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Linear Types, Protocols, and Processes in Classical FÂ°

Abstract
Session types and typestate both promise a type system that can reason about protocol

adherence. The complexity budgets of most programming languages, however, do not

allow for new forms of types aimed at specific problem domains--even domains as broad

as these.

Classical F◦ --read "F-pop"--is a typed λ-calculus based on classical (i.e., full) linear

logic, wherein session types arise naturally from the interaction between the usual sums,

products, and implications of linear logic and a simple process model, with the dualizing

negation of classical logic naturally accounting for how a protocol is seen by each of a

channel's endpoints. Classical F◦ expressions evaluate to processes, reminiscent of those

in the π-calculus, that communicate over channels, but source expressions, rather than

including processes and channels, employ only two novel control operators that account

for process creation and communication.

F◦ is introduced by way of its intuitionistic fragment, which even on its own can account

for typestate: the combination of linearity and polymorphism leads to natural encodings

of many programmer-specified protocols. In fact, any protocol expressible as a regular

language can be encoded in an intuitionistic F◦ type. F◦ distinguishes between linear

and unrestricted types by using kinds together with a notion of subkinding, avoiding

the pitfalls of approaches based on type qualifiers or modalities; kinds are related by a

subkinding order that allows unrestricted types to be treated as though they were linear.

Soundness for intuitionistic and classical F◦ is proved both in the standard operational

sense of preservation and progress and for an augmented semantics that shows more

directly that the expected properties of linearity are preserved. This establishes the absence

of deadlocks in closed, well-typed F◦ programs; it also guarantees that such programs will

not "leak" processes as long as their result types are unrestricted.
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ABSTRACT

LINEAR TYPES, PROTOCOLS, AND PROCESSES IN CLASSICAL F◦

Karl Mazurak

Steve Zdancewic

Session types and typestate both promise a type system that can reason about protocol

adherence. The complexity budgets of most programming languages, however, do not

allow for new forms of types aimed at specific problem domains—even domains as broad

as these.

Classical F◦—read “F-pop”—is a typed λ-calculus based on classical (i.e., full) linear

logic, wherein session types arise naturally from the interaction between the usual sums,

products, and implications of linear logic and a simple process model, with the dualizing

negation of classical logic naturally accounting for how a protocol is seen by each of a

channel’s endpoints. Classical F◦ expressions evaluate to processes, reminiscent of those

in the π-calculus, that communicate over channels, but source expressions, rather than

including processes and channels, employ only two novel control operators that account

for process creation and communication.

F◦ is introduced by way of its intuitionistic fragment, which even on its own can ac-

count for typestate: the combination of linearity and polymorphism leads to natural en-

codings of many programmer-specified protocols. In fact, any protocol expressible as a

regular language can be encoded in an intuitionistic F◦ type. F◦ distinguishes between lin-

ear and unrestricted types by using kinds together with a notion of subkinding, avoiding

the pitfalls of approaches based on type qualifiers or modalities; kinds are related by a

subkinding order that allows unrestricted types to be treated as though they were linear.

Soundness for intuitionistic and classical F◦ is proved both in the standard operational

sense of preservation and progress and for an augmented semantics that shows more di-

rectly that the expected properties of linearity are preserved. This establishes the absence

of deadlocks in closed, well-typed F◦ programs; it also guarantees that such programs will

not “leak” processes as long as their result types are unrestricted.
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Chapter 1

Introduction

A programming language can be said to have a “complexity budget” limiting the distinct

features that may productively be added to it: add too much and the language loses in

everything from maintainability to accessibility. Simple features with diverse potential ap-

plications are thus highly desirable, and the core calculi present in the theoretical program-

ming languages literature are more than vehicles for soundness proofs: they demonstrate

the power of language features in isolation, making the case for their inclusion—following

refinement by both theoreticians and pragmatists, of course—in progressively larger lan-

guages. But where are the budget-conscious to look for their good deals in complexity?

Given the origins of the typed λ-calculus, it is unsurprising that related calculi still

draw much inspiration from the Curry-Howard isomorphism (Curry et al., 1958; Howard,

1980), the well-known correspondence between types in a programming language and

propositions in a logic, and between programs—without general recursion or equivalent

functionality—written in that language and proofs of the corresponding logical proposi-

tions. Time and time again the Curry-Howard isomorphism has led to elegant and use-

ful programming language design—for example, System F (Girard, 1972; Reynolds, 1974)

serves as both a proof language for a logic with second-order (but not first-order) quantifi-

cation and as the canonical language with fully general parametric polymorphism.

Meanwhile, linear logic (Girard, 1987; Girard et al., 1989) restricts the properties of

contraction (the ability to duplicate assumptions) and weakening (the ability to discard

assumptions), and thus the propositions of linear logic can model physical resources in
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straightforward ways. This immediately suggests utility in a programming language, and

indeed ideas from linear logic were quick to appear in the programming languages litera-

ture, adopted first to eliminate garbage collection (Lafont, 1988) and shortly thereafter to

handle mutable state (Wadler, 1990). Yet this interest has not translated into the implemen-

tation of linear types in even those languages favored by typed functional programmers.1

The case for linearity seems not to have been made well enough from the standpoint

of the complexity budget. While many have demonstrated the power of linear types—be

it through capability systems (Charguéraud and Pottier, 2008; Crary et al., 1999), explicit

memory management and control of aliasing (Ahmed et al., 2007; Fähndrich and DeLine,

2002; Hicks et al., 2004; Vries et al., 2008; Zhu and Xi, 2005), or program analysis of chang-

ing state (DeLine and Fähndrich, 2001; Walker, 2000)—such work has not presented lin-

earity as a simple language addition addressing a variety of needs. And, indeed, linear

types can lead to awkward programming models and complicated language designs that

are difficult both to implement and to use: a lack of implicit contraction and weakening

by necessity makes many programs cumbersome to write, and the best means by which

expressions of both linear and unrestricted type may coexist is not immediately obvious.

Further, those formulations of linear logic that do not restrict themselves to its intuition-

istic fragment are most naturally seen as sequent calculi, and when thus viewed as type

systems they suggest term languages that differ significantly from standard λ-calculi.

This dissertation proposes F◦—pronounced “F-pop”—a linearly typed core calculus

based on System F that aims to remedy the undersold status of linear typing. Rather than

restrict itself to intuitionistic linear logic, F◦ demonstrates that the power of classical linear

logic2 is indeed compatible with λ-calculi. Linearity is particularly well suited, lacking

unconstrained weakening and contraction, to enforcing protocols concerning how a term

may be used, and the diverse applicability of F◦ will be demonstrated through the varied

sorts of protocols it can enforce.

Chapter 2 introduces F◦ by way of its intuitionistic fragment, demonstrating how kinds
1Clean is often seen as the exception to this, but there are subtle differences between its uniqueness types,

which consider how a value has been used (i.e., whether it has been aliased), and standard linear types, which
consider how a value may be used in the future.

2This use of “classical” in contrast to intuitionistic is common in the programming languages literature,
though Girard uses “classical” in contrast to linear and prefers “full linear logic” where this dissertation uses
“classical linear logic”.
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allow linear (kind ◦) and unrestricted (kind ?) types to mingle without complication thanks

to a subkinding relation in which ? 6 ◦ (reflecting the idea that it is always safe to use some-

thing exactly once, even when it is not required). Intuitionistic F◦ lets programmers enforce

their own protocol abstractions through the power of linearity and polymorphism—it al-

lows for the straightforward encoding of typestate (Fähndrich and DeLine, 2002; Fähndrich

et al., 2006), a desirable feature whenever, for instance, API calls must be made in a cer-

tain order—yet its typing discipline is lightweight enough to expose in a surface language:

apart from the addition of kinds and the standard products and sums of intuitionistic lin-

ear logic, it is exactly System F.

Chapter 3 presents the full classical F◦, extending intuitionistic F◦ with the control op-

erators go (spawning of a process) and yield (synchronizing on a channel), the type ‹
(process termination), and the kind • (strictly linear); at run time, classical F◦ expressions

evaluate into processes in a very simple process calculus, and the standard linear connec-

tives naturally double as session types (Honda et al., 1998; Takeuchi et al., 1994; Vasconcelos

et al., 2006), with the duality of classical negation providing each channel endpoint with

its appropriate communication protocol. Soundness of classical F◦ implies the absence

of deadlocks in well-typed classical F◦ programs. The design of classical F◦ is reminis-

cent of the connection between callcc and classical logic (Griffin, 1990; Ong and Stewart,

1997) and specifically excludes the baffling (outside of a sequent calculus) ` connective

of classical linear logic. Classical F◦ suggests linearity’s applicability to systems in which

frequent communication among logical processes—which may or may not correspond to

physical processes or threads—is the norm (Armstrong et al., 1996; Haller and Odersky,

2009; Hickey, 2007), systems that are becoming more common as the need for concurrency

grows.

Related work is discussed in greater detail at the end of Chapter 2 and Chapter 3,

depending on the nature of the work in question. Chapter 4 discusses possible extensions

to F◦ and their ramifications, and Chapter 5 presents a brief conclusion.

A purely multiplicative variant of intuitionistic F◦, there called System F◦, was pre-

sented at TLDI (Mazurak et al., 2010); the monomorphic, all-linear fragment of classical F◦

was presented at ICFP (Mazurak and Zdancewic, 2010) as Lolliproc.

3



Chapter 2

Intuitionistic F◦

While some of the most interesting applications of F◦ require the full power of classical

linear logic, much is still possible within the intuitionistic fragment of the language—in

particular, intuitionistic F◦’s type system can enforce user-defined protocols through the

combination of polymorphism and linearity. Intuitionistic F◦ is also a very familiar setting

in which to introduce F◦’s approach to linearity.

2.1 Terms and types

The syntax of intuitionistic F◦ is given in Figure 2.1; expressions e are categorized by types

τ , which are in turn categorized by kinds κ. Intuitionistic F◦ has only two kinds: ?, pro-

nounced “unrestricted”, and ◦, pronounced “linear”. The types of intuitionistic F◦, and

their introduction and elimination forms, are mostly standard, but some subtleties will

reveal their significance later on.

The function type in F◦ is written τ1
κ→ τ2, where the kind annotation κ indicates how

the function itself may be used: functions of type τ1
?→ τ2 may be used any number of

times—that is, they may be duplicated or discarded—while those of type τ1
◦→ τ2 must

be used exactly once.1 To accommodate this kind annotation, the introduction form for

functions is written λκx:τ. e; functions are eliminated by standard application e1 e2.
1In the literature,( is the traditional symbol for the linear function type, but, when linear and unrestricted

functions are present in the same system, there is disagreement over whether the use of ( rather than →
restricts the usage of the function value itself or its argument. F◦’s syntax avoids this confusion and will
simplify matters in Chapter 3, when a third kind is introduced.
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κ ::= ?
∣∣∣ ◦ kinds

τ ::= α
∣∣∣ τ κ→ τ

∣∣∣ τ & τ
∣∣∣ ∀α:κ. τ∣∣∣ 1

∣∣∣ τ ⊗ τ ∣∣∣ τ ⊕ τ ∣∣∣ ∃α:κ. τ types

i ::= 1
∣∣∣ 2 indices

e ::= x
∣∣∣ λκx:τ. e

∣∣∣ e e ∣∣∣ 〈e, e〉 ∣∣∣ e.i ∣∣∣ Λα:κ. v
∣∣∣ e [τ ] expressions∣∣∣ ()

∣∣∣ e; e ∣∣∣ (e, e)
∣∣∣ let (x, x) = e in e∣∣∣ injτ⊕τi e

∣∣∣ case e of inj1 x 7→ e | inj2 x 7→ e∣∣∣ pack α:κ = τ in (e : τ)
∣∣∣ unpack (α, x) = e in e

v ::= λκx:τ. e
∣∣∣ 〈e, e〉 ∣∣∣ Λα:κ. v values∣∣∣ ()

∣∣∣ (v, v)
∣∣∣ injτ⊕τi v

∣∣∣ pack α:κ = τ in (v : τ)

E ::=
îó ∣∣∣ E e

∣∣∣ v E ∣∣∣ E [τ ]
∣∣∣ E.i evaluation contexts∣∣∣ E; e

∣∣∣ (E, e)
∣∣∣ (v,E)

∣∣∣ let (x, x) = E in e∣∣∣ injτ⊕τi E
∣∣∣ case E of inj1 x 7→ e | inj2 x 7→ e∣∣∣ pack α:κ = τ in (E : τ)

∣∣∣ unpack (α, x) = E in e

Γ ::= ·
∣∣∣ Γ, α:κ

∣∣∣ Γ, x:τ unrestricted typing contexts

∆ ::= ·
∣∣∣ ∆, x:τ linear typing contexts

Figure 2.1: Intuitionistic F◦

The type τ1 & τ2 is the additive product of τ1 and τ2—a curious choice of terminology

(given that “additive” in other contexts generally refers to sums rather than products) that

is nevertheless standard in the linear logic literature. The additive pair 〈e1, e2〉 suspends

e1 and e2; such pairs are eliminated with projection e.1 or e.2, after which evaluation of

selected component continues. To preserve linearity, each additive pair must be eliminated

exactly once, meaning that, in 〈e1, e2〉, both e1 and e2 will depend on the same set of linear

resources.

The universal types ∀α:κ.τ gives a kind annotation κ to its type variable α; this annota-

tion also appears in the type abstraction form Λα:κ. v. Type application is written as e [τ ].

Note that F◦ makes use of the value restriction (Wright and Felleisen, 1994), requiring that

the body of a type abstraction be a value v—i.e., a term that will not, on its own, take fur-
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[E-APP] (λκx:τ. e) v −→ {x 7→ v}e [E-SELECT] 〈e1, e2〉.i −→ ei

[E-TAPP] (Λα:κ. v) [τ ] −→ {α 7→ τ}v [E-SEQ] (); e −→ e

[E-LET] let (x1, x2) = (v1, v2) in e −→ {x1 7→ v1, x2 7→ v2}e

[E-CASE] case injτ1⊕τ2i v of inj1 x1 7→ e1 | inj2 x2 7→ e2 −→ {xi 7→ v}ei

[E-UNPACK] unpack (α, x) = (pack α:κ = τ in (v : τ ′)) in e −→ {α 7→ τ, x 7→ v}e

[E-CTXT]
e −→ e′

E
î
e
ó
−→ E

î
e′
ó

[E∗-ID] e −→∗ e [E∗-TRANS]
e −→ e′ e′ −→∗ e′′

e −→∗ e′′

Figure 2.2: Evaluation rules for intuitionistic F◦

ther evaluation steps. This is a common restriction in languages that mix polymorphism

with other features—e.g., ML—and it turns out to be critical to the soundness of F◦.

The remaining constructs of intuitionistic F◦ are entirely straightforward. The unit type

1 has a single element () and is eliminated by sequencing e1; e2. The multiplicative prod-

uct τ1 ⊗ τ2 is more familiar than its additive cousin: a multiplicative pair (e1, e2) eagerly

evaluates its components, and they must depend on disjoint sets of linear resources; the

elimination form let x1, x2 = e in e′ binds both components of such pairs, as projection in

this case could violate linearity.

Sums τ1⊕τ2 are completely standard, introduced by injection injτ1⊕τ2i e and eliminated

with case analysis case e of inj1 x1 7→ e1 | inj2 x2 7→ e2. F◦ uses superscript type

annotations in cases like injτ1⊕τ2i e where additional type information is necessary for

typechecking but serves no further purpose—in this case, the type of the argument reflects

only one side of the sum type, so the annotation fills in the missing information.2

Finally, F◦ features existential types ∃α:κ. τ , which differ from their standard presen-
2One might instead introduce, in this case, polymorphic inj1 and inj2 terms and rely on type application

to instantiate them at the appropriate types. Doing so, however, would clutter the language with partially
applied constants, and there does not seem to be anything that F◦ might gain from this approach to justify
said clutter.
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[S-REFL] κ 6 κ [S-TOP] κ 6 ◦ [K-SUB]
Γ ` τ : κ1 κ1 6 κ2

Γ ` τ : κ2

[K-TVAR]
α:κ ∈ Γ

Γ ` α : κ
[K-ARROW]

Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 κ→ τ2 : κ

[K-WITH]
Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 & τ2 : ◦
[K-ALL]

Γ, α:κ ` τ : κ′ α /∈ dom(Γ)

Γ ` ∀α:κ. τ : κ′

[K-UNIT] Γ ` 1 : ? [K-TENSOR]
Γ ` τ1 : κ Γ ` τ2 : κ

Γ ` τ1 ⊗ τ2 : κ

[K-PLUS]
Γ ` τ1 : κ Γ ` τ2 : κ

Γ ` τ1 ⊕ τ2 : κ
[K-EXISTS]

Γ, α:κ ` τ : κ′ α /∈ dom(Γ)

Γ ` ∃α:κ. τ : κ′

Figure 2.3: Kinding rules for intuitionistic F◦

tation only in the presence of the kind annotation κ. Existential types allow, essentially,

for pairs in which the first element is a type and the second is a term; the term may de-

pend on the structure of the type, but the enclosing context can only know that type as

an opaque type variable. Existentials are introduced, packaging together a term and a

type, with pack α:κ = τ in (e : τ ′); the type annotation τ ′ indicates which occurrences

of τ within the type of e should be abstracted to α. Existential packages are opened with

unpack (α, x) = e in e′; within e′, the type and term components of the existential package

e are bound to α and x respectively.

Intuitionistic F◦’s call-by-value operational semantics can be seen in Figure 2.2. It is

entirely standard and kind-agnostic; each elimination form reacts with its associated in-

troduction form. All other evaluation is accounted for, in rule E-CTXT, by decomposing

an expression into an evaluation context E applied to a subexpression e: if e steps to e′, then

E
î
e
ó

steps to E
î
e′
ó
. The definition of evaluation contexts is also completely standard and

reflects the usual definition of call-by-value reduction—e.g., the left side of an application

is reduced before the right and values are exactly those expressions that cannot reduce fur-

ther. At this point evaluation contexts merely serve as a convenience, removing the need

for a dozen congruence rules; in Chapter 3, however, they will become indispensable.
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To understand how types are assigned to intuitionistic F◦ expressions, we must first

look at how kinds are assigned to types. As mentioned, the kind ? classifies unrestricted

types, the members of which may be duplicated or discarded, whereas ◦ classifies lin-

ear types, the members of which must be used exactly once. But note that the behavior

allowed for expressions of linear type is included in the behavior allowed for those of un-

restricted type; it should thus be sound to classify an unrestricted type as linear. In F◦, this

idea is captured through a subkinding judgment, written κ1 6 κ2, that yields a very simple

subkinding order:

6

◦

?

Here F◦ diverges from many linear systems that make memory management their first

priority (Wadler, 1990; Ahmed et al., 2007; Fähndrich and DeLine, 2002; Hicks et al., 2004):

if linearity is meant to imply that memory can be used in a way that might not be safe

otherwise, then clearly unrestricted should not be a subkind of linear. (However, while F◦

is not built around memory management in that sense, we will see in Section 2.2.2 that its

constructs are indeed well suited for ensuring that memory is used correctly.)

Figure 2.3 shows the kinding rules for intuitionistic F◦, where the kinding judgment

is written Γ ` τ : κ. Rule K-SUB incorporates subkinding as described above, while K-

TVAR, as one would expect, looks up a type variable’s kind in the context Γ. The next

three rules, K-ARROW, K-WITH, and K-ALL, each deal with a construct that suspends

computation, and each receives slightly different treatment. The kind of τ1
κ→ τ2 is κ re-

gardless of the kinds of τ1 and τ2. The kind of τ1&τ2, on the other hand, is always ◦—more

permissive kinding in this case would actually complicate soundness, and the functional-

ity of unrestricted additive pairs can be achieved with multiplicative pairs of unrestricted

functions. Finally, the kind of ∀α:κ. τ is simply the kind of τ under the appropriate con-

text extension—it is in fact this design decision that gives F◦ the value restriction, as will

become clear in the discussion of type soundness.

The remaining kinding rules are all straightforward. K-UNIT declares the unit type 1

to be unrestricted for reasons of convenience, as F◦ will remain sound in either case. The

rules K-TENSOR, K-PLUS, and K-EXISTS all require that the kinds of any type components
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[B-LIN]
Γ ` τ : ◦ Γ; ∆, x:τ ` e:τ ′ x /∈ Γ,∆

[Γ; ∆], x:τ ` e:τ ′

[B-UN]
Γ ` τ : ? Γ, x:τ ; ∆ ` e:τ ′ x /∈ Γ,∆

[Γ; ∆], x:τ ` e:τ ′

[U-EMPTY] · d · = ·

[U-LEFT]
∆1 d∆2 = ∆ x /∈ ∆

∆1, x:τ d∆2 = ∆, x:τ
[U-RIGHT]

∆1 d∆2 = ∆ x /∈ ∆

∆1 d∆2, x:τ = ∆, x:τ

Figure 2.4: Auxiliary judgments for intuitionistic F◦ typing

match the kind of the type being constructed. Combined with subkinding, this gives the

expected result in the cases of sums and multiplicative products: to be given the unre-

stricted kind, both sides must be unrestricted; if either the left or the right side can only be

linear, then the entire construct must be linear. Note that, while the presence of subkinding

makes kinding nondeterministic, it is clearly decidable and the simple subkinding lattice

makes it easy to define a type’s most specific kind.

While the kinding rules required just a single context Γ—with no special consideration

needed concerning how often it appears in a rule’s premises—the typing rules depend on

both this unrestricted Γ, which contains type variables and unrestricted expression vari-

ables, and a linear context ∆, which contains linear expression variables. This two-context

presentation follows Barber’s DILL (Barber, 1997) and leads to a simpler metatheory as

compared to a single-context presentation. Due to subkinding, a variable of an unrestricted

type may be treated as though its type were linear and must be permitted to be bound in

either Γ or ∆. This is expressed concisely with the notation [Γ; ∆], x:τ ` e : τ ′, indicat-

ing that either Γ or ∆ is extended with the binding for x for purposes of typechecking e.

Rule B-UN in Figure 2.4 requires that an extension of Γ bind x to an unrestricted τ , while

subkinding allows any well-formed τ to be accepted by B-LIN. Additionally, the linear

resources in ∆ must be split whenever two subexpressions will both be evaluated—e.g., in

e1 e2 and (e1, e2) but not in 〈e1, e2〉. Such a linear context split into ∆1 and ∆2 is written

∆1 d∆2; this splitting relation is likewise defined in Figure 2.4.
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[T-LVAR] Γ;x:τ ` x : τ [T-UVAR]
x:τ ∈ Γ

Γ; · ` x : τ

[T-LAM]
[Γ; ∆], x:τ1 ` e : τ2 κ = ? =⇒ ∆ = ·

Γ; ∆ ` λκx:τ1. e : τ1
κ→ τ2

[T-APP]
Γ; ∆1 ` e1 : τ1

κ→ τ2 Γ; ∆2 ` e2 : τ1

Γ; ∆1 d∆2 ` e1 e2 : τ2

[T-APAIR]
Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2

Γ; ∆ ` 〈e1, e2〉 : τ1 & τ2
[T-SELECT]

Γ; ∆ ` e : τ1 & τ2

Γ; ∆ ` e.i : τi

[T-TLAM]
Γ, α:κ; ∆ ` v : τ α /∈ Γ

Γ; ∆ ` Λα:κ. v : ∀α:κ. τ
[T-TAPP]

Γ; ∆ ` e : ∀α:κ. τ ′ Γ ` τ : κ

Γ; ∆ ` e [τ ] : {α 7→ τ}τ ′

[T-UNIT] Γ; · ` () : 1 [T-SEQ]
Γ; ∆1 ` e1 : 1 Γ; ∆2 ` e2 : τ

Γ; ∆1 d∆2 ` e1; e2 : τ

[T-MPAIR]
Γ; ∆1 ` e1 : τ1 Γ; ∆2 ` e2 : τ2

Γ; ∆1 d∆2 ` (e1, e2) : τ1 ⊗ τ2

[T-LET]
Γ; ∆1 ` e1 : τ1 ⊗ τ2 [Γ; ∆2], x1:τ1, x2:τ2 ` e2 : τ

Γ; ∆1 d∆2 ` let (x1, x2) = e1 in e2 : τ

[T-IN]
Γ; ∆ ` e : τi Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ; ∆ ` injτ1⊕τ2i e : τ1 ⊕ τ2

[T-CASE]
Γ; ∆1 ` e : τ1 ⊕ τ2 [Γ; ∆2], x1:τ1 ` e1:τ [Γ; ∆2], x2:τ2 ` e2:τ

Γ; ∆1 d∆2 ` case e of inj1 x1 7→ e2 | inj2 x2 7→ e2 : τ

[T-PACK]
Γ; ∆ ` e : {α 7→ τ}τ ′ Γ ` τ : κ

Γ; ∆ ` pack α:κ = τ in (e : τ ′) : ∃α:κ. τ ′

[T-UNPACK]
Γ; ∆1 ` e1 : ∃α:κ. τ [Γ, α:κ; ∆2], x:τ ` e2 : τ ′

Γ; ∆1 d∆2 ` unpack (α, x) = e1 in e2 : τ ′

Figure 2.5: Typing rules for intuitionistic F◦
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Intuitionistic F◦’s typing judgment, written Γ; ∆ ` e : τ , is defined in Figure 2.5. The

variable rules T-LVAR and T-UVAR handle variables from the linear and unrestricted con-

texts respectively. Note that, while both rules allow an arbitrary Γ—permitting weakening

of unrestricted assumptions—∆ may contain no variables aside from, in the linear case,

the variable whose type is being checked. T-LAM demonstrates the non-deterministic ex-

tension [Γ; ∆], x:τ in typechecking the body of a function; it further requires, if the entire

expression is meant to be unrestricted, that the body not depend on any linear variables.

This last restriction is essential in making sure that it is safe to duplicate or discard a func-

tion value of an unrestricted type.

The remaining typing rules are all fairly straightforward, but there are a few more

details of interest. First, the only circumstances under which a linear context is duplicated

are those in which only one subexpression typechecked with the duplicated context will

be evaluated at run time—e.g., in T-APAIR. The more common case is for a linear context

to be split into ∆1 d ∆2, as in T-APP, T-SEQ, T-MPAIR, T-LET, and T-UNPACK. T-CASE

does both, using ∆1 to typecheck the expression being analyzed and ∆2 to typecheck the

branches, only one of which will ultimately be evaluated. Finally, both T-PACK and T-

TAPP make implicit use of subkinding: polymorphic expressions expecting a linear type

may be given an unrestricted one, and unrestricted types may be hidden in an existential

package exposing a linear type variable.

Weakening (neglecting to use a variable) and contraction (using a variable more than

once) are only possible with variables of unrestricted type. Rather than add explicit con-

traction and weakening rules, these properties are built into the rules that require them.

The separation of linear and unrestricted typing contexts makes this fairly straightforward:

rules T-LVAR and T-UVAR permit weakening by allowing an arbitrary Γ at the leaves of

typing derivations, while every rule with multiple premises duplicates Γ but handles ∆ as

described above. Weakening and contraction thus follow naturally:

Property 1 (Weakening). If Γ1,Γ2; ∆ ` e : τ ′, Γ1 ` τ : ?, and x is not in Γ1, Γ2, or ∆,

then Γ1, x:τ,Γ2; ∆ ` e : τ ′.

Property 2 (Contraction). If Γ1, x:τ, y:τ, Γ2; ∆ ` e : τ ′, and Γ1 ` τ : ?,

then Γ1, x:τ,Γ2; ∆ ` {y 7→ x}e : τ ′.
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From these rules we can see that the type ∀α:◦. ∀β:?. α ?→ β ?→ α, for instance, is

uninhabited—there is no way to write the requisite unrestricted inner function in the pres-

ence of a linear variable of type α. This is as it should be, because even though it ostensibly

promises to return its argument of type α, the partial application of a function of this type

could be freely replicated or discarded, violating linearity. The same is true for the type

∀α:◦. ∀β:?. α ◦→ β ?→ α, but the types ∀α:◦. ∀β:?. α ?→ β ◦→ α and ∀α:◦. ∀β:?. β ?→ α ?→ α are

both inhabited, as their inhabitants behave appropriately with respect to linearity.

It is easy to see that, modulo the value restriction, intuitionistic F◦ is an extension of

System F. In fact, an earlier presentation (Mazurak et al., 2010) of a core of intuitionistic F◦,

there called System F◦, extended System F with only kind annotations, leveraging well-

known encodings for existentials and multiplicative products while omitting the additive

constructs. This is not the approach taken here, for reasons that will become clear in Chap-

ter 3, but the encodings of System F remain useful. For instance, general let expressions

can be defined as

let x = e in e′ , (λ◦x:τ. e′) e

where τ is the type of e—whenever let expressions are used in examples, τ should be

obvious from context. Note that, since the function representing the body of the let is

always used immediately and exactly once, it is a natural candidate for the linear function

type, allowing let expressions to freely typecheck in the presence of linear free variables.

The standard System F encoding of natural number is also available, providing unre-

stricted values and making use of unrestricted functions while still allowing an arbitrary

(potentially linear) type as the result of the elimination of a natural number:

Nat , ∀α:◦. (α ?→ α) ?→ α ?→ α

As usual, n [τ ] f x applies the function f (which takes τ to τ ) to x a total of n times:

0 , Λα:◦. λ?s:α ?→ α. λ?z:α. z

1 , Λα:◦. λ?s:α ?→ α. λ?z:α. s z

2 , Λα:◦. λ?s:α ?→ α. λ?z:α. s (s z)
...
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It is instructive to look at the kind annotations in this definition and consider the functions

they serve. As α is the type argument for eliminating a natural number, giving α the

kind ◦ simply makes natural numbers as general as possible. The ? annotation on each λ

ensure that natural numbers themselves are unrestricted—were the second annotation ◦,

unrestricted natural numbers would become linear when partially applied to a successor-

eliminating function, and changing both to ◦would give us natural numbers that must be

treated linearly.

Replace the ? on the inner arrow—i.e., the type of s—with ◦, however, and (in addition

to requiring a ◦ on the second arrow and ruling out partial application) we no longer have

natural numbers at all, as only the term representing 1 remains typeable: a linear argument

like s must be applied exactly once, so given z of type τ and s of type τ ◦→ τ , the only well-

typed expressions of type τ are equivalent to s z. While this type is not particularly useful,

it suggests other possibilities. Consider, for example

∀α:◦. (α ◦→ α) ?→ (α ◦→ α) ◦→ (α ◦→ α) ◦→ α ◦→ α

Its inhabitants represent the different possible orders in which the three function argu-

ments can be applied to an argument, giving this type six canonical members. More com-

plex types in this vein, incorporating multiple type variables and both linear and unre-

stricted functions, can have an unbounded number of inhabitants while still enforcing,

thanks to linearity and polymorphism, restrictions on how often or in which order cer-

tain functions are applied. The next section demonstrates this with some more realistic

examples.

2.2 Examples

We will now see the applicability of intuitionistic F◦ through three sets of examples. First,

an encoding of a safe filesystem establishes the basic techniques used to extract good be-

havior from a mix of linearity and parametric polymorphism. Second, a variety of ref-

erence cell implementations show that, while F◦ does not build in notions of references

and aliasing, protocols defining correct memory management can indeed be enforced by

its types. Third, it is proved that any protocol expressible as a finite automaton has a
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corresponding F◦ type—in addition to establishing that a large class of protocols can be

encoded in our type system, this proof highlights intuitions about linearity that still need

formalization, which are addressed in Section 2.3.2.

These examples all include records, always containing only fields of unrestricted type,

eliminated by projection—these records are often analogous to dictionaries in implemen-

tations of Haskell typeclasses (Wadler and Blott, 1989). Such records add significant read-

ability and can clearly be encoded in terms of the multiplicative pairs. The single variable

let defined in the previous section also sees frequent use, and n-ary existential types are

used for simplicity’s sake.

2.2.1 A linear filesystem

Linearity lets us specify a filesystem interface that requires each filehandle be closed ex-

actly once and forbids its use thereafter. Given the base types String and Char—but without

any understanding of linearity—an operating system might provide a type UnsafeFH and

its associated file operations with the following augmented F◦ signatures3:

UnsafeFH : ?

unsafe open : String ?→ UnsafeFH

unsafe read : UnsafeFH ?→ Char

unsafe write : Char ?→ UnsafeFH ?→ 1

unsafe close : UnsafeFH ?→ 1

Here UnsafeFH is analogous to a Unix file descriptor or FILE pointer, and there are no

static guarantees that a filehandle of this type is not read from or written to after it has

been closed. Intuitionistic F◦, however, makes it easy to create a safe interface protecting

filehandles from misuse. First, taking α to be the abstract filehandle type, let us define a

record type FH(α) of safe file operations:

FH(α) , { read : α ?→ Char⊗ α

write : Char ?→ α ?→ α,

close : α ?→ 1 }
3This example uses roughly the same interface given by DeLine and Fähndrich (2001) to motivate Vault

and discussed by Kiselyov and Shan (2008) as an alternative to their filehandle regions.
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Now open can be defined to return an existential package, hiding the filehandle’s true type

behind a linear type variable and pairing the filehandle with its associated operations:

open : String ?→∃α:◦. α⊗ FH(α)

open , λ?f :String. let handle = unsafe openf in

pack α = UnsafeFH in

( handle,

{ read = λ?h:UnsafeFH. (unsafe read h, h),

write = λ?c:Char. λ?h:UnsafeFH.

unsafe write c h;h,

close = unsafe close

} ) : α⊗ FH(α)

While the type UnsafeFH is unrestricted within the scope of open, the outside world sees

its occurrences at the existentially bound linear type variable α. If open treats filehandles

correctly, which it does, then any use of the operations provided by an existential package

it creates must treat them correctly as well.

After unpacking a filehandle, a program may read or write from it simply by invoking

the provided member functions, but good programming practice requires the ability to

define new functions over filehandles. The separation of the linear filehandle from the

unrestricted file operations makes it easy to write functions like read line, which can be

given the following type:

read line : ∀α:◦. FH(α) ?→ α ?→ String⊗ α

This type suggests a usage pattern wherein many file operations occur within the scope of

a single unpack; such a pattern allows for types that reflect, for instance, the fact that the

filehandle returned by read line is the same one that it was given.

Writing functions this way allows for useful type coercions; for example, suppose we

are also able to open files in read-only mode, yielding restricted existential packages of the

form
ROFH(α) = { read : α ?→ Char⊗ α,

close : α ?→ 1 }
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Many functions, including read line, may be defined over this weaker interface, and we

can always construct a record of type ROFH(α) out of a record of type FH(α) to allow a

read-write filehandle to be treated as though it were read-only.

Such a coercion from a record type with more members to a record type with fewer

is implicit in systems with structural subtyping and mirrors some of the simpler relation-

ships that can arise between Haskell typeclasses (Wadler and Blott, 1989). The use of exis-

tential quantification in tying methods to their owners is reminiscent of object encodings

in languages with structural subtyping (Bruce et al., 1999).

2.2.2 Reference cells

An interface for unshareable linear reference cells looks remarkably similar to the filehan-

dle interface just presented. A reference type is already naturally thought of as parame-

terized over the type of its contents, however; let us distinguish between such ordinary

(and often unrestricted) type parameters from the linear capability parameters by writing,

for instance, UniqRef[τ ](α) for the type of unshareable reference cells containing values of

type τ and making use of a capability—an opaque value—of the type α. Such a reference

cell could be typed as follows:

UniqRef[τ ](α) , { set : τ ?→ α ?→ α,

get : α ?→ τ ⊗ α,

free : α ?→ 1 }

uniq ref : ∀β:?. β ?→∃α:◦. α⊗ Ref[β](α)

On its own, this is not particularly interesting, as such a linear reference cell simply en-

codes the practice of threading a value through a program—indeed, an implementation

of uniq ref could very well just equate α and τ . Instead, however, let us consider varia-

tions on UniqRef that make more sense as safe interfaces wrapping operations over a type

UnsafeRef of manually managed memory, much as File in the previous wraps potentially

unsafe filehandle operations.

While the above UniqRef could be such a safe interface, a more obvious one—which
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itself requires no linearity—is the type GCRef:

GCRef[τ ](α) , { set : τ ?→ α ?→ 1,

get : α ?→ τ }

gc ref : ∀β:?. β ?→∃α:?. α⊗ GCRef[β](α)

The operations included in a record of type GCRef[τ ](α) allow the retrieval and assign-

ment of the contents of the underlying reference cell of type τ but do not provide a means

of freeing this memory, as is usually seen in languages with garbage collection. Even if

manually managed reference cells are also present, hiding the reference type behind α—

which may be unrestricted in this example—ensures that a garbage-collected reference cell

cannot mistakenly be freed.

This, too, is not particularly exciting. Intuitionistic F◦, however, works equally well

with references that begin their lives manually managed (and thus of linear type) but later

are put under the garbage collector’s control. UniqRef[τ ](α) simply needs an additional

function to serve as the appropriate coercion:

gc : α ?→∃β:?. β ⊗ GCRef[τ ](β)

By consuming and not returning α, gc prevents free from being called on the now garbage-

collected (but unrestricted) reference, even if, in actuality, both parameters are simply

bound to the underlying reference type. We now have a coercion from alias-free to po-

tentially aliased pointers, a fact that, were linearity conflated with alias-freedom, would

run counter to the subkinding relation of ? 6 ◦.

Going even further, an intermediate point between a strictly linear and a garbage col-

lected reference is a reference that must be explicitly aliased and whose aliases must be

explicitly discarded—i.e., the cell is managed using reference counting, but the operations

that change the reference count are made explicit. This can also be defined easily in intu-

17



itionistic F◦:
RCRef[τ ](α) , { set : τ ?→ α ?→ α,

get : α ?→ τ ⊗ α,

alias : α ?→ α⊗ α,

drop : α ?→ 1 }

rc ref : ∀β:?. β ?→∃α:◦. α⊗ RCRef[β](α)

A straightforward implementation of rc ref could use as its capability a pair of the reference

cell to be managed and a second, integer-valued cell to act as a counter to be adjusted by

the alias and drop operations. Both the main cell and the counter cell could safely be freed

when the count reaches zero.

However, while RCRef still provides a linear access capability, it is no longer possible

to know for certain that there are no other outstanding references to the cell in question.

To remedy this, as is often done in capability calculi (Ahmed et al., 2007; Charguéraud

and Pottier, 2008), we can give our cells both an exclusive capability parameter α and a

shared capability parameter β, with possession of the exclusive access capability implying

that there currently exist no copies of the shared access capability. If, for example, the cell

contents should not be altered if any aliases exist, this can be accomplished with

ShareRef[τ ](α, β) , { set excl : τ ?→ α ?→ α,

get excl : α ?→ τ ⊗ α)

get shared : β ?→ τ ⊗ β,

share : α ?→ β,

claim : β ?→ α⊕ β,

alias : β ?→ β ⊗ β,

drop : β ?→ 1,

free : α ?→ 1 }

share ref : ∀γ:?. γ ?→∃α:◦. ∃β:◦. α⊗ ShareRef[γ](α, β)

The return type of claim is α ⊕ β, meaning that the caller of claim, after relinquishing the

shared capability, needs to check whether exclusive access was claimed successful; if it was
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not, shared access remains. Exclusive access, of course, should only be granted if there are

no other shared access capabilities in existence for this reference cell, meaning that the

underlying representation can again be a pair of unsafe reference cells.

2.2.3 Regular protocols

What else can intuitionistic F◦ guarantee? Rather than present more individual examples,

let us see how any protocol expressible as a regular language can be written in F◦. (This

is not, of course, an upper limit on the expressivity of intuitionistic F◦—the previously

seen RCRef and ShareRef are equivalent to the parenthesis matching that is the canonical

non-regular example. The regular languages, however, still serve as rich space of example

protocols that can be reasoned about in a straightforward way.)

As every regular language can be recognized by a deterministic finite automaton, let us

take the standard definition of a DFA as a tuple M = (Q,Σ, δ, q0, F ), where Q is a finite set

of states, Σ is a finite set of alphabet symbols (in our context, protocol actions), δ is function

from Σ × Q to Q (viewed also as a subset of Σ × Q × Q) describing the valid transitions

between states, q0 is a distinguished initial state, and F is a set of final states. Several of

the examples seen previously can be seen as finite automata with alphabets of methods

and capability parameters as. For example, UniqRef has two states, the second of which

(Freed) is its only final state, GCRef is a trivial automaton with only exactly one (final) state

(GC-managed), and, as the regular languages are closed under union and concatenation,

augmenting UniqRef with the coercion gc yields a simple three state automaton with both

of these final states.

To present the encoding of DFAs into F◦ as naturally as possible, let us extend the

metavariable conventions used so far to allow q and r as type variables. Taking Q =

{q0, . . . , qn}, we can now define the automaton type τM for the DFA M as

τM , ∃q0:◦, . . . , qn:◦. q0 ⊗ { a takes q to q′ : q ?→ q′

for every (a, q, q′) ∈ δ
...

done at q : q ?→ 1

for every q ∈ F }
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Because the kind of q0 is ◦, and because q0 appears in the outermost tensor product of this

construction, every τM must have kind ◦ as well; τM is also trivially inhabited for any M ,

as one can always supply an existential package in which all type variables are bound to 1

and every function is λ?x:1. x.

If e contains some subexpression of type τM , let us say that the evaluation e −→∗ v

reflects a word w = a0 . . . ak if the sequence of functions in that record that are applied

during evaluation is exactly

a0 takes q0 to r0, . . . ak takes rk−1 to rk

for some states r0 through rk. To prove that τM is an accurate representation of M , it must

be shown that each w = a0 . . . ak accepted by M corresponds to an expression of type

τM
?→ 1 that reflects w and that any f of type τM

?→ 1 reflects some w accepted by M . The

former is fairly straightforward:

Lemma 3. For any w = a0 . . . ak accepted by M , there exists f such that ·; · ` f : τM
?→ 1 and

f n reflects w for any closed n where ·; · ` n : τM .

Proof. Recall that, if w = a0 . . . ak is accepted by M , we have a trace of M on w of the form

q0a0r0 . . . rk−1akrk, where (a0, q0, r0) ∈ δ, (ai, ri−1, ri) ∈ δ, and rk ∈ F . From this and the

definition of τM , we can construct

f : τM

f , λ?n:τM . unpack (q0, . . . , qn, p) = n in

let (init, trans) = p in

let s0 = trans.a0 takes q0 to r0 init in
...

let sk = trans.ak takes rk−1 to rk sk−1 in

trans.done at rk sk

Applying f to any closed n of type τM clearly reflects w, and, if w is in fact accepted by M ,

f will indeed have its declared type.

The other direction depends on arguments justified by the nature of linearity, which

will be examined in Section 2.3, and by parametricity, proved by Zhao et al. (2010).
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Lemma 4. If ·; · ` f : τM
?→ 1, then there exists some w such that M accepts w and f n reflects

w for any n where ·; · ` n : τM .

Proof. (Sketch.) Because τM is linear, f must eliminate n before it can return anything of

type 1. This will require first unpacking the existential—as every τM is linear, this may

only be done once—and then pattern-matching against the pair, leaving the linear initial

state capability init and unrestricted operations record trans.

If q0 ∈ F , then f might immediately apply trans.done at q0 to init. This reflects the

empty word ε, and, indeed, if q0 ∈ F , then M accepts ε. Alternatively, regardless of

whether q0 ∈ F , init can become some other state type (or even q0 again) by repeated

applications of the trans.a takes q to q′ functions. If, after such applications, the result can

be eliminated by some trans.done at qj , then it must be that qj ∈ F . Moreover, because of

the construction of τM , each trans.a takes q to q′ application must represent a valid transi-

tion of δ. Thus we are reflecting some w accepted by M .

The above proof appeals to familiar intuitions about parametric polymorphism and the

limited ways in which expressions whose types are variables can be used. The assurance

that w is properly reflected, however, also depends on the connection between the static

property having a linear rather than an unrestricted type and the behavior of expressions

at runtime. Such a dependence is not unexpected—it is equally true that both lemmas

depend on standard soundness’ promise that the evaluation of well-typed expressions

does not “go wrong”. It does mean, however, that the discussion of soundness in the next

section must make this connection between linearity and run-time behavior.

2.3 Metatheory

Soundness for intuitionistic F◦ implies that well typed terms cannot go wrong. As men-

tioned in the previous section, however, “not going wrong” must take into account the

ways in which subexpressions of linear type may be used in addition to guaranteeing the

absence of stuck terms. Happily, we shall see that standard sort of soundness for F◦—i.e.,

the ruling out of stuck terms—in fact implies that linear resources are used correctly.
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2.3.1 Standard soundness

Progress and preservation make up the standard definition of type soundness. Progress,

which states that a closed, well-typed expression that is not a value can always take an

evaluation step, is no different than in ordinary System F:

Lemma 5 (Progress). If ·; · ` e : τ , then either e is a value or there exists some e′ such that

e −→ e′.

Proof. Induction on typing derivations and appeal to canonical forms—the property that

values of a given type always have the shape of that type’s introduction form. Completely

standard.

Preservation, which states that a well-typed expression that takes a step evaluates to

another well-typed expressions, requires more care. As expected, it depends on various

substitution lemmas, which state that a type of the correct kind may be substituted for a

type variable bound by Γ in a kinding or typing derivation and that an expression of the

correct type may be substituted for an expression variable bound by either Γ or ∆ in a

typing derivation.

Lemma 6 (Substitution).

1. If Γ1, α:κ′,Γ2 ` τ : κ and Γ1 ` τ ′ : κ′, then Γ1, {α 7→ τ ′}Γ2 ` {α 7→ τ ′}τ : κ.

2. If Γ1, α:κ′,Γ2; ∆ ` e : τ and Γ1 ` τ ′ : κ′,

then Γ1, {α 7→ τ ′}Γ2; {α 7→ τ ′}∆ ` {α 7→ τ ′}e : {α 7→ τ ′}τ .

3. If Γ1, x:τ ′,Γ2; ∆ ` e : τ and Γ1; · ` e′ : τ ′, then Γ1,Γ2; ∆ ` {x 7→ e′}e : τ .

4. If Γ; ∆1, x:τ ′,∆2 ` e : τ and Γ; ∆′ ` e′ : τ ′, then Γ; ∆1 d∆′ d∆2 ` {x 7→ e′}e : τ .

Proof. Each proceeds by induction on the typing derivation of e : τ (or, in the first variant,

the kinding derivation of τ : κ). Weakening and contraction, mentioned in Section 2.1, are

invoked in proving the third variant, while the fourth variant uses the d relation to ensure

that the variables in ∆′ do not overlap with those in ∆1 or ∆2.
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Note that the third substitution lemma types e′ with respect to an empty linear context;

it in fact does hold if e′ is permitted to contain free linear variables. Similar results have

been observed for other linear systems (Wadler, 1992; Maraist et al., 1995). Call-by-value

reduction means that the expressions being substituted will always be values, however,

and—because F◦ uses the value restriction—we can prove that unrestricted values contain

no free linear variables:

Lemma 7. If Γ; ∆ ` v : τ and Γ ` τ : ?, then ∆ = ·.

Proof. Simple induction on the typing derivation.

Finally, a permutation property for linear contexts, stating that the order of variables is

irrelevant, is required before preservation can be proved:

Lemma 8 (Permutation). If Γ; ∆ ` e : τ and ∆′ is a permutation of ∆, then Γ; ∆′ ` e : τ .

Proof. Induction on the typing derivation and straightforward reasoning about permuta-

tions and the d relation.

With these pieces in place, preservation follows easily:

Lemma 9 (Preservation). If Γ; ∆ ` e : τ and e −→ e′, then Γ; ∆ ` e′ : τ .

Proof. Straightforward induction on the typing derivation and appeals to the various aux-

iliary lemmas given above.

From preservation and progress, soundness follows naturally:

Theorem 10 (Type soundness). If ·; · ` e:τ , then for any e′ where e −→∗ e′, either e′ = v for

some v or there exists e′′ such that e′ −→ e′′.

Proof. Induction on e −→∗ e′ followed by direct application of Lemmas 5 and 9.

Type soundness has been verified in Coq for the minimal subset of intuitionistic F◦

that contains only type variables, quantified types, and arrow types (Mazurak et al., 2010);

aside from the additive sum and product, all the other constructs we have seen so far can

be encoded in this sublanguage, and the additives present no additional complications.
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A direct correspondence between these metatheoretic properties and intuitions about

what linearity provides for the programmer is not immediately obvious, however. This is

the topic of the next section.

2.3.2 Annotated semantics and linearity at run time

Formalize the intuitions about what linearity means for run-time behavior is not as straight-

forward as it might appear, as some common intuitions about linearity turn out to be mis-

leading. In essence, this is because linearity restricts variables of linear type, while we want

to reason, at run time, about the behavior of expressions.

For instance, linearity does not guarantee that subexpressions—or even values—of lin-

ear type will be used exactly once. Nor would we want it to: recall that the encoding of let

expressions seen previously involves a linear function, and we certainly want to allow for

let expressions of unrestricted type.

Yet when we consider extending F◦with anything that must be protected by linearity—

e.g., stateful constructs like the references cells presented in Section 2.2.2—we quickly find

examples that, in a naive call-by-name or call-by-need variant of F◦, would behave in ways

that should be prevented. For example, given a reference cell as defined previously—of

type UniqRef extended with gc—unpacked as (ref ,methods), one might dispose of it and

move on to evaluating e with

methods.gc ref ; e

This call to gc will only take place under call-by-value reduction—since its result is not

used, other evaluation strategies would simply discard the subexpression, leaking mem-

ory that the programmer had supposed would be (eventually) reclaimed by the garbage

collector. This is precisely the sort of error linearity should rule out rule out. (Clean, which

is not call-by-value, grapples with concerns analogous to these in the context of its unique-

ness types (Vries et al., 2008).)

Call-by-value reduction, with its assurance that function arguments are evaluated ex-

actly once, seems well-suited to avoiding these problems; indeed, we shall see that a call-

by-value setting—with the addition of the value restriction—rules out such problematic

behavior. In other words, the restrictions already in place to ensure standard soundness
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in the previous section are everything needed to ensure that linearity provides what we

expect it will. To prove that this is so, the remainder of this section provides an extended

operational semantics with which we can reason more formally about what linearity pro-

vides at run time.

Annotating intuitionistic F◦

What does it mean to “use” a subexpression? In other contexts, one might mean by this

that an expression is evaluated to a value, that it is passed to a function, that it is applied

to an argument, or something else entirely. In order to understand the run-time effects of

linearity, which stem from restrictions on the use of variables, let us focus on two particular

uses of values:

1. A value is conscripted when it replaces a variable in the body of a function, a let

expression, or a case expression.

2. A previously conscripted value is discharged whenever evaluation proceeds because

it is a value—that is, the syntax of F◦ may allow an arbitrary expression, but if that

expression were not a value, evaluation would have continued in a different manner

(typically by using evaluation contexts to decompose the expression further). In par-

ticular, had a free variable been present instead of the discharged value, evaluation

would have been stuck.

Linearity’s contribution is now clear: in the course of evaluation, every conscripted linear

value must be discharged exactly once—unless it is suspended within the final result, in

which case it must not be discharged. Focusing exclusively on conscripted values cap-

tures the fact that linearity is, at its core, about variables: until a value is substituted for a

variable, the question of whether this value is “treated linearly” is meaningless.

This can be formalized by defining a linearity-aware operational semantics on expres-

sions extended with values that are tagged with a type and identifier—any unique token

will suffice, as identifiers serve merely to match uses of a value corresponding to uses of a

variable, so let us use natural numbers j, k, and `. Tagged values are those that have been

conscripted; for reasons that will become clear shortly, tagged types, type annotations on
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[L-APP] (λκx:τ. e) v (v:τ)
j

ε−→
j
j + 1 {x 7→ (v:τ)j}e [L-SELECT] 〈e1, e2〉.i εε−→

j
j ei

[L-TAPP] Λα:κ. v [τ ] εε−→
j
j {α 7→ (τ :κ)}v [L-SEQ] (); e εε−→

j
j e

[L-LET]
letτ1⊗τ2 (x1, x2) = (v1, v2) in e (v1:τ1)

j , (v2:τ2)
j+1

ε−→
j
j + 2

{x1 7→ (v1:τ1)
j , x2 7→ (v2:τ2)

j+1}e

[L-CASE] case injτ1⊕τ2i v of inj1 x1 7→ e1 | inj2 x2 7→ e2
(v:τi)

j

ε−→
j
j + 1 {xi 7→ (v:τ)j}ei

[L-UNPACK]
unpack (α, x) = (pack α:κ = τ in (v : τ ′)) in e (v:τ ′)j

ε−→
j
j + 1

{α 7→ (τ :κ)αx 7→ (v:τ ′)j}e

[L-TAG] (v:τ)k
ε

(v:τ)
k−→j

j v [L-CTXT]
e C
D−→

j
k e
′

E
î
e
ó
C
D−→

j
k E
î
e′
ó

[L∗-ID] e εε−→∗
j
j e [L∗-TRANS]

e C1

D1
−→j

k e
′ e′ C2

D2
−→∗k` e′′

e C1, C2

D1, D2
−→∗ j` e′′

Figure 2.6: Linearity-aware semantics for intuitionistic F◦

let expressions, and sequences of tagged values are also required:

j, k, ` ::= 0
∣∣∣ 1
∣∣∣ 2
∣∣∣ . . .

τ ::= . . .
∣∣∣ (τ :κ)

e ::= . . .
∣∣∣ (v:τ)j

∣∣∣ letτ⊗τ (x, x) = e in e

C,D ::= ε
∣∣∣ (v:τ)j

∣∣∣ C,C
An augmented semantics for reasoning about this annotated variant of intuitionistic F◦ is

given in Figure 2.6: e C

D
−→j

k
e′ means that, given j > ` for every identifier ` in e, e steps

to e′ while conscripting the sequence of tagged values C and discharging the sequence

D—the identifier k ≥ j is guaranteed not to appear in e′, C, or D. Values are conscripted

in rules L-APPLAM, L-LET, L-CASE, and L-UNPACK; i.e., whenever a value would be

substituted into an expression, it is first tagged with the variable it is replacing, along with
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[K-TTAG]
Γ ` τ : κ

Γ ` (τ :κ) : κ
[T-TAG]

Γ ` v : τ

Γ ` (v:τ)j : τ
[T-TTAG1]

Γ ` e : τ Γ ` τ : κ

Γ ` e : (τ :κ)

[T-TTAG2]
Γ ` e : (τ :κ)

Γ ` e : τ

Figure 2.7: New kinding and typing rules for annotated intuitionistic F◦

that variable’s type. Similarly, while L-TAPPLAM does not conscript, it does tag its type

argument with its expected kind, as does L-UNPACK; this keeps a record of the kind at

which that type will be considered within its body (and requires no identifier).

Since a tagged value (v:τ)j is not itself a value—a necessary constraint to keep evalua-

tion deterministic—rule L-TAG discharges the tagged value by removing its tag. Between

being conscripted and discharged, a tagged value may linger within a function closure or

additive pair, and a tagged value suspended within the final result of evaluation will never

be discharged. As before, evaluation does not depend on typing, but the record kept by C

and D in e C

D
−→∗ j

k
e′ does reveal how arguments considered at various types were used.

The augmented kinding and typing rules in Figure 2.7 are straightforward: the rules

K-TTAG and T-TAG simply check that the tagged type or expression can indeed have the

kind or type that the tag declares it has. The rules T-TTAG1 and T-TTAG2 make kind

annotations completely transparent at the expression level.

As an example, consider an application of the polymorphic linear identity function

Λα:◦. λ◦x:α. x to the natural number 42 of type Nat. This expression evaluates as follows:

(Λα:◦. λ◦x:α. x) [Nat] 42
ε

ε
−→0

0
(λ◦x:(Nat:◦). x) 42 L-TAPPLAM

(42:(Nat:◦))0

ε
−→0

1
(42:(Nat:◦))0 L-APPLAM

ε

(42:(Nat:◦))0
−→1

1
42 L-TAG

Or, more concisely:

(Λα:◦. λ◦x:α. x) [Nat] 42
(42:(Nat:◦))0

(42:(Nat:◦))0
−→∗ 0

1
42

In other words: over the course of evaluation, the value 42 was passed to a function and

used (in this case, returned) exactly once, and it was considered at type (Nat:◦). Were this
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T((v:τ)j) = {(v:τ)j} ] T(v)
T(x) = ∅

T(λκx:σ1. e) = T(e)
T(e1 e2) = T(e1) ] T(e2)

T(〈e1, e2〉) = T(e1) ∪ T(e2)
T(e.i) = T(e)

T(Λα:κ. v) = T(v)
T(e [τ ]) = T(e)

T(()) = ∅
T(e1; e2) = T(e1) ] T(e2)

T((e1, e2)) = T(e1) ] T(e2)
T(let (x1, x2) = e1 in e2) = T(e1) ] T(e2)

T(injτ1⊕τ2i e) = T(e)
T(case e of inj1 x1 7→ e1 | inj2 x2 7→ e2) = T(e) ] (T(e1) ∪ T(e2))

T(pack α:κ = τ in (e : τ ′)) = T(e)
T(unpack (α, x) = e1 in e2) = T(e1) ] T(e2)

Figure 2.8: Tagged contents of intuitionistic F◦ expressions

tagged 42 to appear more than once in the list of discharged values, linearity would have

failed us—although 42 is of type Nat, here it is being considered as linear because α was

declared to be linear; conscripted at this type, it should be discharged exactly once. Were it

to instead appear as (42:Nat)0 or (42:(α:?))0, however, there should be no such restriction

on its use, as one can indeed write functions from Nat to Nat that use their arguments more

than once or that ignore them altogether.

This annotated variant of intuitionistic F◦ is reminiscent of linear languages with heap

semantics (Turner and Wadler, 1999), which involve tracking, instead of the traces along

the lines of C and D, a single heap H . Such languages often perform substitution when

the expression being substituted is unrestricted, while associating that expression with

the variable in the heap in the linear case. Theorem 12 could still be proved with such a

semantics, but the ability to reason about the order of substitutions is necessary to support

the reasoning used in Section 2.2.3.

Linearity at run time

A few more auxiliary definitions are necessary before the connection between linearity

of types and run-time behavior can be verified. The multiset of tagged values appearing
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within e is written T(e) and defined in Figure 2.8. A sequence C treated as a multiset is

written {C}, and, if S is a multiset of tagged values, S\κ is the subset of S that omits any

(v:τ)j where · ` τ : κ.

Finally, let us call an expression proper if it contains no unrestricted value which con-

tains contains a value tagged with a linear type—that is, a well-typed expression e is

proper iff, for every value subexpression v in e, if v has some type τ and τ can be given

kind ?, then T(v)\? = ∅. Every unannotated F◦ term is trivially proper. This property is

preserved by evaluation:

Lemma 11 (Proper expressions). If e is proper and e C

D
−→j

k
e′, then e′ is also proper.

Proof. In order for a linear value to be substituted into an unrestricted value, a linear vari-

able bound at an outer scope would need to appear within an unrestricted value that sus-

pends computation. This is prevented for all such values: rule T-LAM requires an empty

linear context for unrestricted functions, the additive product type is never unrestricted,

and the value restriction rules out type abstractions.

It is finally possible to prove that linearity guarantees a correspondence between values

conscripted and discharged at linear type:

Theorem 12 (Run time linearity). If Γ; ∆ ` e : τ , e is proper, and e C

D
−→j

k
e′ for some e′, C, D,

j, and k, then T(e)\? ] {C}\? = T(e′)\? ] {D}\?.

Proof. Straightforward induction over the annotated evaluation relation. L-APP, L-LET,

L-CASE, and L-UNPACK are the only interesting cases, and they all proceed the same way:

from T-UVAR and Lemma 11 we know that, unless the substituted value occurs exactly

once, it will be of unrestricted type and contain no linear tags. The balance of tags is thus

preserved.

In other words, at run time, the values that are substituted for variables of linear type

are never duplicated or discarded.
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2.4 Related work

There are many linear type systems and variants thereof in the literature (Walker, 2005),

and intuitionistic linear systems outnumber classical systems significantly, in part for rea-

sons that will become more clear in Chapter 3. The use of kinds and kind subsumption

in F◦ is intended to capture the essence of linearity simply and generally, retaining a se-

mantics and programming model from System F, and is most similar in this regard to the

monomorphic systems of Wadler (1990) and Benton (1995). Alms (Tov and Pucella, 2011a)

has adapted this approach to affine types, which permit weakening but not contraction,

and adds some additional features. Rust (Hoare, 2010), while not explicitly based on lin-

ear or affine logic, requires that types implement a Copy trait if members of this type may

safely be duplicated—basic traits like Copy are even referred to as kinds.

Other linear systems that admit some unrestricted behavior have used different mech-

anisms for distinguishing between the linear and the unrestricted, and the interactions

between these mechanisms and polymorphism can differ significantly. Broadly speaking,

there are two other approaches taken to divide linear and unrestricted variables: following

the lead of intuitionistic linear logic or using type qualifiers.

2.4.1 Intuitionistic linear logic

Following linear logic as originally presented (Girard, 1987) leads to treating all types as

linear by default and introducing the modal constructor ! to allow for unrestricted terms,

which must be closed with respect to linear variables. A polymorphic λ-calculus with this

form of linearity (and metavariables distinct from those used for F◦) might look like

σ ::= α
∣∣∣ σ( σ

∣∣∣ ∀α. σ ∣∣∣ !σ types

t ::= a
∣∣∣ x ∣∣∣ λa:σ. t

∣∣∣ t t ∣∣∣ Λα. t
∣∣∣ t [σ]

∣∣∣ !t
∣∣∣ let !x = t in t terms

Φ ::= ·
∣∣∣ Φ, α

∣∣∣ Φ, x:σ unrestricted typing contexts

Ψ ::= ·
∣∣∣ Ψ, a:σ linear typing contexts

Such languages generally distinguish between linear variables a, bound by λ terms, and

non-linear variables x, bound by let !, the elimination form of !. It is common for ! to
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suspend computation (Maraist et al., 1995), and in any case let ! evaluates as expected:

let !x = !t in t′ −→ {x 7→ t}t′

As all types in such a language are linear, σ1 ( σ2 is and ∀α. σ behave exactly like

τ1
◦→ τ2 and ∀α:◦. τ in F◦. The typing rules concerning the ! modality demonstrate how

unrestricted behavior is controlled:

Φ; · ` t : σ

Φ; · ` !t : !σ

Φ; Ψ1 ` t1 : !σ1 Φ, x:σ1; Ψ2 ` t2 : σ2 Ψ1 dΨ2 = Ψ

Φ; Ψ ` let !x = t1 in t2 : σ2

That is, the type !σ indicates a term of type σ that uses no linear variables—the same

constraint F◦ places on unrestricted functions—and such a term can be captured by an un-

restricted variable, and thus duplicated or discarded, using the let !. Note that one can still

have linear variables type !σ, even though terms of that type allow for the introduction of

unrestricted assumptions—while it is possible to formulate systems where terms of ! types

can be duplicated or discarded directly, naive attempts to do so are unsound for precisely

the same reasons that, as discussed in Section 2.3, F◦ requires call-by-value reduction and

the value restriction—and sound formulations end up heavier than those that make this

distinction (Wadler, 1993; Benton et al., 1993; Ahmed et al., 2007).

The above system can be encoded in intuitionistic F◦ easily enough, starting with a

translation on types ddσee

ddαee = α

ddσ1( σ2ee = ddσ1ee ◦→ ddσ2ee

dd∀α. σee = ∀α:◦. ddσee

dd!σee = 1 ?→ ddσee

The corresponding translation on terms is straightforward given the translation on types.4

The only interesting cases involve unrestricted variables and the ! modality; the rest map

dd−ee homomorphically over the term:

ddxee = x ()

dd!tee = λ? :1. ddtee

ddlet !x = t1 in t2ee = (λ◦x:1 ?→ ddσ1ee. ddt2ee) ddt1ee

where t1 has type !σ1
4The translation is technically defined on typing derivations, as is evident from the translation of let !.
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This style of linearity works well with polymorphism—as all types are treated uni-

formly, any type can be substituted for any type variable—and has seen much use in the

literature (Wadler, 1992; Barber, 1997; Bierman et al., 2000; Wadler, 1992). Unfortunately,

limiting unrestricted terms to suspended computations that depend on no linear variables

can make programming quite cumbersome, and it contradicts the programmer’s intuition

that unrestricted values are simply ordinary values that may be used in less restricted

fashions—with !, every unrestricted value must essentially be created and used as a thunk.

Indeed, unrestrictedness is the norm in most programs rather than the exception, and ! is

cumbersome even at base types—the constant 3 would be of type Int, not !Int, and would

thus need to be bound by let ! before it could be duplicated. One might hope to write in

a cleaner surface language and infer all !s and let !s, but such inference has been shown to

be undecidable in the general case (Lincoln and Mitchell, 1992).

2.4.2 Type qualifiers

The second approach to distinguishing linear from unrestricted types uses qualifiers lin (for

“linear”) and un (for “unrestricted”) applied to a collection of pre-types (Ahmed et al.,

2005; Walker, 2005; Tov and Pucella, 2011b). These qualifiers constrain usage, while the

pre-types determine the introduction and elimination forms of values. This separation fa-

cilitates implicit copying and discarding for unrestricted types, yielding a less burdensome

programming model.

Type qualifiers, however, have more complex interactions with polymorphism—in

particular, it raises the question of whether quantification should be over types, pre-types,

or qualifiers, and for maximum expressivity a language must support all three. This

quickly leads to large and complex types; for instance, the type of plus might have as

many as five qualifiers:

plus : (q1 Int)
q4→ (q2 Int)

q5→ (q3 Int)

The relationships among these qualifiers are nontrivial—e.g., q5 must be lin if q1 is—which

can be captured, at the expense of additional complexity, by qualifier-level bounded quan-

tification.5 Qualifiers thus ease the use of unrestricted types but are too unwieldy for a
5Making Int a proper type rather than a pre-type simplifies the type of plus but prohibits certain poly-

morphic functions from accepting integers.
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polymorphic source language—in fact, Wansbrough and Peyton Jones (1999) argue against

similar qualifiers even in an intermediate language.

Systems with qualifiers often feature more than just lin and un, as relevant types (which

allow contraction but not weakening) and affine types fit naturally into the qualifier lattice

between linear and unrestricted types—the ways in which this lattice can be used, how-

ever, depend on what substructural types are used for in the language in question. Ahmed

et al. (2005) and Tov and Pucella (2011b), for instance, use very similar languages for no-

tably different purposes. Clean’s uniqueness types (Hicks et al., 2004; Vries et al., 2008)

can also be seen as a limited form of qualified types—uniqueness differs from linearity,

however, as it refers more to the past (“Has uniqueness been preserved up until now?”)

than to the future (“Will linearity be respected?”).

The use of kinds in lieu of either ! or type qualifiers appears to capture the strengths

of both approaches. As with qualifiers, programming with unrestricted types is natural;

as with !, polymorphism remains simple. Subkinding also plays well with base types: 3

has type Int, which has kind ? (and, by subsumption, kind ◦), while the type of plus is the

simple Int ?→ Int ?→ Int. F◦ thus has flexible polymorphic types without the need for bounded

quantification or other complexities of subtyping in a higher-order setting. It also makes

linearity a property inherent to certain types rather than a property of assumptions or

qualifiers, which fits the idea that certain types are naturally linear or unrestricted. All of

this makes intuitionistic F◦ well suited to extension into a classical setting with a focus on

concurrency, the topic of the next chapter.
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Chapter 3

Classical F◦

Let us now consider its extension to a classical setting, in which processes and interprocess

communication emerge quite naturally. Classical F◦ provides interprocess communication

without unexpected message errors, without resource leaks, and without deadlock—this

last property being one that requires substantially more machinery in languages that start

with a more general process model (Kobayashi, 2002). Before presenting classical F◦, how-

ever, it is worth looking at what other classical linear systems have done, as this will high-

light the novel aspects of classical F◦’s design, which keep classical F◦ close to what is

already familiar in typed functional programming.

The differences between ordinary intuitionistic and classical logic can be seen in their

treatment of negation and disjunction, and the same is true for linear logics. Traditional

presentations of classical linear logic define negation via a dualizing operator (−)‹, suggest-

ing the connection between negation and ‹, a more well-behaved linear representation of

falsity.1 Dualization pushes negation through a proposition (or type) in a manner reminis-

cent of de Morgan’s laws, so in these languages one might see

‹‹ , 1 1‹ , ‹
(σ1 & σ2)

‹ , σ‹1 ⊕ σ‹2 (σ1 ⊕ σ2)‹ , σ‹1 & σ‹2
(σ1 ` σ2)

‹ , σ‹1 ⊗ σ‹2 (σ1 ⊗ σ2)‹ , σ‹1 ` σ‹2
∀α. σ‹ , ∃α. σ‹ ∃α. σ‹ , ∀α. σ‹

1In particular, it is not true that everything follows from ‹; some linear systems do have such an “additive”
false, written usually written 0, that has this property.

34



This dualization is clearly an involution—that is, (σ‹)‹ = σ—satisfying the requirement

that a classical logic support double negation elimination. Classical logics also typically

define implication in terms of disjunction, and indeed( is absent from the above defini-

tion. Linear implication is clearly one of linear logic’s questionably termed multiplicative

connectives, however—like ⊗, it combines and separates sets of linear assumptions—so

it should not be defined in terms of the additive disjunction ⊕. Instead, ( is defined

in terms of a construct new to classical linear logic, a multiplicative disjunction `, pro-

nounced “par”:

σ1( σ2 , σ‹1 ` σ‹2

Classical linear logic is typically formulated as a sequent calculus—having as many con-

nectives as it does, the fact that the introduction of σ is equivalent to the elimination of σ‹

represents a substantial reduction in the number of rules that must be written—and ` is a

natural fit in such a setting, internalizing the comma on the right side of a typing judgment

just as ⊗ internalizes a comma on the left.2

Yet, as convenient as sequent calculi are for proof theory, F◦ aims to suggest modest (if

powerful) extensions to existing functional programming languages, and term languages

for sequent calculi (e.g., the dual calculus (Wadler, 2003)) do not fit the bill. In a natural

deduction style language like F◦, it is not immediately clear how to interpret `—in fact,

the resource-based intuitions commonly invoked for linear connectives (⊗ is possession

of both, & is the ability to make either, ⊕ is already having either one or the other) do

not suggest an intuition for `. Yet there are tantalizing glimpses of concurrency within

classical linear logic—Girard (1987) even refers to the components of ` as communicating.

For these reasons, classical F◦—which is not defined as a sequent calculus—forgoes

` in favor of arrow types, taking the intuitionistic interpretation of negation as implying

false. This leads to double negations that must be explicitly eliminated, the task of one

of the (relatively few) constructs in classical F◦ that were not present in intuitionistic F◦.

These constructs are perhaps best introduced by beginning with the control operators of

Felleisen and Hieb (1992), whose types in an unrestricted setting show a connection to
2Recall that the restriction to a single proposition on the right makes a sequent calculus intuitionistic rather

than classical.
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classical logic (Griffin, 1990; Ong and Stewart, 1997), and considering how they might be

made to cooperate with linearity.

3.1 Motivations, terms, and types

The operators abort and control (a cousin of callcc) enable many interesting behaviors in

a solely unrestricted setting (Felleisen and Hieb, 1992). Their behavior is easily defined

using evaluation contexts:

E
î
control v

ó
−→ (v (λx. abort E

î
x
ó
)

E
î
abort v

ó
−→ v

That is, abort discards the current evaluation context and returns its argument, while con-

trol supplies v—presumed to be a function that accepts a continuation argument—with a

function that uses abort to return to the evaluation context E in which control appeared.

Unlike callcc, control does not duplicate that evaluation context, making it potentially

more compatible with linearity; abort, however, clearly has no place in a linear system, as

it discards an evaluation context, which might well contain linear resources.

Let us consider how control might be redefined without abort, so that it could be used

in a linear setting: invoking the continuation passed to v can be seen as returning an “an-

swer” to the context E, and, if v is linear, this must eventually happen. Rather than hide

E under a continuation function, then, why not conceive of it as another process, wait-

ing for a response? Writing �a� and �a� respectively for the sink (i.e., sending) and source

(i.e., receiving) endpoints of a channel a, a first attempt at reconciling control with a linear

system might forgo abort and instead evaluate to a parallel composition of expressions:

E
î
control v

ó
−→ E

î
control �a�

ó
| v �a�

Evaluating control v now spawns v as a child process; the endpoints of the channel a link

the parent and child processes, with the sink endpoint taking the place of the continuation

function and the source endpoint standing in for v in the parent process. Evaluation of

v �a� can now proceed until �a� is applied, at which point the argument to this application

can be passed back to the parent process:

E
î
control �a�

ó
| E′

î
�a� v

ó
−→ E

î
v
ó
| E′

î
cab
ó

36



The closed channel cab indicates that communication over a is finished; it also allows

the child process to terminate, but, before process termination actually occurs, all linear

resources in E′ must be safely consumed:

e | cab −→ e

All these operations respect linearity, as neither expressions nor evaluation contexts are

duplicated or discarded. Further, as long as the endpoints are linear, the eventual reply

across the channel will always take place.

Yet control, as described above, offers a very poor form of concurrency—the parent

process immediately blocks waiting for the child process to return. For actual parallel

execution, classical F◦ splits the functionality of control across two operations. The first,

go, spawns the child process and passes it the sink endpoint of a newly created chan-

nel, returning the source endpoint to the parent; with type-related details still elided, the

previous example becomes

E
î
go v

ó
−→ E

î
�a�
ó
| v �a�

The second operation, yield, blocks on a source endpoint until the corresponding sink

endpoint is used. While again eliding types and following the running example, yield

behaves as

E
î
yield �a�

ó
| E′

î
�a� v

ó
−→ E

î
v
ó
| E′

î
cab
ó

Perhaps surprisingly, this is nearly all that needs to be added to F◦ in moving from an

intuitionistic to a classical (and concurrent) setting, though the examples given so far have

been simplified slightly. Figure 3.1 gives the full list of new syntax: in addition to go and

yield, classical F◦ requires the type ‹, potentially negated type variables ω, a strictly linear

kind •, and channel typing contexts Π. The processes P that expressions may evaluate into

are very simple, featuring only parallel composition P1 | P2 and channel binding νa:ρ. P ,

both with syntax taken from the π-calculus (Milner et al., 1992).

The full extent of these new constructs’ functionality, however, has not yet been shown.

It is most instructive to demonstrate this in conjunction with these new constructs’ typing

rules, as their logical and operational interpretations inform each other significantly.
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ω ::= α
∣∣∣ ω̃ potentially negated type variables

κ ::= . . .
∣∣∣ • new kinds

τ, ρ ::= . . .
∣∣∣ ω ∣∣∣ ‹ new types

e ::= . . .
∣∣∣ goρ e

∣∣∣ yield e
∣∣∣ �a� ∣∣∣ �a� ∣∣∣ cab new expressions

v ::= . . .
∣∣∣ �a� ∣∣∣ �a� ∣∣∣ cab new values

E ::= . . .
∣∣∣ goρ E

∣∣∣ yield E new evaluation contexts

P ::= e
∣∣∣ P | P

∣∣∣ νa:ρ. P processes

Π ::= ·
∣∣∣ Π, a·ρ

∣∣∣ Π, ã·ρ
∣∣∣ Π, a:ρ channel contexts

Figure 3.1: New syntax for classical F◦

The kind • classifies those types that can serve as the type annotations on channels,

appearing in ν binders and channel contexts Π. The examples presented so far use only

two types in this manner, ‹ and •→. Types of the form (τ •→‹) •→‹ occur frequently, so let

us abbreviate such a type as �τ�, pronounced “source of τ”.

As this notation suggests, yield mediates between the types �τ� and τ—in other words,

it provides double negation elimination, making its typing straightforward:

[T-YIELD]
Γ; ∆; Π ` e : �τ�

Γ; ∆; Π ` yield e : τ

A double negation elimination means more than simply receiving a value, however; to see

how much more, let us turn to go.

The earlier examples portrayed go as spawning processes that simply compute values

and return them. A child process that communicates by returning a single value of type

τ before exiting requires a channel sink endpoint of type τ •→ ‹, so let us consider τ •→ ‹
to be the protocol type of such a channel. The kind • classifies exactly these protocol types,

which by convention are written ρ. In fact, go can spawn processes with any protocol type:

its argument must have the type ρ •→ ‹ for some ρ; it will be given a sink endpoint �a� of

type ρ and eventually terminate with a closed channel cab of type ‹. (Because go must

also create the ν binder for a, which includes a type annotation, it is in fact written goρ in
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[K-ANSWER] Γ ` ‹ : • [K-DUAL]
Γ ` ω : •
Γ ` ω̃ : •

[K-ARROW]
Γ ` τ1 : κ1 Γ ` τ2 : κ2 κ = • =⇒ κ2 = •

Γ ` τ1 κ→ τ2 : κ

[K-WITH’]
Γ ` τ1 : • Γ ` τ2 : •

Γ ` τ1 & τ2 : •

Figure 3.2: New and modified kinding rules for classical F◦

keeping with the convention established for additive sum injection.)

Seeing protocol types as the types of sink endpoints, which types make sense as pro-

tocols? A protocol might specify that a value of type τ is to be sent before continuing

according to rho, the rest of the protocol, as has been demonstrated (τ •→ ρ); it might spec-

ify that a choice between protocols ρ1 and ρ2 is to be made (ρ1 & ρ2); it might specify that

a type of kind κ is to be sent over the channel (∀α:κ. ρ); or it might be complete (‹).3 The

revised kinding rules in Figure 3.2, along with those already presented in Figure 2.3, allow

exactly these types to be classified by •—which serves to both restrict the shapes of types

which may be considered as protocols and to provide a linear kind that, unlike ◦, cannot

also classify unrestricted types—and the subkinding order is as would be expected:

6

◦

? •

Source endpoints need types as well. As yield will be applied to these endpoints, the type

of a source endpoint should be doubly negated. If �a� has type ρ, the type of �a� is the
3In linear logic, the protocol type connectives are said to be negative, meaning that their introduction forms

are invertible. That is, no choice is encoded in their construction—in contrast to the choice of injection for ⊕,
the choice of resource split for ⊗, and the choice encapsulated type for ∃, all of which are considered positive
connectives.
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doubly negated dual ρ̃, defined as follows:‡τ •→ ρ , �τ ⊗ ρ̃�·�ρ1 & ρ2 , �ρ̃1 ⊕ ρ̃2�·�∀α:κ. ρ , �∃α:κ. ρ̃�‹‹ , �1�

ω̃ , ω̃

For α of kind • there can be no further computation of α̃ until another type is substituted

for α, and similarly for ˜̃α—ω represents a type variable that has been dualized an arbitrary

number of times. The definition of substitution must be extended as this syntax suggests,

so that such suspended dualizations are computed immediately:

{α 7→ ρ}α̃ = ρ̃

{α 7→ ρ} ˜̃α = ˜̃ρ
...

This dualization is exactly the left-hand column in the definition of (−)‹ given at the be-

ginning of the chapter, excepting that ` has been replaced by •→ and that double negations

make explicit where classical reasoning—that is, interprocess communication—is used.

These double negations also ensure that every ρ̃ is itself a protocol type, a vital property if

interprocess communication is to be flexible. It is not the case that ˜̃ρ = ρ, but these types

are isomorphic, as is demonstrated in Section 3.2.2.

The type level behavior of go is now clear: goρ witnesses the logical isomorphism

between the intuitionistic negation of ρ—that is, ρ •→‹—and its doubly negated dual ρ̃:

[T-GO]
Γ; ∆; Π ` e : ρ •→‹
Γ; ∆; Π ` goρ e : ρ̃

Figure 3.3 gives the process evaluation rules for classical F◦. Rule EP-GO implements

go as just described, but aside from bookkeeping of types it behaves exactly as seen previ-

ously. The next three rules show how yield allows synchronous communication between

processes on channels at various types; in each case evaluation takes care of the outer-

most type constructor on the channel, reducing the type annotation on the ν binding—a
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[EP-GO]
a not free in E

î
goρ v

ó
E
î
goρ v

ó
−→ νa:ρ. (E

î
�a�
ó
| v �a�)

[EP-TRANSFER] νa:τ •→ ρ. E1

î
yield �a�

ó
| E2

î
�a� v

ó
−→ νa:ρ. E1

î
(v, �a�)

ó
| E2

î
�a�
ó

[EP-BRANCH] νa:ρ1 & ρ2. E1

î
yield �a�

ó
| E2

î
�a�.i

ó
−→ νa:ρi. E1

î
injρ1⊕ρ2i �a�

ó
| E2

î
�a�
ó

[EP-TTRANSFER]
νa:∀α:κ. ρ. E1

î
yield �a�

ó
| E2

î
�a� [τ ]

ó
−→

νa:ρ. E1

î
pack α:κ = τ in (�a� : ρ̃)

ó
| E2

î
�a�
ó

[EP-CLOSE] νa:‹. E1

î
yield �a�

ó
| E2

î
�a�
ó
−→ E1

î
()
ó
| νa:‹. E2

î
cab
ó

[EP-DONE] P | νa:‹. cab −→ P

[EP-PAR]
P1 −→ P ′1

P1 | P2 −→ P ′1 | P2
[EP-NEW]

P −→ P ′

νa:τ. P −→ νa:τ. P ′

Figure 3.3: Process evaluation rules for classical F◦

bit of bookkeeping required for soundness, as the elimination form used at a sink endpoint

uniquely identifies a single process evaluation rule that applies.

Rule EP-TRANSFER sends a value across a channel as shown previously, but this time

the yield produces a pair (as ⊗ is the dual of →) of the transferred value and the source

endpoint itself, now at different type—i.e., the next step of the protocol. EP-BRANCH

relays the projection taken from the sink endpoint by means of an injection of the source

endpoint (as⊕ is the dual of &), again adjusting the channel’s type annotation accordingly.

EP-TTRANSFER sends a type across a channel exactly as EP-TRANSFER sends a value, and

likewise the source endpoint appears within an existential package (as ∃ is the dual of ∀).

Rule EP-CLOSE similarly involves interaction between two processes, but the interac-

tion in this case is trivial: the yield does not need to block until the other process is in any

particular state, the channel type annotation does not change, and no information is com-

municated; yield simply returns (), while the sink endpoint �a� is replaced by the closed

channel cab, both of which are of type ‹. EP-DONE allows a process consisting of a closed

channel and its ν binder to vanish, while EP-PAR and EP-NEW allow evaluation to take

place within a non-atomic process—it is sufficient, in EP-PAR, to allow evaluation only on
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[EQP-REFL] P ≡ P [EQP-SYM]
P2 ≡ P1

P1 ≡ P2
[EQP-TRANS]

P1 ≡ P2 P2 ≡ P3

P1 ≡ P3

[EQP-COMM] P1 | P2 ≡ P2 | P1 [EQP-PAR]
P1 ≡ P ′1 P2 ≡ P ′2
P1 | P2 ≡ P ′1 | P ′2

[EQP-NEW]
P ≡ P ′

νa:ρ. P ≡ νa:ρ. P ′
[EQP-ASSOC] (P1 | P2) | P3 ≡ P1 | (P2 | P3)

[EQP-SWAP] νa1:ρ1. νa2:ρ2. P ≡ νa2:ρ2. νa1:ρ1. P

[EQP-EXTRUDE]
a not free in P2

(νa:ρ. P1) | P2 ≡ νa:ρ. (P1 | P2)

Figure 3.4: Process equivalence rules for classical F◦

the left side of a parallel composition, as, like in many π-calculus-inspired systems, pro-

cess evaluation in classical F◦ is always considered with respect to an equivalence relation

≡ on processes, given in Figure 3.4. The definition of ≡ is completely standard, establish-

ing general properties of equivalence relations, commutativity and associativity of parallel

composition, and scope extrusion and reordering for the binding of channel names.

Two final points must be addressed by operational semantics: because �τ� is simply

(τ •→‹) •→‹, it is possible to apply source endpoints and to yield on expressions other than

those that evaluate to source endpoints. Figure 3.5 gives appropriate congruence rules for

these situations. For the case of a source in the function position of an application, recall

that other term languages for classical logics (Girard, 1987; Parigot, 1992) insist that the

interaction between terms of a type and its negation not depend on the ordering of those

terms. Thus, applying �a� of type (τ •→‹) •→‹ to v of type τ •→‹ should be equivalent to

yielding on �a� and supplying the result to v. Rule E-SOURCE makes this so.

The case of yielding on other sorts of values is reminiscent of the briefly considered

linear variant of control, which combined the functionality of go and yield. The rules E-

LAMBDA and EP-SINK thus synthesize a go in these cases, spawning a new process with

a simple protocol and waiting for its reply. These rules must also create let expressions

around the modified yield expressions, as, unlike in the presentation that followed con-
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[E-SOURCE] �a� v −→ v (yield �a�)

[E-LAMBDA]
u, z /∈ fv(e)

yield λ•x:τ •→‹. e −→ let (z, u) = yield (goτ
•→‹ λ•x:τ •→‹. e) in yield u; z

[EP-SINK] νa:�τ�. E
î
yield �a�

ó
−→ νa:�τ�. E

î
let (z, u) = yield (goτ

•→‹ �a�) in yield u; z
ó

Figure 3.5: Congruence rules for classical F◦

trol, it is not actually the case that yield (goτ
•→‹ . . .) will simply return a value of type τ ;

dualization instead leads to the isomorphic τ ⊗ �1�.

Though these congruence rules may appear unintuitive in isolation, they serve to com-

plete the picture wherein standard logical connectives serve double duty as constructors

for session types, and the behavior they specify is exactly what is needed in these corner

cases. The next section will argue, through a series of examples, that this is indeed a com-

pelling picture, demonstrating how the modest machinery introduced thus far can scale

up.

3.2 Examples

Concurrency as presented in classical F◦ so far has been very simple, conveying simply one

value, type, or bit of branching information per message in an apparently unidirectional

manner. This section demonstrates that bigger constructs can be built from these simple

pieces, starting with one of the simplest well-known concurrency primitives and ending

with an idealized Diffie-Hellman handshake protocol.

3.2.1 Futures

A future (Niehren et al., 2006) is simply a sub-computation to be calculated in a separate

thread; the main computation will wait for this thread to complete when the future’s value
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is needed. This simple form of concurrency is easy to express in classical F◦:

Future[τ ] , �τ ⊗ 1�

future : ∀α:◦. (1 ◦→ α) ?→ Future[α]

future , Λα:◦. λ◦x:1 ◦→ α. goα
•→‹ λ◦k:α •→‹. k (x ())

wait : ∀α:◦. (Future[α]) ?→ α

wait , Λα:◦. λ◦f :Future[α]. let (z, u) = yield f in yield u; z

The main process passes a thunk to its newly spawned child; this child applies the thunk

and sends back the result.

Visually, the run-time behavior of E
î
future [τ ] g

ó
, where g () −→∗ v and E

î
−
ó
−→∗

E′
î
−
ó
, is

E
î
future [τ ] g

ó
∗�� ∗&&

E
î
�a�
ó

∗��

�a� (g ())
aoo

∗��
E′
î
�a�
ó

�a� vaoo

The connection between endpoints of a channel at a given moment in time is given by the

 arrow. Similarly, for such some �a� of type Future[τ ], we have

E′′
î
wait [τ ] �a�

ó
∗

a

��

�a� vaoo

∗

a

��

E′′
î
v
ó

cab

Here the a label on evaluation arrows indicates that communication over a has occurred.

Since a supports no further communication afterwards—its sink endpoint has been re-

placed by the closed channel cab—the  connection is then removed. Recall that such a

lone cab indicates a completed process; the child process in this example is now finished

and can disappear.
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3.2.2 Linking channel endpoints

Given vsrc of type �τ� and vsnk of type τ ◦→‹—which may or may not be literal source and

sink endpoints—one might wish to join the two such that vsrc flows to vsnk without making

the parent process yield on vsrc. Doing so, however, does not free the parent from the need

to return a value of type ‹—this cannot be the value that applying vsnk would produce, so

it must come from some other process.

The solution relies on the fact that closed channels are first class objects and can thus

be passed from one process to another:

link : ∀α:◦. �α� ?→ (α •→‹) ◦→‹
link , Λα:◦. λ?x:�α�. λ◦f :α •→‹. yield λ•g:‹ •→‹. yield g;x f

Note that the final x f will step to f (yield x) via E-SOURCE; similarly, E-LAMBDA and

E-SOURCE will insert go‹ •→‹ and go‹ immediately following the yields that are already

present. A call to link [τ ] vsrc vsnk thus spawns two processes: the first spawns the second

with the trivial protocol ‹ and the first child’s own sink endpoint, �a�, as its body; then it

proceeds to wait and link the original arguments. The second applies its body (�a�) to its

own trivial sink endpoint (�b�) of type ‹—which may step immediately to the closed chan-

nel cbb—thus uses �a� to pass either �b� or cbb (depending on the order in which parallel

evaluations are resolved) back to the parent process. This is illustrated in Figure 3.6 for the

case where the innermost yield resolves before the outermost—the other case is function-

ally equivalent. The notation YIELD(e) abbreviates the now common pattern of yielding

to receive a product with type �1� on the right, immediately unpacking the resulting pair,

and eliminating the right component via another yield and sequencing.

Bidirectional communication So far we have seen child processes send information back

to their parents. While the constructs of classical F◦ do immediately suggest this sort of

communication, exchanges in both directions are quite possible; the unidirectional appear-

ance of dualization simply requires functions that explicitly witness the isomorphism from˜̃ρ to ρ.

For example, while the dual of τ •→ ρ is �τ ⊗ ρ̃�, the dual of �τ ⊗ ρ� is the somewhat

unwieldy �((τ ⊗ ρ) •→ ‹) ⊗ �1�� rather than the τ •→ ρ̃ for which one might have hoped.
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cab vsnk (yield vsrc)

YIELD(e) , let (z, u) = yield e in yield u; z

Figure 3.6: Evaluation of link [τ ] vsrc vsnk

Yet the former can be transformed into the latter with a yield operation, an uncurrying, a

partial application, and a go; these steps can be combined into a function send:

send : ∀α:◦. ∀β:•. ‚��α⊗ β� ?→ α •→ β̃

send , Λα:◦. Λβ:•. λ?s:‚��α⊗ β�.
let (f, u) = yield s in

yield u;λ•x:α. goβ λ•p:β. f (x, p)

Similarly, the dual of �ρ1⊕ρ2� is �((ρ1⊕ρ2) •→‹)⊗�1��; to coerce it to ρ̃1 & ρ̃2, define select:

select : ∀α:•. ∀β:•. ‚��α⊕ β� ?→ α̃& β̃

select , Λα:•. Λβ:•. λ?s:‚��α⊕ β�.
let (f, u) = yield s in

yield u; 〈goα λ•p1:α. f injα⊕β1 p1,goβ λ•p2:β. f injα⊕β2 p2〉

Unfortunately, the dependency present in universal and existential types makes it impos-

sible to write a general purpose coercion send type from‰��∃α:κ. β� to ∀α:κ. β̃—those types,
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as written, miss the fact that any interesting type substituted for β will include occurrences

of α. Directionality can still be reversed on a case-by-case basis, however, and Section 4.5

discusses what additional quantification is necessary to implement send type.

To demonstrate send, let us examine the identity function echo, which spawns a child

process, passes its argument to that child, then receives that argument back:

reply : ∀α:◦. �α⊗ (α •→‹)� •→‹
reply = Λα:◦. λ•h:�α⊗ (α •→‹)�. let (y, g) = yield h in g y

echo : ∀α:◦. α ?→ α

echo = Λα:◦. λ?x:α. let (z, u) = yield

send [α] [α •→‹] (go�α⊗(α
•→‹)� reply [α]) x

in yield u; z

Here reply is the body of the child process that will receive echo’s argument and send it

back. (The type of reply could have been written as the equivalent ∀α:◦. �α⊗ (α •→‹) •→‹�;
this notation of the type would better reflects how it is used within echo, whereas the

notation given above more closely matches its definition.)

The execution of echo [τ ] v for some v of type τ is shown in Figure 3.7. We can see how,

while the initial spawning of the reply process orients the channel a in the usual child-to-

parent direction, the machinery of send spawns another process that sets up a channel b in

the opposite direction; afterwards, a third channel c is established in the original direction.

All this is facilitated quite naturally by classical F◦’s congruence rules.

It is worth noting that, while v moves among several processes, at no point does a cycle

exist in the communication structure—the arrows—of Figure 3.7. That such acyclicity

always holds is crucial to the proof of soundness in Section 3.3.1.

3.2.3 Diffie-Hellman key exchange

So far we have seen relatively small examples. As a larger demonstration of the protocols

expressible in classical F◦, let us consider Diffie-Hellman key exchange, which is defined

as follows:
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Figure 3.7: Evaluation of echo [τ ] v

1. Alice and Bob select secret integers a and b.

2. Alice and Bob exchange ga mod p and gb mod p in the clear.

3. Alice and Bob compute the shared secret (gb)a = (ga)b mod p and use it to encrypt

further communication.

Here g is a publicly known generator with certain properties, often 2 or 5, and p is a simi-

larly known large prime number. The shared secret (gb)a = (ga)b mod p cannot feasibly be

computed from the publicly known values ga and gb.
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For purposes of this example, let us augment F◦ with the types Int and String of kind ?,

along with the following operations, which behave as suggested by their names:

big random : 1 ?→ Int

pow mod : Int ?→ Int ?→ Int ?→ Int

less than : Int ?→ Int ?→ 1⊕ 1

encrypt : ∀α:?. Int ?→ α ?→ String

decrypt : ∀α:?. Int ?→ String ?→ 1⊕ α

As was done in Section 2.2, this example uses standard single variable let expressions in

addition to those that eliminate multiplicative products.

There is, of course, no network over which Alice and Bob can communicate in F◦, nor

is there a mechanism by which two separate expressions might later learn of each other, so

let us define Alice as a child process spawned by Bob for purposes of this demonstration.

If either party is allowed to quit the handshake at any time (a very reasonable allowance),

and if the post-handshake portion of the exchange is represented by α, then the protocol

from Alice’s perspective is

Alice[α] = Int •→ �‹⊕ �Int⊗ (‹ & α)��

Reading this type reveals exactly how Alice participates in the handshake: she sends an Int

(her public key), then waits to see whether Bob decided to end the exchange or to continue;

if the latter, Alice waits for an Int (Bob’s public key) and then may decide whether to abort

or continue as α.

The function dh alice, which serves as the body for the child process that acts as Alice,

takes as arguments the post-handshake protocol type α, the Diffie-Hellman parameters g

and p, a threshold n which gb mod p must be no smaller than (a questionable requirement

in practice but one that allows for simple “abort” branches), a continuation c to handle the
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post-handshake part of the exchange, and an initial channel of type Alice.

dh alice : ∀α:•. Int ?→ Int ?→ Int ?→ (Int ?→ α •→‹) •→ Alice •→‹
dh alice = Λα:•. λ?g:Int. λ?p:Int. λ?n:Int. λ•c:Int ?→ α •→‹. λ•s:Alice.

let a = big random () in

case yield (s (pow mod g a p)) of

inj1 s1 7→ s1

| inj2 s2 7→ let (b, s3) = yield s2 in

case less than b n of

inj1 u1 7→ u1; s3.1

| inj2 u2 7→ u2; c (pow mod b a p) s3.2

Since Alice’s session is the child process, she follows through with an abort by simply

returning the completed session (of type ‹) at the appropriate point, whether the decision

to abort was made by her or by Bob.

An implementation of Bob’s side of the exchange—i.e., the parent process—looks very

similar. Because Bob is the parent, dh bob must take its own continuation (cb) as well as

Alice’s (ca); it immediately launches dh alice with ca as its own process, then proceeds with

its side of the Diffie-Hellman handshake. An additional type argument β is also provided,

representing the final type of the exchange should it be successful—in cases where the

handshake fails, an error message is returned instead. (At times dh bob must make use

of the select and send functions introduced earlier. Their type arguments are always the

left and right components of the portion of Alice that has yet to be consumed—i.e., the

remainder of the protocol.)
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dh bob : ∀α:•. ∀β:◦. Int ?→ Int ?→ Int ?→ (Int ?→ α •→‹) ◦→ (Int ?→ α̃ ◦→ β) ◦→ String⊕ β

dh bob = Λα:•. Λβ:◦. λ?g:Int. λ?p:Int. λ?n:Int. λ◦cA:Int ?→ α •→‹. λ◦cB:Int ?→ α̃ ◦→ β.

let (a, s) = yield (goAlice[α] (dh alice [α] g p n cA)) in

let s0 = select [‹] [�Int⊗ (‹ & α)�] s in

case less than a n of

inj1 u1 7→ u1; s0.1; injString⊕β
1 "Alice’s public key rejected."

| inj2 u2 7→ u2; let s1 = s0.2 in

let b = big random b in

let s2 = send [Int] [‹ & α] s1 (pow mod g b p) in

case yield s2 of

inj1 u 7→ yield u; injString⊕β
1 "Bob’s public key rejected."

| inj2 s3 7→ injString⊕β
2 (cB (pow mod a b p) s3)

The continuation functions representing the bodies of Alice and Bob’s respective sides

of the exchange can be as simple or as complex as necessary. If Alice is simply going to

send an encrypted integer and quit—in which case the remainder of the protocol from

Alice’s perspective (α) is String •→‹, as every encrypted value is a string—then this can be

answer : Int ?→ (String •→‹) •→‹
answer = λ?k:Int. λ•s:String •→‹. s (encrypt [Int] k 42)

Any corresponding continuation for Bob must follow the opposite side of the communi-

cation protocol—i.e., �String ⊗ 1�—but, apart from this constraint, it can behave however

it likes. If 1⊕ Int is supplied for β, Bob can attempt to decrypt Alice’s message and simply

return it if possible with

broadcast : Int ?→ �String⊗ 1� ◦→ 1⊕ Int

broadcast = λ?k:Int. λ◦s:�String⊗ 1�. let (z, u) = yield s in yield u; decrypt [Int] z
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While illustrating its evaluation along the lines of the previous examples would be

tedious, there would be no surprises involved in showing that, with very high probability

for any sufficiently large prime number p,

dh bob [String •→‹] [1⊕ Int] 2 p 4294967296 answer broadcast −→∗ inj2 (inj2 42)

More complex continuations for Alice and Bob would likely use send and select for bidi-

rectional communication, and, since the possibility of a decryption error exists at every

step, both sides must be on guard for early termination—the type system will stop either

party from forgetting that the other may have quit.

3.3 Metatheory

Having demonstrated the applicability of classical F◦, it is now time to verify its soundness.

As in Section 2.3, this will include both a traditional soundness proof and arguments based

on semantics augmented with annotations.

The expression typing rules for classical F◦ not already presented in Section 3.1 can be

seen in Figure 3.9. Aside from the addition of the channel context Π, most of these rules are

exactly as they appeared in Figure 2.5, although T-LAM now includes the same condition

present in K-ARROW, requiring that the result type of a function have kind • if the func-

tion type itself has that kind. Figure 3.8 updates nondeterministic context extension for

classical F◦ by adding Π; note that B-LIN suffices for variables of kind •, so no additional

rule is needed.

Rules T-SINK, T-SOURCE, and T-CLOSED type channel endpoints and closed channels

according to the channel context Π—like ∆, Π is linear and must contain exactly one bind-

[B-LIN]
Γ ` τ : ◦ Γ; ∆, x:τ ; Π ` e:τ ′ x /∈ Γ,∆

[Γ; ∆], x:τ ; Π ` e:τ ′

[B-UN]
Γ ` τ : ? Γ, x:τ ; ∆; Π ` e:τ ′ x /∈ Γ,∆

[Γ; ∆], x:; Πτ ` e:τ ′

Figure 3.8: Auxiliary judgments for classical F◦ expression typing
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[T-LVAR] Γ;x:τ ; · ` x : τ [T-UVAR]
x:τ ∈ Γ

Γ; ·; · ` x : τ

[T-LAM]
[Γ; ∆], x:τ1; Π ` e : τ2 κ = ? =⇒ ∆ = · κ = • =⇒ Γ ` τ2 : •

Γ; ∆; Π ` λκx:τ1. e : τ1
κ→ τ2

[T-APP]
Γ; ∆1; Π1 ` e1 : τ1

κ→ τ2 Γ; ∆2; Π2 ` e2 : τ1

Γ; ∆1 d∆2; Π1 dΠ2 ` e1 e2 : τ2

[T-APAIR]
Γ; ∆; Π ` e1 : τ1 Γ; ∆; Π ` e2 : τ2

Γ; ∆; Π ` 〈e1, e2〉 : τ1 & τ2
[T-SELECT]

Γ; ∆; Π ` e : τ1 & τ2

Γ; ∆; Π ` e.i : τi

[T-TLAM]
Γ, α:κ; ∆; Π ` v : τ α /∈ Γ

Γ; ∆; Π ` Λα:κ. v : ∀α:κ. τ
[T-TAPP]

Γ; ∆; Π ` e : ∀α:κ. τ ′ Γ ` τ : κ

Γ; ∆; Π ` e [τ ] : {α 7→ τ}τ ′

[T-UNIT] Γ; ·; · ` () : 1 [T-SEQ]
Γ; ∆1; Π1 ` e1 : 1 Γ; ∆2; Π2 ` e2 : τ

Γ; ∆1 d∆2; Π1 dΠ2 ` e1; e2 : τ

[T-MPAIR]
Γ; ∆1; Π1 ` e1 : τ1 Γ; ∆2; Π2 ` e2 : τ2

Γ; ∆1 d∆2; Π1 dΠ2 ` (e1, e2) : τ1 ⊗ τ2

[T-LET]
Γ; ∆1; Π1 ` e1 : τ1 ⊗ τ2 [Γ; ∆2], x1:τ1, x2:τ2; Π2 ` e2 : τ

Γ; ∆1 d∆2; Π1 dΠ2 ` let (x1, x2) = e1 in e2 : τ

[T-IN]
Γ; ∆; Π ` e : τi Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ; ∆; Π ` injτ1⊕τ2i e : τ1 ⊕ τ2

[T-CASE]
Γ; ∆1; Π1 ` e : τ1 ⊕ τ2 [Γ; ∆2], x1:τ1; Π2 ` e1:τ [Γ; ∆2], x2:τ2; Π2 ` e2:τ

Γ; ∆1 d∆2; Π1 dΠ2 ` case e of inj1 x1 7→ e2 | inj2 x2 7→ e2 : τ

[T-PACK]
Γ; ∆; Π ` e : {α 7→ τ}τ ′

Γ; ∆; Π ` pack α:κ = τ in (e : τ ′) : ∃α:κ. τ ′

[T-UNPACK]
Γ; ∆1; Π1 ` e1 : ∃α:κ. τ [Γ, α:κ; ∆2], x:τ ; Π2 ` e2 : τ ′

Γ; ∆1 d∆2; Π1 dΠ2 ` unpack (α, x) = e1 in e2 : τ ′

[T-SINK] Γ; ·; a·ρ ` �a� : ρ [T-SOURCE] Γ; ·; ã·ρ ` �a� : ρ̃

[T-CLOSED] Γ; ·; a:‹ ` cab : ‹

Figure 3.9: Other expression typing rules for classical F◦
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§ ::= ·
∣∣∣ ·̃ ∣∣∣ :

[BP-NIL] [], a§ρ = [a§ρ] [BP-HEAD] Π::Π, a§ρ = Π, a§ρ::Π

[BP-TAIL]
Π, a§ρ = Π

′

Π::Π, a§ρ = Π::Π
′

[UC-EMPTY] · ∪̂ · = ·

[UC-LEFT]
Π1 ∪̂ Π2 = Π a 6∈ dom(Π)

Π1, a§ρ ∪̂ Π2 = Π, a§ρ
[UC-RIGHT]

Π1 ∪̂ Π2 = Π a 6∈ dom(Π)

Π1 ∪̂ Π2, a§ρ = Π, a§ρ

[UC-SPLIT1]
Π1 dΠ2 = Π a 6∈ dom(Π)

Π1, ã·ρ ∪̂ Π2, a·ρ = Π, a:ρ
[UC-SPLIT2]

Π1 dΠ2 = Π a 6∈ dom(Π)

Π1, a·ρ ∪̂ Π2, ã·ρ = Π, a:ρ

[UC*-SINGLE]
⋃̂

[Π] = Π [UC*-SPLIT]
Π1 ∪̂ Π2 = Π

⋃̂
Π1 = Π1

⋃̂
Π2 = Π2⋃̂

Π1,Π2 = Π

[UL-NIL] [] d [] = []

[UL-LEFT]
Π1 d Π2 = Π

Π::Π1 d Π2 = Π::Π
[UL-RIGHT]

Π1 d Π2 = Π

Π1 d Π::Π2 = Π::Π

[UP-NIL] [] d̂ [] = [] [UP-CONS]

⋃̂
Π
′
= Π′ Π

′
1 d Π

′
2 = Π

′
Π1 d̂ Π2 = Π

Π
′
1,Π1 d̂ Π

′
2,Π2 = Π′ ::Π

Figure 3.10: Auxiliary judgments for classical F◦ process typing

[TP-EXP]
·; ·; Π;` e : τ

[Π] ` e : τ
[TP-NEW]

Π, a:ρ ` P : τ

Π ` νa:ρ. P : τ

[TP-PARLEFT]
Π1 ` P1 : τ Π2 ` P2 : ‹

Π1 d̂ Π2 ` P1 | P2 : τ

[TP-PARRIGHT]
Π1 ` P1 : ‹ Π2 ` P2 : τ

Π1 d̂ Π2 ` P1 | P2 : τ

Figure 3.11: Process typing rules for classical F◦
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ing at these leaf rules. A channel context binding may be written a·ρ, ã·ρ, or a:ρ depending

on whether it represents possession of the sink endpoint, the source endpoint, or both

endpoints. Only the closed channel cabmay be typed with both endpoints, and it must be

given the type ‹; a binding of a·ρ gives �a� the type ρ, while ã·ρ gives �a� the type ρ̃.

Reasoning about type soundness requires a notion of a well-typed process, written Π `

P : τ , where Π is a list of channel contexts. Process typing rules are given in Figure 3.11.

Rule TP-EXP type checks atomic processes—that is, expressions—with an empty Γ and ∆

(as process-level binding involves only channels) and with only a single Π. Rule TP-NEW

extends one of the channel contexts in Π at a ν binder. For parallel composition, recall that

every atomic process apart from the original should eventually terminate with some cab of

type ‹; rules TP-PARLEFT and TP-PARRIGHT thus require that one of their components

always have type ‹ and therefore give the type of the other.

Figure 3.10 defines the n-ary nondeterministic channel context extension used by TP-

NEW as well as the channel context splitting relation d̂ used by TP-PARLEFT and TP-

PARRIGHT. The definition of d̂ is surprisingly involved, but essentially it entails dividing

a list of contexts into two lists of contexts (via d), where each context can itself be split (via

∪̂) into additional contexts, with each split of one context into two being accompanied by

at most one division of an a:ρ binding into an a·ρ binding on one side an an ã·ρ on the

other. The resulting tree structure of context splits ensures that, in any well-typed process

of the form P1 | P2, there can be at most one channel for which one endpoint is in P1 and

the other is in P2. This restriction substantially cuts down the set of well-typed processes

and, as will be seen shortly, proves crucial for type soundness.

3.3.1 Standard soundness

Standard soundness is once again defined in terms of preservation (well-typed terms that

step always step to well-typed terms) and progress (well-typed non-values can always

take a step). In the case of classical F◦, while preservation is applicable to both expres-

sions and processes, progress can only be a property of well-typed processes, as there are

certainly well-typed expressions that require the process evaluation rules in order to take

a step. It is worth noting that this standard definition of soundness, by ruling out stuck
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terms, guarantees that classical F◦ programs are free from deadlocks.

Preservation on expressions is a straightforward extension of what was presented in

Section 2.3.1:

Lemma 13 (Substitution).

1. If Γ1, α:κ′,Γ2 ` τ : κ and Γ1 ` τ ′ : κ′, then Γ1, {α 7→ τ ′}Γ2 ` {α 7→ τ ′}τ : κ.

2. If Γ1, α:κ′,Γ2; ∆; Π ` e : τ and Γ1 ` τ ′ : κ′,

then Γ1, {α 7→ τ ′}Γ2; {α 7→ τ ′}∆; {α 7→ τ ′}Π ` {α 7→ τ ′}e : {α 7→ τ ′}τ .

3. If Γ1, x:τ ′,Γ2; ∆; Π ` e : τ and Γ1; ·; · ` e′ : τ ′, then Γ1,Γ2; ∆; Π ` {x 7→ e′}e : τ .

4. If Γ; ∆1, x:τ ′,∆2; Π ` e : τ and Γ; ∆′; Π′ ` e′ : τ ′,

then Γ; ∆1 d∆′ d∆2; Π dΠ′ ` {x 7→ e′}e : τ .

Proof. The various cases of substitution are simple extensions of the cases for Lemma 6.

The fact that ρ̃ has kind •whenever ρ does—and that ρ̃ is not defined otherwise—is crucial

for type substitution: if α‹ is accepted as a protocol type, any legal substitution of τ for α

must yield a protocol type.

Channel contexts Π are linear and thus are treated analogously to linear contexts ∆,

but channels themselves are not variables and are not subject to substitution.

The obvious extensions to Lemma 7 and Lemma 8 also hold:

Lemma 14. If Γ; ∆; Π ` v : τ and Γ ` τ : ?, then ∆ = · and Π = ·.

Proof. Simple induction on the typing derivation.

Lemma 15 (Permutation). If Γ; ∆; Π ` e : τ , ∆′ is a permutation of ∆, and Π′ is a permutation

of Π, then Γ; ∆′; Π ` e : τ .

Proof. Induction on the typing derivation and straightforward reasoning about permuta-

tions and the d relation.
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Lemma 16 (Expression preservation). If Γ; ∆; Π ` e : τ and e −→ e′, then Γ; ∆; Π ` e′ : τ .

Proof. As Lemma 9; note that E-LAMBDA is the only new evaluation rule that does not

operate on the process level, and it clearly preserves typing.

Preservation and progress for processes are more complex—naturally, as most of the

evaluation new to classical F◦ happens at the process level—and must be defined relative

to the process equivalence relation ≡. To this end, ≡must be shown to preserve typing:

Lemma 17 (Preservation under ≡). If Π ` P :τ and P ≡ P ′, then Π ` P ′:τ .

Proof. Induction on the process typing derivation; requires associativity of d̂.

Also required is well-typedness of evaluation contexts, written Γ; ∆; Π ` E :
î
τ
ó
τ ′ and

defined to be true whenever, for all e, ∆′, and Π′ such that Γ; ∆′; Π′ ` e : τ , it is the case that

Γ; ∆d∆′; ΠdΠ′ ` E
î
e
ó

: τ ′. Reasoning about the communication rules, which change the

expression plugged into an evaluation context, requires knowing that the decomposition

of a well-typed expression e into E
î
e′
ó

always leads to a well-typed E and e′ under the

appropriate contexts:

Lemma 18 (Well-typed decomposition). If Γ; ∆; Π ` e : τ and e = E
î
e′
ó
, then there exist

∆1, ∆2, Π1, Π2, and τ ′ such that ∆ = ∆1 d ∆2, Π = Π1 d Π2, Γ; ∆1; Π1 ` e : τ ′, and

Γ; ∆2; Π2 ` E :
î
τ ′
ó
τ .

Proof. Induction on the shape of E and reconstructing the typing derivations.

And, of course, a permutation lemma is required at the process level as well:

Lemma 19 (Process permutation). If Π ` P : τ and every Π′ in Π
′ is a permutation of some

unique Π in Π, then Π
′ ` e : τ .

Proof. Induction on the process typing derivation and straightforward reasoning about

permutations and the d̂ relation.
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(The lemmas so far have been proved—modulo a few basic properties4, like associa-

tivity of d̂—in Coq for Lolliproc, the simply typed version of classical F◦ (Mazurak and

Zdancewic, 2010), and informed the F◦ definitions of ≡ and d̂.)

Both progress and preservation for classical F◦ depend on the connection between the

restrictions d̂ puts on well-typed processes P and the communication graph of P , defined

to be the undirected5 multigraph in which the vertices are the atomic processes (that is,

expressions) that make up P and in which an edge exists for each active channel a within

the process6, connecting the expressions containing �a� and �a�. (No edge exists for cab.)

In reasoning about these graphs, it is useful to have a notion of (not necessarily unique)

canonical processes: a canonical process is of the form νa1:ρ1. . . . νam:ρm.e1|(e2|(. . .|en))

for somem ≥ 0 and n ≥ 1. It is easy to see that any process can be made canonical through

the process equivalence rules:

Property 20 (Canonicalization). For any process P , there exists some canonical P ′ such that

P ≡ P ′.

Since communication graphs are built out of atomic processes, it is easy to see that this

graph structure is invariant under process equivalence—in other words, one can reason

about only canonical processes without loss of generality. The remainder of this section

will do so liberally.

Property 21 (Graph invariance). For any processes P and P ′ where P ≡ P ′, the communication

graph of P ′ is isomorphic to the communication graph of P .

Thanks to the exacting requirements of the d̂ relation, there is a correspondence be-

tween well-typedness of a process and the acyclicity of its communication graph:

Lemma 22 (Acyclicity and typing). If Π ` P : τ , then the communication graph of P is acyclic.
4http://www.smbc-comics.com/?id=2204
5One might imagine that the directed nature of communication in classical F◦ would suggest directed

graphs, but undirected graphs both entail stronger acyclicity properties and simplify the proof of process
preservation.

6This definition requires that channel names be globally unique, but note that there is no substitution for
channel names or binding of channel names withing expressions to complicate this convention. See also the
definition of canonical processes, from which an acceptable renaming can quickly be computed.

58

http://www.smbc-comics.com/?id=2204


Proof. Recall the definition of d̂, which allows only one channel to be split over the two

halves of a parallel composition. It is not possible to partition the nodes of a cycle without

crossing at least two edges, making it likewise impossible to type check a process with a

cyclic communication graph.

Acyclicity of the communication graph is crucial because deadlocks are essentially

cyclic dependencies among concurrent processes. By ruling out cyclic communication en-

tirely, there can be no potentially cyclic dependencies and thus no deadlocks.

Finally, observe that the acyclicity of the communication graph is preserved under pro-

cess evaluation:

Lemma 23 (Acyclicity and evaluation). If Π ` P : τ and there exists P ′ such that P −→ P ′,

then the communication graph of P ′ is also acyclic.

Proof. With respect to the communication graph of a process, observe that all evaluation

steps that respect typing and that alter the graph in any way amount to some combination

of the following:

1. the creation of a new vertex and a new edge connecting it to one existing vertex, e.g.

e1 7→ e1 e2

2. the deletion of a single edge, e.g.

e1 e2 7→ e1 e2

3. the deletion of a single unconnected vertex, e.g.

e 7→

4. and transferring the endpoint of an edge from one vertex to another by sending it

across some other edge, e.g.

e1

e2 e3
7→

e1

e2 e3
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EP-GO entails one instance of (1) along with instances of (4) corresponding to the number

of channel endpoints in the argument to goρ. EP-APPSINK can similarly be seen as a

repetition of (4) for every channel endpoint contained in the transferred value, while EP-

CLOSE and EP-DONE exactly correspond, respectively, to (2) and (3). All other evaluation

rules do not impact the communication graph.

Only (4) could conceivably create a cycle. If a cycle is created, the final step in its cre-

ation must be the connection of some atomic processes e1 and e2. But this can only be

facilitated by some e3 that is already connected to both e1 and e2, in which case a cycle

would already exist! Acyclic graphs can thus never become cyclic through these graph

operations, and hence a well-typed process—which by Lemma 22 has an acyclic commu-

nication graph—will remain acyclic after taking a step.

Preservation and progress are now within reach—the statements of both lemmas make

explicit the idea that process evaluation is always performed modulo the process equiva-

lence relation, though preservation could be stated equally well without ≡.

Lemma 24 (Process preservation). If Π ` P : τ and there exists some P ′ and P ′′ such that

P ≡ P ′ and P ′ −→ P ′′, then Π ` P ′′ : τ .

Proof. Observe from Lemma 17 that Π ` P ′ : τ as well, and proceed by induction on this

typing derivation and in particular on the expression typing of TP-EXP, the only interest-

ing case. Those subcases that do not follow immediately from Lemma 16 involve or create

process structure outside of the current expression; ensuring that they preserve typing

means satisfying the requirements of the channel context splitting relation d̂: that at most

one a:ρ binder be split at each step.

Lemma 23 shows how this is possible: as P ′ is well-typed, the communication graph

of P ′′ must be acyclic, and from an acyclic communication graph it is always possible to

construct a valid d̂ derivation. For EP-TRANSFER, Lemma 18 guarantees that the atomic

processes can be successfully decomposed and a value transferred from the sender to the

receiver.

Stating progress requires a precise notion of what it means for a process to be done

evaluating. A very simple definition suffices: a process has finished if it is equal to cab
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for some a, or if it contains an atomic process that is a value and that is not �a�, �a�, or

cab—the latter two of which indicate only finished subprocesses, and the former of which

should never appear. Once again the canonical forms property of expressions is invoked:

all expressions of a given type eventually reduce to that type’s introduction form or, for

protocol types, to a channel endpoint.

Lemma 25 (Progress). If Π ` P : τ where τ 6= ‹, then either P has finished or there exists some

P ′ and P ′′ such that P ≡ P ′ and P ′ −→ P ′′.

Proof. Examine each of the atomic processes within P . If, in doing so, an appropriate value

or the opportunity to take a step is found, then nothing more is needed; alternatively, an

expression e stuck at the elimination of a sink endpoint or a yield on a source endpoint

may be found. (A lone cab or �a� at type ‹ may be found in an atomic process, but if the

entire process had only these types, that process would have type ‹.)

In this stuck case, consider the atomic process e′ that contains the other endpoint of the

channel in question. If e′ itself can take a step, or if e′ is ready to communicate with e, then

the necessary step has been found. If not e′ itself must be stuck at the elimination of a sink

endpoint or a yield on a source endpoint for some other channel, in which case the search

continues.

Because P is well typed, it has an acyclic communication graph, so this search will

eventually terminate in the identification of some matching source and sink endpoints

that are ready to communicate. To find the exact P ′ that will step, start at the canonical

form of P and repeatedly reassociate atomic processes or push the appropriate channel

binding inwards until the process matches the form of one a communication rule.

Standard soundness follows from progress and preservation:

Theorem 26 (Type soundness). If [] ` P :τ , then for any P ′ and P ′′ where P ≡ P ′ and

P ′ −→∗ P ′′, either and P ′′ is finished or there exists P ′′′ such that P ′′ −→ P ′′′.

Proof. Induction on P ′ −→∗ P ′′ followed by direct application of Lemmas 24 and 25.

This soundness property guarantees freedom from deadlocks in classical F◦. It says

nothing, however, about whether an expression will evaluate to a single value or to a
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[L-SOURCE] �a� v ε
ε−→

j
j v (yield �a�)

[L-LAMBDA]
u, z /∈ fv(e)

yield λ•x:τ •→‹. e εε−→j
j let (z, u) = yield (goτ

•→‹ λ•x:τ •→‹. e) in u; z

[LP-SINK] νa:�τ�. E
î
yield �a�

ó
ε
ε−→

j
j νa:�τ�. E

î
let (z, u) = yield (goτ

•→‹ �a�) in u; z
ó

[LP-GO]
a not free in E

î
goρ v

ó
E
î
goρ v

ó
(a:ρ̃)

j
, (a:ρ)

j+1

ε−→
j
j + 2 νa:ρ. (E

î
(a:ρ̃)j

ó
| v (a:ρ)j+1)

[LP-TRANSFER] νa:τ ◦→ ρ. E1

î
yield �a�

ó
| E2

î
�a� v

ó
ε
ε−→

j
j νa:ρ. E1

î
(v, �a�)

ó
| E2

î
�a�
ó

[LP-BRANCH] νa:ρ1 & ρ2. E1

î
yield �a�

ó
| E2

î
�a�.i

ó
ε
ε−→

j
j νa:ρi. E1

î
injρ1⊕ρ2i �a�

ó
| E2

î
�a�
ó

[LP-TTRANSFER]
νa:∀α:κ. ρ. E1

î
yield �a�

ó
| E2

î
�a� [τ ]

ó
ε
ε−→

j
j

νa:ρ. E1

î
pack α:κ = τ in (�a� : ρ̃)

ó
| E2

î
�a�
ó

[LP-CLOSE] νa:‹. E1

î
�a�
ó
| E2

î
�a�
ó
ε
ε−→

j
j E1

î
()
ó
| νa:‹. E2

î
cab
ó

[LP-DONE] P | νa:‹. cab εε−→j
j P [LP-PAR]

P1
C
D−→

j
k P

′
1

P1 | P2
C
D−→

j
k P

′
1 | P2

[LP-NEW]
P C

D−→
j
k P

′

νa:τ. P C
D−→

j
k νa:τ. P ′

Figure 3.12: Linearity-aware semantics for classical F◦

composition of processes—both are considered acceptable final outcomes, and there is

nothing preventing the programmer from, for instance, not matching each call to future

with a corresponding call to wait. The next section shows how bringing the annotated

semantics into the classical setting addresses this concern by showing that, as long as a

program’s type is unrestricted, this situation will never occur—evaluation is guaranteed

to result in a solitary value.
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T(goρ e) = T(e)
T(yield e) = T(e)

T(�a�) = ∅
T(�a�) = ∅
T(cab) = ∅

T(P1 | P2) = T(P1) ] T(P2)
T(νa:ρ. P ) = T(P )

Figure 3.13: Tagged contents of new classical F◦ expressions and processes

3.3.2 Annotated semantics and classical F◦

As with intuitionistic F◦, one might desire some assurance that linearity delivers what

it promises—that is, that linear resources are neither created nor discarded. Luckily, the

extension of the annotated semantics from Section 2.3.2 to classical F◦ is straightforward.

Figure 3.12 gives the annotated semantics for the new constructs in classical F◦; be-

cause inter-process operations are always concerned with values, and because they reuse

the existing machinery of the language, most of these new rules need not be concerned

with conscripting or discharging tagged values. The exception is LP-GO: as it creates

new channel endpoints, it must conscript them. It would be sound not to conscript sink

endpoints here, as they are always immediately passed to the body of the newly created

process; conscripting sources is necessary for the proof of Theorem 29, however, so in the

interest of consistency LP-GO conscripts both.

The tag contents of the constructs in classical F◦ (shown in Figure 3.13) are straightfor-

ward. It is immediately clear that process equivalence preserves tag contents:

Property 27 (Equivalence of tags). If P ≡ P ′, then T(P ) = T(P ′).

Recall that a proper expression is one in which unrestricted values do not contain

subexpressions tagged with linear types. Extending this to processes, where a proper pro-

cess contains as atomic processes only proper expressions, it is easy to see that process

evaluation also preserves this property:

Lemma 28 (Proper processes). If P is proper and P C

D
−→∗ j

k
P ′, then P ′ is also proper.
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Proof. Straightforward induction and Lemma 11. The only slightly interesting case is LP-

GO, and there is clearly no means by which the tagged channel endpoints it introduces

could there be inserted into an unrestricted value.

Continuing as before, it is not difficult to see that run-time linearity still holds in clas-

sical F◦:

Theorem 29 (Run time linearity). If Π ` P : τ , P is proper, and P C

D
−→∗ j

k
P ′ for some P ′, C,

D, j, and k, then T(P )\? ] {C}\? = T(P ′)\? ] {D}\?.

Proof. Straightforward induction as in Theorem 12.

All this is so straightforward, again, because the tracking of linearity defined by the

annotated semantics is essentially unchanged for the new constructs of classical F◦ and

does not interact specially with concurrency. So let us turn to a more interesting question:

can an unrestricted computation ever “leak” processes? That is, might an expression of

unrestricted type evaluate to a value in parallel with some unfinished processes that will

not subsequently evaluate away? Armed with an annotated semantics for classical F◦, it

can now be proved that the answer is no: every unrestricted expression, no matter what

processes are created in it evaluation, will ultimately yield a solitary value.

Theorem 30 (Unrestricted concurrent results). If e C

D
−→∗ j

k
P , P is proper and has finished,

and there exists τ such that [] ` P : τ and · ` τ : ?, then either P = v for some v or there exists

some P ′, P ′′, C ′, D′, and ` such that P ≡ P ′ and P ′ C
′

D′−→
k

`
P ′′.

Proof. From the typing rules for processes and our definitions of values and finished pro-

cesses, it is clear that a finished, well-typed process of type τ 6= ‹—which P is, since it is

not the case that · ` ‹ : ?—includes exactly one value v of type τ composed with some

number of other processes. If that number is zero, P = v, so suppose not.

Since v is proper, it cannot contain any tagged channel endpoints, and, since it is a value

of unrestricted type that began as a single expression, it must be that there are no channel

endpoints at all within v. Process equivalence is well-behaved for all properties of interest,

so, if v contains no channel names, there always exists some P0 such that P ≡ v | P0 and

[] ` P0 : ‹.
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Because P0 has type ‹, it cannot, by definition, be a finished process. P0 is well-typed,

however, so by progress it must be able to take a step.

3.4 Related work

While intuitionistic linear systems are the most common linear type system in the pro-

gramming languages literature, linear logic was first presented as a sequent calculus along

the lines of similar classical systems. Many have followed that approach, while others have

approached classicality (with or without linearity) in the style of natural deduction while

differing from F◦ in other ways. Finally, many typed process calculi exist, though pure

process calculi outnumber hybrids like classical F◦.

3.4.1 Full linear logic

The earliest presentations of linear logic (Girard, 1987; Girard et al., 1989; Abramsky, 1993)

are sequent calculi that feature the multiplicative disjunction `, discussed throughout this

chapter, along with the unrestricted modality ! (discussed in Section 2.4), a dual modal-

ity ? (sometimes pronounced “why not?” in contrast to “of course!”), and an additive

true and false. The ` connective is in many ways the most intriguing of these; while the

other connectives of linear logic—⊗, &, and ⊕—now have widely accepted intuitions for

programming (Wadler, 2004), ` eludes both our intuition and our more conventional (ac-

cording to the programming languages literature) term languages.

Since F◦ is a classical linear language, it is possible to encode ` in terms of other con-

nectives; the question remains as to whether any of these encodings will be informative.

Starting from the fact that, in a traditional linear sequent calculus, σ1`σ2 = ((σ1`σ2)‹)‹,

and recalling that F◦ mediates between classical and intuitionistic negations, one might

define:

ρ1 ` ρ2 , (ρ̃1 ⊗ ρ̃2) •→‹

Or, if ` should not be restricted to kind •:

τ1 ` τ2 , ((τ1
κ→‹)⊗ (τ2

κ→‹)) •→‹
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These give a vague intuition that ` is about joining two sources or process bodies into

one but in general do not seem particularly helpful. Another approach is to begin with

the definition σ1 ( σ2 , σ‹1 ` σ2. Since ` is commutative but ( (and thus κ→) is not,

reversing this definition leads to both σ1 ` σ2 , σ‹1 ( σ2 and σ1 ` σ2 , σ‹2 ( σ1. Being

able to go in either of two directions suggest &, leading to two more potential encodings:

ρ1 ` ρ2 , (ρ̃1
•→ ρ2) & (ρ̃2

•→ ρ1)

τ1 ` τ2 , ((τ1
◦→‹) ◦→ τ2) & ((τ2

◦→‹) ◦→ τ1)

These types suggest a stronger intuition for `: provide a means for dealing with one side

of the disjunction and receive the other side. In other words, ` might be thought of as

a suspension of the parallel composition of processes: its elimination requires picking a

side for the current process and supplying the other side with a coercion to type ‹—

appropriately, as all but one atomic process must have type ‹. Which encoding—whether

one of these two or something else—would be more useful, however, remains to be seen;

it is likewise difficult to conceive of how exactly expressions of any of these types could be

usefully constructed.

Zeilberger (2006) presents an interesting sequent calculus that, while not actually lin-

ear, makes use of the connectives of linear logic for their polarity and gives a term as-

signment in which eager positive connectives (⊗ and ⊕) and lazy negative connectives

(& and `) coexist harmoniously. The dual calculus (Wadler, 2003, 2012), the symmetric λ-

calculus (Filinski, 1989), and the µ-calculus (Curien and Herbelin, 2000) are also tightly tied

to sequent calculi while being closer to standard term languages than, e.g., Girard’s proof

nets. All of these languages define programs as interactions between terms (more familiar

expressions that eagerly evaluate to values) and co-terms (variously defined as compu-

tations, contexts, or lazy expressions), which still departs rather significantly from what

is usually encountered in typed functional programming. The design of F◦ was highly

motivated by a desire to bridge this gap.

3.4.2 Classical natural deduction and control

The connection between term languages for classical logic and control operators has been

known for some time (Griffin, 1990; Felleisen and Hieb, 1992; Ong and Stewart, 1997).
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The operator control from Section 3.1 may be seen as having the type of double-negation

elimination (∀α. ((α → ⊥) → ⊥) → α), while the more familiar callcc can similarly be

given the type of Peirce’s Law (∀α. ∀β. ((α → β) → α) → α). While these operations

cannot be directly imported to a linear setting, they are a significant influence on the design

of classical F◦.

Linear continuations in otherwise unrestricted languages have also been studied, as

they indicate certain predictable patterns of control flow (Berdine et al., 2001; Filinski,

1992). Berdine (2004) shows, for example, how such continuations can be used to im-

plement coroutines; classical F◦ goes further by allowing true concurrent evaluation.

Many (linear or otherwise) natural deduction presentations of classical logics (Parigot,

1992, 1993; Ritter et al., 2000; Bierman, 1999; de Paiva and Ritter, 2006) employ typing

judgments with multiple conclusions, e.g.:

x1:τ1, . . . , xn:τn ` e : τ, yn+1:τn+1, . . . , ym:τm

By duality, such a judgment is logically equivalent to

x1:τ1, . . . , xn:τn, yn+1:¬τn+1, . . . , ym:¬τm ` e : τ

This approach recovers the usual shape of the typing judgment and so can be recon-

ciled more easily with type systems for functional programming. Moreover, recalling that

τ → ⊥ is the type of a continuation accepting τ values, it is possible to read the ys above

as binding continuations. Operational semantics in these settings implement commuting

conversions, giving rise to some nondeterminism; the correspondence to concurrency is

obscured, however, as such semantics rely on the decomposition of a single term (often

using evaluation contexts).

The process typing rules of classical F◦ can be seen as an alternative to this multiple

conclusion judgment style. While these systems give all auxiliary conclusions a continua-

tion type τ → ⊥, all but one expression within a classical F◦ process simply has the type

‹. A practical consequence of this design is that, since processes appear only at run time,

a type checker for a language based on F◦ could completely ignore process typing.
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3.4.3 Process calculi

Many type systems exist for the π-calculus (Milner et al., 1992), some able to guarantee so-

phisticated properties—Kobayashi (Kobayashi, 2002) gives a good overview of this area.

Many of these type systems use linearity in one form or another (Kobayashi et al., 1999;

Beffara, 2006); in fact, session types (Vasconcelos et al., 2006; Caires and Pfenning, 2010;

Giunti and Vasconcelos, 2010; Pfenning et al., 2011; Toninho et al., 2013) originated in this

setting (Takeuchi et al., 1994; Honda et al., 1998). Sing] (Fähndrich et al., 2006) imple-

ments many ideas from the process calculus literature; it guarantees, at compile time, that

software-isolated processes stay out of each other’s way, and further that communica-

tion between such processes is not fraught with the possibility of unexpected messages—

exactly what classical F◦ also provides. The complexity of Sing], however, presents a high

barrier for other languages wishing to adopt its methods.

Programming in a process calculus, however, is also rather different from program-

ming in a traditional functional language, and it is not always clear how to best take ideas

from that setting while reusing as much standard machinery as possible. Additionally,

type systems for π-calculi are not as tightly coupled to logics as type systems for λ-calculi

are, though there has been some work on using π-calculus terms to describe proof reduc-

tions (Bellin and Scott, 1994).

The join-calculus (Fournet and Gonthier, 1996; Fournet, 1998) addresses the first of

these difficulties with a design built around definitions, defined in parallel, which com-

municate with each other via defined names. Classical F◦, by contrast, takes a minimal set

of the π-calculus’s process constructs and embeds a conventional λ-calculus within them,

keeping both the familiarity and logical connections of the latter while acquiring the sim-

ple process model of the former.
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Chapter 4

Extensions

While the preceding sections have demonstrated the potential of classical F◦, it remains

a core calculus lacking many features necessary for a full programming language, es-

pecially a language with native support for concurrency. This chapter discusses several

ways in which F◦ could be extended in such a direction; none of these extensions appear

incompatible with soundness as currently enjoyed by classical F◦, implying that programs

written with these extensions would still enjoy freedom from deadlocks, resource leaks,

and unexpected messages.

4.1 Asynchronous semantics

The communication rules of classical F◦ are defined synchronously for simplicity’s sake,

but most languages designed around large numbers of communicating processes (e.g., Er-

lang (Armstrong et al., 1996) and the join calculus (Fournet and Gonthier, 1996; Fournet,

1998)) do not block on a send until a receiver is ready. Making communication in F◦ asyn-

chronous1 does not appear to present any deep theoretical complications.

Languages with and libraries for lightweight processes typically implement a “mail-

box” model in which each entity capable of receiving interactions from elsewhere is im-
1One might argue that synchronous behavior is what programmers want more often than not, and in a

sense this is true; the granularity of the desired synchronization, however, is generally not on the level of
suspending execution after a send until the receiver is ready, instead revolving around higher level program
logic concerns. At a lower level, the ability to send a message and resume immediately, regardless of the
state of the receiver, is highly desirable, much like the ability to return immediately from a write operation
regardless of the actual state of any disk or filesystem.
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plicitly tied to a queue of messages. Adapting F◦ to such a model would require keep-

ing track of which operations have already been applied to the sink endpoint of a given

channel—the fact that bidirectional communication in F◦ is encoded in terms of unidirec-

tional communication here serves to simplify what must be added for asynchronicity.

Classical F◦ currently stores information about a channel at its ν binder, and, thanks

to the use of standard elimination forms for operations on sinks, the message queue for

a channel can be neatly represented with an evaluation context: the innermost portion of

the evaluation context being the head of the queue, the outermost being the tail. Processes

in F◦ extended for asynchronous communication could thus look like

P ::= e
∣∣∣ P | P

∣∣∣ νEîa:ρ
ó
. P

For a channel bound by νE
î
a:ρ
ó
, the type of �a�would remain ρ̃, but the type of �a�would

now be the type of E
î
�a�
ó

had �a� been of type ρ, thus accounting for the operations that

have already been performed on �a�. For instance, consider a channel a with the protocol

type ρ1 & ρ2: if �a�.1 has been evaluated but �a� has not reached its corresponding yield

statement, the composite process would be of the form

ν
î
a:ρ1 & ρ2

ó
.1. E1

î
�a�
ó
| E2

î
�a�
ó

Within E1, �a� should still have the type �ρ1 & ρ2�, since this process has not yet reached

the next step of the protocol; within E2, however, �a� should have the type ρ1, reflecting

the fact that the selection (now recorded at a’s binding site) has already been performed.

Similarly, what was before a single use of EP-TRANSFER would become two evaluation

steps on different processes, relying on ≡ to rearrange processes appropriately:

νE
î
a:τ •→ ρ

ó
. E′
î
�a� v

ó
| P −→ νE

î
a:τ •→ ρ

ó
v. E′

î
�a�
ó
| P

νE
î
(a:τ •→ ρ) v

ó
. E′
î
yield �a�

ó
| P −→ νE

î
a:ρ
ó
. E′
î
(v, �a�)

ó
| P

Again, acting on a sink endpoint pushes the action (in this case, the application to v) to the

outside of the evaluation context around a’s binding site (i.e., the end of the queue), while

yielding on a source endpoint uses the innermost portion of that evaluation context (i.e.,

the head of the queue) in the same manner as in the original synchronous evaluation rules.

Moving to an asynchronous setting would require that TP-NEW invoke expression

typing to typecheck its evaluation context, it would add evaluation contexts to the binders
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within channel contexts, and it would raise questions for d̂—when splitting E
î
a:ρ
ó

into

a source and a sink, should the source simply become ã·ρ while the sink becomes a·ρ′,

where ρ′ is the type of E
î
�a�
ó

had �a� been of type ρ? Both of these apparent optimizations

eliminateE from Π, so the right course of action likely depends on how the linear resources

in E (in particular other channel endpoints) are handled.

On the other hand, perhaps F◦ should not be extended with primitive asynchronicity

at all? It is already possible to simulate asynchronous channels with synchronous one,

though not as polymorphically as one might hope: for any given ρ, one can define an

asynchronous agoρ:

agoρ : (ρ •→‹) ?→ ρ̃

agoρ , λ?b:(ρ •→‹). goρ λ•snk:ρ. relayρ (goρ b) snk

Here relayρ src snk repeatedly yields on src and relays the result to snk as specified by ρ—

for instance, for the protocol type (τ •→‹) & (τ •→ τ •→‹), specifying that the child process

will send back either one or two values of type τ , the relay function is

relay
(τ

•→‹)&(τ
•→τ •→‹)

: ��τ ⊗ �1��⊕ �τ ⊗ �τ ⊗ �1���� ?→ (τ •→‹) & (τ •→ τ •→‹) ◦→‹
relay

(τ
•→‹)&(τ

•→τ •→‹)
, λ?src:��τ ⊗ �1��⊕ �τ ⊗ �τ ⊗ �1����.

λ◦snk:(τ •→‹) & (τ •→ τ •→‹).

case yield src of

inj1 src′ 7→ let snk′ = snk.1 in

let (x, u) = yield src′ in yield u; snk′ x

| inj2 src′ 7→ let snk′ = snk.2 in

let (y, src′′) = yield src′ in

let snk′′ = snk′ y in

let (z, u) = yield src′′ in yield u; snk′′ z

Ad-hoc polymorphism—e.g., typeclasses as in Haskell (Wadler and Blott, 1989)—could

allow relay functions to be defined automatically. A more fundamental issue remains,

however, in that encoding asynchronous communication in terms of synchronous commu-

nication leads to synchronous and asynchronous channel endpoints with the same type,
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potentially leading to confusion when some operations on sink endpoints block and some

do not. A mechanism for opaque type aliases (e.g., “newtype”) could remedy this, doing

so would give to F◦ channel types distinct from other types, a feature that had so far been

avoided.2 Assuming there is not a compelling use case for synchronous communication,

the asynchronous semantics may be preferred despite their additional complexity.

4.2 Recursive types

A natural addition to F◦’s existing constructs is recursive types of the form µα:κ. τ , where

any α appearing within τ expands to µα:κ. τ . Such types allow for full general recursion,

can be used to encode many standard datatypes—e.g., lists. A list can be either linear (with

an element type of arbitrary kind) or unrestricted (and able to be duplicated or discarded),

but the definition is the same regardless of which kind is chosen:

Listκ[τ ] , µα:κ. 1⊕ (τ ⊗ α)

Recursive types also enable looping protocols, for which there are many applications—for

instance, a session-serving server for sessions of type ρ might have the type µα:•. �ρ⊗ α�,

and a cryptographic random number server with both a synchronous mode (in which

the requester must wait until enough entropy is available) and an asynchronous mode

(in which a lack of sufficient entropy is announced immediately) could have the type

µα:•. �Int⊗ α�& ��Int⊗ α�⊕ �1⊗ α��

The kinding rule for recursive types acknowledges that the kind annotation on α must

be the kind of the entire type, as α expands into that type:

[K-REC]
Γ, α:κ ` τ : κ

Γ ` µα:κ. τ : κ

The easiest typing rules are those that support isorecursive types, for which the corre-

spondence between α and µα:κ. τ is not a transparent equality but rather is witnessed
2Of course, at this point it is entirely unclear whether large scale programming would benefit from un-

marked channels; it may be the case that well-designed channel libraries are better off with marked channels.
It is perhaps premature, however, to make this decision at the core calculus level.
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by rollµα:κ. τ and unroll operations:

[T-ROLL]
Γ; ∆; Π ` e : {α 7→ µα:κ. τ}τ

Γ; ∆; Π ` rollµα:κ. τ e : µα:κ. τ

[T-UNROLL]
Γ; ∆; Π ` e : µα:κ. τ

Γ; ∆; Π ` unroll e : {α 7→ µα:κ. τ}τ

At run time fold is simply an eager type constructor eliminated by unfold.

It is at present unclear what complications will arise from the interactions between lin-

ear and recursive types. The presence of recursive types allows for general recursion, of

course—and hence nontermination. Soundness for isorecursive types is usually not diffi-

cult to prove, but it remains how such types might interact with the results of Section 3.3.2.

4.3 Nondeterminism

The nondeterminism seen so far in F◦ has been of an invisible variety—interactions be-

tween processes may happen in an undetermined order, but they will all eventually take

place—and in fact confluence has been proved for subsets of the F◦ (Mazurak et al., 2010;

Mazurak and Zdancewic, 2010) and assuredly holds for the full language. Real concurrent

programming frequently demands more visible nondeterminism, however—one might

wish to start several computations in parallel and return whichever finishes first, for exam-

ple, especially if querying a distributed data structure in which successful searches usually

return much more quickly than failed searches.

Such functionality could be obtained with an ambiguous choice operator amb of type

�τ1�
?→ �τ2� ◦→ (τ1

◦→ �τ2� ◦→ τ ′) & (τ2
◦→ �τ1� ◦→ τ ′) ◦→ τ ′, where amb x y 〈f, g〉waits on both

x and y until one of the two is ready, calling f if x is ready first and g if y is ready first.

Of course, while much useful nondeterminism could be encoded with amb, higher

level abstractions would be helpful for the case where more than two channel endpoints

are in play. For a known, fixed number of channels one might implement a family of
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receive functions:

receiven : ∀α1:◦. . . . . ∀αn:◦. ∀β:◦. �α1�
?→ . . . ◦→ �αn� ◦→

(α1
◦→ . . . ◦→ �αn� ◦→ β) & . . .& (αn

◦→ �α1�
◦→ . . . ◦→ αn−1

◦→ β) ◦→ β

Here receive2 is simply amb, while for larger n receiven can construct a tree that recaptures

“second place” results behind sources as they become available—asynchronicity, be it en-

coded or via the semantics proposed above, proves helpful here. A call to a receive func-

tion thus effectively waits until a yield on any of its source arguments can succeed, then

selects and applies the appropriate function to handle that result and the other remaining

sources. This is reminiscent of the the nondeterministic receive operations found in many

concurrent languages—e.g., the join calculus (Fournet and Gonthier, 1996; Fournet, 1998)

and Erlang (Armstrong et al., 1996)—but preserves the linearity of channel endpoints.

Of course, these receive functions are not sufficient for every case where nondetermin-

ism is desired—for instance, with recursive types one might have a list containing an un-

known number of source endpoints. It is unclear whether amb would suffice to encode

every nondeterministic operation or if some other primitives may at times be necessary.

4.4 The mix rule

In ordinary, nonlinear logics, P ∧Q implies P ∨Q. In linear logic, P &Q implies P ⊕Q, but

P ⊗Q does not necessarily imply P `Q. The operation that adds this implication is known

in the linear logic literature as the mix rule—its addition does not lead to unsoundness,

although Girard opposes it due to its effect on the denotational semantics (Girard, 1987).

One can imagine adding an operation mix to classical F◦ using an encoding of ` like

those presented in Section 3.4, e.g.:

mix : τ1 ⊗ τ2 ?→ ((τ1
◦→‹) ◦→ τ2) & ((τ2

◦→‹) ◦→ τ1)

What it would mean to have mix? Given values v1 of type τ1 and v2 of types τ2 along

with a sink endpoint s1 of type τ1
•→ ‹, one can now write (mix (v1, v2)).1 λ◦x:τ1. s1 x,

pushing the application of s1 to v1 into a separate process and continuing on with v2. This

orphaned child process will send v1 along s1 and exit at type ‹, but the current process
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has meanwhile divested itself of a sink endpoint—and corresponding obligation to return

‹ and might well return any arbitrary value into the ether. This corresponds exactly to

Girard’s observation that the mix rule leads to a separated, non-communicating proof nets.

If such behavior is desired—perhaps in an interactive F◦ shell or debugger—a simpler

alternative to mix would be an operation fork that directly spawns a new process with no

connection to its parent:

fork : (1 ◦→ τ) ?→ 1

It is not at all clear whether this would ever be desirable outside of a context that pro-

vides other means of accessing running processes, however: since these processes can end

at arbitrary values, they may leave linear resources (e.g., channel endpoints) suspended

in finished processes even when the first process had an unrestricted type, violating the

guarantees currently provided by Theorem 30. A safer alternative to fork, that accepts

only suspended computations of unrestricted type, can already be defined in classical F◦:

fork : ∀α:?. (1 ◦→ α) ?→ 1

fork , Λα:?. λ?f :1 ◦→ α. yield λ•c:‹. let = f () in c

4.5 Additional kinds

As mentioned in Section 2.4, some languages with substructural types support not just lin-

ear types but affine types (which allow discarding but not duplicating) and relevant types

(which allow duplicating but not discarding) as well. Combined with unrestricted types,

these options suggest a natural four point lattice between ◦ and ?, with • remaining as it

is, since duplicating or discarding a channel endpoint seems incompatible with the sort

of correct communication that F◦ aims to establish. It is unclear whether these additional

kinds would be a good use of the complexity budget of a larger language built on F◦ rela-

tive to the inconvenience of using linear types with explicit duplicate or discard operations

for those cases where relevant or affine types would be more natural.

Still more can be done by extending F◦ with higher kinds—particularly the kind con-

structor⇒ of type-level functions—allowing for quantification over type constructors (which

so far has been presented as mere abbreviation). Continuing the reference cell examples
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from Section 2.2.2, it becomes possible to define linear references that support strong up-

dates—that is, updates that change the type contained in the reference cell—by abstracting

the type of the access capability over the type of the contents, resulting in an access capa-

bility constructor γ of kind ?⇒ ◦:

SURef[τ ](γ) , { set : ∀α:?. ∀β:?. β ?→ γ α ?→ γ β,

get : ∀α:?. γ α ?→ α⊗ γ α,

free : ∀α:?. γ α ?→ 1 }

su ref : ∀α:?. α ?→∃γ:?⇒ ◦. γ α⊗ SURef[α](γ)

Much as FH(α) could be coerced to ROFH(α) in Section 2.2.1, a record of type SURef[τ ](γ)

can easily be coerced to type Ref[τ ](γ τ), simply by partial application of member func-

tions. Augmenting SURef along the lines of ShareRef could further allow for shareable

reference cells that support strong updates only when they are not shared, a feature found

in some capability calculi (Ahmed et al., 2007; Charguéraud and Pottier, 2008).

Section 3.2.2 mentions the difficulty of writing an analog to send and select for sending

a type over a channel. The problem, essentially, is that ∀ and ∃ introduce dependencies at

the type level. With⇒, this is no problem at all, though send type must still be defined at

a particular kind κ:

send typeκ : ∀γ:κ⇒ •. Â��∃α:κ. γ α� ?→∀α:κ. γ̃ α

send typeκ , Λγ:κ⇒ •. λ?s:Â��∃α:κ. γ α�.

let (f, u) = yield s in

u; Λα:κ. goγ α λ•p:γ α. f pack β:κ = α in (p : γ β)

Higher kinds are a significant addition, however. The metatheory of System Fω—

System F extended with full type-level λs—is quite a bit more complex than that of Sys-

tem F thanks to the introduction of non-trivial equalities between types. Prohibiting type-

level λs but allowing constants of higher kind, as is done in ML and Haskell, is one possible

compromise, though how much of value this would rule out or enable is unclear.
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4.6 Metatheory

This dissertation demonstrates the soundness of F◦, both according to the conventional

definition (progress and preservation) and with special attention paid to linear resources.

Strong normalization—that all expressions evaluate to a value—and confluence—that all

evaluations converge—have been proved for subsets of F◦ (Mazurak and Zdancewic, 2010;

Mazurak et al., 2010) and should be true of full classical F◦, though the recursive types and

nondeterminism proposed above would obviously invalidate these properties.

Parametricity, a property with many uses (Reynolds, 1983; Wadler, 1989), has been

proved for the core multiplicative subset of intuitionistic F◦ (Zhao et al., 2010). It is unclear

exactly how parametricity should be formulated for classical F◦’s processes, and it would

be interesting to see this answered. Parametricity often fails in the presence of side-effects

that are invisible at the type level; in this regard, it is uncertain whether process creation

and interprocess communication in classical F◦ would limit the applicability of any para-

metricity results that can be proved. It might be especially interesting if they do not.

Finally, the connections between F◦ and other linear logics, especially classical linear

logics, remain largely unexplored. While it is conjectured that F◦ is equivalent in expres-

sivity to many such systems, it would be interesting to see this explored in detail. Doing so

would, however, require all the machinery usually associated with translations between

sequent calculus and natural deduction formalisms.
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Chapter 5

Conclusion

This dissertation has shown that classical F◦ is sound—that is, that well-typed terms never

go wrong—but the novelty of F◦ is not in its soundness, which, apart from a bit of graph-

based reasoning, is relatively standard. Rather, F◦ demonstrates that linearity can address

a wide variety of applications in a way that should appeal to language designers concerned

with their complexity budgets: it retains the familiarity of System F and its descendants;

it introduces few new constructs, relying primarily on the well-understood connectives of

intuitionistic linear logic; and programming in F◦ retains a straightforward, “follow the

type” feel. F◦ essentially profits from massaging the well-studied underpinnings of linear

logic into the familiar forms of typed functional programming

F◦’s applicability is demonstrated by its ability to specify protocols at the type level

and to do so using standard machinery rather than new constructs specifically added for

this purpose. Types in intuitionistic F◦ can enforce user-specified protocols—i.e., it can

encode typestate—through the combination of linearity and polymorphism, while classi-

cal F◦, by introducing only a handful of source-level constructs, moves, at run time, to a

multi-process setting in which communication between processes is simultaneously flex-

ible and type safe—i.e., it can encode session types. There are, of course, protocols that

intuitionistic F◦ cannot capture and aspects of concurrency not addressed by classical F◦;

it aims not for some notion of feature completeness but to provide significant functionality

without onerous overhead.

Soundness for classical F◦ implies an absence of deadlocks in well-typed classical F◦
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programs. Starting from a core calculus in which concurrent processes are so well be-

haved and extending the language to allow new behavior in controlled ways, as described

in the preceding chapter, follows a pattern of theoretical exploration that has borne much

fruit in the study of function programming. Implementing the features demonstrated by

F◦ in a larger-scale language—be it a language that already exists or a language yet to be

created—is no small task, requiring much theoretical work (e.g., verifying the soundness

of the various extensions), practical work (e.g., writing and maintaining library code), and

reconciliation between theoretical elegance and practical necessity (e.g., any use of chan-

nels that cross machine boundaries). Nevertheless, it is my sincere hope that the ideas

presented here will serve not just as inspiration for future calculi but as a roadmap to

future language implementations that feature substructural types.
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