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Essays on Risk Measurement and Modeling in Macroeconomics and
Finance

Abstract
This dissertation consists of four essays that focus on the measurement and economic analysis of key risk
factors behind macroeconomic and financial variables using state-space models. Chapters 2, 3, 4, and 5
develop and implement estimation approaches that can handle nonlinear linkages of economic forces and
tackle issues when data are missing or contaminated by errors. Chapter 2 estimates an equilibrium term
structure model that includes real and nominal uncertainty in particular that allows for changes in the
responsiveness of the Federal Reserve to inflation fluctuations. These uncertainty, particularly those
concerning monetary policy action are considered potential sources of risk variations that can explain several
features in the U.S. government bond market including the upward sloping yield curve. Chapter 3, co-
authored with Frank Schorfheide and Amir Yaron, develops a nonlinear state-space model to estimate
predictable mean and volatility components in monthly consumption growth using a mixed-frequency data
and accounting for serially-correlated measurement errors. We provide a methodological contribution that
allow to maximize the span of the estimation sample to recover the predictable component and at the same
time use high-frequency data to efficiently identify the volatility processes. The estimation provides strong
evidence for predictable mean and volatility components in consumption growth. We show that the model
can go a long way in explaining several well known asset pricing facts of the data. Chapter 4, co-authored with
Boragan Aruoba, Francis Diebold, Jeremy Nalewaik, and Frank Schorfheide, considers the fundamental
question of GDP estimation, focusing on the U.S., and provides estimates superior to the ubiquitous
expenditure-side series by applying optimal signal-extraction techniques to the noisy expenditure-side and
income-side GDP estimates. The quarter-by-quarter values of the new measure often differ noticeably from
those of the traditional measures, and dynamic properties differ as well, indicating that the persistence of
aggregate output dynamics is stronger than previously thought. Chapter 5, co-authored with Frank
Schorfheide, develops the idea of using mixed-frequency data in state-space form. We show that adding
monthly observations to a quarterly VAR, which then is estimated with Bayesian methods under a Minnesota-
style prior, substantially improves its forecasting performance.
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ABSTRACT

ESSAYS ON RISK MEASUREMENT AND MODELING IN MACROECONOMICS

AND FINANCE

Dongho Song

Francis X. Diebold

Frank Schorfheide

This dissertation consists of four essays that focus on the measurement and economic anal-

ysis of key risk factors behind macroeconomic and financial variables using state-space

models. Chapters 2, 3, 4, and 5 develop and implement estimation approaches that can

handle nonlinear linkages of economic forces and tackle issues when data are missing or

contaminated by errors. Chapter 2 estimates an equilibrium term structure model that

includes real and nominal uncertainty in particular that allows for changes in the respon-

siveness of the Federal Reserve to inflation fluctuations. These uncertainty, particularly

those concerning monetary policy action are considered potential sources of risk variations

that can explain several features in the U.S. government bond market including the up-

ward sloping yield curve. Chapter 3, co-authored with Frank Schorfheide and Amir Yaron,

develops a nonlinear state-space model to estimate predictable mean and volatility com-

ponents in monthly consumption growth using a mixed-frequency data and accounting for

serially-correlated measurement errors. We provide a methodological contribution that al-

low to maximize the span of the estimation sample to recover the predictable component

and at the same time use high-frequency data to efficiently identify the volatility processes.

The estimation provides strong evidence for predictable mean and volatility components in

consumption growth. We show that the model can go a long way in explaining several well

iv



known asset pricing facts of the data. Chapter 4, co-authored with Boragan Aruoba, Fran-

cis Diebold, Jeremy Nalewaik, and Frank Schorfheide, considers the fundamental question

of GDP estimation, focusing on the U.S., and provides estimates superior to the ubiqui-

tous expenditure-side series by applying optimal signal-extraction techniques to the noisy

expenditure-side and income-side GDP estimates. The quarter-by-quarter values of the new

measure often differ noticeably from those of the traditional measures, and dynamic proper-

ties differ as well, indicating that the persistence of aggregate output dynamics is stronger

than previously thought. Chapter 5, co-authored with Frank Schorfheide, develops the

idea of using mixed-frequency data in state-space form. We show that adding monthly

observations to a quarterly VAR, which then is estimated with Bayesian methods under a

Minnesota-style prior, substantially improves its forecasting performance.
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Chapter 1

Introduction

This dissertation consists of four essays that focus on the measurement and economic anal-

ysis of key risk factors behind macroeconomic and financial variables using state-space

models. Chapters 2, 3, 4, and 5 develop and implement estimation approaches that can

handle nonlinear linkages of economic forces and tackle issues when data are missing or

contaminated by errors. Chapter 2 provides strong empirical evidence of structural changes

in the United States government bond markets and examines whether the changes are

brought about by external shocks, monetary policy, or by both. To explore this, Chapter 2

estimates an equilibrium term structure model that includes real and nominal uncertainty

in particular that allows for changes in the responsiveness of the Federal Reserve to infla-

tion fluctuations. These uncertainty, particularly those concerning monetary policy action

are considered potential sources of risk variations that can explain several features in the

bond market including the upward sloping yield curve. Chapter 3, co-authored with Frank

Schorfheide and Amir Yaron, develops a nonlinear state-space model to estimate predictable

mean and volatility components in monthly consumption growth using a mixed-frequency

data and accounting for serially-correlated measurement errors. We provide a methodolog-

ical contribution that allows to maximize the span of the estimation sample to recover the

predictable component and at the same time uses high-frequency data to efficiently identify

1



the volatility processes. The estimation provides strong evidence for predictable mean and

volatility components in consumption growth. We show that the model can go a long way

in explaining several well known asset pricing facts of the data. Chapter 4, co-authored

with Boragan Aruoba, Francis Diebold, Jeremy Nalewaik, and Frank Schorfheide, considers

the fundamental question of GDP estimation, focusing on the U.S., and provides estimates

superior to the ubiquitous expenditure-side series by applying optimal signal-extraction

techniques to the noisy expenditure-side and income-side GDP estimates. The quarter-

by-quarter values of the new measure often differ noticeably from those of the traditional

measures, and dynamic properties differ as well, indicating that the persistence of aggre-

gate output dynamics is stronger than previously thought. Chapter 5, co-authored with

Frank Schorfheide, develops the idea of using mixed-frequency data in state-space form.

We show that adding monthly observations to a quarterly VAR, which then is estimated

with Bayesian methods under a Minnesota-style prior, substantially improves its forecasting

performance.

1.1 “Bond Market Exposures to Macroeconomic and Mone-
tary Policy Risks”

Chapter 2 provides empirical evidence of changes in the U.S. Treasury yield curve and

related macroeconomic factors, and investigates whether the changes are brought about by

external shocks, monetary policy, or by both. To explore this, I characterize bond market

exposures to macroeconomic and monetary policy risks, using an equilibrium term structure

model with recursive preferences in which inflation dynamics are endogenously determined.

In my model, the key risks that affect bond market prices are changes in the correlation

between growth and inflation and changes in the conduct of monetary policy. Using a novel

estimation technique, I find that the changes in monetary policy affect the volatility of yield

spreads, while the changes in the correlation between growth and inflation affect both the

2



level as well as the volatility of yield spreads. Consequently, the changes in the correlation

structure are the main contributor to bond risk premia and to bond market volatility. The

time variations within a regime and risks associated with moving across regimes lead to

the failure of the Expectations Hypothesis and to the excess bond return predictability

regression of Cochrane and Piazzesi (2005), as in the data.

1.2 “Identifying Long-Run Risks: A Bayesian Mixed-Frequency
Approach”

Chapter 3, co-authored with Frank Schorfheide and Amir Yaron, develops a nonlinear state-

space model that captures the joint dynamics of consumption, dividend growth, and asset

returns. Building on Bansal and Yaron (2004), our model consists of an economy contain-

ing a common predictable component for consumption and dividend growth and multiple

stochastic volatility processes. The estimation is based on annual consumption data from

1929 to 1959, monthly consumption data after 1959, and monthly asset return data through-

out. We maximize the span of the sample to recover the predictable component and use

high-frequency data, whenever available, to efficiently identify the volatility processes. Our

Bayesian estimation provides strong evidence for a small predictable component in consump-

tion growth (even if asset return data are omitted from the estimation). Three independent

volatility processes capture different frequency dynamics; our measurement error specifica-

tion implies that consumption is measured much more precisely at an annual than monthly

frequency; and the estimated model is able to capture key asset-pricing facts of the data.

1.3 “Improving GDP Measurement: A Measurement-Error
Perspective”

Chapter 4, co-authored with Boragan Aruoba, Francis Diebold, Jeremy Nalewaik, and Frank

Schorfheide, provides a new measure of U.S. GDP growth, obtained by applying optimal

3



signal-extraction techniques to the noisy expenditure-side and income-side GDP estimates.

The quarter-by-quarter values of our new measure often differ noticeably from those of the

traditional measures. Its dynamic properties differ as well, indicating that the persistence

of aggregate output dynamics is stronger than previously thought.

1.4 “Real-Time Forecasting with a Mixed-Frequency VAR”

Chapter 5, co-authored with Frank Schorfheide, develops a vector autoregression (VAR)

for time series which are observed at mixed frequencies – quarterly and monthly. The

model is cast in state-space form and estimated with Bayesian methods under a Minnesota-

style prior. We show how to evaluate the marginal data density to implement a data-driven

hyperparameter selection. Using a real-time data set, we evaluate forecasts from the mixed-

frequency VAR and compare them to standard quarterly-frequency VAR and to forecasts

from MIDAS regressions. We document the extent to which information that becomes

available within the quarter improves the forecasts in real time.
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Chapter 2

Bond Market Exposures to
Macroeconomic and Monetary
Policy Risks

2.1 Introduction

There is mounting evidence that the U.S. Treasury yield curve and relevant macroeconomic

factors have undergone structural changes over the past decade. For example, recent em-

pirical studies have come to understand that U.S. Treasury bonds have served as a hedge

to stock market risks in the last decade.1 In sharp contrast to the 1980s, during which both

bond and stock returns were low and tended to co-move positively, the bond-stock return

correlation has turned strongly negative in the 2000s. Several other aspects of bond markets

have changed over the years between 1998 and 2011. Among them are a flattening of the

yield curve and a substantial drop in the degree of time variation in excess bond returns.

The striking feature is that the correlation between the macroeconomic factors, that is,

consumption growth and inflation, have also changed from negative to positive in the same

period.2 In this paper, I study the role of structural changes in the macroeconomic factors

1See Baele, Bekaert, and Inghelbrecht (2010); Campbell, Pflueger, and Viceira (2013); Campbell, Sun-
deram, and Viceira (2013); and David and Veronesi (2013).

2See Table 2.1 for descriptive statistics.
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as well as in the conduct of monetary policy in explaining the bond market changes over

the last decade. The central contributions of this paper are to investigate whether the bond

market changes are brought about by external shocks, by monetary policy, or by both, and

to quantify and characterize bond market price exposures to macroeconomic and monetary

policy risks.

I develop a state-space model to capture the joint dynamics of consumption growth,

inflation, and asset returns. The real side of the model builds on the work of Bansal and

Yaron (2004) and assume that consumption growth contains a small predictable component

(i.e., long-run growth), which in conjunction with investor’s preference for early resolution

of uncertainty determine the price of real assets. The nominal side of the model extends

Gallmeyer, Hollifield, Palomino, and Zin (2007) in that inflation dynamics are derived

endogenously from the monetary policy rule, and the nominal assets inherit the properties of

monetary policy. My model distinguishes itself from the existing literature in two important

dimensions. First, it allows for changes in the monetary policy rule, both in the inflation

target and in the stabilization rule (i.e., the central bank’s response to deviations of actual

inflation from the inflation target and to fluctuations in consumption). The regime-switches

in stabilization policy coefficients are modeled through a Markov process. Second, I allow

for a channel that breaks the long-run dichotomy between the nominal and real sides of the

economy. I assume that the fluctuations in the long-run growth component are not just

driven by its own innovation process but also by the innovation to the inflation target of

the central bank. I add flexibility to this channel by allowing for both positive-negative

fluctuations. In essence, there is a regime-switching Markov process that captures the sign-

switching behavior of conditional covariance between long-run growth and the inflation

target.

As a consequence of my model features, the asset prices and macroeconomic aggregates
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are affected by two distinct channels: (1), changes in the conditional covariance between

the inflation target and long-run growth, and (2), changes in the stabilization policy rule.

This leads to endogenous inflation dynamics and resulting nominal bond market prices are

differentially affected by both channels. In order to empirically assess the relative strength

of the two channels, I apply a novel Bayesian approach to the estimation of the model

parameters and to the nonlinear filtering problem, which arises due to hidden Markov

states (i.e., regimes) and stochastic volatilities.

The estimation of the model delivers several important empirical findings. First, the

estimation results suggest that the economic environment involves two regimes with differ-

ent conditional covariance dynamics: one with a negative covariance between the inflation

target and long-run growth (countercyclical inflation) and one with a positive covariance

(procyclical inflation). The relative magnitude of the conditional heteroscedasticity present

is larger in the countercyclical inflation regime. In each inflation regime the central bank

either increases interest rates more than one-for-one with inflation (active monetary policy)

or does not (passive monetary policy). Overall, there are a total of 4 different regimes that

affect comovement of bond prices and macroeconomic aggregates. Second, the changes in

the conditional covariance between the inflation target and long-run growth alter the dy-

namics of long-run components and have a persistent effect on bond markets. On the other

hand, the changes in the conduct of monetary policy are more targeted toward affecting the

short-run dynamics of inflation and therefore their effect on bond markets is short-lived. I

find the changes in the conditional covariance dynamics to be the main driver of structural

changes in bond markets, such as sign changes in the stock-bond return correlation and the

drop in time variation in excess bond returns.

Third, each regime carries distinctly different risk prices, and uncertainty concerning

moving across regimes poses additional risks to bond markets. The risks channels can
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be broadly classified into two types: “within-regime” and “across-regime” risks. For the

purpose of explanation, I decompose the bond yields into the expected sum of future short

rates (the expectations component) and the term premium (risk compensation for long-

term bonds). Risks associated with the countercyclical inflation regime raise both the

expectations component and the term premium.3 Risks for the procyclical inflation work

in the opposite direction. With regard to monetary policy risks, the effect is mostly on

the expectations component, but its directional influence depends on the inflation regime.

When the policy stance is active, monetary policy works toward lowering the inflation

expectation and produces a downward shift in the level of the term structure (i.e., lowers

the expectations component). With passive monetary policy and a countercyclical inflation

regime, agents understand that the central bank is less effective in stabilizing the economy

(raising the expectations component) and demand a greater inflation premium, leading

to the steepest term structure. With passive monetary policy and a procyclical inflation

regime, the inherent instability associated with the passive monetary policy will amplify

the “procyclicality” (lower the expectations component). The across-regime risks imply

that the risks properties of alternative regimes are incorporated as agents are aware of the

possibility of moving across regimes. This is a prominent feature of the model that generates

an upward-sloping yield curve even when the economy is in the procyclical inflation regime.

As long as the switching probability is sufficiently high, agents will always demand an

inflation premium as compensation for the countercyclical inflation risks.

Fourth, the time variations within a regime and risks associated with moving across

regimes give rise to time variations in risk premia, which provide testable implications

for the Expectations Hypothesis (EH). The estimated model as a whole overwhelmingly

3Note that this is how Piazzesi and Schneider (2006) and Bansal and Shaliastovich (2013) generate the
inflation premium.
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rejects the EH and provides strong empirical evidence of time variations in expected excess

bond returns. The evidence is supported by the model-implied term spread regression

of Campbell and Shiller (1991) and the excess bond return predictability regression of

Cochrane and Piazzesi (2005). However, I find that the degree of violation of the EH is

least apparent with a procyclical inflation regime and passive monetary policy. The increase

in the term premium will be minimal in the procyclical inflation regime and the relative

importance of the expectations component on the long-term rate movements will be large

in the passive monetary policy stance, which together bring the bond market closer to what

the EH predicts. I believe I am the first to show that this interesting feature of the model

is also documented in the data once I partition them based on the identified regimes.

Related Literature. This paper is related to several strands of literature. My work is

related to a number of recent papers that study the changes in bond-stock return correlation.

Baele, Bekaert, and Inghelbrecht (2010) utilize a dynamic factor model in which stock

and bond returns depend on a number of economic state variables, e.g., macroeconomic,

volatility, and liquidity factors, and attribute the cause of changes in bond-stock return

correlation to liquidity factors. Campbell, Sunderam, and Viceira (2013) embed time-

varying bond-stock return covariance in a quadratic term-structure model and argue that

the root cause is due to changes in nominal risks in bond markets. What distinguishes my

work from these reduced-form studies is that it builds on a consumption-based equilibrium

model to understand the macroeconomic driving forces behind the yield curve changes.

In this regard, the approach of Campbell, Pflueger, and Viceira (2013) and David and

Veronesi (2013) are more relevant to my study. Campbell, Pflueger, and Viceira (2013)

examine the role of monetary policy using a New Keynesian model and David and Veronesi

(2013) explore the time-varying signaling role of inflation in a consumption-based model.

My work complements these two studies because it studies the role of structural changes
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in the macroeconomic factors as well as in the conduct of monetary policy in a unified

framework, and investigates their role in explaining the bond market fluctuations.

By investigating time variation of the stance of monetary policy, my work also con-

tributes to the monetary policy literature, e.g., Clarida, Gali, and Gertler (2000), Coibon

and Gorodnichenko (2011), Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramı́rez

(2010), Lubik and Schorfheide (2004), Schorfheide (2005), and Sims and Zha (2006).4 While

most of these papers study the impact of changes in monetary policy on macroeconomic

aggregates, Ang, Boivin, Dong, and Loo-Kung (2011) and Bikbov and Chernov (2013) focus

on their bond market implications (using reduced-form modeling frameworks). My work

distinguishes itself from these last two papers as I focus on a fully specified economic model

and characterize time-varying bond market exposures to monetary policy risks.

In terms of modeling term structure with recursive preferences, this paper is closed

related to those of Bansal and Shaliastovich (2013), Doh (2012), and Piazzesi and Schneider

(2006), who work in an endowment economy setting, and, van Binsbergen, Fernández-

Villaverde, Koijen, and Rubio-Ramı́rez (2012) who study in a production-based economy.

My work generalizes the first three by endogenizing inflation dynamics from monetary policy

rule. While van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012) allow

for endogenous capital and labor supply and analyze their interaction with the yield curve,

which are ignored in my analysis, they do not allow for time variations in volatilities and

in monetary policy stance, both of which are key risk factors in my analysis.

There is a growing and voluminous literature in macro and finance that highlights the

importance of volatility for understanding the macroeconomy and financial markets (see

Bansal, Kiku, and Yaron (2012a); Bansal, Kiku, Shaliastovich, and Yaron (2013); Bloom

(2009); and Fernández-Villaverde and Rubio-Ramı́rez (2011)). This paper further con-

4Note that I am including those that explicitly account for changes in monetary policy.
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tributes to the literature by incorporating time-varying covolatility specifications. Finally,

the estimation algorithm builds on Schorfheide, Song, and Yaron (2013), yet further devel-

ops to accommodate Markov-switching processes (see Kim and Nelson (1999) for a compre-

hensive overview of estimation methods for the Markov switching models) and efficiently

implements Bayesian inference using particle filtering in combination with a Markov chain

Monte Carlo (MCMC) algorithm.

The remainder of the paper is organized as follows. Section 3.2 introduces the model

environment and describes the model solution. Section 3.3 presents the empirical state-

space model and describes the estimation procedure. Section 3.4 discusses the empirical

findings, and Section 5.5 provides concluding remarks.

2.2 The Long-Run Risks (LRR) Model with Monetary Policy

2.2.1 Preferences and Cash-flow Dynamics

I consider an endowment economy with a representative agent who maximizes her lifetime

utility,

Vt = max
Ct

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

,

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk

aversion, θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution (IES).

Following Bansal and Yaron (2004), consumption growth, gc,t+1, is decomposed into a

(persistent) long-run growth component, xc,t+1, and a (transitory) short-run component,

σ̄cηc,t+1. The persistent long-run growth component is modeled as an AR(1) process with

two fundamental shocks: shock to growth, σc,tec,t+1, and shock to the inflation target,
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σπ,teπ,t+1 (both with stochastic volatilities). The inflation target is modeled by an AR(1)

process with its own stochastic volatilities and the persistence is allowed to switch regimes.

The persistence of the long-run growth, ρc(St+1), and its exposure to inflation target shock,

which is captured by χc,π(St+1), are subject to regime changes, where St+1 denotes the

regime indicator variable. The value of χc,π(St+1) can be either negative or positive. The

economic reasoning behind this follows the view that there are periods in which the inflation

target is above the so-called desirable rate of inflation,5 and that any positive shock to

the inflation target during those periods creates distortions and hampers long-run growth.

The negative χc,π(St+1) values correspond to these periods. The periods with positive

χc,π(St+1) values depict periods during which the inflation target is assumed to be lower

than the desirable one, and a positive shock to the inflation target removes distortions and

facilitates long-run growth. Dividend streams, gd,t+1, have levered exposures to both xc,t+1

and σ̄cηc,t+1, whose magnitudes are governed by the parameters φx and φη, respectively. I

allow σ̄dηd,t+1 to capture idiosyncratic movements in dividend streams. Overall, the joint

dynamics for the cash-flows are[
gc,t+1

gd,t+1

]
=

[
µc
µd

]
+

[
1
φx

]
xc,t+1 +

[
1 0
φη 1

] [
σ̄cηc,t+1

σ̄dηd,t+1

]
(2.1)

xc,t+1 = ρc(St+1)xc,t + σc,tec,t+1 + χc,π(St+1)σπ,teπ,t+1,

xπ,t+1 = ρπ(St+1)xπ,t + σπ,teπ,t+1

where the stochastic volatilities evolve according to

σj,t = ϕj σ̄c exp(hj,t), hj,t+1 = νjhj,t + σhj

√
1− ν2

jwj,t+1, j = {c, π}, (2.2)

and the shocks are assumed to be

ηi,t+1, ej,t+1 ∼ N(0, 1), i ∈ {c, d}.

5In a New Keynesian model, the desirable rate of inflation would be the rate at which prices can be
changed without costs. See Aruoba and Schorfheide (2011) for a more detailed discussion.
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Following Schorfheide, Song, and Yaron (2013), the logarithm of the volatility process is

assumed to be normal, which ensures that the standard deviation of the shocks remains

positive at every point in time.

2.2.2 Monetary Policy

Monetary policy consists of two components: stabilization and a time-varying inflation

target. Stabilization policy is “active” or “passive” depending on its responsiveness to the

consumption gap and inflation fluctuations relative to the target. The monetary policy

shock, xm,t, is also modeled as an AR(1) process. In sum, monetary policy follows a

regime-switching Taylor rule,

it = µMP
i (St) + τc(St)(gc,t − µc)︸ ︷︷ ︸

consumption gap

+ τπ(St)(πt − xπ,t)︸ ︷︷ ︸
short-run inflation

+xπ,t + xm,t, (2.3)

= µMP
i (St) +

[
τc(St), 1− τπ(St), 1, τc(St)

]
XB
t + τπ(St)πt, XB

t = [xc,t, xπ,t, xm,t, ηc,t]
′,

where τc(St) and τπ(St) capture central bank’s reaction to the consumption gap and to

short-run inflation variation, respectively. To recap, the dynamics of the inflation target

and monetary policy shocks are

xπ,t+1 = ρπ(St+1)xπ,t + σπ,teπ,t+1

xm,t+1 = ρmxm,t + σmem,t+1.

Observe that several important modifications have been made in (2.3). To begin with,

the role of interest rate smoothing is assumed absent. While (2.3) may look quite restrictive

in its form, it yields much a simpler expression in that the current short-rate is affine

with respect to the “current” state variables, XB
t , and “realized” inflation, πt, without

any “lagged” term. Moreover, given the argument posited in Rudebusch (2002), it seems

sensible to consider the monetary policy rule without interest rate smoothing motive in
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order to study the term structure.6 More importantly, however, (2.3) assumes that the

central bank makes informed decisions with respect to inflation fluctuations at different

frequencies. While the central bank attempts to steer actual inflation towards the inflation

target at low frequencies, it aims to stabilize inflation fluctuations relative to its target

at high frequencies. Furthermore, in the context of the term structure models, it is very

important to consider an explicit role for the target inflation since it behaves similarly to a

level factor of the nominal term structure. The specification of (2.3) resembles specifications

in which the level factor of the term structure directly enters into the monetary policy rule

(see Rudebusch and Wu (2008) for example).7 Finally, (2.3) assumes that the strength with

which the central bank tries to pursue its goal—a stabilization policy—changes over time

along the lines explored in Clarida, Gali, and Gertler (2000).

2.2.3 Endogenous Inflation Dynamics

Inflation dynamics can be determined endogenously from the monetary policy rule (2.3)

and a Fisher-type asset-pricing equation which is given below,

it = −Et [mt+1 − πt+1]− 1

2
Vt [mt+1 − πt+1] (2.4)

≈ µAPi (St) +
[ 1

ψ
Et[ρc(St+1)], 0, 0, 0

]
XB
t + Et [πt+1] , XB

t = [xc,t, xπ,t, xm,t, ηc,t]
′.

(see Cochrane (2011) and Backus, Chernov, and Zin (2013) for a similar discussion.) The

approximation is exact if the short-rate contains no risk premium.8 Substituting the asset-

pricing equation (2.4) into the monetary policy rule (2.3), the system reduces to a single

6Based on the term structure evidence, Rudebusch (2002) shows that monetary policy inertia is not due
to the smoothing motive but is due to persistent shocks.

7Note also that incorporating a time-varying inflation target is quite common in the monetary policy
literature (see Ascari and Sbordone (2013); Coibon and Gorodnichenko (2011); and Aruoba and Schorfheide
(2011)).

8This assumption is not unreasonable given the results of the variance decomposition of the short-rate in
the subsequent section, see Table 2.5. Also, Campbell, Pflueger, and Viceira (2013) apply similar assumption.
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regime-dependent equation

τπ(St)πt = Et [πt+1] + Λ(St)X
B
t , (2.5)

where Λ(St) =
[

1
ψEt[ρc(St+1)], 0, 0, 0

]
−
[
τc(St), 1 − τπ(St), 1, τc(St)

]
.9 In the appendix, I

show that the equilibrium inflation dynamics can be expressed as

πt = Γ(St)X
B
t , where Γ(St) = [Γx,c(St),Γx,π(St),Γx,m(St)︸ ︷︷ ︸

Γx(St)

,Γη(St)]. (2.6)

2.2.4 Markov-Chain

In order to achieve flexibility while maintaining parsimony,10 I assume that the model

parameters evolve according to a four-state Markov-chain St = (SXt , S
M
t ) (i.e., that the

regime-switching is not synchronized). It can be further decomposed into two independent

two-state Markov-chains, SXt , S
M
t ,

PX =

[
pX1 1− pX1

1− pX2 pX2

]
, PM =

[
pM1 1− pM1

1− pM2 pM2

]
where Xi and Mi are indicator variables for correlation and monetary policy regimes, i =
1, 2. Define

St =


1 if SXt = X1 and SMt = M1

2 if SXt = X1 and SMt = M2

3 if SXt = X2 and SMt = M1

4 if SXt = X2 and SMt = M2,

from which I construct the transition probability P = PX ⊗ PM .

9 Equation (2.5) holds true if µMP
i (St) = µAPi (St).

10There is no reason to assume a priori that the coefficient, χc,π, and the monetary policy parameters,
τc, τπ, switch simultaneously.
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2.2.5 Solution

The first-order condition of the agent’s expected utility maximization problem yields the

Euler equations

Et [exp (mt+1 + rk,t+1)] = 1, k ∈ {c,m}, (Real Assets) (2.7)

pn,t = logEt[exp(mt+1 − πt+1 + pn−1,t+1)], (Nominal Assets) (2.8)

where mt+1 = θ log δ− θ
ψgc,t+1 + (θ−1)rc,t+1 is the log of the real stochastic discount factor

(SDF), rc,t+1 is the log return on the consumption claim, rm,t+1 is the log market return,

and pn,t is the log price of an n-month zero-coupon bond.

The solutions to (2.7) and (2.8) depend on the joint dynamics of consumption, dividend

growth, and inflation, which can be conveniently broken up into three parts and be re-

written as:

1. Fundamental Dynamics
 gc,t+1
gd,t+1
πt+1

 =

 µc
µd
µπ

 +

 e1
φxe1

Γx(SXt+1, S
M
t+1)

Xt+1 +

 1 0 0
φη 1 0

Γη(SXt+1, S
M
t+1) 0 1

 σ̄cηc,t+1
σ̄dηd,t+1
σ̄πηπ,t+1

 (2.9)

2. The Conditional Mean Dynamics
 xc,t+1

xπ,t+1
xm,t+1


︸ ︷︷ ︸

Xt+1

=

 ρc(S
X
t+1) 0 0

0 ρπ(SXt+1) 0

0 0 ρm


︸ ︷︷ ︸

Υ(SX
t+1

)

 xc,t
xπ,t
xm,t


︸ ︷︷ ︸

Xt

+

 1 χc,π(SXt+1) 0

0 1 0
0 0 1


︸ ︷︷ ︸

Ω(SX
t+1

)

 σc,tec,t+1
σπ,teπ,t+1
σmem,t+1


︸ ︷︷ ︸

Et+1

(2.10)

3. The Conditional Volatility Dynamics
[
σ2
c,t+1

σ2
π,t+1

]
︸ ︷︷ ︸

Σt+1

=

[
(1− νc)(ϕcσ̄)2

(1− νπ)(ϕπ σ̄)2

]
︸ ︷︷ ︸

Φµ

+

[
νc 0
0 νπ

]
︸ ︷︷ ︸

Φν

[
σ2
c,t

σ2
π,t

]
︸ ︷︷ ︸

Σt

+

[
σwcwc,t+1
σwπwπ,t+1

]
︸ ︷︷ ︸

Wt+1

, Wt+1 ∼ N(0,Φw). (2.11)

In the above, derivations of Γx(SXt+1, S
M
t+1),Γη(S

X
t+1, S

M
t+1) are provided in (2.6), e1 = [1, 0, 0],

and the shocks follow ηj,t+1, ek,t+1, wl,t+1 ∼ N(0, 1) for j ∈ {c, d, π}, k ∈ {c, π,m}, and

l ∈ {c, π}. I approximate the exponential Gaussian volatility process in (3.2) by linear

Gaussian processes (2.11) such that the standard analytical solution techniques that have

been widely used in the LRR literature can be applied. The approximation of the ex-

ponential volatility process is used only to derive the solution coefficients in the law of
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motion of the asset prices. {St+1, Xt+1,Σt+1} are sufficient statistics for the evolution of

the fundamental macroeconomic aggregates.

Real Equity Asset Solutions

Real asset prices are determined from the approximate analytical solution described in

Bansal and Zhou (2002) and Schorfheide, Song, and Yaron (2013). Let It denote the

current information set
{
SXt , Xt,Σt

}
and define It+1=It ∪ {SXt+1} that includes information

regarding SXt+1 in addition to It.
11 Suppose SXt = i for i=1,2. Derivation of (2.7) follows

Bansal and Zhou (2002), who make repeated use of the law of iterated expectations and log-

linearization, and Schorfheide, Song, and Yaron (2013) who utilize log-linear approximation

for returns and for volatilities

1 = E
(
E [exp (mt+1 + rm,t+1) | It+1] | It

)
=

2∑
j=1

PXijE
(

exp (mt+1 + rm,t+1) | SXt+1 = j,Xt,Σt

)

0 =

2∑
j=1

PXij

(
E
[
mt+1 + rm,t+1 | SXt+1 = j,Xt,Σt

]
+

1

2
V
[
mt+1 + rm,t+1 | SXt+1 = j,Xt,Σt

])
︸ ︷︷ ︸

B

.

The first line uses the law of iterated expectations, second line uses the definition of Markov-

chain; and the third line applies log-linearization (i.e., exp(B) − 1 ≈ B), log-normality

assumption, and log-linearization for returns and for volatilities.

The state-contingent solution to the log price to consumption ratio follows

zt(i) = A0(i) +A1(i)Xt +A2(i)Σt,

11Note that regime information on SMt is irrelevant for real equity asset solutions.
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where[
A1(1) A1(2)

]
= (1− 1

ψ
)e1

[
pX1

Υ(1) + (1− pX1
)Υ(2) (1− pX2

)Υ(1) + pX2
Υ(2)

]
×
[

I2 − pX1
κ1,cΥ(1) −(1− pX2

)κ1,cΥ(1)
−(1− pX1

)κ1,cΥ(2) I2 − pX2
κ1,cΥ(2)

]−1

[
A2,c(1)
A2,c(2)

]
=

θ

2

[
I2 − κ1,cνcPX

]−1 × PX ×


{(

(1− 1
ψ )e1 + κ1,cA1(1)

)
· Ω(1)e′1

}2

{(
(1− 1

ψ )e1 + κ1,cA1(2)

)
· Ω(2)e′1

}2


[
A2,π(1)
A2,π(2)

]
=

θ

2

[
I2 − κ1,cνπPX

]−1 × PX ×


{(

(1− 1
ψ )e1 + κ1,cA1(1)

)
· Ω(1)e′2

}2

{(
(1− 1

ψ )e1 + κ1,cA1(2)

)
· Ω(2)e′2

}2

 .
The log price to consumption ratio loading with respect to long-run growth, A1,c(i), will

be positive whenever the IES, ψ, is greater than 1. The loadings on the inflation target,

A1,π(i), and on the monetary policy shock, A1,m(i), are zero. The sign of the responses

of the log price to consumption ratio to long-run growth and inflation target volatilities,

A2,c(i) and A2,π(i), will be negative if θ < 0 (i.e., γ > 1 and ψ > 1).

Nominal Bond Asset Solutions

Similar to the previous case, the approximate analytical expressions for the state-contingent

log bond price coefficients pn,t = Cn,0(i) + Cn,1(i)Xt + Cn,2(i)Σt are derived by exploiting

the law of iterated expectations and log-linearization,

pn,t ≈
4∑
j=1

Pij log

(
E[exp(mt+1 − πt+1 + pn−1,t+1)|St+1 = j, St = i]

)
,

where

Cn,1(i) =

4∑
j=1

Pij
(
Cn−1,1(j)− 1

ψ
e1 − Γx(j)

)
Υ(j)

Cn,2(i) =
4∑
j=1

Pij
(
Cn−1,2(j)Φν + (θ − 1) {κ1,cA2(j)Φν −A2(i)}

+
1

2

[
{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′1}

2

{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′2}
2

]′)
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with the initial conditions C0,1(i) = [0, 0, 0] and C0,2(i) = [0, 0] for i=1,. . . ,4. Because of the

regime-switching feature, the coefficients are not easy to interpret. However, it is relatively

easy to verify that bond prices will respond negatively to positive shocks to long-run growth

and the inflation target when n = 1.

2.3 State-Space Representation of the LRR Model

To facilitate estimation, it is convenient to cast the LRR model of Section 3.2 into state-

space form. The state-space representation consists of a measurement equation that relates

the observables to underlying state variables and a transition equation that describes the

law of motion of the state variables. I use the superscript o to distinguish observed variables

from model-implied ones. The regime-contingent measurement equation can be written as

yot+1 = At+1

(
D(St+1) + F (St+1)ft+1 + F v(St+1)fvt+1 + Σεεt+1

)
, εt+1 ∼ iidN(0, I).(2.12)

The vector of observables, yot+1, contains consumption growth, dividend growth, the log price

to dividend ratio, inflation, U.S. Treasury bills with maturities of one and three months,

U.S. Treasury bonds with maturities of between one and five years, as well as bonds with

maturity of ten years, and measures of one quarter ahead forecasts for real growth from

the historical forecasts taken from the Survey of Professional Forecasters (SPF). The vector

ft+1 stacks state variables that characterize the level of fundamentals. The vector fvt+1 is

a function of the log volatilities of long-run growth and the inflation target, ht and ht+1,

in (3.2). Finally, εt+1 is a vector of measurement errors, and At+1 is a selection matrix that

accounts for deterministic changes in the data availability.

The solution of the LRR model sketched in Section 2.2.5 provides the link between

the state variables and the observables yot+1. The state variables themselves follow regime-

contingent vector autoregressive processes of the form

ft+1 = Φ(St+1)ft + vt+1(St+1)(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I), (2.13)
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where vt+1(St+1) is an innovation process with a variance that is a function of the log

volatility process ht, and wt+1 is the innovation of the stochastic volatility process. Roughly

speaking, the vector ft+1 consists of the long-run components xc,t, xπ,t, and xm,t in Sec-

tion 3.2. In order to express the observables yot+1 as a linear function of ft+1 and to account

for potentially missing observations it is necessary to augment ft+1 by lags of xc,t, xπ,t, xm,t

as well as the innovations for the fundamentals. A precise definition of ft+1 is included to

the Appendix.

The novelty in the estimation is that the state-space representation is set up in a way to

incorporate the measurement error modeling of consumption growth outlined in Schorfheide,

Song, and Yaron (2013). The authors show that post-1959 monthly consumption series are

subject to sizeable measurement errors and argue that accounting for measurement errors

is crucial in identifying the predictable component in consumption growth. In addition,

the state-space representation exploits the SPF measures that are released in a different

(quarterly) frequency. As argued in Bansal and Shaliastovich (2013), survey-based expected

measures provide the most accurate forecasts of future growth, which is why bringing this

information into the estimation will sharpen the inference on expected terms. For purpose

of illustration, I represent the monthly time subscript t as t = 3(j − 1) + m, where m =

1, 2, 3. Here j indexes the quarter and m the month within the quarter. The formulae

below summarize the implementation of measurement error modeling of consumption and

exploitation of the SPF measures:

1. A Measurement Equation for Consumption

goc,3(j−1)+1 = gc,3(j−1)+1 + σε
(
ε3(j−1)+1 − ε3(j−2)+3

)
− 1

3

3∑
m=1

σε
(
ε3(j−1)+m − ε3(j−2)+m

)
+σqε

(
εq(j) − ε

q
(j−1)

)
goc,3(j−1)+m = gc,3(j−1)+m + σε

(
ε3(j−1)+m − ε3(j−1)+m−1

)
, m = 2, 3,
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where the monthly and quarterly measurement errors follow ε3(j−1)+m, ε
q
(j) ∼ N(0, 1).

2. Exploiting the SPF Measures

xq,oc,(j) =
5∑

τ=1

(
3− |τ − 3|

3

)
xc,3j−τ+1 + σqx,εε

q
x,(j),

where xq,oc,(j) denotes the jth quarter median SPF forecasts for real growth measured

at j − 1th quarter, and the measurement error follows εqx,(j) ∼ N(0, 1).

2.3.1 Bayesian Inference

The system to be estimated consists of equations (2.12) and (2.13) whose coefficient matrices
are functions of the parameter vector

Θ0 =
(
δ, ψ, γ

)
(2.14)

Θ1 =

(
{ϕk, σ̄k, µk, νk, σwk}

π
k=c , µd, ϕd, φx, φη, σε, ρm, σm,

{
ρ(i)
c , ρ(i)

π , χ(i)
c,π

}2

i=1
,
{
τ (j)
c , τ (j)

π

}2

j=1

)
Θ2 =

(
PX1 ,PX2 ,PM1 ,PM2

)
.

I will use a Bayesian approach to make inferences about Θ = {Θ0,Θ1,Θ2} and the latent

state vector S and study the implications of the model. Bayesian inference requires the

specification of prior distributions p(Θ) and p(S|Θ2) and the evaluation of the likelihood

function p(Y o|Θ, S).

The posterior can be expressed as

p(Θ, S|Y o) =
p(Y o|Θ, S)p(S|Θ2)p(Θ)

p(Y o)
, (2.15)

which can be factorized as

p(Θ, S|Y o) = p(Θ|Y o)p(S|Θ, Y o). (2.16)

The practical difficulty is to generate draws from p(Θ|Y o) since it requires numerical eval-

uation of the prior density and the likelihood function p(Y o|Θ). Due to the presence of the

volatility states and the regime-switching processes, the computation of the likelihood func-

tion relies on a sequential Monte Carlo procedure also known as particle filter. To obtain
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a computationally efficient filter, I extend the algorithm developed in Schorfheide, Song,

and Yaron (2013), in which they exploit the partially linear structure of the state-space

model conditional on the volatility states and derive a very efficient particle filter. The

key feature of my state-space model is that it is still nonliner conditional on the volatility

states. However, conditional on the volatility states, I can apply Kim’s Filter in Kim and

Nelson (1999) (i.e., an extension of the Kalman filter with a collapsing procedure that is

proposed for handling Markov-switching models) to evaluate the likelihood. In essence, I

use a swarm of particles to represent the distribution of volatilities and employ Kim’s Filter

for each particle (i.e., volatility). After resampling step (i.e., eliminating particles with low

weights), the filter produces a sequence of likelihood approximations. I embed the likeli-

hood approximation in a fairly standard random-walk Metropolis algorithm and draw the

parameter vector {Θ(m)}nsimm=1. Conditional on the parameter vector, {Θ(m)}nsimm=1, I use Kim’s

smoothing algorithm in Kim and Nelson (1999) to generate draws from the history of latent

states, {S(m)}nsimm=1. A full description of the particle filter is provided in the Appendix.

2.4 Empirical Results

The data set used in the empirical analysis is described in Section 3.4.1.

2.4.1 Data

Monthly consumption data represent per-capita series of real consumption expenditure on

non-durables and services from the National Income and Product Accounts (NIPA) tables

available from the Bureau of Economic Analysis. Aggregate stock market data consist of

monthly observations of returns, dividends, and prices of the CRSP value-weighted portfolio

of all stocks traded on the NYSE, AMEX, and NASDAQ. Price and dividend series are

constructed on the per-share basis as in Campbell and Shiller (1988b) and Hodrick (1992).

Market data are converted to real using the consumer price index (CPI) from the Bureau of
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Labor Statistics. Growth rates of consumption and dividends are constructed by taking the

first difference of the corresponding log series. Inflation represents the log difference of the

CPI. Monthly observations of U.S. Treasury bills and bonds with maturities at one month,

three months, one to five years, and ten years are from CRSP. The time series span of the

monthly data is from 1959:M1 to 2011:M12.12 The quarterly SPF survey forecasts are from

the Federal Reserve Bank of Philadelphia. I use the median survey forecasts values for GDP

growth that span the period from 1968:Q4 to 2011:Q4. The descriptive data statistics are

provided in Table 2.2.

2.4.2 Prior and Posterior Summaries

I begin by estimating the state-space model described in Section 3.3.

Prior Distribution. This section provides a brief discussion of the prior distribution.

Percentiles for marginal prior distributions are reported in Table 2.3. The prior distribution

for the preference parameters which affect the asset pricing implications of the model are

the same as the ones used in Schorfheide, Song, and Yaron (2013). Thus, I focus on the

parameters of the fundamental processes specified in (2.1) and (3.2).

The prior 90% credible intervals for average annualized consumption and dividend

growth and inflation are fairly wide and agnostic and range from approximately -7% to

+7%. The priors for φx and φη, parameters that determine the comovement of consump-

tion and dividend growth, are centered at zero and have large variances. σ̄c and σ̄π are

the average standard deviation of the iid component of consumption growth and inflation

whose 90% prior intervals range from 1.2% to 7.2% at an annualized rate. The parameters

ϕd, ϕc, and ϕπ capture the magnitude of innovations to dividend growth and the long-run

growth and inflation target component relative to the magnitude of consumption growth

12Monthly consumption growth is available from 1959:M2.
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innovations. The prior for ϕd covers the interval 0.2 to 12, whereas the priors for ϕc, and

ϕπ cover the interval 0 to 0.11. Finally, the prior interval for the persistence of the volatility

processes ranges from -0.1 to 0.97 and the prior for the standard deviation of the volatility

process implies that the volatility may fluctuate either relatively little, within the range of

0.67 to 1.5 times the average volatility, or substantially, within the range of 0.1 to 7 times

the average volatility.

The prior distribution for the persistence of the long-run growth, inflation target, and

monetary policy shock xc,t, xπ,t, xm,t is a normal distribution centered at 0.9 with a stan-

dard deviation of 0.5, truncated to the interval (−1, 1). The corresponding 90% credible

interval ranges from -0.1 to 0.97, encompassing values that imply iid dynamics as well as

very persistent local levels. The prior distribution for the parameter that captures contem-

poraneous correlation between the long-run growth and inflation target shocks is a normal

distribution centered at zero with a relatively large standard deviation of 0.5. Sign restric-

tions are imposed to identify two different correlation regimes: one is truncated below zero,

and the other is truncated above zero. The prior intervals for the standard deviation of the

monetary policy shock cover the range from 0 to 0.001.

The priors for the monetary policy rule coefficients are normal distributions with range

of between ±4.28, but those for inflation components are truncated above zero, reflecting

the view that the central bank raises rather than lowers the interest rate in response to

positive inflation fluctuations. Finally, I employ beta priors for the Markov-chain transition

probabilities that cover 0.38 to 1.00.

Posterior Distribution. Percentiles for the posterior distribution are also reported in

Table 2.3. The estimated parameters for preferences and dividend growth (first panel) are,

by and large, similar to those reported in Schorfheide, Song, and Yaron (2013). Those

for the consumption and inflation process (second panel) are consistent with the sample
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mean and standard deviation reported in Table 2.2. One interesting feature is that the

unconditional standard deviation of the long-run growth is substantially smaller than that

of the inflation target, 0.07% versus 0.29% at annualized rates. The estimation results also

provide strong evidence for stochastic variation in the long-run growth and inflation target.

According to the posteriors reported in Table 2.3, all σc,t and σπ,t exhibit significant time

variation. The posterior medians of νc and νπ are .9952 and .9928, respectively, and the

unconditional volatility standard deviations σwc and σwπ are around 0.31 and 0.45.

The most important results for the subsequent analysis are provided in the third and

fourth panels of Table 2.3. First, there is strong evidence for parameter instability in

the VAR dynamics of the long-run components. Most prominently, the posterior median

estimate of χc,π, which captures contemporaneous correlation between the long-run growth

and inflation target shocks, is -0.40 in the first regime and 0.15 in the second regime.

Another notable difference between the two regimes is the drop in the persistence of the

long-run growth and inflation target components. Unlike in their appearance, the process

half-life is very different between two regimes: the process half-life for the long-run growth

(inflation target) component in the first regime is about 12 (12) years; while that in the

second regime is about 1 (3) years. The values of persistence and the standard deviation

of the monetary policy shock are 0.9916 and 0.0002, and are assumed to be identical across

regimes. In general, the magnitude of the differentials between the two VAR coefficient

regimes are small, but the sign change in the correlation structure is notable. Since the

group of estimates distinguish themselves as ones that generate negative correlation between

long-run growth and inflation target shocks and ones that do not, I label the first regime as

the “countercyclical” inflation regime and the second regime as the “procyclical” inflation

regime.

Second, two very different posterior estimates of the monetary policy rule in the fourth
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panel of Table 2.3 support the view of Clarida, Gali, and Gertler (2000) that there has been

a substantial change in the way monetary policy is conducted. One regime is associated with

larger monetary policy rule coefficients, which implies that the central bank will respond

more aggressively to consumption gap, short-run, and long-run inflation fluctuations. The

other regime is characterized by a less responsive monetary policy rule, in which I find much

lower loadings on consumption gap and short-run inflation fluctuations. In particular, the

magnitude of the loading on short-run inflation fluctuation τπ is one-third of that in the

former regime and is below one. Following the convention in the monetary policy literature,

the regimes are distinguished by which has an “active” central bank, and which has a

“passive” central bank.

Finally, the bottom panel of Table 2.3 reports posterior estimates of the Markov-chain

transition probabilities. The countercyclical inflation regime is most persistent: The proba-

bility that it will continue is 99.2%. The procyclical inflation regime, on the contrary, is the

less persistent one: Its duration is one-fourteenth of the countercyclical inflation regime.

This result can be interpreted as the “risks” of falling back to the countercyclical inflation

regime are substantial. The transition probability of the active monetary policy regime is

around 0.99, which implies that agents expect its average duration to be about 9 years. For

the passive monetary policy regime, the same result is about 3-4 years. Given posterior

transition probabilities, it is interesting to look at the smoothed probabilities for transitions

between regimes.

Smoothed Posterior Regime Probabilities. Figure 2.1 depicts the smoothed posterior

probabilities of the procyclical inflation and active monetary policy regimes. Figure 2.1(a)

is consistent with the evidence provided in Table 2.1 that procyclical inflation regimes were

prevalent after late-1990s. It also suggests that the switch is not a permanent event, but
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rather, an occasional one.13 Figure 2.1(b) provides the historical paths of monetary policy

stance: The active monetary policy appeared in the mid-1960s but was largely dormant

during the 1970s; it became active after the appointment of Paul Volcker as Chairman of

the Federal Reserve in 1979 and remained active for 20 years (except for short periods in

the early 1990s); after that, in response to the economic crisis triggered by the 9/11 attacks

in 2001, the central bank lowered interest rates and took a passive stance for 3-4 years;

around the mid-2000s, it switched back to a more active stance until the Great Recession

started; and finally, post-2008 periods are characterized by the passive regime.14

Smoothed Mean and Volatility States. The top panel of Figure 2.2 depicts smoothed

estimates of long-run growth xc,t and inflation target xπ,t, which are overlaid with monthly

consumption growth and inflation, respectively.15 xc,t tends to fall in recessions (indicated

by the shaded bars in Figure 2.2) but periods of falling xc,t also occur during expansions; the

pattern is broadly similar to the one reported in Schorfheide, Song, and Yaron (2013). xπ,t

reaches its peak during the Great Inflation periods and substantially decreases afterwards.

It is interesting to note that during the 1970s and 1980s, recessions were accompanied by

increases in the inflation target. The pattern clearly reverses starting in the late 1990s. The

smoothed volatility processes are plotted below. Recall that my model has two independent

volatility processes, hc,t and hπ,t, which are associated with the innovations to the long-run

growth and inflation target, respectively. The most notable feature of hc,t is that it captures

a drop in growth volatility that occurred in the 1980s, also known as the Great Moderation.

The stochastic volatility process for the inflation target displays different properties: It

13This evidence is also supported by David and Veronesi (2013).

14The smoothed paths for the monetary policy are broadly consistent with those found in Clarida, Gali,
and Gertler (2000), Ang, Boivin, Dong, and Loo-Kung (2011), Bikbov and Chernov (2013), and Coibon and
Gorodnichenko (2011).

15Figure 2.10 provides the path of the estimated monetary policy shock.
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jumps around 1970 and remains high for 25 years, and features wide fluctuations in the

beginning of the 2000s, that is not apparent in hc,t. Overall, the smoothed hπ,t seems to

exhibit more medium and high-frequency movements than hc,t. Also, due to the inclusion

of a greater amount of bond yields data, hπ,t is more precisely estimated than hc,t, indicated

by tighter credible intervals.

2.4.3 Implications for Macroeconomic Aggregates and Asset Prices

It is instructive to examine the extent to which sample moments implied by the estimated

state-space model mimic the sample moments computed from the actual data set. To do

this, I conduct a posterior predictive check (see Geweke (2005) for a textbook treatment). I

use previously generated draws Θ(s), S(s), s = 1, . . . , nsim, from the posterior distribution of

the model parameters p(Θ, S|Y o) and simulate for each Θ(s), S(s) the model for 636 periods,

which corresponds to the number of monthly observations in the estimation sample.16 This

leads to nsim simulated trajectories, which I denote by Y (s,o). For each of these trajectories,

I compute various sample moments, such as means, standard deviations, and cross correla-

tions. Suppose I denote such statistics generically by S(Y (s,o)). The simulations provide a

characterization of the posterior predictive distribution p(S(Y (s,o))|Y o).

Matching Moments of the Macroeconomic Aggregates and Stock Price. To save

space, the model-implied distributions for the first and second moments of the macroeco-

nomic aggregates and stock price are provided in Table 2.12 and Table 2.13 in the Appendix.

In sum, the first and second moments for consumption and dividend growth, log price to

dividend ratio, and inflation implied by the model replicate the actual counterparts well.

Since monetary policy does not affect the cash flows, the sample moments for consump-

tion and dividend growth and log price to dividend ratio do not differ across monetary

16To generate the simulated data, I also draw measurement errors.
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policy regimes (i.e., column-wise comparisons). Yet the sample moments across inflation

regimes (i.e., row-wise comparisons) are quite different: Those in the countercyclical in-

flation regime are much more volatile. This finding is consistent with the near unit-root

estimates of long-run growth and inflation target persistence in the countercyclical inflation

regime (see Table 2.3). The sample correlation between consumption and inflation is pro-

vided in Table 2.4. While the model-implied numbers are somewhat larger than their data

estimates, the model performs well in terms of matching the sign-switching patterns. One

notable feature is that monetary policy does seem to matter for the correlation of expected

values: Passive monetary policy lowers the correlation of expected values particularly more

during the procyclical inflation regime. Overall, I find that χc,π is the key model ingredient

to capturing the sign-switching patterns, and that monetary policy influences the correla-

tion of the expected consumption growth and inflation but on its own cannot change the

sign.

Equilibrium Nominal Bond Yield Loadings. It is also instructive to understand

the equilibrium bond yield loadings first before looking at the model-implied yield curve.

Figure 2.3 shows the regime-contingent bond yield loadings on long-run growth, inflation

target, and long-run growth and inflation target volatilities based on the median posterior

coefficient estimates.17 To ease exposition, I use abbreviations for each regime: “CA”

stands for the countercyclical inflation and the active monetary policy regimes, while “PP”

stands for the procyclical inflation and the passive monetary policy regimes; “CP” and

“PA” indicate the remaining combinations of regimes. The CP loading on inflation target

for a bond with a maturity of 1 month is normalized to 100% to bring all of the loadings

into proportion with one another.18 It is evident from Figure 2.3 that inflation target is

17I do not present the graph for monetary policy since its influence on bond yields is very small compared
to these variables.

18An easier way to interpret this is to fix one regime and compare loadings across the model state variables.

29



the most important factor in the term structure analysis. Note that loadings on inflation

target volatility increase over maturities and become the second most important factor for

longer maturity yields. In terms of patterns of the loadings, I find that they are broadly in

line with those found in Bansal and Shaliastovich (2013). The loadings on long-run growth

and inflation targets are positive; the loading on long-run growth volatility has a negative

decreasing slope; and the loading on inflation target volatility is mostly positive and rises

with maturities. However, the loadings across regimes have very different implications. Let

us focus on monetary policy regimes. For example, while a positive shock to the inflation

target induces an essentially parallel shift in the entire yield curve (loadings are nearly flat

across maturities) in the active monetary policy regime, it has disproportionately larger

effects on yields with short maturities (loadings decrease substantially over maturities)

in the passive case. It seems that in the active monetary policy regime, inflation target

behaves like a level factor, but in the passive cases it becomes a slope factor.19 Moreover,

the magnitude of the loadings in the passive monetary policy stance almost doubles. With

regard to inflation regimes, the loadings on all model state variables will be uniformly

shifted out in the countercyclical inflation regime, implying that the risks associated with

the countercyclical inflation regime are much larger than those in the procyclical case.

Matching Moments of the Yield Spread. The estimated model is quite successful at

fitting Treasury yields over the entire sample—the yield prediction error in different matu-

rity are generally quite small over the entire sample. To save space, the evidence is provided

in Figure 2.14 in the Appendix. Now, in order to evaluate if the model can reproduce key

patterns in the data, I focus on posterior predictive assessment in the main text. Distribu-

tions generated from the LRR model using the posterior estimates are graphically provided

By focusing on one state variable, you can move across regimes to compare their magnitudes.

19Readers are referred to Figure 1 in Rudebusch and Wu (2008).
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in Figure 2.4. The top and bottom ends of the boxes correspond to the 5th and 95th

percentiles, respectively, of the posterior distribution, and the horizontal lines signify the

medians. The first row of Figure 2.4 is simulated conditional on the countercyclical inflation

regime while the second row in Figure 2.4 is generated from the procyclical inflation one.

For each row, the figure on the left conditions on the active monetary policy regime while

the one on the right does the same on the passive monetary policy regime. The figure also

depicts the same moments computed from U.S. data (black squares). “Actual” sample mo-

ments that fall far into the tails of the posterior predictive distribution provide evidence for

model deficiencies. Roughly speaking, the model performs well along this dimension since

the model-implied median values are fairly close to their data estimates. Yet important

distinctions arise across regimes. Going from left to right (CA to CP or PA to PP), I find

that yield spread distributions are more dispersed. The 90% credible intervals in the latter,

right-hand figures (CP or PP) are approximately twice as large as those in the left-hand

column (CA or PA). This is consistent with the impulse response functions shown in Fig-

ure 2.11, in that the passive monetary policy leads to more unstable economic dynamics.

From top to bottom (CA to PA or CP to PP), I find that the 10y-3m yield spreads in

the countercyclical inflation regime are roughly 150 basis points (annualized) higher than

those in the procyclical inflation regime. This implies that agents will demand higher yields

as compensation for the risks associated with the countercyclical inflation regimes. An in-

teresting feature of the model is that due to the presence of the countercyclical inflation

regimes, agents will still demand inflation premiums, which is shown by the upward slope

found in PP of Figure 2.4. This is a prominent feature of the model that generates an

upward-sloping yield curve even when the economy is in the procyclical inflation regime.

The second moment for the yield spread implied by the model is provided in Figure 2.15

in the Appendix. The model performs well along this dimension and the model-implied
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patterns are very similar to the first moment case.

Bond Risk Premia Implications. Under the Expectations Hypothesis (EH), the ex-

pected holding returns from long-term and short-term bonds should be the same (strong

form) or should only differ by a constant (weak form). However, even the weak form has

been consistently rejected by empirical researchers. For example, Campbell and Shiller

(1991), Dai and Singleton (2002), Cochrane and Piazzesi (2005), and Bansal and Shalias-

tovich (2013) all argue that the EH neglects the risks inherent in bonds, and provide strong

empirical evidence for predictable changes in future excess returns.

The presence of stochastic volatilities and regime-switching loadings in my model gives

rise to time-variations in risk premia which has testable implications for the EH.20 First, I

focus on the term spread regression of Campbell and Shiller (1991) to examine the validity

of the EH. The excess log return on buying an n month bond at t and selling it as an n−12

month bond at t+ 12 is denoted by

rxt+12,n = (n)yt,n − (n− 12)yt+12,n−12 − 12yt+12.

Under the weak form of the EH, the expected excess bond returns are constant, which

implies that the theoretical slope coefficient βn value (below) predicted by the EH is equal

to unity for all n

yt+12,n−12 − yt,n = αn + βn

((
yt,n − yt,12

) 12

n− 12

)
+ εt+12. (2.17)

Bansal and Shaliastovich (2013)21 show that the population value for βn can be expressed

by

βn = 1− cov(Etrxt+12,n, yt,n − yt,12)

var(yt,n − yt,12)
. (2.18)

20My model extends Bansal and Shaliastovich (2013) by allowing regime-switching bond yield loadings
which provide additional channels for time variations in risk premia.

21The earlier version of their paper considered this explanation.
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This means that downward deviation from unity, equivalent to cov(Etrxt+12,n, yt,n−yt,12) >

0, implies that the term spread contains information about the expected excess bond returns.

Put differently, the predictability of excess bond returns (by the term spread) reflects time

variations in the expected risk premium.

Figure 2.5 compares model-implied distributions for the slope coefficient, βn, to the

corresponding data estimates. The first thing to note is that the model generates very

comparable results. Roughly speaking, the model produces βns that are significantly lower

than unity and whose absolute magnitudes rise over maturities, as in the data. Second,

it is important to understand that the violations of the EH or deviations from unity are

less apparent in the passive monetary policy regimes. In particular, the model-implied

distributions for βns in the PP regime are close to or even greater than zero. The striking

feature is that the data estimates for βn in the PP regime are all greater than zero and

even close to unity for maturities of two and three years. It can be deduced from (2.18)

that either the term spread contains much less information about the expected excess bond

returns, or the variance of the term spread is much larger in the passive monetary policy

regime.

In order to understand this feature, I decompose the bond yields into the component

implied by the EH, the expected sum of future short rates, and the term premium,

yt,n =
1

n

n−1∑
i=0

Et(yt+i,1)︸ ︷︷ ︸
short-rate expectations

+term premiumt,n. (2.19)

Let us focus on the monetary policy regimes and assume that we are in the countercyclical

inflation regime. Here are two possible channels through which the passive monetary policy

stance can affect the bond yields. In order to generate results that are consistent with

Figure 2.4, we would expect to see an increase either in the expected sum of future short

rates or in the term premium.
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Figure 2.6 compares the model-implied distributions for the term premium to the cor-

responding data estimates (black squares). Data estimates are within-regime averages from

Figure 2.16 where the time-series of the estimated term premia for bonds with maturities

of 1–10 years are depicted. It is very interesting to observe that the term premia in the

passive monetary policy regime are actually smaller than those in the active regimes (both

in the data and model-implied estimates). This implies that the effect of monetary policy is

mostly on the expectations component (without affecting the term premium component),

which further implies an increase in the variance of the current period’s term spread. From

(2.18), an increase of the term spread variance will bring the slope coefficient, βn, closer to

1. The underlying economic intuition is that the future yields will incorporate the expected

increase in the future inflation rates as the passive monetary policy stance is more prone

to large inflation, which is predicted by the EH. While the estimated model is successful

in generating these patterns, it falls short of data estimates found in the CA regime. The

model is not able to capture the substantive increase in term premia as in the data.

Similar logic can be applied when the inflation regime is procyclical. The directional

influence of the passive monetary policy stance on the expectations component is ambiguous

because, on the one hand, the procyclicality will lower the expected inflation, but on the

other hand, the risks of falling back to the countercyclical inflation regime will increase the

expected inflation. However, the inherent instability associated with the passive monetary

policy stance will increase the relative weight on the expectations component, which brings

the bond market closer to what the EH predicts.

In contrast to monetary policy, the countercyclical inflation regime affects both terms.

It is clear from the row-to-row comparison of Figure 2.6 that the risks associated with the

countercyclical inflation regime increase the term premiums, which are on average 50 basis
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points higher for 10-year bonds.22

A final exercise consists of running regressions that predict excess bond returns. Fol-

lowing Cochrane and Piazzesi (2005), I focus on regressing the excess bond return of an

n year bond over the 1 year bond on a linear combination of forward rates that includes

a constant term, a one year bond yield, and four forwards rates with maturities of 2 to 5

years. The model-implied 90% distributions for R2 values (in percents) from the regression

are provided in Figure 2.7. Consistent with previous findings, the expected excess returns

are less preditable (indicated by about 5% lower R2 values) in the passive monetary policy

stance.23 This is due to relative decrease in the role played by the risks channel (term

premium) in the passive monetary policy regime. Also, I find that the procyclical inflation

regimes (PA and PP) deliver, on average, 5–10% lower R2 values (see the bottom panel in

Table 2.1).

Determinants of Asset Price Fluctuations. Table 2.5 provides the contribution of var-

ious risk factors, namely the variation in long-run growth, inflation target, monetary policy

shock, and the conditional volatility variations of long-run growth and inflation target to

asset price volatility. Given the posterior estimates of the state-space model I can com-

pute smoothed estimates of the latent asset price volatilities. Moreover, I can also generate

counterfactual volatilities by sequentially shutting down each risk factor. The ratio of the

counterfactual and the actual volatilities measures the contribution of the non-omitted risk

factors. If I subtract this ratio from one, I obtain the relative contribution of the omitted

risk factor, which is shown in Table 2.5. I find that the key risk drivers of stock price vari-

ations are long-run growth, long-run growth volatility, and inflation target volatility. Since

22Note that the differences are modest because the term premia are generated from the unconditional
distributions. Once I condition on different levels of volatilities (the relative magnitude of the conditional
heteroscedasticity present is larger in the countercyclical inflation regime), the results will change.

23Again, the differences are modest since they are generated from the unconditional distributions.

35



the shock to the inflation target moves long-run growth (captured by χc,π), it becomes

one of the major drivers of stock price variations. Bond yield variations are mostly driven

by variations in the inflation target and in its volatility. Going from the short-end to the

long-end of the yield curve, the importance of the inflation target volatility increases. My

findings demonstrate that the long-term rates are much more sensitive to inflation target

volatility fluctuations than the short-term rates. My model also shows that the variations

in the short-term rates are not driven by fluctuations in volatilities. Hence, the assump-

tion that the short-rate contains no risk premium seems very plausible (see the Fisher-type

asset-pricing equation in Section 2.2.3).

Understanding Stock-Bond Returns Comovement. An important feature of my

estimation is that the likelihood also focuses on conditional correlation between stock market

returns and bond returns. Figure 2.8 displays the time-series of the estimated stock-bond

correlation which is overlaid with monthly realized stock-bond correlation (dashed-line).

During the Great Inflation periods (1970s–1980s), returns on both assets were low, which

resulted in positive comovements. The striking feature here is that in the beginning and

towards the end of the estimation sample, the return performances decoupled, and stock

and bond returns started to move in opposite directions. Through the estimation, I have

identified that the economy faced changes in the covariance between the inflation target

and long-run growth shocks (i.e., transition from the countercyclical inflation regime to the

procyclical inflation regime). Hence, from an agent’s perspective, positive shocks to the

inflation target component are perceived as positive signals to the long-run growth. Thus,

stock returns, unlike bond returns, can respond positively to long-run inflation shocks.24

The regime-switching covariance coefficient in the model, χc,π, is able to capture this data

feature. Figure 2.9 displays the unconditional stock-bond correlation implied by the model.

24David and Veronesi (2013) support this evidence.
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This experiment is useful because it disentangles the role of monetary policy in stock-bond

return correlation. I find that the active monetary policy stance tends to generate stronger

positive stock-bond comovement, although the effect is small. My results are consistent

with the findings in Campbell, Pflueger, and Viceira (2013) in which they argue that a

more aggressive response of the central bank to inflation fluctuations will increase stock-

bond correlation. However, I find that changes in monetary policy stance alone cannot

generate a sign-switch in stock-bond return correlation.25

2.5 Conclusion

Building on Bansal and Yaron (2004), I developed an equilibrium term structure model

incorporating monetary policy to address the issue of whether the structural changes in the

U.S. Treasury yield curve are caused by changes in external shocks or in monetary policy.

The model framework is general enough to encompass both Markov-switching coefficients

and stochastic volatility processes. To estimate the model, I conditioned on the volatili-

ties states to achieve an efficient implementation of a particle Markov Chain Monte Carlo

algorithm and made inferences about the model parameters, volatility states, and Markov

states. Through the estimation, I characterized bond market exposures to macroeconomic

and monetary policy risks, and identified the changes in the conditional covariance dynamics

of long-run growth and the inflation target as the main driver of structural changes in bond

markets. I found that the changes in monetary policy affect the volatility of bond yields,

while the changes in the correlation between growth and inflation affect both the level as

well as the volatility of bond yields. Overall, the model is quite successful in explaining

several bond market phenomena.

25Campbell, Pflueger, and Viceira (2013) find similar results. However, they claim that changes in the
persistence of monetary policy can generate sign-switches. Since I do not incorporate the “smoothing”
motive in the monetary policy action, my results show a limited role for monetary policy.
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2.6 Tables and Figures

Table 2.1: Descriptive Statistics

Pre-1998 Post-1998 Full Sample

Annualized Average Bond Yields

Mean (y3m) 6.07 2.64 5.16
Mean (y1y) 6.51 2.88 5.55
Mean (y3y) 6.87 3.35 5.94
Mean (y5y) 7.05 3.78 6.19
Mean (y10y) 7.35 4.38 6.57

Correlation between Growth and Inflation

Corr(∆c, π) -0.19 0.02 -0.11
Corr(∆c, π)Q -0.36 0.18 -0.16
Corr(∆gdp, π)Q -0.26 0.33 -0.13
Corr(E∆gdp,Eπ)Q -0.43 0.19 -0.31

Correlation between Stock and Bond Returns

Corr(rm, r2y) 0.16 -0.13 0.09
Corr(rm, r3y) 0.21 -0.14 0.13
Corr(rm, r4y) 0.22 -0.14 0.14
Corr(rm, r5y) 0.24 -0.14 0.15

Term Spread Regression, Slope Coefficient

r2y,t+1y onto spread2y,t -0.95 0.89 -0.62
r3y,t+1y onto spread3y,t -1.37 0.43 -1.00
r4y,t+1y onto spread4y,t -1.77 0.02 -1.40
r5y,t+1y onto spread5y,t -1.69 -0.28 -1.41

Excess Bond Return Predictability, R2

rx2y,t+1y onto forwardt 34.34 13.60 20.68
rx3y,t+1y onto forwardt 35.29 13.92 21.54
rx4y,t+1y onto forwardt 37.72 15.79 24.38
rx5y,t+1y onto forwardt 34.49 19.15 22.32

Notes: The top three panels report descriptive statistics for aggregate consumption growth (∆c), gross

domestic product (GDP) growth (∆gdp), expected GDP growth (E∆gdp), consumer price index (CPI)

inflation (π), expected inflation (Eπ), log returns of the aggregate stock market (rm), the log bond yields

(yn), log bond returns (rn), and log bond excess returns (rxn) where n ∈ {3m, 1y, 2y, 3y, 4y, 5y, 10y} .
It shows mean (Mean) and pairwise correlation (Corr) between growth and inflation and market and bond

returns. Measures of expected GDP growth (E∆gdp) and expected inflation (Eπ) are based on the Survey of

Professional Forecasters historical forecasts, which are available from 1968 to 2011. The remaining variables

are available from 1959 to 2011. The numbers in the table are derived from monthly frequency data except for

those with the superscript “Q”; those numbers are derived from quarterly frequency data. The fourth panel

provides slope coefficient from the term spread regression of Campbell and Shiller (1991). The “spreadn,t”

is the difference between an n year yield and a 1 year yield. I focus on a one year return horizon. rn (rxn)

denotes return (excess return) on an n year bond. The last panel provides R2 values (in percent) from the

excess bond return predictability regression found in Cochrane and Piazzesi (2005). “forwardt” includes a

constant term, a one year bond yield, and four forwards rates.
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Table 2.2: Descriptive Statistics - Data Moments

(a) Quarterly Frequency: 1968:Q4–2011:Q4

∆c ∆gdp E∆gdp π

Mean 0.43 0.68 0.58 1.08
StdDev 0.44 0.86 0.58 0.80
AC1 0.54 0.33 0.71 0.74

(b) Monthly Frequency: 1959:M1–2011:M12

∆c ∆d π rm pd y3m y1y y2y y3y y4y y5y y10y

Mean 0.16 0.11 0.32 0.43 3.57 0.43 0.46 0.48 0.50 0.51 0.52 0.55
StdDev 0.34 1.26 0.32 4.55 0.39 0.25 0.25 0.24 0.24 0.23 0.22 0.22
AC1 -0.16 -0.01 0.63 0.10 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99

Notes: I report descriptive statistics for aggregate consumption growth (∆c), gross domestic product (GDP)

growth (∆gdp), expected GDP growth (E∆gdp), consumer price index (CPI) inflation (π), dividend growth

(∆d), log returns of the aggregate stock market (rm), log price to dividend ratio (pd), and U.S. Treasury

yields (yn) with maturity n ∈ {3m, 1y, 2y, 3y, 4y, 5y, 10y}. The table shows mean, standard deviation, and

sample first order autocorrelation. Means and standard deviations are expressed in percentage terms.
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Table 2.3: Posterior Estimates

Prior Posterior Prior Posterior
Distr. 5% 95% 5% 50% 95% Distr. 5% 95% 5% 50% 95%

Preferences Dividend Process

δ B [.9951 .9999] .9985 .9989 .9991 µd N [-.007 .006] - .0010 -
ψ G [ 0.31 3.45] 1.80 1.81 1.82 φx N [-13.1 13.4] 2.39 2.51 2.67
γ G [ 2.74 15.45] 10.82 10.99 11.17 φη N [-1.68 1.63] 1.09 1.10 1.13

ϕd G [0.22 11.90] 4.74 5.01 5.19

Consumption Process Inflation Process

µc N [-.006 .006] - .0016 - µπ N [-.007 .006] .0027 .0029 .0030
σ̄c IG [.001 .006] .0020 .0021 .0021 σ̄π N [.001 .006] .0015 .0015 .0016
ϕc G [ 0.00 0.11] .026 .031 .033 ϕπ G [ 0.00 0.11] 0.11 0.12 0.12
νc NT [-0.08 0.97] .9906 .9952 .9959 νπ NT [-0.08 0.97] .9915 .9928 .9937
σwc IG [0.22 1.03] 0.30 0.31 0.34 σwπ IG [0.22 1.03] 0.43 0.45 0.46

Regime-Switching VAR Coefficients
Countercyclical Inflation Regime Procyclical Inflation Regime

ρc NT [-0.08 0.97] .9957 .9957 .9958 ρc NT [-0.08 0.97] .951 .953 .957
ρπ NT [-0.08 0.97] .9957 .9959 .9961 ρπ NT [-0.08 0.97] .980 .980 .981
χc,π N [-0.80 0.80] -.40 -.40 -.41 χc,π N [-0.80 0.80] .150 .155 .162
ρm NT [-0.08 0.97] .9906 .9916 .9929 ρm NT [-0.08 0.97] .9906 .9916 .9929
σm IG [.000 .001] .0001 .0002 .0003 σm IG [.000 .001] .0001 .0002 .0003

Regime-Switching Monetary Policy Coefficients
Active Monetary Policy Regime Passive Monetary Policy Regime

τc N [-4.28 4.28] .9540 .9543 .9545 τc N [-4.28 4.28] .548 .550 .551
τπ NT [ 0.00 4.28] 3.09 3.10 3.11 τπ NT [ 0.00 4.28] .960 .960 .961

Markov-Chain Transition Probabilities
Inflation Regime Monetary Policy Regime

PX1 B [ 0.38 1.00] .989 .992 .995 PM1 B [ 0.38 1.00] .987 .990 .991
PX2 B [ 0.38 1.00] .938 .941 .945 PM2 B [ 0.38 1.00] .974 .975 .979

Notes: The estimation results are based on monthly data from 1959:M1 to 2011:M12 with the exception

that the consumption series only starts in 1959:M2. For consumption I adopt the measurement error model

of Schorfheide, Song, and Yaron (2013) with the modification that the statistical agency uses the proxy

series to distribute quarterly (instead of annual) consumption growth over the three months of the quarter

(instead of the twelve months of a year). I fix µc = 0.0016 and µd = 0.0010 in the estimation. B, N , NT , G,

and IG denote beta, normal, truncated (outside of the interval (−1, 1)) normal, gamma, and inverse gamma

distributions, respectively.
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Table 2.4: Model-Generated Correlations between Consumption and Inflation

Data Model
corr(∆ct, πt) corr(∆ct, πt) corr(E∆ct+1,Eπt+1)

Regime Estimate Median 5% 95% Median 5% 95%

CA -0.24 -0.58 [-0.80, -0.22] -0.93 [-0.99, -0.64]
CP -0.09 -0.48 [-0.78, 0.02] -0.74 [-0.95, -0.15]
PA 0.01 0.17 [-0.13, 0.42] 0.59 [ 0.27, 0.80]
PP 0.03 0.19 [-0.14, 0.47] 0.27 [ 0.44, 0.84]

Notes: “CA” stands for the countercyclical inflation and the active monetary policy regimes while “PP”

stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA” indicate the

remaining combinations of regimes. Data estimates are based on monthly consumption growth and inflation

series.

Table 2.5: Variance Decomposition

Long-Run Growth Monetary Policy Shock Long-Run Growth Vol.
Variable Name & Inflation Target & Inflation Target Vol.

Median 5% 95% Median 5% 95% Median 5% 95%

log Price-Dividend Ratio 51.3 [43.5, 62.7] - [- -] 49.7 [37.1, 57.2]
3-Month Bond Yield 94.5 [91.1, 97.4] 4.2 [2.1, 5.5] 0.2 [0.0, 0.3]
10-Year Bond Yield 80.7 [71.0, 94.3] 5.3 [3.3, 6.2] 14.2 [6.3, 23.7]

Notes: Fraction of volatility fluctuations (in percents) of the log price dividend ratio, the 3-month nominal

bond yield, and the 10-year nominal bond yield that is due to the long-run growth (xc,t), inflation target

(xπ,t), monetary policy shock (xm,t), long-run growth volatility (σ2
c,t), and inflation target volatility (σ2

π,t),

respectively. Note that due to measurement errors, the numbers do not sum to 100%.
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Figure 2.1: Smoothed Probabilities for Transitions between Regimes

(a) Procyclical InflationProcyclical Inflation

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1

Active Monetary Policy

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1
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Notes: Dark gray shaded areas represent posterior medians of smoothed regime probabilities. Light gray

shaded bars indicate NBER recession dates. Figure 2.1(a) displays the smoothed probabilities of the pro-

cyclical inflation regime while Figure 2.1(b) shows the smoothed probabilities of the active monetary policy

regime.
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Figure 2.2: Smoothed Mean and Volatility States

(a) Long-Run Growth (b) Inflation Target

(c) Long-Run Growth Volatility (d) Inflation Target Volatility

Notes: Blue lines represent posterior medians of smoothed states and dark gray shaded area corresponds to

90% credible intervals. Light gray shaded bars indicate NBER recession dates. In the top panel, I overlay

the smoothed states with monthly consumption growth and inflation (gray solid lines).
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Figure 2.3: Equilibrium Nominal Bond Yield Loadings
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Notes: Model-implied nominal bond yield loadings on the long-run growth (xc,t), inflation target (xπ,t),

long-run growth volatility (σ2
c,t), and inflation target volatility (σ2

π,t) are provided. “CA” stands for the

countercyclical inflation and the active monetary policy regimes while “PP” stands for the procyclical in-

flation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations of

regimes. Maturity on the x-axis is in months. Numbers are displayed in percent.
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Figure 2.4: Model-Generated Yield Spread
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Notes: “Spread” is the difference between 3m yield and yields with maturity at 1y–10y. Black squares

indicate values from actual data. Figure also depicts medians (red lines) and 90% credible intervals (top and

bottom lines of boxes) of the distribution of yield spreads obtained with model-generated data. “CA” stands

for the countercyclical inflation and the active monetary policy regimes while “PP” stands for the procyclical

inflation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations of

regimes. Numbers are displayed in percent (annualized).

45



Figure 2.5: Term Spread Regression
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Notes: The model-implied 90% distributions for the slope coefficient, βn, from the regression below are
provided.

yt+12,n−12 − yt,n = αn + βn

((
yt,n − yt,12

) 12

n− 12

)
+ εt+12, n ∈ {24, 36, 48, 60} .

Medians are depicted by red lines. Black squares indicate estimates from actual data. “CA” stands for

the countercyclical inflation and the active monetary policy regimes while “PP” stands for the procyclical

inflation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations of

regimes.
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Figure 2.6: Term Premia
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Notes: The model-implied 90% distributions for term premiumt,n = yt,n − 1
n

∑n−1
i=0 Et(yt+i,1) are provided,

n ∈ {12, 24, 36, 48, 60, 120} . Medians are depicted by red lines. Black squares indicate estimates from actual

data. “CA” stands for the countercyclical inflation and the active monetary policy regimes while “PP”

stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA” indicate the

remaining combinations of regimes.
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Figure 2.7: Excess Bond Return Predictability Regression by Cochrane and Piazzesi (2005)
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Notes: The model-implied 90% distributions for R2 values (in percents) from the excess bond return pre-

dictability regression by Cochrane and Piazzesi (2005) are provided. Medians are depicted by red lines.

Black squares indicate estimates from actual data. I focus on regressing the excess bond return of an n year

bond over the 1 year bond on a linear combination of forward rates that includes a constant term, a one

year bond yield, and four forwards rates with maturities of 2 to 5 years. “CA” stands for the countercyclical

inflation and the active monetary policy regimes while “PP” stands for the procyclical inflation and the

passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations of regimes.
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Figure 2.8: Estimated Stock-Bond Return Correlation

Notes: The correlation between stock market returns and 1 year holding period bond returns for maturity

at 10 years is provided. Black dashed line depicts the monthly realized stock-bond correlation obtained

from daily data. Blue solid line represents posterior median of correlations. Light gray shaded bars indicate

NBER recession dates. The unconditional correlation between two measures are about 0.68.
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Figure 2.9: Stock-Bond Return Correlation
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Notes: The estimated correlation between stock market returns and 1 year holding period bond returns for

maturities of 2-5 years are provided. Black squares indicate regime-dependent sample correlations of actual

data. “CA” stands for the countercyclical inflation and the active monetary policy regimes while “PP”

stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA” indicate the

remaining combinations of regimes.
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Figure 2.10: Smoothed Mean States

Notes: Black lines represent posterior medians of smoothed states and the dark gray shaded area corre-

sponds to 90% credible intervals. Light gray shaded bars indicate NBER recession dates. I overlay the

smoothed long-run growth with monthly consumption growth and the smoothed long-run inflation with

realized inflation (blue solid lines).

Figure 2.11: Impulse Response Function
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Figure 2.12: Model-Generated Unconditional Mean
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Figure 2.13: Model-Generated Unconditional Standard Deviation
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Notes: Black squares indicate values from actual data. The figure also depicts medians (red lines) and

90% credible intervals (top and bottom lines of boxes) of the distribution of yield spreads obtained with

model-generated data. “CA” stands for the countercyclical inflation and the active monetary policy regimes

while “PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA”

indicate the remaining combinations of regimes. Numbers are displayed in percents (annualized).
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Figure 2.14: Yield Prediction Errors
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Figure 2.15: Model-Generated Yield Spread: Unconditional Standard Deviation
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Notes: The “spread” is the difference between the 3m yield and yields with maturities of 1y–10y. Black

squares indicate values from actual data. The figure also depicts medians (red lines) and 90% credible

intervals (top and bottom lines of boxes) of the distribution of yield spreads obtained with model-generated

data. “CA” stands for the countercyclical inflation and the active monetary policy regimes while “PP”

stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA” indicate the

remaining combinations of regimes. Numbers are displayed in percents (annualized).
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Figure 2.16: Risk and Term Premia
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2.7 Appendix

2.7.1 Solving the LRR Model

This section provides approximate analytical solutions for the equilibrium asset prices.

Exogenous Dynamics

The joint dynamics of consumption, dividend growth, and inflation are gc,t+1

gd,t+1

πt+1

 =

 µc
µd
µπ

+

 e1

φxe1

Γx(SXt+1, S
M
t+1)

Xt+1 +

 1 0 0
φη 1 0

Γη(S
X
t+1, S

M
t+1) 0 1

 σ̄cηc,t+1

σ̄dηd,t+1

σ̄πηπ,t+1

 .(2.20)

The conditional mean and volatility processes evolve according to xc,t+1

xπ,t+1

xm,t+1


︸ ︷︷ ︸

Xt+1

=

 ρc(S
X
t+1) ρc,π(SXt+1) ρc,m(SXt+1)

ρπ,c(S
X
t+1) ρπ(SXt+1) ρπ,m(SXt+1)

0 0 ρm(SXt+1)


︸ ︷︷ ︸

Υ(SXt+1)

 xc,t
xπ,t
xm,t


︸ ︷︷ ︸

Xt

(2.21)

+

 1 χc,π(SXt+1) 0
χπ,c(S

X
t+1) 1 0

0 0 1


︸ ︷︷ ︸

Ω(SXt+1)

 σc,tec,t+1

σπ,teπ,t+1

σmem,t+1


︸ ︷︷ ︸

Et+1[
σ2
c,t+1

σ2
π,t+1

]
︸ ︷︷ ︸

Σt+1

=

[
(1− νc)(ϕcσ̄)2

(1− νπ)(ϕπσ̄)2

]
︸ ︷︷ ︸

Φµ

+

[
νc 0
0 νπ

]
︸ ︷︷ ︸

Φν

[
σ2
c,t

σ2
π,t

]
︸ ︷︷ ︸

Σt

+

[
σwcwc,t+1

σwπwπ,t+1

]
︸ ︷︷ ︸

Wt+1

, Wt+1 ∼ N(0,Φw),

where ηj,t+1, ek,t+1, wl,t+1 ∼ N(0, 1) for j ∈ {c, d, π}, k ∈ {c, π,m}, and l ∈ {c, π}.

Note that the VAR dynamics are generalized to allow for intertemporal feedback effects

(captured by off-diagonal coefficients) and that the inflation target can become correlated

with long-run growth innovation. Furthermore, the channels through which monetary policy

shock affects long-run growth or inflation target, are not restricted to zero as in the main

text. (Of course, one could set them equal to zero.)

Derivation of Approximate Analytical Solutions

The Euler equation for the economy is

1 = Et [exp (mt+1 + rk,t+1)] , k ∈ {c,m} , (2.22)
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where mt+1 = θ log δ − θ
ψgt+1 + (θ − 1)rc,t+1 is the log stochastic discount factor, rc,t+1 is

the log return on the consumption claim, and rm,t+1 is the log market return. All returns

are given by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0,c + κ1,czc,t+1 − zc,t + gc,t+1 (2.23)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1.

Let It denote the current information set
{
SX1:t, Xt,Σt

}
and define It+1=It ∪ {SXt+1}

that includes information regarding SXt+1 in addition to It. Suppose SXt = i for i=1, 2.

Derivation of (2.22) follows Bansal and Zhou (2002), who make repeated use of the law of

iterated expectations and log-linearization, and Schorfheide, Song, and Yaron (2013) who

utilize log-linear approximation for returns and for volatilities.

1 = E
(
E [exp (mt+1 + rm,t+1) | It+1] | It

)
(2.24)

=
4∑
j=1

PijE
(

exp (mt+1 + rm,t+1) | St+1 = j,Xt,Σt

)

0 =

4∑
j=1

Pij
(
E [mt+1 + rm,t+1 | St+1 = j] +

1

2
V [mt+1 + rm,t+1 | St+1 = j] .

)
︸ ︷︷ ︸

B

The first line uses the law of iterated expectations, second line uses the definition of Markov-

chain; and the third line applies log-linearization, exp(B)−1 ≈ B, log-normality assumption,

and log-linearization for returns and for volatilities.

Real Consumption Claim

Conjecture that the price to consumption ratio follows

zt(S
X
t ) = A0(SXt ) +A1(SXt )Xt +A2(SXt )Σt, (2.25)

whereA1(SXt ) =
[
A1,c(S

X
t ) A1,π(SXt ) A1,m(SXt )

]
andA2(SXt ) =

[
A2,c(S

X
t ) A2,π(SXt )

]
.
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From (2.20), (2.21), (2.23), and (2.25),

rc,t+1 = κ0,c + κ1,cA0(SXt+1)−A0(SXt ) + µc + κ1,cA2(SXt+1)Φµ (2.26)

+
{

(e1 + κ1,cA1(SXt+1))Υ(SXt+1)−A1(SXt )
}
Xt +

{
κ1,cA2(SXt+1)Φν −A2(SXt )

}
Σt

+ σ̄cηt+1 + (e1 + κ1,cA1(SXt+1))Ω(SXt+1)Et+1 + κ1,cA2(SXt+1)Wt+1

and from (2.20), (2.21), (2.23), (2.24), and (2.25)

mt+1 = θ log δ + (θ − 1)
{
κ0,c + κ1,cA0(SXt+1)−A0(SXt ) + κ1,cA2(SXt+1)Φµ

}
− γµ (2.27)

− 1

ψ
e1Υ(SXt+1)Xt + (θ − 1)

{
((1− 1

ψ
)e1 + κ1,cA1(SXt+1))Υ(SXt+1)−A1(SXt )

}
Xt

+ (θ − 1)
{
κ1,cA2(SXt+1)Φν −A2(SXt )

}
Σt − γσ̄cηc,t+1

+
{
−γe1 + (θ − 1)κ1,cA1(SXt+1)

}
Ω(SXt+1)Et+1 + (θ − 1)κ1,cA2(SXt+1)Wt+1.

The solutions for As that describe the dynamics of the price-consumption ratio are
determined from (2.24), and they are,[
A1(1) A1(2)

]
= (1− 1

ψ
)e1

[
pX1

Υ(1) + (1− pX1
)Υ(2) (1− pX2

)Υ(1) + pX2
Υ(2)

]
(2.28)

×
[

I2 − pX1
κ1,cΥ(1) −(1− pX2

)κ1,cΥ(1)
−(1− pX1

)κ1,cΥ(2) I2 − pX2
κ1,cΥ(2)

]−1

[
A2,c(1)
A2,c(2)

]
=

θ

2

[
I2 − κ1,cνcPX

]−1 × PX ×
[
ξc(1)
ξc(2)

]
[
A2,π(1)
A2,π(2)

]
=

θ

2

[
I2 − κ1,cνπPX

]−1 × PX ×
[
ξπ(1)
ξπ(2)

]
[
A0(1)
A0(2)

]
=

[
I2 − κ1,cPX

]−1 × PX ×
[
Ā0 + κ1,cA2(1)Φµ + θ

2κ
2
1,cA2(1)ΦwA2(1)′ + θ

2ξm(1)σ2
m(1)

Ā0 + κ1,cA2(2)Φµ + θ
2κ

2
1,cA2(2)ΦwA2(2)′ + θ

2ξm(2)σ2
m(2)

]
where Ā0 = log δ + κ0,c + µc(1− 1

ψ ) + θ
2 σ̄

2
c (1− 1

ψ )2 and

ξc(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′1

}2

, ξπ(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′2

}2

ξm(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′3

}2

, i ∈ {1, 2}.

Real Market Returns

Similarly, using the conjectured solution to the price-dividend ratio

zm,t(S
X
t ) = A0,m(SXt ) +A1,m(SXt )Xt +A2,m(SXt )Σt, (2.29)
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the market return equation can be expressed as

rm,t+1 = κ0,m + κ1,mA0,m(SXt+1)−A0,m(SXt ) + µd + κ1,mA2,m(SXt+1)Φµ (2.30)

+
{

(φxe1 + κ1,mA1,m(SXt+1))Υ(SXt+1)−A1,m(SXt )
}
Xt +

{
κ1,mA2,m(SXt+1)Φν −A2,m(SXt )

}
Σt

+ φησ̄cηc,t+1 + σ̄dηd,t+1 + (φxe1 + κ1,mA1,m(SXt+1))Ω(SXt+1)Et+1 + κ1,mA2,m(SXt+1)Wt+1.

From (2.20), (2.21), (2.23), and (2.29), the solutions for Am-s that describe the dynamics
of the price-dividend ratio are[
A1,m(1) A1,m(2)

]
= (φx −

1

ψ
)e1

[
pX1Υ(1) + (1− pX1 )Υ(2) (1− pX2 )Υ(1) + pX2Υ(2)

]
(2.31)

×
[

I2 − pX1κ1,mΥ(1) −(1− pX2 )κ1,mΥ(1)
−(1− pX1

)κ1,mΥ(2) I2 − pX2
κ1,mΥ(2)

]−1

[
A2,c,m(1)
A2,c,m(2)

]
=

[
I2 − κ1,mνcPX

]−1
(
PX

[
(θ − 1)κ1,cνcA2,c(1) + 1

2
fc(1)

(θ − 1)κ1,cνcA2,c(2) + 1
2
fc(2)

]
− (θ − 1)

[
A2,c(1)
A2,c(2)

])
fc(i) =

(
(φx − γ)e1 · Ω(i)e′1 +

[
A1(i) · Ω(i)e′1 A1,m(i) · Ω(i)e′1

] [ (θ − 1)κ1,c

κ1,m

])2

,[
A2,π,m(1)
A2,π,m(2)

]
=

[
I2 − κ1,mνπPX

]−1
(
PX

[
(θ − 1)κ1,cνπA2,π(1) + 1

2
fπ(1)

(θ − 1)κ1,cνπA2,π(2) + 1
2
fπ(2)

]
− (θ − 1)

[
A2,π(1)
A2,π(2)

])
fπ(i) =

(
(φx − γ)e1 · Ω(i)e′2 +

[
A1(i) · Ω(i)e′2 A1,m(i) · Ω(i)e′2

] [ (θ − 1)κ1,c

κ1,m

])2

,[
A0,m(1)
A0,m(2)

]
=

[
I2 − κ1,mPX

]−1
(
PX

[
Ā0,m + f0(1)
Ā0,m + f0(2)

]
− (θ − 1)

[
A0(1)
A0(2)

])
Ā0,m = θ log δ + (θ − 1)κ0,c − γµc + κ0,m + µd +

1

2
σ̄2
d +

1

2
σ̄2
c (φη − γ)2

f0(i) = (θ − 1)κ1,c

(
A0(i) +A2(i)Φµ

)
+
σ2
wc

2

([
A2,c(i) A2,c,m(i)

] [ (θ − 1)κ1,c

κ1,m

])2

+
σ2
wπ

2

([
A2,π(i) A2,π,m(i)

] [ (θ − 1)κ1,c

κ1,m

])2

+ κ1,mA2,m(i)Φµ

+
1

2

(
(φx − γ)e1 · Ω(i)e′3 +

[
A1(i) · Ω(i)e′3 A1,m(i) · Ω(i)e′3

] [ (θ − 1)κ1,c

κ1,m

])2

σ2
m(i),

for i ∈ {1, 2} .

Linearization Parameters

Let p̄j = 1−pl
2−pl−pj . For any asset, the linearization parameters are determined endogenously

by the following system of equations

z̄i =

2∑
j=1

p̄j

(
A0,i(j) +A2,c,i(j)(ϕcσ̄)2 +A2,π,i(j)(ϕπσ̄)2

)
κ1,i =

exp(z̄i)

1 + exp(z̄i)

κ0,i = log(1 + exp(z̄i))− κ1,iz̄i.

The solution is determined numerically by iteration until reaching a fixed point of z̄i for

i ∈ {1, 2} .
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Nominal Bond Prices

Endogenous Inflation Determination under a Regime-Switching Taylor Rule

I consider a version of the model where inflation is endogenous. The natural framework

in which to this is a model where monetary policy is implemented by a central bank that

follows a Taylor rule

it = µMP
i (SMt ) + τc(S

M
t )(gc,t − µc) + τπ(SMt )(πt − xπ,t) + xπ,t + xm,t, (2.32)

= µMP
i (SMt ) +

[
τc(S

M
t ) 1− τπ(SMt ) 1 τc(S

M
t )

]
XB
t + τπ(SMt )πt,

where gc,t is consumption growth, xπ,t is the long-run inflation, and xm,t is the mon-

etary policy shock. Assume for simplicity that πt is “demeaned” inflation and XB
t =

[xc,t, xπ,t, xm,t, ηc,t]
′.

The asset pricing equation for the short-rate is

it = −Et [mt+1] + Et [πt+1]− 1

2
V art [mt+1]− 1

2
V art [πt+1] + Covt [mt+1, πt+1] (2.33)

= µ̃APi (SXt ) + αXB (SXt )XB
t + αΣ(SXt )Σt

≈ µ̃APi (SXt ) + αXB (SXt )XB
t + αΣ(SXt )Σ̄

= µAPi (SXt ) +
[ 1

ψ
Et[e1Υ(SXt+1)], 0

]
XB
t + Et [πt+1] .

The first to second line uses the log normality assumption, the second to third line uses

the fact that stochastic volatility contribute very little to the short-rate, and the third to

fourth line rearranges parameter values such that the short-rate is expressed in terms of

XB
t and Et [πt+1] .

SXt and SMt are discrete-valued random variables that follow a two-state Markov chain,

PX =

[
pX1 1− pX1

1− pX2 pX2

]
, PM =

[
pM1 1− pM1

1− pM2 pM2

]
,

where X1 (X2) stands for negative (positive) correlation regime and M1 (M2) stands for
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active (passive) monetary policy regime. For notational convenience, define

St =


1 if SXt = X1 and SMt = M1

2 if SXt = X1 and SMt = M2

3 if SXt = X2 and SMt = M1

4 if SXt = X2 and SMt = M2

and P = PX ⊗ PM .
Joint restriction of (2.32) and (2.33) gives

τπ(SMt )πt = Et [πt+1] +

([ 1

ψ
Et[e1Υ(SXt+1)], 0

]
−
[
τc(S

M
t ), 1− τπ(SMt ), 1, τc(S

M
t )
])

︸ ︷︷ ︸
Λ(SXt ,S

M
t )

XB
t(2.34)

= Et [πt+1] + Λ(SXt , S
M
t )XB

t ,

assuming µMP
i (SMt ) = µAPi (SXt ). Since (2.34) is satisfied for each current state, I can

express them as

Diag

(
τπ(St = 1)
τπ(St = 2)
τπ(St = 3)
τπ(St = 4)

)×

πt(St = 1)
πt(St = 2)
πt(St = 3)
πt(St = 4)

 =


E [πt+1|St = 1]
E [πt+1|St = 2]
E [πt+1|St = 3]
E [πt+1|St = 4]

+


Λ(St = 1)
Λ(St = 2)
Λ(St = 3)
Λ(St = 4)

Xt. (2.35)

In a slight abuse of notation, I use (i) to denote the current state instead of (St = i) for

i=1,2,3,4. From (2.27), observe that
Λ(1)
Λ(2)
Λ(3)
Λ(4)

 = P×


1
ψe1Υ(1) 0
1
ψe1Υ(2) 0
1
ψe1Υ(3) 0
1
ψe1Υ(4) 0

−

τc(1) 1− τπ(1) 1 τc(1)
τc(2) 1− τπ(2) 1 τc(2)
τc(3) 1− τπ(3) 1 τc(3)
τc(4) 1− τπ(4) 1 τc(4)

 . (2.36)

I posit regime-dependent linear solutions of the form as in Davig and Leeper (2007).
πt(1)
πt(2)
πt(3)
πt(4)

 =


Γ(1)
Γ(2)
Γ(3)
Γ(4)

XB
t (2.37)

where Ξ(i) =
[

Γx,c(i) Γx,π(i) Γx,m(i) Γη(i)
]

for i=1,2,3,4.

Necessary and Sufficient Conditions for the Existence of a Unique Bounded

Solution. According to Proposition 2 of Davig and Leeper (2007), there exists a unique

bounded solution if the following conditions are satisfied:

1. τπ(i) > 0, for i=1,2,3,4,
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2. All the eigenvalues of

(
τπ(1) 0 0 0

0 τπ(2) 0 0
0 0 τπ(3) 0
0 0 0 τπ(4)


−1

× P
)

lie inside the unit

circle.

Solution. Substituting (2.37) to (2.35) yields
τπ(1) 0 0 0

0 τπ(2) 0 0
0 0 τπ(3) 0
0 0 0 τπ(4)




Γ(1)
Γ(2)
Γ(3)
Γ(4)

XB
t = P×


Γ(1)Υ(1)
Γ(2)Υ(2)
Γ(3)Υ(3)
Γ(4)Υ(4)

XB
t +


Λ(1)
Λ(2)
Λ(3)
Λ(4)

XB
t .(2.38)

Analytical expressions for Γ(i)s are quite difficult to interpret, but are easily obtained from

solving (2.38).

Nominal Bond Prices

Define m$
t+1 = mt+1 − πt+1. Let Pn,t be the price at date t of a nominal bond with n

periods to maturity. Conjecture that pn,t depends on the regime St and the current state

variables,

pn,t = Cn,0(St) + Cn,1(St)Xt + Cn,2(St)Σt (2.39)

where Cn,1(St) =
[
Cn,1,c(St) Cn,1,π(St) Cn,1,m(St)

]
and Cn,2(St) =

[
Cn,2,c(St) Cn,2,π(St)

]
.

Exploit the law of iterated expectations

Pn,t = Et

(
E[exp(m$

t+1 + pn−1,t+1)|It+1]

)
and log-linearization to solve for pn,t

pn,t ≈
4∑
j=1

Pij log

(
E[exp(m$

t+1 + p$
n−1,t+1)|St = i, St+1 = j]

)
.

62



The solution to (2.39) is

Cn,1(i) =

4∑
j=1

Pij
(
Cn−1,1(j)− 1

ψ
e1 − Γx(j)

)
Υ(j)

Cn,2(i) =

4∑
j=1

Pij
(
Cn−1,2(j)Φν + (θ − 1) {κ1,cA2(j)Φν −A2(i)}

+
1

2

[
{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′1}

2

{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′2}
2

]′)

Cn,0(i) =

4∑
j=1

Pij
(
θ log δ + (θ − 1) {κ0,c + κ1,cA0(j) + κ1,cA2(j)Φµ} − (θ − 1)A0(i)− γµ− µπ

+ Cn−1,0(j) + Cn−1,2(j)Φµ +
1

2
σ̄2
c (Γη(j) + γ)2 +

1

2
σ̄2
π

+
1

2
{(Cn−1,2,c(j) + (θ − 1)κ1,cA2,c(j))σwc}

2
+

1

2
{(Cn−1,2,π(j) + (θ − 1)κ1,cA2,π(j))σwπ}

2

+
1

2
{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′3}

2
σm(j)2

)
,

with initial conditions C0,0(i) = 0, C0,1(i) =
[

0 0 0
]
, and C0,2(i) =

[
0 0

]
for

i ∈ {1, 2, 3, 4} .
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Chapter 3

Identifying Long-Run Risks: A
Bayesian Mixed-Frequency
Approach

3.1 Introduction

Financial economists seek to understand the sources underlying risk and return in the econ-

omy. In equilibrium models this endeavor hinges on the preference specification and the joint

dynamics of cash flows, which in an endowment economy correspond to consumption and

dividends. There are many equilibrium models that appeal to low-frequency components

in these cash flows as well as important time variation in the fundamentals (e.g., models of

long-run risks (LRR) as in Bansal and Yaron (2004), and models of rare disasters as in Barro

(2009)). Identifying both of these components is challenging. To measure the small persis-

tent component in, say, consumption and dividend growth one would want the longest span

of data. On the other hand, to estimate the time variation in second moments of cash flows

one would ideally like to use high-frequency data. The empirical analysis is constrained

by the availability of consumption data. For the U.S., the longest span of available data

for consumption growth is at the annual frequency starting in 1929. The highest-frequency

consumption data is available at the monthly frequency from 1959. To exploit all the avail-

able information in mixed-frequency data, this paper develops a Bayesian state-space model
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that prominently features stochastic volatility and time-aggregates consumption whenever

it is observed only at a low frequency.

Our state-space model is designed to capture the joint dynamics of consumption, div-

idend growth, and asset returns. Building on the work of Bansal and Yaron (2004), the

core of our model consists of an endowment economy that is, in part, driven by a com-

mon predictable component for consumption and dividend growth. The economy delivers a

stochastic discount factor that is used to price equities and a risk-free asset. Our model dis-

tinguishes itself from the existing LRR literature in several important dimensions. First, our

state-space representation contains measurement equations that time-aggregate consump-

tion to the observed frequency, yet allow us to maintain the likelihood representation (see

Bansal, Kiku, and Yaron (2012b) for a generalized methods-of-moments (GMM) approach

using time aggregation). Our measurement-error specification accounts for different types

of measurement errors at monthly and annual frequencies while respecting the constraint

that monthly growth rates have to be consistent with annual growth rates.

Second, we generalize the volatility dynamics of Bansal and Yaron (2004)’s model spec-

ification by allowing for three separate volatility processes — one capturing long-run con-

sumption innovations, one capturing short-run consumption innovations, and a separate

process for dividend dynamics. We do so since our estimation procedure, which focuses on

the joint distribution of consumption, dividends, and asset prices, requires separate stochas-

tic volatility processes to fit the data. Third, we specify an additional process for variation

in the time rate of preference (see Albuquerque, Eichenbaum, and Rebelo (2012)), which

generates risk-free rate variation that is independent of cash flows and leads to an improved

fit for the risk-free rate.

The estimation of the state-space model generates several important empirical findings.

First, we find strong evidence for a small predictable component in consumption growth.
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This evidence consists of two parts. We begin by estimating the state-space model on cash

flow growth data only. Our carefully specified measurement-error model for cash flow data

allows us to measure this component which otherwise is difficult to detect. We then proceed

by adding asset return data to the estimation and, in line with the existing LRR literature,

find even stronger evidence for this predictable component. The Bayesian approach allows

us to characterize the uncertainty about the persistence of the conditional mean growth

process. We find that in spite of using a prior with a mean of 0.9 and a standard deviation

of 0.5 our estimation yields a posterior distribution that is tightly centered around 0.99.

Second, our estimated measurement errors for consumption growth are consistent with the

common view (see Wilcox (1992)) that consumption growth is measured more precisely at

an annual rather than monthly frequency.

Third, all three stochastic volatility processes display significant time variation yet be-

have distinctly over time. The volatility processes partly capture heteroskedasticity of

innovations, and in part they break some of the tight links that the model imposes on

the conditional mean dynamics of asset prices and cash flows. This feature significantly

improves the model implications for consumption and return predictability. As empha-

sized by the LRR literature, the volatility processes have to be very persistent in order to

have significant quantitative effects on asset prices. An important feature of our estima-

tion is that the likelihood focuses on conditional correlations between the risk-free rate and

consumption — a dimension often not directly targeted in the literature. We show that

because consumption growth and its volatility determine the risk-free rate dynamics, one

requires another independent volatility process to account for the weak correlation between

consumption growth and the risk-free rate. In the generalized specification of the model

in which there are independent time rate of preference shocks, this correlation is further

muted and the model fit for the dynamics of the risk-free rate is improved.
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Fourth, it is worth noting that the median posterior estimate for risk aversion is 10-11

while it is around 1.5 for the intertemporal elasticity of substitution (IES). These estimates

are consistent with the parameters highlighted in the LRR literature (see Bansal and Yaron

(2004), Bansal, Kiku, and Yaron (2012a), and Bansal, Kiku, and Yaron (2012b)). Fifth, at

the estimated preference parameters and those characterizing the consumption and dividend

dynamics, the model is able to successfully generate many key asset-pricing moments. In

particular, as in the data, the posterior median for the equity premium generated by the

model is 6.0%.

Our paper also contains a number of technical innovations. First, in the specification of

our state-space model we follow the stochastic volatility literature and assume that volatili-

ties evolve according to exponential Gaussian processes that guarantee nonnegativity. While

the cash flows in our state-space model evolve exogenously, the law of motion of the finan-

cial variables is determined endogenously from the economic structure. In order to solve

the model, we approximate the exponential Gaussian volatility processes by linear Gaus-

sian processes such that the standard analytical solution techniques that have been widely

used in the LRR literature can be applied. However, the approximation of the exponential

volatility process is used only to derive the coefficients in the law of motion of the asset

prices.

Second, we use a Markov chain Monte Carlo (MCMC) algorithm to generate parameter

draws from the posterior distribution. This algorithm requires us to evaluate the likelihood

function of our state-space model with a nonlinear filter. Due to the high-dimensional state

space that arises from the mixed-frequency setting, this nonlinear filtering is a seemingly

daunting task. We show how to exploit the partially linear structure of the state-space

model to derive a very efficient sequential Monte Carlo (particle) filter.

Our paper is related to several strands of the literature. In terms of the LRR literature,
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our paper is closely related to that of Bansal, Kiku, and Yaron (2012b) who utilize time

aggregation and GMM to estimate the LRR model (see also Bansal, Gallant, and Tauchen

(2007) for an approach using the efficient method of moments (EMM)). As noted above,

our likelihood-based approach provides evidence which is broadly consistent with the results

highlighted in that paper and other calibrated LRR models (see Bansal, Kiku, and Yaron

(2012a)). Our likelihood function implicitly utilizes a broader set of moments than earlier

GMM or EMM estimation approaches. These moments include the entire sequence of

autocovariances as well as higher-order moments of the time series used in the estimation

and let us measure the time path of the predictable component of cash flows as well as the

time path of the innovation volatilities. Rather than asking the model to fit a few selected

moments, we are raising the bar and force the model to track cash flow and asset return

time series.

To implement Bayesian inference, we embed a particle-filter-based likelihood approxi-

mation into a Metropolis-Hastings algorithm as in Fernández-Villaverde and Rubio-Ramı́rez

(2007) and Andrieu, Doucet, and Holenstein (2010). Since our state-space system is linear

conditional on the volatility states, we can use Kalman-filter updating to integrate out a

subset of the state variables. The genesis of this idea appears in the auxiliary particle filter

of Pitt and Shephard (1999) and Chen and Liu (2000) and is recently discussed in Shephard

(2013). Particle filter methods are also utilized in Johannes, Lochstoer, and Mou (2013),

who estimate an asset pricing model in which agents have to learn about the parameters

of the cash flow process from consumption growth data. While Johannes, Lochstoer, and

Mou (2013) examine the role of parameter uncertainty for asset prices, which is ignored in

our analysis, they use a more restrictive version of the cash flow process and do not utilize

mixed-frequency observations.

Our state-space setup makes it relatively straightforward to utilize data that are avail-
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able at different frequencies. The use of state-space systems to account for missing monthly

observations dates back to at least Harvey (1989a) and has more recently been used in the

context of dynamic factor models (see, e.g., Mariano and Murasawa (2003a) and Aruoba,

Diebold, and Scotti (2009a)) and VARs (see, e.g., Schorfheide and Song (2012)). Finally,

there is a growing and voluminous literature in macro and finance that highlights the im-

portance of volatility for understanding the macroeconomy and financial markets (see, e.g.,

Bloom (2009), Fernández-Villaverde and Rubio-Ramı́rez (2011), Bansal, Kiku, and Yaron

(2012a), and Bansal, Kiku, Shaliastovich, and Yaron (2013)). Our volatility specification

that accommodates three processes further contributes to identifying the different uncer-

tainty shocks in the economy.

The remainder of the paper is organized as follows. Section 3.2 introduces the model

environment and describes the model solution. Section 3.3 presents the empirical state-

space model and describes the estimation procedure. Section 3.4 discusses the empirical

findings and Section 5.5 provides concluding remarks.

3.2 The Long-Run Risks (LRR) Model

Our baseline LRR model is described in Section 3.2.1. The solution of the model is outlined

in Section 3.2.2. Section 3.2.3 presents a generalized version of the LRR with an exogenous

shock to the time rate of preference.

3.2.1 Model Statement

We consider an endowment economy with a representative agent that has Epstein and Zin

(1989) recursive preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ
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subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1

, where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk

aversion, θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution.

Following Bansal and Yaron (2004),we decompose consumption growth, gc,t+1, into a

persistent component, xt, and a transitory component, σc,tηc,t+1. The dynamics for the

persistent conditional mean follow an AR(1) with its own stochastic volatility process.

Dividend streams have levered exposures to both the persistent and transitory component

in consumption which is captured by the parameters φ and π, respectively. We allow

σd,tηd,t+1 to capture idiosyncratic movements in dividend streams. Overall, the dynamics

for the cash flows are

gc,t+1 = µc + xt + σc,tηc,t+1 (3.1)

xt+1 = ρxt + σx,tηx,t+1

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1,

where the conditional volatilities evolve according to

σi,t = ϕiσ̄ exp(hi,t), hi,t+1 = ρhihi,t + σhi

√
1− ρ2

hi
wi,t+1, i = {c, x, d} (3.2)

and the shocks are assumed to be

ηi,t+1, wi,t+1 ∼ N(0, 1), i = {c, x, d}.

Relative to Bansal and Yaron (2004), the volatility dynamics contain three separate volatil-

ity processes. More importantly, the logarithm of the volatility process is assumed to be

normal, which ensures that the standard deviation of the shocks remains positive at every

point in time.
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3.2.2 Solution

The Euler equation for any asset ri,t+1 takes the form

Et [exp (mt+1 + ri,t+1)] = 1, (3.3)

where mt+1 = θ log δ − θ
ψgc,t+1 + (θ − 1)rc,t+1 is the log of the real stochastic discount

factor (SDF), and rc,t+1 is the log return on the consumption claim. We reserve rm,t+1

for the log market return — the return on a claim to the dividend cash flows. Given the

cash flow dynamics in (3.1) and the Euler equation (3.3), we derive asset prices using the

approximate analytical solution described in Bansal, Kiku, and Yaron (2012a) which utilizes

the Campbell and Shiller (1988a) log-linear approximation for returns.

However, since the volatility processes in (3.2) do not follow normal distributions, an

analytical expression to (3.3) is infeasible. To accommodate an analytical solution, we

utilize a linear approximation to (3.2) and express volatility in (3.4) as a process that

follows Gaussian dynamics:

σ2
i,t − (ϕiσ̄)2 = 2(ϕiσ̄)2hi,t +O(|h2

i,t|), hi,t+1 = ρhihi,t + σhi

√
1− ρ2

hi
wi,t+1

σ2
i,t+1 ≈ (ϕiσ̄)2(1− ρhi) + ρhiσ

2
i,t + (2(ϕiσ̄)2σhi

√
1− ρ2

hi
)wi,t+1

= (ϕiσ̄)2(1− νi) + νiσ
2
i,t + σwiwi,t+1, i = {c, x, d}. (3.4)

The analytical solution afforded via this pseudo-volatility process is important since it

facilitates estimation (see details below).

The solution to the log price-consumption ratio follows, zt = A0 + A1xt + A2,cσ
2
c,t +

A2,xσ
2
x,t. As discussed in Bansal and Yaron (2004), A1 =

1− 1
ψ

1−κ1ρ
, the elasticity of prices

with respect to growth prospects, will be positive whenever the IES, ψ, is greater than

1. Further, the elasticity of zt with respect to the two volatility processes σ2
c,t and σ2

x,t is

θ
2

(1− 1
ψ

)2

1−κ1νc
and θ

2
(κ1A1)2

1−κ1νx
respectively; both will be negative — namely, prices will decline with

uncertainty — whenever θ is negative.
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State prices in the economy are reflected in the innovations to the stochastic discount
factor (SDF),

mt+1 − Et [mt+1] = λcσc,tηc,t+1︸ ︷︷ ︸
short-run consumption risk

+ λxσx,tηx,t+1︸ ︷︷ ︸
long-run growth risk

+λwxσwxwx,t+1 + λwcσwcwc,t+1︸ ︷︷ ︸
volatility risks

,

where the derivation and λs are given in Appendix 3.6.1. It is instructive to note that

λc = −γ, λx =
−(γ− 1

ψ
)κ1

1−κ1ρ
(and λwc and λwx) is negative (positive) whenever preferences

exhibit early resolution of uncertainty γ > 1/ψ. Furthermore the λs (except λc) will be

zero when preferences are time separable, namely, when θ = 1.

Risk premia are determined by the negative covariation between the innovations to

returns and the innovations to the SDF. It follows that the risk premium for the market

return, rm,t+1, is

Et(rm,t+1 − rf,t) +
1

2
vart(rm,t+1) = −covt(mt+1, rm,t+1) (3.5)

= βm,cλcσ
2
c,t︸ ︷︷ ︸

short-run risk

+ βm,xλxσ
2
x,t︸ ︷︷ ︸

long-run growth risk

+βm,wxλwxσ
2
wx + βm,wcλwcλcσ

2
wc︸ ︷︷ ︸

volatility risks

,

where the βs are given in Appendix 3.6.1 and reflect the exposures of the market return

to the underlying consumption risks. Equation (3.5) highlights that the conditional equity

premium can be attributed to (i) short-run consumption growth, (ii) long-run growth, (iii)

short-run and long-run volatility risks.

A key variable for identifying the model parameters is the risk-free rate. Under the

assumed dynamics in (3.1), the risk-free rate is affine in the state variables and follows

rf,t = B0 +B1xt +B2,cσ
2
c,t +B2,xσ

2
x,t,

where the Bs are derived in Appendix 3.6.1. It is worth noting that B1 = 1
ψ > 0 and

the risk-free rate rises with good economic prospects, while under ψ > 1, γ > 1 and

whenever preferences exhibit early resolution of uncertainty, B2,c = −1
2(γ−1

ψ +γ) and B2,x =

−
(1− 1

ψ
)(γ− 1

ψ
)κ2

1

2(1−κ1ρ)2 are negative so the risk-free rate declines with a rise in economic uncertainty.
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3.2.3 Generalized Model

In this section we augment the baseline model, as highlighted in Albuquerque, Eichenbaum,

and Rebelo (2012), by allowing for a preference shock to the time rate of preference. Specif-

ically, now the utility function contains a time rate of preference shock, λt, so the lifetime

utility is

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

.

The resulting SDF equals the SDF described in equation (3.5) plus the term θxλ,t, where

xλ,t = λt+1/λt is the growth rate of the preference shock, which is assumed to follow an

AR(1) process with persistence parameter ρλ (see Appendix 3.6.1 for derivation of this

augmented SDF). Since xλ,t is known at time t, the risk-free rate will incorporate its values

and consequently allow this generalized model to fit the risk-free rate dynamics better than

the benchmark model.

3.3 State-Space Representation of the LRR Model

In order to conduct our empirical analysis, we cast the LRR model of Section 3.2 into

state-space form. The state-space representation consists of a measurement equation that

expresses the observables as a function of underlying state variables and a transition equa-

tion that describes the law of motion of the state variables. The measurement equation

takes the form

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1 + Σuut+1

)
, ut+1 ∼ iidN(0, I). (3.6)

In our application, yt+1 consists of consumption growth, dividend growth, market returns,

and the risk-free rate. The vector st+1 stacks state variables that characterize the level of

cash flows. The vector svt+1 is a function of the log volatilities of cash flows, ht and ht+1,

in (3.2). Finally, ut+1 is a vector of measurement errors and At+1 is a selection matrix that
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accounts for deterministic changes in the data availability. The solution of the LRR model

sketched in Section 3.2.2 provides the link between the state variables and the observables

yt+1.

The state variables themselves follow vector autoregressive processes of the form

st+1 = Φst + vt+1(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I), (3.7)

where vt+1(·) is an innovation process with a variance that is a function of the log volatility

process ht and wt+1 is the innovation of the stochastic volatility process. Roughly speaking,

the vector st+1 consists of the persistent cash flow component xt (see (3.1)) as well as xλ,t in

the generalized model of Section 3.2.3. However, in order to express the observables yt+1 as

a linear function of st+1 and to account for potentially missing observations, it is necessary

to augment st+1 by lags of xt and xλ,t as well as the innovations for the cash flow process.

Since the details are cumbersome and at this stage non essential, a precise definition of st+1

is relegated to the appendix.

A novel feature of our empirical analysis is the mixed-frequency approach. While divi-

dend growth, equity return, and risk-free rate data are available at a monthly frequency from

1929 onwards, consumption data prior to 1959 are not available at a monthly frequency.

Moreover, post-1959 monthly consumption growth data are subject to sizeable measurement

errors, which is why many authors prefer to estimate consumption-based asset pricing mod-

els based on time-aggregated data. Our state-space approach avoids the loss of information

due to time aggregation, yet we can allow for imprecisely measured consumption data at a

monthly frequency. We discuss the measurement equations for consumption in Section 3.3.1

and the other observables in Section 3.3.2. Section 3.3.3 describes the implementation of

Bayesian inference.
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3.3.1 A Measurement Equation for Consumption

In our empirical analysis we use annual consumption growth rates prior to 1959 and monthly

consumption growth rates subsequently.1 The measurement equation for consumption in

our state-space representation has to be general enough to capture two features: (i) the

switch from annual to monthly observations in 1959, and (ii) measurement errors that

are potentially larger at a monthly frequency than an annual frequency. To describe the

measurement equation for consumption growth data, we introduce some additional notation.

We use the superscript o to distinguish observed consumption and consumption growth, Cot

and goc,t, from model-implied consumption and consumption growth, Ct and gc,t. Moreover,

we represent the monthly time subscript t as t = 12(j − 1) +m, where m = 1, . . . , 12. Here

j indexes the year and m the month within the year.

We define annual consumption as the sum of monthly consumption over the span of one

year, i.e.:

Ca(j) =

12∑
m=1

C12(j−1)+m.

Log-linearizing this relationship around a monthly value C∗ and defining lowercase c as

percentage deviations from the log-linearization point, i.e., c = logC/C∗, we obtain

ca(j) =
1

12

12∑
m=1

c12(j−1)+m.

Thus, monthly consumption growth rates can be defined as

gc,t = ct − ct−1

and annual growth rates are given by

gac,(j) = ca(j) − c
a
(j−1) =

23∑
τ=1

(
12− |τ − 12|

12

)
gc,12j−τ+1. (3.8)

1In principle we could utilize the quarterly consumption growth data from 1947 to 1959, but we do not
in this version of the paper.
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We assume a multiplicative iid measurement-error model for the level of annual con-

sumption, which implies that, after taking log differences,

ga,oc,(j) = gac,(j) + σaε
(
εa(j) − ε

a
(j−1)

)
. (3.9)

Moreover, consistent with the practice of the Bureau of Economic Analysis, we assume that

the levels of monthly consumption are constructed by distributing annual consumption over

the 12 months of a year. This distribution is based on an observed monthly proxy series zt

that is assumed to provide a noisy measure of monthly consumption. The monthly levels

of consumption are determined such that the growth rates of monthly consumption are

proportional to the growth rates of the proxy series and monthly consumption adds up to

annual consumption. A measurement-error model that is consistent with this assumption

is the following:

goc,12(j−1)+1 = gc,12(j−1)+1 + σε
(
ε12(j−1)+1 − ε12(j−2)+12

)
(3.10)

− 1

12

12∑
m=1

σε
(
ε12(j−1)+m − ε12(j−2)+m

)
+ σaε

(
εa(j) − ε

a
(j−1)

)
goc,12(j−1)+m = gc,12(j−1)+m + σε

(
ε12(j−1)+m − ε12(j−1)+m−1

)
, m = 2, . . . , 12

The term ε12(j−1)+m can be interpreted as the error made by measuring the level of monthly

consumption through the monthly proxy variable, that is, in log deviations c12(j−1)+m =

z12(j−1)+m + ε12(j−1)+m. The summation of monthly measurement errors in the second line

of (3.10) ensures that monthly consumption sums up to annual consumption. It can be

verified that converting the monthly consumption growth rates into annual consumption

growth rates according to (3.8) averages out the measurement errors and yields (3.9).

We operate under the assumption that the agents in the model observe consumption

growth, dividend growth, and asset returns in every period. As econometricians who are

estimating the model, we have to rely on the statistical agency to release the consumption

growth data. While the statistical agency may have access to the monthly proxy series zt
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in real time, it can only release the monthly consumption series that is consistent with the

annual observations on consumption at the end of each year. Thus, for monthsm = 1, . . . , 11

the vector y12(j−1)+m in (3.6) does not contain any observations on consumption growth.

At the end of each year, in month m = 12, the vector y12(j−1)+m contains the 12 monthly

growth rates of year j and (3.10) provides the portion of the measurement equation for the

consumption data. The vector st has to contain sufficiently many lags of the model states

as well as some lagged measurement errors such that it is possible to write (3.10) as a linear

function of st. For the earlier part of the sample in which monthly consumption growth

observations are not available, (3.10) is replaced by (3.8) and (3.9). The matrix Mt in (3.6)

adapts the system to the availability of consumption data and the changing dimension of

the vector yt. Further details are provided in the appendix.

3.3.2 Measurement Equations for Dividend Growth and Asset Returns

It is reasonable to believe that consumption measurement errors are large, but those for

financial variables (e.g., dividend streams, market returns, risk-free rates) are negligible.

However, to be chary, we introduce idiosyncratic components for dividend growth, market

returns, and the risk-free rate as well:

god,t+1 = gd,t+1 + σdε εd,t+1 (3.11)

rom,t+1 = rm,t+1 + σrmε εrm,t+1

rof,t+1 = rf,t+1 + σ
rf
ε εrf ,t+1.

In the subsequent empirical analysis we consider a version of the model in which only the

risk-free rate is measured with error, i.e., σdε = 0, σrmε = 0, σ
rf
ε > 0. We believe that

aggregate dividend growth and stock market data are cleanly measured and we do not want

to deviate too much from the original Bansal and Yaron (2004) framework.
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3.3.3 Bayesian Inference

Equations (3.6) and (3.7) define a nonlinear state-space system in which the size of the

vector of observables yt changes in a deterministic manner. The system matrices of the

system are functions for the parameter vector

Θ =

(
δ, ψ, γ, ρ, φ, ϕx, ϕd, σ̄, µ, µd, π, σε, σ

a
ε , ρλ, σλ, σ

rf
ε , ρhc , σhc , ρhx , σhx , ρhd , σhd

)
. (3.12)

We will use a Bayesian approach to make inference about Θ and to study the implications

of our model. Bayesian inference requires the specification of a prior distribution p(Θ) and

the evaluation of the likelihood function p(Y |Θ). The posterior can be expressed as

p(Θ|Y ) =
p(Y |Θ)p(Θ)

p(Y )
. (3.13)

We will use MCMC methods to generate a sequence of draws {Θ(s)}nsims=1 from the posterior

distribution.

To generate the draws from the posterior distribution, we need to be able to numerically

evaluate the prior density and the likelihood function p(Y |Θ). Since our state-space system

is nonlinear, it is not possible to evaluate the likelihood function using the Kalman filter. In-

stead, we use a sequential Monte Carlo procedure also known as particle filter. The particle

filter creates an approximation p̂(Y |Θ) of the likelihood function p(Y |Θ). It has been shown

in Andrieu, Doucet, and Holenstein (2010) that the use of p̂(Y |Θ) in MCMC algorithms

can still deliver draws from the actual posterior p(Θ|Y ) because these approximation errors

essentially average out as the Markov chain progresses.

Capturing the annual release schedule for the monthly consumption data described in

Section 3.3.1 requires a high-dimensional state vector st. This creates a computational

challenge for the evaluation of the likelihood function because the accuracy of particle filter

approximations tends to decrease as the dimension of the latent state vector increases. In

order to obtain a computationally efficient filter, we exploit the fact that our state-space
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model is linear and Gaussian conditional on the volatility states (ht, ht−1). We use a swarm

of particles to represent the distribution of (ht, ht−1)|Y1:t and employ the Kalman filter

to characterize the conditional distribution of st|(ht, ht−1, Y1:t). This idea has been used

by Chen and Liu (2000) and more recently by Shephard (2013). A full description of the

particle filter is provided in the appendix. We embed the likelihood approximation in a

fairly standard random-walk Metropolis algorithm that is widely used in the DSGE model

literature; see for instance Del Negro and Schorfheide (2010).

3.4 Empirical Results

The data set used in the empirical analysis is described in Section 3.4.1. The subsequent

analysis is divided into two parts. In Section 3.4.2 we use consumption and dividend growth

data to estimate the persistent components in conditional mean and volatility dynamics of

cash flows. In Section 3.4.3 we include the market return and risk-free rate data in the

estimation and analyze the asset pricing implications of our model.

3.4.1 Data

We use the per capita series of real consumption expenditure on nondurables and services

from the NIPA tables available from the Bureau of Economic Analysis. Annual observations

are available from 1929 to 2011, quarterly from 1947:Q1 to 2011:Q4, and monthly from

1959:M1 to 2011:M12. We also use monthly observations of returns, dividends, and prices of

the CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ.

Price and dividend series are constructed on the per share basis as in Campbell and Shiller

(1988b) and Hodrick (1992). The stock market data are converted to real using the consumer

price index (CPI) from the Bureau of Labor Statistics. Finally, the ex ante real risk-free

rate is constructed as a fitted value from a projection of the ex post real rate on the current

nominal yield and inflation over the previous year. To run the predictive regression, we use
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Table 3.1: Descriptive Statistics - Data Moments

Annual Frequency: 1930 to 2011

∆c ∆d rm rf pd

Mean 1.83 0.98 5.43 0.46 3.36
StdDev 2.19 11.24 19.98 2.78 0.43
AC1 0.48 0.21 0.01 0.72 0.90
AC2 0.18 -0.21 -0.16 0.40 0.81
AC3 -0.07 -0.15 0.01 0.31 0.75
Corr 1.00 0.56 0.12 -0.26 0.07

Monthly Frequency: 1929:M1 to 2011:M12

∆c ∆d rm rf pd

Mean - 0.09 0.45 0.04 3.36
StdDev - 1.68 5.50 0.24 0.44
AC1 - 0.20 0.11 0.98 0.99

Monthly Frequency: 1959:M2 to 2011:M12

∆c ∆d rm rf pd

Mean 0.16 0.11 0.43 0.10 3.57
StdDev 0.34 1.26 4.55 0.14 0.39
AC1 -0.16 -0.01 0.10 0.96 0.99
Corr 1.00 0.04 0.16 0.13 0.00

Notes: We report descriptive statistics for aggregate consumption growth (∆c), dividend growth (∆d), log

returns of the aggregate stock market (rm), the log risk-free rate (rf ), and log price-dividend ratio (pd). It

shows mean, standard deviation, sample autocorrelations up to order three, and correlation with aggregate

consumption growth. Means and standard deviations are expressed in percentage terms.

monthly observations on the three-month nominal yield from the CRSP Fama Risk Free

Rate tapes and CPI series. A more detailed explanation of the data sources is provided in

Appendix 3.6.2. Growth rates of consumption and dividends are constructed by taking the

first difference of the corresponding log series. The time-series span of the stock market

data and the risk-free rate is from 1929:M1 to 2011:M12.

Table 3.1 presents descriptive statistics for aggregate consumption growth, dividend

growth, aggregate stock market returns, the risk-free rate, and the log price-dividend ratio.

The statistics are computed for a sample of annual observations from 1930 to 2011, a sample

of monthly observations from 1929:M1 to 2011:M12, and a sample of monthly observations
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from 1959:M2 to 2011:M12. Consumption data is only available for the shorter of the

two monthly samples. For our subsequent analysis, a few features of the data turn out

to be important. First, the sample first autocorrelation function of monthly and annual

consumption have different signs. Second, consumption and dividend growth are highly

correlated at the low (annual) frequency but not at the high (monthly) frequency. Third,

the sample standard deviations for the long monthly sample starting in 1929:M1 are larger

than the sample standard deviations for the post-1958 sample.

3.4.2 Estimation with Cash Flow Data Only

We begin by estimating the state-space model described in Section 3.3 based only on con-

sumption and dividend growth data, dropping market returns and the risk-free rate from

the measurement equation. We employ the mixed-frequency approach by utilizing annual

consumption growth data from 1929 to 1959 and monthly data from 1960:M1 to 2011:M12.

Prior Distribution. We begin with a brief discussion of the prior distribution for the

parameters of the cash flow process specified in (3.1) and (3.2). In general, our prior

attempts to restrict parameter values to economically plausible magnitudes. The judgment

of what is economically plausible is, of course, informed by some empirical observations, in

the same way the choice of the model specification is informed by empirical observations.

Percentiles of marginal prior distributions are reported in Table 3.2.

The prior 90% credible intervals for average annualized consumption and dividend

growth range from approximately ± 7%. In view of the sample statistics reported in Ta-

ble 3.1, this range is fairly wide and agnostic. The prior distribution for the persistence

of the predictable cash flow growth component xt is a normal distribution centered at 0.9

with a standard deviation of 0.5, truncated to the interval (−1, 1). The corresponding 90%

credible interval ranges from -0.1 to 0.97, encompassing values that imply iid cash flow

growth dynamics as well as very persistent local levels. The priors for φ and π, parameters
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that determine the comovement of cash flows, are centered at zero and have large variances.

σ̄ is, roughly speaking, the average standard deviation of the iid component of consumption

growth. At an annualized rate, our 90% credible interval ranges from 1.2% to 7.2%. For

comparison, the sample standard deviation of annual consumption growth and annualized

monthly consumption growth are approximately 2% and 4%, respectively (see Table 3.1).

The parameters ϕd and ϕx capture the magnitude of innovations to dividend growth

and the persistent cash flow component relative to the magnitude of consumption growth

innovations. The prior for the former covers the interval 0.2 to 12, whereas the prior for

the latter captures the interval 0 to 0.11. Thus, a priori we expect dividends to be more

volatile than consumption and the persistent component of cash flow growth to be much

smoother than the iid component. Our prior interval for the persistence of the volatility

processes ranges from -0.1 to 0.97 and the prior for the standard deviation of the volatility

process implies that the volatility may fluctuate either relatively little, over the range of

0.67 to 1.5 times the average volatility, or substantially, over the range of 0.1 to 7 times the

average volatility.

Posterior Distribution. Percentiles of the posterior distribution are also reported in

Table 3.2. The most important result for the subsequent analysis of the asset pricing

implications of the LRR model is the large estimate of ρ, the autocorrelation coefficient of

the persistent cash flow component xt. The posterior median of ρ is 0.97. Thus, according

to our estimate, cash flow growth dynamics are very different from iid dynamics; the half-

life of the persistent component is about three years; and the magnitude of the parameter

estimate is quite close to the values used in the LRR literature (see Bansal, Kiku, and Yaron

(2012a)).

At first glance, the large estimate of ρ may appear inconsistent with the negative sam-

ple autocorrelation of consumption growth and the near-zero autocorrelation of dividend
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Table 3.2: Posterior Estimates: Cashflows Only

Prior Posterior Prior Posterior
Distr. 5% 95% 5% 50% 95% Distr. 5% 95% 5% 50% 95%

Consumption Process Dividend Process

µc N [-.006 .006] .0014 .0016 .0019 µd N [-.007 .006] .0000 .0006 .0013
ρ NT [-0.08 0.97] 0.95 0.97 0.98 φ N [-13.1 13.4] 2.04 2.11 2.20
ϕx G [ 0.00 0.11] 0.17 0.20 0.22 π N [-1.68 1.63] - 0.18 0.03 0.14
σ̄ IG [ .001 .006] .0021 .0024 .0026 ϕd G [ 0.22 11.9] 4.92 5.30 5.78
ρhc NT [-0.08 0.97] .993 .995 .997 ρhd NT [-0.08 0.97] 0.83 0.89 0.94
σhc IG [0.22 1.03] 0.31 0.39 0.49 σhd IG [0.22 1.03] 0.47 0.53 0.61
ρhx NT [-0.08 0.97] .979 .992 .998
σhx IG [0.22 1.03] 0.23 0.43 1.07

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data

from 1929 to 1959 and monthly data from 1960:M1 to 2011:M12; we use monthly dividend growth data from

1929:M1 to 2011:M12. For consumption we adopt the measurement error model of Section 3.3.1. We fix ϕc
in (3.2) at ϕc = 1. N , NT , G, and IG denote normal, truncated (outside of the interval (−1, 1)) normal,

gamma, and inverse gamma distributions, respectively.

growth at the monthly frequency reported in the third panel of Table 3.1. However, these

sample moments confound the persistence of the “true” cash flow processes and the dy-

namics of the measurement errors. Our state-space framework is able to disentangle the

various components of observed cash flow growth, thereby detecting a highly persistent

predictable component xt that is hidden under a layer of measurement errors. Based on

our measurement-error model, we can compute the fraction of the variance of observed

consumption growth that is due to measurement errors. In a constant-volatility version of

our state-space model, 46% of the observed consumption growth variation at the monthly

frequency is due to measurement errors. For annualized consumption growth data, this

fraction drops below 1%.

The estimation results also provide strong evidence for stochastic volatility. According

to the posteriors reported in Table 3.2, all σc,t and σd,t exhibit significant time variation.

The posterior medians of ρhc and ρhd are .995 and 0.89, respectively, and the uncondi-

tional volatility standard deviations σhc and σhd are 0.39 and 0.53, respectively. Also, the
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volatility of the growth prospect component, σx,t, shows clear evidence for time variation:

the posterior medians of ρhx and σhx are 0.992 and 0.43, respectively. It is evident that

the estimation supports three independent volatility processes for consumption growth and

dividend growth.

Robustness. The evidence for a persistent component in consumption and dividend growth

is robust to the choice of estimation sample. We shift the beginning of our estimation sample

from 1929:M1 to 1959:M1 and use only monthly data. Given that this shorter sample is

dominated by the Great Moderation and does not contain the fluctuations associated with

the Great Depression, this sample should be conservative in terms of providing evidence for

predictable component and aggregate stochastic volatility. Interestingly, we obtain similar

estimates of ρ and find that changes in the estimates of the other parameters are generally

small. In all, this sample also provides strong evidence for a predictable component as well

as stochastic volatility in consumption and dividends.

3.4.3 Estimation with Cash Flow and Asset Return Data

We now include data on market returns and the risk-free rate in the estimation of our

state-space model. Recall from Section 3.2 that we distinguish between a benchmark model

and a generalized model that allows for a shock to the time rate of preference. We will

report estimates for both specifications and discuss the role played by the preference shock

in fitting our observations.

Prior Distribution. The prior distribution for the parameters associated with the exoge-

nous cash flow process are the same as the ones used in Section 3.4.2. Thus, we focus on the

preference parameters that affect the asset pricing implications of the model. Percentiles for

the prior are reported in the left-side columns of Table 3.3. The prior for the discount rate δ

reflects beliefs about the magnitude of the risk-free rate. For the asset pricing implications

of our model, it is important whether the IES is below or above 1. Thus, we choose a prior
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that covers the range from 0.3 to 3.5. The 90% prior credible interval for the risk-aversion

parameter γ ranges from 3 to 15, encompassing the values that are regarded as reasonable

in the asset pricing literature. We also use the same prior for the persistence and the in-

novation standard deviation of the preference shock as we did for the cash flow parameters

ρ and σ̄. Finally, we assume that consumption growth is measured without error at the

annual frequency. We estimate measurement errors only for monthly consumption growth

rates and the risk-free rates, using the same prior distributions as for σ̄.

Posterior Distribution. The remaining columns of Table 3.3 summarize the percentiles

of the posterior distribution for the parameters of the benchmark model and the generalized

model. While the estimated cash flow parameters are, by and large, similar to those reported

in Table 3.2 when asset prices are not utilized, a few noteworthy differences emerge. The

estimate of ρ, the persistence of the predictable cash flow component, increases from 0.97

to 0.99 to capture part of the equity premium. The time variation in the volatility of the

long-run risk innovation, σhx , also increases, reflecting the information in asset prices about

growth uncertainty. The estimate of ϕx drops from 0.20 to 0.03, which reduces the model-

implied predictability of asset returns and consumption growth and brings it more in line

with the data. Finally, the estimate of σ̄ increases by a factor of 2 to explain the highly

volatile asset prices data.

Overall, the information from the market returns and risk-free rate reduces the posterior

uncertainty about the cash flow parameters and strengthens the evidence in favor of a time-

varying conditional mean of cash flow growth rates as well as time variation in the volatility

components. Table 3.3 also provides the estimated preference parameters. The IES is

estimated above 1 with a relatively tight credible band. Risk aversion is estimated at 11

for the benchmark model and 10 for the generalized model.

Matching First and Second Moments. Much of the asset pricing literature, e.g.,
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Table 3.3: Posterior Estimates

Benchmark Model Generalized Model
Prior Posterior Posterior

Distr. 5% 95% 5% 50% 95% 5% 50% 95%

Preferences

δ B [.9951 .9999] .9992 .9996 .9998 .9990 .9992 .9996
ψ G [0.31 3.45] 1.62 1.70 1.75 1.33 1.36 1.44
γ G [2.74 15.45] 10.14 10.84 11.37 9.88 9.97 10.32
ρλ NT [-0.08 0.97] - - - .935 .936 .938
σλ IG [.001 .006] - - - .0003 .0004 .0005

Consumption

µc N [-.006 .006] - .0016 - - .0016 -
ρ NT [-0.08 0.97] .989 .993 .994 .990 .992 .994
ϕx G [0.00 0.11] 0.03 0.04 0.04 0.02 0.02 0.03
σ̄ IG [.001 .006] .004 .005 .006 .003 .004 .005
ρhc NT [-0.08 0.97] .944 .956 .967 0.943 .946 .951
σhc IG [0.22 1.03] 0.55 0.60 0.67 0.83 0.84 0.84
ρhx NT [-0.08 0.97] .981 .990 .993 .990 .992 .994
σhx IG [0.22 1.03] 0.50 0.53 0.54 0.56 0.57 0.57

Dividend

µd N [-.007 .006] - .0010 - - .0010 -
φ N [-13.07 13.40] 3.01 3.20 3.45 3.09 3.11 3.13
π N [-1.68 1.63] 1.08 1.17 1.25 1.13 1.19 1.31
ϕd G [0.22 11.90] 5.39 5.46 5.68 6.27 6.30 6.48
ρhd NT [-0.08 0.97] .936 .940 .947 .939 .949 .952
σhd IG [0.22 1.03] 0.44 0.45 0.46 0.56 0.57 0.57

Notes: The estimation results are based on annual consumption growth data from 1930 to 1960 and monthly

consumption growth data from 1960:M1 to 2011:M12. For the other three series we use monthly data from

1929:M1 to 2011:M12. We fix µc = 0.0016, µd = 0.0010, and ϕc = 1 in the estimation. B, N , NT , G,

and IG are beta, normal, truncated (outside of the interval (−1, 1)) normal, gamma, and inverse gamma

distributions, respectively.

Bansal, Gallant, and Tauchen (2007), Bansal, Kiku, and Yaron (2012a), and Beeler and

Campbell (2012), uses unconditional moments to estimate model parameters and judge

model fit. While these moments implicitly enter the likelihood function of our state-space

model, it is instructive to examine the extent to which sample moments implied by the

estimated state-space model mimic the sample moments computed from our actual data

set. To do so, we conduct a posterior predictive check (see, for instance, Geweke (2005)
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for a textbook treatment). We use previously generated draws Θ(s), s = 1, . . . , nsim, from

the posterior distribution of the model parameters p(Θ|Y ) and simulate for each Θ(s) the

benchmark and the generalized LLR models for 996 periods, which corresponds to the

number of monthly observations in our estimation sample.2 This leads to nsim simulated

trajectories, which we denote by Y (s). For each of these trajectories, we compute various

sample moments, such as means, standard deviations, cross correlations, and autocorrela-

tions. Suppose we denote such statistics generically by S(Y (s)). The simulations provide

a characterization of the posterior predictive distribution p(S(Y (s))|Y ). Percentiles of this

distribution for various sample moments are reported in Table 3.4. The table also lists

the same moments computed from U.S. data. “Actual” sample moments that fall far into

the tails of the posterior predictive distribution provide evidence for model deficiencies.

The moments reported in Table 3.4 are computed for year-on-year cash flow growth rates.

Market returns, the risk-free rate, and the price-dividend ratio are 12-month averages.

We first focus on the results from the benchmark model. Except for the first-order

autocorrelation (AC1) of the risk-free rate rf , all of the “actual” sample moments are

within the 5th and the 95th percentile of the corresponding posterior predictive distribution.

The variance of the posterior predictive distribution reflects the uncertainty about model

parameters as well as the variability of the sample moments. The 90% credible intervals for

the consumption growth and risk-free rate moments are much smaller than the intervals for

the dividend growth and market-return moments, indicating that much of the uncertainty in

the posterior predictive moments is due to the variability of the sample moments themselves.

The high volatility of dividend growth and market returns translates into a large variability

of their sample moments.

More specifically, the benchmark model replicates well the first two moments of con-

2To generate the simulated data, we also draw measurement errors.
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Table 3.4: Moments of Cash Flow Growth and Asset Prices

Data Benchmark Model Generalized Model
5% 50% 95% 5% 50% 95%

Mean (∆c) 1.83 0.91 1.89 2.79 0.88 1.93 2.86
StdDev (∆c) 2.19 1.65 2.19 2.99 1.52 2.22 3.49
AC1 (∆c) 0.48 0.09 0.32 0.56 0.08 0.33 0.57

Mean (∆d) 1.00 -2.55 1.02 4.61 -2.27 1.30 4.68
StdDev (∆d) 11.15 11.01 13.29 16.60 10.35 12.97 16.99
AC1 (∆d) 0.20 -0.19 0.03 0.23 -0.20 0.03 0.27
Corr (∆c,∆d) 0.55 0.12 0.32 0.51 0.13 0.34 0.56

Mean (rm) 5.71 1.88 5.10 8.46 2.40 5.61 9.64
StdDev (rm) 19.95 14.70 20.30 38.04 13.38 19.99 46.21
AC1 (rm) -0.01 -0.28 -0.06 0.17 -0.28 -0.05 0.17
Corr (∆c, rm) 0.12 -0.03 0.18 0.39 -0.06 0.17 0.40

Mean (rf ) 0.44 -0.44 0.46 1.21 -0.39 0.67 1.49
StdDev (rf ) 2.88 2.47 2.87 3.45 1.26 1.96 4.29
AC1 (rf ) 0.64 -0.13 0.07 0.30 0.13 0.43 0.66

Mean (pd) 3.36 2.90 3.24 3.41 2.72 3.15 3.36
StdDev (pd) 0.45 0.15 0.27 0.64 0.13 0.27 0.86
AC1 (pd) 0.86 0.50 0.74 0.87 0.47 0.74 0.89

Notes: We present descriptive statistics for aggregate consumption growth (∆c), dividends growth (∆d),

log returns of the aggregate stock market (rm), the log risk-free rate (rf ), and the log price-dividend ratio

(pd). We report means (Mean), standard deviations (StdDev), first-order sample autocorrelations (AC1),

and correlations (Corr). Cash flow growth rates are year-on-year (in percent); market returns, the risk-free

rate, and the price-dividend ratio refer to 12-month averages (in percent).

sumption and dividend growth and their correlation. The benchmark model also generates

a sizable equity risk premium with a median value of 6%. The model’s return variability

is about 20% with the market return being not highly autocorrelated. As in the data, the

model generates both a highly variable and persistent price-dividend ratio. It is particularly

noteworthy that the median and 95th percentile of the price-dividend volatility distribution

are significantly larger than in other LRR calibrated models with Gaussian shocks. This

feature owes in part to the fact that the models contain three volatility components with

underlying log-volatility dynamics, thus accommodating some non-Gaussian features.

The sample moments implied by the generalized model are very similar to those of the

benchmark model, except for the moments associated with the risk-free rate. Most notably,
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Figure 3.1: Model-Implied Risk-Free Rate

(a) Benchmark Model

(b) Generalized Model

Notes: Blue lines depict the actual risk-free rate, and black lines depict the smoothed, model-implied risk-free

rate without measurement errors.

the benchmark model generates a slightly negative autocorrelation of the risk-free rate,

whereas the generalized model with the preference shock is able to reproduce the strongly

positive serial correlation in the data.

Risk-Free Rate Dynamics. Our estimated state-space model can be used to decompose

the observed risk-free rate into the “true” risk-free rate and a component that is due to

measurement errors. Figure 3.1 overlays the actual risk rate and the smoothed “true” or

model-implied risk-free rate. It is clear from the top panel of the figure that the model

has difficulties generating the high volatility of the risk-free rate in the pre-1960 sample,
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the 1980s, and the period since 2002. The benchmark model attributes these fluctuations

to measurement errors. Recall that the risk-free rate series is constructed by subtract-

ing random-walk inflation forecasts from a nominal interest rate series, which makes the

presence of measurement errors plausible. In particular, our nominal interest rate series

includes several periods with negative nominal yields in the period from 1938 to 1941. The

pre-1960 sample also contains periods with artificially large inflation rates, which are partly

due to price adjustments following price controls after World War II. Overall, the estimated

benchmark model implies that about 70-80% of the fluctuations in the risk-free rate are due

to measurement errors.

The generalized model with the preference shock λt is able to track the risk-free rate

much better than the benchmark model. By construction, λt generates additional fluctua-

tions in the model-implied expected stochastic discount factor and hence the model-implied

risk-free rate. The likelihood-based estimation procedure reverses this logic. Persistent

movements in the observed risk-free rate suggest that λt fluctuated substantially between

1929 and 2011. The fraction of the fluctuations attributed to measurement errors is now

much smaller. In fact, the bottom panel of Figure 3.1 illustrates that the difference be-

tween the observed series and the smoothed, model-implied series is now very small. This is

consistent with the predictive checks reported in Table 3.4. Since the generalized model is

more successful at tracking the observed risk-free rate, we focus on the model specification

with preference shock in the remainder of this section unless otherwise noted.3

Smoothed Mean and Volatility States. Figure 3.2 depicts smoothed estimates of the

predictable component xt and the preference shock process xλ,t. Since the estimate of

xt is, to a large extent, determined by the time path of consumption, the 90% credible

3An alternative way to interpret the preference shocks is that the model requires correlated measurement
errors to capture the time series dynamics of the real risk-free rate.
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Figure 3.2: Smoothed Mean States

Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90%

credible intervals. In the top panel we overlay the smoothed state xt obtained from the estimation without

asset prices (red dashed line) and monthly consumption growth data (blue solid line). In the bottom panel

we overlay a standardized version of the risk-free rate (blue solid line). Shaded bars indicate NBER recession

dates.

bands are much wider prior to 1960, when only annual consumption growth data were

used in the estimation. Post 1959, xt tends to fall in recessions (indicated by the shaded

bars in Figure 3.2), but periods of falling xt also occur during expansions. We overlay

the smoothed estimate of xt obtained from the estimation without asset price data (see

Section 3.4.2). It is very important to note that the two estimates are similar, which

highlights that xt is, in fact, detectable based on cash flow data only. We also depict the

monthly consumption growth data post 1959, which confirms that xt indeed captures low-

frequency movements in consumption growth. A visual comparison of the smoothed xλ,t

process with the standardized risk-free rate in the bottom panel of Figure 3.2 confirms that

the preference shock in the generalized model mainly helps track the observed risk-free rate.

The smoothed volatility processes are plotted in Figure 3.3. Recall that our model has

91



Figure 3.3: Smoothed Volatility States

Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90%

credible intervals. Shaded bars indicate NBER recession dates.

three independent volatility processes, hc,t, hd,t, and hx,t, associated with the innovations to

consumption growth, dividend growth, and the predictable component, respectively. The

most notable feature of hc,t is that it captures a drop in consumption growth volatility that

occurred between 1950 and 1965. In magnitude, this drop in volatility is much larger than a

subsequent decrease around 1984, the year typically associated with the Great Moderation.

The stochastic volatility process for dividend growth shows a drop around 1955, but it also

features an increase in volatility starting in 2000, which is not apparent in hc,t. Overall,

the smoothed hd,t seems to exhibit more medium- and high-frequency movements than hc,t.

Finally, the volatility of the persistent component, hx,t, exhibits substantial fluctuations

over our sample period, and it tends to peak during NBER recessions.
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Determinants of Asset Price Fluctuations. After a visual inspection of the latent

mean and volatility processes in Figures 3.2 and 3.3, we now examine their implications for

asset prices. In equilibrium, the market returns, the risk-free rate, and the price-dividend

ratios are functions of the mean and volatility states. Figure 3.4 depicts the contribution

of various risk factors: namely, the variation in growth prospects, xt, the preference shock,

xλ,t, and the conditional variability of growth prospects, σx,t, to asset price volatility. Given

the posterior estimates of our state-space model, we can compute smoothed estimates of

the latent asset price volatilities at every point in time. Moreover, we can also generate

counterfactual volatilities by shutting down xt, xλ,t, or σx,t. The ratio of the counterfactual

and the actual volatilities measures the contribution of the non-omitted risk factors. If we

subtract this ratio from 1, we obtain the relative contribution of the omitted risk factor,

which is shown in Figure 3.4.

While the preference shocks are important for the risk-free rate, they contribute very

little to the variance of the price-dividend ratio and the market return. The figure shows that

most of the variability of the price-dividend ratio is, in equal parts, due to the variation in xt

and σx,t. As Appendix 3.6.1 shows, the risk premium on the market return is barely affected

by the preference shocks and consequently its variation is almost entirely attributable to the

time variation in the stochastic volatility σ2
x,t and the growth prospect xt. The remaining

risk factors σ2
c,t and σ2

d,t have negligible effects (less than 1% on average) on asset price

volatilities.

We assumed that in our endowment economy the preference shock is uncorrelated with

cash flows. In a production economy this assumption will typically not be satisfied. Stochas-

tic fluctuations in the discount factor generate fluctuations in consumption and investment,

which in turn affect cash flows. To assess whether our assumption of uncorrelated shocks

is contradicted by the data, we computed the correlation between the smoothed preference
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Figure 3.4: Variance Decomposition for Market Returns and Risk-Free Rate

(a) Market Returns: rm

(b) Log Price Dividend Ratio: pd

(c) Risk-Free Rate: rf

Notes: Fraction of volatility fluctuations (in percent) in the market returns, the price-dividend ratio, and

the risk-free rate that is due to xt, xλ,t, and σ2
x,t, respectively. We do not present the graphs for σ2

c,t, σ
2
d,t

since their time-varying shares are less than 1% on average. See the main text for computational details.

shock innovations ηλ,t and the cash flow innovations ηc,t and ηx,t. We can do so for every

parameter draw Θ(s) from the posterior distribution. The 90% posterior predictive intervals

range from -0.09 to 0.03 for the correlation between ηλ,t and ηc,t and from 0 to 0.2 for the
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correlation between ηλ,t and ηx,t. Based on these results we conclude that there is no strong

evidence that contradicts the assumption of uncorrelated preference shocks.

Predictability. One aspect of the data that is often discussed in the context of asset pricing

models — and in particular, in the context of models featuring long-run risks — is the low

predictability of future consumption growth by the current price-dividend ratio. Another

key issue in the asset pricing literature is return predictability by the price-dividend ratio

(e.g., Hodrick (1992)). We address these two issues in Figure 3.5 where we regress cumulative

consumption growth and multi-period excess returns on the current price-dividend ratio

using OLS:

H∑
h=1

∆ct+h = α+ βpdt + residt+H

H∑
h=1

(rm,t+h − rf,t+h−1) = α+ βpdt + residt+H .

The results are presented as posterior predictive checks, similar to those in Table 3.4, but

now depicted graphically. The statistics S(Y ) considered are the R2 values obtained from

the two regressions. The top and bottom ends of the boxes correspond to the 5th and 95th

percentiles, respectively, of the posterior distribution, and the horizontal bars signify the

medians. Finally, the small squares correspond to statistics computed from “actual” U.S.

data.

The left panel of Figure 3.5 documents the predictability of consumption growth. While

the model’s median R2 value is somewhat larger (red lines) than the corresponding data

estimate, the model’s finite sample R2 distribution for consumption growth encompasses

the low data estimate. In terms of return predictability, depicted in the right panel of

Figure 3.5, the model’s median R2 for the five-year horizon R2 is large at 15%, with a 95

percentile value of 47% that clearly contains the data estimate. These model-implied R2s

are larger than what is typically found in models with long-run risks (e.g., Bansal, Kiku, and
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Figure 3.5: Univariate Predictability Checks

Consumption Growth Excess Returns

Notes: Black boxes indicate regression R2 values from actual data. Figure also depicts medians (red lines)

and 90% credible intervals (top and bottom lines of boxes) of distribution of R2 values obtained with model-

generated data.

Figure 3.6: VAR Predictability Checks

Consumption Growth Excess Returns

Notes: Black boxes indicate VAR R2 values from actual data. The figure also depicts medians (red lines)

and 90% credible intervals (top and bottom lines of boxes) of distribution of R2 values obtained with model-

generated data.

Yaron (2012a)) — a feature attributable to the presence of the three exponential volatility

processes that allow this model specification for an improved fit.

It is well known that, in the data, the price-dividend ratio is very persistent, a feature

that can render the aforementioned regressions spurious (see Hodrick (1992) and Stam-

baugh (1999)). In the model, and possibly in the data, the price-dividend ratio reflects
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multiple state variables. Consequently, a VAR-based predictive regression may offer a more

robust characterization. As in Bansal, Kiku, and Yaron (2012a), Figure 3.6 displays the

predictability of consumption growth and the market excess returns based on a first-order

VAR that includes consumption growth, the price-dividend ratio, the real risk-free rate, and

the market excess return. The first thing to note is that, with multiple predictive variables,

consumption growth is highly predictable. The VAR provides quite a different view on con-

sumption predictability relative to the case of using the price-dividend ratio as a univariate

regressor. In particular, now consumption growth predictability at the one-year horizon

is very large with an R2 of about 55% (see also Bansal, Kiku, Shaliastovich, and Yaron

(2013)). While the predictability diminishes over time, it is still nontrivial with an R2 of

14% at the 10-year horizon. It is important to note that the model-based VAR yields very

comparable results (and in fact yields a median R2 for the one-year horizon that is somewhat

lower than its data estimate). On the other hand, since long-horizon return predictability is

highly influenced by the price-dividend ratio, the VAR-based implications for excess return

predictability do not change much relative to the univariate estimates. Nonetheless, the

model performs well along this dimension and its generated VAR-based R2s are closer to

their VAR data estimates, relative to the R2s based on univariate price-dividend regressor.

One additional feature in which the generalized model performance is improved relative

to the benchmark model is the correlation between long-horizon return and long-horizon

dividend and consumption growth. Figure 3.7 presents these correlations in the data and the

model. In the model, the 10-year consumption growth and 10-year return have a correlation

of 0.3, but with enormous standard deviations that encompass -0.3 to 0.7, which contain

the data estimate. The analogous correlations for dividend growth are 0 to 0.9 with the

data at 0.5 close to the model median estimate. In the benchmark model, without the xλ

process, this last correlation will be quite a bit larger for all percentiles and would be a
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Figure 3.7: Correlation between Market Return and Growth Rates of Fundamentals

Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆ct+h) Corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆dt+h)

Notes: Black boxes indicate sample correlations of actual data. The figure also depicts medians (red lines)

and 90% credible intervals (top and bottom lines of boxes) of distribution of sample correlations obtained

with model-generated data.

challenging dimension for the model.

It is well understood that whether the IES parameter is above or below 1 plays a

significant role in the asset pricing implication of the model. One common approach for

estimating the IES has been to regress the growth rate of consumption on the risk-free rate

(e.g., Hall (1988)). Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012a) show that

this regression is misspecified in the presence of stochastic volatility and leads to downward-

biased estimates of the IES. Given that our estimation formally ascribes measurement errors

to both consumption and the risk-free rate, we revisit the implication of this regression for

inference on the IES. For completeness, we also run the reverse equation of regressing the

risk-free rate on consumption growth. We use the two-year lagged consumption growth,

log price-dividend ratio, market return, and risk-free rate as instrumental variables. As

shown in Table 3.5, in both regression approaches the data based estimates are in fact

negative, but lie well within the very wide 90% model-based credible band, even though

in all model simulations the IES was set to its median estimate of 1.36. In totality, this

evidence shows that, with the estimated levels of measurement errors, it is very difficult to
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Table 3.5: ψ (IES) from Instrumental Variables Estimation

Specification Data Generalized Model
5% 50% 95%

∆c onto rf -0.30 -0.45 0.56 1.50
rf onto ∆c -0.90 -5.53 1.26 6.80

Notes: The first row provides finite sample values of the ψ from the regression ∆ct+1 = constant+ψrf,t+1 +

residt+1, while the second row provides the ψ values from the regression rf,t+1 = constant+ 1
ψ

∆ct+1+residt+1.

The instruments are lagged (two years) consumption growth, log price-dividend ratio, market return, and

risk-free rate. The “true” ψ value in the model is 1.36 from Table 3.3. Regressions are implemented at an

annual frequency.

precisely estimate the IES via this regression approach.

3.5 Conclusion

We developed a nonlinear state-space model to capture the joint dynamics of consumption,

dividend growth, and asset returns. Building on Bansal and Yaron (2004), our model

consists of an economy containing a common predictable component for consumption and

dividend growth and multiple stochastic volatility processes. To maximize the economic

span of the data for recovering the predictable components and maximizing the frequency

of data for efficiently identifying the volatility processes, we use mixed-frequency data. Our

econometric framework is general enough to encompass other asset pricing models that can

be written as state-space models that are linear conditional on the volatility states. A careful

modeling of measurement errors in consumption growth reveals that the predictable cash

flow component can be identified from consumption and dividend growth data only. The

additional inclusion of asset prices sharpens the inference. The inclusion of two additional

volatility processes improves the model fit considerably. The preference shock included in

the generalized version of our model mostly captures the dynamics of the risk-free rate, but

has little effect on market returns and price-dividend ratios. Overall, the estimated model

is able to capture key asset-pricing facts of the data.
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3.6 Appendix

3.6.1 Solving the Long-Run Risks Model

This section provides solutions for the consumption and dividend claims for the endowment

process:

gc,t+1 = µc + xt + σc,tηc,t+1 (3.14)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

xt+1 = ρxt + σx,tηx,t+1

xλ,t+1 = ρλxλ,t + σληλ,t+1

σ2
c,t+1 = (1− νc)(ϕcσ̄)2 + νcσ

2
c,t + σwcwc,t+1

σ2
x,t+1 = (1− νx)(ϕxσ̄)2 + νxσ

2
x,t + σwxwx,t+1

σ2
d,t+1 = (1− νd)(ϕdσ̄)2 + νdσ

2
d,t + σwdwd,t+1

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

The Euler equation for the economy is

Et [exp (mt+1 + ri,t+1)] = 1, i ∈ {c,m} , (3.15)

where

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gc,t+1 + (θ − 1)rc,t+1 (3.16)

is the log of the real stochastic discount factor (SDF), rc,t+1 is the log return on the con-

sumption claim, and rm,t+1 is the log market return. (3.16) is derived in Section 3.6.1 below.

Returns are given by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0 + κ1zt+1 − zt + gc,t+1 (3.17)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1.
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The risk premium on any asset is

Et(ri,t+1 − rf,t) +
1

2
V art(ri,t+1) = −Covt(mt+1, ri,t+1). (3.18)

In Section 3.6.1 we solve for the law of motion for the return on the consumption claim,

rc,t+1. In Section 3.6.1 we solve for the law of motion for the market return, rm,t+1. The risk-

free rate is derived in Section 3.6.1. All three solutions depend on linearization parameters

that are derived in Section 3.6.1. Finally, as mentioned above, the SDF is derived in

Section 3.6.1.

Consumption Claim

In order to derive the dynamics of asset prices, we rely on approximate analytical solutions.

Specifically, we conjecture that the price-consumption ratio follows

zt = A0 +A1xt +A1,λxλ,t +A2,cσ
2
c,t +A2,xσ

2
x,t (3.19)

and solve for A’s using (3.14), (3.15), (3.17), and (3.19).

From (3.14), (3.17), and (3.19)

rc,t+1 =
{
κ0 +A0(κ1 − 1) + µc + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(3.20)

+
1

ψ
xt +A1,λ(κ1ρλ − 1)xλ,t +A2,x(κ1νx − 1)σ2

x,t +A2,c(κ1νc − 1)σ2
c,t

+ σc,tηc,t+1 + κ1A1σx,tηx,t+1 + κ1A1,λσληλ,t+1 + κ1A2,xσwxwx,t+1 + κ1A2,cσwcwc,t+1

and from (3.14), (3.15), (3.17), and (3.19)

mt+1 = (θ − 1)
{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(3.21)

− γµ+ θ log δ − 1

ψ
xt + ρλxλ,t + (θ − 1)A2,x(κ1νx − 1)σ2

x,t + (θ − 1)A2,c(κ1νc − 1)σ2
c,t

− γσc,tηc,t+1 + (θ − 1)κ1A1σx,tηx,t+1 + {(θ − 1)κ1A1,λ + θ}σληλ,t+1

+ (θ − 1)κ1A2,xσwxwx,t+1 + (θ − 1)κ1A2,cσwcwc,t+1.
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The solutions for A’s that describe the dynamics of the price-consumption ratio are

determined from

Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] = 0

and they are

A1 =
1− 1

ψ

1− κ1ρ
, A1,λ =

ρλ
1− κ1ρλ

, A2,x =
θ
2(κ1A1)2

1− κ1νx
, A2,c =

θ
2(1− 1

ψ )2

1− κ1νc
(3.22)

and A0 =
A1

0+A2
0

1−κ1
, where

A1
0 = log δ + κ0 + µ(1− 1

ψ
) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

A2
0 =

θ

2

{
(κ1A1,λ + 1)2σ2

λ + (κ1A2,xσwx)2 + (κ1A2,cσwc)
2
}
.

For convenience, (3.21) can be rewritten as

mt+1 − Et[mt+1] = λcσc,tηc,t+1 + λxσx,tηx,t+1 + λλσληλ,t+1 + λwxσwxwx,t+1 + λwcσwcwc,t+1.

Note that λs represent the market price of risk for each source of risk. To be specific,

λc = −γ, λx = −(γ − 1

ψ
)

κ1

1− κ1ρ
, λλ =

θ − κ1ρλ
1− κ1ρλ

, (3.23)

λwx = −
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νx)
(

κ1

1− κ1ρ
)2, λwc = −

θ(γ − 1
ψ )(1− 1

ψ )κ1

2(1− κ1νc)
.

Similarly, rewrite (3.20) as

rc,t+1 − Et[rc,t+1] = −βc,cσc,tηc,t+1 − βc,xσx,tηx,t+1 − βc,λσληλ,t+1 − βc,wxσwxwx,t+1 − βc,wcσwcwc,t+1

where

βc,c = −1, βc,x = −κ1A1, βc,λ = −κ1A1,λ, βc,wx = −κ1A2,x, βc,wc = −κ1A2,c.(3.24)

The risk premium for the consumption claim is

Et(rc,t+1 − rf,t) +
1

2
V art(rc,t+1) = −Covt(mt+1, rc,t+1) (3.25)

= βc,xλxσ
2
x,t + βc,cλcσ

2
c,t + βc,λλλσ

2
λ + βc,wxλwxσ

2
wx + βc,wcλwcσ

2
wc .
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Market Return

Similarly, using the conjectured solution to the price-dividend ratio

zm,t = A0,m +A1,mxt +A1,λ,mxλ,t +A2,x,mσ
2
x,t +A2,c,mσ

2
c,t +A2,d,mσ

2
d,t (3.26)

the market return can be expressed as

rm,t+1 = κ0,m +A0,m(κ1,m − 1) + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 (3.27)

+ κ1,mA2,c,m(1− νc)(ϕcσ̄)2 + κ1,mA2,d,m(1− νd)(ϕdσ̄)2 + {φ+A1,m(κ1,mρ− 1)}xt

+ (κ1,mρλ − 1)A1,λ,mxλ,t +A2,x,m(κ1,mνx − 1)σ2
x,t +A2,c,m(κ1,mνc − 1)σ2

c,t

+ A2,d,m(κ1,mνd − 1)σ2
d,t + πσc,tηc,t+1 + σd,tηd,t+1 + κ1,mA1,mσx,tηx,t+1 + κ1,mA1,λ,mσληλ,t+1

+ κ1,mA2,x,mσwxwx,t+1 + κ1,mA2,c,mσwcwc,t+1 + κ1,mA2,d,mσwdwd,t+1.

Given the solution for A’s, Am’s can be derived as follows:

A0,m =
A1st

0,m +A2nd
0,m

1− κ1,m
(3.28)

A1,m =
φ− 1

ψ

1− κ1,mρ

A1,λ,m =
ρλ

1− κ1,mρλ

A2,x,m =
1
2 {(θ − 1)κ1A1 + κ1,mA1,m}2 + (θ − 1)(κ1νx − 1)A2,x

1− κ1,mνx

A2,c,m =
1
2(π − γ)2 + (θ − 1)(κ1νc − 1)A2

1− κ1,mνc

A2,d,m =
1
2

1− κ1,mνd
,
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where

A1st
0,m = θ log δ + (θ − 1)

{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
− γµ+ κ0,m + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 + κ1,mA2,c,m(1− νc)(ϕcσ̄)2

+ κ1,mA2,d,m(1− νd)(ϕdσ̄)2

A2nd
0,m =

1

2

(
κ1,mA2,x,mσwx + (θ − 1)κ1A2,xσwx

)2

+
1

2

(
κ1,mA2,c,mσwc + (θ − 1)κ1A2,cσwc

)2

+
1

2

(
κ1,mA2,d,mσwd

)2

+
1

2

(
κ1,mA1,λ,mσλ + (θ − 1)κ1A1,λσλ + θσλ

)2

.

Rewrite market-return equation (3.27) as

rm,t+1 − Et[rm,t+1] = −βm,cσc,tηc,t+1 − βm,xσx,tηx,t+1 − βm,λσληλ,t+1 − βm,wxσwxwx,t+1 − βm,wcσwcwc,t+1,

where

βm,c = −π, βm,x = −κ1,mA1,m, βm,λ = −κ1,mA1,λ,m, (3.29)

βm,wx = −κ1,mA2,x,m, βm,wc = −κ1,mA2,c,m.

The risk premium for the dividend claim is

Et(rm,t+1 − rf,t) +
1

2
V art(rm,t+1) = −Covt(mt+1, rm,t+1) (3.30)

= βm,xλxσ
2
x,t + βm,cλcσ

2
c,t

+βm,λλλσ
2
λ + βm,wxλwxσ

2
wx + βm,wcλwcσ

2
wc .

Risk-Free Rate

The model-driven equation for the risk-free rate is

rf,t = −Et [mt+1]− 1

2
vart [mt+1] (3.31)

= −θ log δ − Et [xλ,t+1] +
θ

ψ
Et [gc,t+1] + (1− θ)Et [rc,t+1]− 1

2
vart [mt+1] .

Subtract (1− θ)rf,t from both sides and divide by θ,

rf,t = − log δ − 1

θ
Et [xλ,t+1] +

1

ψ
Et [gc,t+1] +

(1− θ)
θ

Et [rc,t+1 − rf,t]−
1

2θ
vart [mt+1](3.32)
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From (3.14) and (3.21)

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t,

where

B1 =
1

ψ
, B1,λ = −ρλ, B2,x = −

(1− 1
ψ )(γ − 1

ψ )κ2
1

2(1− κ1ρ)2
, B2,c = −1

2
(
γ − 1

ψ
+ γ) (3.33)

and

B0 = −θ log δ − (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
+ γµ− 1

2
{(θ − 1)κ1A2,xσwx}

2 − 1

2
{(θ − 1)κ1A2,cσwc}

2 − 1

2

{
((θ − 1)κ1A1,λ + θ)2σ2

λ

}
.

Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following

system of equations:

z̄i = A0,i(z̄i) +
∑

j∈{c,x,d}

A2,i,j(z̄i)× (ϕj σ̄)2

κ1,i =
exp(z̄i)

1 + exp(z̄i)

κ0,i = log(1 + exp(z̄i))− κ1,iz̄i.

The solution is determined numerically by iteration until reaching a fixed point of z̄i.

Deriving the Intertemporal Marginal Rate of Substitution (MRS)

We consider a representative-agent endowment economy modified to allow for time-preference

shocks. The representative agent has Epstein and Zin (1989) recursive preferences and max-

imizes her lifetime utility

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ
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subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk

aversion, θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution. The ratio λt+1

λt

determines how agents trade off current versus future utility and is referred to as the time-

preference shock (see Albuquerque, Eichenbaum, and Rebelo (2012)).

First conjecture a solution for Vt = φtWt. The value function is homogenous of degree

1 in wealth; it can now be written as

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[(φt+1Wt+1)1−γ ]

) 1
θ

] θ
1−γ

(3.34)

subject to

Wt+1 = (Wt − Ct)Rc,t+1.

Epstein and Zin (1989) show that the above dynamic program has a maximum.

Using the dynamics of the wealth equation, we substitute Wt+1 into (3.34) to derive

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ(Wt − Ct)
1−γ
θ
(
Et[(φt+1Rc,t+1)1−γ ]

) 1
θ

] θ
1−γ

. (3.35)

At the optimum, Ct = btWt, where bt is the consumption-wealth ratio. Using (3.35) and

shifting the exponent on the braces to the left-hand side, and dividing by Wt, yields

φ
1−γ
θ

t = (1− δ)λt
(
Ct
Wt

) 1−γ
θ

+ δ

(
1− Ct

Wt

) 1−γ
θ (

Et[(φt+1Rc,t+1)1−γ ]
) 1
θ (3.36)

or simply

φ
1−γ
θ

t = (1− δ)λtb
1−γ
θ

t + δ(1− bt)
1−γ
θ
(
Et[(φt+1Rc,t+1)1−γ ]

) 1
θ . (3.37)

The first-order condition with respect to the consumption choice yields

(1− δ)λtb
1−γ
θ
−1

t = δ(1− bt)
1−γ
θ
−1
(
Et[(φt+1Rc,t+1)1−γ ]

) 1
θ . (3.38)
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Plugging (3.38) into (3.37) yields

φt = (1− δ)
θ

1−γ λ
θ

1−γ
t

(
Ct
Wt

) 1−γ−θ
1−γ

= (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t

(
Ct
Wt

) 1
1−ψ

. (3.39)

The lifetime value function is φtWt, with the solution to φt stated above. This expression

for φt is important: It states that the maximized lifetime utility is determined by the

consumption-wealth ratio.

(3.38) can be rewritten as

(1− δ)θλθt
(

bt
1− bt

)− θ
ψ

= δθEt[(φt+1Rc,t+1)1−γ ]. (3.40)

Consider the term φt+1Rc,t+1:

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
Ct+1

Wt+1

) 1
1−ψ

Rc,t+1. (3.41)

After substituting the wealth constraint, Ct+1

Wt+1
= Ct+1/Ct

Wt/Ct−1 ·
1

Rc,t+1
= Gt+1

Rc,t+1
· bt

1−bt , into the

above expression, it follows that

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
bt

1− bt

) 1
1−ψ
(
Gt+1

Rc,t+1

) 1
1−ψ

Rc,t+1. (3.42)

After some intermediate tedious manipulations,

δθ(φt+1Rc,t+1)1−γ = δθ(1− δ)θλθt+1

(
bt

1− bt

)− θ
ψ

G
− θ
ψ

t+1R
θ
c,t+1. (3.43)

Taking expectations and substituting the last expression into (3.40) yields

δθEt[
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1Rc,t+1] = 1. (3.44)

From here we see that the MRS in terms of observables is

Mt+1 = δθ
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1. (3.45)

The log of MRS is

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gt+1 + (θ − 1)rc,t+1, (3.46)

where xλ,t+1 = log(λt+1

λt
).
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3.6.2 Data Source

Nominal PCE

We download seasonally adjusted data for nominal PCE from NIPA Tables 2.3.5 and 2.8.5.

We then compute within-quarter averages of monthly observations and within-year averages

of quarterly observations.

Real PCE

We use Table 2.3.3., Real Personal Consumption Expenditures by Major Type of Product,

Quantity Indexes (A:1929-2011)(Q:1947:Q1-2011:Q4) to extend Table 2.3.6., Real Personal

Consumption Expenditures by Major Type of Product, Chained Dollars (A:1995-2011)

(Q:1995:Q1-2011:Q4). Monthly data are constructed analogously using Table 2.8.3. and

Table 2.8.6.

Real Per Capita PCE: ND+S

The LRR model defines consumption as per capita consumer expenditures on nondurables

and services. We download mid-month population data from NIPA Table 7.1.(A:1929-

2011)(Q:1947:Q1-2011:Q4) and from Federal Reserve Bank of St. Louis’ FRED database

(M:1959:M1-2011:M12). We convert consumption to per capita terms.

Dividend and Market Returns Data

Data are from the Center for Research in Security Prices (CRSP). The three monthly series

from CRSP are the value-weighted with-, RNt, and without-dividend nominal returns, RXt,

of CRSP stock market indexes (NYSE/AMEX/NASDAQ/ARCA), and the CPI inflation

rates, πt. The sample period is from 1928:M1 to 2011:M12. The monthly real dividend

series are constructed as in Hodrick (1992):

1. A normalized nominal value-weighted price series is produced by initializing P0 = 1
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and recursively setting Pt = (1 +RXt)Pt−1.

2. A normalized nominal divided series, dt, is obtained by recognizing that dt = (RNt−

RXt)Pt−1.

3. The annualized dividend is Dt =
∑11

j=0 dt−j , which sums the previous 11 months of

dividends with the current dividend. The first observation is 1928:M12.

Both dividend growth, log(Dt+1

Dt
), and market returns, RNt+1, are converted from nominal to

real terms using the CPI inflation rates, which are denoted by gd,t+1 and rm,t+1 respectively.

They are available from 1929:M1 to 2011:M12.

Ex Ante Risk-Free Rate

The ex ante risk-free rate is constructed as in the online appendix of Beeler and Campbell

(2012). Nominal yields to calculate risk-free rates are the CRSP Fama Risk Free Rates.

Even though our model runs in monthly frequencies, we use the three-month yield because

of the larger volume and higher reliability. We subtract annualized three-month inflation,

πt,t+3, from the nominal yield, if,t, to form a measure of the ex post (annualized) real three-

month interest rate. The ex ante real risk-free rate, rf,t, is constructed as a fitted value

from a projection of the ex post real rate on the current nominal yield, if,t, and inflation

over the previous year, πt−12,t :

if,t − πt,t+3 = β0 + β1if,t + β2πt−12,t + εt+3

rf,t = β̂0 + β̂1if,t + β̂2πt−12,t.

The ex ante real risk-free rates are available from 1929:M1 to 2011:M12.
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3.6.3 The State-Space Representation of the LRR Model

Measurement Equations

In order to capture the correlation structure between the measurement errors at monthly

frequency, we assumed in the main text that 12 months of consumption growth data are

released at the end of each year. We will now present the resulting measurement equation.

To simplify the exposition, we assume that the monthly consumption data are released

at the end of the quarter (rather than at the end of the year). In the main text, the

measurement equation is written as

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1 + Σuut+1

)
, ut+1 ∼ N(0, I). (3.47)

The selection matrix At+1 accounts for the deterministic changes in the vector of observ-

ables, yt+1. Recall that monthly observations are available only starting in 1959:M1. For

the sake of exposition, suppose prior to 1959:M1 consumption growth was available at a

quarterly frequency. Then:

1. Prior to 1959:M1:

(a) If t+ 1 is the last month of the quarter:

yt+1 =


gqc,t+1

gd,t+1

rm,t+1

rf,t

 , At+1 =


1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
(b) If t+ 1 is not the last month of the quarter:

yt+1 =

 gd,t+1

rm,t+1

rf,t

 , At+1 =

 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
2. From 1959:M1 to present:
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(a) If t+ 1 is the last month of the quarter:

yt+1 =



gc,t+1

gc,t
gc,t−1

gd,t+1

rm,t+1

rf,t

 , At+1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(b) If t+ 1 is not the last month of the quarter:

yt+1 =

 gd,t+1

rm,t+1

rf,t

 , At+1 =

 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
The relationship between observations and states (ignoring the measurement errors) is

given by the approximate analytical solution of the LRR model described in Section 3.6.1:

gc,t+1 = µc + xt + σc,tηc,t+1 (3.48)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

rm,t+1 = {κ0,m + (κ1,m − 1)A0,m + µd}+ +(κ1,mA1,m)xt+1 + (φ−A1,m)xt

+ (κ1,mA1,λ,m)xλ,t+1 −A1,λ,mxλ,t + πσc,tηc,t+1 + σd,tηd,t+1

+ (κ1,mA2,x,m)σ2
x,t+1 −A2,x,mσ

2
x,t + (κ1,mA2,c,m)σ2

c,t+1 −A2,c,mσ
2
c,t

+ (κ1,mA2,d,m)σ2
d,t+1 −A2,d,mσ

2
d,t

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

In order to reproduce (3.48) and the measurement-error structure described in Sections 3.3.1

and 3.3.2, we define the vectors of states st+1 and svt+1 as
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st+1 =



xt+1

xt
xt−1

xt−2

xt−3

xt−4

σc,tηc,t+1

σc,t−1ηc,t
σc,t−2ηc,t−1

σc,t−3ηc,t−2

σc,t−4ηc,t−3

σεεt+1

σεεt
σεεt−1

σεεt−2

σεεt−3

σεεt−4

σqε ε
q
t+1

σqε ε
q
t

σqε ε
q
t−1

σqε ε
q
t−2

σd,tηd,t+1

xλ,t+1

xλ,t



, svt+1 =



σ2
x,t+1

σ2
x,t

σ2
c,t+1

σ2
c,t

σ2
d,t+1

σ2
d,t

 . (3.49)

It can be verified that the coefficient matrices D, Z, Zv, and Σe are given by

Z =



0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 − 1
3
− 1

3
2
3

− 2
3

1
3

1
3

1 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 φ 0 0 0 0 π 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

µr,1 µr,2 0 0 0 0 µr,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 µr,4 µr,5 µr,6
0 B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B1,λ



Z
v

=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

µr,7 µr,8 µr,9 µr,10 µr,11 µr,12
0 B2,x 0 B2,c 0 0


, D =



µ
µ
µ
µ
µ
µd
µr,0
B0


, Σ

u
=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σ
rf
ε


.

The coefficients µr,0 to µr,12 are obtained from the solution of the LRR model:

µr,0
µr,1
µr,2
µr,3
µr,4
µr,5
µr,6


=



κ0,m +A0,m(κ1,m − 1) + µd
κ1,mA1,m

φ−A1,m

π
1

κ1,mA1,λ,m

−A1,λ,m


,



µr,7
µr,8
µr,9
µr,10

µr,11

µr,12

 =



κ1,mA2,x,m

−A2,x,m

κ1,mA2,m

−A2,m

κ1,mA2,d,m

−A2,d,m

 .
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State Transition Equations

Using the definition of st+1 in (3.49), we write the state-transition equation as

st+1 = Φst + vt+1(ht). (3.50)

Conditional on the volatilities ht, this equation reproduces the law of motion of the two

persistent conditional mean processes

xt+1 = ρxt + σx,tηx,t+1 (3.51)

xλ,t+1 = ρλxλ,t + σληλ,t+1

and it contains some trivial relationships among the measurement-error states. The matrices

Φ and vt+1(ht) are defined as

Φ =



ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



and
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vt+1(ht) =



σx,tηx,t+1
0
0
0
0
0

σc,tηc,t+1
0
0
0
0

σεεt+1
0
0
0
0
0

σqε ε
q
t+1
0
0
0

σd,tηd,t+1
σληλ,t+1

0



.

The law of motion of the three persistent conditional log volatility processes is given by

ht+1 = Ψht + Σhwt+1, (3.52)

where

ht+1 =

 hx,t+1

hc,t+1

hd,t+1

 , Ψ =

 ρhx 0 0
0 ρhc 0
0 0 ρhd



Σh =


σhx

√
1− ρ2

hx
0 0

0 σhc

√
1− ρ2

hc
0

0 0 σhd

√
1− ρ2

hd

 , wt+1 =

 wx,t+1

wc,t+1

wd,t+1

 .
We express

σx,t = ϕxσ̄ exp(hx,t), σc,t = ϕcσ̄ exp(hc,t), σd,t = ϕdσ̄ exp(hd,t),

which delivers the dependence on ht in the above definition of vt+1(·).
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3.6.4 Posterior Inference

As discussed in the main text, we use a particle-filter approximation of the likelihood func-

tion and embed this approximation into a fairly standard random walk Metropolis algo-

rithm.

Particle Filter

Our state-space representation, given by equations (3.47), (3.50), and (3.52), is linear con-

ditional on the volatility states ht. Thus, following Chen and Liu (2000), we update st+1

conditional on ht using Kalman filter iterations, which improves the efficiency of the fil-

ter substantially. In the subsequent exposition we omit the dependence of all densities

on the parameter vector Θ. The particle filter approximates the sequence of distributions

{p(zt|Y1:t)}Tt=1 by a set of pairs
{
z

(i)
t , π

(i)
t

}N
i=1

, where z
(i)
t is the i′th particle vector, π

(i)
t is its

weight, and N is the number of particles. As a by-product, the filter produces a sequence

of likelihood approximations p̂(yt|Y1:t−1), t = 1, . . . , T .

• Initialization: We generate the particle values z
(i)
0 by drawing the volatilities (h0, h−1)

from the unconditional distribution associated with (3.52). Conditional on the volatil-

ity state (h
(i)
0 , h

(i)
−1), s

(i)
0 is generated from the unconditional distribution associated

with (3.50). We set π
(i)
0 = 1/N for each i.

• Propagation of particles: We simulate (3.52) forward to generate (h
(i)
t , h

(i)
t−1) con-

ditional on (h
(i)
t−1, h

(i)
t−2). Taking s

(i)
t−1 and (h

(i)
t , h

(i)
t−1) as given, for each particle we run

one iteration of the Kalman filter based on the linear state-space system comprised

of (3.47)and (3.50) to determine p(st|yt, s(i)
t−1, h

(i)
t , h

(i)
t−1). This distribution is normal

with mean s
(i)
t|t and P

(i)
t|t . We sample s

(i)
t from N

(
s

(i)
t|t , P

(i)
t|t ). We use q(zt|z(i)

t−1, yt) to

represent the distribution from which we draw z
(i)
t .
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• Correction of particle weights: Define the unnormalized particle weights for pe-

riod t as

π̃
(i)
t = π

(i)
t−1 ×

p(yt|z(i)
t )p(z

(i)
t |z

(i)
t−1)

q(z
(i)
t |z

(i)
t−1, yt)

(3.53)

= π
(i)
t−1 ×

p(yt|z(i)
t )p(z

(i)
t |z

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)q(h

(i)
t |h

(i)
t−1)

= π
(i)
t−1 ×

p(yt|z(i)
t )p(s

(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)p(h

(i)
t |h

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)q(h

(i)
t |h

(i)
t−1)

= π
(i)
t−1 ×

p(yt|z(i)
t )p(s

(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)

.

The term π
(i)
t−1 is the initial particle weight and the ratio p(yt|z(i)

t )p(z
(i)
t |z

(i)
t−1)/q(z

(i)
t |z

(i)
t−1, yt)

is the importance weight of the particle. The second equality is obtained by factor-

izing q(z
(i)
t |z

(i)
t−1, yt) into the density of h

(i)
t associated with the forward simulation of

the volatility states, and the conditional density of st|(yt, s(i)
t−1, h

(i)
t , h

(i)
t−1) is obtained

from the Kalman filter updating step. The third equality is obtained by factoriz-

ing the joint density of (s
(i)
t , h

(i)
t ), p(z

(i)
t |z

(i)
t−1), into a marginal density for h

(i)
t and a

conditional density for s
(i)
t |h

(i)
t . The last equality follows from the fact that we chose

q(h
(i)
t |h

(i)
t−1) = p(h

(i)
t |h

(i)
t−1). We further simplify the expression in the last line of (3.53)

in the next subsection.

The log likelihood function approximation is given by

log p̂(yt|Y1:t−1) = log p̂(yt−1|Y1:t−2) + log

(
N∑
i=1

π̃
(i)
t

)
.

• Resampling: Define the normalized weights

π
(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t
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and generate N draws from the distribution {s(i)
t , π

(i)
t }Ni=1 using multinomial resam-

pling. In slight abuse of notation, we denote the resampled particles and their weights

also by s
(i)
t and π

(i)
t , where π

(i)
t = 1/N .

Further Details on the Correction and Updating Step

We now derive the density p(st|yt, s(i)
t−1, h

(i)
t , h

(i)
t−1) as well as a simplified expression for the

density ratio in the last line of (3.53). Recall that, conditional on the volatilities (ht, ht−1),

the state-space representation of our model takes the form

yt = At
(
D + Zst + Zvsvt + Σuut

)
, ut ∼ N(0, I) (3.54)

st = Φst−1 + vt(ht−1). (3.55)

We now proceed with a Kalman filter forecasting and updating step. Conditional on

(s
(i)
t−1, h

(i)
t , h

(i)
t−1), the state-transition equation can be used to forecast st:

st
∣∣(s(i)

t−1, h
(i)
t , h

(i)
t−1) ∼ N

(
s

(i)
t|t−1, P

(i)
t|t−1

)
,

where

s
(i)
t|t−1 = Φs

(i)
t−1, P

(i)
t|t−1 = E[vt(h

(i)
t−1)v′t(h

(i)
t−1)].

Using the measurement equation we can forecast yt, conditional on (s
(i)
t−1, h

(i)
t , h

(i)
t−1), as

follows:

yt
∣∣(s(i)

t−1, h
(i)
t , h

(i)
t−1) ∼ N

(
ŷ

(i)
t|t−1, F

(i)
t|t−1

)
, (3.56)

where

ŷ
(i)
t|t−1 = At

(
D+Zs

(i)
t|t−1 +Zvsvt (h

(i)
t , h

(i)
t−1)

)
, F

(i)
t|t−1 = (AtZ)P

(i)
t|t−1(AtZ)′ + (AtΣ

u)(AtΣ
u)′.

Finally, we can apply the Kalman filter updating step to obtain

st
∣∣(yt, s(i)

t−1, h
(i)
t , h

(i)
t−1) ∼ N

(
s

(i)
t|t , P

(i)
t|t
)
, (3.57)
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where

s
(i)
t|t = s

(i)
t|t−1 + (AtZP

(i)
t|t−1)′(F

(i)
t|t−1)−1(yt − ŷ(i)

t|t−1)

P
(i)
t|t = P

(i)
t|t−1 − (AtZP

(i)
t|t−1)′(F

(i)
t|t−1)−1(AtZP

(i)
t|t−1).

Define F (i) = {h(i)
t , h

(i)
t−1, s

(i)
t−1} and consider the density ratio used to update the particle

weights:

p(yt|z(i)
t )p(s

(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1)

p(s
(i)
t |h

(i)
t , h

(i)
t−1, s

(i)
t−1, yt)

=
p(yt|s(i)

t ,F (i))p(s
(i)
t |F (i))

p(s
(i)
t |yt,F (i))

(3.58)

=
p(s

(i)
t |yt,F (i))p(yt|F (i))

p(s
(i)
t |yt,F (i))

= p(yt|F (i)).

The first equality in (3.58) follows from

p(yt|z(i)
t ) = p(yt|s(i)

t , h
(i)
t , h

(i)
t−1) = p(yt|s(i)

t , h
(i)
t , h

(i)
t−1, s

(i)
t−1)

and the second equality in (3.58) is an application of Bayes’ Theorem. The expression for

p(yt|F (i) was previously derived in (3.56).
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3.6.5 The Measurement-Error Model for Consumption

Monthly Interpolation and Adjustment of Consumption

For expositional purposes, we assume that the accurately measured low-frequency observa-

tions are available at quarterly frequency (instead of annual frequency as in the main text).

Correspondingly, we define the time subscript t = 3(j − 1) + m, where month m = 1, 2, 3

and quarter j = 1, . . .. We use uppercase C to denote the level of consumption and low-

ercase c to denote percentage deviations from some log-linearization point. Growth rates

are approximated as log differences and we use a superscript o to distinguish observed from

“true” values.

The measurement-error model presented in the main text can be justified by assuming

that the statistical agency uses a high-frequency proxy series to determine monthly con-

sumption growth rates. We use Z3(j−1)+m to denote the monthly value of the proxy series

and Zq(j) the quarterly aggregate. Suppose the proxy variable provides a noisy measure of

monthly consumption. More specifically, we consider a multiplicative error model of the

form

Z3(j−1)+m = C3(j−1)+m exp(ε3(j−1)+m). (3.59)

The interpolation is executed in two steps. In the first step we construct a series

C̃o3(j−1)+m, and in the second step we rescale the series to ensure that the reported monthly

consumption data add up to the reported quarterly consumption data within the period.

In Step 1, we start from the level of consumption in quarter j − 1, Cq(j−1), and define

C̃o3(j−1)+1 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)
(3.60)

C̃o3(j−1)+2 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)
= Cq,o(j−1)

(
Z3(j−1)+2

Zq(j−1)

)

C̃o3(j−1)+3 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)(
Z3(j−1)+3

Z3(j−1)+2

)
= Cq,o(j−1)

(
Z3(j−1)+3

Zq(j−1)

)
.
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Thus, the growth rates of the proxy series are used to generate monthly consumption data

for quarter q. Summing over the quarter yields

C̃q,o(j) =

3∑
m=1

C̃o3(j−1)+m = Cq,o(j−1)

[
Z3(j−1)+1

Zq(j−1)

+
Z3(j−1)+2

Zq(j−1)

+
Z3(j−1)+3

Zq(j−1)

]
= Cq,o(j−1)

Zq(j)

Zq(j−1)

.(3.61)

In Step 2, we adjust the monthly estimates C̃o3(j−1)+m by the factor Cq,o(j)/C̃
q,o
(j) , which

leads to

Co3(j−1)+1 = C̃o3(j−1)+1

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+1

Zq(j)
(3.62)

Co3(j−1)+2 = C̃o3(j−1)+2

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+2

Zq(j)

Co3(j−1)+3 = C̃o3(j−1)+3

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+3

Zq(j)

and guarantees that

Cq,o(j) =

3∑
m=1

Co3(j−1)+m.

We now define the growth rates goc,t = logCot − logCot−1 and gc,t = logCt − logCt−1.

By taking logarithmic transformations of (3.59) and (3.62) and combining the resulting

equations, we can deduce that the growth rates for the second and third month of quarter

q are given by

goc,3(j−1)+2 = gc,3(j−1)+2 + ε3(j−1)+2 − ε3(j−1)+1 (3.63)

goc,3(j−1)+3 = gc,3(j−1)+3 + ε3(j−1)+3 − ε3(j−1)+2.

The derivation of the growth rate between the third month of quarter j − 1 and the first

month of quarter j is a bit more cumbersome. Using (3.62), we can write the growth rate

as

goc,3(j−1)+1 = logCq,o(j) + logZ3(j−1)+1 − logZq(j) (3.64)

− logCq,o(j−1) − logZ3(j−2)+3 + logZq(j−1).
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To simplify (3.64) further, we are using a log-linear approximation. Suppose we log-

linearize an equation of the form

Xq
(j) = X3(j−1)+1 +X3(j−1)+2 +X3(j−1)+3

around Xq
∗ and X∗ = Xq

∗/3, using lowercase variables to denote percentage deviations from

the log-linearization point. Then,

xq(j) ≈
1

3
(x3(j−1)+1 + x3(j−1)+2 + x3(j−1)+3).

Using (3.59) and the definition of quarterly variables as sums of monthly variables, we can

apply the log-linearization as follows:

logCq,o(j) − logZq(j) = log(Cq∗/Z
q
∗) + εq(j) −

1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
. (3.65)

Substituting (3.65) into (3.64) yields

goc,3(j−1)+1 = gc,3(j−1)+1 + ε3(j−1)+1 − ε3(j−2)+3 + εq(j) − ε
q
(j−1) (3.66)

−1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
+

1

3

(
ε3(j−2)+1 + ε3(j−2)+2 + ε3(j−2)+3

)
.

An “annual” version of this equation appears in the main text.
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Chapter 4

Improving GDP Measurement: A
Measurement-Error Perspective

4.1 Introduction

Aggregate real output is surely the most fundamental and important concept in macroe-

conomic theory. Surprisingly, however, significant uncertainty still surrounds its measure-

ment. In the U.S., in particular, two often-divergent GDP estimates exist, a widely-used

expenditure-side version, GDPE , and a much less widely-used income-side version, GDPI .
1

Nalewaik (2010) and Fixler and Nalewaik (2009) make clear that, at the very least, GDPI

deserves serious attention and may even have properties in certain respects superior to those

of GDPE .2 That is, if forced to choose between GDPE and GDPI , a surprisingly strong

case exists for GDPI . But of course one is not forced to choose between GDPE and GDPI ,

and a GDP estimate based on both GDPE and GDPI may be superior to either one alone.

In this paper we propose and implement a framework for obtaining such a blended estimate.

Our work is related to, and complements, Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2012). There we took a forecast-error perspective, whereas here we take a

1Indeed we will focus on the U.S. because it is a key egregious example of unreconciled GDPE and GDPI
estimates.

2For additional informative background on GDPE , GDPI , the statistical discrepancy, and the national
accounts more generally, see of Economic Analysis (2006), McCulla and Smith (2007), Landefeld, Seskin,
and Fraumeni (2008), and Rassier (2012).
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measurement-error perspective.3 In particular, we work with a dynamic factor model in the

tradition of Geweke (1977) and Sargent and Sims (1977), as used and extended by Watson

and Engle (1983), Edwards and Howrey (1991), Harding and Scutella (1996), Jacobs and

van Norden (2011), Kishor and Koenig (2011), and Fleischman and Roberts (2011), among

others.4 That is, we view “true GDP” as a latent variable on which we have several

indicators, the two most obvious being GDPE and GDPI , and we then extract true GDP

using optimal filtering techniques.

The measurement-error approach is time honored, intrinsically compelling, and very dif-

ferent from the forecast-combination perspective of Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2012), for several reasons.5 First, it enables extraction of latent true GDP using

a model with parameters estimated with exact likelihood or Bayesian methods, whereas the

forecast-combination approach forces one to use calibrated parameters. Second, it deliv-

ers not only point extractions of latent true GDP but also interval extractions, enabling

us to assess the associated uncertainty. Third, the state-space framework in which the

measurement-error models are embedded facilitates exploration of the relationship between

GDP measurement errors and the economic environment, such as stage of the business

cycle, which is of special interest. Fourth, the state-space framework facilitates real-time

analysis and forecasting, despite the fact that preliminary GDPI data are not available as

quickly as those for GDPE .

We proceed as follows. In section 4.2 we consider several measurement-error models

and assess their identification status, which turns out to be challenging and interesting in

3Hence the pair of papers roughly parallels the well-known literature on “forecast error” and “measure-
ment error” properties of of data revisions; see Mankiw, Runkle, and Shapiro (1984), Mankiw and Shapiro
(1986), Faust, Rogers, and Wright (2005), and Aruoba (2008).

4See also Smith, Weale, and Satchell (1998), who take a different but related approach, and the indepen-
dent work of Greenaway-McGrevy (2011), who takes a closely-related approach but unfortunately estimates
a model that we will show to be unidentified.

5On the time-honored aspect, see, for example, Gartaganis and Goldberger (1955).
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the most realistic and hence compelling case. In section 4.3 we discuss the data, estimation

framework and estimation results. In section 4.4 we explore the properties of our new GDP

series. We conclude in section 4.5.

4.2 Five Measurement-Error Models of GDP

We use dynamic-factor measurement-error models, which embed the idea that both GDPE

and GDPI are noisy measures of latent true GDP . We work throughout with growth rates

of GDPE , GDPI and GDP (hence, for example, GDPE denotes a growth rate).6

We assume throughout that true GDP growth transitions with simple AR(1) dynamics,

and we entertain several measurement structures, to which we now turn.

4.2.1 (Identified) 2-Equation Model: Σ Diagonal

We begin with the simplest 2-equation model; the measurement errors are orthogonal to

each other and to transition shocks at all leads and lags.7 The model has a natural state-

space structure, and we write

[
GDPEt
GDPIt

]
=

[
1
1

]
GDPt +

[
εEt
εIt

]
(4.1)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where GDPEt and GDPIt are expenditure- and income-side estimates, respectively, GDPt

is latent true GDP , and all shocks are Gaussian and uncorrelated at all leads and lags.

6We will elaborate on the reasons for this choice later in section 4.3.

7Here and throughout, when we say “N -equation” state-space model, we mean that the measurement
equation is an N -variable system.
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That is, (εGt, εEt, εIt)
′ ∼ iidN(0,Σ), where

Σ =

 σ2
GG 0 0
0 σ2

EE 0
0 0 σ2

II

 . (4.2)

The Kalman smoother will deliver optimal extractions of GDPt conditional upon observed

expenditure- and income-side measurements. Moreover, the model can be easily extended,

and some of its restrictive assumptions relaxed, with no fundamental change. We now

proceed to do so.

4.2.2 (Identified) 2-Equation Model: Σ Block-Diagonal

The first extension is to allow for correlated measurement errors. This is surely important,

as there is roughly a 25 percent overlap in the counts embedded in GDPE and GDPI , and

moreover, the same deflator is used for conversion from nominal to real magnitudes.8 We

write [
GDPEt
GDPIt

]
=

[
1
1

]
GDPt +

[
εEt
εIt

]
(4.3)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where now εEt and εIt may be correlated contemporaneously but are uncorrelated at all

other leads and lags, and all other definitions and assumptions are as before; in particular,

εGt and (εEt, εIt)
′ are uncorrelated at all leads and lags. That is, (εGt, εEt, εIt)

′ ∼ iidN(0,Σ),

where

Σ =

 σ2
GG 0 0
0 σ2

EE σ2
EI

0 σ2
IE σ2

II

 . (4.4)

Nothing is changed, and the Kalman filter retains its optimality properties.

8See Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012) for more. Many of the areas of overlap are
particularly poorly measured, such as imputed financial services, housing services, and government output.
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4.2.3 (Unidentified) 2-Equation Model, Σ Unrestricted

The second key extension is motivated by Fixler and Nalewaik (2009) and Nalewaik (2010),

who document cyclicality in the statistical discrepancy (GDPE − GDPI), which implies

failure of the assumption that (εEt, εIt)
′ and εGt are uncorrelated at all leads and lags.

Of particular concern is contemporaneous correlation between εGt and (εEt, εIt)
′. Hence

we allow the measurement errors (εEt, εIt)
′ to be correlated with GDPt, or more precisely,

correlated with GDPt innovations, εGt. We write[
GDPEt
GDPIt

]
=

[
1
1

]
GDPt +

[
εEt
εIt

]
(4.5)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where (εGt, εEt, εIt)
′ ∼ iidN(0,Σ), with

Σ =

 σ2
GG σ2

GE σ2
GI

σ2
EG σ2

EE σ2
EI

σ2
IG σ2

IE σ2
II

 . (4.6)

In this environment the standard Kalman filter is rendered sub-optimal for extracting GDP ,

due to correlation between εGt and (εEt, εIt), but appropriately-modified optimal filters are

available.

Of course in what follows we will be concerned with estimating our measurement-

equation models, so we will be concerned with identification. The diagonal-Σ model (4.1)-

(4.2) and the block-diagonal-Σ model (4.3)-(4.4) are identified. Identification of less-restricted

dynamic factor models, however, is a very delicate matter. In particular, it is not obvious

that the unrestricted-Σ model (4.5)-(4.6) is identified. Indeed it is not, as we prove in

Appendix 4.6.1. Hence we now proceed to determine minimal restrictions that achieve

identification.
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4.2.4 (Identified) 2-Equation Model: Σ Restricted

The identification problem with the general model (4.5)-(4.6) stems from the fact that we

can make true GDP more volatile (increase σ2
GG) and make the measurement errors more

volatile (increase σ2
EE and σ2

II), but reduce the covariance between the fundamental shocks

and the measurement errors (reduce σ2
EG and σ2

IG), without changing the distribution of

observables.

Restricting the Original Parameterization

But we can achieve identification by slightly restricting parameterization (4.5)-(4.6). In

particular, as we show in Appendix 4.6.1, the unrestricted system (4.5)-(4.6) is unidentified

because the Σ matrix has six free parameters with only five moment conditions to determine

them. Hence we can achieve identification by restricting any single element of Σ. Imposing

any such restriction would seem challenging, however, as we have no strong prior views

directly on any single element of Σ. Fortunately, however, a simple re-parameterization

exists about which we have a more natural prior view, to which we now turn.

A Useful Re-Parameterization

Let

ζ =

1
1−ρ2σ

2
GG

1
1−ρ2σ

2
GG + 2σ2

GE + σ2
EE

, (4.7)

the variance of latent true GDP relative to the variance of expenditure-side measured

GDPE . Then, rather than fixing an element of Σ to achieve identification, we can fix ζ,

about which we have a more natural prior view. In particular, at first pass we might take

σ2
GE ≈ 0, in which case 0 < ζ < 1. Or, put differently, ζ > 1 would require a very negative

σ2
GE , which seems unlikely. All told, we view a ζ value less than, but close to, 1.0 as most

natural. We take ζ = 0.80 as our benchmark in the empirical work that follows, although

we explore a wide range of ζ values both below and above 1.0.
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4.2.5 (Identified) 3-Equation Model: Σ Unrestricted

Thus far we showed how to achieve identification by fixing a parameter, ζ, and we noted

that our prior is centered around ζ = 0.80. It is of also of interest to know whether we can

get some complementary data-based guidance on choice of ζ. The answer turns out to be

yes, by adding a third measurement equation with a certain structure.

Suppose, in particular, that we have an additional observable variable Ut that loads on

true GDPt with measurement error orthogonal to those of GDPI and GDPE . In particular,

consider the 3-equation model GDPEt
GDPIt
Ut

 =

 0
0
κ

+

 1
1
λ

GDPt +

 εEt
εIt
εUt

 (4.8)

GDPt = µ(1− ρ) + ρGDPt−1 + εGt,

where (εGt, εEt, εIt, εUt)
′ ∼ iidN(0,Ω), with

Ω =


σ2
GG σ2

GE σ2
GI σ2

GU

σ2
EG σ2

EE σ2
EI 0

σ2
IG σ2

IE σ2
II 0

σ2
UG 0 0 σ2

UU

 . (4.9)

Note that the upper-left 3x3 block of Ω is just Σ, which is now unrestricted. Nevertheless,

as we prove in Appendix 4.6.2, the 3-equation model (4.8)-(4.9) is identified. Of course

some of the remaining elements of the overall 4x4 covariance matrix Ω are restricted, which

is how we achieve identification in the 3-equation model, but the economically interesting

sub-matrix, which the 3-equation model leaves completely unrestricted, is Σ.

Depending on the application, of course, it is not obvious that an identifying variable

Ut with measurement errors orthogonal to those of GDPE and GDPI (i.e., with stochastic

properties that satisfy (4.9)), is available. Hence it is not obvious that estimation of the

3-equation model (4.8)-(4.9) is feasible in practice, despite the model’s appeal in principle.

Indeed, much of the data collected from business surveys is used in the BEA’s estimates,
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invalidating use of that data as Ut since any measurement error in that data appears directly

in either GDPE or GDPI , producing correlation across the measurement errors. Moreover,

variables drawn from business surveys similar to those used to produce GDPE and GDPI ,

even if they are not used directly in the estimation of GDPE and GDPI , might still be

invalid identifying variables if the survey methodology itself produces similar measurement

errors.9

Fortunately, however, some important macroeconomic data is collected not from surveys

of businesses, but from samples of households. A sample of data drawn from a universe of

households seems likely to have measurement errors that are different than those contami-

nating a data sample drawn from a universe of businesses, especially when the “universes”

of businesses and households are not complete census counts, as is the case here. For exam-

ple, the universe of business surveys is derived from tax records, so businesses not paying

taxes will not appear on that list, but individuals working at that business may appear in

the universe of households.

Importantly, very little data collected from household surveys are used to construct

GDPE and GDPI , so a Ut variable computed from a household survey seems most likely to

meet our identification conditions. The change in the unemployment rate is a natural choice

(hence our notational choice Ut). Ut arguably loads on true GDP with a measurement error

orthogonal to those of GDPE and GDPI , because the Ut data is being produced indepen-

dently (by the BLS rather than BEA) from different types of surveys. In addition, virtually

all of the GDPE and GDPI data are estimated in nominal dollars and then converted to

real dollars using a price deflator, whereas Ut is estimated directly with no deflation.

All told,we view “3-equation identification” as a useful complement to the “ζ-identification”

9 For example, if the business surveys used to produce GDPE and GDPI tend to oversample large firms,
variables drawn from a business survey that also oversamples large firms may have measurement errors that
are correlated with those in GDPE and GDPI , absent appropriate corrections.
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Figure 4.1: Divergence Between Σ̂ζ and Σ̂3

Notes: We show the Frobenius-norm divergence D(ζ) between Σ̂ζ and Σ̂3 as a function of ζ. The optimum

is ζ = 0.82. See text for details.

discussed earlier in section 4.2.4. All identifications involve assumptions. ζ-identification

involves introspection about likely values of ζ, given its structure and components, and that

introspection is of course subject to error. 3-equation identification involves introspection

about various measurement-error correlations involving the newly-introduced third vari-

able, which is of course also subject to error. Indeed the two approaches to identification

are usefully used in tandem, and compared.

One can even view the 3-equation approach as a device for implicitly selecting ζ. In

particular, we can find the ζ implied by the 3-equation model estimate, that is, find the ζ

that minimizes the divergence between Σ̂ζ and Σ̂3, in an obvious notation.10 For example,

using the Frobenius matrix-norm to measure divergence, we obtain an optimum of ζ∗ = 0.82.

We show the full surface in Figure 4.1, and the minimum is sharp and unique. The implied

ζ∗ of 0.82 is of course quite close to the directly-assessed value of 0.80 at which we arrived

earlier, which lends additional credibility to the earlier assessment.

10We will discuss subsequently the estimation procedure used to obtain Σ̂ζ and Σ̂3.
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Figure 4.2: GDP and Unemployment Data

Notes: GDPE and GDPI are in growth rates and Ut is in changes. All are measured in annualized percent.

4.3 Data and Estimation

We intentionally work with a stationary system in growth rates, because we believe that

measurement errors are best modeled as iid in growth rates rather than in levels, due to

BEA’s devoting maximal attention to estimating the “best change.” 11 In its above-cited

“Concepts and Methods ...” document, for example,the BEA emphasizes that:

Best change provides the most accurate measure of the period-to-period move-

ment in an economic statistic using the best available source data. In an annual

revision of the NIPAs, data from the annual surveys of manufacturing and trade

11For example, see “Concepts and Methods in the U.S. National Income and Product Accounts,” available
at http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf.
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are generally incorporated into the estimates on a best-change basis. In the cur-

rent quarterly estimates, most of the components are estimated on a best-change

basis from the annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPE (such as retail sales) and GDPI (such as

nonfarm payroll employment) are generally produced on a best-change basis as well, using

a so-called “link-relative estimator.” This estimator computes growth rates using firms in

the sample in both the current and previous months, in contrast to a best-level estimator,

which would generally use all the firms in the sample in the current month regardless of

whether or not they were in the sample in the previous month. For example, for retail sales

the BEA notes that: 12

Advance sales estimates for the most detailed industries are computed using a

type of ratio estimator known as the link-relative estimator. For each detailed

industry, we compute a ratio of current-to-previous month weighted sales using

data from units for which we have obtained usable responses for both the current

and previous month.

Indeed the BEA produces estimates on a best-level basis only at 5-year benchmarks. These

best-level benchmark revisions should drive only the very-low frequency variation in GDPE ,

and thus probably matter very little for the quarterly growth rates estimated on a best-

change basis.

4.3.1 Descriptive Statistics

We show time-series plots of the “raw” GDPE and GDPI data in Figure 4.2, and we show

summary statistics in the top panel of Table 4.1. Not captured in the table but also true is

that the raw data are highly correlated; the simple correlations are corr(GDPE , GDPI) =

12See http://www.census.gov/retail/marts/how_surveys_are_collected.html.

132

http://www.census.gov/retail/marts/how_surveys_are_collected.html


Table 4.1: Descriptive Statistics for Various GDP Series

x̄ 50% σ̂ Sk ρ̂1 ρ̂2 ρ̂3 ρ̂4 Q12 σ̂e R2 V̂e

GDPE 3.03 3.04 3.49 -0.31 .33 .27 .08 .09 47.07 3.28 .06 12.12
GDPI 3.02 3.39 3.40 -0.55 .47 .27 .22 .08 81.60 2.99 .12 11.43

GDPM 2-eqn, Σ diag 3.02 3.22 3.00 -0.56 .56 .34 .21 .09 108.25 2.48 .18 8.92
GDPM 2-eqn, Σ block 3.02 3.35 2.64 -0.64 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPM 2-eqn, ζ = 0.65 3.02 3.32 2.61 -0.64 .67 .43 .27 .12 157.56 1.92 .26 6.73
GDPM 2-eqn, ζ = 0.75 3.02 3.30 2.77 -0.63 .65 .41 .26 .11 148.23 2.08 .25 7.60
GDPM 2-eqn, ζ = 0.80 3.02 3.29 2.87 -0.62 .64 .39 .25 .11 141.14 2.19 .24 8.16
GDPM 2-eqn, ζ = 0.85 3.02 3.31 2.89 -0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPM 2-eqn, ζ = 0.95 3.02 3.26 3.02 -0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPM 2-eqn, ζ = 1.05 3.01 3.22 3.12 -0.65 .67 .40 .28 .12 155.60 2.30 .26 9.69
GDPM 2-eqn, ζ = 1.15 3.04 3.34 3.07 -0.67 .76 .47 .31 .15 201.15 1.99 .35 9.46
GDPM 3-eqn 3.02 3.37 3.02 -1.14 .63 .37 .21 .03 141.79 2.33 .23 9.03

GDPF 3.02 3.29 3.30 -0.51 .46 .29 .19 .07 78.28 2.92 .12 10.80

Notes: The sample period is 1960Q1-2011Q4. In the top panel we show statistics for the raw data. In the
middle panel we show statistics for various posterior-median measurement-error-based (“M”) estimates of
true GDP , where all estimates are smoothed extractions. In the bottom panel we show statistics for the
forecast-error-based estimate of true GDP produced by Aruoba, Diebold, Nalewaik, Schorfheide, and Song
(2012), GDPF . x̄, 50%, σ̂ and Sk are sample mean, median, standard deviation and skewness, respectively,
and ρ̂τ is a sample autocorrelation at a displacement of τ quarters. Q12 is the Ljung-Box serial correlation

test statistic calculated using ρ̂1, ..., ρ̂12. R2 = 1− σ̂2
e
σ̂2 , where σ̂e denotes the estimated disturbance standard

deviation from a fitted AR(1) model, is a predictive R2. V̂e is the unconditional variance implied by a fitted

AR1 model, V̂e =
σ̂2
e

1−ρ̂2 .

0.85, corr(GDPE , U) = −0.67, and corr(GDPI , U) = −0.73. Median GDPI growth is

a bit higher than that of GDPE , and GDPI growth is noticeably more persistent than

that of GDPE . Related, GDPI also has smaller AR(1) innovation variance and greater

predictability as measured by the predictive R2.13

4.3.2 Bayesian Analysis of Measurement-Error Models

Here we describe Bayesian analysis of our three-equation model, which of course also in-

cludes our various two-equation models as special cases. Bayesian estimation involves pa-

rameter estimation and latent state smoothing. First, we generate draws from the posterior

distribution of the model parameters using a Random-Walk Metropolis-Hastings algorithm.

13On this and related predictability measures, see Diebold and Kilian (2001).
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Next, we apply a simulation smoother as described in Durbin and Koopman (2001a) to ob-

tain draws of the latent states conditional on the parameters.

State-Space Representation

We proceed by introducing a state-space representation of (4.8) for estimation. Let yt =

[GDPEt, GDPIt, Ut]
′ , C = [0, 0, κ]′ , st = [GDPt, εEt, εIt, εUt]

′ , D = [µ(1− ρ), 0, 0, 0]′ , εt =

[εGt, εEt, εIt, εUt]
′ and

Z =

 1 1 0 0
1 0 1 0
λ 0 0 1

 , Φ =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Our state-space model is

yt = C + Zst (4.10)

st = D + Φst−1 + εt, εt ∼ N(0,Ω).

We collect the parameters in (4.10) in Θ = (µ, ρ, σ2
GG, σ

2
GE , σ

2
GI , σ

2
EE , σ

2
EI , σ

2
II , σ

2
GU , σ

2
UU , κ, λ).

Metropolis-Hastings MCMC Algorithm

Now let us proceed to our implementation of the Metropolis-Hastings MCMC Algorithm.

Denote the number of MCMC draws by N. We first maximize the posterior density

p(Θ|Y1:T ) ∝ p(Y1:T |Θ)p(Θ) (4.11)

to obtain the mode Θ0 and construct a covariance matrix for the proposal density, ΣΘ,

from the inverse Hessian of the log posterior density evaluated at Θ0. We also use Θ0

to initialize the algorithm. At each iteration j we draw a proposed parameter vector

Θ∗ ∼ N(Θj−1, cΣΘ), where c is a scalar tuning parameter that we calibrate to achieve

an acceptance rate of 25-30%. We accept the proposed parameter vector, that is, we set

Θj = Θ∗, with probability min
{

1, p(Y1:T |Θ∗)p(Θ∗)
p(Y1:T |Θj−1)p(Θj−1)

}
, and set Θj = Θj−1 otherwise. We
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adopt the convention that p(Θ∗) = 0 if the covariance matrix Ω implied by Θ∗ is not pos-

itive definite. The results reported subsequently are based on N = 50, 000 iterations of

the algorithm. We discard the first 25,000 draws and use the remaining draws to compute

summary statistics for the posterior distribution.

Filtering and Smoothing

The evaluation of the likelihood function p(Y1:T |Θ) requires the use of the Kalman filter.

The Kalman filter recursions take the following form. Suppose that

st−1|(Y1:t−1,Θ) ∼ N(st−1|t−1, Pt−1|t−1), (4.12)

where st−1|t−1 and Pt−1|t−1 are the mean and variance of the latent state at t− 1. Then the

means and variances of the predictive densities p(st|Y1:t−1,Θ) and p(yt|Y1:t−1,Θ) are

st|t−1 = D + Φst−1|t−1, Pt|t−1 = ΦPt−1|t−1Φ′ + Ω

yt|t−1 = C + Zst|t−1, Ft|t−1 = ZPt|t−1Z
′,

respectively. The contribution of observation yt to the likelihood function p(Y1:T |Θ) is given

by p(yt|Y1:t−1,Θ). Finally, the updating equations are

st|t = st|t−1 + (ZPt|t−1)′F−1
t|t−1

(
yt − ŷt|t−1

)
Pt|t = Pt|t−1 − (ZPt|t−1)′(ZPt|t−1Z

′)−1(ZPt|t−1),

leading to

st|(Y1:t,Θ) ∼ N(st|t, Pt|t). (4.13)

We initialize the Kalman filter by drawing s0|0 from a mean-zero Gaussian stationary dis-

tribution whose covariance matrix, P0|0, is the solution of the underlying Ricatti equation.

Because we are interested in inference for the latent GDP , we use the backward-

smoothing algorithm of Carter and Kohn (1994a) to generate draws recursively from st|(St+1:T , Y1:T ,Θ),
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t = T − 1, T − 2, . . . , 1, where the last iteration of the Kalman filter recursion provides the

initialization for the backward simulation smoother,

st|t+1 = st|t + Pt|tΦ
′P−1
t+1|t

(
st+1 −D − Φst|t

)
(4.14)

Pt|t+1 = Pt|t − Pt|tΦ′P−1
t+1|tΦPt|t

draw st|(St+1:T , Y1:T ,Θ) ∼ N(st|t+1, Pt|t+1),

t = T − 1, T − 2, ..., 1.

4.3.3 Parameter Estimation Results

Here we present and discuss estimation results for our various models. In Table 4.2 we show

details of parameter prior and posterior distributions, as well as statistics describing the

overall posterior and likelihood, for various 2-equation models, and in Table 4.3 we provide

the same information for the 3-equation model.

The complete estimation information in the tables can be difficult to absorb fully, how-

ever, so here we briefly present aspects of the results in a more revealing way. For the

2-equation models, the parameters to be estimated are those in the transition equation and

those in the covariance matrix Σ, which includes variances and covariances of both transi-

tion and measurement shocks. Hence we simply display the estimated transition equation

and the estimated Σ matrices. For the 3-equation model, we also need to estimate a factor

loading in the measurement equation, so we display the estimated measurement equation as

well. Below each posterior median parameter estimate, we show the posterior interquartile

range in brackets.

For the 2-equation model with Σ diagonal, we have

GDPt = 3.07
[2.81,3.33]

(1− 0.53) + 0.53
[0.48,0.57]

GDPt−1 + εGt, (4.15)
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Table 4.2: Priors and Posteriors, 2-Equation Models, 1960Q1-2011Q4

Diagonal Block Diagonal
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.81 3.07 3.33 2.77 3.06 3.34
ρ N(0.3,1) 0.48 0.53 0.57 0.57 0.62 0.68

σ2
GG IG(10,15) 6.39 6.90 7.44 4.39 5.17 5.95
σ2
GE N(0,10) - - - - - -
σ2
GI N(0,10) - - - - - -

σ2
EE IG(10,15) 2.12 2.32 2.55 3.34 3.86 4.48
σ2
EI N(0,10) - - - 0.96 1.43 1.95
σ2
II IG(10,15) 1.52 1.68 1.85 2.25 2.70 3.22

posterior - -984.57 -983.46 -982.60 -986.23 -985.00 -984.01
likelihood - -951.68 -950.41 -949.43 -950.70 -949.49 -948.60

ζ = 0.75 ζ = 0.80
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.75 3.03 3.31 2.79 3.08 3.35
ρ N(0.3,1) 0.53 0.59 0.64 0.51 0.57 0.62

σ2
GG IG(10,15) 5.78 6.31 6.92 6.54 7.09 7.70
σ2
GE N(0,10) -0.76 -0.29 0.15 -1.15 -0.69 -0.29
σ2
GI N(0,10) -0.34 0.01 0.34 -0.74 -0.38 -0.04

σ2
EE IG(10,15) 3.08 3.88 4.75 3.14 3.90 4.77
σ2
EI N(0,10) 0.73 1.23 1.78 0.80 1.29 1.85
σ2
II IG(10,15) 1.94 2.30 2.76 1.98 2.36 2.82

posterior - -982.50 -980.99 -979.87 -982.48 -981.05 -979.91
likelihood - -950.93 -949.55 -948.40 -950.85 -949.44 -948.41

ζ = 0.85 ζ = 0.95
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.72 2.96 3.14 2.84 3.03 3.25
ρ N(0.3,1) 0.51 0.56 0.60 0.49 0.54 0.60

σ2
GG IG(10,15) 6.67 7.19 7.76 7.69 8.43 9.28
σ2
GE N(0,10) -2.17 -1.98 -1.77 -2.88 -2.73 -2.50
σ2
GI N(0,10) -0.97 -0.80 -0.53 -1.99 -1.58 -1.22

σ2
EE IG(10,15) 5.36 5.79 6.28 5.64 6.10 6.39
σ2
EI N(0,10) 2.04 2.33 2.63 2.43 2.64 2.93
σ2
II IG(10,15) 2.36 2.65 3.04 2.45 3.22 3.81

posterior - -982.62 -981.40 -980.48 -984.09 -982.80 -981.57
likelihood - -949.42 -948.25 -947.49 -950.19 -948.84 -947.81

ζ = 1.05 ζ = 1.15
Prior Posterior Posterior

(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%

µ N(3,10) 2.85 3.07 3.33 2.55 2.89 3.21
ρ N(0.3,1) 0.48 0.53 0.58 0.52 0.56 0.61

σ2
GG IG(10,15) 8.92 9.57 10.25 9.07 9.88 10.73
σ2
GE N(0,10) -4.04 -3.88 -3.70 -5.61 -5.50 -5.22
σ2
GI N(0,10) -3.09 -2.65 -2.29 -4.38 -4.21 -4.01

σ2
EE IG(10,15) 6.74 7.13 7.41 8.51 9.07 9.30
σ2
EI N(0,10) 3.23 3.46 4.13 5.29 5.52 5.89
σ2
II IG(10,15) 3.27 3.66 4.43 5.68 6.00 6.31

posterior - -984.89 -983.63 -982.49 -988.63 -987.18 -986.32
likelihood - -949.31 -948.30 -947.53 -949.82 -948.51 -947.67
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Table 4.3: Priors and Posteriors, 3-Equation Model, 1960Q1-2011Q4

Parameter Prior Posterior
(Mean, Std) 25% 50% 75%

µ N(3,10) 2.60 2.78 2.95
ρ N(0.3,1) 0.54 0.58 0.63

σ2
GG IG(10,15) 6.73 6.96 7.35
σ2
GE N(0,10) -1.27 -1.10 -0.84
σ2
GI N(0,10) -1.03 -0.82 -0.59

σ2
EE IG(10,15) 4.17 4.57 4.79
σ2
EI N(0,10) 1.70 1.95 2.12
σ2
II IG(10,15) 2.54 3.07 3.27

σ2
GU N(0,10) 1.27 1.46 1.66
σ2
UU IG(0.3,10) 0.50 0.59 0.71
κ N(0,10) 1.53 1.62 1.71
λ N(-0.5,10) -0.55 -0.52 -0.50

posterior - -1251.1 -1249.6 -1248.3
likelihood - -1199.0 -1197.5 -1196.2

Σ =


6.90

[6.39,7.44]
0 0

0 2.32
[2.12,2.55]

0

0 0 1.68
[1.52,1.85]

 . (4.16)

For the 2-equation model with Σ block-diagonal, we have

GDPt = 3.06
[2.77,3.34]

(1− 0.62) + 0.62
[0.57,0.68]

GDPt−1 + εGt, (4.17)

Σ =


5.17

[4.39,5.95]
0 0

0 3.86
[3.34,4.48]

1.43
[0.96,1.95]

0 1.43
[0.96,1.95]

2.70
[2.25,3.22]

 . (4.18)

For the 2-equation model with benchmark ζ = 0.80, we have

GDPt = 3.08
[2.79,3.35]

(1− 0.57) + 0.57
[0.51,0.62]

GDPt−1 + εGt, (4.19)
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Σ =


7.09

[6.54,7.70]
−0.69

[−1.15,−0.29]
−0.38

[−0.74,−0.04]

−0.69
[−1.15,−0.29]

3.90
[3.14,4.77]

1.29
[0.80,1.85]

−0.38
[−0.74,−0.04]

1.29
[0.80,1.85]

2.36
[1.98,2.82]

 . (4.20)

Finally, for the 3-equation model, we have GDPEt
GDPIt
Ut

 =

 0
0

1.62
[1.53,1.71]

+

 1
1

−0.52
[−0.55,−0.50]

GDPt +

 εEt
εIt
εUt

 (4.21)

GDPt = 2.78
[2.60,2.95]

(1− 0.58) + 0.58
[0.54,0.63]

GDPt−1 + εGt, (4.22)


εGt
εEt
εIt
εUt

 ∼ N



0
0
0
0

 ,


6.96
[6.73,7.35]

−1.10
[−1.27,−0.84]

−0.82
[−1.03,−0.59]

1.46
[1.27,1.66]

−1.10
[−1.27,−0.84]

4.57
[4.17,4.79]

1.95
[1.70,2.12]

0

−0.82
[−1.03,−0.59]

1.95
[1.70,2.12]

3.07
[2.54,3.27]

0

1.46
[1.27,1.66]

0 0 0.59
[0.50,0.71]




(4.23)

Many aspects of the results are noteworthy; here we simply mention a few. First, every

posterior interval in every model reported above excludes zero. Hence the diagonal and

block diagonal models do not appear satisfactory.

Second, the Σ estimates are qualitatively similar across specifications. Covariances are

always negative, as per our conjecture based on the counter-cyclicality in the statistical

discrepancy (GDPE − GDPI) documented by Fixler and Nalewaik (2009) and Nalewaik

(2010). Shock variances always satisfy σ̂2
GG > σ̂2

EE > σ̂2
II .

Finally, GDPM is highly serially correlated across all specifications (ρ ≈ .6), much more

so than the current “consensus” based on GDPE (ρ ≈ .3). We shall have much more to say

about these and other results in the next section.

4.4 New Perspectives on the Properties of GDP

Our various extracted GDPM series differ in fundamental ways from other measures, such

as GDPE and GDPI . Here we discuss some of the most important differences.
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Figure 4.3: GDP Sample Paths, 1960Q1-2011Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ζ = 0.80.

4.4.1 GDP Sample Paths

Let us begin by highlighting the sample-path differences between ourGDPM and the obvious

competitors GDPE and GDPI . We make those comparisons in Figure 4.3. In each panel

we show the sample path of GDPM in red together with a light-red posterior interquartile

range, and we show one of the competitor series in black.14 In the top panel we show

GDPM vs. GDPE . There are often wide divergences, with GDPE well outside the posterior

interquartile range of GDPM . Indeed GDPE is substantially more volatile than GDPM . In

the bottom panel of Figure 4.3 we show GDPM vs. GDPI . Noticeable divergences again

appear often, with GDPI also outside the posterior interquartile range of GDPM . The

divergences are not as pronounced, however, and the “excess volatility” apparent in GDPE

14For GDPM we use our benchmark estimate from the 2-equation model with ζ = 0.80.
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Figure 4.4: GDP Sample Paths, 2007Q1-2009Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ζ = 0.80.

is less apparent in GDPI . That is because, as we will show later, GDPM loads relatively

more heavily on GDPI .

To emphasize the economic importance of the differences in competing real activity

assessments, in Figure 4.4 we focus on the tumultuous period 2007Q1-2009Q4. The figure

makes clear not only that both GDPE and GDPI can diverge substantially from GDP , but

also that the timing and nature of their divergences can be very different. In 2007Q3, for

example, GDPE growth was strongly positive and GDPI growth was negative.

4.4.2 Linear GDP Dynamics

In our framework, the data-generating process for true GDPt is completely characterized

by the pair, (σ2
GG, ρ). In Figure 4.5 we show those pairs across MCMC draws for all of

our measurement-error models, and for comparison we show (σ2, ρ) values corresponding
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to AR(1) models fit to GDPE alone and GDPI alone. In addition, in Table 4.1 we show

a variety of statistics quantifying the properties of our various GDPM measures vs. those

of GDPE , GDPI and GDPF , the forecast-error-based estimate of true GDP produced by

Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012).

First consider Figure 4.5. Across measurement-error models M , GDPM is robustly

more serially correlated than both GDPE and GDPI , and it also has a smaller innovation

variance. Hence most of our models achieve closely-matching unconditional variances, but

they are composed of very different underlying (σ2, ρ) values from those corresponding to

GDPE . GDPM has smaller shock volatility, but much more shock persistence – roughly

double that of GDPE (ρ of roughly 0.60 for GDPM vs. 0.30 for GDPE).

Now consider Table 4.1. The various GDPM series are all less volatile than each of

GDPE , GDPI and GDPF , and a bit more skewed left. Most noticeably, the GDPM series

are much more strongly serially correlated than the GDPE , GDPI and GDPF series, and

with smaller innovation variances. This translates into much higher predictive R2’s for

GDPM . Indeed GDPM is twice as predictable as GDPI or GDPF , which in turn are twice

as predictable as GDPE .

4.4.3 Non-Linear GDP Dynamics

In Table 4.4 we show Markov-switching AR(1) model results for a variety of GDP series.

The model allows for simultaneous switching in both mean and serial-correlation param-

eters. The model switches between high- and low-growth states, with low-growth states

generally including recessions as defined by the National Bureau of Economic Research’s

Business Cycle Dating Committee (see also Nalewaik (2012)). The most interesting aspect

of the results concerns the estimated low- and high-state serial-correlation parameters (ρ̂0

and ρ̂1, respectively).

First, always and everywhere, ρ̂0 > ρ̂1; that is, a disproportionate share of overall serial
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Figure 4.5: (ρ̂, σ̂2
GG) Pairs Across MCMC Draws

Notes: Solid lines indicate 90% (σ2
GG, ρ) posterior coverage ellipsoids for the various models. Stars indicate

posterior median values. The sample period is 1960Q1-2011.Q4. For comparison we show (σ2, ρ) values

corresponding to AR(1) models fit to GDPE alone and GDPI alone.

correlation comes from low-growth states. This interesting result parallels recent work

indicating that a disproportionate share of stock market return predictability comes from

recessions (Rapach, Strauss, and Zhou (2010)), as well as work showing that shocks to

business orders for capital goods are more persistent in downturns (Nalewaik and Pinto

(2012)).

Second, comparison of GDPI to GDPE reveals that they have identical ρ̂0 values (0.55),

but that ρ̂1 is much bigger for GDPI than for GDPE (0.31 vs. 0.14). Hence the stronger

overall serial correlation of GDPI comes entirely from its stronger serial correlation during

expansions.

Finally, comparison of GDPM to GDPE reveals much bigger ρ̂0 and ρ̂1 values for GDPM

than for GDPE , regardless of the particular measurement-error model M examined. The

143



Table 4.4: Regime-Switching Model Estimates, 1960Q1-2011Q4

µ̂0 µ̂1 ρ̂0 ρ̂1 σ̂2
H σ̂2

L p̂00 p̂11

GDPE 1.31 4.71 0.55 0.14 16.55 4.81 0.81 0.88
GDPI 1.28 4.87 0.55 0.31 12.07 5.51 0.82 0.87

GDPM 2-eqn, Σ diag 1.76 5.12 0.73 0.41 9.81 3.37 0.83 0.85
GDPM 2-eqn, Σ block 1.75 4.72 0.83 0.63 6.22 2.41 0.81 0.86
GDPM 2-eqn, ζ = 0.80 1.79 4.95 0.78 0.55 7.96 3.04 0.82 0.85
GDPM 3-eqn 1.88 5.32 0.88 0.39 7.85 2.95 0.80 0.85

GDPF 1.51 4.93 0.64 0.30 13.20 4.17 0.82 0.87

Notes: In the top panel we show posterior median estimates for two-state regime-switching AR(1) models
fit to raw data. In the middle panel we show posterior median estimates for Regime-switching models fit to
GDPM . In the bottom panel we show posterior median estimates for regime-switching models fit to GDPF ,
the forecast-error-based estimate of true GDP produced by Aruoba, Diebold, Nalewaik, Schorfheide, and
Song (2012). We allow for a one-time structural break in volatility in 1984 (the “Great Moderation”).

general finding of ρ̂0 > ρ̂1 is preserved, but both ρ̂0 and ρ̂1 are much larger for GDPM

than for GDPE . In our benchmark 2-equation model with ζ = 0.80, for example, we have

ρ̂0 = 0.78 and ρ̂1 = 0.55.

4.4.4 On the Relative Contributions of GDPE and GDPI to GDPM

It is of interest to know how the observed indicators GDPE and GDPI contribute to our

extracted true GDP. We do this in two ways; in section 4.4.4 we examine Kalman gains,

and in section 4.4.4 we find the convex combination of GDPE and GDPI closest to our

extracted GDP .

Kalman Gains

The Kalman gains associated with GDPE and GDPI govern the amount by which news

about GDPE and GDPI , respectively, causes the optimal extraction of GDPt (conditional

on time-t information) to differ from the earlier optimal prediction of GDPt (conditional

on time-(t − 1) information). Put more simply, the Kalman gain of GDPE (resp. GDPI)

measures its importance in influencing GDPM , and hence in informing our views about
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Figure 4.6: (KGE ,KGI) Pairs Across MCMC Draws

Notes: Solid lines indicate 90% posterior coverage ellipsoids. Stars indicate posterior median values.

latent true GDP .

We summarize the posterior distributions of Kalman gains in Figure 4.6. Posterior

median GDPI Kalman gains are large in absolute terms, and most notably, very large

relative to those for GDPE . Indeed posterior median GDPE Kalman gains are zero in

several specifications. In any event, it is clear that GDPI plays a larger role in informing

us about GDP than does GDPE . For our benchmark ζ-model with ζ = 0.80, the posterior

median GDPI and GDPE Kalman gains are 0.59 and 0.23, respectively.

Closest Convex Combination

The Kalman filter extractions average not only over space, but also over time. Nevertheless,

we can ask what contemporaneous convex combination of GDPE and GDPI , λGDPE +

(1− λ)GDPI , is closest to the extracted GDPM . That is, we can find λ∗ = argminλ L(λ),
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Figure 4.7: Closest Convex Combination

Notes: We show quadratic loss, L(λ) =
∑2011Q4
t=1960Q1 [(λGDPEt + (1− λ)GDPIt)−GDPMt]

2, as a function

of λ, where where GDPMt is our smoothed extraction of true GDPt, obtained from the 3-equation model.

where L(λ) is a loss function. Under quadratic loss we have

λ∗ = argminλ

T∑
t=1

[(λGDPEt + (1− λ)GDPIt)−GDPMt]
2 ,

where GDPMt is our smoothed extraction of true GDPt. Over our sample of 1960Q1-

2011Q4, the optimum under quadratic loss is λ∗ = 0.29. The minimum is quite sharp,

as we show in Figure 4.7, and it puts more than twice as much weight on GDPI than on

GDPE . That weighting accords closely with both the Kalman gain results discussed above

and the forecast-combination calibration results in Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2012). It does not, of course, mean that time series of GDPM will “match” time

series of GDPF , because the Kalman filter does much more than simple contemporaneous

averaging of GDPE and GDPI in its extraction of latent true GDP .

4.4.5 A Final Remark on the Serial Correlation in GDPM

Obviously a key result of our analysis is the strong serial correlation (persistence, forecasta-

bility, ...) of our extracted GDPM , regardless of the particular specification. One might

perhaps wonder whether this is a spurious artifact of our signal- extraction approach. We
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hasten to add that the answer is no. Indeed optimal extractions of covariance stationary

series (in our, case latent true GDP growth) must be less variable than the series being

extracted, because the optimal extraction is a conditional expectation.15 Given our models,

under quadratic loss any other GDP extractions are sub-optimal and hence inferior.

4.5 Concluding Remarks and Directions for Future Research

We produce several estimates of GDP that blend both GDPE and GDPI . All estimates

feature GDPI prominently, and our blended GDP estimate has properties quite different

from those of the “traditional” GDPE (as well as GDPI). In a sense we build on the

literature on “balancing” the national income accounts, which extends back almost as far

as national income accounting itself, as for example in Stone, Champernowne, and Meade

(1942). We do not, however, advocate that the U.S. publish only GDPM , as there may at

times be value in being able to see the income and expenditure sides separately. But we

would advocate the additional calculation of GDPM and using it as the benchmark GDP

estimate.

Many interesting extensions are possible. Perhaps the two most interesting concern fore-

casting and real-time analysis. First consider forecasting. When forecasting a “traditional”

GDP series such as GDPE , we must take it as given (i.e., we must ignore measurement

error). The analogous procedure in our framework would take GDPM as given, modeling

and forecasting it directly, ignoring the fact that it is based on a first-stage extraction sub-

ject to error. Fortunately, however, in our framework we need not do that. Instead we can

estimate and forecast directly from the dynamic factor model, accounting for all sources of

uncertainty, which should translate into superior interval and density forecasts. Related, it

15The forecast-error approach of Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012) also has op-
timality properties, but of a different sort, and there is no reason why in the forecast-error framework the
optimal combination should be smoother than latent true GDP growth. Instead it could go either way,
depending on the correlation of the forecast errors in GDPE and GDPI .
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would be interesting to calculate directly the point, interval and density forecast functions

corresponding to our measurement-error model.

Second, consider real-time analysis. Although GDPI data are not as timely as GDPE

data, our filtering framework still uses all available data efficiently, appropriately handling

any missing data. A key insight is that when using simple convex combinations as in

the forecast-error approach of Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012),

missing GDPI data for the most-recent quarter(s) forces all weight to be put on GDPE .

Our measurement-error framework is very different, however, because the Kalman filter

averages not just over space, but also over time, and earlier quarters for which we do have

GDPI data are informative for the most-recent quarters with “missing” GDPI data.
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4.6 Appendix

Here we report various details of theory, establishing identification results for the two- and

three-variable models in appendices 4.6.1 and 4.6.2, respectively. The identification analysis

is based on Komunjer and Ng (2011).

4.6.1 Identification in the Two-Variable Model

The constants in the state-space model can be identified from the means of GDPEt and

GDPIt. To simplify the subsequent exposition we now set the constant terms to zero:

GDPt = ρGDPt−1 + εGt (4.24)[
GDPEt
GDPIt

]
=

[
1
1

]
GDPt +

[
εEt
εIt

]
(4.25)

and the joint distribution of the errors is

εt =

 εGt
εEt
εIt

 ∼ iidN(0,Σ), where Σ =

 ΣGG · ·
ΣEG ΣEE ·
ΣIG ΣIE ΣII

 .
Using the notation in Komunjer and Ng (2011), we write the system as

st+1 = A(θ)st +B(θ)εt+1 (4.26)

yt+1 = C(θ)st +D(θ)εt+1, (4.27)

where

st = GDPt, yt =

[
GDPEt
GDPIt

]
(4.28)

A(θ) = ρ, B(θ) =
[

1 0 0
]

C(θ) =

[
ρ
ρ

]
, D(θ) =

[
1 1 0
1 0 1

]
and θ = [ρ, vech(Σ)′]′. Note that only A(θ) and C(θ) are non-trivial functions of θ.

Assumption 1 The parameter vector θ satisfies the following conditions: (i) Σ is positive

definite; (ii) 0 ≤ ρ < 1.
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Because the rows of D are linearly independent, Assumption 1(i) implies that DΣD′ is

non-singular. In turn, we deduce that Assumptions 1, 2, and 4-NS of Komunjer and Ng

(2011) are satisfied.

We now express the state-space system in terms of its innovation representation

st+1|t+1 = A(θ)st|t +K(θ)at+1 (4.29)

yt+1 = C(θ)ŝt|t + at+1,

where at+1 is the one-step-ahead forecast error of the system whose variance we denote by

Σa(θ). The innovation representation is obtained from the Kalman filter as follows. Suppose

that conditional on time t information Y1:t the distribution of st|Y1:t ∼ N(st|t, Pt|t). Then

the joint distribution of [st+1, y
′
t+1]′ is[

st+1

yt+1

] ∣∣∣∣Y1:T ∼
([

Ast|t
Cst|t

]
,

[
APt|tA

′ +BΣB′ APt|tC
′ +BΣD′

CPt|tA
′ +DΣB′ CPt|tC

′ +DΣD′

])
.

In turn, the conditional distribution of st+1|Y1:t+1 is

st+1|Y1:t+1 ∼ N
(
st+1|t+1, Pt+1|t+1

)
,

where

st+1|t+1 = Ast|t + (APt|tC +BΣD′)(CPt|tC
′ +DΣD′)−1(yt − Cst|t)

Pt+1|t+1 = APt|tA
′ +BΣB′ − (APt|tC

′ +BΣD′)(CPt|tC
′ +DΣD′)−1(CPt|tA

′ +DΣB′).

Now let P be the matrix that solves the Riccati equation,

P = APA′ +BΣB′ − (APC ′ +BΣD′)(CPC ′ +DΣD′)−1(CPA′ +DΣB′), (4.30)

and let K be the Kalman gain matrix

K = (APC ′ +BΣD′)(CPC ′ +DΣD′)−1. (4.31)
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Then the one-step-ahead forecast error matrix is given by

Σa = CPC ′ +DΣD′. (4.32)

Equations (4.30) to (4.32) determine the matrices that appear in the innovation-representation

of the state-space system (4.29).

In order to be able to apply Proposition 1-NS of Komunjer and Ng (2011) we need

to express P , K, and Σa in terms of θ. While solving Riccati equations analytically is

in general not feasible, our system is scalar, which simplifies the calculation considerably.

Replacing A by ρ and P by p such that scalars appear in lower case, and defining

ΣBB = BΣB′, ΣBD = BΣD′, and ΣDD = DΣD′,

we can write (4.30) as

p = pρ2 + ΣBB − (pρC ′ + ΣBD)(pCC ′ + ΣDD)−1(pρC + ΣDB). (4.33)

Likewise,

K = (pρC ′ + ΣBD)(pCC ′ + ΣDD)−1 and Σa = pCC ′ + ΣDD. (4.34)

Because ΣBB−ΣBDΣ′DDΣDB > 0 we can deduce that p > 0. Moreover, because A = ρ ≥ 0

and C ≥ 0, we deduce that K 6= 0 and therefore Assumption 5-NS of Komunjer and Ng

(2011) is satisfied. According to Proposition 1-NS in Komunjer and Ng (2011), two vectors

θ and θ1 are observationally equivalent if and only if there exists a scalar γ 6= 0 such that

A(θ1) = γA(θ)γ−1 (4.35)

K(θ1) = γK(θ) (4.36)

C(θ1) = C(θ)γ−1 (4.37)

Σa(θ1) = Σa(θ). (4.38)
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Define θ = [ρ, vech(Σ)′]′ and θ1 = [ρ1, vech(Σ1)′]′. Using the definition of the scalar

A(θ) in (4.28) we deduce from (4.35) that ρ1 = ρ. Since C(θ) depends on θ only through

ρ we can deduce from (4.37) that γ = 1. Thus, given θ and ρ, the elements of the vector

vech(Σ1) have to satisfy conditions (4.36) and (4.38), which, using (4.34), can be rewritten

as

Σa = Σa1 = p1CC
′ + ΣDD1 (4.39)

K = K1 = (p1ρC
′ + ΣBD1)Σ−1

a . (4.40)

Moreover, p1 has to solve the Riccati equation (4.33):

p1 = p1ρ
2 + ΣBB1 −K0(p1ρC + ΣBD). (4.41)

Equations (4.39) to (4.41) are satisfied if and only if

pCC ′ + ΣDD = p1CC
′ + ΣDD1 (4.42)

pρC ′ + ΣBD = p1ρC
′ + ΣBD1 (4.43)

p(1− ρ2)− ΣBB = p1(1− ρ2)− ΣBB1. (4.44)

We proceed by deriving expressions for the Σxx matrices that appear in (4.42) to (4.44):

ΣBB = ΣGG

ΣBD =
[

ΣGG + ΣGE ΣGG + ΣGI

]
ΣDD =

[
ΣGG + ΣEE + 2ΣEG ·

ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI

]
Without loss of generality let

ΣGG1 = ΣGG + (1− ρ2)δ, (4.45)

which implies that

ΣBB1 = ΣBB + (1− ρ2)δ.
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We now distinguish the cases δ = 0 and δ 6= 0.

Case 1: δ = 0. (4.44) implies p1 = p. It follows from (4.43) that ΣBD1 = ΣBD. In

turn, ΣGE1 = ΣGE and ΣGI1 = ΣGI . Finally, to satisfy (4.42) it has to be the case that

ΣDD1 = ΣDD, which implies that the remaining elements of Σ and Σ1 are identical. We

conclude that θ1 = θ.

Case 2: δ 6= 0. (4.44) implies p1 = p+ δ. Now consider (4.43):

pρC ′ + ΣBD = pρ2
[

1 1
]

+
[

ΣGG + ΣGE ΣGG + ΣGI

]
!

= pρ2
[

1 1
]

+ δρ2
[

1 1
]

+
[

ΣGG + ΣGE1 ΣGG + ΣGI1

]
+δ(1− ρ2)

[
1 1

]
We deduce that

ΣGE1 = ΣGE − δ, ΣGI1 = ΣGI − δ. (4.46)

Finally, consider (4.42), which can be rewritten as

0 = ΣDD1 − ΣDD + δCC ′.

Using the previously derived expressions for ΣDD and ΣDD1 we obtain the following three

conditions

0 = (1− ρ2)δ + (ΣEE1 − ΣEE)− 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1− ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1− ρ2)δ + (ΣII1 − ΣII)− 2δ + ρ2δ = ΣII1 − ΣII − δ.

Thus, we deduce that

ΣEE1 = ΣEE + δ, ΣEI1 = ΣEI + δ, and ΣII1 = ΣII + δ. (4.47)
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Combining (4.45), (4.46), and (4.47) we find that

Σ1 =

 ΣGG + δ(1− ρ2) ΣGE − δ ΣGI − δ
ΣGE − δ ΣEE + δ ΣEI + δ
ΣGI − δ ΣEI + δ ΣII + δ

 . (4.48)

Thus, we have proved the following theorem:

Theorem 4.6.1 Suppose Assumption 1 is satisfied. Then the two-variable model is

(i) identified if Σ is diagonal as in section 4.2.1;

(ii) identified if Σ is block-diagonal as in section 4.2.2;

(iii) not identified if Σ is unrestricted as in section 4.2.3;

(iv) identified if Σ is restricted as in section 4.2.4.

4.6.2 Identification in the Three-Variable Model

The identification analysis of the three-variable is similar to the analysis of the two-variable

model in the previous section. The system is given by

GDPt = ρGDPt−1 + εGt (4.49) GDPEt
GDPIt
Ut

 =

 1
1
λ

GDPt +

 εEt
εIt
εUt

 , (4.50)

and the joint distribution of the errors is

εt =


εGt
εEt
εIt
εUt

 ∼ iidN(0,Σ), , where Σ =


ΣGG · · ·
ΣEG ΣEE · ·
ΣIG ΣIE ΣII ·
ΣUG ΣUE ΣUI ΣUU

 .
The matrices A(θ), B(θ), C(θ), and D(θ) are now given by

A(θ) = ρ, B(θ) =
[

1 0 0 0
]

C(θ) =

 ρ
ρ
λρ

 , D(θ) =

 1 1 0 0
1 0 1 0
λ 0 0 1

 ,
where θ = [ρ, λ, vech(Σ)′]′.
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Assumption 2 The parameter vector θ satisfies the following conditions: (i) Σ is positive

definite; (ii) 0 < ρ < 1; (iii) λ 6= 0; (iv) ΣUE = ΣUI = 0.

Condition (4.35) implies that ρ1 = ρ. Moreover, (4.37) implies that γ = 1 and that

λ1 = λ provided that ρ 6= 0. As for the two-variable model, we have to verify that (4.42)

to (4.44) are satisfied. The matrices Σxx that appear in these equations are given by

ΣBB = ΣGG

ΣBD =
[

ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU

]
ΣDD =

 ΣGG + ΣEE + 2ΣGE · ·
ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI ·
λΣGG + λΣGE + ΣGU λΣGG + λΣGI + ΣGU λ2ΣGG + 2λΣGU + ΣUU

 .
Without loss of generality, let

ΣGG,1 = ΣGG + (1− ρ2)δ,

which implies that

ΣBB,1 = ΣBB + (1− ρ2)δ.

Case 1: δ = 0. (4.44) implies p1 = p. It follows from (4.43) that ΣBD,1 = ΣBD. In

turn, ΣGE,1 = ΣGE , ΣGI,1 = ΣGI , and ΣGU,1 = ΣGU . Finally, to satisfy (4.40) it has to be

the case that ΣDD,1 = ΣDD, which implies that the remaining elements of Σ and Σ1 are

identical for the two parameterizations. We conclude that it has to be the case that θ1 = θ.

Case 2: δ 6= 0. (4.44) implies p1 = p+ δ. Now consider (4.43):

pρC ′ + ΣBD = pρ2
[

1 1 λ
]

+
[

ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU

]
!

= pρ2
[

1 1 λ
]

+ δρ2
[

1 1 λ
]

+
[

ΣGG + ΣGE,1 ΣGG + ΣGI,1 λΣGG + ΣGU,1

]
+(1− ρ2)δ

[
1 1 λ

]
.
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We deduce that

ΣGE,1 = ΣGE − δ, ΣGI,1 = ΣGI − δ, ΣGU,1 = ΣGU − δ.

Finally, consider (4.42), which can be rewritten as

0 = ΣDD,1 − ΣDD + δCC ′.

Using the previously derived expressions for ΣDD and ΣDD1 we obtain the following five

conditions

0 = (1− ρ2)δ + (ΣEE1 − ΣEE)− 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1− ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1− ρ2)δ + (ΣII1 − ΣII)− 2δ + ρ2δ = ΣII1 − ΣII − δ

0 = λ(1− ρ2)δ − λδ − δ + λρ2δ = δ

0 = λ2(1− ρ2)δ − 2λδ + (ΣUU1 − ΣUU ) + λ2ρ2δ = ΣUU1 − ΣUU − λ(2− λ)δ.

Thus, we deduce that

δ = 0, ,ΣEE1 = ΣEE , ΣEI1 = ΣEI , ΣII1 = ΣII , and ΣUU1 = ΣUU .

This proves the following theorem:

Theorem 4.6.2 Suppose Assumption 2 is satisfied. Then the three-variable model is iden-

tified.
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Chapter 5

Real-Time Forecasting with a
Mixed-Frequency VAR

5.1 Introduction

In macroeconomic applications, vector autoregressions (VARs) are typically estimated ei-

ther exclusively based on quarterly observations or exclusively based on monthly observa-

tions. In a forecasting setting, the advantage of using quarterly observations is that the

set of macroeconomic series that could potentially be included in the VAR is larger. Gross

domestic product (GDP), as well as many other series that are published as part of the

national income and product accounts (NIPA), are only available at quarterly frequency.

The advantage of using monthly information, on the other hand, is that the VAR is able to

track the economy more closely in real time.

To exploit the respective advantages of both monthly and quarterly VARs, this pa-

per develops a mixed-frequency VAR (MF-VAR) that allows some series to be observed

at monthly and others at quarterly frequency. The MF-VAR can be conveniently repre-

sented as a state-space model, in which the state-transition equations are given by a VAR at

monthly frequency and the measurement equations relate the observed series to the under-

lying, potentially unobserved, monthly variables that are stacked in the state vector. The

MF-VAR is meant to be an attractive alternative to a standard VAR in which all series are
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time-aggregated to quarterly frequency (QF-VAR). To cope with the high dimensionality

of the parameter space, the MF-VAR is equipped with a Minnesota prior and estimated

using Bayesian methods. The Minnesota prior is indexed by a vector of hyperparameters

that determine the relative weight of a priori and sample information.

This paper makes contributions in two areas. On the methodological front we show

how to numerically approximate the marginal data density (MDD) of a linear Gaussian

MF-VAR. The MDD can be used for a data-based selection of hyperparameters, which is

essential to achieve a good forecasting performance with a densely parameterized VAR.

The second set of contributions is empirical. We compile a real-time data set for an eleven-

variable VAR that includes observations on real aggregate activity, prices, and financial

variables, including GDP, unemployment, inflation, and the federal funds rate. Using this

data set, we recursively estimate the MF-VAR and assess its forecasting performance. The

comparison to a QF-VAR is the main focus of the empirical analysis.

First, we ask the following very basic question: what is the gain, if any, from utiliz-

ing within-quarter monthly information in a VAR framework? To answer this question,

we group our end-of-month forecast origins in three bins. Given the release schedule of

macroeconomic data in the U.S., at the end of the first month of the quarter, no additional

monthly observations of non-financial variables for the current quarter are available. At the

end of the second and third month either one or two within-quarter monthly observations

are available. We find that during the third month of the quarter the switch from a QF-

VAR to a MF-VAR improves the one-step-ahead forecast (nowcast) accuracy on average by

60% for nonfinancial variables observed at the monthly frequency and by 11% for variables

observed at quarterly frequency. In the first month of the quarter the improvements are

about 6%. The improvement in forecast accuracy is most pronounced for short-horizon

forecasts and tempers off in the medium and long run. Thus, if the goal is to generate VAR
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nowcasts or forecasts of one- or two-quarters ahead, it is well worth switching to from a

QF-VAR to a MF-VAR. If the focus is on a one- to two-year horizon, the QF-VAR is likely

to suffice.

Second, we generate real-time forecasts of macroeconomic aggregates for the 2008-09

(Great) recession period. This episode is of great interest to macroeconomists, because

the large drop in aggregate real activity poses a challenge for existing structural and non-

structural models. We document that the monthly information helped the MF-VAR track

the economic downturn more closely in real time than the QF-VAR supporting the view that

the MF-VAR is an attractive alternative to a standard QF-VAR. Third, as a by-product

of the MF-VAR estimation, we generate an estimate of monthly GDP growth rates, which

may be of independent interest to business cycle researchers. Finally, we also provide a

comparison of bivariate MF-VARs to mixed data sampling (MIDAS) regressions. We find

for GDP forecasts that the percentage differential in forecast accuracy is the same, regardless

whether the forecast is made at the end of the first, second, or third month of the quarter.

We are interpreting this finding as both approaches being able to exploit the information

differentials between the three months of the quarter in relative terms equally well. In

absolute terms, the MF-VARs tend to outperform the MIDAS regressions in our particular

implementation.

This paper focuses on VARs which are time series models that generate multivariate

predictive distributions. VARs have been an important forecasting tool in practice (see

Litterman (1986) for an early assessment and Giannone, Lenza, and Primiceri (2012) for a

recent assessment) and there is strong evidence that they perform well in high-dimensional

environments if estimated with shrinkage estimation techniques (see, e.g., De Mol, Gian-

none, and Reichlin (2008) and Banbura, Giannone, and Reichlin (2010)). Moreover, in

addition to generating unconditional forecasts, they are widely used to produce conditional
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forecasts, e.g., conditional on an interest rate path (see Doan, Litterman, and Sims (1984)

and Waggoner and Zha (1999)), which do require a multivariate framework. In our com-

parison between MF-VARs and QF-VARs we mostly study univariate root-mean-squared

errors (RMSEs), though we also consider log determinants of (multivariate) forecast error

covariance matrices. To the extent that we are considering univariate RMSEs one could

conduct comparisons with univariate predictive regressions. However, comparisons of VAR

forecasts to forecasts from other classes of time series models are not the focus of this pa-

per and can be found elsewhere in the literature (see, e.g., Chauvet and Potter (2013) for

forecasting output and Faust and Wright (2013) for forecasting inflation).

To cope with the high dimensionality of the parameter space, the MF-VAR is equipped

with a Minnesota prior and estimated with Bayesian methods. Our version of the Minnesota

prior is based on Sims and Zha (1998). This prior is also used, for instance, in Banbura,

Giannone, and Reichlin (2010) and Giannone, Lenza, and Primiceri (2012) and the au-

thors document that the forecasting performance of the Bayesian VAR dominates that of

an unrestricted VAR by a large margin. Alternative prior specifications for Bayesian VARs

are surveyed in Karlsson (2013) and the effect of specification choice on forecast accuracy

is studied in Carriero, Clark, and Marcellino (2011). In order to generate accurate fore-

casts it is important that the prior covariance matrix is properly configured. A set of

hyperparameters controls the degree of shrinkage toward the prior mean and we choose the

hyperparameter to maximize the log MDD. MDD-based hyperparameter selection has been

discussed, for instance, in Phillips (1996), used in Del Negro and Schorfheide (2004) and,

most recently, studied in Giannone, Lenza, and Primiceri (2012).

We are building on existing approaches of treating missing observations in state-space

models (see, for instance, the books by Harvey (1989b) and Durbin and Koopman (2001b)).

We are employing modern Bayesian computational tools, in particular the method of data
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augmentation. We construct a Gibbs sampler along the lines of Carter and Kohn (1994b)

that alternates between the conditional distribution of the VAR parameters given the unob-

served monthly series, and the conditional distribution of the missing monthly observations

given the VAR parameters. Draws from the former distribution are generated by direct

sampling from a Normal-Inverted Wishart distribution, whereas draws from the latter are

obtained by applying a simulation smoother to the state-space representation of the MF-

VAR. Our numerical approximation of the log MDD is based on the modified harmonic

mean estimator proposed by Geweke (1999).

An alternative Gibbs sampling approach for the coefficients in an MF-VAR is explored in

Chiu, Foerster, Kim, and Seoane (2012). Their algorithm also iterates over the conditional

posterior distributions of the VAR parameters and the missing monthly observations, but

utilizes a different procedure to draw the missing observations. The focus of their paper is

on parameter estimation rather than forecasting. The authors link the coefficients of the

MF-VAR to the coefficients of a QF-VAR via a transformation. Chiu, Foerster, Kim, and

Seoane (2012) then compare the posterior distributions of parameters and impulse response

functions obtained from the estimation of the two models to document the value of the

monthly observations.

Mixed-frequency observations have also been utilized in the estimation of dynamic factor

models (DFMs). Mariano and Murasawa (2003b) apply maximum-likelihood factor analysis

to a mixed-frequency series of quarterly real GDP and monthly business cycle indicators

to construct an index that is related to monthly real GDP. Aruoba, Diebold, and Scotti

(2009b) develop a DFM to construct a broad index of economic activity in real time using a

variety of data observed at different frequencies. Giannone, Reichlin, and Small (2008) use

a mixed-frequency DFM to evaluate the marginal impact that intra-monthly data releases

have on current-quarter forecasts (nowcasts) of real GDP growth.
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When using our MF-VAR to forecast quarterly GDP growth, we are essentially predict-

ing a quarterly variable based on a mixture of quarterly and monthly regressors. Ghysels,

Sinko, and Valkanov (2007) propose a simple univariate regression model, called a mixed

data sampling (MIDAS) regression, to exploit high-frequency information without having

to estimate a state-space model. To cope with potentially large numbers of regressors, the

coefficients for the high-frequency regressors are tightly restricted through distributed lag

polynomials that are indexed by a small number of hyperparameters. Bayesian versions of

the MIDAS approach are developed in Rodriguez and Puggioni (2010) and Carriero, Clark,

and Marcellino (2012).

Ghysels (2012) generalizes the MIDAS approach to a VAR setting. Unlike our MF-

VAR, his MIDAS VAR is an observation-driven model that does not require numerical

techniques to integrate out unobserved monthly variables. As in Chiu, Foerster, Kim, and

Seoane (2012), the empirical analysis focuses on impulse responses but not on real-time

forecasting. In our view, the state-space setup pursued in this paper is more transparent

and flexible and the computational advances of the last decade make it feasible to estimate

Bayesian state-space models with code written in high-level languages such as MATLAB in

a short amount of time.

Bai, Ghysels, and Wright (2013) examine the relationship between MIDAS regressions

and state-space models applied to mixed-frequency data. They consider dynamic factor

models and characterize conditions under which the MIDAS regression exactly replicates

the steady state Kalman filter weights on lagged observables. They conclude that Kalman

filter forecasts are typically a little better, but MIDAS regressions can be more accurate

if the state-space model is misspecified or over-parameterized. Kuzin, Marcellino, and

Schumacher (2011) compare the accuracy of Euro Area GDP growth forecasts from MIDAS

regressions and MF-VARs estimated by maximum likelihood. The authors find that the
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relative performances of MIDAS and MF-VAR forecasts differ depending on the predictors

and forecast horizons. Overall, the authors do not find a clear winner in terms of forecasting

performance.

The remainder of this paper is organized as follows. Section 5.2 presents the state-space

representation of the MF-VAR and discusses Bayesian inference and forecasting. The real-

time data sets used for the forecast comparison of MF-VAR and QF-VAR, as well as the

timing of within-quarter monthly information, are discussed in Section 5.3. The empirical

results are presented in Section 5.4. Finally, Section 5.5 concludes. The Online Appendix

provides detailed information about the Bayesian computations, the construction of the

data set, as well as additional empirical results.

5.2 A Mixed-Frequency Vector Autoregression

The MF-VAR considered in this paper is based on a standard constant-parameter VAR in

which the length of the time period is one month. Since some macroeconomic time series,

e.g., GDP, are measured only at quarterly frequency, we treat the corresponding monthly

values as unobserved. To cope with the missing observations, the MF-VAR is represented

as a state-space model in Section 5.2.1. In order to ease the exposition, we use a represen-

tation with a state vector that includes even those variables that are observable at monthly

frequency, e.g., the aggregate price level, the unemployment rate, and the interest rate. A

computationally more efficient representation in which variables observed at monthly fre-

quency are dropped from the state vector is presented in the Online Appendix. Bayesian

inference and forecasting are discussed in Section 5.2.2.

Throughout this paper, we use Yt0:t1 to denote the sequence of observations or random

variables {yt0 , . . . , yt1}. If no ambiguity arises, we sometimes drop the time subscripts and

abbreviate Y1:T by Y . If θ is the parameter vector, then we use p(θ) to denote the prior
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density, p(Y |θ) is the likelihood function, and p(θ|Y ) the posterior density. We use iid

to abbreviate independently and identically distributed, and N(µ,Σ) denotes a multivari-

ate normal distribution with mean µ and covariance matrix Σ. Let ⊗ be the Kronecker

product. If X|Σ ∼ MNp×q(M,Σ ⊗ P ) is matricvariate Normal and Σ ∼ IWq(S, ν) has an

Inverted Wishart distribution, we say that (X,Σ) has a Normal-Inverted Wishart distribu-

tion: (X,Σ) ∼MNIW (M,P, S, ν).

5.2.1 State-Transitions and Measurement

We assume that the economy evolves at monthly frequency according to the following

VAR(p) dynamics:

xt = Φ1xt−1 + . . .+ Φpxt−p + Φc + ut, ut ∼ iidN
(
0,Σ

)
. (5.1)

The n × 1 vector of macroeconomic variables xt can be composed into xt = [x′m,t, x
′
q,t]
′,

where the nm×1 vector xm,t collects variables that are observed at monthly frequency, e.g.,

the consumer price index and the unemployment rate, and the nq × 1 vector xq,t comprises

the unobserved monthly variables that are only published at quarterly frequency, e.g., GDP.

Define zt = [x′t, . . . , x
′
t−p+1]′ and Φ = [Φ1, . . . ,Φp,Φc]

′. Write the VAR in (5.1) in companion

form as

zt = F1(Φ)zt−1 + Fc(Φ) + vt, vt ∼ iidN
(
0,Ω(Σ)

)
, (5.2)

where the first n rows of F1(Φ), Fc(Φ), and vt are defined to reproduce (5.1) and the

remaining rows are defined to deliver the identities xq,t−l = xq,t−l for l = 1, . . . , p− 1. The

n×n upper-left submatrix of Ω equals Σ and all other elements are zero. Equation (5.2) is

the state-transition equation of the MF-VAR.

We proceed by describing the measurement equation. One can handle the unobserved

variables in several ways: by imputing zeros and modifying the measurement equation by
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setting the loadings on the state variables to zero (e.g., Mariano and Murasawa (2003b));

by setting the measurement error variance to infinity (e.g., Giannone, Reichlin, and Small

(2008)); or by varying the dimension of the vector of observables as a function of time t

(e.g., Durbin and Koopman (2001b)). We employ the latter approach. To do so, some

additional notation is useful. Let T denote the forecast origin and let Tb ≤ T be the last

period that corresponds to the last month of the quarter for which all quarterly observations

are available. The subscript b stands for balanced sample. Up until period Tb the vector

of monthly series xm,t is observed every month. We denote the actual observations by ym,t

and write

ym,t = xm,t, t = 1, . . . , Tb. (5.3)

Assuming that the underlying monthly VAR has at least three lags, that is, p ≥ 3, we

express the three-month average of xq,t as

ỹq,t =
1

3
(xq,t + xq,t−1 + xq,t−2) = Λqzzt. (5.4)

For variables measured in logs, e.g., lnGDP , the formula can be interpreted as a log-linear

approximation to an arithmetic average of GDP that preserves the linear structure of the

state-space model. For flow variables such as GDP, we adopt the NIPA convention and

annualize high-frequency flows. As a consequence, quarterly flows are the average and not

the sum of monthly flows. This three-month average, however, is only observed for every

third month, which is why we use a tilde superscript. Let Mq,t be a selection matrix that

equals the identity matrix if t corresponds to the last month of a quarter and is empty

otherwise. Adopting the convention that the dimension of the vector yq,t is nq in periods in

which quarterly averages are observed and zero otherwise, we write

yq,t = Mq,tỹq,t = Mq,tΛqzzt, t = 1, . . . , Tb. (5.5)
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For periods t = Tb + 1, . . . , T no additional observations of the quarterly time series are

available. Thus, for these periods the dimension of yq,t is zero and the selection matrix Mq,t

in (5.5) is empty. However, the forecaster might observe additional monthly variables. Let

ym,t denote the subset of monthly variables for which period t observations are reported by

the statistical agency after period T , and let Mm,t be a deterministic sequence of selection

matrices such that (5.3) can be extended to

ym,t = Mm,txm,t, t = Tb + 1, . . . , T. (5.6)

Notice that the dimension of the vector ym,t is potentially time varying and less than nm.

The measurement equations (5.3) to (5.6) can be written more compactly as

yt = MtΛzzt, t = 1, . . . , T. (5.7)

Here, Mt is a sequence of selection matrices that selects the time t variables that have

been observed by period T and are part of the forecaster’s information set. In sum, the

state-space representation of the MF-VAR is given by (5.2) and (5.7).

5.2.2 Bayesian Inference

The starting point of Bayesian inference for the MF-VAR is a joint distribution of observ-

ables Y1:T , latent states Z0:T , and parameters (Φ,Σ), conditional on a pre-sample Y−p+1:0 to

initialize lags. Using a Gibbs sampler, we generate draws from the posterior distributions

of (Φ,Σ)|(Z0:T , Y−p+1:T ) and Z0:T |(Φ,Σ, Y−p+1:T ). Based on these draws, we are able to

simulate future trajectories of yt to characterize the predictive distribution associated with

the MF-VAR and to calculate point and density forecasts.

Prior Distribution. An important challenge in practical work with VARs is to cope with

the dimensionality of the coefficient matrix Φ. Informative prior distributions can often

mitigate the curse of dimensionality. A widely used prior in the VAR literature is the so-

called Minnesota prior. This prior dates back to Litterman (1980) and Doan, Litterman,
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and Sims (1984). We use the version of the Minnesota prior described in Del Negro and

Schorfheide (2011)’s handbook chapter, which in turn is based on Sims and Zha (1998).

The main idea of the Minnesota prior is to center the distribution of Φ at a value that

implies a random-walk behavior for each of the components of xt in (5.1). Our version of

the Minnesota prior for (Φ,Σ) is proper and belongs to the family of MNIW distributions.

We implement the Minnesota prior by mixing artificial (or dummy) observations into the

estimation sample. The artificial observations are computationally convenient and allow us

to generate plausible a priori correlations between VAR parameters. The variance of the

prior distribution is controlled by a low-dimensional vector of hyperparameters λ. Details

of the prior are relegated to the Online Appendix, and the choice of hyperparameters is

discussed below.

Posterior Inference. The joint distribution of data, latent variables, and parameters

conditional on some observations to initialize lags can be factorized as follows:

p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ) (5.8)

= p(Y1:T |Z0:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1:0)p(Φ,Σ|λ).

The distribution of Y1:T |Z1:T is given by a point mass at the value of Y1:T that satis-

fies (5.7). The density p(Z1:T |z0,Φ,Σ) is obtained from the linear Gaussian regression (5.2).

The conditional density p(z0|Y−p+1:0) is chosen to be Gaussian and specified in the Online

Appendix. Finally, p(Φ,Σ|λ) represents the prior density of the VAR parameters. The

factorization (5.8) implies that the conditional posterior densities of the VAR parameters

and the latent states of the MF-VAR take the form

p(Φ,Σ|Z0:T , Y−p+1:T ) ∝ p(Z1:T |z0,Φ,Σ)p(Φ,Σ|λ) (5.9)

p(Z0:T |Φ,Σ, Y−p+1:T ) ∝ p(Y1:T |Z1:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1).

We follow Carter and Kohn (1994b) and use a Gibbs sampler that iterates over the two
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conditional posterior distributions in (5.9). Conditional on Z0:T , the companion-form state

transition (5.2) is a multivariate linear Gaussian regression. Since our prior for (Φ,Σ)

belongs to the MNIW family, so does the posterior and draws from this posterior can be

obtained by direct Monte Carlo sampling. Likewise, since the MF-VAR is set up as a

linear Gaussian state-space model, a standard simulation smoother can be used to draw the

sequence Z0:T conditional on the VAR parameters. The distribution p(z0|Y−p+1) provides

the initialization for the Kalman-filtering step of the simulation smoother. A detailed

discussion of these computations can be found in textbook treatments of the Bayesian

analysis of state-space models, e.g., the handbook chapters by Del Negro and Schorfheide

(2011) and Giordani, Pitt, and Kohn (2011).

Computational Considerations. For expositional purposes, it has been convenient to

define the vector of state variables as zt = [x′t, . . . , xt−p+1]′, which includes the variables

observed at monthly frequency. From a computational perspective, this definition is in-

efficient because it enlarges the state space of the model unnecessarily. We show in the

Online Appendix how to rewrite the state-space representation of the MF-VAR in terms of

a lower-dimensional state vector st = [x′q,t, . . . , xq,t−p]
′ that only includes the variables (and

their lags) observed at quarterly frequency. Our simulation smoother uses the small state

vector st for t = 1, . . . , Tb and then switches to the larger state vector zt for t = Tb+1, . . . , T

to accommodate missing monthly observations toward the end of the sample.

Forecasting. For each draw (Φ,Σ, Z0:T ) from the posterior distribution we simulate a tra-

jectory ZT+1:T+H based on the state-transition equation (5.2). Since we evaluate forecasts

of quarterly averages in our empirical analysis, we time-aggregate the simulated trajecto-

ries accordingly. Based on the simulated trajectories (approximate) point forecasts can

be obtained by computing means or medians. Interval forecasts and probability integral

transformations (see Section 5.6.3) can be computed from the empirical distribution of the
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simulated trajectories.

5.2.3 Marginal Likelihood Function and Hyperparameter Selection

The empirical performance of the MF-VAR is sensitive to the choice of hyperparameters.

The prior is parameterized such that λ = 0 corresponds to a flat (and therefore improper)

prior for (Φ,Σ). As λ −→ ∞, the MF-VAR is estimated subject to the random-walk

restriction implied by the Minnesota prior. The best forecasting performance of the MF-

VAR is likely to be achieved for values of λ that are in between the two extremes. In a

Bayesian framework the hyperparameter, λ can be interpreted as a model index (since a

Bayesian model is the product of likelihood function and prior distribution). We consider a

grid λ ∈ Λ and assign equal prior probability to each value on the grid. Thus, the posterior

probability of λ is proportional to the MDD

p(Y1:T |Y−p+1:0, λ) =

∫
p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ)d(Z0:T ,Φ,Σ). (5.10)

The log MDD can be interpreted as the sum of one-step-ahead predictive scores:

ln p(Y1:T |Y−p+1:0, λ) =
T∑
t=1

ln

∫
p(yt|Y−p+1:t−1,Φ,Σ)p(Φ,Σ|Y−p+1:t−1, λ)d(Φ,Σ). (5.11)

The terms on the right-hand side of (5.11) provide a decomposition of the one-step-ahead

predictive densities p(yt|Y1−p:t−1, λ). This decomposition highlights the fact that inference

about the parameter is based on time t − 1 information, when making a one-step-ahead

prediction for yt.

Hyperparameter Selection. To generate the MF-VAR forecasts, for each forecast origin

we condition on the value λ̂T that maximizes the log MDD. This procedure can be viewed

as an approximation to a model averaging procedure that integrates out λ based on the

posterior p(λ|Y−p+1:T ). The MDD-based selection of VAR hyperparameters has a fairly

long history and tends to work well for forecasting purposes (see Giannone, Lenza, and

Primiceri (2012) for a recent study).
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Marginal Data Density Approximation. From (5.10) we see that the computation of

the MDD involves integrating out the latent states. In the remainder of this section we

describe how we compute the integral. To simplify the exposition we consider the special

case of n = 2, p = 1, and T = 3. We assume that one of the variables is observed at monthly

frequency and the other as a quarterly average. Thus, we can write zt = [xm,t, xq,t]
′. The

observations Y1:3 are related to the states Z1:3 as follows:

y1 = xm,1, y2 = xm,2, y3 =

[
xm,3

1
3(xq,1 + xq,2 + xq,3)

]
. (5.12)

Using a change of variable of the form

Z1:3 = J

[
Y1:3

W1:3

]
(5.13)

where Z1:3 = [z′1, z
′
2, z3]′, Y1:3 = [y1, y2, y

′
3]′, W1:3 = [xq,1, xq,2]′ (note that despite the 1 : 3

subscript, W1:3 is a 2 × 1 vector in this example), and J is a 6 × 6 non-singular matrix of

constants. Thus, we can replace p(Z1:3|λ) by p(Y1:3,W1:3|λ) = p(Y1:3|W1:3)p(W1:3|λ). Using

Bayes Theorem, we can write (abstracting from the initialization of the VAR)

1

p(Y1:3|λ)
=
p(W1:3|Y1:3, λ)

p(Y1:3,W1:3|λ)
. (5.14)

Suppose that f(W1:3) has the property that
∫
f(W1:3)dW1:3 = 1, and let {W (i)

1:3}Ni=1

denote a sequence of draws from the posterior distribution of W1:3|(Y1:3, λ). Then the MDD

can be approximated using Geweke (1999)’s harmonic mean estimator, which is widely used

in the DSGE model literature to approximate MDDs in high-dimensional settings:

p̂(Y1:3|λ) =

[
1

N

N∑
i=1

f(W
(i)
1:3)

p(Y1:3,W
(i)
1:3|λ)

]−1

. (5.15)

The draws from the distribution of W1:3|(Y1:3, λ) can be obtained by transforming the draws

from Z1:3|(Y1:3, λ), which are generated as a by-product of the posterior sampler described

in Section 5.2.2. Using the properties of the MNIW distribution, it is straightforward to
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compute

p(Z1:3|λ) =

∫
p(Z1:3|Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ) (5.16)

analytically. A straightforward change of variables based on (5.13) leads from p(Z1:3|λ) to

p(Y1:3,W
(i)
1:3|λ). Note that the Jacobian of this transformation is simply a constant term.

Generalization. Taking the initialization of the VAR into account, the identity provided

in (5.14) can be generalized as follows:

1

p(Y1:T |Y−p+1:0, λ)
=
p(W1:T , w0|Y1:T , Y−p+1:0, λ)

p(W1:T , Y1:T , w0|Y−p+1:0, λ)
, (5.17)

with the understanding that W1:T stacks the unobserved values of xq,t for the first and

second month of each quarter of the estimation sample and w0 contains the corresponding

values for the initialization period t = −p + 1, . . . , 0. The approximation of the MDD

becomes:

p̂(Y1:T |Y−p+1:0, λ) = c

[
1

N

N∑
i=1

f0(w
(i)
0 )f(W

(i)
1:T )

p(Z
(i)
1:T |z

(i)
0 , λ)p(z

(i)
0 |Y−p+1:0, λ)

]−1

, (5.18)

The constant c in (5.18) captures the Jacobian term associated with the change-of-variables

from (w0,W1:T , Y1:T ) to (z0, Z1:T ). For the function f(·) we follow Geweke (1999) and use

a trimmed multivariate normal distribution with mean µ̂W1:T
= 1

N

∑N
i=1W

(i)
1:T and vari-

ance Σ̂W1:T
= 1

N

∑N
i=1W

(i)
1:TW

(i)′

1:T − µ̂W1:T
µ̂′W1:T

. This normal distribution approximates

p(W1:T |Y−p+1:T ) and stabilizes the ratio in (5.18). We set f0(w
(i)
0 ) = p(z

(i)
0 |Y−p+1:0, λ) such

that the two terms cancel. To evaluate the denominator, we use the analytical expression

for p(Z
(i)
1:T |z

(i)
0 , Y−p+1:0, λ), which is obtained from the the normalization constants for the

MNIW distribution and is provided, for instance, in Section 2 of Del Negro and Schorfheide

(2011).
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5.3 Real-Time Data Sets and Information Structure

We subsequently conduct a pseudo-out-of-sample forecast experiment with real-time data

to study the extent to which the incorporation of monthly observations via an MF-VAR

model improves upon forecasts generated with a VAR that is based on time-aggregated

quarterly data (QF-VAR). We consider VARs for eleven macroeconomic variables, which

are summarized in Section 5.3.1. The construction of the real-time data sets and the

classification of forecast origins based on within-quarter monthly information are described

in Section 5.3.2. Section 5.3.3 explains our choice of actual values that are used to compute

forecast errors.

5.3.1 Macroeconomic Variables

We consider VARs for eleven macroeconomic variables, of which three are observed at

quarterly frequency and eight are observed at monthly frequency. The quarterly series are

GDP, Fixed Investment (INVFIX), and Government Expenditures (GOV). The monthly

series are the Unemployment Rate (UNR), Hours Worked (HRS), Consumer Price Index

(CPI), Industrial Production Index (IP), Personal Consumption Expenditure (PCE), Fed-

eral Funds Rate (FF), Treasury Bond Yield (TB), and S&P 500 Index (SP500). Precise

data definitions are provided in the Online Appendix. Series that are observed at a higher

than monthly frequency are time-aggregated to monthly frequency. The variables enter the

VARs in log levels with the exception of UNR, FF, and TB, which are divided by 100 in

order to make them commensurable in scale to the other log-transformed variables.

5.3.2 Real-Time Data for End-of-Month Forecasts

We consider an increasing sequence of estimation samples Y−p+1:T , T = Tmin, . . . , Tmax,

and generate forecasts for periods T + 1, . . . , T + H. The maximum forecast horizon H

is chosen to be 24 months. The period t = 1 corresponds to 1968:M1, Tmin is 1997:M7,
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and Tmax is 2010:M1, which yields 151 estimation samples. We eliminated four of the 151

samples because the real-time data for PCE and INVFIX were incomplete. The estimation

samples are constructed from real-time data sets, assuming that the forecasts are generated

on the last day of each month. Due to data revisions by statistical agencies, observations of

Y1:T−1 published in period T are potentially different from the observations that had been

published in period T−1. For this reason, real-time data are often indexed by a superscript,

say τ ≥ T , which indicates the vintage or data release date. Using this notation, a forecaster

at time T potentially has access to a triangular array of data Y 1
−p+1:1, Y

2
−p+1:2, . . . , Y

T
−p+1:T .

Rather than using the entire triangular array and trying to exploit the information content

in data revisions, we estimate the MF-VAR and QF-VAR for each forecast origin T based

on the information set Y T
−p+1:T = {yT−p+1, . . . , y

T
T }. As in Section 5.2, we are using the

convention that the vector yTt contains only the subset of the eleven variables listed above

for which observations are available at the end of month T .

In order to assess the usefulness of within-quarter information from monthly variables,

we sort the forecast origins Tmin, . . . , Tmax into three groups that reflect different within-

quarter information sets. Forecast error statistics will be computed for each group sepa-

rately. The grouping of forecast origins is best explained in a concrete example. Consider

the January 31, 1998 forecast origin. By the end of January, the Bureau of Economic

Analysis (BEA) has just published an advance estimate of 1997:Q4 GDP. In addition, the

forecaster has access to nonfinancial monthly indicators from December 1997 and earlier.

A similar situation arises at the end of April, July, and October. We refer to this group

of forecast origins as “+0 months,” because the current-quarter forecasts do not use any

additional nonfinancial monthly variables.

At the end of February 1998, the forecaster has access to an preliminary estimate of

1997:Q4 GDP and to observations for unemployment, industrial production, and so forth,
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Table 5.1: Illustration of Information Sets

January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv
Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv
Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

March (+2 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv
Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X X X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the observation is missing. X denotes monthly observation and QAv denotes

quarterly average. “+0 Months” group: January, April, July, October; “+1 Month” group: February, May,

August, November; “+2 Month” group: March, June, September, December.

for January 1998. Thus, we group February, May, August, and November forecasts and refer

to them as “+1 month.” Following the same logic, the last subgroup of forecast origins has

two additional monthly indicators (“+2 months”) and the final release of GDP for 1997:Q4

in the information set. Unlike the non-financial variables, which are released with a lag,

financial variables are essentially available instantaneously. In particular, at the end of

each month, the forecaster has access to average interest rates (FF and TB) and stock

prices (SP500). The typical information sets for the three subgroups of forecast origins are

summarized in Table 5.1.

Unfortunately, due to variation in release dates, not all 151 estimation samples mimic

the information structure in Table 5.1. For 47 samples the last PCE figure is released with

a two-period (approximately five weeks) instead of one-period (approximately four weeks)

lag. This exception occurs for 28 samples of the “+0 months” group. For these samples
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a late release of PCE implies the quarterly consumption for the last completed quarter is

not available. In turn, the QF-VAR could only be estimated based on information up to

T − 4 instead of T − 1 and would be at a severe disadvantage compared to the MF-VAR.

Since PCE is released only a few days after the period T forecasts are made, we pre-date

its release. Thus, for the 28 samples of the “+0 months” group that are subject to the

irregular timing, we use PCET−1 in the estimation of both the QF-VAR and MF-VAR. No

adjustments are made for the “+1 month” and “+2 months” groups. Further details about

these exceptions are provided in the Online Appendix.

5.3.3 Actuals for Forecast Evaluation

The real-time-forecasting literature is divided as to whether forecast errors should be com-

puted based on the first release following the forecast date, say yT+h
T+h, or based on the most

recent vintage, say yT∗t+h. The former might do a better job of capturing the forecaster’s loss,

whereas the latter is presumably closer to the underlying “true” value of the time series.

We decided to follow the second approach and evaluate the forecasts based on actual values

from the T∗ = 2012:M1 data vintage. While the MF-VAR in principle generates predictions

at the monthly frequency, we focus on the forecasts of quarterly averages, which can be

easily compared to forecasts from the QF-VAR.

5.4 Empirical Results

The empirical analysis proceeds in four parts. The hyperparameter selection is discussed in

Section 5.4.1. Section 5.4.2 compares root mean squared error (RMSE) statistics from the

MF-VAR to a QF-VAR and a set of MIDAS regressions. Section 5.4.3 contrasts MF-VAR

density forecasts during the 2008-9 (Great) recession with QF-VAR forecasts. Finally, in

Section 5.4.4 we present a monthly GDP series that arises as a by-product of the MF-VAR

estimation. Based on some preliminary exploration of the MDDs, we set the number of lags
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in the (monthly) state transition of the MF-VAR to p(m) = 6 and the number of lags in the

QF-VAR to p(q) = 2.

Unless otherwise noted, for each estimation sample we generate 20,000 draws from the

posterior distribution of the VAR parameters using the MCMC algorithm described in Sec-

tion 5.2.2. We discard the first 10,000 draws and use the remaining 10,000 to calculate

Monte Carlo approximations of posterior moments. The Online Appendix provides some

information on the accuracy of the MCMC. The Monte Carlo standard deviation of the

posterior mean forecasts (output, inflation, interest rates, and unemployment), computed

across independent runs of the MCMC, is generally less than 0.5 basis points. For compar-

ison, the RMSE associated with these forecasts ranges from 10 to 200 basis points.

5.4.1 Hyperparameter Selection

We will subsequently compare MF-VAR and QF-VAR forecasts. Both VARs are equipped

with a Minnesota prior that is represented in terms of dummy observations and indexed

by a vector of hyperparameters λ. We use the same set of dummy observations for both

types of VAR. However, the hyperparameters are chosen for each type of VAR separately.

The careful choice of this hyperparameter vector is crucial for obtaining accurate forecasts.

As explained in Section 5.2.3, we determine the hyperparameters by maximizing the log

MDD. For the QF-VAR the MDD can be computed analytically (see, e.g., Del Negro and

Schorfheide (2011)) and the maximization is straightforward. Thus, we will focus on the

hyperparameter selection for the MF-VAR.

The hyperparameter vector consists of five element, controlling: the overall tightness of

the prior (λ1); the rate at which the prior variance on higher-order lag coefficients decays

(λ2); the dispersion of the prior on the innovation covariance matrix (λ3); the extent to

which the sum-of-coefficient on the lags of a variable xi,t is tilted toward unity (λ4); and

the extent to which co-persistence restrictions are imposed on the VAR coefficients (λ5).
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Figure 5.1: Log Marginal Data Density for 11-Variable MF-VAR
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Notes: The two plots depict ln p̂(Y1:T |Y−p+1:0,λ). In the left panel, we condition on λ3 = 1, λ4 = 2.7, and

λ5 = 4.3. In the right panel we condition on λ2 = 4.3, λ3 = 1, λ4 = 2.7, and λ5 = 4.3. Each “hair”

corresponds to a separate run of the MCMC algorithm.

In general, the larger λi the smaller the prior variance and the more informative the prior.

From a preliminary analysis based on the QF-VAR, we conclude that λ3 is not particularly

important for the forecasting performance and fix it as λ̂3 = 1. Based on a preliminary

search over a grid Λ(1) we determine suitable values for λ4 and λ5 for the first recursive

sample, which ranges from 1968:M1 to 1997:M7. These values are λ̂4 = 2.7 and λ̂5 = 4.3.

Conditioning on λ̂3 to λ̂5, we use a second grid, Λ̂(2) to refine the choice of λ1 and λ2.

The log MDD surface is depicted in the left panel of Figure 5.1 as function of λ1 and λ2,

holding the remaining three hyperparameters fixed at λ3 = 1, λ4 = λ̂4, and λ5 = λ̂5. The

surface has a convex shape and is maximized at λ̂1 = 0.09 and λ̂2 = 4.3. At its peak the

value of the log MDD is approximately 11,460. While the surface is fairly flat near the peak,

e.g. for λ1 ∈ [0.05, 0.15] and λ2 ∈ [4, 4.5], the MDD values drop substantially for values of λ

outside of these intervals. To assess the accuracy of the MDD evaluation, which involves the

numerical evaluation of a high-dimensional integral, we display a hairplot of a slice of the
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MDD surface in the right panel of Figure 5.1, fixing λ2 at 4.3. Each hairline corresponds to

a separate run of the MCMC algorithm. We focus on the interval λ1 ∈ [0.05, 0.15]. While

there is some noticeable Monte Carlo variation with respect to the absolute magnitude of

the log MDD, this variation does not affect inference with respect to the optimal value

of λ on the grid. For each simulation, the log MDD peaks at 0.09. The accuracy of the

approximation can be improved by increasing the number of MCMC draws.

The re-optimization of the hyperparameters for the MF-VAR is computationally costly.

Because we expect the optimal hyperparameter choices to evolve smoothly over time, we

are reoptimizing with respect to λ approximately every three years, namely for the 40th, the

75th, the 110th, and the 151th recursive sample. During this reoptimization we keep λ̂3, λ̂4,

and λ̂5 fixed. The reoptimization essentially left the choice of hyperparameters unchanged.

We obtained a similar result for the QF-VAR and decided to keep the MF-VAR and the

QF-VAR hyperparameters constant for all recursive sample.

The hyperparameter estimates for the MF-VAR and the QF-VAR are summarized in

Table 5.2. While the overall tightness of the prior, controlled by λ1, is larger for the QF-

VAR than the MF-VAR, the MF-VAR strongly shrinks the coefficients on higher-order lags

to zero. The QF-VAR only uses two lags which are associated with 22 regression coefficients

for each endogenous variable. The MF-VAR, on the other hand, uses six lags which are

associated with 66 regression coefficients. Roughly 30% of these coefficients are associated

with regressors that are only observed a quarterly frequency. The hyperparameters for the

QF-VAR are broadly in line with the results in Giannone, Lenza, and Primiceri (2012).

5.4.2 MF-VAR Point Forecasts

MF-VAR versus QF-VAR. We begin by comparing RMSEs for MF-VAR and QF-VAR

forecasts of quarterly averages to assess the usefulness of monthly information. The RMSEs

are computed separately for the “+0 months,” “+1 month,” and “+2 months” forecast
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Table 5.2: Hyperparameters

λ1 λ2 λ3 λ4 λ5

MF-VAR(11) 0.09 4.30 1.0 2.70 4.30
QF-VAR(11) 3.08 0.01 1.0 1.12 1.62

origins defined in the previous section. Results for GDP growth (GDP), unemployment

(UNR), inflation (INF), and the federal funds rate (FF) are reported in Figure 5.2. The

figure depicts relative RMSEs defined as

Relative RMSE(i|h) = 100× RMSE(i|h)−RMSEBenchmark(i|h)

RMSEBenchmark(i|h)
, (5.19)

where i denotes the variable and we adopt the convention (in slight abuse of notation) that

the forecast horizon h is measured in quarters. The QF-VAR serves as a benchmark model

and h = 1 corresponds to the quarter in which the forecast is generated. The h = 1 forecast

is often called a nowcast. Absolute RMSEs for the 11-variable MF-VAR are tabulated in

the Online Appendix.

For all four series, the use of monthly information via the MF-VAR leads to a substantial

RMSE reduction in the short run. Consider the GDP growth forecasts. The “+2” nowcasts

have a 27% lower RMSE than the QF-VAR nowcasts. For the “+1 month” group and the

“+0 months” group, the reductions are both 15%. While the “+2 months” group forecasts

clearly dominate at the nowcast horizon h = 1, the relative ranking among the three sets

of MF-VAR forecasts becomes ambiguous for h ≥ 2. As the forecast horizon increases

to h = 4, the QF-VAR catches up with the MF-VAR. For horizons h ≥ 4, the RMSE

differentials between QF-VAR and MF-VAR GDP growth forecasts are negligible.

For the monthly unemployment, inflation, and federal funds rate series, the short-run

RMSE reductions attained by the MF-VAR for the monthly series are even stronger than

for GDP growth, which is observed at quarterly frequency. This is, of course, not surprising.
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Figure 5.2: Relative RMSEs of 11-Variable MF-VAR versus QF-VAR
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At the nowcast horizon, the MF-VAR is able to improve over the precision of the QF-VAR

for the “+2 months” forecasts by 65% for unemployment, 70% for inflation, and 100%

for the federal funds rate. Recall that “+2 months” corresponds to the last month of the

quarter, which means that at the end of the last month, the average quarterly interest rate

is known. Thus, by construction the RMSE reduction for the federal funds rate is 100%.

The RMSE reductions for the “+1 month” group range from 40% (unemployment) to 80%

(federal funds rate). For the “+0 months” group the improvement of the nowcast from

using the MF-VAR is about 10% for inflation and the unemployment rate and 60% for

the federal funds rate. While the gains from using monthly information tend to persist for

unemployment and interest rates as the forecast horizon h increases, for inflation, monthly

observations generate no improvements of forecast performance beyond the nowcast horizon.

To summarize the multivariate forecast performance of the VARs and aggregate the uni-

variate RMSE differentials across quarterly and monthly nonfinancial variables we consider

the log-determinant of the forecast error covariance matrix, proposed by Doan, Litterman,

180



Figure 5.3: Log Determinant of MF-VAR versus QF-VAR
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Notes: The relative log determinant is defined as Relative Log Determinant = (100 · 0.5/nvar)[f(ε̂t,MF ) −
f(ε̂t,QF )], where f(·) is given in (5.20) and nvar = 3 for quarterly variables and nvar = 5 for monthly

nonfinancial variables. The forecast horizon h is measured in quarters and h = 1 corresponds to the quarter

in which the forecast is generated.

and Sims (1984):

f(ε̂t) = ln(| 1

Tmax − Tmin

Tmax∑
t=Tmin

ε̂tε̂
′
t) |), (5.20)

where ε̂t is a vector of forecast errors. Log-determinant differentials of MF-VAR versus

QF-VAR forecasts are depicted in Figure 5.3. We scale the log-determinant differentials

by 100 · 0.5/nvar. The factor 0.5 converts mean-squared errors into RMSEs, the division

by nvar yields an average across the variables included in ε̂t, and the factor 100 converts

the differential into percentages. This scaling makes the log-determinant differentials com-

parable to the RMSE differentials depicted in Figure 5.2. The results are qualitatively

consistent with the comparison of univariate RMSEs. Not surprisingly, for the group of

quarterly variables (GDP, INVFIX, GOV) the gain from including within-quarter monthly

information is smaller than for the group of monthly nonfinancial variables (UNR, HRS,

CPI, IP, PCE). For quarterly variables the forecast accuracy gains relative to the QF-VAR
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range from 11% (“+2 months” group) to 6% (“+0 months” group). For monthly variables

the gains for the three forecast origin groups are 60%, 30% and 6% respectively. For h ≥ 3

the QF-VAR catches up with the MF-VAR and the benefit from using monthly informa-

tion vanishes. The only exception are the “+2” months forecasts of the monthly variables.

Here the within-quarter monthly information remains even for forecast horizons exceeding

one year. We exclude the financial variables (FF, TB, SP500) from the group of monthly

variables because the financial variables are essentially known at the end of each quarter

(“+2 months” group) which creates a near-singularity in forecast error covariance matrices

that include one or more financial variables.

MF-VAR versus MIDAS. A popular alternative to the multivariate state-space frame-

work used in this paper are MIDAS regressions. While there exist generalizations of the

MIDAS approach to VAR settings, in most applications MIDAS regressions are used as

univariate forecasting models. For a comparison of the two approaches we will focus on

output growth. Our VAR models use 11 macroeconomic variables. If all of these variables

are included in a MIDAS regression without any further restrictions, the MIDAS regression

will perform very poorly. The distributed-lag restrictions on high-frequency regressors are

designed to deal with many (high-frequency) observations of a single regressor but they are

not designed to impose parsimony on a specification with many different right-hand-side

variables. Thus, instead of comparing the 11-variable MF-VAR with MIDAS regressions, we

will provide comparisons between bivariate MF-VARs and MIDAS regressions, estimated

using the same set of variables.

Foroni, Marcellino, and Schumacher (2013) propose an unrestricted version of the MI-

DAS model (U-MIDAS) and show that when the mismatch of the frequency is low, like in

macroeconomic applications that typically involve monthly and quarterly data only, this

unrestricted version performs better in Monte Carlo experiments and provides a better
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Figure 5.4: Relative RMSEs of Bivariate MF-VAR versus MIDAS
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GDP nowcasting performance than a MIDAS regression with distributed-lag restrictions

on the coefficients of the high-frequency variables. Thus, we consider U-MIDAS (instead

of MIDAS) regressions in our comparison. The key aspect of our empirical analysis is the

distinction between three groups of forecast origins, denoted by “+0,” “+1,” and “+2”

(months). Each of these groups uses different within-quarter monthly information. Accord-
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ingly, we use three separate U-MIDAS regressions, which, using the notation of Section 5.2,

can be written as

“+0” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +
6∑
s=1

γsxm,t−s+1 + residt+3h (5.21)

“+1” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +

6∑
s=1

γsxm,t−s+1 + δ1xm,t+1 + residt+3h

“+2” : ỹq,t+3h = β0 + β1ỹq,t + β2ỹq,t−3 +

6∑
s=1

γsxm,t−s+1 + δ1xm,t+1 + δ2xm,t+2 + residt+3h,

where t = 0, 3, 6, 9, . . .. The quarterly variable ỹq,t+3h was defined as average of unob-

served monthly variables in (5.4) and corresponds to log GDP. The monthly variable xm,t

is assumed to be scalar and we consider all eight of our monthly variables individually. The

regression (5.21) is estimated by OLS for each group of forecast origins and for each forecast

horizon separately. Thus, as in Foroni, Marcellino, and Schumacher (2013) we use direct

estimation, i.e., the projection of ỹq,t+3h on the predictors available at the forecast origin,

to determine the coefficients for the multi-step forecasting equation. Recall that under the

Bayesian approach employed for the analysis of the MF-VAR multi-step forecasts are gen-

erated by iterating the VAR forward and using the posterior distribution to integrate out

the unknown parameters.

Figure 5.4 illustrates the log GDP forecast performance of the bivariate MF-VARs rela-

tive to the MIDAS regressions. Each panel corresponds to a different monthly variable. Two

results stand out. First, by and large, both the MF-VAR and MIDAS utilize the within-

quarter monthly information equally well. The RMSE differentials are essentially the same

for each of the three informational groups. For six out of the eight monthly variables the

MF-VAR forecasts are more accurate than the MIDAS forecasts at some horizons, and no

worse at the other horizons. For the unemployment rate, the gain from using the MF-VAR

is highest for horizons of 2-5 quarters. For industrial production, the stock market index,

hours, and the treasury bond rate the largest gain is realized at the long-horizon whereas
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for PCE the improvement if fairly uniform for one- to eight-quarter ahead forecasts. Only

for the federal funds rate and CPI inflation MIDAS forecasts appear to be marginally more

accurate than the MF-VAR forecasts.

Other Comparisons. In the Online Appendix we also provide RMSE comparisons be-

tween the 11-variable MF-VAR and univariate QF-AR(2) models; and between a 4-variable

MF-VAR (GDP, CPI, UNR, FF) and a 4-variable QF-VAR. The results are qualitatively

very similar: there is a substantial gain from using the within-quarter-monthly informa-

tion for nowcasting and short-horizon forecasting. This gain vanishes over one- to two-year

horizons. Finally, the Online Appendix contains a careful comparison between MF-VAR

forecasts and Greenbook (now Tealbook) forecasts, prepared by the staff of the Board of

Governors for the meetings of the Federal Open Market Committee. At the nowcast hori-

zon the unemployment forecasts of the MF-VAR are at par with the Greenbook forecasts,

whereas the GDP growth and inflation forecasts are less accurate than the Greenbook fore-

casts. Over a four- to five-quarter horizon the MF-VAR generates more accurate GDP

forecasts, whereas the Greenbook contains more precise inflation and unemployment rate

forecasts.

5.4.3 Forecasting During the Great Recession

The pseudo-out-of-sample forecast performance of the previous section documented that the

use of within-quarter monthly observations increases the precision of short-run forecast. We

now examine how the use of monthly real-time information sharpened the VAR forecasts

during the recent recession. We focus on the period from October to December 2008. Fig-

ure 5.5 depicts real-time interval forecasts from the MF-VAR and the QF-VAR. Moreover,

we plot actual values using the 2011:M7 data vintage. We focus on real GDP growth and

CPI inflation. The figure is divided into subpanels that correspond to particular estimation

samples and forecast horizons. The first column of panels depicts October 2008 forecasts
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(“+0 months” group), and the second and third columns show November (“+1 month”)

and December (“+2 months”) forecasts, respectively. A comparison between the first and

second (third and forth) row of panels shows how monthly within-quarter information alters

the density forecast for GDP (inflation).

The most striking feature of the top panels of Figure 5.5 is the -2% quarter-on-quarter

growth rate of GDP in 2008:Q4. The magnitude of the drop in output growth in late 2008

is unexpected by the VAR models. It is, for all forecast origins, outside of the 90% predic-

tive interval. The drop in GDP growth is equally unexpected by state-of-the-art dynamic

stochastic general equilibrium (DSGE) models and the Blue Chip survey of professional

forecasters as documented in Del Negro and Schorfheide (2013). A comparison of the MF-

VAR and QF-VAR forecasts highlights how monthly information alters the within-quarter

predictions. Notice that the QF-VAR forecasts do not stay constant within the quarter.

The variation is caused by data revisions. As discussed in Section 5.3, each month new

data releases for the previous quarter become available and change the lagged observations

that determine the initial conditions for the VAR at the forecast origin. However, the

within-quarter variation of the QF-VAR forecasts is fairly small.

By December 2008 the QF-VAR nowcasts and forecasts show still no evidence of a

severe downturn, because the latest information that is used to generate the predictions

stems from 2008:Q3. The MF-VAR forecasts, on the other hand, do get revised more

substantially during each quarter. In addition to the presence of data revisions, the forecasts

are updated based on the information that is available at monthly frequency. Compared to

the QF-VAR forecasts, the MF-VAR nowcasts during the fourth quarter of 2008 are a lot

more pessimistic, which is in line with the actual realization of output growth. Over a one-

year horizon the discrepancy between the MF-VAR and QF-VAR forecasts vanishes, which

is consistent with the forecast error statistics presented in the previous section. According

186



Figure 5.5: Real-Time Forecasts During the Great Recession

GDP-Growth Forecasts: MF-VAR

GDP-Growth Forecasts: QF-VAR

Inflation Forecasts: MF-VAR

Inflation Forecasts: QF-VAR

Notes: Actual values are from the T∗ = 2012 : M1 data vintage and are denoted as the black line with

triangles. The title in each subplot indicates the forecast origin and the data vintage that are used in the

estimation. We show the median, 60% bands, and 90% bands constructed from the predictive distribution.
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Figure 5.6: Monthly GDP Growth (Scaled to a Quarterly Rate)

to both VARs the GDP growth forecasts are mean reverting. The models predict a GDP

growth rate of about 1% for the second half of 2009. This prediction turned out to be

accurate.

The bottom panels of Figure 5.5 depict the evolution of inflation forecasts in the last

quarter of 2008. Since the CPI is published at a monthly frequency, the differences be-

tween within-quarter inflation forecasts from the MF-VAR and QF-VAR are much more

pronounced than for GDP. Throughout 2008:Q4 the inflation forecasts from the QF-VAR

stay essentially constant and miss the -2% deflation rate in 2008:Q4. The MF-VAR, on the

other hand, detects the deflation by November 2008 as it is unfolding. At the longer horizon,

the MF-VAR correctly predicts that the deflation episode is short-lived and that inflation

rate will, with about 50% probability, be positive by the end of 2009. To summarize, these

real-time forecasts during the Great Recession illustrate that the MF-VAR can transform

within-quarter monthly information into more accurate nowcasts and forecasts of quarterly

averages.

5.4.4 Monthly GDP

The estimation of the MF-VAR generates a monthly GDP series as a by-product. This series

is implicitly extracted during the smoothing step of the Gibbs sampler (see Section 5.2.2)
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from the eleven macroeconomic time series that enter the MF-VAR. A time series plot of

monthly GDP growth is depicted in Figure 5.6. For each trajectory of log GDP generated

with the Gibbs sampler, we compute month-on-month growth rates (scaled by a factor of

3 to make them comparable to quarter-on-quarter rates). For each month we then plot

the median growth rate across the simulated trajectories. We overlay monthly GDP growth

rates published by Stock and Watson (2010), who combine monthly information about GDP

components to distribute quarterly GDP across the three months of the quarter.1 Moreover,

we plot growth rates computed from NIPA’s quarterly GDP, implicitly assuming that GDP

growth is constant within a quarter. Two observations stand out. First, at a monthly

frequency GDP growth is much more volatile than at a quarterly level. Second, the monthly

GDP growth series obtained from the MF-VAR estimation is somewhat smoother than the

Stock-Watson series. While the two monthly measures are positively correlated, they are

not perfectly synchronized, which is consistent with these measures being constructed from

very different source data.

5.5 Conclusion

We have specified a VAR for observations that are observed at different frequencies, namely,

monthly and quarterly. A Gibbs sampler was utilized to conduct Bayesian inference for

model parameters and unobserved monthly variables. To cope with the dimensionality of

the MF-VAR, we used a Minnesota prior that shrinks the VAR coefficients toward univariate

random-walk representations. The degree of shrinkage is determined in a data-driven way,

by maximizing the log MDD with respect to a low-dimensional vector of hyperparameters

and we show how to approximate the MDD of a MF-VAR. Finally, we used the model to

generate forecasts. The main finding is that within-quarter monthly information leads to

1Frale, Marcellino, Mazzi, and Proietti (2011) use a similar approach to construct a monthly GDP series
for the Euro Area.
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drastic improvements in the short-horizon forecasting performance. These improvements

are increasing in the time that has passed since the beginning of the quarter. Over a

one- to two-year horizon there are, however, no noticeable gains from using the monthly

information.

190



5.6 Appendix

Section 5.6.1 of this appendix provides details of the implementation of the Bayesian compu-

tations for the MF-VAR presented in the main text. Section 5.6.2 discusses the construction

of the real-time data set. Finally, Section 5.6.3 of this appendix provides tables and figures

with additional empirical results. References to equations, tables, and figures without an

A, B, or C prefix refer to equations, tables, and figures in the main text.

5.6.1 Implementation Details

Recall from the exposition in the main text (see equation (5.9)) that the Bayesian computa-

tions are implemented with a Gibbs sampler that iterates over the conditional distributions

p(Φ,Σ|Z0:T , Y−p+1:T ) and p(Z0:T |Φ,Σ, Y−p+1:T ).

Conditional on Z0:T the MF-VAR reduces to a standard linear Gaussian VAR with a con-

jugate prior. The reader is referred to Section 2 of the handbook chapter by Del Negro and

Schorfheide (2011) for a detailed discussion of posterior inference for such a VAR.

We limit the exposition in this appendix to a brief presentation of the Minnesota prior

and the hyperparameter selection (Section 5.6.1). The sampling from the conditional poste-

rior of Z0:T |(Φ,Σ, Y−p+1:T ) is implemented with a standard simulation smoother, discussed

in detail, for instance, in Carter and Kohn (1994b), the state-space model textbook of

Durbin and Koopman (2001b), or the handbook chapter by Giordani, Pitt, and Kohn

(2011). The only two aspects of our implementation that deserve further discussion are the

initialization (Section 5.6.1) and the use of the more compact state-space representation for

periods t = 1, . . . , Tb (Section 5.6.1).
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Minnesota Prior and Its Hyperparameters

To simplify the exposition, suppose that n = 2 and p = 2. A transposed version of (5.1)

can be written as

x′t = [x′t−1, x
′
t−2, 1]′Φ + u′t = w′tΦ + u′t, ut ∼ iidN(0,Σ). (5.22)

We generate the Minnesota prior by dummy observations (x∗, w∗) that are indexed by a

5×1 vector of hyperparameters λ with elements λi. Using a pre-sample, let x and s be n×1

vectors of means and standard deviations. For time series that are observed at monthly

frequency, the computation of pre-sample moments is straightforward. In order to obtain

pre-sample means and standard deviations for those series that are observed at quarterly

frequency, we simply equate xq with the pre-sample mean of the observed quarterly values

and set s equal to the pre-sample standard deviation of the observed quarterly series.

Dummy Observations for Φ1.[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0 0 0

0 λ1s2 0 0 0

]
Φ +

[
u11 u12

u21 u22

]
. (5.23)

We can rewrite the first row of (5.23) as

λ1s1 = λ1s1φ11 + u11, 0 = λ1s1φ21 + u12.

Since, according to (5.22) the ut’s are normally distributed, we can interpret the relation-

ships as

φ11 ∼ N (1,Σ11/(λ
2
1s

2
1)), φ21 ∼ N (0,Σ22/(λ

2
1, s

2
1)).

where φij denotes the element i, j of the matrix Φ, and Σij corresponds to element i, j of

Σ. The hyperparameter λ1 controls the tightness of the prior.

Dummy Observations for Φ2.[
0 0
0 0

]
=

[
0 0 λ1s12λ2 0 0
0 0 0 λ1s22λ2 0

]
Φ + U, (5.24)
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where the hyperparameter λ2 is used to scale the prior standard deviations for coefficients

associated with xt−l according to l−λ2 .

Dummy Observations for Σ. A prior for the covariance matrix Σ, centered at a matrix

that is diagonal with elements equal to the pre-sample variance of xt, is obtained by stacking

the observations [
s1 0
0 s2

]
=

[
0 0 0 0 0
0 0 0 0 0

]
Φ + U (5.25)

λ3 times.

Sums-of-Coefficients Dummy Observations. When lagged values of a variable xi,t are

at the level xi, the same value xi is a priori likely to be a good forecast of xi,t, regardless of

the value of other variables:[
λ4x1 0

0 λ4x2

]
=

[
λ4x1 0 λ4x1 0 0

0 λ4x2 0 λ4x2 0

]
Φ + U. (5.26)

Co-persistence Dummy Observations. When all lagged xt’s are at the level x, a priori

xt tends to persist at that level:

[
λ5x1 λ5x2

]
=
[
λ5x1 λ5x2 λ5x1 λ5x2 λ5

]
Φ + U. (5.27)

Prior Distribution. After collecting the T ∗ dummy observations in matrices X∗ and W ∗,

the likelihood function associated with (5.22) can be used to relate the dummy observations

to the parameters Φ and Σ. If we combine the likelihood function with the improper prior

p(Φ,Σ) ∝ |Σ|−(n+1)/2, we can deduce that the product p(X∗|Φ,Σ) · |Σ|−(n+1)/2 can be

interpreted as

(Φ,Σ) ∼MNIW (Φ, (W ∗
′
W ∗)−1, S, T ∗ − k), (5.28)

where Φ and S are

Φ = (W ∗′W ∗)−1W ∗′W ∗, S = (X∗ −W ∗Φ)′(X∗ −W ∗Φ).

Provided that T ∗ > k + n and W ∗
′
W ∗ is invertible, the prior distribution is proper.
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Hyperparameter Grid Search for MF-VAR: For the first recursive sample the grid

search proceeds in three steps. Define:

Λ
(1)
1 =

{
0.01, 1.12, 2.23, 3.34, 4.45, 5.56, 6.67, 7.78, 8.89, 10

}
Λ

(1)
2 =

{
0.01, 1.12, 2.23, 3.34, 4.45, 5.56, 6.67, 7.78, 8.89, 10

}
Λ

(1)
3 =

{
1
}

Λ
(1)
4 =

{
2.23, 2, 7, 3.34, 4.3, 4.45, 5.56

}
Λ

(1)
5 =

{
2.23, 2, 7, 3.34, 4.3, 4.45, 5.56

}
The first grid is given by

Λ(1) = Λ
(1)
1 ⊗ Λ

(1)
2 ⊗ Λ

(1)
3 ⊗ Λ

(1)
4 ⊗ Λ

(1)
5 ,

where ⊗ denote the Cartesian product. Thus, we are fixing λ3 = 1 throughout. We

maximize ln p̂(Y1:T |Y−p+1:0,λ) with respect to λ ∈ Λ(1). By construction λ̂3 = 1. We retain

the argmax values λ̂4 = 2.7 and λ̂5 = 4.3.

In the second step we refine the grids for λ1 and λ2 as follows:

Λ
(2)
1 =

{
0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15

}
Λ

(2)
2 =

{
0.8, 1.3, 2.1, 2.8, 3.5, 4.3, 4.8, 5.2

}
.

Maximization of the MDD with respect to Λ(2) = Λ
(2)
1 ⊗Λ

(2)
2 ⊗{1.0}⊗{2.70}⊗{4.30} yields

λ̂ for the first recursive sample.

In the third step we reoptimize the choice of λ1 and λ2 for recursive samples 40, 75, 110,

and 151. In this step we use the following grids for λ1 and λ2:

Λ
(3)
1 =

{
0.05, 0.07, 0.09, 0.11, 0.13

}
Λ

(3)
2 =

{
2.1, 2.8, 3.5, 4.3, 4.8

}
.
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Hyperparameter Grid Search for QF-VAR: For the QF-VAR we are also fixing

λ3 = 1. The grids for λ1 and λ2 are given by the 40 equally-spaced points on the interval

[0.01, 10]. The grids for λ4 and λ5 are given by the 40 equally-spaced points on the interval

[0.1, 10].

Initial Distribution p(z0|Y−p+1:0)

Recall that t = 1 corresponds to 1968:M1. Let T− = −11 such that t = T− corresponds

to 1967:M1. We then initialize zT− using actual observations. This is straightforward for

xm,T− , xm,T−−1, xm,T−−p because they are observed. We set xq,T− , xq,T−−1, xq,T−−p equal

to the observed quarterly values, assuming that during these periods the monthly within-

quarter values simply equal the observed averages during the quarter. This provides us with

a distribution for p(zT−) that is simply a point mass. We then set Φ and Σ equal to their

respective prior means and apply the Kalman filter for t = T− + 1, . . . , 0 to the state-space

system described in (5.2) and (5.7), updating the beliefs about the latent state zt with

pre-sample observations YT−:0. In slight abuse of notation, we denote the distribution of zt

obtained after the period 0 updating by p(z0|Y−p+1). Note that this distribution does not

depend on the “unknown” parameters Φ and Σ, because the Kalman filter iterations were

implemented based on the prior means of these matrices.

Compact State-Space Representation

As discussed in the main text, the computational efficiency of the simulation-smoother

step in the Gibbs sampler can be improved by eliminating, for t = 1, . . . , Tb, the monthly

observations xm,t from the state vector zt that appears in the measurement equation (5.7).

We begin by re-ordering the lags of xt and the VAR coefficients in (5.1) to separate lags of

xm,t from lags of xq,t. Define the pnm × 1 vector zm,t and pnq × 1 vector zq,t as

z′m,t =
[
x′m,t, . . . , x

′
m,t−p+1

]
, z′q,t =

[
x′q,t, . . . , x

′
q,t−p+1

]
.
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In a similar manner, define the nm × pnm matrix Φmm, the nm × pnq matrix Φmq, the

nq × pnm matrix Φqm, and the nq × pnq matrix Φqq such that (5.1) can be rewritten as[
xm,t
xq,t

]
=

[
Φmm Φmq

Φqm Φqq

] [
zm,t−1

zq,t−1

]
+

[
Φmc

Φqc

]
+

[
um,t
uq,t

]
. (5.29)

Recall that for t ≤ Tb, all the monthly series are observed. Thus, ym,t = xm,t and, in slight

abuse of notation, zm,t−1 = ym,t−p:t−1. Now define st = [x′q,t, z
′
q,t−1]′ and notice that based

on the second equation in (5.29), one can define matrices Γs, Γzm, Γc, and Γu such that we

obtain a state-transition equation in companion form

st = Γsst−1 + Γzmym,t−p:t−1 + Γc + Γuuq,t. (5.30)

The measurement equation for the monthly series takes the form

ym,t = Λmsst + Φmmym,t−p:t−1 + Φmc + um,t. (5.31)

Finally, the measurement equation for the quarterly series can be expressed as

yq,t = Mq,tΛqsst, (5.32)

where the matrix Λqsst averages xq,t, xq,t−1, and xq,t−2 and Mq,t is a time-varying selection

matrix that selects the elements of Λqsst that are observed in period t. In sum, (5.30),

(5.31), and (5.32) provide an alternative state-space representation of the MF-VAR that

reduces the dimension of the state vector from np to nq(p + 1). In this alternative repre-

sentation, the “measurement errors” um,t in (5.31) are correlated with the innovations uq,t

in the state-transition equation (5.30). Moreover, the lagged observables ym,t−p:t−1 directly

enter the state-transition and measurement equations. Since these observables are part of

the t − 1 information, the modification of the Kalman filter and simulation smoother is

straightforward.

At the end of period t = Tb, we switch from the state-space representation in terms

of st = [x′q,t, . . . , x
′
q,t−p]

′ to a state-space representation in terms of z̃t = [z′t, x
′
t−p] =
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[x′t, . . . , x
′
t−p]

′.2 In the forward pass of the Kalman filter, let ŝt|t = E[st|Y−p+1:t] and

P st|t = V[st|Y−p+1:t] (omitting (Φ,Σ) from the conditioning set). Since xm,t, . . . , xm,t−p+1 is

known conditional on the Y−p+1:t, we can easily obtain ˆ̃zt|t = E[z̃t|Y−p+1:t] by augmenting

ŝt|t with ym,t, . . . , ym,t−p. Moreover, P z̃t|t = V[z̃t|Y−p+1:t] can be obtained by augmenting

P st|t by zeros, to reflect that xm,t, . . . , xm,t−p are known with certainty. In the backward

pass of the simulation smoother we start out with a sequence of draws from z̃T |Y−p+1:T

and z̃t|(Z̃t+1:T , Y−p+1:T ) for t = T − 1, . . . , Tb + 1. Let ˆ̃zt|T and P z̃t|T denote the mean and

variance associated with this distribution. At t = Tb we convert the conditional mean and

variance of z̃Tb into a conditional mean and variance for sTb . This is done by eliminating

all elements associated with xm,t, . . . , xm,t−p.

5.6.2 Construction of Real-Time Data Set

The eleven real-time macroeconomic data series are obtained from the ALFRED database

maintained by the Federal Reserve Bank of St. Louis. Table 5.6.2-1 summarizes how the

series used in this paper are linked to the series provided by ALFRED.

We construct two sequences of dates that contain the set of forecast origins (Tmin, . . . , Tmax).

One sequence contains the last day of each month, and the other sequence will comprise

the Greenbook forecast dates. ALFRED provides a publication date for each data vintage.

We wrote a computer program that selects for every forecast origin, the most recent AL-

FRED vintage for each of the eleven variables and combines the series into a single data

set. This leaves us with a real-time data set for each forecast origin. Based on the missing

values in each real-time data set, we construct the selection matrices Mt, t = Tb + 1, . . . , T ,

that appear in (5.7). The patterns of missing values are summarized in Tables 5.1 and 5.4.

Greenbook forecasts are also obtained from the ALFRED database.

2 We augment the state vector zt in (5.2) and (5.7) by an additional lag of xt to ensure that st is
a subvector of the resulting z̃t. This augmentation requires a straightforward modification of the state-
transition equation (5.2) and the measurement equations (5.7).
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Table 5.3: ALFRED Series Used in Analysis

Time Series ALFRED Name

Gross Domestic Product (GDP) GDPC1
Fixed Investment (INVFIX) FPIC1
Government Expenditures (GOV) GCEC1
Unemployment Rate (UNR) UNRATE
Hours Worked (HRS) AWHI
Consumer Price Index (CPI) CPIAUCSL
Industrial Production Index (IP) INDPRO
Personal Consumption Expenditure (PCE) PCEC96
Federal Fund Rate (FF) FEDFUNDS
Treasury Bond Yield (TB) GS10
S&P 500 (SP500) SP500

Some of the vintages of PCE and INVFIX extracted from ALFRED were incomplete.

The recent vintages of PCE and INVFIX from ALFRED do not include data prior to 1990 or

1995 (depending on the vintages). However, the most recent data for PCE and INVFIX can

be obtained from BEA or NIPA, say, from 1/1/1967 to 1/1/2012. Let us consider PCE for

illustration. For the vintages between 12/10/2003 and 6/25/2009, data start from 1/1/1990,

and for the vintages between 7/31/2009 and the present, data start from 1/1/1995. First,

we compute the growth rates from the most recent data. Based on the computed growth

rates, we can backcast historical series up to 1/1/1967 using the 1/1/1990 (1/1/1995) data

points as initializations. We think this is a reasonable way to construct the missing points.

We eliminated 4 of the 151 samples (28, 29, 33, 145) because the vintages for PCE and

INVFIX were incomplete. In principle, we could backcast as for the other vintages, but we

took a shortcut.

Table 5.4 lists exceptions for the classification of information sets for specific forecast

origins.
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Table 5.4: Illustration of Information Sets: Exceptions

Exceptions E0: January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M10 X X X X X X X X QAv QAv QAv
Q4 M11 X X X X X X X X QAv QAv QAv
Q4 M12 X X X X ∅ X X X QAv QAv QAv
Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E1: February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M11 X X X X X X X X QAv QAv QAv
Q4 M12 X X X X X X X X QAv QAv QAv
Q1 M1 X X X X ∅ X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E2: March (+2 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv
Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X ∅ X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the variable is missing. X denotes monthly observation and QAv denotes quarterly

average. “+0 months” group: January, April, July, October; “+1 month” group: February, May, August,

November; “+2 month” group: March, June, September, December. The table illustrates exceptions that

arise due to an occasional two-month publication lag for PCE. Exception E0 occurs for 28 out of 151 recursive

samples (1, 4, 7, 10, 13, 16, 19, 22, 28, 37, 43, 52, 61, 64, 73, 79, 85, 88, 97, 106, 109, 115, 124, 130, 133,

139, 145, 151). Exception E1 occurs for 14 out of 151 recursive samples (8, 20, 44, 53, 56, 68, 80, 89, 98,

101, 104, 116, 119, 140). Exception E2 occurs for 5 out of 151 recursive samples (21, 27, 48, 51, 78).
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5.6.3 Additional Empirical Results

11-Variable VAR, End-of-Month Forecasts

Table 5.5 provides numerical values for the RMSEs attained by the eleven-variable MF-

VAR.

Figure 5.7 compares the 11-variable MF-VAR forecasts to quarterly-frequency AR(2) fore-

casts.

Figure 5.8 depicts recursive means of h = 1 and h = 8 step-ahead mean forecasts (setting

future shocks equal to zero). Each hairline corresponds to a separate run of our MCMC

algorithm. In each run, we generate 20,000 draws and discard the first 10,000 draws. We

plot Monte Carlo averages based on the subsequent 500, 1,000, 1,500, . . ., 10,000 draws.

The units on the y-axis are percentages. With the exception of the eight-quarter-ahead

federal funds rate forecast, the Monte Carlo variation is below one basis point and negligible

compare to the overall forecast error.
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Table 5.5: RMSEs for 11-Variable MF-VAR

Horizon UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

+0 Months

1 0.21 0.50 0.57 0.99 0.55 0.21 0.17 3.05 0.57 1.73 0.80

2 0.47 0.80 0.61 1.45 0.69 0.69 0.43 7.93 0.79 2.45 0.75

3 0.80 0.98 0.64 1.71 0.74 1.10 0.61 8.04 0.86 2.86 0.74

4 1.12 1.01 0.62 1.72 0.72 1.45 0.70 7.97 0.88 2.85 0.77

5 1.40 0.96 0.64 1.66 0.69 1.78 0.79 7.72 0.86 2.77 0.78

6 1.63 0.91 0.64 1.59 0.68 2.08 0.86 7.72 0.83 2.66 0.74

7 1.84 0.87 0.63 1.56 0.65 2.31 0.89 7.98 0.79 2.54 0.69

8 2.00 0.85 0.63 1.54 0.64 2.50 0.94 7.82 0.79 2.59 0.79

+1 Month

1 0.15 0.39 0.33 0.98 0.49 0.07 0.08 1.24 0.57 1.53 0.81

2 0.44 0.79 0.62 1.44 0.71 0.55 0.34 7.97 0.79 2.39 0.75

3 0.75 0.97 0.64 1.71 0.75 0.93 0.53 7.98 0.86 2.86 0.75

4 1.07 1.01 0.62 1.72 0.73 1.29 0.63 7.98 0.88 2.87 0.75

5 1.36 0.98 0.63 1.69 0.70 1.64 0.74 7.77 0.86 2.79 0.72

6 1.61 0.93 0.62 1.61 0.67 1.95 0.80 7.75 0.83 2.70 0.75

7 1.81 0.88 0.64 1.59 0.66 2.20 0.82 7.84 0.82 2.59 0.74

8 1.98 0.86 0.63 1.56 0.66 2.40 0.86 7.84 0.80 2.59 0.77

+2 Months

1 0.08 0.30 0.20 0.73 0.38 0.00 0.00 0.00 0.50 1.41 0.81

2 0.30 0.60 0.60 1.15 0.67 0.39 0.38 7.05 0.68 2.06 0.77

3 0.59 0.90 0.62 1.63 0.75 0.76 0.61 8.02 0.84 2.77 0.76

4 0.92 1.01 0.62 1.72 0.74 1.12 0.72 7.84 0.89 2.89 0.76

5 1.23 0.99 0.62 1.67 0.70 1.50 0.81 7.79 0.86 2.82 0.71

6 1.50 0.93 0.63 1.60 0.68 1.81 0.90 7.84 0.85 2.72 0.74

7 1.72 0.89 0.64 1.58 0.66 2.08 0.87 7.74 0.82 2.63 0.77

8 1.90 0.86 0.62 1.58 0.65 2.27 0.87 7.94 0.81 2.57 0.76

All Forecasts

1 0.16 0.40 0.40 0.91 0.48 0.13 0.11 1.90 0.55 1.56 0.81

2 0.41 0.74 0.61 1.35 0.69 0.56 0.39 7.67 0.75 2.31 0.76

3 0.72 0.95 0.63 1.68 0.75 0.94 0.59 8.01 0.85 2.83 0.75

4 1.04 1.01 0.62 1.72 0.73 1.30 0.68 7.93 0.88 2.87 0.76

5 1.33 0.98 0.63 1.67 0.70 1.65 0.78 7.76 0.86 2.79 0.74

6 1.58 0.92 0.63 1.60 0.68 1.95 0.86 7.77 0.84 2.69 0.74

7 1.79 0.88 0.64 1.57 0.66 2.20 0.86 7.85 0.81 2.59 0.73

8 1.96 0.86 0.63 1.56 0.65 2.39 0.89 7.87 0.80 2.58 0.77

Notes: RMSEs for UNR (%), FF (annualized %), and TB (annualized %) refer to forecasts of levels. The

remaining RMSEs refer to forecasts of quarter-on-quarter growth rates in percentages.
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Figure 5.7: Relative RMSEs of MF-VAR versus QF-AR2
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Figure 5.8: Convergence
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Notes: The figure depicts recursive means of h = 1 and h = 8 step-ahead mean forecasts (setting future

shocks equal to zero). Each hairline corresponds to a separate run of our MCMC algorithm. In each run,

we generate 20,000 draws and discard the first 10,000 draws. We plot Monte Carlo averages based on the

subsequent 500, 1,000, 1,500, . . ., 10,000 draws. The units on the y-axis are percentages.
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Figure 5.9: Relative RMSEs of 4-Variable MF-VAR versus QF-VAR
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RMSEs for 4-Variable MF VAR

We also consider a four-variable MF-VAR based on one quarterly series and three monthly

series. The three monthly series are the Consumer Price Index (CPI), Unemployment Rate

(UNR), and Federal Funds Rate (FF). The quarterly series is Real GDP. Real GDP and CPI

enter the MF-VAR in log levels, whereas UNR and FF are simply divided by 100 to make

their scale comparable to the scale of the two other variables. As for the eleven-variable

VAR, the number of lags is set to six.

Figure 5.9 reports RMSE ratios for the four-variable MF-VAR versus a four-variable

QF-VAR using the end-of-month sample. The results are qualitatively similar to the ones

reported in Figure 5.2. In general, the within-quarter monthly information of the MF-VAR

increases the forecast accuracy compared to the QF-VAR. However, for GDP growth and

the federal funds rate, these improvements are not as long-lived as in the eleven-variable

setting.
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11-Variable MF-VAR End-of-Month Density Forecasts

The MF-VAR generates an entire predictive distribution for the future trajectories of the

eleven macroeconomic variables. While, strictly speaking, predictive distributions in a

Bayesian framework are subjective, it is desirable that predicted probabilities are consis-

tent with observed frequencies if the forecast procedure is applied in a sequential setting.

To assess the MF-VAR density forecasts, we construct probability integral transformations

(PITs) from (univariate) marginal predictive densities. The probability integral transfor-

mation of an h-step ahead forecast of yi,t+h based on time t information is defined as

zi,h,t =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:t)dỹi,t+h. (5.33)

PITs, sometimes known as generalized residuals, are relatively easy to compute and facilitate

comparisons among elements of a sequence of predictive distributions, each of which is

distinct in that it conditions on the information available at the time of the prediction.

For h = 1 the zi,h,t’s are independent across time and uniformly distributed: zi,h,t ∼
iidU [0, 1]. For h > 1 the PITs remain uniformly distributed but are no longer independently

distributed.

Figure 5.10 displays histograms for the PITs based on density forecasts from the MF-

VAR and the QF-VAR using the end-of-month sample. The PITs are computed from the

empirical distribution of the simulated trajectories YT+1:T+H . To generate the histogram

plots, the unit interval is divided into J = 5 equally sized subintervals, and we depict the

fraction of PITs (measured in percent) that fall in each bin. Since, under the predictive

distribution, the PITs are uniformly distributed on the unit interval, we also plot the 20%

line. For h = 1 (nowcast) and h = 2 (forecast for next quarter) the frequency of MF-VAR

PITs falling in each of the five bins is close to 20% for inflation, unemployment, and output

growth, indicating that the predictive densities are well calibrated. The federal funds rate

density forecasts, on the other hand, appear to be too diffuse, because of the small number

of PITs falling into the 0-0.2 and 0.8-1 bins. Over longer horizons, specifically for h = 4

and h = 8, the deviations from uniformity become more pronounced for all the series.

The federal funds rate density forecasts remain too diffuse, and the MF-VAR tends to

overpredict GDP growth and underpredict unemployment. For the QF-VAR the deviations

from uniformity generally tend to be larger than for the MF-VAR forecasts.
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Figure 5.10: PIT Histograms for 11-Variable VARs
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Notes: Probability integral transformations for forecasts of inflation (INF), unemployment rate (UNR),

federal funds rate (FF), and GDP growth (GDP). The bars represent the frequency of PITs falling in each

bin. The solid line marks 20%.
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Figure 5.11: RMSEs of 11-Variable MF-VAR versus Greenbook
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Notes: 22nd and 38th samples are eliminated because the vintages for PCE were incomplete.

11-Variable MF-VAR Forecasts: Comparison with Greenbook Forecasts

Data Set. We compare the MF-VAR forecasts to Greenbook forecasts, prepared by the

staff of the Board of Governors for the FOMC meetings. Greenbook forecasts are publicly

available with a five-year delay. The FOMC holds eight regularly scheduled meetings during

the year and additional meetings as needed. Our comparison involves 63 Greenbook forecast

dates from March 19, 1997, to December 8, 2004. Period t = 1 corresponds to 1968:M1.

We construct the real-time data set for the Greenbook comparison as in Section 5.3.2 with

one important exception. Financial variables are available in daily frequency, but typically

their monthly averages are not yet available at the Greenbook publication dates. Since

up-to-date information from the financial sector is potentially very important for short-

run forecasting, we compute estimates for these variables based on weighted within-month

averages of daily data up to the forecast origin. More specifically, we proceed as follows.

Assume that there are four days in a month and denote the daily interest rate as rτ . Imagine

that at the forecast origin, only r1 and r2 are available. We replace the missing monthly

interest rate by the expected monthly average (r1 + 3r2)/4 and include a measurement

error with variance 5σ̂2
r/16, where σ̂2

r is the sample variance of past rτ − rτ−1’s. We do not

group the Greenbook publication dates based on the availability of within-quarter monthly

observations when computing forecast error statistics.

MF-VAR versus Greenbook Forecasts. We proceed by comparing the VAR forecasts
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Figure 5.12: RMSEs of 11-Variable MF-VAR, QF-VAR, and QF-VAR+
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Notes: The MF-VAR aligns the information that was available to the staff of the Board of Governors.

The recursive estimation of the MF-VAR is repeated 62 times. The 22nd sample is eliminated because the

vintages for PCE were incomplete.

to Greenbook forecasts. Results are plotted in Figure 5.11, which depicts absolute RM-

SEs for quarter-on-quarter GDP growth (annualized), CPI inflation (annualized), and the

unemployment rate. We are pooling the forecast errors from all estimation samples. At

the nowcast horizon h = 1, the Greenbook forecasts and the MF-VAR forecasts for GDP

growth and the unemployment rate attain roughly the same RMSE. For horizons h ≥ 3, the

MF-VAR produces more accurate output growth forecasts, while the Greenbook contains

more precise unemployment rate predictions. In regard to inflation, the Greenbook forecasts

dominate the MF-VAR forecasts at all horizons. As in the case of the end-of-month sam-

ples, the short-run forecasts from the MF-VAR attain a smaller RMSE than the QF-VAR

forecasts. While the QF-VAR inflation forecasts slightly dominate the MF-VAR forecasts

for horizons h = 4 and h = 5, the MF-VAR GDP growth and unemployment rate forecasts

are more accurate than the QF-VAR forecasts at all horizons. A similar pattern also holds

true for the remaining seven variables (not depicted in the figure). The MF-VAR forecasts

are as good as the QF-VAR forecasts in the long run and substantially more accurate for

short horizons.

As a low-brow alternative to the MF-VAR analysis, a forecaster with access to external

nowcasts could simply condition the QF-VAR forecasts on these nowcasts to improve the
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short-horizon forecast performance of the QF-VAR. In the following experiment, we assume

that the forecaster is able to utilize the Greenbook nowcasts for quarterly GDP growth,

inflation, and unemployment.3 We refer to the resulting empirical model as QF-VAR+ and

it is implemented as follows: when simulating T + 1 draws from the predictive distribution

of the QF-VAR, the forecaster uses one iteration of the Kalman filter to condition the

simulated trajectories treating the nowcasts as actual observations. A detailed discussion

of this procedure in the context of dynamic stochastic general equilibrium (DSGE) model

forecasts is provided in Del Negro and Schorfheide (2013). The RMSEs for the QF-VAR+

are also plotted in Figure 5.11. With respect to GDP growth and inflation, the benefit

of including the external nowcast into the QF-VAR is short-lived. While for h = 1 the

QF-VAR+ attains the Greenbook RMSE, for horizons > 1 the performance resembles that

of the QF-VAR. For the unemployment forecasts, the improvement in forecast performance

extends to horizons h > 1. In fact, the RMSEs for the MF-VAR and the QF-VAR+ are

quite similar. On balance, the MF-VAR compares well against a QF-VAR augmented by

current-quarter nowcasts. A comparison for all 11 variables is provided in Figure 5.12.

3We thank Jonathan Wright for suggesting this experiment to us. We do not update the posterior

distribution of the QF-VAR parameters in view of the additional information.
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