course, / Chief 

nourisher in life’s feast….”  (Macbeth 2. 2. 36-39).  This description exemplifies the long-

held assumption that sleep restores and repairs the brain and/or body.  Although these 

ideas are intuitive, strong scientific evidence to support them is lacking (reviewed in 

Frank, 2006).  Two theories of sleep function have received more support: the idea that 

sleep promotes brain development, and that sleep consolidates brain plasticity that is 

induced during waking experience. 

 

The role of sleep in brain development.  Roffwarg and colleagues  (1966) observed 

that Infants spend about 16 hours asleep per day, with a large proportion of REM sleep 

(~50% of total sleep time), and sleep time declines gradually throughout life to less than 

six hours per day in 70-85 year-olds (13.8% REM sleep).  This led to the hypothesis that 

sleep, especially REM sleep, promotes normal brain development, an idea that has 

since gained support from animal models. 
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REM sleep has been implicated in the developmental regulation of LTP in both 

the visual cortex and hippocampus.  In V1 slices ex vivo, theta burst stimulation of the 

white matter induces LTP in layer II/III, but only within a critical period of development 

(Kirkwood et al., 1995).  REM sleep deprivation (RSD) in rats extends the ages over 

which this form of LTP can be induced, although it cannot rescue this form of LTP in the 

adult rat (Shaffery et al., 2002, 2006a; Shaffery and Roffwarg, 2003).  Development of 

parvalbumin immunoreactivity in the LGN is delayed by RSD (Hogan et al., 2001) and 

low-frequency white matter stimulation that normally produces LTD instead produces 

LTP in RSD animals (Shaffery et al., 2006b), suggesting that REM sleep promotes the 

maturation of inhibition in the visual system.  Brain-derived neurotrophic factor (BDNF) 

signaling during REM sleep may be responsible for the maturation of inhibition, as BDNF 

infusion during RSD prevents the extension of the critical period for this form of plasticity 

(Shaffery et al., 2012).  REM sleep may also promote the maturation of hippocampal 

circuits required for LTP.  RSD prior to LTP induction in hippocampal slices from young 

rats destabilizes LTP maintenance, possibly due to decreased expression of mature 

postsynaptic components of glutamatergic synapses (Lopez et al., 2008).   

The role of REM sleep in brain development has also been demonstrated using 

ODP as a model.  RSD during long-term MD in kittens enhances the difference between 

deprived-eye and non-deprived eye cell size in the LGN, suggesting that REM sleep 

promotes the normal development of brain circuitry and counteracts the effects of 

exogenously induced plastic changes (Oksenberg et al., 1996; Shaffery et al., 1998).  

This finding was mimicked by lesion of the PGO wave generator prior to MD (Shaffery et 

al., 1999).  Since lesion of the PGO-wave generator decreases LGN volume and cell 

size in the absence of MD (Davenne and Adrien, 1984; Davenne et al., 1989), these 
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studies suggest that PGO waves are the REM sleep component that are responsible for 

maturation of the visual system. 

 

The role of sleep in consolidating memory and plasticity.  Sleep has also been 

proposed to stabilize and enhance plasticity induced during prior waking, referred to as 

consolidation.  This theory has gained much support from both the human and animal 

literature, using models of both hippocampus-dependent and hippocampus-independent 

learning and plasticity. 

Sleep and consolidation: Humans.  Various hippocampus-dependent memory 

tasks benefit from sleep. Recall of a declarative memory task, learned word pair 

associations, improves over a night of sleep (Ekstrand, 1967; Ellenbogen et al., 2006, 

2009), and improvement is greater when sleep occurs soon after learning (Payne et al., 

2012).  Similarly, sleep following vocabulary learning enhances and sleep deprivation 

impairs subsequent recall in high school students (Gais et al., 2006).  Recall of other 

declarative memory tasks, in which a face is paired with an inanimate object or a spatial 

location, is better if learning is followed by a period of sleep (Talamini et al., 2008; 

Tucker et al., 2011b).  Hippocampus-dependent route learning and virtual maze learning 

also benefit from sleep over the course of a night or a nap (Ferrara et al., 2006; 

Wamsley et al., 2010; Nguyen et al., 2013). 

 Hippocampus-independent procedural memory tasks also benefit from post-

training sleep.  For example, after training on a procedural visuo-motor saccade task or 

sequential finger-tapping task, subjects do not improve over the course of daytime 

waking, but have substantial performance improvements after a night of sleep (Walker et 
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al., 2002, 2003; Kuriyama et al., 2004; Gais et al., 2008a; Tucker et al., 2011a).  

Furthermore, learning a visual discrimination task requires sleep within 30 hours of 

acquisition (Stickgold et al., 2000a, 2000b). Naps prevent the deterioration of 

performance on this task (Mednick et al., 2002), and consolidation is blocked by 

glutamatergic receptor antagonists given specifically during sleep, suggesting that 

activity of excitatory neurons during sleep drives consolidation (Gais et al., 2008b). 

Sleep and consolidation: Rodents.  Many hippocampus-dependent learning and 

plasticity models in rodents have demonstrated a role for sleep in consolidation.  For 

example, sleep benefits and sleep deprivation impairs performance on the spatial object 

recognition test, in which animals must recognize an object that has been moved to a 

new location, in both rats and Djungarian hamsters (Palchykova et al., 2006a; Binder et 

al., 2012; Inostroza et al., 2013).  Sleep also enhances performance on a temporal 

object recognition task, in which rats must recognize which of two objects they saw first 

(Inostroza et al., 2013).  Furthermore, performance on the passive avoidance task in 

mice is impaired by post-learning sleep deprivation (Patti et al., 2010).  In mice, 

hippocampus–dependent contextual fear conditioning increases subsequent NREM 

sleep; moreover, sleep immediately following training enhances and sleep deprivation 

inhibits recall (Graves et al., 2003; Hellman and Abel, 2007; Cai et al., 2009; Hagewoud 

et al., 2010).  Increasing cAMP levels (by phosphodiesterase 4 inhibition) during sleep 

deprivation prevents memory impairment on this task, suggesting that LTP occurs during 

sleep via cAMP signaling (Vecsey et al., 2009).  Consistent with this finding, sleep after 

training on the Morris water maze occludes a PKA-dependent form of LTP in the rat 

hippocampus (Habib and Dringenberg, 2010; Habib et al., 2013).   
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An attractive mechanism for sleep-dependent consolidation of hippocampal 

plasticity is the re-activation of neuronal ensembles during sleep that were active during 

prior waking, termed replay.  Hippocampal place cells that fire during waking experience 

also tend to fire in the same temporal order during subsequent NREM sleep (Wilson and 

McNaughton, 1994; Nádasdy et al., 1999; Lee and Wilson, 2002; Ji and Wilson, 2007).  

The repetition of newly acquired neuronal activity patterns during sleep could potentially 

drive activity-dependent plasticity mechanisms, leading to consolidation.  However, 

replay is observed after extensive training, and also occurs during waking (reviewed in 

Carr et al., 2011).  Therefore, it is unclear whether replay contributes to the acquisition of 

new memories, and whether these contributions occur specifically during sleep. 

Findings in rodents support a role for sleep in hippocampus-dependent learning, 

but evidence that sleep contributes to hippocampus-independent learning is 

inconsistent.  For example, cued fear conditioning is not enhanced by sleep or impaired 

by sleep deprivation in mice (Graves et al., 2003; Cai et al., 2009) but is impaired by 

sleep deprivation in rats (Kumar and Jha, 2012).  In addition, sleep fragmentation in 

mice, and sleep deprivation in mice and Djungarian hamsters, impairs performance on 

the hippocampus-independent novel object recognition task (Mumby et al., 2002; 

Palchykova et al., 2006a, 2006b; Rolls et al., 2011).  In contrast, sleep does not improve 

performance on this task in rats (Inostroza et al., 2013).  These discrepancies may arise 

from inter-species or methodological differences, leaving the role of sleep in 

hippocampal-independent learning an open question. 

Sleep and consolidation: ODP in the cat.  Frank et al. (2001) used ODP as a 

model to demonstrate the importance of sleep to the consolidation of cortical plasticity.  

In this study, critical period kittens underwent MD and were kept awake in lighted 
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conditions for six hours, ensuring that all animals received the same amount of 

decorrelated visual input to induce cortical remodeling.  ODP measurements were then 

made either immediately, or following six hours of sleep or sleep deprivation in complete 

darkness (to prevent further visual stimulation).  Six hours of MD alone was sufficient to 

induce a slight shift in OD; this shift was enhanced by subsequent sleep and destabilized 

by sleep deprivation, indicating that sleep both stabilizes and enhances ODP. 

Further work on this model has elucidated some of the mechanisms underlying 

sleep-dependent ODP consolidation (Figure 1.3).  Analysis of firing properties in 

response to stimulation of either eye revealed that depression of deprived-eye 

responses occurs during waking MD and is maintained during subsequent sleep, 

whereas potentiation of non-deprived eye responses occurs during sleep (Aton et al., 

2009a).  Several mechanisms known to promote potentiation are required during post-

MD sleep for consolidation to occur.  For example, blockade of NMDA receptors and 

PKA inhibition during post-MD sleep both abolish ODP consolidation; downstream of 

NMDA receptor activation, ERK, CaMKII, and the AMPA receptor subunit GluA1 (on the 

CaMKII site, S831) are phosphorylated during the first two hours of post-MD sleep (Aton 

et al., 2009a).  Seibt and colleagues (2012) demonstrated that translation via the 

mammalian target of rapamycin (mTOR) pathway during sleep is also required for ODP 

consolidation.  Sleep upregulates phosphorylation of proteins involved in translational 

control (eukaryotic initiation factor 4E binding protein, 4E-BP1; eukaryotic elongation 

factor 2, eEF2) and the synthesis of the plasticity-related proteins Arc and BDNF.  In 

contrast, levels of Arc and BDNF mRNA decrease during sleep, indicating that sleep 

promotes the translation, but not transcription, of proteins involved in plasticity.   
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 Although many mechanisms of sleep-dependent ODP have been revealed in 

recent years, a number of questions remain to be addressed.  For instance, ERK 

phosphorylation occurs during sleep in the remodeling cortex, but is it required for 

consolidation?  If so, which intracellular signaling pathways does it activate, and are 

these events involved in potentiation, depression, or both?  In Chapter 2, we address 

these questions by inhibiting ERK phosphorylation during post-MD sleep and examining 

the resulting electrophysiological and biochemical changes. 

 

Differential roles for REM and NREM sleep in consolidation.  As discussed above, 

NREM and REM sleep have strikingly different electrophysiological characteristics, 

suggesting that they may play different roles in consolidation.  Evidence from human 

studies suggests that NREM sleep promotes hippocampus-dependent learning and 

REM sleep enhances hippocampus-independent learning, although this distinction is 

less clear in animal models.   

The role of REM sleep in consolidation: Humans.  NREM sleep, but not REM 

sleep, after training benefits recall on a variety of hippocampus-dependent tasks in 

humans.  For example, the most improvement on the declarative face-object pairing, 

word recognition, and  mental spatial rotation tasks occurs over the course of early 

(NREM-rich, REM-poor) sleep (Plihal and Born, 1997, 1999; Drosopoulos et al., 2005).  

Furthermore, improvement on hippocampus-dependent virtual maze navigation 

correlates with EEG power during NREM sleep (Wamsley et al., 2010; Nguyen et al., 

2013).  In contrast, studies have largely failed to find a connection between REM sleep 

and hippocampus-dependent memory.  The effects of long periods of intensive 
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declarative learning (such as during a college examination period) on REM sleep are 

minor or absent (Holdstock and Verschoor, 1974; Meienberg, 1977).  Pharmacological 

suppression of REM sleep after learning word pair associations and consonant trigrams 

does not impact recall the next morning (Castaldo et al., 1974).  Manual REM sleep 

deprivation also does not impair recall of previously learned words, word pairs, or a 

nonverbal declarative memory task (Ekstrand et al., 1971; Chernik, 1972; Lewin and 

Glaubman, 1975; Smith, 1995).  The few studies that have reported a connection 

between declarative memory and REM sleep used quite complex recall tasks, such as 

learning stories, prose passages, and meaningless sentences (Empson and Clarke, 

1970; Tilley and Empson, 1978). 

In contrast, human studies generally support a role for REM sleep in procedural 

learning.  Following learning of new motor skills such as trampolining, REM sleep 

amount increases (Buchegger and Meier-Koll, 1988; Buchegger et al., 1991).  Training 

on motor learning tasks such as the mirror tracing and tower of Hanoi tasks increase 

subsequent REM sleep intensity (Smith et al., 2004).  Improvements on the mirror 

tracing task are greatest following late (REM rich) sleep (Plihal and Born, 1997), and 

daytime naps improve performance on this task only when the nap contains REM sleep 

(Backhaus and Junghanns, 2006; Tucker et al., 2006).  Performance on a visual 

discrimination task improves following REM-containing, but not REM-lacking, naps 

(Mednick et al., 2003) and nighttime sleep (Karni et al., 1994).  Furthermore, 

performance on this task correlates with amount of REM sleep during the last quarter of 

the night (Stickgold et al., 2000b) and EEG power (in the 8-12Hz band) during REM 

sleep (Suzuki et al., 2012).  Performance on another procedural motor task, learning a 

finger-tapping sequence, is correlated with REM sleep amount and is impaired by 
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cholinergic blockade during late (REM-rich) sleep after learning (Fischer et al., 2002; 

Rasch et al., 2009).  Learning non-declarative verbal priming tasks is impaired by REM 

sleep deprivation following acquisition and performance improvements are greatest 

following late (REM rich) sleep (Smith, 1995; Plihal and Born, 1999). 

The role of REM sleep in consolidation: Rodents.  Despite evidence in the human 

literature that REM sleep consolidates hippocampus-independent memories, much of 

the work in rodent models has focused on the effects of RSD on hippocampal learning 

and plasticity.  For example, RSD after training impairs learning of a complex maze 

(Rideout, 1979), the Morris water maze (Youngblood et al., 1997, 1999; Yang et al., 

2008), shuttle avoidance (Pearlman, 1969), and multiple versions of the radial arm maze 

(Legault et al., 2004; Aleisa et al., 2011), although RSD after training on the inhibitory 

avoidance task has variable effects on retention (Fishbein, 1971; Miller et al., 1971; 

Shiromani et al., 1979; Patti et al., 2010).  Furthermore, RSD for just four hours 

immediately following learning impairs learning of the Morris water maze (Smith and 

Rose, 1996) and the win-shift radial arm maze (Legault et al., 2010), but is not effective 

until 9-20 hours after learning the shuttle avoidance task (Smith and Butler, 1982; Martí-

Nicolovius et al., 1988) (but see Leconte et al., 1974) indicating that there is a time 

window during which REM sleep is required for consolidation that depends on the task.   

Some of the mechanisms by which RSD may impair hippocampal learning have 

been identified.  RSD prior to plasticity induction impairs LTP induction and maintenance 

in hippocampal CA1 slices ex vivo (Davis et al., 2003; Ravassard et al., 2009), as well 

as in CA1 and the dentate gyrus in vivo (Aleisa et al., 2011).  This may result from 

decreased membrane excitability in CA1 pyramidal neurons, decreased hippocampal 
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synaptic transmission, and/or decreased ERK phosphorylation, all of which are caused 

by RSD (Yang et al., 2008; Ravassard et al., 2009). 

All of the studies described above employed variants of the “flowerpot” method to 

achieve RSD.  Using this experimental design, an animal is placed on a platform 

situated over a water bath.  The platform is large enough for the animal to enter NREM 

sleep, but muscle atonia at the onset of REM sleep causes the animal to fall from the 

platform and wake up (Jouvet et al., 1964).  Control animals in these experiments are 

placed on a large platform over water on which the animal can enter REM sleep, 

providing a similar novel environment but no RSD.  This technique is highly effective at 

eliminating REM sleep, and can be continued over long periods of time.  However, 

despite its wide use, this method cannot control for the nonspecific effects of RSD.  

Repeated attempts to enter REM sleep increase time spent awake and fragment NREM 

sleep, which are not controlled for in the large-platform condition (Vimont-Vicary et al., 

1966; Morden et al., 1967).  Sleep fragmentation alone, accomplished by housing rats 

on an intermittently activate treadmill, impairs hippocampal LTP and performance on the 

Morris water maze (Tartar et al., 2006), as well as decreasing hippocampal CA1 

pyramidal cell excitability and input resistance (Tartar et al., 2010), mimicking some of 

the effects of RSD. Together, these studies suggest that the impairments in hippocampal 

learning and plasticity observed after RSD may be attributable to the effects of sleep 

fragmentation rather than the removal of REM sleep per se.  In support of this 

interpretation, manual RSD with a yoked animal to control for sleep fragmentation did 

not produce the same deficit on shuttle avoidance learning that was observed using the 

flowerpot technique (Van Hulzen and Coenen, 1979), whereas studies using manual 
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RSD without controlling for sleep fragmentation have found that RSD impairs 

maintenance of hippocampal LTP in vivo (Romcy-Pereira and Pavlides, 2004).   

Nonetheless, some studies support a role for REM sleep in hippocampus-

dependent learning without the confounding effects of sleep fragmentation.  For 

example, pharmacologically decreasing REM sleep impairs learning on 2-way active 

avoidance task without major changes to NREM sleep and wake (although NREM sleep 

fragmentation was not examined) (Fogel et al., 2010).  Moreover, many events have 

been observed during spontaneous REM sleep that may promote plasticity.  For 

example, replay has occurs in hippocampal neurons during REM sleep (Louie and 

Wilson, 2001).  In addition, plasticity-related intracellular signaling events including ERK 

phosphorylation, cAMP production, PKA activity, and CREB phosphorylation are all 

elevated during spontaneous REM sleep (Luo et al., 2013).  The reactivation of neuronal 

circuitry and plasticity-related intracellular signaling pathways during REM sleep may 

therefore promote consolidation. 

The hippocampus is involved in acquisition of many tasks, but newly acquired 

memories are thought to be transferred to the cortex for long-term storage, as previously 

discussed.  This process may occur during REM sleep.  Inducing hippocampal LTP in 

vivo or exposing animals to an enriched environment causes waves of immediate early 

gene expression that migrate away from the hippocampus during REM sleep, 

suggesting that plasticity is transferred from hippocampal to cortical circuitry during REM 

sleep (Ribeiro et al., 1999, 2002, 2007).  However, LTP induced at CA1-medial 

prefrontal cortex synapses is enhanced, rather than inhibited, by subsequent RSD 

(Romcy-Pereira and Pavlides, 2004).  These studies raise intriguing possibilities for the 
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role of REM sleep in system consolidation, but ultimately more detailed investigations 

are required to determine how REM sleep affects plasticity outside of the hippocampus.   

The role of REM sleep in consolidation: ODP.  Whether REM sleep consolidates 

hippocampus-independent plasticity has not been addressed in the animal literature.  

Sleep-dependent ODP in the cat is a model uniquely suited to answer this question, 

since many of its underlying mechanisms have been described, and REM sleep time is 

much greater in the cat than in rodent models.  The requirement of REM sleep in this 

model has not been directly tested, and several studies have provided conflicting 

evidence.  Frank et al. (2001) found that the extent of the OD shift correlates with the 

amount of NREM, but not REM, sleep that the animal received following MD.  Consistent 

with this finding, six hours of post-MD RSD did not impair ODP, although the strong drive 

to enter REM sleep in young kittens causes the accumulation of substantial REM sleep 

amounts over the six-hour period that may explain this negative result (Frank et al., 

2001; Aton et al., 2009a).  In contrast, changes in neuronal firing rates during post-MD 

sleep occur during both NREM and REM sleep, suggesting that both of these states may 

contribute to ODP consolidation (Aton et al., 2009a, 2013). 

 The respective contributions of NREM and REM sleep to ODP will be thoroughly 

explored in Chapter 3.  We will describe the effects of brief RSD on physiological 

measures of ODP, as well as its underlying biochemical mechanisms.  Together, the 

studies described in the following chapters shed light on the mechanisms underlying 

sleep-dependent ODP consolidation, and the respective roles of REM and NREM sleep 

in these processes. 
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Figures. 
Figure 1.1.  Ocular dominance plasticity in the cat.  During short (<24h) MD, loss of 

patterned neuronal activity from the deprived eye causes decorrelated synaptic input.  

Depression of deprived eye responses and potentiation of nondeprived eye responses 

occur within layer II/III without changes in layer IV or the LGN.  After longer periods of 

MD, the OD shift occurs in layer IV and thalamocortical cells of the LGN. 
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Figure 1.2.  Polysomnography recordings in the cat.  EEG activity during waking is low 

amplitude and high frequency, while the EMG signal is high.  In contrast, high amplitude 

EEG signals predominated by low frequency oscillations (slow wave activity, 0-1 Hz; 

delta activity 1-4 Hz) occur during NREM sleep.  The EMG signal during NREM sleep is 

lower than waking, but some motor tone persists.  During REM sleep, EEG activity is low 

amplitude and high frequency, resembling waking.  However, the EMG signal during 

REM sleep is absent with the exception of occasional brief muscle twitches.  
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Figure 1.3.  Intracellular pathways implicated in sleep-dependent ODP consolidation.  

Blue: steps shown to be required during sleep for ODP consolidation (i.e. infusion of 

specific inhibitors during post-MD sleep abolishes ODP).  Green: events that occur 

during post-MD sleep, but whose requirement for sleep-dependent ODP consolidation 

has not been demonstrated.  Black: events implicated in ODP but whose contributions 

during sleep have not been specifically investigated.  Although ERK phosphorylation 

increases during post-MD sleep, the requirements of ERK and its downstream kinase 

Mnk1 have not been determined.  In Chapter 2, we will investigate the requirement of 

the ERK-Mnk1 pathway in sleep-dependent ODP consolidation by intracortical infusion 

of two inhibitors (red): U0126 and CGP57380.  In Chapter 3, we will investigate which of 

these molecular pathways are activated during NREM and REM sleep. 
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Abstract.   

Ocular dominance plasticity (ODP) in the cat primary visual cortex (V1) is 

induced during waking by monocular deprivation (MD) and consolidated during 

subsequent sleep.  The mechanisms underlying this process are incompletely 

understood.  Extracellular signal-regulated kinase (ERK) is activated in V1 during sleep 

after MD, but it is unknown whether ERK activation during sleep is necessary for ODP 

consolidation.  We investigated the role of ERK in sleep-dependent ODP consolidation 

by inhibiting the ERK-activating enzyme MEK in V1 (via U0126) during post-MD sleep.  

ODP consolidation was then measured with extracellular microelectrode recordings.  

Western blot analysis was used to confirm the efficacy of U0126 and to examine 

proteins downstream of ERK.  U0126 abolished ODP consolidation and reduced both 

phosphorylation of eukaryotic initiation factor 4E (eIF4E) and levels of the synaptic 

marker PSD-95.  Furthermore, interfering with ERK-mediated translation by inhibiting 

MAP kinase-interacting kinase 1 (Mnk1) with CGP57380 mimicked the effects of U0126.  

These results demonstrate that ODP consolidation requires sleep-dependent activation 

of the ERK-Mnk1 pathway. 
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Introduction.   

Ocular dominance plasticity (ODP) is a canonical model of synaptic remodeling 

in vivo  that has revealed many general principles underlying experience-dependent 

plasticity (reviewed in Berardi et al., 2003).  In kittens, occluding vision in one eye 

(monocular deprivation, MD) during a critical period of development causes cells in the 

primary visual cortex (V1) to shift from being predominantly binocular to being primarily 

driven by nondeprived eye stimulation, as measured by single neuron recordings 

(Wiesel and Hubel, 1963a; Hubel and Wiesel, 1970).  ODP can be induced with as little 

as six hours of MD during waking, and is consolidated during subsequent sleep (Frank 

et al., 2001).  Although the mechanisms underlying sleep-dependent consolidation are 

largely unidentified, they include NMDA receptor and protein kinase A (PKA) activation 

(Aton et al., 2009a), as well as translation via the mammalian target of rapamycin 

(mTOR) pathway (Seibt et al., 2012).  The functional role of other kinases activated 

during post-MD sleep is unknown.  For example, extracellular signal-regulated kinase 

(ERK) is phosphorylated downstream of NMDA receptor activation during post-MD sleep 

(Aton et al., 2009a), but it is unclear whether ERK activity during sleep is required for 

ODP consolidation. 

ERK has been implicated in many forms of neuronal plasticity, and is therefore 

an attractive candidate mechanism for regulating sleep-dependent plasticity.  For 

example, ERK is necessary for visual cortical long-term potentiation (LTP) and long-term 

depression (LTD) in vitro (DiCristo et al., 2001; McCoy and McMahon, 2007; McCoy et 

al., 2008).  Furthermore, ERK and mTOR co-regulate translation (via eukaryotic initiation 

factor 4E (eIF4E) and eIF4E binding protein (4E-BP1) phosphorylation) in multiple forms 

of hippocampal plasticity (Kelleher et al., 2004; Banko et al., 2006; Gelinas et al., 2007; 
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Tsokas et al., 2007).  ERK promotes eIF4E phosphorylation by activating an 

intermediate kinase, MAP kinase-interacting kinase 1 (Mnk1) (Waskiewicz et al., 1997; 

Ueda et al., 2004).  Mnk1 phosphorylation is elevated during hippocampal LTP (Gelinas 

et al., 2007) and required for hippocampal LTP consolidation (Panja et al., 2009).  

However, the precise role of the ERK-Mnk1 pathway in sleep-dependent plasticity has 

not been previously explored.  Continuous infusion of ERK inhibitors (during both sleep 

and wake) for 1 week blocks ODP in vivo (DiCristo et al., 2001), but this approach does 

not reveal the specific role of ERK activity in sleep, and the molecular mechanisms 

downstream of ERK were not investigated.  There are also no previous studies of Mnk1 

in the induction or consolidation of ODP.   

We hypothesized that activation of the ERK-Mnk1 transduction pathway during 

sleep is required for ODP consolidation. To test this hypothesis, we inhibited ERK (with 

U0126) or Mnk1 (with CGP57380) activity in the sleeping, remodeling visual cortex.  We 

found that neither compound altered sleep architecture, but both profoundly reduced the 

enhancement of plasticity normally observed after sleep.  In addition, ERK and Mnk1 

inhibition during sleep both reduced eIF4E phosphorylation and PSD-95 levels.  These 

results demonstrate that the ERK-Mnk1 pathway plays an important role in sleep-

dependent synaptic plasticity in vivo, and suggest it may do so by regulating synthesis of 

plasticity-related proteins.  A version of the work presented in this chapter has been 

previously published (Dumoulin et al., 2013). 
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Materials and Methods. 

All animal experiments were approved by the University of Pennsylvania IACUC 

and were performed as required by USDA regulations.  Cats were bred in-house and 

housed with their queens on a 12:12 light:dark cycle prior to experimentation. 

 

Surgical procedures for polysomnography and intracortical infusion.  Seven female and 

12 male cats were anesthetized and prepared for surgery as described previously (Frank 

et al., 2001; Jha et al., 2005).  A craniotomy was performed bilaterally over V1 and the 

dura was partially reflected.  Cannula guides with two attached EEG electrodes (Plastics 

One; Roanoke, VA) were positioned over V1 (Figure 2.1).  An internal “dummy” cannula 

(solid stainless steel) was inserted into the cannula guide and remained in place until the 

start of the infusion to protect the cortex from infection.  Five bilateral frontoparietal EEG 

and three nuchal EMG electrodes attached to an electrical socket were also implanted.  

Cannula assemblies and electrodes were affixed to the skull with bone screws and 

dental acrylic.  Following a minimum of four days post-operative recovery and 

treatments, male and female animals were randomly assigned to the experiments 

described below. 

 

Monocular deprivation and infusion procedures.  At the peak of the critical period for 

visual cortical plasticity (Postnatal day 28-35), cats were singly housed in a recording 

chamber.  As previously described (Jha et al., 2005), EEG and EMG signals were routed 

from the animal to an amplifier system (Grass Technologies; Warwick, RI) via an 

electrical cable tether/commutator attached to the implanted electrical sockets.  The 

bipolar electrode pair attached to each cannula guide recorded EEG activity local to the 

infusion site.  Polygraphic signals were high-pass filtered at 0.1 Hz (EEG) or 10Hz 
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(EMG), and low-pass filtered at 100Hz.  Signals were digitized at 200Hz and recorded 

on a personal computer running commercial sleep-recording software (VitalRecorder; 

Kissei Comtec America, Inc.; Irvine, CA).  After at least six hours of baseline recording, 

animals were briefly anesthetized with isoflurane and the right eyelid was sutured shut.  

Animals were then kept awake for 6 hours in lighted conditions, ensuring that all cats 

received 6 hours of monocular vision to induce cortical remodeling (Frank et al., 2001).  

At the end of this period, the dummy cannula was removed from the cannula guide and 

replaced with a sterile stainless steel cannula (28G internal diameter with the tip 

extending 1mm below the pial surface) attached to sterile tubing (see Figure 2.1).  

Tubing and cannulas were pre-filled with drug or vehicle solution.  Animals were then 

allowed sleep ad libitum in complete darkness for 1-6 hours, during which time U0126 

(5.26mM; Promega; Madison, WI) (Schafe et al., 2000), CGP57380 (2mM; Tocris 

Bioscience; Ellisville, MO) (Panja et al., 2009), or vehicle was infused bilaterally into V1 

at a rate of 0.3 L/min (Harvard Apparatus; Holliston, MA).  U0126 and CGP57380 were 

first dissolved in DMSO (Sigma-Aldrich; St. Louis, MO), then diluted to their final 

concentrations 1:1 in ACSF (Harvard Apparatus) prior to infusion.  An additional group of 

cats (‘MD-only’) received infusions of vehicle in one hemisphere and U0126 in the other 

during the MD period; the drug-infused hemisphere was alternated between animals.  

These animals did not receive post-MD sleep.   

We chose U0126 because this compound potently inhibits the kinase that 

activates ERK (mitogen-activated protein kinase kinase, MEK) without nonspecific 

effects on other kinases (including the plasticity-related kinases PKC, CaMKII, and PKA) 

(Favata et al., 1998; Roberson et al., 1999).  Similarly, CGP57380 inhibits Mnk1 without 

nonspecific effects on other kinases, including ERK and PKC (Knauf et al., 2001). 
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Tissue collection and western blotting.    Western blotting was used to determine the 

efficacy of kinase inhibitors on target proteins and to examine the downstream effects of 

kinase inhibition.  Eight cats were used in these experiments (Vehicle: 3 cats; U0126: 3 

cats; CGP57380: 2 cats).  Immediately following one hour of post-MD sleep with 

intracortical infusion, animals were anesthetized with isoflurane and sacrificed with an 

intracardiac injection of pentobarbital/phenytoin.  V1 tissue near to (within 1mm) and far 

from the cannula was rapidly collected and frozen on dry ice.  Whole-tissue extracts 

were prepared and analyzed as previously described (Aton et al., 2009a).  Briefly, tissue 

was homogenized in lysis buffer containing 100 mM NaCl, 10 mM Na4P2O7·10H2O, 10 

mM NaPO4, 50 mM NaF, 1 mM Na3VO4, 5 mM EDTA, 5 mM EGTA, 1% SDS, and 

phosphatase and protease inhibitor cocktails (1:100; Sigma). Lysates were then 

centrifuged to remove cellular debris and boiled in gel loading buffer (2.5%SDS) for 10 

minutes.  Protein concentration was quantified using a micro-BCA assay (Thermo 

Scientific; Rockford, IL).  Proteins (40 g/well) were separated on pre-cast 

polyacrylamide gels (Bio-Rad; Hercules, CA), and transferred onto nitrocellulose 

membranes (0.45 μM pore size; Invitrogen; Carlsbad, CA).   Membranes were blocked 

at room temperature in Odyssey blocking buffer (Li-Cor; Lincoln, NE) then incubated 

overnight with primary antibodies diluted in blocking buffer and 0.1% Tween-20 (Sigma-

Aldrich) at 4°C.  Primary antibodies were raised in rabbit and obtained from Cell 

Signaling Technology (Danvers, MA), unless otherwise noted.  The following primary 

antibodies were used: anti-ERK1/2 (1:1,000), anti-phospho-ERK1/2 (Thr202/Tyr204 and 

Thr185/Tyr187, respectively) (1:500), anti-CaMKIIα (1:1500) (Abcam; Cambridge, MA), 

anti-phospho-CaMKII (Thr286) (1:1000) (Abcam), anti-eIF4E (1:1,000), anti-phospho-



33 
 

eIF4E (Ser209) (1:500) (Millipore; Billerica, MA), anti-CREB (1:500), anti-phospho-CREB 

(Ser133) (1:500) (Millipore), anti-eEF2 (1:1,000), anti-phospho-eEF2 (Thr56) (1:500), 

and anti-PSD-95 (1:500) (Thermo Scientific).  We attempted to measure phosphorylation 

of additional ERK substrates that regulate transcription and translation (Elk-1 and Mnk1, 

respectively), but these antibodies did not work in feline tissue.  Mouse anti-β-actin 

(1:10,000) (Sigma-Aldrich) was included with each primary antibody as a loading control.  

Membranes were incubated with fluorescently conjugated goat anti-rabbit (800 nm) and 

anti-mouse (700nm) antibodies simultaneously (Li-Cor) (1:20,000 in blocking buffer/0.1% 

Tween) for one hour at room temperature in the dark.  Each membrane was scanned at 

both 700 nm (β-actin loading control) and 800 nm (protein of interest) and quantified with 

the Odyssey infrared scanner and image quantification software (Li-Cor).  Variation 

across gels was controlled for by normalizing to a common sample run on multiple gels.  

Quantified proteins from U0126- and CGP57380-infused groups were compared with the 

same vehicle control group. 

 

Single unit recording.  Separate groups of cats (15 cats total) were used to determine 

the role of ERK and Mnk1 in sleep-dependent ODP consolidation.  Immediately following 

six hours of  intracortical infusion, cats were prepared for single unit recording (Jha et al., 

2005).  Animals were anesthetized with isoflurane and Nembutal and the skull above V1 

was removed.  Animals were paralyzed with a continuous intravenous infusion of 

Flaxedil and ventilated.  The dura above V1 was removed and a 16-electrode array 

(FHC, Inc.; Bowdoin, ME) was lowered into V1 at sites near to (within 1mm) and far from 

the cannula.  Contact lenses were used to focus the eyes on a monitor positioned 40 cm 

away.  Extracellular single unit recordings were obtained while presenting one eye at a 

time with a blank screen or full-field reversing, drifting square gratings at eight stimulus 
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orientations.  Each presentation was repeated four times per recording block.  Between 

recording blocks, the electrode array was advanced deeper into the brain in 100 m 

steps or moved to a new location.  Two to three penetrations were made at each 

recording site. 

Units were sorted off-line using principal component analysis (Offline Sorter; 

Plexon, Inc.; Dallas, TX) and analyzed as previously described (Jha et al., 2005; Aton et 

al., 2009a).  For comparison, unit data from four cats with binocular vision and 

unmanipulated sleep (referred to as ‘normal’ animals) were reproduced with permission 

from earlier studies (Aton et al., 2009a; Seibt et al., 2012).  Briefly, each unit was 

assigned an ocular dominance (OD) category of 1-7 according to its left eye/right eye 

firing ratio.  Visually unresponsive neurons (those that responded more strongly to blank 

screen than to gratings) were excluded from the analysis.  OD scores were then used to 

calculate scalar measures of ODP (Issa et al., 1999).  The contralateral eye bias index 

(CBI) is a weighted average of OD scores from the population of neurons sampled, 

where higher values indicate a stronger bias towards the contralateral eye.  This 

measure was calculated separately for near and far recording sites in each hemisphere 

and converted to the non-deprived eye bias index (NBI) (where higher values indicate a 

stronger bias for the non-deprived eye) for clarity (Aton et al., 2009a).  CBI values were 

also used to calculate the shift index (SI), a measure of overall changes in OD across 

both hemispheres of an animal (Equation 2.1).  The monocularity index (MI) was also 

calculated, where a value of 0 indicates that all recorded neurons respond equally to 

both eyes and 1 indicates a complete loss of binocular responses.  Scalar ODP 

measures from U0126- and CGP57380-infused groups were compared with values from 

the same vehicle control group. 
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SI = CBIipsilateral to deprived eye - CBIcontralateral to deprived eye 

        EQUATION 2.1 

 

In addition to analyzing unit recordings on a population level, firing properties of 

individual units were examined.  These properties include normalized peak firing rate, 

normalized spontaneous firing rate, evoked response index (ERI), and orientation 

selectivity index (OSI).  For each unit, the peak and spontaneous firing rates were 

normalized to the average firing rate of all neurons that were recorded at the same 

location, as described previously (Aton et al., 2009a).  The OSI, a measure of orientation 

tuning, was calculated as the unit’s response strength at its preferred orientation versus 

the orthogonal (90°) orientation.  The ERI, a measure of how selectively a neuron fires in 

response to visual stimulation versus spontaneous activity, was calculated using 

Equation 2.2.  Neuronal properties were averaged within each recording site (Aton et al., 

2009a; Seibt et al., 2012).   

 

        EQUATION 2.2 

 

Sleep/wake analysis. Vigilance states were manually scored as rapid eye movement 

(REM) sleep, non-REM (NREM) sleep, or wake in 8-second epochs by a trained 

experimenter (M.C.D).  States were scored based on frontoparietal EEG and EMG 

signals (SleepSign for Animal; Kissei Comtec America, Inc.; Irvine, CA) according to 

previously described criteria (Frank et al., 2001).  Percentage of total recording time and 

average bout duration for each vigilance state was calculated for baseline, MD, and 

ERI  = 1 - 
Spontaneous firing rate 

Peak firing rate 
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post-MD periods.  The number of sleep-wake transitions and the total number of state 

transitions were also calculated for the post-MD period.  Fast Fourier transforms were 

performed on post-MD frontoparietal and V1 EEG recordings and averaged in 2-hour 

bins to quantify changes in EEG activity during the infusion.  For each hemisphere, 

power was averaged within the delta (0.5-4 Hz), sigma (10-15 Hz), theta (5-8 Hz), and 

high frequency (15-40 Hz) bands and normalized to mean baseline power (Jha et al., 

2005).  Two vehicle-infused hemispheres were excluded from the power analysis 

because the EEG signals at the cannula sites were unusable. 

 

Statistical Analysis.  Statistical tests were performed using SigmaPlot 11.0 (Systat 

Software, Inc.; San Jose, CA).  Groups were compared using 1-tailed Student’s t-tests, 

one-way ANOVAs, or 2-way ANOVAs, as indicated.  The use of planned, 1-tailed t-tests 

(α=0.05, 95% confidence level) was specified prior to analysis, since we were interested 

in whether the drugs specifically impaired ODP and its underlying biochemical changes 

(Zar, 1999).  Nonparametric tests (Mann-Whitney U tests, ANOVAs on ranks) were used 

in cases where data were not normally distributed. 

 

Results. 

U0126 inhibits ERK phosphorylation.  To confirm the efficacy of U0126, we measured 

ERK phosphorylation in V1 infused with U0126 or vehicle for one hour of post-MD sleep, 

at a time when ERK phosphorylation is normally high (Aton et al., 2009a) (Figure 2.2 A).    

Western blot analysis revealed that near the cannula, U0126 significantly decreased 

ERK1 and ERK2 phosphorylation to 8.13±2.53% and 5.71±2.18% of vehicle levels, 

respectively (Figure 2.2 B, C).  Furthermore, within U0126-infused hemispheres, ERK1/2 
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phosphorylation was lower near to the cannula than far from the cannula (p=0.009, 

Mann-Whitney U test; data not shown).  There was no difference between near and far 

sites in vehicle-infused hemispheres (p>0.05, Mann-Whitney U test; data not shown). 

 Similar to ERK, Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

phosphorylation is elevated in the sleeping visual cortex following MD (Aton et al., 

2009a).  To verify that the effects of U0126 could not be explained by nonspecific 

inhibition of CaMKII, western blots for total and phosphorylated CaMKIIα in vehicle- and 

U0126-infused V1 tissue were performed.  U0126 did not alter CaMKIIα phosphorylation 

(Figure 2.2 B, C), consistent  with the previous observation that U0126 does not affect 

CaMKII phosphorylation in the hippocampus (Roberson et al., 1999). 

 

ERK inhibition during sleep impairs ODP consolidation.  Inhibition of ERK in the 

sleeping, remodeling visual cortex abolished the normal effects of sleep on ODP.  Ocular 

dominance (OD) histograms revealed that the distribution of recorded cells was biased 

towards the non-deprived eye in vehicle-treated hemispheres and far from the cannula in 

U0126-infused hemispheres.  In contrast, U0126 blocked this shift near the site of the 

infusion (Figure 2.3 B).   

The extent of the OD shift was quantified using the non-deprived eye bias index 

(NBI) and the shift index (SI) (see Methods) (Figure 2.3 C).  The NBI ranges from 0 (only 

responsive to the deprived eye) to 1 (only responsive to the non-deprived eye), while the 

SI ranges from -1 (only responsive to the deprived eye) to 1 (only responsive to the non-

deprived eye).  Both the NBI and SI were significantly lower in U0126- than vehicle-

infused V1 when measured near the cannula.  Furthermore, within U0126-infused 

hemispheres, the NBI was significantly lower near the cannula than far from the cannula.  
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These results confirm that ERK activity in V1 during sleep is required for ODP 

consolidation. 

We have previously shown that mammalian target of rapamycin (mTOR) activity 

is required for the sleep-dependent consolidation of ODP, but not its induction during 

wakefulness (Seibt et al., 2012). We therefore examined whether ERK was necessary 

for ODP induction during waking MD. We infused vehicle or U0126 into V1 during 6 hour 

MD in awake animals, then obtained single unit recordings near to the cannula and 

compared the resulting monocularity index (MI) with normal animals (Figure 2.4).  We 

examined the MI in this case because it is a more sensitive measure of this early stage 

of ODP than the NBI (Aton et al., 2009a).  Consistent with previous results (Frank et al., 

2001; Aton et al., 2009a), 6 hours of MD with vehicle infusion produced a small but 

significant increase in the MI relative to cats with normal binocular vision.  MD-only 

hemispheres infused with U0126 also had a significantly higher MI than normal controls, 

indicating that ERK activity specifically during wake is not necessary for ODP induction. 

 

U0126 infusion during sleep impairs eIF4E phosphorylation.  ERK can promote plasticity 

by phosphorylating many substrates, including those involved in transcriptional and 

translational control (reviewed in Adams and Sweatt, 2002).  However, it is unknown 

which of these pathways are activated by ERK during sleep-dependent consolidation.  

Therefore, we used western blot analysis to measure proteins phosphorylated 

downstream of ERK activation (eIF4E; eukaryotic elongation factor 2, eEF2; cAMP 

response element binding protein, CREB) in U0126- and vehicle-infused V1.  These 

proteins regulate mRNA translation initiation (eIF4E), translation elongation (eEF2), and 

transcription (CREB).  We also measured levels of post-synaptic density protein 95 

(PSD-95), a post-synaptic scaffolding protein whose expression increases AMPA 
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receptor currents during experience-dependent plasticity in vivo (Ehrlich and Malinow, 

2004).  Sleep promotes the synthesis of PSD-95 in V1 (Seibt et al., 2012), but it is 

unknown whether this requires ERK activity. 

U0126 significantly decreased eIF4E phosphorylation and levels of PSD-95 

(Figure 2.5).  In contrast, we did not find a significant effect of U0126 on eEF2 or CREB 

phosphorylation compared to vehicle.  Together, these results suggest that ERK activity 

in the sleeping, remodeling cortex promotes the synthesis of proteins such as PSD-95, 

which may contribute to consolidation. 

 

Mnk1 inhibition during sleep mimics ERK inhibition.  Mnk1 is a direct target of ERK that 

phosphorylates eIF4E (Waskiewicz et al., 1997).  Since U0126 infusion attenuated 

eIF4E phosphorylation, we investigated whether directly inhibiting Mnk1 activity could 

mimic the effects of U0126.  To do this, we infused the Mnk1 inhibitor CGP57380 into V1 

during post-MD sleep.  We first collected V1 tissue after 1 hour of post-MD sleep to 

confirm the efficacy and specificity of the drug.  CGP57380 infusion significantly 

decreased eIF4E phosphorylation and PSD-95 levels near to the cannula site without 

affecting ERK phosphorylation (Figure 2.6A, B).  CGP57380 did not affect 

phosphorylation of any other proteins examined (p-CaMKIIα, p-CREB, p-eEF2: p>0.1, 

CGP57380 n=4 hemispheres, vehicle n=6; t-test; data not shown).   

 We then measured the effects of infusing CGP57380 during six hours of post-MD 

sleep on ODP.  Single-unit recordings revealed that CGP57380 attenuated sleep-

dependent plasticity, mimicking the effects of U0126.  As shown in Figure 2.6 C, 

CGP57380 prevented the normal sleep-dependent shift in the OD histogram toward the 

non-deprived eye near the cannula site.  CGP57380 also significantly reduced scalar 

measures of ODP (the NBI and SI) compared to vehicle and compared with sites far 
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from the cannula (Figure 2.6 D).  These results confirm that Mnk1 activation is required 

during sleep for ODP consolidation. 

 

Single unit firing properties following drug infusion.  We have previously shown that post-

MD sleep enhances V1 neuronal responses to non-deprived eye stimulation (Aton et al., 

2009a; Seibt et al., 2012).  Since ERK activity is required for LTP in rodent V1 (DiCristo 

et al., 2001), we hypothesized that the ERK-Mnk1 pathway is also required for sleep-

dependent enhancement of non-deprived eye responses.  To test this, we compared the 

normalized peak firing rate in response to stimulation of each eye between normal 

control, vehicle-infused, U0126-infused, and CGP57380-infused hemispheres.  As 

expected, relative to normal controls, responses to the non-deprived eye were 

significantly enhanced in vehicle-infused V1; however, U0126 and CGP57380 infusion 

prevented this enhancement (Figure 2.7).  No differences across groups were observed 

in response to deprived eye stimulation.  These results confirm that ERK and Mnk1 

promote sleep-dependent ODP consolidation by enhancing non-deprived eye 

responses, rather than attenuating deprived eye responses.  

 The effects of U0126 and CGP57380 on plasticity could not be ascribed to non-

specific effects of these drugs on visual cortical neurons.  As shown in Table 2.1, there 

were no significant differences between groups on any measure of single unit firing 

characteristics (percent of visually responsive units, evoked response index (ERI), 

orientation selectivity index (OSI), and normalized spontaneous firing rate). 

 

Sleep architecture is unaffected by drug infusion.  U0126 and CGP57380 also had no 

significant effects on global sleep architecture.  2-Way ANOVAs revealed no significant 

main effect of drug (p≥0.320) or drug×time interaction (p≥0.423) for the state amount, 
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state duration, or number of state transitions during post-MD sleep (main effects: drug 

treatment, post-MD time; Vehicle N=4 animals, U0126 N=4, CGP57380 N=3) (Figure 

2.8).  We observed significant main effects of time over the course of the post-MD 

period: NREM sleep amount (p<0.001) and bout duration (p<0.001) decreased, REM 

sleep amount (p=0.02) increased, wake amount (p<0.001) and bout duration (p=0.013) 

increased, sleep to wake transition number increased (p=0.002), and total number of 

transitions between arousal states increased (p=0.004).  2-Way ANOVAs also showed 

no main effect of drug (p≥0.205) or drug×time interaction (p≥0.292) for frontoparietal 

EEG power in delta, theta, sigma, and high frequency (HF) bands in these animals 

(Figure 2.9).  We observed significant main effects of post-MD time on frontoparietal 

EEG power: NREM sleep power in the theta (p<0.001), sigma (p=0.024), and HF bands 

(p=0.019) decreased, REM sleep theta power decreased (p=0.012), and REM sleep HF 

power increased (p=0.011).  However, these changes to sleep architecture and EEG 

power occurred in all treatment groups and reflect changes similar to those previously 

observed during post-MD sleep (Frank et al., 2001; Jha et al., 2005; Seibt et al., 2008).  

There were also no significant differences between groups in EEG activity at the infusion 

sites.  2-Way ANOVAs (Vehicle n=5; U0126 n=7; CGP57380 n=6 hemispheres) 

revealed no effect of drug (p≥0.098), time (p≥0.630), or drug×time interaction (p≥0.334) 

on delta, theta, sigma, or HF power within V1 (Figure 2.9 A, B). 

 

Discussion. 

We show that activation of the ERK-Mnk1 pathway during sleep is necessary for 

ODP consolidation.  More specifically, inhibition of ERK or Mnk1 during sleep in the 

visual cortex abolishes the normal potentiation in non-deprived visual pathways 
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observed after sleep.  The effects of ERK inhibition during sleep cannot be explained by 

indirect effects of drug infusion, since sleep architecture and neuronal firing properties in 

V1 were unaffected.  This loss of plasticity is accompanied by reductions in 

phosphorylated eIF4E and levels of PSD-95.  Phosphorylation of eIF4E correlates with 

increased 5’ cap-dependent mRNA translation rates.  Although the underlying 

mechanism is unclear, phosphorylation of eIF4E promotes its dissociation from the 5’ 

cap, which may speed translation by facilitating polysome formation or increasing the 

pool of available cap-binding factors (Scheper and Proud, 2002). In addition to regulating 

translation via eIF4E phosphorylation, ERK-Mnk signaling is required for translation 

initiation complex formation during plasticity in vivo (Panja et al., 2009).  PSD-95 is a 

synaptic protein whose expression controls the localization of AMPA receptors to the 

post-synaptic membrane during plasticity in vivo (Ehrlich and Malinow, 2004).  

Therefore, the current study suggests that the ERK-Mnk1 pathway is activated in the 

sleeping, remodeling cortex and promotes consolidation by upregulating the synthesis of 

plasticity-related proteins such as PSD-95. 

Mechanisms of ERK-dependent consolidation.  ERK regulates multiple pathways 

that can ultimately lead to the stabilization of plasticity, including transcription and 

translation (reviewed in Adams and Sweatt, 2002).  In hippocampal LTP, translation is 

controlled by concomitant activation of the ERK and mTOR pathways via eIF4E and 4E-

BP1 phosphorylation (Kelleher et al., 2004; Gelinas et al., 2007; Tsokas et al., 2007; 

Connor et al., 2011).  Seibt et al. (2012) showed that protein synthesis via mTOR is 

required during sleep for ODP consolidation; however, the role of ERK in sleep-

dependent translation was not explored.  Although we did not directly measure initiation 

complex formation or translation, our finding that U0126 and CGP57380 inhibit eIF4E 

phosphorylation and decrease PSD-95 levels is consistent with a dual role for ERK and 
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mTOR in the synthesis of plasticity-related proteins during sleep-dependent 

consolidation. 

Translation initiation, combined with decreased elongation via eEF2 

phosphorylation, can promote the synthesis of a specific pool of proteins including 

CaMKIIα and Arc (Scheetz et al., 2000; Belelovsky et al., 2005; Park et al., 2008).  

Phosphorylation of eEF2 is elevated in V1 during post-MD sleep but is not blocked by 

mTOR inhibition (Seibt et al., 2012).  Here, we found that eEF2 phosphorylation is also 

unaffected by U0126, suggesting that ERK and mTOR promote a general increase in 

translation during sleep, while an additional factor restricts the pool of translated mRNAs 

by increasing eEF2 phosphorylation.  One candidate for this factor is PKA, which is 

required for sleep-dependent ODP consolidation (Aton et al., 2009a) and can promote 

eEF2 phosphorylation (Redpath and Proud, 1993; Diggle et al., 2001). 

In addition to regulating translation, ERK can also translocate to the nucleus and 

activate downstream transcription factors such as CREB (reviewed in Adams and 

Sweatt, 2002).  Phospho-ERK nuclear translocation occurs in rat V1 after 24 hours of 

MD, implicating ERK as a regulator of transcription during ODP (Takamura et al., 2007).  

However, we found that CREB phosphorylation is not blocked by U0126 during the first 

hour of post-MD sleep, suggesting that ERK does not exert transcriptional control during 

sleep.  This finding agrees with previous observations that the time course of the effects 

of U0126 on LTP in V1 is consistent with a role for ERK in translation rather than 

transcription (DiCristo et al., 2001).  This result is also consistent with our previous 

findings that transcription of the genes c-fos, arc, and bdnf in V1 is reduced during sleep 

(Seibt et al., 2012).  Therefore, while it is possible that ERK may lead to CREB 

phosphorylation on a longer timescale (between 1 and 6 hours of sleep), or that ERK 
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may activate other transcription factors (such as Elk-1), our results suggest that ERK 

does not promote transcription during sleep. 

ERK and synaptic potentiation.  ODP occurs through decreased V1 

responsiveness to deprived eye inputs, which is initiated during waking and maintained 

during sleep, as well as enhanced responsiveness to non-deprived eye inputs, which 

occurs during post-MD sleep (Aton et al., 2009a; Seibt et al., 2012).  ERK activation is 

required for LTP in V1 (DiCristo et al., 2001), but is also necessary for various forms of 

LTD, including NMDA receptor- and metabotropic glutamate receptor-dependent 

hippocampal LTD (Thiels et al., 2002; Gallagher et al., 2004), cerebellar LTD (Kawasaki 

et al., 1999; Endo and Launey, 2003), and muscarinic acetylcholine receptor-dependent 

visual cortical LTD (McCoy and McMahon, 2007; McCoy et al., 2008).  Therefore, we 

considered the possibility that the ERK-Mnk1 pathway may promote ODP either by 

enhancing non-deprived eye responses or depressing deprived eye responses during 

sleep.  Analysis of neuronal firing properties revealed that U0126 and CGP57380 

selectively inhibited the strengthening of non-deprived eye responses in V1.  Therefore, 

we conclude that ERK and Mnk1 activation during sleep promote ODP by potentiating 

synaptic responses in favor of the non-deprived eye. 

Potential mechanisms of ERK activation.  Although we have demonstrated a 

requirement for ERK in sleep-dependent plasticity, the cellular events that initiate ERK 

phosphorylation during sleep remain unclear.  ERK can be activated by numerous 

mechanisms, including neuronal activity and activation of neuromodulatory inputs 

(Reviewed in Adams and Sweatt, 2002).    Aton et al. (2009) demonstrated that ERK 

activation during post-MD sleep requires NMDA receptor activity.  Therefore, our results 

support a model in which cortical activity patterns unique to sleep activate NMDA 

receptors, thereby promoting ERK activation.  However, cortical activity patterns and 
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neuromodulatory tone vary greatly across sleep states, raising the question of whether 

ERK activation may occur preferentially during NREM or REM sleep.  One possibility is 

that the combination of neuronal activity and high cholinergic tone during REM sleep 

could activate ERK via NMDA and muscarinic acetylcholine receptors.  In support of this 

hypothesis, REM sleep deprivation has been shown to decrease ERK phosphorylation in 

the rat dorsal hippocampus (Ravassard et al., 2009), and spontaneous REM sleep 

elevates hippocampal ERK phosphorylation (Luo et al., 2013).  Furthermore, Lopez and 

colleagues (2008) observed a trend for decreased hippocampal PSD-95 in young rats 

that had been deprived of REM sleep.  However, it remains to be seen whether these 

effects of REM sleep deprivation hold true in the cortex, and whether REM sleep 

deprivation impairs ODP consolidation.  Ultimately, more detailed investigations of 

kinase function during wake, REM sleep, and NREM sleep in the remodeling cortex are 

required to fully elucidate the mechanisms underlying cortical consolidation. 

Conclusions.  Although a number of mechanisms underlying neuronal plasticity in 

vitro are known, it is unclear how many of these mechanisms function in vivo.  The 

present study furthers our understanding of how the ERK-Mnk1 pathway functions in the 

intact brain, and reveals a novel mechanism underlying sleep-dependent cortical 

consolidation.   
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Table 2.1: Firing properties of V1 neurons were unaffected by U0126 and CGP57380.  

Average (±SEM) firing properties of units recorded near to the site of drug infusion are 

shown.  No significant differences were observed across drug treatments for any 

property.  ERI, OSI, spontaneous firing rate: One-way ANOVA p>0.25; % visually 

responsive neurons: ANOVA on ranks p>0.6; Vehicle n=7 hemispheres, U0126 n=7, 

CGP57380 n=6. 

Tables. 

 
% Visually 
responsive 

neurons 

Evoked Response 
Index 

Orientation 
Selectivity Index 

Normalized 
Spontaneous Firing 

Rate 

 
Left Eye Right Eye Left Eye Right Eye Left Eye Right Eye 

Vehicle 

99.05 0.73 0.62 0.75 0.69 0.65 0.59 

±0.70 ±0.02 ±0.07 ±0.04 ±0.04 ±0.06 ±0.11 

U0126 

99.80 0.71 0.67 0.72 0.67 0.57 0.61 

±0.20 ±0.05 ±0.02 ±0.02 ±0.02 ±0.07 ±0.06 

CGP57380 

99.26 0.78 0.71 0.72 0.75 0.51 0.52 

±0.48 ±0.04 ±0.06 ±0.03 ±0.02 ±0.10 ±0.11 
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Figures. 
Figure 2.1.  Cannula assembly.  (A) The cannula guide and attached EEG electrodes 

were implanted into V1 during survival surgery.  An internal ‘dummy’ cannula (solid 

stainless steel; not shown) was screwed into the cannula guide to protect the cortex from 

foreign material until experimentation.  At the beginning of the baseline recording period, 

an EEG cable was plugged into the electrical socket connected to the two EEG leads 

flanking the cannula.  At the beginning of the infusion, the dummy cannula was removed 

and replaced with a sterile stainless steel cannula (28G internal diameter) attached to 

sterile infusion tubing.  The tubing and cannula were filled with drug or vehicle solution 

prior to cannula placement.  (B) Schematic showing the placement of the cannula 1mm 

below the pial surface in V1. 
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Figure 2.2.  U0126 infusion blocks ERK, but not CaMKIIα, phosphorylation.  (A) Top: 

Experimental design.  Arrow indicates time at which V1 tissue was collected.  Bottom: 

Schematic of bilaterally infused V1 tissue.  Tissue was collected near (within 1mm) and 

far from the cannula site.  (B) Representative western blots showing total and 

phosphorylated ERK and CaMKIIα in V1 after one hour of sleep with vehicle or U0126 

infusion.  Each protein of interest is shown above β-actin bands from the same blot.  (C) 

Average (±SEM) ERK and CaMKIIα phosphorylation near the infusion sites.  Phospho-

ERK levels were decreased by U0126, while CaMKIIα phosphorylation was unaffected.  

*p=0.002, Mann-Whitney U test; n=6 hemispheres/group. 
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Figure 2.3.  ERK inhibition abolishes sleep-dependent plasticity.  (A) Experimental 

design.  Arrow indicates the time point at which the animal was prepared for single unit 

recording.  (B) OD histograms showing the distribution of single unit eye preference near 

and far from vehicle and U0126 infusion sites. Vehicle near n=423 cells; U0126 near 

n=342; vehicle far n=416; U0126 far n=277.  (C) Average (±SEM) NBI and SI (n=7 

hemispheres/group).  U0126 infusion significantly attenuated the NBI and SI near the 

cannula compared to vehicle.  The NBI was also significantly lower near vs. far from the 

cannula.  *p<0.02, U0126 near vs. vehicle near; †p<0.03, U0126 near vs. U0126 far; t-

test.   
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Figure 2.4.  ERK inhibition during waking MD does not impair ODP.  (A)  Experimental 

design.  Arrow indicates the time at which MD-only animals were prepared for unit 

recording.  Normal animals did not undergo visual or sleep manipulation.  (B) OD 

histograms from normal (top), vehicle-infused MD-only (middle), and U0126-infused MD-

only (bottom) hemispheres.  Recordings from infused hemispheres were obtained near 

to the cannula.  (C)  Mean (±SEM) MI values for each group.  Binocularity decreased 

(indicated by increased MI) in both vehicle- and U0126-infused hemispheres compared 

to normal, indicating that ERK inhibition during waking does not impair ODP.  *p<0.05, 

One-way ANOVA followed by Holm-Sidak post-hoc test vs. normal; Normal n=8 

hemispheres, Vehicle n=4, U0126 n=4. 
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Figure 2.5.  U0126 blocks downstream molecular effectors of ERK.  (A) Representative 

western blots from vehicle- and U0126-infused V1.  Bands for each protein of interest 

are shown above β-actin bands from the same blot.  (B) Average (±SEM) levels of p-

CREB, p-eIF4E, p-eEF2, and PSD-95.  U0126 significantly decreased eIF4E 

phosphorylation and PSD-95 levels vs. vehicle.  *p=0.041, †p=0.0054, n=6 

hemispheres/group, t-test. 
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Figure 2.6.  Mnk1 inhibition abolishes sleep-dependent plasticity.  (A) Representative 

western blots.  Each protein of interest is paired with β-actin bands from the same blot.  

(B) CGP57380 significantly decreased mean (±SEM) eIF4E phosphorylation and PSD-

95 levels without affecting ERK phosphorylation.  Vehicle values are reproduced from 
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Figures 2.2 and 2.5.  *p=0.0275; †p≤0.001; CGP57380 n=4 hemispheres; t-test.  (C)  

OD histograms revealed an attenuated shift near to, but not far from, the site of 

CGP57380 infusion.  Near n=420 cells; far n=502.  (D)  Average (±SEM) NBI and SI 

(CGP57380 n=6 hemispheres).  CGP57380 significantly impaired the OD shift near to, 

but not far from, the infusion site.  Vehicle data are reproduced from Figure 2.3.  

*p<0.03, CGP57380 near vs. vehicle near; †p<0.03, CGP57380 near vs. CGP57380 far; 

t-test.   
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Figure 2.7. ERK and Mnk1 inhibition prevent enhancement of neuronal responses to 

non-deprived eye stimulation.  Average (±SEM) normalized peak firing rates in response 

to left- and right-eye visual stimulation are shown.  Left (non-deprived) eye responses 

were enhanced in vehicle-treated V1 compared to normal animals that did not undergo 

manipulations of vision or sleep.  This increase was blocked near to the site of U0126 

and CGP57380 infusion.  *p<0.05, ANOVA on ranks followed by Dunn’s post-hoc test. 

Normal n=8 hemispheres; vehicle n=7; U0126 n=7; CGP57380 n=6. 
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Figure 2.8.  Sleep architecture is unaffected by drug infusion.  Post-MD sleep 

characteristics are displayed as 6-hour averages for simplicity, but were divided into 2-

hour bins for statistical analysis (see Results; no significant effects of drug or drug×time 

interaction were observed).  Sleep architecture was determined using frontoparietal EEG 

and EMG recordings.  Vehicle N=4 cats; U0126 N=4; CGP57380 N=3.  (A) Mean 

(±SEM) amounts of wake, REM sleep, and NREM sleep during baseline, MD, and post-

MD recording periods.  (B) Mean (±SEM) duration of wake, REM sleep, and NREM 

sleep bouts during the post-MD infusion period.  (C) Average (±SEM) number of 

transitions from sleep to wake and total number of transitions between all arousal states 

during the post-MD period. 
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Figure 2.9.  Drug infusion does not alter sleep EEG power.  Data represent Fourier 

transformed EEG data, normalized to baseline values and averaged into standard 

frequency bands (delta, theta, sigma, and high frequency (HF)).  Each frequency band is 

displayed as mean±SEM and averaged across the entire 6h recording period for 

simplicity, but was divided into 2-hour bins for statistical analysis (see Results; no 

significant drug or drug×time interaction effects were observed for any frequency band).  

(A-B) EEG power in V1, recorded from bipolar leads at the cannula site, did not differ 

between drug- and vehicle-infused cortex.  (C-D) Drug infusion did not alter EEG activity 

in the frontoparietal (F/P) cortex. 
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CHAPTER 3:  RAPID EYE MOVEMENT (REM) SLEEP CONSOLIDATES 

CORTICAL PLASTICITY IN VIVO 
 

Michelle C. Dumoulin1, Julie Seibt1, Sara J. Aton1, Tammi Coleman1, Leslie Renouard1, 

and Marcos G. Frank1 

1
Dept of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 

 

Abstract. 

REM sleep is hypothesized to promote brain plasticity, but the underlying 

mechanisms remain unclear.  Ocular dominance plasticity (ODP) in the primary visual 

cortex (V1) is a canonical form of cortical plasticity in vivo induced by monocular 

deprivation (MD) during wakefulness and consolidated during subsequent sleep.  The 

role of REM sleep in ODP consolidation has not been directly examined.  We 

investigated whether REM sleep is required for ODP consolidation by implanting cats 

with EEG and EMG electrodes and inducing ODP with six hours of waking MD.  Animals 

were then allowed sleep ad libitum, REM-deprived sleep, or NREM fragmented sleep (as 

a control for nonspecific effects of REM deprivation).  REM sleep deprivation (RSD) was 

achieved by manually awakening cats upon REM sleep onset.  Cats were then prepared 

for optical imaging of intrinsic cortical signals to measure ODP, or cortical tissue was 

collected to examine biochemical changes resulting from RSD.  We found that RSD 

attenuated ODP consolidation and decreased levels of extracellular signal-regulated 

kinase (ERK) phosphorylation.  These changes did not occur in the NREM fragmentation 

control group.  Furthermore, ODP consolidation was rescued with recovery sleep 

following one hour of RSD, and one hour of undisturbed sleep was sufficient to protect 
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against the effects of subsequent RSD.  ODP consolidation and ERK phosphorylation 

correlated with beta-gamma EEG activity during REM sleep, but not with REM sleep 

amount, suggesting that cortical activity patterns during REM sleep consolidate cortical 

plasticity. 

 

Introduction. 

The function of sleep remains one of the core mysteries of neuroscience.  

Investigating this mystery is complicated by the fact that, in terrestrial mammals and 

birds, sleep is subdivided into rapid eye movement (REM) sleep (also known as 

paradoxical sleep) and non-REM (NREM) sleep.  The existence of REM sleep is a 

particularly puzzling phenomenon.  During REM sleep, cortical single-neuron and EEG 

activity resemble waking, but in contrast to waking REM sleep is characterized by 

skeletal muscle atonia and phasic activations of sub-cortical and cortical brain areas 

(Aserinsky and Kleitman, 1953; Dement, 1958; Jouvet et al., 1959; Brooks and Bizzi, 

1963; Mouret et al., 1963; Steriade et al., 2001). 

Although the function of REM sleep is unknown, it has historically been thought 

to promote learning and memory.  In humans, many studies support a role for REM 

sleep in the consolidation of hippocampus-independent procedural learning acquired 

during prior waking.  REM sleep amount and intensity increase following learning of new 

motor skills and procedural memory tasks, and these measures correlate with 

subsequent performance (Buchegger and Meier-Koll, 1988; Buchegger et al., 1991; 

Plihal and Born, 1997, 1999; Stickgold et al., 2000b; Fischer et al., 2002; Smith et al., 

2004; Rasch et al., 2009; Suzuki et al., 2012).  Moreover, a number of procedural 
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memory tasks require REM sleep after training for subsequent performance 

improvement (Karni et al., 1994; Smith, 1995; Mednick et al., 2003; Backhaus and 

Junghanns, 2006; Tucker et al., 2006).  However, animal models of brain plasticity have 

not been used to investigate the role of REM sleep in hippocampus-independent 

consolidation. 

In animal models, REM sleep deprivation (RSD) alters the expression of 

developmentally-regulated cortical plasticity by impairing the maturation of cortical and 

sub-cortical visual circuits (Oksenberg et al., 1996; Shaffery et al., 1998, 2002, 2006a).  

Much less is known, however, about the role of REM sleep in consolidating experience-

dependent cortical plasticity in vivo.  Ocular dominance plasticity (ODP) in the cat 

primary visual cortex (V1) is a canonical form of cortical plasticity that has revealed 

many underlying principles of cortical plasticity (Reviewed in Berardi et al., 2003).  In this 

model, occlusion of vision from one eye (monocular deprivation, MD) during a critical 

period of development induces V1 to shift from being predominantly binocular to being 

preferentially responsive to the open (non-deprived) eye (Wiesel and Hubel, 1963a; 

Hubel and Wiesel, 1970).  ODP is induced with as little as six hours of MD during waking 

and is subsequently consolidated by sleep (Frank et al., 2001).  Activation of 

extracellular signal-regulated kinase (ERK) (see Chapter 2), protein kinase A (PKA) 

(Aton et al., 2009a) and protein synthesis (Seibt et al., 2012) are all required during 

sleep for ODP consolidation.  However, the relative contributions of REM and NREM 

sleep to these events, and to ODP consolidation, have not been explored. 

In the current study, we directly investigate whether REM sleep is required for 

ODP consolidation and its underlying mechanisms.  We achieved this by inducing 

plasticity in V1 with waking MD, then allowing animals either normal or REM-deprived 
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sleep and measuring ODP.  We also included a NREM fragmentation (NF) group to 

control for the nonspecific effects of RSD.  We found that RSD impaired ODP and 

ERK1/2 phosphorylation, indicating that REM sleep consolidates cortical plasticity by 

activating the ERK signaling cascade.  The extent of the ODP shift and ERK 

phosphorylation correlated with beta-gamma EEG activity during REM sleep, suggesting 

that cortical activity patterns during REM sleep consolidate ODP. 

  

Materials and Methods. 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Pennsylvania and performed in accordance with USDA 

regulations.  Kittens were obtained from our on-site breeding colony and housed with 

their queens on a 12:12 light:dark cycle prior to experimentation.  Whenever possible, 

animals from the same litter were distributed across groups to control for inter-litter 

variability. 

 

Surgical procedures for polysomnography.  Cats were anesthetized and prepared for 

surgery as described previously (Frank et al., 2001; Jha et al., 2005).  Briefly, the animal 

was anesthetized with midazolam and propofol (IV) before being intubated and 

transferred to isoflurane anesthesia.  Six EEG and three nuchal EMG electrodes 

attached to an electrical socket were implanted and affixed to the skull using bone 

screws and dental acrylic.  Two EEG leads were placed over V1 in each hemisphere of 

animals used for tissue harvesting.  Animals used for imaging had a single EEG lead 

placed over V1 in each hemisphere to minimize the risk of dimpling the cortical surface 

with EEG screws.  The remaining EEG screws were placed in frontoparietal regions.  



61 
 

Following at least four days post-operative recovery and treatments, male and female 

animals were randomly assigned to the experiments described below. 

 

Polysomnography and monocular deprivation.  At the peak of the critical period for visual 

cortical plasticity (Postnatal day 28-35), cats were singly housed in a recording chamber.  

The floor of the chamber consisted of a motorized platform that could be activated to 

wake the animal up.  The implanted electrical socket was attached to an electrical cable 

tether/commutator, which routed EEG and EMG signals to an amplifier system (Grass 

Technologies; Warwick, RI).  Signals were high-pass filtered at 0.1 Hz (EEG) or 10Hz 

(EMG), low-pass filtered at 100Hz, digitized at 200 Hz, and recorded using commercial 

sleep-recording software (VitalRecorder; Kissei Comtec America, Inc.; Irvine, CA).  At 

the end of a baseline recording period lasting at least six hours, animals were 

anesthetized with isoflurane and the right eyelid was sutured shut.  From induction to 

recovery from anesthesia, this process took no longer than 15 minutes.  After recovery 

from anesthesia, animals were kept awake for 6 hours in lighted conditions, ensuring 

that all cats received 6 hours of monocular vision to induce cortical remodeling (Frank et 

al., 2001).   

 

Sleep manipulations.  Following six hours of MD, animals were allowed to sleep in 

complete darkness for 1-2 hours.   During the sleep period, animals underwent one or 

more of the following manipulations: undisturbed sleep, REM sleep deprivation (RSD), or 

NREM sleep fragmentation (NF).  During RSD, the EEG and EMG signals were 

monitored by an experimenter.  Each time an animal attempted to enter REM sleep, 

indicated by decreased EEG and EMG amplitude, the animal was awoken by activation 

of the motorized floor of the chamber.  During NF, animals were awoken the same 
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number of times as the RSD animals (see Results); however, these animals were only 

awoken during NREM sleep, and were allowed undisturbed bouts of REM sleep. 

 

Optical imaging of intrinsic cortical signals.  ODP was measured by optical imaging of 

intrinsic cortical signals in 16 male and 15 female cats.  Immediately following the sleep 

period, animals were prepared for optical imaging as previously described (Jha et al., 

2005).  Briefly, animals were anesthetized with isoflurane (±N2O) and the skull above V1 

was removed.  Animals were paralyzed with a continuous intravenous infusion of 

Flaxedil and ventilated.  The dura above V1 was removed and the brain was covered 

with 3% agarose and a glass coverslip.  Eyedrops were used to dilate the pupils (1% 

atropine) and retract the nictitating membranes (10% phenylephrine).  Contact lenses 

focused the eyes on a monitor positioned 40 cm away.  A Dalstar 1M30 CCD camera 

(Dalsa; Waterloo, ON, Canada) was focused 600 m below the pial surface with a 

135/50 mm lens combination and the cortex was illuminated with red light.  Reflected 

light was filtered (610 nm) and images were captured (30 frames/second) while 

presenting one eye at a time with a full-field rotating, drifting square grating (0.2 cycles/°; 

2 cycles/second; 1 full rotation/minute).  Both clockwise and counter-clockwise visual 

stimuli were presented. Vitals were monitored throughout imaging to ensure that heart 

rate and expired CO2 levels were comparable during left and right eye stimulation.  

Images were saved after temporal (four frames) and spatial (2×2 pixels) binning.  

Optical maps were generated as previously described (Jha et al., 2005) and cropped to 

remove vascular artifacts.  The OD ratio at each pixel was calculated according to 

Equation 3.1, where I is the ipsilateral response and C is the contralateral response.  OD 

ratios were grouped in seven bins, where bin 1 contains pixels most responsive to the 
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eye contralateral to the imaged hemisphere, 4 corresponds to pixels responding 

approximately equally to either eye, and 7 corresponds to pixels mostly responsive to 

the ipsilateral eye.  The number of pixels in each bin was used to calculate scalar 

measures of ODP: the contralateral eye bias index (CBI), monocularity index (MI), and 

shift index (SI).  The CBI is a weighted average of OD scores from the population of 

pixels sampled, where Nx is the number of pixels in category x and NT= total number of 

pixels sampled (Equation 3.2).  The CBI ranges from 0 to 1, where higher values 

indicate a stronger bias for the contralateral eye.  This measure was converted to the 

non-deprived eye bias index (NBI) (where higher values indicate a stronger bias for the 

non-deprived eye) for clarity (Aton et al., 2009a).  The CBI was used to calculate the 

shift index (SI), a measure of overall changes in OD across both hemispheres of an 

animal (Equation 3.3). 

 

OD Ratio  = 
I 

I + C 

         EQUATION 3.1. 

 

CBI  = 
(N1 – N7) + 2/3(N2 – N6) + 1/3(N3 – N5) + NT 

2 × NT 

         EQUATION 3.2. 

 

SI = CBIipsilateral to deprived eye - CBIcontralateral to deprived eye 

        EQUATION 3.3. 
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The monocularity index (MI) was also calculated, where a value of 0 indicates 

that all imaged pixels respond equally to both eyes and 1 indicates a complete loss of 

binocular responses (Equation 3.4). 

 

MI  = 
(N1 + N7) + 2/3(N2 + N6) + 1/3(N3 + N5) 

NT 

 

        EQUATION 3.4. 

 

These values were calculated for all imaged cats.  Values from six age-matched 

cats that underwent MD with no subsequent sleep (MD-only), three of which were 

reproduced with permission from a previous study (Aton et al., 2009a), were used for 

comparison.  Maps from one hemisphere in the MD+1h sleep and one hemisphere in the 

MD+2h sleep groups were excluded from the analysis due to poor signal quality. 

 

Tissue collection and western blotting.    Brain tissue was collected from 14 male and 12 

female cats for western blot analysis.  Immediately following one hour of post-MD sleep, 

RSD, or NF, animals were anesthetized with isoflurane and killed with an intracardiac 

injection of pentobarbital/phenytoin.  Primary visual, auditory, and motor cortex (V1, A1, 

and M1, respectively) and lateral cerebellar tissue was rapidly collected from each 

hemisphere and frozen on dry ice.  In one sleep and one RSD animal, only V1 tissue 

was collected.  Whole-tissue extracts were prepared and analyzed as previously 

described (Aton et al., 2009a).  Briefly, tissue was homogenized in lysis buffer (100 mM 

NaCl, 10 mM Na4P2O7·10H2O, 10 mM NaPO4, 50 mM NaF, 1 mM Na3VO4, 5 mM EDTA, 

5 mM EGTA, 1% SDS) containing phosphatase and protease inhibitor cocktails (1:100; 
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Sigma-Aldrich; St. Louis, MO). Cellular debris was removed by centrifugation and 

lysates were then boiled for 10 minutes in gel loading buffer (2.5%SDS).  Protein 

concentration in each sample was determined with a micro-BCA assay (Thermo 

Scientific; Rockford, IL).  40 g protein/well was separated on pre-cast polyacrylamide 

gels (Bio-Rad; Hercules, CA), and transferred to nitrocellulose membranes (0.45 μM 

pore size; Invitrogen; Carlsbad, CA).   Membranes were blocked in Odyssey blocking 

buffer at room temperature (Li-Cor; Lincoln, NE), then incubated overnight at 4°C with 

primary antibodies diluted in blocking buffer and 0.1% Tween-20 (Sigma-Aldrich).  

Primary antibodies were raised in rabbit and obtained from Abcam (Cambridge, MA) 

unless otherwise noted; mouse anti-β-actin (1:10,000) (Sigma-Aldrich) was also included 

with each primary antibody as a loading control.  The following primary antibodies were 

used: anti-ERK1/2 (1:1,000) (Cell Signaling Technology; Danvers, MA), anti-phospho-

ERK1/2 (T202/Y204 and T185/Y187, respectively) (1:500) (Cell Signaling), anti-GluA1 

(1:900); anti-phospho-GluA1 (S831) (1:200) (Millipore; Billerica, MA); anti-CaMKIIα 

(1:1500), anti-CaMKII (1:200) (Enzo Life Sciences, Inc.; Farmingdale, NY), anti-

phospho-CaMKIIα/β (T286 and T287, respectively) (1:1000), anti-cofilin (1:400), anti-4E-

BP1 (1:400) (Cell Signaling), and anti-phospho-4E-BP1 (S65) (1:500) (Cell Signaling).    

Membranes were incubated simultaneously with both fluorescently conjugated goat anti-

rabbit and anti-mouse antibodies (Li-Cor) (1:20,000 in blocking buffer/0.1% Tween) at 

room temperature in the dark for one hour, then scanned and quantified with the 

Odyssey infrared scanner and quantification software (Li-Cor).  Blots were scanned at 

700 nm to detect the β-actin loading control and 800 nm to detect each protein of 

interest.  Variation across gels was controlled for by normalizing to a common sample 
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run on multiple gels.  Cofilin blots were not run for one animal in the 1h sleep and one 

animal in the 1h RSD groups, as not enough protein was obtained. 

 

Sleep/wake analysis. Vigilance states were manually scored by a trained experimenter 

as rapid eye movement (REM) sleep, non-REM (NREM) sleep, or wake in 8-second 

epochs based on EEG and EMG signals (SleepSign for Animal; Kissei Comtec America, 

Inc.; Irvine, CA) according to previously described criteria (Frank et al., 2001).  

Percentage of total recording time and average bout duration for each vigilance state 

was calculated for baseline, MD, and post-MD periods.  Fast Fourier transforms were 

performed on V1 EEG recordings and power across the spectrum was normalized to 

baseline power.  For the correlation analysis, power during REM sleep was averaged 

within the theta (5-10 Hz) and beta-gamma (20-40 Hz) bands and normalized to mean 

baseline power.  One animal in the 1h RSD group was excluded from the spectral power 

analysis because the EEG signal was not usable. 

 

Cortisol measurements.  Whole blood was collected from the jugular vein of awake cats 

at the indicated time points, and Normosol-R was administered subcutaneously to 

replace fluid volume.  Blood was allowed to clot at 4°C, then spun at 2500 rcf for 7 

minutes.  Serum was collected and stored at -20°C until analysis.  Cortisol was 

quantified by a solid-phase competitive enzyme-amplified chemiluminescent 

immunoassay on the Immulite 2000 (Siemens; Erlangen, Germany) at the Matthew J. 

Ryan Veterinary Hospital of the University of Pennsylvania.  Cortisol levels below the 

detection limit of the assay (1μg/dL) were assigned a value of 1. 
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Statistical analysis.  Statistical tests were performed using SigmaPlot 11.0 (Systat 

Software, Inc.; San Jose, CA).  Groups were compared using Student’s t-tests or one-

way ANOVAs, as indicated.  Fisher’s least significant difference test was used for post-

hoc analyses in which only three groups were compared (Hsu, 1996); the Holm-Sidak 

post-hoc test was used in cases where more than three groups were compared.  

Correlation analysis was performed using the Pearson product moment correlation.  

Nonparametric tests (Mann-Whitney U tests, ANOVAs on ranks with Dunn’s post-hoc 

tests, and Spearman rank order correlation) were used in cases where data were not 

normally distributed. 

 

 

Results. 

 

Post-MD sleep architecture.  To determine whether REM sleep is necessary for ODP 

consolidation, we induced cortical plasticity with six hours of waking MD (Frank et al., 

2001), then either manually deprived animals of REM sleep or allowed them undisturbed 

sleep.  However, any method that experimentally removes REM sleep has nonspecific 

effects on other arousal states, including increased wake time and disrupted NREM 

sleep (Vimont-Vicary et al., 1966).  Therefore, we also included a control group, referred 

to as NREM fragmentation (NF).  These animals were awoken the same number of 

times as the REM sleep deprivation (RSD) group (RSD: 21.25±1.2 awakenings, N=12; 

NF: 20.2±0.47, N=10; p=0.428; t-test).  However, NF animals were only awoken during 

NREM sleep and were allowed undisturbed bouts of REM sleep. 
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To determine the efficacy of RSD and NF, we examined post-MD sleep 

architecture (Table 3.1).  As expected, both the RSD and NF animals spent more time 

awake than sleeping animals.  In contrast to RSD animals, however, NF animals had 

normal amounts of REM sleep.  NREM sleep continuity, measured by the length of 

NREM bouts, was also decreased by both RSD and NF (Figure 3.1B).  Finally, we 

examined the NREM power spectra in V1 of animals in each group to determine whether 

RSD impaired the normal rebound in slow wave and delta power that occurs after a 

period of sleep deprivation.  As shown in Figure 3.1 C, all groups displayed a rebound 

over baseline in these frequency bands (indicated by values above 1), but this rebound 

was blunted by both RSD and NF.  Therefore, RSD dramatically reduced REM sleep 

amounts, while the nonspecific effects of RSD (increased wake, decreased NREM bout 

duration and low frequency power) were controlled for by the NF group. 

  

RSD impairs ODP.  To measure ODP after sleep, RSD, and NF, we performed optical 

imaging of intrinsic cortical signals in V1 while visually stimulating one eye at a time 

(Figure 3.2).  Three scalar measures of ODP were calculated based on the 

responsiveness of each pixel to the non-deprived and deprived eyes (see Methods): the 

non-deprived eye bias index (NBI) and monocularity index (MI), calculated for each 

hemisphere individually, and the shift index (SI), which is a measure of plasticity across 

both hemispheres in the same animal.  The NBI ranges from 0-1 (0.5 indicates no shift), 

the MI ranges from 0-1 (0 indicates complete binocularity), and the SI ranges from -1 to 

1 (0 indicates no shift).  RSD decreased all three of these measures compared to 

sleeping animals.  Furthermore, the ocular dominance shift after RSD was comparable 

to the shift observed in animals that underwent MD without subsequent sleep (Figure 
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3.2C-E, reference line).  The ocular dominance shift was not impaired in NF animals, 

indicating that the effects of RSD on ODP cannot be attributed increased wake time or 

disruptions to NREM sleep.  

 

RSD attenuates ERK phosphorylation.  Aton et al., (2009) found that ERK1/2, 

CaMKII / , and GluA1 (S831) phosphorylation was elevated in remodeling V1 after 1-2 

hours of post-MD sleep.  To determine whether these biochemical changes require REM 

sleep, we collected tissue from V1 after post-MD sleep, RSD, and NF for western blot 

analysis (Figure 3.3).  Compared with the sleep group, RSD impaired ERK1/2 

phosphorylation.  In contrast, ERK1/2 phosphorylation was normal in the NF group, 

indicating that this effect cannot be attributed to nonspecific effects of RSD.  We also 

measured levels of cofilin, which is concentrated at excitatory postsynaptic terminals 

(Racz and Weinberg, 2006).  Cofilin levels in V1 were decreased by RSD, but not NF, 

compared to normally sleeping animals. RSD did not significantly affect CaMKIIα/β 

phosphorylation or GluA1 phosphorylation on the CaMKII site (S831) (Barria et al., 

1997).   

Previous work from our lab has shown that protein synthesis in V1 during sleep is 

required for ODP consolidation (Seibt et al., 2012).  4E-BP1 phosphorylation, which 

increases after 1h of post-MD sleep, may underlie this sleep-dependent translation.  We 

therefore also measured 4E-BP1 phosphorylation in the same tissue samples, but found 

no differences across groups (Sleep: 100±27.8%; RSD: 76.11±16.7%; NF: 

64.64±19.3%; p=0.692; ANOVA on ranks).   
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 REM sleep is a global brain state, raising the question of whether REM sleep 

activates ERK specifically in remodeling cortical areas (i.e. V1), or whether REM sleep 

increases ERK phosphorylation across the brain.  To address this question, we 

performed western blot analysis on primary auditory cortex (A1), primary motor cortex 

(M1), and lateral cerebellum obtained from the same animals used in the analysis of V1 

tissue (Figure 3.4).  Interestingly, we found that ERK phosphorylation in A1 and M1 

followed the same trend as V1, but these trends did not reach significance.  When the 

values from A1 and M1 were pooled, RSD significantly impaired ERK2 phosphorylation.  

Therefore, the effect of REM sleep on ERK phosphorylation is greatest in cortical 

regions undergoing plasticity, but may not be entirely limited to these regions.  No effects 

of RSD on cerebellar ERK phosphorylation were observed. 

 

Recovery sleep after RSD rescues ODP.  We have demonstrated that REM sleep 

following ODP induction is required for consolidation, but this raises many additional 

questions.  For instance, can ODP impairments by RSD be reversed by subsequent 

REM sleep?  Furthermore, does REM sleep immediately following ODP induction protect 

the cortex from the effects of later RSD?  Therefore, we formed additional groups in 

which animals received 2h RSD, 1h RSD followed by 1h undisturbed recovery sleep 

(RSD+recovery group), or 1h undisturbed sleep followed by 1h RSD (delayed RSD 

group) (Figure 3.5 A).  During their respective RSD periods, the RSD+recovery and 

delayed RSD groups had the same changes to REM sleep and wake time as the 2h 

RSD group (Table 3.2).  The RSD+recovery animals showed a rebound in REM sleep 

during the recovery period, during which they received significantly more REM sleep 
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than animals in the 1h sleep group (RSD+recovery: 42.58±3.5% total recording time, 

N=8; 1h Sleep: 31.21±2.2%, N=12; p=0.01; t-test). 

Two hours of RSD did not produce any additional ODP impairment compared 

with the 1h RSD group, as measured by the NBI (1h RSD=0.625±0.02; 2h 

RSD=0.605±0.008; p=0.346), the MI (1h RSD: 0.309±0.02; 2h RSD: 0.270±0.02; 

p=0.196), and the SI (1h RSD: 0.249±0.02; 2h RSD: 0.210±0.01; p=0.160) (1h RSD 

n=10 hemispheres; 2h RSD n=8; t-test).  Similarly, a second hour of undisturbed sleep 

did not further enhance the OD shift compared to the MD+1h sleep group (1h sleep: 

0.696±0.02; 2h sleep NBI= 0.667±0.02;  p=0.321), MI (1h sleep: 0.439±0.03; 2h sleep: 

0.353±0.03; p=0.088), or SI (1h sleep: 0.409±0.03; 2h sleep: 0.346±0.03; p=0.225) (1h 

sleep n=9 hemispheres; 2h sleep n=7; t-test).  However, the NBI and MI were higher in 

the RSD+recovery group than the 2h RSD group, indicating that one hour of recovery 

sleep after RSD is sufficient to rescue ODP (Figure 3.5).  Furthermore, the NBI was also 

higher in the delayed RSD group than in the 2h RSD group, indicating that once 

consolidated, the OD shift is not destabilized by RSD.   

Since ODP consolidation was normal following RSD+recovery and delayed RSD, 

we expected that ERK phosphorylation would also be normal in these groups.  Western 

blot analysis of V1 tissue revealed that ERK phosphorylation was not attenuated in the 

RSD+recovery and delayed RSD groups (Figure 3.6). 

 

REM sleep beta-gamma EEG activity correlates with ODP and ERK phosphorylation.  

REM sleep is required for ODP consolidation, but the characteristics of REM sleep that 

are responsible are unclear.  The SI is a measure of ocular dominance shift across the 
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whole animal (see Methods).  Therefore, we examined the correlation between the SI 

and REM amount, REM theta power in V1, and REM beta-gamma power in V1 for each 

animal that received 1-2 hours of undisturbed sleep.  Interestingly, the SI did not 

correlate with REM sleep time (p=0.272; r=-0.484; Pearson correlation; N=7 animals) or 

REM sleep theta power (p=0.907; r=-0.0548; Pearson correlation; N=7 animals).  

However, the SI did correlate with REM sleep beta-gamma power (Figure 3.7 A).  In 

addition, we obtained usable EEG recordings within V1 in 14 hemispheres from sleeping 

animals that were used for tissue collection.  We found that in these hemispheres, ERK1 

phosphorylation correlated with REM sleep beta-gamma activity, although this did not 

reach significance for ERK2 phosphorylation (Figure 3.7 B). 

 

RSD does not elevate serum cortisol.  RSD can induce stress in rats, as measured by 

blood glucocorticoid concentration (McDermott et al., 2003).  Lopez et al. (2008) 

observed a nonsignificant increase in glucocorticoid levels after RSD that also occurred 

in a control group similar to the NF manipulation used here, suggesting that NF controls 

for any stress effects of RSD.  Nevertheless, to address the possibility that stress in the 

RSD group might account for the observed ODP impairment, we measured serum 

cortisol from a subset of animals at various time points during the experiment (Figure 

3.8).  Cortisol was elevated at the end of the MD period compared to baseline.  Even so, 

peak cortisol levels after MD were more than six-fold less than levels reported to have 

only minor effects on ocular dominance plasticity when sustained for several days (Daw 

et al., 1991).  Furthermore, cortisol returned to baseline levels following both post-MD 

sleep and RSD, indicating that RSD does not cause stress compared to normal sleep.  

Although we were only able to obtain cortisol measurements from two NF animals, 
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cortisol levels in these animals matched closely with measurements obtained from RSD 

animals (1.74 and 1.37 μg/dL), further demonstrating that any nonspecific effects of RSD 

are controlled for by NF.   

 We also investigated whether cortisol has overt circadian rhythms by collecting 

blood from normal cats (with unmanipulated sleep and visual experience) in four time-

bins across the day: 6-10AM, 10AM-2PM, 2-6PM, and 6-10PM (Figure 3.8 B).  No 

differences in serum cortisol were observed across the day. 

 

 

Discussion. 

 

The role of REM sleep in ODP consolidation.  The current study demonstrates that REM 

sleep is required for the consolidation of cortical plasticity.  Our results cannot be 

explained by the nonspecific effects of RSD on wake and NREM sleep, since plasticity in 

animals undergoing NREM fragmentation was unaffected.  However, previous work 

using our model suggested that NREM, but not REM, sleep is responsible for ODP 

consolidation.  For instance, ODP consolidation correlates linearly with NREM, but not 

REM, sleep amount (Frank et al., 2001). This apparent discrepancy is resolved if a 

threshold amount of REM sleep is required for consolidation, after which REM sleep 

does not provide any additional benefit.  In addition, six hours of RSD does not impair 

ODP (Aton et al., 2009a), but the long period of RSD in this study combined with the 

strong REM sleep drive in kittens may have allowed REM sleep to accumulate to a level 

sufficient for ODP consolidation.  This interpretation is supported by our finding that ODP 

did not correlate with REM sleep time, but did correlate with beta-gamma EEG activity in 
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V1.  Therefore, neuronal activity during REM sleep, rather than the amount of REM 

sleep, determines the extent of the OD shift.   

The current study also conflicts with the findings of Oksenberg and colleagues 

(1996), who showed that long-term MD combined with RSD in kittens enhanced an 

anatomical measure of ODP in the LGN (cell-size disparity).  The methodological 

differences between these studies (age, RSD and MD duration, RSD method, and 

measure of ODP) make them difficult to compare.  However, this discrepancy can be 

explained by the difference in MD duration.  Short-term (<24h) MD induces an ocular 

dominance shift in extragranular layers of V1, but not in thalamocortical connections, in 

the kitten (Trachtenberg et al., 2000).  Long-term MD produces an OD shift in V1 and 

increases cell-size disparity in the LGN by decreasing the size of deprived-eye LGN cells 

(Wiesel and Hubel, 1963b; Hubel and Wiesel, 1970; Tieman, 1984).  Elimination of 

ponto-geniculo-occipital (PGO) waves (which normally occur during REM sleep (Brooks 

and Bizzi, 1963; Mouret et al., 1963)) during MD is sufficient to enhance the LGN cell-

size disparity, mimicking the effects of RSD (Shaffery et al., 1999).    Therefore, the 

findings of Oksenberg and colleagues indicate that the loss of PGO waves as a result of 

RSD enhances the effects of long-term MD in the LGN.  In contrast, the length of MD 

used in the current study is too short to induce thalamocortical plasticity, and the effects 

of RSD reflect a requirement for REM sleep specifically for plasticity within V1.  These 

studies are not contradictory, but rather suggest that REM sleep serves two roles: 

promotion of normal maturation of thalamocortical circuitry via PGO waves, and 

consolidation of experience-dependent plasticity in local cortical circuits. 

Despite evidence in the human literature that REM sleep consolidates 

hippocampus-independent memories, much of the work in animal models has focused 
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on the effects of REM sleep on hippocampal learning and plasticity.  REM sleep after 

training is necessary for performance improvements on a variety of hippocampal-

dependent tasks in rodents (Pearlman, 1969; Leconte et al., 1974; Rideout, 1979; Smith 

and Butler, 1982; Martí-Nicolovius et al., 1988; Smith and Rose, 1996; Youngblood et 

al., 1997, 1999; Legault et al., 2004, 2010; Yang et al., 2008; Aleisa et al., 2011).  These 

learning impairments may be due to deficits in the induction and maintenance of long-

term potentiation (LTP), decreased synaptic transmission, decreased membrane 

excitability, and/or impairments in intracellular signaling cascades in the hippocampus 

caused by REM sleep deprivation (Davis et al., 2003; Romcy-Pereira and Pavlides, 

2004; Yang et al., 2008; Ravassard et al., 2009; Aleisa et al., 2011).  However, these 

studies do not control for the nonspecific effects of increased wake time and fragmented 

NREM sleep during RSD.  Sleep fragmentation alone impairs hippocampal LTP and 

performance on the Morris water maze (Tartar et al., 2006), as well as decreasing 

hippocampal CA1 pyramidal cell excitability and input resistance (Tartar et al., 2010), 

suggesting that the impairments of hippocampal learning and plasticity observed after 

RSD may be due to sleep fragmentation rather than the removal of REM sleep per se.  

The current study controls for the effects of sleep fragmentation, and our novel results 

demonstrate how REM sleep can promote the hippocampus-independent learning that 

has been observed in humans. 

 

ERK phosphorylation as a mechanism for REM sleep-dependent consolidation.  ERK 

activation is required during sleep for ODP consolidation (see Chapter 2).  ERK 

phosphorylation was greatly reduced by RSD (but not NF), suggesting that REM sleep 

consolidates ODP by promoting ERK phosphorylation.  Our observation that ERK 
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phosphorylation in cortical areas other than V1 is slightly reduced after RSD raises the 

intriguing possibility that REM sleep may promote an overall trend toward ERK 

activation, and that this is amplified in areas induced to remodel during prior waking.  

This interpretation is consistent with the findings that RSD reduces ERK phosphorylation 

in the rat dorsal hippocampus (Ravassard et al., 2009) and ERK phosphorylation is 

increased during spontaneous REM sleep in mouse hippocampal CA1 and dentate 

gyrus (Luo et al., 2013) in the absence of plasticity-inducing stimuli.   

 

Possible roles for ERK.  There are many ways in which ERK can enact plastic changes, 

including activation of the transcription and translation pathways (reviewed in Adams 

and Sweatt, 2002).  Recent work from our lab has shown that activation of the ERK-Mnk 

translation pathway is required for sleep-dependent ODP consolidation (Chapter 2).  

This pathway is required for translation initiation complex formation during plasticity in 

vivo (Panja et al., 2009) and the phosphorylation of eukaryotic initiation factor 4E (eIF4E) 

during sleep-dependent ODP (Chapter 2), which is associated with increased rates of 

mRNA translation (Scheper and Proud, 2002).  Therefore, our results suggest that REM 

sleep promotes the synthesis of plasticity-related proteins (such as cofilin) via the ERK-

Mnk pathway.  ERK can play a dual role with the mammalian target of rapamycin 

(mTOR) in promoting translation during plasticity (Kelleher et al., 2004).  Since mTOR 

activity during sleep is also required for ODP consolidation (Seibt et al., 2012), ERK and 

mTOR may work together during REM sleep to promote protein synthesis.  However, we 

are unable to directly test the activation of mTOR following post-MD sleep or REM sleep 

deprivation, as commercially available antibodies against mTOR do not work in feline 

tissue (Seibt et al., 2012). 
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Recovery from REM sleep deprivation.  The ODP impairment by 1h RSD can be 

reversed with subsequent REM sleep.  We anticipate that the effects of 2h RSD are also 

reversible, since systemic administration of the benzodiazepine triazolam severely 

reduces REM sleep for the first two hours of a 6h post-MD sleep period without impairing 

plasticity (Seibt et al., 2008).    Furthermore,  Aton et al. (2009) found that after MD, 

intracortical infusion of the NMDA receptor blocker APV for the first 3h of a 6h sleep 

period was sufficient to impair plasticity.    If the NMDA receptor activation required for 

ODP consolidation occurs during REM sleep, this suggests that ODP consolidation 

cannot be rescued after 3h RSD.  However, this hypothesis is difficult to directly test, 

since the strong pressure to enter REM sleep in kittens results in decreasing efficacy of 

RSD as the RSD period is lengthened (Frank et al., 2001).   

 

Concluding remarks.  The current study identifies REM sleep as an essential player in 

ODP consolidation.  However, these findings do not rule out a role for NREM sleep.  In 

fact, our finding that CaMKII and GluA1 phosphorylation (two well-studied plasticity-

related molecules whose phosphorylation is elevated during post-MD sleep (Aton et al., 

2009a)) are unaffected by RSD indicates that these phosphorylation events occur 

specifically during NREM sleep.  Together, these results suggest a model in which 

NREM sleep initiates short-term plastic changes involving post-translational protein 

modifications and AMPA receptor trafficking, whereas REM sleep promotes longer-term 

stabilization of these plastic changes via protein synthesis.  This is consistent with our 
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observation that REM sleep during the first post-MD hour is sufficient to stabilize ODP 

and protect against the effects of subsequent REM sleep deprivation.   

Although we have shown evidence that ERK signaling is one of the underlying 

mechanisms for REM-dependent consolidation, the characteristics of REM sleep 

responsible for ERK activation remain to be determined.  One candidate mechanism is 

the replay of neuronal activity, which has been observed during REM sleep in the 

hippocampus (Louie and Wilson, 2001).  Consistent with this idea, neuronal firing rates 

in V1 increase during both NREM and REM sleep following MD, and the extent of the 

OD shift is positively correlated with principal excitatory neuron firing rates in V1 during 

both states (Aton et al., 2009a, 2013).   Our finding that REM sleep beta-gamma activity 

correlates with the ODP shift and ERK phosphorylation may reflect re-activation of 

cortical circuits during REM sleep that were previously active during waking.  In addition, 

the high levels of acetylcholine during REM sleep may promote consolidation, as 

acetylcholine signaling is required for ODP (Gu and Singer, 1989, 1993).  Future studies 

investigating these mechanisms will promote our understanding of the function of REM 

sleep, and of sleep in general, in cortical consolidation. 
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Tables. 

Table 3.1.  Sleep architecture: One hour sleep groups.  Average (±SEM) percent of total 

recording time spent in waking, NREM sleep, and REM sleep during baseline, MD, and 

post-MD periods is shown.  There were no significant differences across groups during 

the baseline and MD periods.  In the RSD group, post-MD REM sleep time was 

significantly reduced, and wake and NREM sleep time were significantly increased.  The 

increase in wake time was also observed in the NF group.  *p<0.05, ANOVA on ranks 

followed by Dunn’s post-hoc test vs. sleep group.   

  Group % Wake %REM sleep %NREM sleep 

Baseline 

 

MD+1h Sleep 18.21 ± 1.5 36.67 ± 2.0 45.12 ± 1.1 

MD+1h RSD 20.17 ± 3.2 37.98 ± 2.0 41.85 ± 1.9 

MD+1h NF 23.07 ± 0.9 36.50 ± 1.7 40.43 ± 1.9 

MD 

MD+1h Sleep 99.43 ± 0.1 0.00 ± 0.0 0.57 ± 0.1 

MD+1h RSD 99.07 ± 0.2 0.00 ± 0.0 0.94 ± 0.2 

MD+1h NF 99.06 ± 0.1 0.00 ± 0.0 0.94 ± 0.2 

Post-MD 
Sleep 

MD+1h Sleep 6.37 ± 2.1 31.21 ± 2.2 62.43 ± 3.8 

MD+1h RSD 19.59 ± 3.5* 3.76 ± 0.5* 76.66 ± 3.6* 

MD+1h NF 17.97 ± 1.3* 26.26 ± 1.6 55.77 ± 4.1 
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Table 3.2. Sleep architecture: Two hour sleep groups.  Average (±SEM) percent of the 

first and second post-MD hour spent in each arousal state is shown.  During their 

respective RSD periods, the RSD+recovery and delayed RSD groups had significantly 

reduced REM sleep and increased wake amounts.  *p<0.05, One-way ANOVA followed 

by Holm-Sidak post-hoc test vs. MD+2h sleep group. 

  Group % Wake %REM sleep %NREM sleep 

Hour 1 

MD+2h Sleep 1.85 ± 0.7 27.10 ± 6.1 71.05 ± 6.0 

MD+2h RSD 23.25 ± 3.8* 1.95 ± 1.1* 74.78 ± 3.3 

MD+RSD+recovery 15.46 ± 1.9* 4.15 ± 1.4* 80.43 ± 2.8 

MD+delayed RSD 4.66 ± 1.4 22.00 ± 4.4 73.38 ± 4.0 

Hour 2 

MD+2h Sleep 1.80 ± 0.5 36.83 ± 2.7 61.43 ± 3.0 

MD+2h RSD 30.20 ± 5.9* 3.35 ± 1.3* 66.45 ± 7.1 

MD+RSD+recovery 2.88 ± 0.4 42.58 ± 3.5 54.55 ± 3.6 

MD+delayed RSD 21.11 ± 2.3* 2.04 ± 0.4* 76.86 ± 2.4* 

Total 

MD+2h Sleep 1.83 ± 0.3 31.96 ± 2.8 66.24 ± 2.5 

MD+2h RSD 26.73 ± 3.6* 2.65 ± 1.1* 70.61 ± 4.1 

MD+RSD+recovery 9.17 ± 1.0* 23.36 ± 2.3* 67.49 ± 3.0 

MD+delayed RSD 12.89 ± 1.3* 12.02 ± 2.3* 75.12 ± 2.2 
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Figures. 

Figure 3.1.  NREM fragmentation controls for the nonspecific effects of RSD.  Sleep 

N=11; RSD N=12; NF N=10.  Error bars represent SEM.  (A) Experimental design.  

Animals underwent a baseline recording period, then MD during waking in lighted 

conditions.  This was followed by one hour of sleep, RSD, or NF in complete darkness 

(see Methods).  Arrow represents the time at which animals were prepared for optical 

imaging, or when tissue was collected for western blot analysis.  (B)  NREM bout 

duration during post-MD sleep was decreased in the RSD and NF groups.  *p<0.05, 

ANOVA on ranks followed by Dunn’s post-hoc test.  (C) EEGs from V1 leads were 

Fourier transformed, and the power spectrum during post-MD NREM sleep was 

normalized to baseline.  RSD and NF both reduced power at low frequencies compared 

to the sleep group, but did not differ from each other.  Significance was determined by 

ANOVAs on ranks followed by Dunn’s post-hoc test, and is indicated by red lines 

(p<0.05, RSD vs. Sleep) and green lines (p<0.05, NF vs. Sleep) at the bottom of the 

graph. 
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Figure 3.2.  REM sleep deprivation impairs ocular dominance plasticity consolidation.  

(A) Representative optical maps obtained from animals that received sleep, RSD, or NF 

following MD.  Vascular maps show the pial surface of V1, cropped to remove out-of-

focus areas and large vessels; white scale bar indicates 1mm.  Angle and polar maps 

are color-coded (see color bar at bottom) such that the color of each pixel indicates the 

visual stimulus orientation that maximally drives that pixel.  In the polar maps, pixel 

brightness indicates the magnitude of the response.  Ocular dominance (OD) maps 

show pixels predominantly driven by the non-deprived eye as cyan and those 

predominantly driven by the deprived eye as magenta.  (B) Pixels from each map were 
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binned into 70 OD categories, and the percent of pixels in each category was plotted 

(top & right axes); these categories were collapsed into 7 ocular dominance categories 

(bottom & left axes) to produce the classical 7-point OD score of Hubel & Wiesel (Wiesel 

and Hubel, 1963a).  (C-E) Average (±SEM) scalar measures of the OD shift were 

compared across groups.  Hemispheres from RSD animals were significantly less 

shifted than those from sleeping and NF animals, as measured by the NBI (*p=0.011, 

Sleep vs. RSD; †p=0.009, NF vs. RSD), MI (*p=0.003, Sleep vs. RSD; †p=0.013, NF vs. 

RSD), and SI (*p<0.001, Sleep vs. RSD; †p=0.034, NF vs. RSD).  One-way ANOVA 

followed by Fisher’s LSD test; MD+1h Sleep: n=9 hemispheres; MD+1h RSD: n=10; 

MD+1h NF: n=10. 
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Figure 3.3.  REM sleep deprivation decreases ERK phosphorylation and cofilin levels in 

V1.  (A) Representative western blots for total and phospho-ERK1/2, CaMKII GluA1, 

and total cofilin.  (B) Average (±SEM) protein levels (displayed as a percentage of 

MD+1h Sleep levels).  Compared with MD+1h Sleep and NF hemispheres, ERK1/2 

phosphorylation and cofilin levels were significantly reduced by RSD.  *p<0.05, sleep vs. 

RSD; †p<0.05, NF vs RSD; ANOVA on ranks followed by Dunn’s post-hoc test.  Sleep 

n=12 hemispheres; RSD n=14; NF n=10. 
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Figure 3.4.  RSD has minimal effects on ERK phosphorylation in non-remodeling brain 

regions.  (A) Representative western blots for phospho- and total ERK1/2 in primary 

auditory cortex (A1), primary motor cortex (M1), and cerebellum.  (B) Average (±SEM) 

ERK phosphorylation is slightly but not significantly decreased in A1, M1, and 

cerebellum following RSD.  ERK2 phosphorylation was significantly lower in the RSD 

group than in the MD+1h Sleep group when A1 and M1 data were pooled (*p<0.05, 

ANOVA on ranks followed by Dunn’s post-hoc test).  MD+1h Sleep n=10 hemispheres, 

MD+1h RSD n=12, MD+1h NF n=10. 
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Figure 3.5.  ODP is not impaired by RSD followed by recovery sleep or delayed RSD.  

(A) Experimental design.  Groups received either two hours of post-MD RSD, one hour 

of RSD followed by one hour recovery sleep, or one hour of normal sleep followed by 

one hour of delayed RSD.  Arrow indicates time at which animals were prepared for 
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optical imaging.  (B) Vascular maps, angle maps, polar maps, and OD maps were 

obtained and pixel distributions were calculated as described for Figure 3.2.  (C) 

Average (±SEM) scalar measures of ODP.  Compared with the 2h RSD group, the NBI 

was higher in the RSD+recovery (*p=0.005) and delayed RSD (†p=0.017) groups.  The 

MI was higher in the RSD+recovery than the 2h RSD group (*p=0.02) as well.  One-way 

ANOVA followed by Fisher’s LSD test; 2h RSD n=8 hemispheres; RSD+recovery n=8; 

delayed RSD n=8.   
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Figure 3.6.  ERK phosphorylation is normal in the RSD+recovery and delayed RSD 

groups.  (A) Representative western blots for total and phosphorylated ERK1/2.  (B) 

Average (±SEM) ERK phosphorylation levels, displayed as a percentage of MD+1h 

sleep values, were compared with ERK phosphorylation levels after 1h RSD (dashed 

reference line).  Both RSD+recovery and delayed RSD groups had significantly higher 

ERK phosphorylation than the 1h RSD group (*p<0.05) but did not differ from each 

other.  ANOVA on ranks followed by Dunn’s post-hoc test; MD+1h RSD n=14 

hemispheres; MD+RSD+recovery n=8; MD+delayed RSD n=8. 
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Figure 3.7.  Beta-gamma EEG activity during REM sleep correlates with ODP and ERK 

phosphorylation.  (A) In animals that received 1-2 hours of uninterrupted sleep, the shift 

index correlates with REM sleep beta-gamma power (displayed as a fraction of baseline 

power at the same recording site) during post-MD REM sleep.  Pearson product-moment 

correlation, N=7 animals.  (B)  In hemispheres from animals that received 1-2h 

uninterrupted sleep, ERK1 phosphorylation correlates with REM sleep beta-gamma 

power.  Spearman rank order correlation, n=14 hemispheres. 
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Figure 3.8.  Serum cortisol is unaffected by RSD and circadian time.  (A) Blood was 

obtained from a subset of animals at the end of the baseline, MD, and/or post-MD period 

for serum cortisol analysis.  After MD, serum cortisol was elevated compared to all other 

groups.  However, cortisol returned to baseline levels following 1-2 hours of 

uninterrupted or REM-deprived sleep.  p<0.001 vs baseline (*), Sleep (†), and RSD (#);  

one-way ANOVA followed by Holm-Sidak post-hoc test; baseline N=10 animals; MD 

N=14; Sleep N=9; RSD N=8.  (B) Serum cortisol in normal cats (with unmanipulated 

sleep and vision) did not exhibit overt circadian rhythms.  6-10AM: N=8 animals; 10AM-

2PM: N=5; 2-6PM: N=8; 6-10PM: N=4; p=0.58; one-way ANOVA. 
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CHAPTER 4: CONCLUSIONS 
 

An evolving view of cortical plasticity.   

Many studies of learning, memory, and neuronal plasticity neglect to consider the 

role of sleep, let alone individual sleep states, in these processes.  Investigating the role 

of sleep in ODP consolidation has shed light on how plasticity functions in the intact 

brain (Frank et al., 2001; Jha et al., 2005; Aton et al., 2009a; Seibt et al., 2012).  The 

work presented in the previous chapters adds to our understanding of the mechanisms 

underlying sleep-dependent consolidation of plasticity (Figure 4.1).  Evidence now 

suggests that, following the induction of ODP, NREM sleep promotes CaMKII 

phosphorylation and subsequent phosphorylation of the AMPA receptor subunit GluA1 

at its CaMKII phosphorylation site, which may enhance synaptic currents by localizing 

AMPA receptors to the postsynaptic membrane and/or by increasing AMPA receptor 

currents and open probability (Correia et al., 2008; Kristensen et al., 2011).  

Subsequently during REM sleep, ERK is phosphorylated and activates Mnk1.  

Phosphorylated Mnk1 promotes the formation of translation initiation complexes and 

speeds translation via eIF4E phosphorylation (Scheper and Proud, 2002; Panja et al., 

2009), indicating that ERK activation during REM sleep promotes the synthesis of 

plasticity-related proteins such as PSD-95.  These events may stabilize the changes that 

occurred during the previous NREM sleep bout. 

ERK activation during sleep is required for the potentiation of non-deprived eye 

responses during ODP.  This suggests that, during sleep, ERK is activated in excitatory 

neurons within layer II/III of non-deprived eye columns.  However, the use of whole-V1 

homogenates and western blotting does not allow this assumption to be directly tested.  
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Immunohistochemical studies of ERK phosphorylation after normal and REM-deprived 

sleep are ongoing in our lab and will confirm whether ERK phosphorylation is restricted 

to the remodeling supra-granular layers; co-staining for cell-type specific markers will 

further reveal the identity of the cells that express increased ERK phosphorylation.  In 

addition, injection of an anterograde tracer into one eye will allow us to distinguish 

between deprived- and non-deprived eye columns in order to confirm the identity of the 

cells in which ERK is activated. 

  

Benefits of sleep or deficits due to sleep deprivation? 

One problem commonly faced in studies of sleep function is determining the 

difference between the benefits of sleep and impairments due to sleep deprivation.  The 

attenuation of ODP consolidation after a period of sleep deprivation could be ascribed to 

the stress of sleep deprivation, rather than the lack of sleep per se, although this 

explanation is unlikely (discussed in Frank et al., 2001).  The current work directly 

addresses, for the first time, the question of stress in sleep-dependent ODP 

consolidation.  As discussed in Chapter 3, serum cortisol is elevated by the end of the 

MD period.  However, this elevation is well below levels that have been reported to have 

only minor effects on ODP when sustained over several days (Daw et al., 1991), and 

returns to baseline levels within two hours post-MD.  This finding has implications for 

past and future studies, as it further validates ODP in the cat as a minimally stressful 

model for sleep-dependent consolidation.   
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Implications for systems consolidation.   

Sleep has been proposed to play a role in the transfer of plasticity from the 

hippocampus to cortical regions, a process termed system consolidation (Rasch and 

Born, 2007).  More specifically, activation of neuronal circuitry during NREM sleep may 

redistribute newly acquired information from sites of temporary storage (i.e. the 

hippocampus) to sites of long-term storage (the neocortex) where new and old 

information are integrated.  Subsequently, REM sleep stabilizes these changes for long-

term maintenance. Consistent with this hypothesis, Ribeiro and colleagues (2002, 2007) 

showed that hippocampal LTP induction and environmental enrichment promote waves 

of immediate early gene transcription that move from the hippocampus to the cortex with 

each bout of REM sleep.   

In the current work, we found evidence supporting a role for REM sleep in 

translation, rather than transcription.  Nonetheless, our studies are compatible with the 

system consolidation hypothesis.  As discussed in Chapter 3, NREM sleep promotes 

temporary changes via post-translational modification of AMPA receptors, a mechanism 

that could also be engaged by activity in hippocampo-cortical circuitry to redistribute 

synaptic strengthening from the hippocampus to the cortex.  Subsequently, REM sleep 

activates cascades that lead to long-term stabilization of plasticity within cortical circuitry 

via new protein synthesis.   
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Mechanisms of ERK activation during REM sleep.   

Our results demonstrate that ERK is phosphorylated during REM sleep.  

However, we have not demonstrated the mechanism by which REM sleep activates 

ERK.  There are two obvious candidate mechanisms: 1) elevated cholinergic tone during 

REM sleep may activate muscarinic acetylcholine receptors, leading to the activation of 

intracellular second-messenger cascades and ERK phosphorylation, or 2) patterns of 

neuronal firing in the cortex during REM sleep could activate ERK via activity-dependent 

NMDA receptor signaling. 

 Several studies have demonstrated a requirement for acetylcholine signaling in 

ODP.  Combined lesions of noradrenergic and cholinergic input to the cortex impair ODP 

(Bear and Singer, 1986).  Furthermore, pharmacological inhibition of specific cholinergic 

receptors showed that muscarinic M1, but not nicotinic, acetylcholine receptors are 

required for ODP (Gu and Singer, 1989, 1993).    However, whether M1 receptor 

activation is required during waking, REM, or both cannot be discerned from these 

studies, since drugs were infused over a long period of MD regardless of arousal state.  

Infusion of a specific M1 receptor antagonist during post-MD sleep would differentiate 

between these possibilities.  If cholinergic signaling is required specifically during REM 

sleep, M1 receptor antagonism would inhibit ODP consolidation (or, conversely, an M1 

agonist or acetylcholine reuptake inhibitor would enhance ODP).  I began to investigate 

this question with a pilot experiment in which I infused the selective M1 antagonist 

pirenzepine into V1 for one hour of post-MD sleep and measured ERK phosphorylation 

near to and far from the cannula site (following the design shown in Figure 2.2).  I 

hypothesized that pirenzepine would mimic the effects of RSD by decreasing ERK 

phosphorylation; surprisingly, I found that pirenzepine enhanced ERK phosphorylation 
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near to the infusion site compared to regions of V1 far from the infusion site (Figure 4.2).  

This result was unexpected and inconsistent with a role for acetylcholine signaling during 

REM sleep in ERK-dependent non-deprived eye response potentiation.  However, this 

finding is consistent with the idea that phospholipase C (PLC) activation through Gαq-

coupled receptors (including M1 receptors) promotes LTD and suppresses LTP in the 

visual cortex and elsewhere (Kirkwood et al., 1999; Choi et al., 2005; Seol et al., 2007; 

Huang et al., 2012).  Therefore, it appears that cholinergic signaling may influence ODP 

by promoting the depression of deprived eye responses during waking, or the 

maintenance of depression during sleep, through an ERK-independent mechanism.  

Single unit recordings following the intracortical infusion of pirenzepine during waking 

MD or post-MD sleep would reveal whether one or both of these scenarios is true.  If 

cholinergic signaling is required for deprived eye response depression, we would expect 

pirenzepine to impair ODP when infused either during wake or sleep, and that deprived-

eye response depression would be abolished.  Conversely, infusion of M1 receptor 

agonists or acetylcholinesterase inhibitors would be expected to enhance ODP and 

deprived eye response depression.  

 The second, and more likely, mechanism underlying REM-dependent ERK 

phosphorylation is neuronal activity in V1.  In support of this hypothesis, NMDA receptor 

activation during post-MD sleep is required for ODP consolidation and ERK 

phosphorylation, and increases in neuronal firing rate in V1 during both REM and NREM 

sleep correlate with the OD shift (Aton et al., 2009a, 2013).  Furthermore, REM sleep 

beta-gamma activity correlates with both ODP and ERK phosphorylation (Chapter 3). 

The firing patterns of individual neurons during waking is replayed during REM 

sleep in the hippocampus (Louie and Wilson, 2001).  If similar replay occurs during REM 
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sleep in the remodeling visual cortex, this may drive activity-dependent ERK activation 

and ODP consolidation.  A preliminary analysis of firing across a tetrode array placed in 

V1 of a cat revealed that firing patterns during the last two hours of waking MD (driven 

by patterned visual input) correlated with firing patterns during the first two post-MD 

hours (in the absence of visual stimulation) (unpublished observations; data not shown).  

However, these correlations occurred across all arousal states, not just REM sleep.  If 

neuronal activity does drive ERK phosphorylation during REM sleep, this raises 

additional questions.  First, if replay occurs across all arousal states, what makes REM 

sleep a unique state for ERK activation?  Second, could the coincidence of ERK 

activation during REM sleep and increased neuronal firing, which occur on the same 

timescale (within 2h post-MD), drive the consolidation of ODP?  More detailed analysis 

of tetrode recordings is required to confirm this finding, and may reveal specific patterns 

of activation during REM sleep. 

 

NREM sleep-dependent plasticity mechanisms.   

The results presented in Chapter 3 suggest a dual role for both NREM and REM 

sleep in ODP.  However, the qualities of NREM sleep that promote plasticity 

mechanisms (i.e., CaMKII activation and AMPA receptor phosphorylation) are unknown.  

One possibility is that the oscillations of neocortical neurons may underlie these 

changes.  T-type calcium channels contribute to multiple thalamocortical rhythms during 

NREM sleep (Crunelli et al., 2006), and cortical T-type calcium channels are required for 

ODP (Uebele et al., 2009), although their contribution to ODP during sleep has not been 

investigated.  One possibility is that T-type calcium channel activation and rhythmic 

oscillations of cortical neurons during NREM sleep permits waves of calcium influx, 
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which then activate CaMKII.  Direct infusion of the T-type calcium channel blocker TTA-

I1 (Uebele et al., 2009) into the cortex specifically during post-MD sleep followed by 

measurements of CaMKII activation and ODP would provide insight into this possibility.   

An additional scenario is that norepinephrine signaling may play a role in ODP 

consolidation during NREM sleep.  Locus coeruleus (LC) firing is normally very low 

during NREM sleep (Aston-Jones and Bloom, 1981), but the LC firing that does occur is 

phase-locked to the cortical slow oscillation (Eschenko et al., 2012).  Furthermore, LC 

firing during NREM sleep increases following an odor-reward learning task in rats, 

suggesting that LC activity during NREM sleep plays a role in consolidation (Eschenko 

and Sara, 2008).  Infusion of noradrenergic -receptor blockers into V1 over long periods 

of MD abolishes ODP (Shirokawa and Kasamatsu, 1986), but the contribution of NE 

signaling during sleep to ODP consolidation is unknown.  In order to test the hypothesis 

that -receptor activation during sleep is required for ODP, we conducted a pilot study in 

which three cats received bilateral intracortical infusions of the -blocker propranolol 

during post-MD sleep, and collected tissue for western blot analysis.  Propranolol-

infused V1 tissue showed a nonsignificant trend towards decreased CaMKII 

phosphorylation when compared to levels in vehicle-infused V1 (72.1±11.3% of vehicle; 

p=0.066; n=6 hemispheres per group; t-test), whereas ERK1/2 phosphorylation was 

unaffected (ERK1: 101.65±21.7% of vehicle, p=0.48; ERK2: 84.51±25.5% of vehicle, 

p=0.34; n=6 hemispheres/group, t-test) (vehicle data shown in Figure 2.2).  These 

results are suggestive of a role for NE signaling during NREM sleep in cortical 

consolidation, but ultimately more detailed studies of the biochemical events 

downstream of NE β-receptor activation, as well as the consequences of β-receptor 

blockade during sleep on ODP, are required. 
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Dual roles for REM sleep in development and experience-dependent plasticity. 

 Our finding that REM sleep is required for the consolidation of experience-

dependent plasticity conflicts with the idea that REM sleep promotes the maturation of 

neuronal circuitry according to a developmental program.  According to this idea, 

endogenous brain activity during REM sleep should promote the normal development of 

binocular vision within V1, rather than enhancing a shift towards monocular vision due to 

altered visual stimulation.  However, the results presented in Chapter 3 and previous 

studies suggest that these two ideas are not mutually exclusive.  The current study 

provides evidence that REM sleep is required for ODP consolidation specifically within 

V1, as remodeling in the cat visual cortex occurs within layers II/III on a short (<24h) time 

scale.  In contrast, REM sleep deprivation and PGO wave elimination over longer 

periods of MD, during which thalamocortical plasticity occurs, enhances an anatomical 

measure of ODP in the LGN (Oksenberg et al., 1996; Shaffery et al., 1998).  Together, 

these studies suggest that different aspects of REM sleep contribute to developmental 

and experience-dependent plasticity: PGO waves during REM sleep promote the 

maturation of brain circuitry, whereas intracortical activity consolidates experience-

dependent plasticity.  This interpretation is consistent with the observation that REM 

sleep time is greatest during periods of brain development, but is still present in large 

amounts in the adult brain (Roffwarg et al., 1966). 

 

Pharmacological agents, sleep, and plasticity.   

Numerous pharmacological agents in common use can alter sleep.  However, 

the effects of these drugs on the normal functions of sleep are largely unknown.  For 

example, hypnotic drugs used to treat insomnia promote sleep, but is sleep able to 
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perform its required functions in the presence of these drugs?  Furthermore, 

antidepressants can radically change sleep architecture, which may have consequences 

for cognitive function. 

Insomnia can be defined as trouble initiating or maintaining restorative sleep, 

despite adequate sleep opportunity.  Up to 22.1% of the American population can be 

classified as having insomnia, depending on the diagnostic criteria used (Roth et al., 

2011).  Prescription, over-the-counter, and herbal remedies are widely used to combat 

insomnia (reviewed in Gulyani et al., 2012), while little is known about the impact of 

these medications on brain plasticity.  The effects of some of these drugs on ODP have 

been explored (Seibt et al., 2008; Aton et al., 2009b).  Interestingly, both the non-

benzodiazepine hypnotic zolpidem and the sedating antidepressant trazadone impair 

ODP consolidation, but have only minimal effects on REM sleep.  It is unclear how these 

drugs impair plasticity, but one possibility is that they disrupt signaling pathways that are 

required for sleep-dependent consolidation, such as ERK activity, without altering sleep 

architecture.  I conducted a pilot study in which cats received systemic vehicle or 

zolpidem injections (using a dose known to impair ODP (Seibt et al., 2008)) at the end of 

a six hour MD period and collected tissue after one hour of post-MD sleep, when ERK 

phosphorylation is normally high.  Western blot analysis revealed that zolpidem does not 

impair ERK phosphorylation in V1 (Figure 4.3).  This finding was unexpected, and we 

have yet to identify any mechanisms by which these hypnotic drugs impair plasticity.  

Further measurements of how zolpidem and trazadone affect the biochemical events 

that are known to consolidate plasticity during sleep (e.g. translation downstream of ERK 

and/or mTOR activation) would aid in the development of hypnotic agents that can 

promote normal sleep. 
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The current work also has implications for the use of antidepressants, which are 

widely prescribed and can profoundly reduce REM sleep time (reviewed in Holshoe, 

2009).  The findings in Chapter 3 suggest that these drugs should cause cognitive 

deficits by impairing learning and memory.  However, in addition to procedural memory, 

REM sleep has been associated with the strengthening of emotional memories in 

humans (Nishida et al., 2009; Groch et al., 2013).  Therefore, it is possible that the REM-

suppressing activity of these drugs reduces the consolidation of negative emotional 

memories, and this may, in part, underlie their therapeutic benefits.  Consistent with this 

idea, REM sleep deprivation alone has been posited to have antidepressant effects in 

humans (Vogel et al., 1975). 

 

Concluding remarks. 
  

 Studying the mechanisms involved in brain plasticity furthers our understanding 

of how learning and memory are achieved in the intact brain over the course of waking 

experience and subsequent sleep.  A full understanding of plasticity mechanisms will 

create new therapeutic avenues, such as re-opening periods of heightened plasticity in 

the adult brain.  Furthermore, investigating the role of sleep in consolidation aids our 

understanding of how sleep deprivation impairs cognitive function, and has implications 

for the development of pharmacological agents that do not interfere with normal sleep 

function. 
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Figures. 

 

 

Figure 4.1.  Mechanisms of sleep-dependent ocular dominance plasticity consolidation.  

The current studies provide evidence that CaMKII activation and AMPA receptor 

phosphorylation occur during NREM sleep (blue), whereas ERK and Mnk1 

phosphorylation, as well as subsequent protein synthesis, are required during REM 

sleep (red), stabilizing the changes induced by NREM sleep.  CaMKII activation during 

NREM sleep and ERK activation during REM sleep may occur downstream of NMDA 

receptor activation and/or other mechanisms that have not yet been identified (see text 

for details). 
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Figure 4.2.  M1 receptor blockade during post-MD sleep enhances ERK 

phosphorylation.  Pirenzepine (1mg/mL in ACSF) was infused for one hour of post-MD 

sleep (following the experimental design presented in Figure 2.2) and tissue was 

collected for western blot analysis.  (A) Representative western blots.  (B) Pirenzepine 

infusion increased ERK1/2 phosphorylation near to the cannula site compared to tissue 

collected far from the cannula site.  *p=≤0.001; †p=0.002; n=4 hemispheres; paired t-

test. 
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Figure 4.3.  Systemic zolpidem administration does not affect ERK phosphorylation in 

V1.  Zolpidem at a concentration known to impair ODP consolidation (10mg/kg (Seibt et 

al., 2008)) or its vehicle (DMSO) was administered IP after 6h MD, and animals were 

allowed 1h undisturbed sleep in complete darkness.  V1 tissue was then collected for 

western blot analysis.  (A) Representative western blots of V1 tissue.  (B) ERK1/2 

phosphorylation in V1 was unaffected by zolpidem.  pERK1 p=0.397; pERK2 p=0.309; t-

test; n=4 hemispheres/group. 
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APPENDIX I: ABBREVIATIONS 
 

AMPA: 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid 

Arc: Activity regulated cytoskeletal-associated protein 

BDNF: Brain-derived neurotrophic factor 

CaMKII: Calcium/calmodulin dependent kinase II 

cAMP: Cyclic adenosine monophosphate 

CBI: Contralateral eye bias index 

CRE: cAMP response element 

CREB: cAMP response element binding protein 

CSPG: Chondroitin sulfate proteoglycan 

EEG: Electroencephalogram 

eIF4E: Eukaryotic initiation factor 4E 

EMG: Electromyogram 

ERK: Extracellular signal-regulated kinase 

GABA: Gamma-aminobutyric acid 

LC: Locus coeruleus 

LGN: Lateral geniculate nucleus (of the thalamus) 

LTD: Long-term depression 

LTP: Long-term potentiation 

MD: Monocular deprivation 

MEK: Mitogen-activated protein kinase kinase 

MI: Monocularity index 

Mnk: MAP kinase-interacting kinase 

MSK: Mitogen and stress activated protein kinase 

NBI: Non-deprived eye bias index 

NF: NREM fragmentation 

NMDA: N-methyl-D-aspartate 
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NREM: Non-rapid eye movement 

OD: Ocular dominance 

ODP: Ocular dominance plasticity 

PGO: Ponto-geniculo-occipital 

PKA: Protein kinase A 

PKC: Protein kinase C 

PKG: Protein kinase G 

PLC: Phospholipase C 

PS: Paradoxical sleep (a.k.a. REM sleep) 

PSD-95: Post-synaptic density protein 95 

REM: Rapid eye movement 

RSD: REM sleep deprivation 

SI: Shift index 

SRP: Stimulus-specific response potentiation 

tPA: Tissue plasminogen activator 

V1: Primary visual cortex 
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