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Indirect Detection of Axonal Architecture With Q-Space Imaging

Abstract
Evaluating axon morphology would provide insights into connectivity, maturation, and disease pathology.
Conventional diffusion MRI can provide metrics that are related to axon morphology, but cannot measure
specific parameters such as mean axon diameter (MAD) and intracellular fraction (ICF). Q-space imaging
(QSI) is an advanced diffusion MRI technique that may be able to provide more information on axon
morphology. However, QSI has several limitations that affect its implementation and accuracy.

The main objective of this dissertation was to address these limitations and to evaluate the potential of QSI to
accurately assess axon morphology. First, a custom-built high-amplitude gradient coil was used to address the
limitations in the maximum gradient amplitude available with commercial systems. Second, to understand the
relationship between axon morphology and QSI, simulations were used to investigate the effects of the
presence of both extracellular and intracellular signals (ECS and ICS) as well as variation in cell size and
shape. Third, three QSI-based methods were designed provide specific measures of axon morphology which
have not been reported before.

The maximum amplitude of the custom gradient coil was 50 T/m that, for the first time, allowed for sub-
micron displacement resolution while fulfilling the short gradient approximation. This enabled near-ideal QSI
experiments to be performed. QSI experiments on excised mouse spinal cords showed good correlation with
histology, but overestimated MAD. Simulations showed that axon morphology was the dominant effect on
QSI and suggested that the presence of ECS and ICS signals may complicate interpretation.

Three methods were designed to account for signal in ECS and ICS: two relied on a two-compartment model
of the displacement probability density function and the echo attenuation at low q-values, and a third varied
the gradient duration to differentiate diffusion in ECS from ICS. All three methods provided estimates of
MAD and ICF that showed better agreement with histology than QSI. The methods were also evaluated
implementation on a clinical scanner.

This dissertation demonstrated the sensitivity of QSI to axon morphology and showed the feasibility of three
methods to accurately estimate MAD and ICF. Further investigation is warranted to study future applications.
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Abstract 

INDIRECT DETECTION OF AXONAL ARCHITECTURE 

WITH Q-SPACE IMAGING 

Henry H. Ong 

Advisor: Felix W. Wehrli, Ph.D. 

 

Evaluating axon morphology would provide insights into connectivity, maturation, 

and disease pathology. Conventional diffusion MRI can provide metrics that are related 

to axon morphology, but cannot measure specific parameters such as mean axon diameter 

(MAD) and intracellular fraction (ICF). Q-space imaging (QSI) is an advanced diffusion 

MRI technique that may be able to provide more information on axon morphology. 

However, QSI has several limitations that affect its implementation and accuracy.  

The main objective of this dissertation was to address these limitations and to 

evaluate the potential of QSI to accurately assess axon morphology. First, a custom-built 

high-amplitude gradient coil was used to address the limitations in the maximum gradient 

amplitude available with commercial systems. Second, to understand the relationship 

between axon morphology and QSI, simulations were used to investigate the effects of 

the presence of both extracellular and intracellular signals (ECS and ICS) as well as 

variation in cell size and shape. Third, three QSI-based methods were designed provide 

specific measures of axon morphology which have not been reported before.  

The maximum amplitude of the custom gradient coil was 50 T/m that, for the first 

time, allowed for sub-micron displacement resolution while fulfilling the short gradient 
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approximation. This enabled near-ideal QSI experiments to be performed. QSI 

experiments on excised mouse spinal cords showed good correlation with histology, but 

overestimated MAD. Simulations showed that axon morphology was the dominant effect 

on QSI and suggested that the presence of ECS and ICS signals may complicate 

interpretation.  

Three methods were designed to account for signal in ECS and ICS: two relied on 

a two-compartment model of the displacement probability density function and the echo 

attenuation at low q-values, and a third varied the gradient duration to differentiate 

diffusion in ECS from ICS. All three methods provided estimates of MAD and ICF that 

showed better agreement with histology than QSI. The methods were also evaluated 

implementation on a clinical scanner.  

This dissertation demonstrated the sensitivity of QSI to axon morphology and 

showed the feasibility of three methods to accurately estimate MAD and ICF. Further 

investigation is warranted to study the future applications. 
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Chapter 1: Introduction 

1.1 General background on neuro-physiology 

 The nervous system can be thought of as a network that allows an organism to 

interact with its environment. This network contains sensory components that sense 

environmental stimuli and motor components that control both voluntary and involuntary 

movement. The cells of the nervous system can be classified under two major categories: 

neurons and glia. Neurons are nerve cells that receive, conduct and transmit electric 

signals. Glia generally support neurons in various mechanical, metabolic, and phagocytic 

functions. Understanding the basic structure and function of neurons and glia will provide 

the necessary context for understanding the anatomy of the nervous system. 

There are about 100 billion neurons in the nervous system in many different 

shapes and sizes. Nevertheless, all neurons share a basic structure: a cell body with two 

types of processes that extend from it. Like other cells, the cell body contains a nucleus 

and other structures related to metabolism and protein synthesis. The two processes can 

be divided into receiving processes (dendrites) or transmitting processes (axons). 

Dendrites are portions of the neuron which receive signals from other neurons. In general, 

a single neuron has many dendrites. The axon is the portion of the neuron where electric 

signals are transmitted to other neurons. Each neuron has only one axon which extends 

out from one neuron and contacts the dendrites of other neurons. Axons can vary greatly 

in length and diameter, which effects how efficiently the signals are conducted.   

Axons can be thought of as cables conducting electrical activity. The efficiency of 

conducting a signal over distance, or conduction velocity, is an important physiologic 

property as it determines the speed at which information can be transmitted. In general, 



 2

the conduction velocity depends on the internal electric resistance of the axon; more 

specifically, higher resistance implies lower conduction velocity. Analogous to the 

resistance of a wire being inversely proportional to its cross-sectional area, increasing 

axon diameter lowers internal resistance. Therefore larger axons tend to have higher 

conduction velocities. Insulation is also an important determinant of conduction velocity. 

Insulation around wires prevents electric current from leaking out of the wire and into a 

surrounding conducting environment, as it is the case for axons, so that the current can 

propagate along the wire. The insulation for an axon is a lipoprotein sheath called myelin. 

Myelin wraps around axons and prevents electrical signals from leaking out of the axon. 

Myelinated axons therefore have much higher conduction velocities (~100 m/s) than 

unmyelinated axons (~5 m/s). Finally, it should be noted that while larger axon diameter 

does increase conduction velocity, there are anatomic limitations on axon size. 

Myelination therefore allows smaller axons to have higher conduction velocities. 

 

1.1.1 Gross anatomy of the central nervous system 

 While essentially a continuum, based on gross anatomy, the nervous system can 

be divided into parts: the central nervous system (CNS) and peripheral nervous system 

(PNS). The CNS comprises of the brain and spinal cord, which contains the majority of 

neuronal cell bodies. The spinal cord is an extension of the brain and is connected to the 

brainstem at the base of the brain. The PNS comprises of mainly nerves, which are 

generally the axons of sensory and motor neurons, connecting the brain and spinal cord to 

other parts of the body. 
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Within the skull and spine, the brain and spinal cord are essentially floating in a 

fluid-filled sack. The sack is known as the meninges and is comprised of three 

membranes. The fluid is called cerebrospinal fluid (CSF). The major functions of CSF 

are to cushion the brain and spinal cord within their rigid bone enclosures and to maintain 

a suitable environment for neural tissue by providing an exit pathway into the blood 

stream for solutes, metabolites and proteins, mirroring the lymphatic system in the rest of 

the body. 

 Within the CNS, two tissue types can be visually identified especially with freshly 

excised tissue: white matter (WM) and gray matter (GM). WM and GM are connected at 

the cellular level and the distinction between the two is based on the structure of the 

neuron. WM consists primarily of axons which protrude from the cell bodies of neurons 

and allow for electric impulses to be conducted to and from other neurons. As discussed 

earlier, axons are generally surrounded by a myelin sheath, which has a white glistening 

color – this gives WM its white appearance. GM consists primarily of the cell bodies of 

neurons and therefore has a grayish color. In the brain, GM is concentrated on the surface, 

e.g. cerebral cortex, and in clusters below the surface called subcortical nuclei. The non-

GM space is generally occupied by WM. In the spinal cord, the WM is found on the 

surface of the cord and surrounds a core of GM. 

 

1.1.2 Spinal cord anatomy 

External anatomy 

 The spinal cord resides within the spine, which is made up of many vertebrae 

separated by cartilaginous intervertebral discs. The vertebrae are numbered and divided 
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into four anatomical regions. Starting from the base of the skull, these regions are, in 

descending order, cervical, thoracic, lumbar, and sacral. Within each region, each 

vertebra can be labeled numerically, e.g. C5 or T8. The spinal cord can also be divided 

and numbered into similar segments. Most mammals such as rats, mice and pigs, which 

are used in the work presented here, have similar spine and spinal cord divisions (1).  

 

Internal anatomy 

The spinal cord, as mentioned previously, has WM on the outer surface of the 

cord, which surrounds a core of GM. Looking at a cross-section of spinal cord at the mid-

cervical level, the core of GM has a butterfly- or H-shape (Figure 1.1). The spinal cord 

has bilateral symmetry, which means that the left side has the same anatomy as the right 

side. The GM can be divided into the dorsal and ventral horns as shown in Figure 1.1. 

The neurons in the dorsal and ventral horns have axons that project out of the cord. The 

dorsal and ventral horns can be further divided into sub-regions based on functional 

anatomy. The details are beyond the scope of this dissertation and can be found 

elsewhere (2-4). 

The spinal cord WM can be divided up into three major areas called columns or 

funiculi (Figure 1.1). The dorsal column is located between the dorsal horns, the lateral 

column is located between the dorsal and ventral horns, and the ventral column is located 

between the ventral horns. In general, the spinal cord WM contains axons that run to and 

from the brain. Axons that have a common origin and convey similar information to a 

common destination can be grouped together into tracts or fasciculi. In the spinal cord, 

these tracts are well organized, but there is significant overlap and the boundaries are 
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somewhat arbitrary. There is a wide range of axon diameters from ≤ 1 μm to about 10 μm, 

although diameters of ≤ 3 μm predominate (4).  Although detailed studies in human 

spinal cord are few, the data suggests that different WM tracts have different axon 

diameter distributions (4, 5). Most tracts are longitudinal, i.e. run along the spinal cord. 

However, there are a minority of tracts that are oblique, e.g. the tracts leading from the 

ventral horn to ventral root, which are not covered here. Longitudinal tracts can be 

divided into ascending and descending tracts. Ascending tracts transmit information to 

the brain, while descending tracts transmit information from the brain. WM tract 

organization and size will change along the length of the spinal cord as axon fibers leave 

and enter the cord. The following description of WM tracts focuses on the mid-cervical 

region as it is most relevant to the work in this dissertation. 

 

 

 

Figure 1.1. Schematic of mid-cervical human spinal cord cross-section showing internal 
anatomy. Also shown are approximate WM tract location: fasciculus gracilis (FG), 
fasciculus cuneatus (FC), corticospinal tract (CST), rubrospinal tract (RST), 
spinothalamic tract (STT), reticulospinal tract (ReST), and vestibulospinal tracts (VST). 
Pink tracts are ascending and blue tracts are descending. 
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While there are dozens of known WM tracts in the spinal cord, only the seven 

tracts that are studied here will be described. These tracts were chosen to represent a wide 

range of mean axon diameters (MAD) and diameter distributions. WM tracts are 

generally named after the nuclei in the brain where they originate or where they terminate. 

Figure 1.1 shows the approximate relative position of the WM tracts in the human spinal 

cord at the mid-cervical level. WM tract locations can be different in human (2, 4) and rat 

(6-11). Due to the similarities in anatomy between rats and mice, it is assumed that the 

WM tract locations and function are the same between the two species (1). The seven 

tracts are described below: 

Fasciculus Gracilis (FG): An ascending tract that transmits sensory information 

on fine touch, proprioception or position sense, pressure and vibration. It begins in the 

caudal end of the spinal cord and terminates at the gracilis nucleus in the medulla 

oblongata of the brain stem. This tract generally transmits sensory information from the 

lower extremities. In both humans and rodents, the FG tract is located in the medial side 

of the dorsal column. 

 Fasciculus Cuneatus (FC): An ascending tract that transmits similar sensory 

information as the FG tract. It begins in the mid-thoracic level of the spinal cord and 

terminates at the cuneatus nucleus in the medulla oblongata of the brain stem. This tract 

generally transmits sensory information from the upper extremities. In both humans and 

rodents, the FC tract is located in the lateral side of the dorsal column next to the FG tract. 

Corticospinal tract (CST): Also known as the pyramidal tract, the CST is a 

descending tract that transmits signals from the brain controlling skilled voluntary 

movement. Most of the axons in this tract originate from the motor cerebral cortex in the 
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brain. In humans, the CST can be found in the lateral and ventral columns.  The lateral 

CST is found at all levels of the spinal cord while the ventral CST terminates at the mid-

thoracic level. In the rat, however, the CST is found only in the anterior region of the 

dorsal column, which, given its proximity to the ascending FG and FC tracts, suggests 

that it may be part of that animal’s sensory system (12).  Interestingly, in the pig, where 

manual dexterity is non-existent, the CST is not evident in the spinal cord (13). 

Rubrospinal tract (RST): Originating from red nucleus in the midbrain of the 

brain stem, the RST is a descending tract that that transmits signals facilitating flexor 

muscles and inhibiting extensor ones. It is generally found in the lateral column. It is well 

represented in lower mammals, but is less important in higher mammals where the CST 

is more developed. For example, in humans, the RST is small and only extends into the 

upper three cervical cord segments where it intermingles with the much larger lateral 

CST. In rats, however, the RST extends along the length of the spinal cord and is 

implicated in precise limb movements such as locomotion, reaching and grasping. 

Spinothalamic tract (STT): This is an ascending tract which transmits sensory 

information relating to pain, temperature and light touch. The STT is present at all levels 

of the spinal cord and terminates at the thalamus. In humans and rats, this tract is 

generally located in the ventral and lateral columns and is intermingled with the 

reticulospinal tract (see below). 

Reticulospinal tracts (ReST): The ReST is a collection of descending tracts that 

originate from the reticular formation, which is a collection of nuclei in the pons and 

medulla oblongata, and extends the length of the spinal cord. This tract transmits signals 

that adjust and regulate muscle reflexes during movement. This generally involves 
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changes in posture to maintain balance during a voluntary movement, e.g. raising one’s 

arms, and the signal is transmitted via the CST. In humans and rats, the ReST is located 

in the ventral column and shifts laterally while descending the spinal cord. 

Vestibulospinal tracts (VST): The VST is a collection of descending tracts that 

originate from the vestibular nuclei located at the junction between the pons and medulla 

oblongata. These nuclei are part of the vestibular system, which provides the sense of 

balance and body position information that allows for rapid compensatory movements in 

response to both self-induced and externally generated forces. Most of the tracts extend 

the length of the spinal cord, but one terminates at the mid-thoracic level. The tracts 

transmit signals that control antigravity muscles, i.e. muscles that continuously oppose 

gravity like the muscles that keep the lower jaw shut, and muscles that maintain balance 

and stabilize head and eye movements. In humans and rats, the VST is located in the 

ventral column. 

 

1.1.3 White matter pathology 

 Axon morphology plays an important role for normal signal conduction. Damage 

to axon or myelin integrity will compromise signal transmission and can lead to a variety 

of symptoms. It is not the purpose to describe WM pathology in general here, but rather 

to provide a description of the common changes that occur to axon morphology under 

pathologic conditions. The hallmarks of WM pathology are axon loss and demyelination 

and their causes include various diseases and trauma. 

 Axon loss is the disappearance of axons. These axons may or may not reappear. 

The loss of axons leads to abnormal disconnections between neurons and will cause 



 9

interruptions in neural signaling. Demyelination is the partial or full loss of myelin 

surrounding an axon. As described above, myelin acts as an insulator to promote efficient 

signal conduction. Demyelination will therefore disrupt neural signaling as electric 

impulses may not travel as fast or as far along the same axon. Depending on the root 

cause, axon loss and demyelination may be localized within a lesion or occur diffusely 

throughout WM tissue.  

 Brief descriptions of how disease and trauma affects axon morphology are given 

below. The most common WM disease is multiple sclerosis (MS) which afflicts 2.5 

million individuals world-wide (14). MS is an inflammatory disease in which the immune 

system attacks WM, leading to axon loss and demyelination. It is this WM damage that is 

the primary cause of clinical disability. Trauma can be any mechanical force applied to 

the CNS and can lead to tearing or even transection of axons (15). These injuries can cut-

off nutrient transport within the axon, leading to degeneration of the axon distal to the 

injury site. This type of axon loss is known as Wallerian degeneration.  

 

1.2 Histologic methods 

 Many details on neural architecture were given in the previous section and this 

knowledge comes primarily from histologic techniques. The developments in microscope 

design, tissue preparation and staining have allowed histology to become the standard 

technique to assess axonal architecture. The basic histologic protocol can be divided into 

three parts: tissue preparation, staining, and visualization. Full details on histologic 

methods can be found elsewhere (16) and a brief description will be given here.  
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 Tissue preparation usually begins with fixation, which not only prevents tissue 

degradation over time, but also preserves microstructure during histologic processing. In 

order to cut very thin sections, the tissue must be embedded in a harder material such as 

paraffin wax. Once embedded, tissue sections can be cut and mounted onto a microscope 

slide. Tissues generally need to be stained in order to visualize structure. There are a 

multitude of possible stains and the list continues to grow. Silver staining is a classic 

method that has been used to visualize neurons in their entirety. There are also dyes that 

form bonds with certain chemical groups within tissue, e.g. toluidine blue stains myelin a 

shade of blue-purple. Then there are immunohistochemical stains that rely on antibodies 

binding to specific proteins. The antibodies can be labeled with a dye or a fluorescent 

molecule. Depending on the staining method, light, electron, or fluorescent microscopes 

can be used for visualization. Image processing techniques can then be used for 

quantitative analysis. 

 Histology is a powerful and flexible technique to investigate axonal architecture. 

There are limitations, however, such as the impossibility of performing histology in vivo 

due to its destructive methods. Furthermore, as histology relies on visualizing thin tissue 

sections, 3D axonal architecture information is difficult to obtain. 

 

1.3 Magnetic resonance imaging 

 Magnetic resonance imaging (MRI) is a non-invasive imaging method widely 

used in medicine. Along with x-ray computed tomography (CT), it is the major imaging 

modality used in neuroimaging. An advantage MRI has is that it can describe an object in 

terms of many different properties such as relaxation, density, and diffusion, while CT 
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generally describes an object only in terms of its density. MRI’s richness in information 

comes from the fact that its signal is sensitive to a variety of phenomena such as 

molecular motion and variation in the local magnetic fields. As it will be described in this 

work, MRI experiments can be designed to infer information on axon morphology. A full 

account of MRI theory is beyond the scope of this dissertation chapter and can be found 

elsewhere (17, 18). However, a brief description of how spatial position is encoded with 

magnetic field gradients is given below. 

 The MR signal arises from the intrinsic magnetic moment and spin of certain 

nuclei. The hydrogen atom is most commonly used in MRI due to its abundance in the 

human body. When a hydrogen nucleus is placed in a magnetic field, its nuclear spin will 

begin to precess with a frequency governed by 

0Bγω =         (1.1) 

where ω is the Larmor frequency, γ is the nucleus specific gyromagnetic ratio, and B0 is 

the magnetic field strength. To encode for spatial information, a magnetic field gradient 

field is applied in addition to B0 and the Larmor frequency then becomes spatially 

dependent. When the gradient is turned on and off, spins at different spatial locations will 

have accrued different phases. Therefore, the phase of a spin will represent its spatial 

location. 

 In conventional MRI, a variety of image contrasts between soft tissues can be 

obtained by changing the acquisition parameters. For example, an image can be generated 

in which the primary contrast is determined by spin density. After it has been excited by a 

radio frequency pulse the MRI signal decays over time. This decay, or relaxation, is 

characterized by two time constants: transverse relaxation (T2) and longitudinal 
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relaxation (T1). Again, images can be generated in which the primary contrast is 

determined by T1 or T2 values (T1-weighted or T2-weighted). This is useful as different 

tissues have different T1 and T2 values (e.g. GM T1/T2 = 950/100 ms, and WM T1/T2 = 

600/80 ms (17)) and different images can be generated to highlight contrast between 

specific tissues. Furthermore, diseases such as cancer can change T1 and T2. Therefore 

relaxation contrasts can be used to emphasize tissue affected by pathology. The 

mechanisms for relaxation are intimately related to molecular motion (19) and T1 and T2 

contrast can be used to gain insight into tissue architecture and pathology. 

As a specific example, the role of MRI in the management and study of multiple 

sclerosis (MS) is discussed here. MRI aids in the diagnosis, monitoring of disease 

progression and treatment efficacy, and furthering the understanding of MS pathogenesis 

(14, 20-22). It can provide quantitative measures and is sensitive to subtle changes of the 

disease. Conventional MRI allows detection of MS lesions in neural tissue. These are 

typically hyperintense in proton density and T2-weighted, and hypointense in T1-

weighted images. However, correlations between lesion appearance or volume and 

clinical disability are moderate at best. Most attribute this to heterogeneity of MS 

pathogenesis and the lack of conventional MRI specificity for MS pathology such as 

axon loss, demyelination, remyelination, edema, inflammation, gliosis, or Wallerian 

degeneration (23-26). Further, tissue that appears normal with conventional MRI 

contrasts (so-called normal appearing white matter (NAWM) or normal appearing gray 

matter (NAGW)), has been shown to exhibit abnormal biochemical composition and 

microarchitecture (14, 27). As a consequence, advanced MRI techniques, such as 

functional MRI (28), magnetic resonance spectroscopy (29, 30), magnetization transfer 
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imaging (31, 32), and diffusion MRI (33-35) have been used to study MS as these 

techniques have shown to reveal changes in biochemical content and microarchitecture in 

MS lesions as well as in NAWM and NAGM, and thus may lead to more robust clinical 

correlations (23-26). 

 

1.3.1 Diffusion MRI 

 Due to the nature of nuclear spin precession, the spatial encoding which arises 

from the applied gradients can actually be removed by application of another gradient 

with opposite polarity. This process forms the basis of all diffusion MRI methods. Before 

discussing the technical aspects of diffusion MRI, a brief background based on Ref. (36) 

on molecular diffusion in biological tissues is given. 

 

Diffusion concepts 

 

 

 

 

 

Figure 1.2. (a) In 1D, RMS displacement = 2DΔ, where Δ is the diffusion time and D is 
the diffusion coefficient. In free diffusion, RMS displacement increases linearly with the 
square root of Δ. For hindered diffusion, the RMS displacement still increases linearly 
with Δ, but the slope is lower. For restricted diffusion of molecules in a confined space, 
the RMS displacement will initially increase, but then be limited by the size of the 
confinement. (b) In biological tissues, different obstacles modulate the free diffusion 
process. Diffusing molecules can be restricted in closed spaces such as cells (R). 
Diffusing molecules may also be hindered by obstacles that impede motion (H).  
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Molecular diffusion, also known as Brownian motion, refers to the random 

translational motion of molecules that results from the thermal energy associated with 

these molecules. Albert Einstein, in his early work, developed a theoretical framework to 

characterize this physical process (37). In a medium without any barriers, during a 

specific time interval, random molecular displacements obey a 3-D Gaussian distribution 

with zero mean. The root-mean-squared (RMS) displacement is statistically well 

characterized by a diffusion coefficient (D). This coefficient depends only on the mass of 

the molecules, the temperature, and the viscosity of the medium in which the molecules 

are diffusing. For example, for ‘free’ water molecules diffusing in water at 37 °C, D is 

equal to 3 × 10-5 cm2/s, which gives an average RMS displacement of 17 μm during a 

period of 50 ms (Figure 1.2a) – about 68% of the molecules will remain within a sphere 

of this diameter. 

 Diffusion MRI is particularly well suited at being sensitive to the RMS 

displacement of diffusing molecules. In effect, diffusing molecules are used to probe 

tissue structure at length scales well below the image resolution. During diffusion times 

of 50-100 ms, the RMS displacement of water molecules in brain tissues is about 1-15 

μm. The diffusing water molecules bounce off, cross, or interact with many tissue 

components such as cell membranes, fibers and macromolecules (Figure 1.2b). As 

movement of molecules is impeded by such obstacles, the actual RMS displacement is 

reduced when compared with free water and the displacement distribution is no longer 

Gaussian. A new diffusion coefficient, the apparent diffusion coefficient (ADC), is 

defined to characterize these displacements. It is important to note that unlike the case of 

free diffusion, there are new diffusion phenomena that can be defined in systems with 
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barriers to diffusion like biological tissues. Water molecules confined in closed spaces, 

such as cells, experience restricted diffusion in that the molecules cannot displace farther 

than the confines of the cell (Figure 1.2a). Water molecules diffusing between cells may 

be “slowed down” due the impediments to motion they encounter. These molecules 

experience hindered diffusion, which has a reduced RMS displacement compared with 

free water, but does not have an upper limit in displacements as does restricted diffusion 

(Figure 1.2a). The non-invasive observation of water-diffusion driven RMS displacement 

distributions in vivo provides insights into the microstructure and geometric organization 

of neural tissues, as well as the changes in these features with varying physiological and 

pathological states. 

 

Diffusion MRI applications 

The fundamental diffusion MR experiment is the pulsed-field gradient spin-echo 

(PGSE) experiment (38) and consists of a 90°-180° spin-echo pulse sequence where a 

pair of gradient pulses is inserted before and after the 180° RF pulse (Figure 1.3). The 

first gradient pulse encodes for spatial information and the second gradient pulse will 

remove this spatial encoding by reversing the accrued phase. If there were no diffusion, 

spins would not change spatial location between the two gradient pulses and the spatial 

encoding reversal would be complete, i.e. there will be no residual phase. However, if 

there were diffusion, spins would change spatial location between the two gradient pulses. 

Therefore, the second gradient pulse would not completely remove the spatial encoding 

imparted by the first gradient pulse and there would be residual phase. It is this residual 

phase that contains information on the displacements due to diffusion. 
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Diffusion MRI is sensitive to the architecture of neural tissues as the diffusion of 

water molecules is hindered by axon membranes, myelin, and intracellular and 

extracellular organelles (39). While it is believed that axon membranes provide the 

primary barrier to diffusion, there is evidence to suggest that myelin also modulates the 

ability for water to diffuse between the intracellular and extracellular spaces (39, 40). 

Structural changes due to pathology will affect how far and in what direction molecules 

diffuse. Therefore, diffusion MRI, which is sensitive to the average molecular 

displacement within an image voxel, has been used to study changes in axonal 

architecture due to pathology (33-35). The ability to assess regional axonal architecture 

has applications ranging from studying brain connectivity and maturation, to the study of 

WM diseases such as MS 

Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are the 

most common diffusion MRI techniques employed and are used to calculate ADC and 

mean diffusivity/fractional anisotropy (MD/FA), respectively. DWI and DTI provide a 

non-invasive means to provide indirect estimates of WM tract orientation and axon 

Figure 1.3. Schematic of a pulse-gradient spin-echo (PGSE) diffusion encoding 
sequence. Only diffusion gradients along the z-axis are shown. ADC is the analog-to-
digital converter. TE is echo time. Δ is the time between diffusion gradients and δ is the 
gradient duration. 
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integrity without explicitly resolving the structures (34, 36). The main difference between 

DWI and DTI is that DTI measures the orientation dependence of diffusion. It is 

important to note that both DWI and DTI fundamentally assume that the underlying 

diffuse is anisotropic free water diffusion, i.e. no barriers to water motion. Clearly, this 

notion is incorrect in biologic tissues. 

DWI has been used to investigate regional axon architecture. Schwartz et al. (9, 

10) performed ex vivo DWI of normal adult rat cervical spinal cords and computed 

transverse ADC (tADC) maps and longitudinal ADC (lADC) maps, i.e. ADC 

perpendicular and parallel to the WM tract. The authors compared tADC and lADC 

values to parameters such as axon diameter, and extra-cellular and intra-cellular space 

(ECS and ICS, respectively) fractions derived from histology of the same WM tracts. 

Interestingly, no correlation was found between tADC and axon diameter. However, a 

positive correlation was found between tADC with ECS fraction and axon spacing and a 

negative correlation was also found between axon count and myelin volume fraction. 

Such correlations are indicative of extra-cellular water mobility as the primary 

determinant of tADC, which is in agreement with the conjecture that signal attenuation at 

low diffusion encoding values (low b-values) is dominated by ECS water diffusion (41). 

Therefore, DWI and DTI may not provide direct information on ICS water diffusion. 

While DWI and DTI are both valuable clinical tools, neither has been 

demonstrated to provide specific information on axonal architecture such as MAD or 

ECS and ICS volume fractions, which could potentially provide insight into brain 

maturation or pathology. Such limitations may arise from the simplistic approach of DWI 

and the erroneous assumption of free diffusion, i.e. absence of barriers to molecular 
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diffusion, in the analysis of DTI. Furthermore, DWI and DTI may be limited by only 

being sensitive to ECS water diffusion. These limitations suggest the need for different 

diffusion MRI techniques. 

 
1.4 Q-space imaging 

 An alternative diffusion MRI technique used in this dissertation, q-space imaging 

(QSI), as proposed by Callaghan (42, 43) and by Cory & Garroway (44), does not assume 

any model of diffusion. As such, QSI more accurately describes water diffusion in 

biological tissues and has the potential to provide information on axonal architecture not 

amenable by conventional diffusion MRI techniques. 

 QSI allows assessment of microarchitecture by exploiting the regularity of 

restrictions to molecular diffusion in porous systems as applied to determine pore 

geometry in porous solids (45), the study of packed erythrocytes (46), and the assessment 

of axonal architecture (47-49). In WM tracts, the porous system consists of water 

diffusion restricted by axon membranes and myelin sheaths (39). The application of QSI 

to assess axonal architecture, where one extracts information such as MAD, should not be 

confused with the application of QSI to estimate axon fiber orientation in tractography, as 

used in techniques such as diffusion spectrum imaging (DSI) and q-ball imaging (QBI) 

(50, 51) in which multiple fiber orientations within a single voxel can be differentiated, in 

contrast to DTI. 

 As it will be discussed later, current QSI applications to study WM have several 

limitations that hinder its ability to accurately assess axonal architecture. If its limitations 

can be overcome, QSI may potentially provide valuable axonal architecture information 

that may aid in the assessment and treatment of WM diseases and injury.   Before the 
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limitation of QSI can be properly described, a summary of its underlying theory is given 

below. 

 

1.4.1 Theory 

The q-space experiment uses a pulsed-gradient sequence, such as PGSE (Figure 

1.3), with two diffusion-sensitizing gradients of amplitude G and duration δ, which are 

separated by a diffusion time Δ. For simplicity we assume the diffusion gradients along a 

single direction, arbitrarily labeled x. Typically, one measures the signal echo maximum 

while stepping the amplitude of the diffusion-sensitizing gradients. As a result of 

molecular diffusion, the echo maximum will decrease with increasing gradient amplitude 

and the function describing the evolution of the signal referred to as “echo attenuation.” 

In highly regular porous structures, the echo attenuation will exhibit maxima and minima 

and information about pore geometry can be directly read from these diffraction patterns 

(45). 

 For the following derivation to hold true, molecular diffusion must be minimal 

during the diffusion-sensitizing gradient pulses (short gradient pulse (SGP) 

approximation where δ << Δ). Given the conditional probability, ),'|( ΔxxP , that a 

molecule starting at location x is displaced to position x’ during the period Δ, the 

normalized echo attenuation is given as: 

[ ] ')'(exp),'|()(),( xxxxGxxxG xx ddiPE −⋅Δ=Δ ∫∫ γδρ    (1.2) 

where ρ(x) is the spin density at the starting location and Gx is the amplitude of the 

diffusion gradients. The argument )'( xxGx −⋅γδ  is thus the phase the spins accrue at the 
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end of their displacement. Eq. 1.2 can be simplified into a more useful form by defining a 

displacement probability density function (PDF) ∫ Δ+=Δ xRxxxR dPP ),|()(),( ρ , which 

expresses the probability that a molecule at any initial position is displaced along the 

gradient direction by x-  x' R =  during the period Δ. Consequently, Eq. 1.2 reduces to 

[ ]∫ ⋅Δ=Δ RRqRq diPE π2exp),(),(       (1.3) 

where xGq γδπ 1)2( −=  is the q-value with dimensions of inverse length units. It follows 

from Eq. 1.3 that the inverse FT of the echo attenuation with respect to q returns the 

displacement PDF. For the free diffusion case, it is known that the displacement PDF is a 

Gaussian (42).  

 In the case of molecules contained within a pore, diffusion leads to collisions with 

the pore wall; therefore the displacement PDF will reflect properties characteristic of the 

pore geometry. For example, consider a fluid constrained to a pore with a perfectly 

reflecting wall. Under conditions that Δ >> a2/2D where a is the characteristic pore 

dimension, most molecules will have collided with the wall during Δ. Assuming constant 

molecular density, the conditional probabilities become independent of initial position so 

that ),'|( ΔxxP  approaches )(x'ρ , or )( Rx +ρ , the pore molecular density function. 

Consequently, the displacement PDF becomes the autocorrelation function of the 

molecular density 

xxRxR dP )()(),( ρρ∫ +=∞→Δ       (1.4) 

from which pore geometry information can be extracted. Since the displacement PDF 

does not represent a single pore, only an average displacement probability from all pores 

within the imaging volume (typically a voxel) can be obtained in this manner. 
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As an illustrative example, a 1-D pore of rectangular molecular density function, 

e.g. fluid constrained to the space between parallel planes, would yield a triangular 

displacement profile, as a triangle function is the autocorrelation of a rect function. 

Notably, the full-width at half-maximum (FWHM) of the triangle profile function is 

precisely equal to the width of the rect function. Finally, the FT of the triangular 

displacement profile – the echo attenuation E(q) – would be a |sinc|2 function. 

The displacement PDF will be influenced by axonal architecture as axon 

membranes and myelin sheaths impede the motion of diffusing molecules such as water 

and hence affect its displacement probabilities, e.g. higher probability of displacement 

parallel as opposed to displacement perpendicular to WM fiber tracts. The displacement 

PDF has a particularly simple interpretation as long as the gradients are applied 

perpendicular to the axon fibers, which can be thought of as having a tubular geometry 

(52). The width of the displacement PDF, typically characterized by its FWHM, should 

correlate with the scale of restrictions which, in WM, is the mean axon diameter averaged 

over the imaging volume. Therefore, it is possible to estimate mean axon diameter as the 

FWHM. Other metrics that are used to characterize the displacement PDF include the 

peak value, otherwise known as the zero-displacement probability (ZDP), which is 

inversely related to FWHM and reflects the fraction of molecules that diffuse short 

distance or not at all, and kurtosis, i.e. the fourth moment of the displacement PDF, which 

is a measure of the degree of deviation from a Gaussian distribution and therefore reflects 

the degree of restriction to diffusion (48). Kurtosis may correlate with axon density and 

may provide insight to long-range diffusion behavior (53). 
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It is important to note that the displacement PDF is an empirical measurement, i.e. 

we are simply observing the average molecular displacement within an imaging volume. 

In order to interpret the features of the displacement PDF, one must compare it with the 

underlying tissue structure as seen with histology in order to understand how the 

structures impede water diffusion. Q-space simulations, on both simple circular axon 

models and histologic images, provide valuable insight into the effect of tissue structure 

on the displacement profile. In particular, axon models allow for the investigation of 

specific structure effects, like axonal degeneration or demyelination. With this knowledge, 

one can link structural attributes to displacement profile features. 

 

1.4.2 QSI of neural tissue 

QSI has been successfully applied to study mice, rats, and swine both in vivo and 

ex vivo. King et al. (54, 55) first used QSI to study ischemia in mouse brains. They found 

that the proportion of molecules displacing less than 10 µm increased in mouse brain post 

mortem and in vivo upon surgical interruption of blood supply to the forebrain, which 

mirrors the reduced ADC observed in brain ischemia. Assaf et al. (40, 47) used QSI to 

study spinal cord maturation in rats and found the mean displacement (defined as FWHM 

of the displacement PDF) in WM steadily increased toward maturation, unlike in GM, 

which remained constant throughout the development stages. Furthermore, Biton et al. 

used QSI to study excised spinal cords from swine model of MS, and reported increased 

water displacement in both lesions and normal appearing WM, parameters that correlated 

with histology (56). 
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In order to study the tortuous WM tracts of the brain, Assaf et al. (57) 

incorporated a tensor analysis into QSI to produce rotationally invariant parameters 

analogous to DTI. Importantly, the tensor analysis allows for extraction of the 

displacement PDF corresponding to water diffusing perpendicular to WM tracts. Avram 

et al. (52) demonstrated experimentally that to extract accurate diameters from a 

cylindrical pore phantom, the diffusion gradients had to be applied orthogonally, or 

nearly so, to the long axis of the cylinders.  

In brief, a tensor analysis can be applied whenever a set of measured parameters 

can be modeled as being proportional to a tensor. Basser et al. (58) showed that it was 

possible to extract the tensor elements from a linear combination of the experimental 

measurements through a system of equations. Intuitively, the displacement PDF will 

depend on the diffusion gradient direction due to the anisotropic diffusion arising from 

tissue microarchitecture. Consequently, one can solve for the displacement PDF tensor 

elements from a linear combination of measured displacement PDFs with different 

diffusion gradient directions. In this way, one can calculate parameters like the 

displacement profile FWHM and ZDP, or any other parameter characterizing the 

displacement PDF, of molecules displacing perpendicular or parallel to the WM tract 

orientation. 

Assaf et al. (57) used this tensor analysis to study MS patients. They observed 

increased water displacement in MS plaques and normal appearing WM, reflecting loss 

of axonal architecture integrity. These changes were more pronounced than the changes 

in conventional DTI metrics. The same group also showed that q-space displacement 
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parameters in MS patients correlated with lowered N-acetylaspartate levels as measured 

with MR spectroscopy, which suggests sensitivity of QSI to axonal damage (59).  

In 2007, Nilsson et al. (60) investigated the accuracy of such a tensor analysis in 

QSI by observing the molecules displacing perpendicular and parallel to the WM tract in 

human brain in vivo, via the FWHM of the displacement PDF, as a function of diffusion 

time. Nilsson et al. observed that the perpendicular FWHM remained constant while the 

parallel FWHM increased linearly with the square root of diffusion time, indicating 

restricted and hindered diffusion, respectively, as expected. Nordh et al. (61) investigated 

the effects of not fulfilling the SGP approximation on the tensor analysis in QSI by 

observing the perpendicular and parallel FWHMs in human brain in vivo. The 

perpendicular FWHM deceased only slightly while the parallel FWHM decreased more 

markedly when not fulfilling the SGP approximation, also confirming previous 

observations. Recently, QSI has also been applied to image in vivo human spinal cord by 

Farrell et al. (62). In this case, due to the simple WM structure, no tensor analysis was 

necessary and the diffusion gradients were applied orthogonally to the spinal cord. Farrell 

found that the displacement PDF FWHM and zero-displacement probability correlated 

well with lesions observed with conventional MRI. 

 

1.4.3 Limitations of current QSI methods 

 Despite the numerous studies mentioned above that demonstrate QSI is sensitive 

to neural tissue microstructure, those studies suffered from limitations that impair 

accurate assessment of axonal architecture. These limitations may have obscured any 

specific information on axonal architecture QSI could have provided.  
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The first major limitation is the maximum gradient amplitude available on the 

commercial systems is insufficient for the displacement PDF resolution needed to study 

cellular length scales. The displacement PDF resolution is determined by the maximum 

q-value used due to its Fourier relationship with the echo attenuation. Imposition of the 

SGP approximation demands very high gradient amplitudes not commercially available 

even on micro-imaging systems. As a result, the QSI studies cited above either violated 

the SGP approximation or their displacement PDF resolutions (ranging from 2 (48) to 20 

(54) μm) exceeded typical axon diameters (1-2 μm). Mitra et al. (63) predicted that as the 

gradient duration increased in relation to diffusion time, the displacement profile would 

artifactually narrow, which has been observed experimentally (57). 

The second major limitation is that QSI of biological tissues is complicated by the 

presence of water in ECS and ICS and exchange of molecules between these 

compartments. Due to the lack of precise knowledge of parameters such as ECS and ICS 

T2 and membrane permeability, the consequences of these effects are poorly understood. 

The measured displacement PDF reflects displacements due to molecular diffusion in 

both compartments. Diffusion in the ECS and ICS is hypothesized to be hindered and 

restricted (41), respectively. As a result, the displacement PDF may be broader than the 

actual MAD due to the addition of displacements resulting from hindered diffusion in the 

ECS. Furthermore, variations in cell shape and size complicates QSI experiments. While 

it is generally accepted that echo attenuation diffraction peaks are not usually observed in 

biological tissues due to heterogeneity in cell shape and size variation, it is not well 

understood how these variations affect the displacement PDF. 
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The third major limitation is that, up until now, MAD is the only specific 

measurement of axonal architecture cited in previous QSI studies of WM. An estimate of 

MAD by itself offers limited insight into axonal architecture. If it were coupled with 

information on ECS and ICS volume fractions, new information could be inferred such as 

an estimate of axon loss, which would affect the ECS and ICS volume fractions, and 

demyelination, which would increase the FWHM of the displacement PDF. Both of these 

changes in axonal architecture are hallmarks of spinal cord injury and a variety of WM 

diseases from multiple sclerosis to Alzheimer's disease (10, 34, 64). 

 

1.4.4 Addressing the limitations of QSI 

 The main objective of this dissertation is to address the current limitations of QSI 

mentioned in the previous section and to evaluate its capacity to accurately assess axonal 

architecture in vivo. While there is overlap between the different approaches taken in the 

work presented here, the research strategy employed in this dissertation to address the 

limitations can be divided into three parts. 

First, a custom built high amplitude gradient coil was used to address the 

limitations in the maximum gradient amplitude achievable with commercial systems. The 

high gradient amplitude available with this coil allows QSI to be performed under more 

ideal experimental conditions: the SGP approximation is fulfilled and the displacement 

PDF resolution is sufficient to study displacements on the cellular length scale. With the 

ability to perform an ideal QSI experiment, a proper comparison can be made with non-

ideal QSI experiments. Both the SGP approximation and the displacement PDF 
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resolution are systematically varied to mimic experimental conditions using commercial 

systems and effects on QSI can be experimentally observed. 

Second, QSI simulations are used to investigate the effects of the presence of both 

ECS and ICS signals on QSI. By using simulations, parameters such as the T2s and 

concentrations of the ECS and ICS as well as membrane permeability can be explicitly 

defined. There is a lack of precise knowledge of these parameters and systematically 

varying them in simulations provides insight into their effects on QSI. In addition, 

simulations are also used to further understanding on the effects of axonal architecture on 

QSI-derived measurements by varying axon size and shape distribution.  

Third, three QSI-based methods designed to account for ECS and ICS signals and 

to extract different axonal architecture metrics are evaluated for accuracy and potential 

application in vivo. The first method, described in Chapter 4, referred to as the 

“displacement PDF method”, employs a two-compartment model of the displacement 

PDF to account for signal from ECS and ICS. The second method, described in Chapter 5, 

referred to as the “low q-value method”, extracts axonal architecture information by 

fitting the echo attenuation at low q-values, which obviates the need for high-gradient 

amplitudes. The third method, described in Chapter 6, referred to as the “varying gradient 

pulse duration (VGPD) method”, empirically separates ECS and ICS signals from which 

MAD and ICS volume fraction can be estimated 
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1.5 Outline of thesis chapters 

The main objective of this thesis was to address the current limitations of QSI and 

to evaluate capacity of the above mentioned methods to accurately assess axonal 

architecture in vivo.  

 In Chapter 2, all common materials and methods used throughout this thesis are 

described. This includes a description of the custom-built gradient coil, animal specimen 

preparation, QSI acquisition parameters, and histologic methods and results. 

 In Chapter 3, QSI simulations on both synthetic axons and histologic images are 

used to investigate the effects of signal from both ECS and ICS and variability of cell size 

and shape on QSI measurements of axonal architecture. The simulation results show that 

despite all the variable and unknown effects, QSI may still provide accurate measures of 

axon morphology. The insights from these results support the potential of QSI to 

indirectly assess axonal architecture and aids in the understanding and interpretation of 

the experimental results to be discussed in the following chapters. 

 In Chapter 4, one- and two-compartment displacement PDF methods are 

described and used to assess MAD, ICS volume fraction, and axon diameter distribution 

in mouse spinal cords. The results show that the two-compartment displacement PDF 

method, which accounts for ECS and ICS signals, can accurately estimate MAD, ICS 

volume fraction, and axon diameter distribution as compared with histology. However, 

the accuracy is dependent on fulfilling the SGP approximation. 

 In Chapter 5, one- and two-compartment low q-value methods are described and 

used to assess MAD and ICS volume fraction in mouse spinal cords. The major 

advantage of these methods is that they do not require high gradient strengths. The results 
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show that while MAD is accurately measured, the ICS volume fraction is over estimated. 

Under conditions violating the SGP approximation, the low q-value method still 

accurately measures MAD, which supports the potential for this method to be 

implemented on a clinical scanner. 

 In Chapter 6, the VGPD method is described. This method allows for empirical 

separation of ECS and ICS signal from which MAD and ICS volume fraction can be 

estimated. QSI subvoxel processing is used to correct for insufficient displacement 

resolution inherent in the method. The results show that MAD and ICS volume fraction 

are accurately measured compared with histology. However, the accuracy is again 

dependent on fulfilling the SGP approximation. 

 In Chapter 7, all three methods described above are implemented on a clinical 

scanner to investigate the feasibility of implementation on a clinical scanner. Excised pig 

spinal cords were used. The major limitation on a clinical scanner is the low gradient 

strengths available. This severely hampers the accuracy of MAD estimates with the 

displacement PDF and VGPD methods. The two-compartment low q-value method 

seemed to provide estimates of MAD close to expected values. Unfortunately, histology 

was not available for validation. 

 The q-space simulations were carried out with a previously developed finite-

difference computer program (65). A previously built custom gradient coil was used here 

for QSI experiments (66). The displacement PDF and low q-value methods have already 

been published (67, 68). The VGPD method is an extension of the ICF method described 

in (67). Preliminary data has also been published in abstract form (69-74). 
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Chapter 2: Methods and Materials 

2.1 Introduction 

 Although several different methodologies are employed in this dissertation, the 

experimental data acquisition is the same for all except for the clinical implementation 

feasibility study in Chapter 7. In this chapter, the construction and evaluation of the 

custom gradient coil is first described.  The animal specimen preparation and q-space 

imaging (QSI) experimental acquisition are then detailed. Finally, the histology protocol 

to provide a gold standard measurement of mean axon diameter (MAD) and intracellular 

space (ICS) volume fraction is employed and histologic results are reported here. 

 

2.2 Hardware: Micro-Z gradient 

2.2.1 Construction 

To overcome instrumental limitations arising from the requirement of high 

displacement resolution and fulfillment of the short gradient pulse (SGP) approximation, 

as discussed in the previous chapter, a customized high-amplitude z-axis gradient and RF 

micro coil were designed. The gradient coil is capable of gradient strengths up to 50 T/m 

and it was interfaced to a 9.4T spectrometer/micro-imaging system (Bruker DMX 400 

with Micro2.5 gradients and BAFPA40 amplifiers). The z-gradient, which will be 

referred to as the Micro-Z gradient, was constructed by Wright et al. and full details of 

the design features can be found in reference (1). Reduced gradient coil size has several 

advantages including lower power requirements and reduced Lorentz forces and eddy 

currents while smaller RF coil size leads to enhanced SNR from improved filling factor. 
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The z-axis gradient coil can be used in conjunction with the vendor-provided x- and y-

axis gradient coils for imaging purposes.  

The design chosen is based on one proposed by Callaghan et al. (2) consisting of 

a gradient coil patterned on a elongated Maxwell pair and a solenoidal RF coil, 

represented by the red circles and orange lines, respectively, in Figure 2.1a. The Maxwell 

pair comprised of magnet wire wound in four horizontal bunches through four holes 

drilled in two phenolic posts. A horizontal glass NMR tube was centered between the 

four wire bunches around which a three-turn solenoidal RF coil was wound. A smaller 

sample tube (o.d./i.d. = 3.0/2.4 mm) could then be inserted inside the larger tube. The 

whole set up was embedded in epoxy to provide mechanical stability and limit vibrations 

from Lorentz forces. A photo of the finished gradient/RF coil set before and after epoxy 

application is shown in Figure 2.1b.  For additional protection, a Delrin cylindrical lid 

covered the entire assembly. The lid was fastened by Nylon screws that clamped the 

epoxy covered coil and o-rings on the lid allowed for a tight fit inside the NMR bore 

which provided further mechanical stability. 

Figure 2.1. Micro-Z gradient coil: (a) Schematic of gradient/RF coil design. (b) Image of 
finished gradient/RF coil set before and after epoxy application. 
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2.2.2. Gradient calibration and performance evaluation 

 I assisted on the gradient calibration and performance evaluation, as detailed in 

reference (1), and a brief summary pertaining to my contributions is given here. 

Quantitative molecular diffusion measurements require accurate gradient pulse 

calibration. Specifically, one needs to know what gradient strength is generated for a 

given applied current. Gradient strength is linearly proportional to the applied current. 

The calibration procedure involves determining the proportionality constant, which is 

known as the gradient gain. Standard calibration methods usually work only for low 

gradient amplitudes. The same proportionality constant is used for higher amplitudes by 

assuming that the gradient coil continues to behave linearly at high amplitudes, which 

may not be true due to hardware imperfections. Here we accomplished a direct 

calibration of high gradient values in two steps: A) following conventional approaches to 

calibrate low gradient amplitudes (<4 T/m), we used a 1D imaging spin-echo experiment 

with the Micro-Z gradient as the read-out gradient and imaged a water-filled capillary, 

and B) using the results from step A, we calibrated higher gradient amplitudes by using a 

non-localized spin-echo experiment with the Micro-Z gradient applied as a bipolar 

gradient pair to measure the 1H signal from polyethylene glycol (PEG) dissolved in D2O 

in a 2.4 mm i.d. tube. Pulse sequences for steps A and B are shown in Figure 2.2. 
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In calibration step A, the width in Hz, Δν, of the 1D projection of the water-filled 

capillary as shown in Figure 2.3a (inset) is related to the capillary diameter, Δz, by  

zGzΔ=Δ
π
γν

2
        (2.1) 

where Gz is the applied Micro-Z gradient. As the capillary has a known inner diameter of 

1.1 mm, from the width Δν, the gradient amplitude can be derived for a given applied 

current. According to Eq. 2.1, Δν should increase linearly with increasing applied current. 

Thus the gradient strength in step A was limited to calibrating gradient amplitudes lower 

than 4 T/m by the largest available receive bandwidth (200 kHz) of the Bruker system, 

which restricted the largest measurable Δν for the given capillary diameter, i.e. Δz. By 

plotting the gradient amplitude derived from Δν relative to the applied current as 

measured from an oscilloscope, the gradient gain can be calculated from the slope. Figure 

Figure 2.2. Pulse sequences for calibration steps A and B. Gz represents the Micro-Z 
gradient. In step A, the gradient amplitude Gz1 = Gz2 and the delay δ1 = 2δ2. In step B, 
Gz1, Gz2, δ1, and δ2 are varied as described in the text. All RF pulses are non-selective. 
This figure is reproduced from reference (1) with permission from Alexander C. Wright.
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2.3 shows the calibration curve for step A. The gradient gain was calculated to be 1.253 

T/m/A, meaning that for every 1 A of applied current, the gradient amplitude will 

increase by 1.253 T/m. The high R2 of 0.9998 indicates a linear current response as 

expected. 

  

In calibration step B, the Micro-Z gradient was applied as a bipolar gradient pair 

in which one of the gradient pulse amplitudes is known and the other not known. As 

described below, the known gradient pulse amplitude is then used to infer the unknown 

amplitude. An important consideration with this approach is the bipolar gradient pair is 

sensitive to molecular diffusion which causes signal attenuation. As strong gradients up 

to 50 T/m are used, a NMR sensitive material with very low diffusivity is needed to 

ensure sufficient signal is detected. A solution of PEG dissolved in D2O (8kD PEG at 

12.5 w% dilution) was used as its diffusivity was measured to be 2.3×10−7 cm2/s (1). This 

Figure 2.3. (a) Gradient calibration curve measured from Step A. Inset shows a typical 
1D projection of the capillary tube and its width, Δν. (b) Measured Micro-Z gradient 
waveforms for calibration step B showing various Gz1 and δ2 values. Note Δ = δ1. Inset 
shows a plot of the area of the first gradient vs. the magnitude of the area of the second 
gradient after adjusting the duration of the second gradient, δ2, to maximize the echo 
intensity. This figure is reproduced from reference (1) with permission from Alexander 
C. Wright. 



 44

is two orders of magnitude slower than free water and offered a detectable signal even 

with maximum gradient strength. From Figure 2.2, after a non-selective 90° pulse, a 

Micro-Z gradient pulse of duration δ1 = 0.4 ms and unknown amplitude Gz1 are applied. 

To minimize diffusion effects, a second Micro-Z gradient of variable duration δ2 and 

known amplitude Gz2 = 3.8 T/m, is applied using the gradient gain from calibration step 

A. After a non-selective 180° pulse, the echo amplitude is recorded. For a constant echo 

time (TE), the maximum echo amplitude occurs when the area of the first gradient pulse 

is equal to the negative area of second gradient pulse. In other words, the zeroth moment, 

kz, of the bipolar gradient waveform is zero: 

( ) ( ) 0
2

2

20 1 =⎟
⎠
⎞⎜

⎝
⎛ −= ∫∫

δ

π
γ

mid

mid

T z

T
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where Tmid is defined as the first zero-crossing between the positive first gradient pulse 

and the negative second gradient pulse (Figure 2.3). The duration of the second gradient 

pulse, δ2, is varied until an echo maximum is found and then the bipolar gradient 

waveform is recorded from an oscilloscope using Labview (National Instruments, Austin, 

Texas, USA).  Sample waveforms at various Gz1 and δ2 values are shown in Figure 2.3. 

Note that the gradient amplitude is not recorded directly, but rather the applied current 

from the gradient amplifier. Therefore Eq. 2.2 can be expressed as: 
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where gA and gB are the gradient gains derived from calibration steps A and B. Iz1(t) and 

Iz2(t) are the recorded gradient current waveforms for the first and second gradient pulses. 

Note that the gradient gain gA has already been determined in calibration step A and the 

gradient gain gB is unknown. Solving for gB gives: 
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where Area1 and Area2 represent the integrated areas of the current waveforms Iz1(t) and 

Iz2(t) recorded with Labview. The gradient gain gB can now be determine and used to 

calculate the unknown gradient amplitude Gz1. By varying the applied current of the first 

gradient pulse and repeating the above steps, a series of gradient amplitude vs. applied 

gradient points can be generated for gradient amplitudes greater than 4 T/m. It is 

important to note that maximum echo condition results in an Area2/Area1 ratio of one. A 

plot of Area1 vs. Area2 for the series of Gz1 values used in calibration step B (Figure 2.3b, 

inset) shows that this is indeed the case as the slope of the linear regression is 1.0024 (R2 

= 0.9993).  Figure 2.4 shows the final gradient calibration curve of gradient amplitude vs 

applied current from steps A (black squares) and B (white squares). The overall gradient 

gain determined from the slope of the line of best fit was 1.255 T/m/A. A linear current 

Figure 2.4. Final gradient calibration curve combining steps A (black squares) and B
(white squares). Note the linear response over the entire gradient amplitude range. This 
figure is reproduced from reference (1) with permission from Alexander C. Wright. 
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response was observed over the entire range of gradient amplitudes (R2
 = 0.9998). As the 

maximum applied current from the gradient amplifier is 40 A, the expected maximum 

amplitude of the Micro-Z gradient is 50.2 T/m.  

 To test the Micro-Z gradient/RF coil for use in quantitative spectroscopic 

experiments, we used the coil to observe q-space echo attenuation diffraction patterns 

from water surrounding closely packed polystyrene microspheres (4.5 μm diameter) as 

previously studied (3), where the first maximum occurs at a q-value equal to the inverse 

of the pore diameter. The results (Figure 2.5a) show a maximum occurring at a q-value 

corresponding to 1/4.5 µm, as expected. To test the gradient/RF coil for use in 

quantitative imaging experiments, we used the coil to generate an ADC map for a sample 

tube of 1.2 mM Gd-DTPA doped water as shown in Figure 2.5b. Using a PGSE imaging 

sequence (TR = 1s, TE/Δ/δ = 20/15/2 ms) and a maximum b-value of ~15,000 s/cm2, the 

calculated water ADC was 1.92 × 10−5 cm2/s at 19° C, which not only matched literature 

values (4), but also matched the value calculated from an ADC map generated using the 

standard vendor z-gradient. These results indicate the accuracy of gradient calibration and 

show the potential for using the Micro-Z gradient for quantitative applications. 

Figure 2.5. (a) Q-space echo attenuation plot for packed polystyrene microspheres (4.5
μm diameter) (b) ADC map of 1.2 mM Gd-DTPA doped water. 
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As a further demonstration of its micro-imaging capabilities, PGSE diffusion-

weighted images of a fixed mouse cervical spinal cord immersed in phosphate-buffered 

saline (PBS) (see Chapter 2.3) using the Micro-Z gradient for both phase-encoding and 

diffusion-weighting. Due to the geometry of the Micro-Z gradient, the diffusion-

weighting was applied perpendicular to the spinal cord longitudinal axis. Figure 2.6 

shows three sample images with b-values of 0.6, 2.5, 9.7 × 105 s/cm2
.  The low b-value 

image (left) shows lower intensity in the WM region relative to GM. This is expected due 

to the presence of myelin in WM resulting in lower water concentration. The intermediate 

b-value image (middle) shows iso-intensity in the WM and GM regions. Note that the 

saline surrounding the spinal cord is almost completely attenuated due to its high 

diffusivity. The high b-value image shows higher intensity in WM than in GM. This 

reversal in contrast is the result of water diffusion in WM being restricted while there is 

no such restriction in GM (5). This leads to a smaller average molecular displacement 

due to diffusion in WM than in GM, which results in less signal attenuation at high b-

values. These images demonstrate the capability of the Micro-Z gradient to image 

restricted diffusion in biological tissues and provides a proof-of-concept of for regional 

assessment of restricted diffusion in mouse spinal cords as described in chapters 4-6. 

Figure 2.6. Diffusion-weighted images of a fixed mouse cervical spinal cord using the 
Micro-Z gradients as diffusion and phase-encoding gradients. Three images are shown 
with increasing b-values from left to right: 0.6, 2.5, and 9.7 × 105 s/cm2  
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2.3 Animal specimen preparation 

Mouse spinal cords were chosen for QSI experiments because they fit the small 

size of the sample bore of the Micro-Z gradient. Spinal cords also provide a simple WM 

tract architecture where the majority of tracts are parallel to the cord longitudinal axis. 

This simplifies experimental setup, data processing, and interpretation. Five healthy C57 

BL6 mice (8-9 months, 25-30 mg, Charles River, Wilmington, MA) were anesthetized 

with an intraperitoneal injection of 10 mg ketamine/1 mg acepromazine per ml (0.5 mL 

per mouse; Abbot Laboratories, North Chicago, IL) and perfused through the heart with 

20 mL of phosphate buffer solution, followed by 20 mL of fixing solution (4% 

glutaraldehyde and 2% paraformaldehyde in 10 mM PBS). Following fixation, the entire 

spinal cord was resected and postfixed for at least two weeks in a 2.5% glutaraldehyde 

and 2% paraformaldehyde in 0.1 M sodium cacodylate solution. Cervical C6/C7 sections 

(3-4 mm in length) were then cut from each spinal cord. All spinal cord specimens were 

stored in the second fixing solution until time of experiment. Before each imaging 

experiment, each spinal cord specimen was placed in a 3 mm NMR tube filled with PBS, 

sealed with parafilm, and placed in the Micro-Z gradient. After performing QSI 

experiments, cervical spinal sections that corresponded to the QSI slice were processed 

for optical histologic imaging (see below). 

 

2.4 QSI acquisition  

All QSI experiments on fixed excised cervical mouse spinal cords were 

performed with the custom Micro-Z gradient. A QSI single data set was acquired with the 
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following parameters and was analyzed in different ways depending on the method of 

interest (see Chapters 4-6). 

A diffusion-weighted stimulated-echo imaging sequence was optimized for use 

with the Micro-Z gradient (Figure 2.7). Additional crusher and spoiling gradients were 

added to minimize imperfections in the 90° RF pulse and eliminate residual transverse 

magnetization at the end of TR, respectively. The following imaging parameters were 

used: 64 × 64 matrix (zero-filled to 256 × 256), spectral width = 25 kHz, TR = 2 s, 

averages = 6, TE = 17.4 ms, Δ = 10 ms, δ = 0.4 ms, mixing time = 9 ms, FOV = 4 mm, 

and a slice thickness = 1.0 mm. Experiments were conducted at an ambient temperature 

of 19 °C. Diffusion gradients were applied along the z-axis, i.e. perpendicular to the 

spinal cord longitudinal axis, in 63 steps of 0.013 μm-1 yielding qmax = 0.82 μm-1 (48 T/m 

gradient strength). The q-values were numerically calculated from the actual z-gradient 

amplifier current output as monitored on an oscilloscope with LabView. When 

investigating the effects of failing to fulfill the SGP approximation, all above imaging 

parameters were used except δ = 5 ms and the diffusion gradients were again applied 

along the z-axis. 

 

Figure 2.7. Diagram of diffusion-weighted stimulated echo pulse sequence used for QSI 
experiments. GZ was applied using the Micro-Z gradient. Labels: D = diffusion gradient, 
PE = phase-encoding gradient, TE = echo time, TM = mixing time, ADC = analog to 
digital converter. Darker gradients signify spoiling and crusher gradient moments.  
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2.5 Histology of Mouse Spinal Cord 

 

 

 

 

 

Histologic measurements from light microscopic images of fixed mouse spinal 

cord sections (from C6-C7) embedded in epoxy were used as gold-standard 

measurements of axonal architecture and to provide input images for simulations (see 

Chapter 3). Seven WM tract locations were obtained after staining for myelin with 

toluidine blue. These locations were defined in reference (6) and are shown in Figure 2.8 

along with sample toluidine blue images. WM tracts were selected to reflect a range of 

MAD, e.g. it can be clearly seen in Figure 2.8 that the dCST tract has the smallest axons 

Figure 2.8. Top Image: Optical image of C6/C7 mouse cord section showing WM tract 
locations: A) dorsal corticospinal (dCST), B) gracilis (FG), C) cuneatus (FC), D) 
rubrospinal (RST), E) spinothalamic (STT), F) reticulospinal (ReST), G) vestibulospinal 
(VST). The spinal cord is approximately 3 mm wide. Bottom Images: Optical images of 
WM tracts from mouse spinal cord C6/C7 section. Each image is 700 × 700 with a pixel 
resolution of 0.1 × 0.1 μm.  
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while the VST tract has the largest. Each image was digitized with a CUE-2 image 

analyzer (Olympus American, Melville, NY), in which a region of interest (ROI) was 

selected as input to the simulation program. The size of an ROI approximated the pixel 

size of the experimental data before zero-filling.  

Table 2.1. Average regional WM tract histologic measurements 

 dCST FG RST ReST FC STT VST 

MAD (μm) 0.81 ± 0.06 0.99 ± 0.06 1.16 ± 0.04 1.36 ± 0.09 1.40 ± 0.14 1.44 ± 0.11 1.82 ± 0.26

Axon Diameter 
Stdev (μm) 0.31 ± 0.08 0.47 ± 0.06 0.71 ± 0.10 0.89 ± 0.10 0.88 ± 0.10 0.98 ± 0.18 1.40 ± 0.13

ICS Area 
Fraction 0.21 ± 0.04 0.22 ± 0.03 0.25 ± 0.04 0.27 ± 0.04 0.27 ± 0.01 0.23 ± 0.04 0.28 ± 0.06

ECS Area 
Fraction 0.35 ± 0.10 0.31 ± 0.07 0.31 ± 0.07 0.32 ± 0.06 0.27 ± 0.05 0.35 ± 0.11 0.31 ± 0.12

Myelin Area 
Fraction 0.45 ± 0.07 0.47 ± 0.05 0.43 ± 0.04 0.41 ± 0.04 0.46 ± 0.06 0.42 ± 0.08 0.41 ± 0.06

Axon Count 1670 ± 267 1101 ±146 791 ± 122 574 ± 79 591 ± 97 436 ± 68 289 ± 78 

Axon Density 
(105/mm2) 3.42 ± 0.55 2.25 ± 0.30 1.62 ± 0.25 1.18 ± 0.16 1.21 ± 0.20 0.89 ± 0.14 0.59 ± 0.16

 

Microscopic images were segmented into ECS, ICS, and myelin compartments 

using a program written in Matlab (Mathworks, Natick, MA, USA). Due to the toluidine 

blue staining, myelin is dark on histology. However, the ECS and ICS spaces have 

similar signal intensities so ICS must be manually labeled. First, seed points were placed 

within the axons to initiate a watershed-based segmentation (7, 8) of the ICS. The myelin 

was then segmented using an interactive profile-based boundary detection algorithm (9). 

After manual correction, the ECS was determined by subtracting the union of the axon 

and the myelin regions from the entire image space. The segmented images were then 
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used to calculate MAD (equating each ICS axon area to a circle, excluding the myelin), 

axon count, axon density, and fractional areas of the ECS, ICS, and myelin (Table 2.1). 

In Table 2.1, the WM tracts were organized in order of increasing MAD. The histologic 

results will be further discussed in later chapters in comparison with experimental results. 

Finally, the segmented images were down-sampled to 256 × 256 to serve as input for the 

q-space simulations as discussed in Chapter 3.  

As we are comparing experimental QSI data acquired with a slice thickness of 1 

mm (to obtain sufficient signal-to-noise ratio) to histology with a slice thickness of 0.5 

μm, we investigated how much axon diameter variation occurred through a 1 mm slice. 

Toward this goal, we obtained from a single specimen six sections spaced 200 μm apart 

such that they spanned the 1 mm slice thickness used in the imaging experiments. Seven 

WM tract ROIs (20 pixels each) were imaged from each section, segmented, and the 

mean axon diameter was calculated. These histologic results as well as further 

comparisons with experimental QSI data are reported in Chapter 4. 

 

2.6 Summary 

The materials and methods common to various analysis approaches have been 

described in this chapter. The construction and evaluation of a custom high-amplitude 

gradient, known as the Micro-Z gradient was covered. The Micro-Z gradient was 

demonstrated to provide a maximum amplitude of 50 T/m, allowing for the high 

displacement resolution needed for accurate measurement of molecular displacements 

within axons.  Spinal cords were harvested from healthy 8-9 month old C57 BL6 mice 

after perfusion fixation. After QSI experiments were completed, histology was performed 
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and myelin was stained with Toluidine blue.  MAD and other axon morphology metrics 

could then be determined from the histologic images after segmentation for comparison 

with experimental data. The segmented histologic images were used for q-space 

simulation (Chapter 3). The raw QSI data along with the histologic data described here 

will be used in validating the displacement PDF (Chapter 4), low q-value (Chapter 5), 

and VGPD (Chapter 6) methods. 
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Chapter 3: Q-space Simulations 

3.1 Introduction 

 As discussed in Chapter 1, the displacement probability density function (PDF) 

from q-space imaging (QSI) is an empirical measurement of the average molecular 

displacement due to diffusion, which is influenced by axon architecture. Various metrics 

can be used to characterize the displacement PDF and provide insight into this 

architecture. However, the displacement PDF is also affected by other factors that are 

difficult to investigate independently.  

For example, the displacement PDF reflects molecular displacement in both the 

intracellular (ICS) and extracellular (ECS) spaces, which may have different signal 

relaxation rates and restrictions to diffusion (1, 2). The contribution from displacement in 

each space is not well understood and this complicates the interpretation of the PDF. 

Furthermore, WM tissue exhibits large variations in axon shape and size, which will 

influence molecular displacements. How well the displacement PDF represents the mean 

axon diameter (MAD) under these conditions has not been studied.  

 These factors which influence the displacement PDF are very difficult to 

investigate experimentally due to the inability to reliably measure and vary them in a 

controllable manner. Computer simulations, unlike experiments, provide an environment 

where these factors can be precisely controlled and used to assess their contributions to 

the displacement PDF. In this chapter, QSI simulations on both synthetic axons and 

histologic images are used to investigate the effects of signals from both ECS and ICS, 

variability of cell size and shape, membrane and myelin permeability, and axon loss on 

QSI measurements of axonal architecture. The diffusion simulation program and input 
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images are first described and then simulation results are summarized and discussed. The 

insights from the simulation results will aid in the understanding and interpretation of 

experimental results. 

 

3.2 Methods 

3.2.1 Diffusion simulation program 

Q-space simulations were performed with a program that is based on solving the 

diffusion equation using a 3D finite-difference model developed by Hwang et al. (3). The 

program, written in C (CodeWarrior, Metrowerks, Austin, TX) computes the signal 

during execution of a PGSE sequence. Details of the algorithm are described in (3) and 

thus only a brief summary is given here. Assuming a spatially uniform diffusion 

coefficient for each specific region, the diffusion equation can be expressed as 

cD
t
c 2∇=

∂
∂          (3.1) 

where D is the diffusion coefficient, ∇ is the gradient operator with respect to the spatial 

coordinates and c is the concentration of the diffusing material.  

In a forward time-centered space finite difference model, time and space are 

discretized and the partial derivatives are approximated by finite differences. Each image 

pixel is assigned to intracellular space, extracellular space or myelin, each with user-

defined characteristic T2, diffusion coefficient, and permeability values. Starting from an 

initial state, particles are allowed to diffuse between pixels with a calculated probability 

at each time step, and c is updated accordingly.  

To simulate the MR signal, the concentration c in Eq. (3.1) is replaced by the x 

and y components of the transverse magnetization, which are updated after each time step. 
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During the application of the diffusion gradient, phase accumulation is added after each 

time step. The final MR signal is the vector sum of magnetization of each pixel at echo 

time. In order to avoid artifactually restricted diffusion due to the image boundary, which 

is modeled as a reflecting boundary, only signal from the central one third of the image is 

used for analysis. The algorithm has been validated for restricted diffusion bounded by 

cylindrical pores and for diffusion within hexagonal array of cylinders, where the 

simulated data agreed well with existing analytical solutions (3). 

 

3.2.2 Input images 

 Synthetic axons 

 

 

 

 

 

In order to investigate the effect of axon size distribution on QSI derived 

parameters such as displacement PDF FWHM, zero-displacement probability (ZDP), and 

Figure 3.1. Synthetic circular axon images generated with a Gaussian distribution of 
diameters (mean and standard deviation are μ and σ respectively): (a) σ/μ = 0.0, (b) 
σ/μ = 0.1, (c) σ/μ = 0.25, (d) σ/μ = 0.5. The white rings signify myelin. The mean axon 
diameter (excluding myelin) was held constant at 14.48 μm. Synthetic ellipsoidal axon 
images generated with different ratios (R) of major axis over minor axis lengths (e) 
R=1.25, (f) R=1.5, (g) R=2.0. The mean axon diameter (excluding myelin) was held 
constant at ~25 μm. 
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kurtosis, several images of randomly packed circular axons (256 × 256 matrix, pixel size 

0.75 × 0.75 μm2) with a Gaussian distribution of diameters were generated using a 

custom IDL program (Interactive Data Language, Research Systems, Boulder, CO) as 

input for the q-space simulation program (Figure 3.1a-d).  In order to investigate the 

effect of axon shape distribution on QSI derived parameters, images of packed 

ellipsoidally shaped axons (256 × 256 matrix, pixel size 0.75 × 0.75 μm2) were drawn in 

Powerpoint (Microsoft Office, Microsoft, Seattle, WA) with varying major axis over 

minor axis lengths ratios as input for the q-space simulation program (Figure 3.1e-g).  

 

 Histologic images 

As described in Chapter 2, light microscopic images were obtained from all the 

fixed mouse cervical spinal cord specimens at seven WM tract locations after staining for 

myelin with toluidine blue. These images were segmented into ECS, ICS, and myelin 

compartments using a program written in Matlab (Mathworks, Natick, MA) and use to 

quantify metrics of axon morphology such as mean axon diameter and ICS/ECS volume 

fractions. The segmented images were subsequently down-sampled to 256 × 256 pixels to 

serve as input for the q-space simulations (Figure 3.2). 

 

3.2.3 Diffusion simulation experiments and analysis 

Two sets of q-space simulations were run: first on the previously described 

synthetic axon images and subsequently on the segmented histologic images of WM 

tracts. For the former, the PGSE sequence parameters were: TR = 1 s, TE = 65 ms, Δ = 

60 ms, δ = 2 ms, and the diffusion gradients were applied in 63 increments in steps of 
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0.009 μm-1 yielding qmax = 0.54 μm-1. The ECS and ICS T2 were both assigned to be 300 

ms and the corresponding diffusion coefficients were both assigned to be 2.5 × 10-5 cm2/s. 

Simulations did not include signal from myelin. The T2 values were chosen to match the 

long T2 component of neural tissues reported in literature (4). The diffusion coefficients 

were chosen to match those of water at room temperature as it was assumed to be an 

upper limit for the diffusion coefficients found in axonal tissue.  Simulations on the 

circular axons with permeability p = 0 (i.e. perfectly reflecting boundaries) were run with 

signal occupying only the ICS or only the ECS. Simulations on the ellipsoidal axons were 

performed with signal occupying only the ICS and with p = 0.  

 

Figure 3.2. Top Image: Optical image of C6/C7 mouse cord section showing WM tract 
locations: A) dorsal corticospinal (dCST), B) gracilis (FG), C) cuneatus (FC), D) 
rubrospinal (RST), E) spinothalamic (STT), F) reticulospinal (ReST), G) vestibulospinal 
(VST). The spinal cord is approximately 3 mm wide. Bottom Images: Segmented down-
sampled images of WM tracts from mouse spinal cord C6/C7 section. They white areas 
signify myelin. Each image is 256 × 256 pixels with a resolution of 0.27 × 0.27 μm.  
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 For the segmented histologic images, the PGSE sequence parameters were: TR = 

2 s, TE = 17.4 ms, Δ = 10 ms, δ = 0.4 ms, and the diffusion gradients were applied in 63 

increments in steps of 0.013 μm-1 yielding qmax = 0.82 μm-1 along the dorsal-ventral axis 

to approximate the direction of the applied diffusion gradients in our experiments. The 

following T2, permeability and diffusion coefficients were chosen from literature values 

(4). The ECS, ICS and myelin diffusion coefficients were assigned values of 1.65, 1.12 

and 1.12 μm2/s, respectively. The myelin T2 was set to 19 ms and the myelin water 

concentration to 15%. Due to the uncertainties in ECS and ICS T2 values (2), i.e. whether 

ECS or ICS had the longer T2 value, both cases were simulated: the ECS-weighted case 

where ECS and ICS T2s were 300 and 78 ms, respectively, and the ICS-weighted case 

where ECS and ICS T2s were 78 and 300 ms respectively; the ECS and ICS water 

concentrations were both set to 85% and the myelin/membrane permeability to 0.01 

μm/ms. 

All data analysis was performed in IDL (Interactive Data Language, Research 

Systems, Boulder, CO). Each simulation outputs the echo attenuation as a function of q-

value, which is then normalized to the maximum value at zero q-value. In order to 

compute a purely real Fourier transform in accordance with Fourier transform theory, the 

echo attenuation plot was reflected about the origin (q = 0) to fill in the negative q-values, 

resulting in 127 total q-values (1 zero q-value, 63 positive, and 63 negative q-values). A 

displacement PDF was computed by applying a 1D Fourier transform of the modified 

echo attenuation plot. After calculating the displacement PDFs, FWHM, ZDP, and 

kurtosis values were recorded. 
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3.3 Results 

3.3.1 Synthetic axons 

 

 
Figure 3.3. Summary of simulation results for synthetic circular axons of varying 
diameter mean and standard deviation ratios (μ and σ respectively). (a) Echo attenuation 
for signal from ICS only. (b) Echo attenuation for signal from ECS only. (c) 
Displacement PDF for signal from ICS only. (d) Displacement PDF for signal from 
ECS only. Mean axon diameter, FWHM, zero-displacement probability, and kurtosis 
for (e) signal from ICS only and (f) signal from ECS only.
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Figure 3.3 summarizes the simulation results of the synthetic circular axons. For 

circles of constant diameter and impermeable walls, the ICS-only simulations showed the 

expected diffraction minima for cylindrical pores (5) located at q·a ~ 1.22, where a is the 

axon mean diameter, which attests to the accuracy of the simulation program. The 

diffraction minimum is gradually smeared out with increasing diameter variance. 

Diffraction minima correspond to the situation of maximal phase dispersion, which 

occurs at a specific q-value that depends on pore size and shape. The ECS-only 

simulations never showed any diffraction pattern.  

Figure 3.4 summarizes the simulation results of the synthetic ellipsoidal axons. A 

weak q-space diffraction pattern is visible as the ellipsoidal axon shape and area is 

constant in each input image. However, due to the random orientation of the ellipse axes, 

the diffraction pattern is not as pronounced as compared to the circular axons shown in 

Figure 3.3.  

As expected, with increasing axon size and shape distribution, the q-space 

diffraction pattern was smeared out. The axon geometry information seems to be 

exclusively captured by the ICS signal. Only the ICS-only displacement PDF metrics 

correlated with the expected mean axon diameter (FWHM: R2 = 0.99, p = 0.0047, slope = 

2.08; and kurtosis: R2 = 0.95, p = 0.027, slope = -2.89).   

 

3.3.2 Histologic images 

Figure 3.5 summarizes the simulations results on the histologic images with axon 

diameters derived from histology. The FWHM increases, and ZDP and kurtosis decrease 

with increasing mean axon diameter in all plots.  Note that simulated FWHM showed the 
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expected positive (R2 = 0.88, p = 0.0019, slope = 0.60, and R2 = 0.84, p = 0.0036, slope = 

0.66 for ECS and ICS weighted simulations, respectively) and the simulated zero-

displacement probability and kurtosis values showed the expected negative correlations 

(zero-displacement probability: R2 = 0.73, p = 0.0132, slope = -0.19 and R2 = 0.76, p = 

0.01, slope = -0.23, for ECS and ICS weighted simulations, respectively; Kurtosis: R2 = 

0.79, p = 0.0079, slope = -46 and R2 = 0.83, p = 0.0042, slope = -58, for ECS and ICS 

weighted simulations, respectively)  with the average axon diameters calculated histology. 

Note further that simulated FWHM, zero-displacement probability (ZDP) and kurtosis 

showed high correlation between ICS weighted and ECS weighted simulations (FWHM: 

R2 = 0.99, p < 0.0001, slope = 0.89, ZDP: R2 = 0.996, p < 0.0001, slope = 0.84, and 

Kurtosis: R2 = 0.99, p < 0.0001, slope = 0.81, respectively). 

  

 

Figure 3.4. Summary of simulation results for synthetic ellipsoidal axons of varying 
major and minor axis diameter ratios (R). (a) q-space echo attenuations (b) displacement 
PDF. (c) Mean axon diameter, FWHM, zero-displacement probability, and kurtosis 
values.  
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3.4 Discussion 

3.4.1 Synthetic axons 

 It is important to note that most of the simulations run with the synthetic circular 

axons were performed with the signal either in the ECS or ICS in order to remove 

complications due to mixing of the ECS and ICS signal. The results reported here support 

the idea that with increasing variation in cell size and shape, the diffraction pattern 

observed in the echo attenuation is reduced in intensity and is eventually removed when 

Figure 3.5. Summary of q-space simulations based on histologic images showing mean 
axon diameter, FWHM, zero-displacement probability (ZDP),and kurtosis values for 
each WM tract averaged over all five specimens under simulation conditions of ICS-
weighted signal and ICS-weighted signal. Each asterisk represents the p-value of a paired 
t-test comparison with the next similar colored bar to the right: * = p<0.05, ** = p<0.01. 



 65

μ/σ was larger than 0.1. Nevertheless, the displacement PDF showed the same basic 

shape across all ratios of μ/σ. In particular, the ICS-only simulations did not show much 

change in FWHM, ZDP, or kurtosis as axon size distribution and shape were varied.  

The axon geometry information seems to be exclusively captured by the ICS 

signal as the ECS only simulations did not show any correspondence with mean axon 

diameter (Figure 3.3 e-f). This observation supports the theory that diffusion in ECS and 

ICS is hindered and restricted, respectively (1). As long as the diffusion gradients are 

orthogonal to the WM tracts, QSI displacement PDFs containing both ICS and ECS 

signals may still retain information on axonal architecture. Although this information 

may be obscured if both signals are present, it should be recoverable if the ECS and ICS 

displacement PDFs could somehow be separated. 

 

3.4.2 Histologic images 

Unlike the synthetic axon simulations, the histologic image simulations were only 

run with signal from both ECS and ICS. What was being investigated was the effect of 

ECS and ICS T2 on the QSI experiment as the precise T2 values are not known. ECS-

weighted or ICS-weighted simulations were run simply by setting the ECS or ICS T2 to 

be significantly longer (300 ms vs. 72 ms). Displacement PDF metrics from both ECS-

weighted and ICS-weighted simulations correlated with each other and showed virtually 

no difference. This result suggests that the QSI displacement characteristics is dominated 

by the ICS signal not because it has a longer T2, but rather because the ICS is more 

restricted than the ECS as it is believed (1).  The histologic mean axon diameter was 

consistently larger than the simulated displacement PDF FWHM. It would be expected 
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that the simulated displacement PDF FWHM would be larger than the histologic mean 

axon diameter as it contains both ECS and ICS displacements. This discrepancy is 

probably due to uncertainties in the simulation parameters such as the ECS and ICS T2 

and permeability values. 

 

3.4.3 Implications for QSI to assess axon morphology 

 Q-space simulations were used here to investigate several issues concerning the 

accuracy of QSI experiments to assess axon morphology. As axons are known to exhibit 

great variability in shape and size, it was not clear if the FWHM of the displacement PDF 

would still reflect MAD. Furthermore, given that there is signal in the ECS as well as the 

ICS, it was not clear if the ECS would contribute any axon morphology information in 

the displacement PDF. Simulations on synthetic axons helped address these questions and 

showed that despite variations in size and shape, the FWHM of the displacement PDF 

still correspond well with MAD. Additionally, the simulations demonstrated that the axon 

geometry information predominantly resides in the ICS signal – only the ICS 

displacement PDF FWHMs showed correspondence with MAD while the ECS 

displacement PDF FWHMs were much lower than MAD. This result suggests the need to 

separate the ICS and ECS signals to properly assess axon morphology. 

 The simulations on histologic images were used to investigate the implications of 

performing QSI on tissues with both ICS and ECS signals. The simulation parameters 

were carefully chosen to mimic actual experimental parameters (see Chapter 2). The 

diffusion time was relatively short (10 ms), the TE was short (17.4 ms) and the diffusion 

gradient duration was varied between 0.4 and 5 ms. One major question involves the 
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precise T2 values for the ECS and ICS signals. Different literature sources can report 

longer T2 values for ICS than ECS or vice versa (2). Simulations with ICS-weighted and 

ECS-weighted parameters helped study this question and showed that the displacement 

PDF did not change in either case most likely due to the short TE used. The simulations 

also showed that despite mixing ECS and ICS signals, the overall displacement PDF 

FWHM, ZDP and kurtosis showed excellent correlation with MAD calculated from 

histology. This suggests that, under the current experimental parameters, the ECS signal 

does not change appreciably with normal variances in axon morphology. 

 The main implication of these simulation results is that, under the current 

experimental parameters, in spite of variations in axon size and shape, the mixing of ECS 

and ICS signals, and variable T2 and QSI may still provide measures of axon morphology 

that correlate well with the underlying architecture. 

 

3.5 Conclusion 

 In this chapter, QSI simulations on both synthetic axons and histologic images 

were used to investigate the effects of having signal from both ECS and ICS and 

variability in cell size and shape on QSI measurements of axonal architecture. Each of 

these effects has important implications on the viability of QSI to assess axon 

morphology, but would have been difficult to study experimentally. Simulations provided 

a controllable environment to investigate each effect individually. The simulation results 

showed that despite all the variable and unknown effects, QSI may still provide accurate 

measures of axon morphology. The insights from these results support the potential of 

QSI to indirectly assess axonal architecture and will aid the understanding and 
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interpretation of the experimental results to be discussed in the following chapters. In 

particular, the simulations support the motivation to separate the ECS and ICS signals, 

perhaps using a two-compartment model, in order to remove the confounding effects of 

ECS diffusion. 
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Chapter 4: Displacement PDF Method 

4.1 Introduction 

 The displacement probability density function (PDF) method is the application of 

the basic q-space imaging (QSI) theory as outlined in Chapter 1.  Due to the need for high 

displacement resolution while fulfilling the SGP approximation, a custom 50 T/m 

gradient coil was used for diffusion encoding. All data acquisition details were covered in 

Chapter 2. The displacement PDF method includes both one- and two-compartment 

approaches. The one-compartment method is just the standard QSI experiment. The two-

compartment method is used to account for signal from extracellular (ECS) and 

intracellular (ICS) spaces. This allows for measurement of mean axon diameter (MAD) 

as well as ICS volume fraction and axon diameter distribution (ADD).   

 

4.2 Methods 

4.2.1 One-compartment displacement PDF method 

All data analysis was performed in IDL (Interactive Data Language, Research 

Systems, Boulder, CO). As each image corresponded to a specific q-value, QSI data set 

can be thought of as a 3D matrix with two spatial and one q-value dimension. An echo 

attenuation plot for one pixel can be generated by selecting one location in the spatial 

dimensions and then recording the echo attenuation along the q-value dimension.  

Once the single pixel echo attenuation plot was recorded, it was normalized to the 

maximum value at the zero q-value. In order to compute a purely real Fourier transform 

in accordance with Fourier transform theory, the echo attenuation plot was reflected 

about the origin (q = 0) to fill in the negative q-value, resulting in 127 total q-values (1 
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zero q-value, 63 positive, and 63 negative q-values). A displacement PDF was computed 

by applying a 1D Fourier transform to the modified echo attenuation plot. FWHM was 

measured with linear interpolation. After calculating the displacement PDFs for each 

pixel, FWHM, zero-displacement probability (ZDP), and kurtosis maps are generated. 

In order to compare differences between WM tracts, a region-of-interest (ROI) 

analysis was performed on the FWHM, ZDP, and kurtosis maps. ROIs of 20 pixels were 

manually drawn in each of the seven WM tracts. ROI locations were chosen to match the 

histologic ROI location (as discussed below) as closely as possible. For each ROI, 

average q-space attenuation plots, displacement PDFs, FWHM, ZDP, and kurtosis values 

were recorded. 

To investigate the effects of low displacement resolution, we took the existing 

experimental data, truncated the q-space dimension by retaining the first 16 q-values and 

setting the remaining 48 q-values to zero, and performed the same data processing 

described above. We chose to retain the first 16 q-values, because that seemed to be the 

limit below which we could no longer differentiate between WM tracts. Using only 16 q-

values increased the displacement resolution from 0.6 to 2.4 μm. 

 

4.2.2 Two-compartment displacement PDF method 

Since the displacement PDF contains signal from both the ECS and ICS, 

separation of these signals may lead to a more accurate MAD estimate as well as provide 

a means to estimate the ECS and ICS volume fractions. In this method, as developed 

independently by Nossin-Manor et al. (1), the displacement PDFs were fit to a two-

compartment model. As ECS and ICS diffusion is expected to be hindered and restricted, 
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respectively (2), their displacement PDFs would be a Gaussian and an autocorrelation of 

the axon geometry (see Chapter 1), respectively. MAD was then estimated from the ICS 

displacement PDF FWHM. ECS and ICS volume fractions were estimated by 

normalizing each displacement PDF area by the overall fit area (ECS plus ICS). 

Fitting was done with a non-negative nonlinear minimization algorithm in Matlab 

(Mathworks, Natwick, MA, USA). To find the exact ICS displacement PDF shape, an 

image-based finite difference diffusion simulation program (3) was used to simulate the 

QSI echo attenuation based on WM tract histologic images as described in Chapter 3 (4). 

PDFs were simulated with signal only from the ICS (excluding myelin). The simulated 

PDFs were then fit to various peak shapes such as Gaussian, Lorentzian and others, and 

the goodness of fit was determined by the R2 value. 

 

4.2.3 Axon diameter distribution assessment with two-compartment displacement PDF 

method 

Measuring the ADD with the displacement PDF method starts with calculating 

the displacement PDF from a single axon with radius r, PDF(r), which, in the long 

diffusion time limit, is the auto-correlation function of the spin density (5) , ρr(x): 

( ) ( ) ( ) ( )∫ −=∞→Δ dxxRxRPDFrPDF rr ρρ|:     (4.1) 

By assuming the axon cross-section to be circular, ρr(x), and thus PDF(r), can be 

analytically computed by assuming constant spin concentration across the pore 

( ) 222 xrxr −=ρ         (4.2) 

where r is the axon radius. ICS displacement PDF, PDFICS, can then be represented as 
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( ) ( )∑ ×=
r

ADDICS rPDFrPPDF       (4.3) 

where the summation is over all axon radii, and PADD(r) is the probability of having a 

axon with radius, r. PADD(r) is just the normalized ADD. PDF(r) can be computed for a 

circular axon with any radius. In order to calculate the ICS displacement PDF from Eq. 

4.3, PADD(r) must first be calculated from the ADD. Based on empirical observation (4, 6, 

7), the ADD can be modeled as a gamma distribution:  

( ) ( )αβ
βα α

βα

Γ
=

−
−

r

ADD
errP

1

,        (4.4) 

where Γ(α) is the gamma function 

( ) ∫
∞

−−=Γ
0

1dtte t αα         (4.5) 

Eq. 4.4 is incorporated into Eq. 4.3 and the α and β parameters of the gamma 

distribution are fitted to the ICS displacement PDF using a nonlinear least-squares Matlab 

algorithm. The α and β parameters were then optimized so the calculated ADD had the 

same MAD as measured from the FWHM of the ICS displacement PDF as described in 

Chapter 4.2.2 using an unconstrained nonlinear optimization Matlab algorithm. Finally, 

any value of the fitted ADD that was less than 0.0001 was set to zero. This was done as 

the ADD from histology sometimes had zero values beyond a given axon diameter 

whereas the gamma distribution only asymptotically approaches zero with increasing 

axon diameter.  

In order to investigate the validity of modeling the ADD as a gamma distribution, 

several ADDs measured with histology from different WM tracts were directly fit with a 

gamma distribution again using a nonlinear least-squares Matlab algorithm. Again, any 
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value of the fitted ADD that was less than 0.00001 was set to zero. The coefficient of 

determination (R2) was calculated to assess the goodness of fit. Furthermore, in order to 

statistically compare the fitted gamma distribution and the histologic ADD, a two-sample 

Kolmogorov-Smirnov test (8), implemented in Matlab, was used. The null hypothesis 

here is that the two distributions are from the same continuous distribution. This test 

calculates the empirical cumulative distribution function (CDF) of each distribution and 

uses the greatest difference between the two CDFs as its test statistic to determine 

whether or not to reject the null hypothesis. The Kolmogorov-Smirnov test and 

coefficient of determination were also used to compare the ADDs fit from Eq. 4.3 and 4.4 

with the ADD measured from histology. 

 

4.3 Results 

4.3.1 One-compartment Displacement PDF method 

Figure 4.1 shows typical magnitude images acquired with different q-values. Note 

the inversion in contrast between WM and GM due to the restriction of water diffusion in 

WM at the higher q-value. SNR values, calculated as the ratio of the mean value of an 

ROI in the dorsal column divided by the mean value of an ROI in the background, were 

60 and 2 for q = 0 μm-1 qmax = 0.82 μm-1, respectively. 

 

 
Figure 4.1. Sample magnitude images at two different q-values with Δ/δ = 10/0.4 ms: 0 
and 0.12μm-1. The white bar represents 1 mm. Note the fluid surrounding the spinal cord, 
which exhibits free diffusion, is attenuated to background intensity in (b). 
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In the following images, the same color scale was used to highlight differences 

observed under different experimental conditions. Figure 4.2 shows typical q-space echo 

attenuations and displacement PDFs for various WM tract ROIs, displacement PDF 

FWHM, ZDP, and kurtosis maps for one specimen for varying experimental parameters. 

Note the clear discrimination of WM tracts on the FWHM, ZDP, and kurtosis maps under 

conditions of high displacement resolution and fulfilling the SGA approximation (Figure 

4.2a). However, failure to fulfill the SGA approximation (Figure 4.2b), increased ZDP 

and kurtosis while decreasing FWHM, as predicted. When simulating low displacement 

resolution (Figure 4.2c), the displacement PDFs exhibited severe ringing due to zero-

filling. 

As discussed in Chapter 2, Figure 4.3 illustrates the variation in MAD that 

occurred across a 1 mm slice. Figure 4.3a shows, for one specimen, the calculated MAD 

of seven WM tract ROIs from six equally spaced sections spanning 1 mm. Figure 4.3b 

compares the MADs for each WM tract averaged over all six sections with parameters 

derived from QSI and histology. There was significant correlation between the average 

axon diameters calculated from all six sections and displacement PDF FWHM (R2 = 

0.86, p = 0.0025, slope = 0.86), average axon diameters calculated from one section and 

Figure 4.2 (next page). Sample q-space echo attenuation plots and displacement PDFs 
for seven WM tract ROIs, alongside with sample FWHM, ZDP, and kurtosis maps under 
experimental parameters with (a) high displacement resolution (qmax=0.82μm-1) and 
fulfilling the narrow gradient pulse condition (Δ/δ=10/0.4 ms), (b) high displacement 
resolution (qmax=0.82μm-1) and failing to fulfill the narrow gradient pulse condition 
(Δ/δ=10/5 ms), and (c) low displacement resolution (qmax=0.21μm-1) and failing to fulfill 
the narrow gradient pulse condition (Δ/δ=10/5 ms). The fourth case of low displacement 
resolution (qmax=0.21μm-1) and fulfilling the narrow gradient pulse condition (Δ/δ=10/0.4 
ms) was excluded to its similarity with (c).
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displacement PDF FWHM (R2 = 0.95, p = 0.0002, slope = 0.76), and the average axon 

diameters calculated from all six sections and average axon diameters calculated from 

one section (R2 = 0.92, p = 0.0006, slope = 0.81). The data therefore shows that the 

axonal structure is maintained over our imaging slice thickness and that a histologic 

section is representative of the average structure. 

 

 
 

 

 

Figure 4.3. (a) Calculated MAD from 7 WM tract ROIs from 6 equally spaced sections 
spanning 1 mm. (b) WM tract MAD calculated from 5 specimens, the WM tract MAD 
calculated from all six sections in one specimen, the WM tract MAD calculated from one 
section from the same specimen, and the measured FHWM of the displacement PDF 
(DP) from the same specimen. Each asterisk represents the p-value of a paired t-test 
comparison with the next similar colored bar to the right. 
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Figure 4.4 shows experimental data for each WM tract averaged over all five 

specimens under experimental conditions fulfilling and not fulfilling the SGA 

approximation, as a function of displacement resolution. Note again that FWHM 

increases, and ZDP and kurtosis decrease with increasing mean axon diameter in all 

plots. Under conditions fulfilling the SGA approximation and high displacement 

resolution, there was positive correlation between MAD calculated from histology and 

FWHM (R2 = 0.95, p = 0.0002, slope = 1.02). Negative correlations were found between 

MAD and ZDP (R2 = 0.89, p = 0.0015, slope = -0.22) and kurtosis (R2 = 0.91, p = 

0.0009, slope = -38).  The correlations remained significant, albeit less strong, under 

conditions not fulfilling the SGA approximation and low displacement resolution. 

To the best of our knowledge, our QSI results are the first with a displacement 

resolution low enough to resolve axon diameters while fulfilling the SGA approximation. 

The displacement PDF metrics correlated well with the axon diameters measured from 

histology, suggesting that the echo attenuation is dominated by the ICS signal. It is noted 

that the displacement PDF FWHMs were generally larger than the measured axon 

diameters (0.27±0.07 μm under ideal conditions of high displacement resolution and 

fulfilling the SGA approximation), which may be a consequence of several factors (see 

Discussion).  

 

4.3.2 Two-compartment displacement PDF method 

Figure 4.5a shows a simulated PDF from only the histologic ICS region used for 

the displacement PDF method. The peak shape of the ICS displacement PDF was 

determined empirically by fitting the simulated PDFs from above to various peak shapes 
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(e.g. Gaussian, Lorentzian, etc.). As shown in Figure 4.5a, the peak shape that gave the 

best fit as determined by the R2 value was a decaying exponential reflected about the  

 

 

 

 

Figure 4.4. Summary plots of q-space experiments showing MAD calculated from 
histology, FHWM, ZDP, and kurtosis values for each WM tract averaged over all five 
specimens under experimental conditions fulfilling and not fulfilling the SPG 
approximation and with and without q-space truncation (to simulate low displacement 
resolution). Each asterisk represents the p-value of a paired t-test comparison with the 
next similar colored bar to the right. 
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origin (R2>0.99). Figure 4.5b shows sample experimental displacement PDFs fitted to a 

weighted sum of Gaussian and decaying exponential. Figure 4.5c shows a plot of average 

WM tract MAD calculated from histology versus average experimental FWHM of ICS 

displacement PDFs. A Bland-Altman plot (not shown) yielded a 95% confidence interval 

from –0.07 to 0.03 μm. Also shown in Figure 4.5c is the ICS volume fraction calculated 

from both histology and experiments averaged over all specimens. An ANOVA analysis 

determined that there was no significant difference in histologic ICS volume fraction 

among WM tracts. Therefore, a single ICS volume fraction was calculated for each 

specimen by averaging over each WM tract. There was no correlation between ICS 

volume fractions measured from histology and the displacement PDF method. No 

significant correlation was found between the ECS displacement PDF FWHM and 

histologic MAD, and the average FWHM of the ECS displacement PDF was 4.5±2.1 μm. 

 
 

 

 

 

 

 

 

Figure 4.5. (a) Sample 
simulated PDF on histologic 
ICS region only (blue 
points) with exponential 
decay peak fit (red line) to 
determine ICS displacement 
PDF shape. All fits had 
R2>0.99. (b) Sample 
experimental PDF (blue 
points) with overall fit (red 
line) and ECS and ICS 
displacement PDF fit (green 
lines). All fits had R2>0.99. 
(c) Plot of WM tract 
histologic vs. experimental 
MADs with equation of the 
line of best fit and mean ICS 
volume fraction values. 

a b 

c 
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4.3.3 Axon diameter distribution assessment with two-compartment displacement PDF 

method 

 Figure 4.6 shows ADDs measured with histology selected from seven WM tracts 

directly fit with a gamma distribution. The WM tract ADDs are ordered from smallest 

MAD (dCST, 0.81±0.06 μm) to largest (VST, 1.73±0.21 μm). The fitted gamma 

distribution plots show excellent correspondence with the histologic ADDs from the 

calculated coefficient of determination, R2 >0.95. Only the VST tract had a lower R2 of 

0.76. The two-sample Kolmogorov-Smirnov test p-values calculated between each 

histologic ADD and fitted gamma distributions are also show in Figure 4.6. All p-values 

are greater than 0.05, which suggests that the fitted gamma distributions and histologic 

ADDs are not statistically distinct. These results indicate that the underlying ADD in 

healthy WM tracts is well modeled by a gamma distribution. 

Figure 4.7 shows ADDs measured from histology and QSI averaged over 5 mice 

for all WM tracts. Again, the WM tract ADDs are ordered from smallest to largest MAD 

(dCST, 0.81±0.06 μm) to largest (VST, 1.73±0.21 μm). The QSI-derived ADDs all have 

MADs matching values measured with the two-compartment displacement PDF method 

(see 4.3.2). From the histologic ADDs, it is clear that there is a gradual trend of 

increasing variation in axon diameter with increasing MAD. The QSI-derived ADDs 

show good agreement with histologic ADDs with R2 values greater than 0.8. Again, the 

VST tract had the lowest R2 of 0.77. The two-sample Kolmogorov-Smirnov test p-values 

calculated between each histologic ADD and fitted gamma distributions are also show in 

Figure 4.7. All p-values are greater than 0.05, which suggests that the QSI-derived and 

histologic ADDs are from the same distribution. 
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Figure 4.6. Plots of ADD measured with histology (green bars) from select individual 
WM tracts fit directly with a gamma distribution (red line). R2 and Kolmogorov-Smirnov 
test p-values are shown for each WM tract. 
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Figure 4.7. Plots of ADD measured with histology (green bars) and QSI (red line) for 
all WM tracts. All ADDs were averaged over 5 mice and the standard deviation bars are 
shown. R2 and Kolmogorov-Smirnov test p-values are shown for each WM tract. 
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4.4 Discussion  

4.4.1 One-compartment displacement PDF method 

In highly regular porous structures, such as packed beads, the echo attenuation 

will exhibit diffraction peaks and pore geometry information can be directly read from 

the peaks (9). However, diffraction patterns in biological systems have only been 

observed in packed erythrocytes and not in tissues such as multi-axonal systems, possibly 

due to structural heterogeneity as our simulations suggest. Nevertheless, the displacement 

PDF has provided insight into axonal architecture (10-12). It is important to consider that 

the displacement PDF is an empirical measurement. In order to interpret the features of 

the displacement PDF, one must compare it with the underlying tissue structure as seen 

with histology in order to understand how the structure impedes water diffusion. 

Even though the one-compartment approach did not separate ECS and ICS signals, 

our results showed excellent agreement with MAD calculated from histology. The 

displacement PDF FWHMs overestimated the MADs by about 20% under optimal 

experimental conditions with respect to histology, except for the case of failing to fulfill 

the SGA approximation with high displacement resolution in which the FWHM is 

artifactually narrowed. Such an overestimation may result from insufficient displacement 

resolution. Our displacement resolution was 0.6 μm compared to axon diameters of 0.81-

1.82 μm.  

Examination of the displacement PDFs with high displacement resolution and 

fulfilling the SGA approximation shows that the central peak is, in most WM tracts, 

described by about five points and the true displacement PDF shape may be hidden. The 

linear interpolation used to calculate the FWHM may not represent the true FWHM.  
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Another possibility is that ECS diffusion, which is assumed to be Gaussian (2), 

may broaden the displacement PDFs as it is a superposition of both the ECS and ICS 

displacement PDFs due to the linearity of the Fourier transform (10). Furthermore, while 

membrane and myelin permeability will lead to a broader FWHM, there is evidence to 

suggest that exchange between the ECS and ICS compartments is virtually non-existent 

at the diffusion time of 10 ms (13, 14).  Our previous simulations on histologic images 

(15) indicated that the displacement PDF FWHM remained stable over the range of 

permeability values reported for lipid bilayers (16). 

 Other investigators have used the root-mean-squared (RMS) displacement instead 

of the displacement PDF FWHM to estimate MAD (12, 17, 18). The RMS displacement 

is calculated easily from the displacement PDF FWHM by multiplying it by a factor of 

0.425 (19). However, this calculation is only valid under Gaussian diffusion. Following 

from our previous work (10), we use only the FWHM to estimate the mean axon diameter 

because the ICS water should be restricted (i.e. non-Gaussian) at our diffusion time.  

 

4.4.2 Two-compartment displacement PDF method 

The excellent correlation between histologic and experimental MAD (Figure 4.5c) 

and the Bland-Altman results suggest good agreement between MAD measured with 

histology and the displacement PDF method. Compared with the one-compartment 

results where ECS and ICS signals were not separated, MAD estimates from the 

displacement PDF method better match those measured by histology. In addition, while 

there was no correlation between histologic and experimental ICS volume fractions, both 

values averaged across specimens fall within the range of 60-80% reported for the rat 
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corpus callosum (20). Furthermore, MAD estimates from the displacement PDF method 

were within 4% of histologic MAD. Finally, the average ECS displacement PDF FWHM 

is below the expected RMS displacement of free water with a diffusion time of 10 ms.  

It should be noted that there is an apparent inconsistency in how the ICS volume 

fraction and MAD were calculated from histology; the myelin area was included in the 

calculation of ICS volume fraction, but not for MAD. The decision to include or exclude 

myelin was motivated by differences in the distance between diffusion barriers in the ICS 

and myelin spaces.  

In ICS, the distance between diffusion barriers would be the diameter of the axon, 

excluding myelin. In myelin, the distance between diffusion barriers would be the 

spacing between the lipid bilayers (<0.1μm). At sufficiently long diffusion times, both 

ICS and myelin are expected to exhibit restricted diffusion. Since the ICS displacement 

PDF results from molecules exhibiting restricted diffusion in the proposed model, it 

should reflect contributions from water diffusion in myelin. Therefore, for accurate 

comparison with the displacement PDF results, the ICS volume fraction measured from 

histology was defined as the sum of the ICS and myelin areas.   

However, as the spacing between the lipid bilayers in myelin is <0.1μm, our 

displacement PDF resolution is not high enough to resolve the restricted diffusion in the 

myelin and the FWHM may primarily reflect ICS. Therefore, for proper comparison with 

the results from the displacement PDF method, histology-derived MAD was computed by 

excluding the myelin region. The inadequate displacement resolution may also explain 

the discrepancies between the ICS volume fraction measured with the displacement PDF 

method and histology. 
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As previously mentioned, Nossin-Manor et al. (1) also used a two-compartment 

model to analyze QSI data. Displacement PDFs measured from excised rat spinal cords 

were fitted to a bi-Gaussian model to characterize fast and slow diffusion components. 

When the diffusion gradients were applied perpendicular to the long axis of the spinal 

cord, the mean displacements measured from both the slow component of the bi-

Gaussian model and the basic single-component QSI analysis exhibited restricted 

diffusion behavior and were in good agreement with each other. The authors concluded 

that the basic single-component QSI experiment described water diffusion perpendicular 

to the WM tract nearly as well as the two-compartment model, which conflicts with the 

results reported here. Several factors can help explain this discrepancy. First, the 

displacement resolution was only 3.9 μm in Nossin-Manor et al compared with 0.6 μm in 

the work reported here. Since axon diameters are on the order of 1-2 μm, the low 

displacement resolution found in Nossin-Manor may have blurred the discrimination 

between diffusion in the ECS and ICS. Second, the diffusion time in Nossin-Manor et al. 

is much longer than the one used here (50-250 versus 10 ms). Thus, the longer diffusion 

time may emphasize the ICS signal through the greater attenuation of the ECS signal due 

to unrestricted diffusion. Third, Nossin-Manor et al. assumed a bi-Gaussian model, 

whereas only the ECS displacement PDF was modeled as a Gaussian in the work here. 

The ICS displacement PDF is the auto-correlation function of the pore geometry that, as 

our simulations suggest, is not Gaussian. While Nossin-Manor et al. reached different 

conclusions, differences in data acquisition and analysis do not make their results 

inconsistent with those reported here. 
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4.4.3 Axon diameter distribution assessment with two-compartment displacement PDF 

method 

 The QSI-derived ADD assessment is a direct extension of the two-compartment 

displacement PDF method discussed above. The two-compartment displacement PDF 

method is first used to separate the ICS and ECS displacement PDFs and to estimate 

MAD from the FWHM of the ICS displacement PDF. Only by isolating the ICS 

displacement PDF can the effect of axon diameter variation be properly taken into 

account. The MAD constraint in the fitting algorithm was necessary to obtain good 

agreement between QSI-derive and histologic ADDs. Without it, the algorithm produced 

ADDs that consistently overestimated the probability of axons with larger diameters, 

which broadened the distribution. As a result, the calculated ADD would have a larger 

MAD. By fixing the MAD of the distribution to be the measured MAD from the two-

compartment displacement PDF method, the algorithm produced a narrower ADD that 

better matched the ADDs measured from histology. This was viewed as a reasonable 

constraint as it was demonstrated above (see 4.3.2) that the two-compartment 

displacement PDF method accurately measured MAD as compared with histology (21). 

 The approach to assessing ADD shown here stands in contrast to the AxCaliber 

method (6), but there are several similarities. Both methods require separation of the ECS 

and ICS signals and assume circular axon cross-section geometry and an underlying 

gamma distributed ADD. Assuming a simple geometry for the axon cross-section allows 

one to directly calculate the contribution to the overall signal or PDF by an axon with a 

given diameter. Note that AxCaliber simultaneously extracts MAD and ADD, while the 

QSI method first measures MAD and then computes ADD using the measured MAD as a 
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constraint. Furthermore, while the AxCaliber method operates in q-space, the QSI 

method presented here operates in displacement space. As q-space and displacement 

space are Fourier transforms of one another, it is perhaps not surprising that both methods 

produce ADDs that agree well with histology, which highlights the potential for q-space 

diffusion MRI to indirectly assess axon morphology.  

 The QSI-derived ADDs showed excellent agreement with histology and were 

shown not to be statistically different from histologic ADDs, which indicates the 

potential for quantitative assessment of ADD. Moreover, QSI-derived ADDs consistently 

show the relative differences in ADD between WM tracts. The fact that this method was 

sensitive to the subtle increase in the spread of ADD with increasing MAD suggests that 

detecting changes in ADD may be possible. Nevertheless, the QSI-derived ADDs still 

show systematic differences with histologic ADDs, which primarily is the 

underestimation of the probability of axon with diameters less than 1 μm. This may be 

the result of errors in the assumptions of this method, namely circular axon geometry and 

a gamma distributed ADD.  

The validity of assuming an underlying gamma distributed ADD was, for the first 

time, investigated in this work. It was shown that a gamma distribution describes the 

shape of the histologic ADD accurately and that the two distributions were statistically 

indistinguishable. This suggests that any discrepancies between the QSI-derived and 

histologic ADDs were likely from errors in the circular axon geometry assumption. 

Certainly histology shows that axons do not have a simple circular geometry. This may 

explain the need to constrain MAD in the fitting algorithm, because the PDF from a 

circular axon does not accurately represent the true PDF from an axon. While circular 
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axon geometry has been used successfully in other models such as AxCaliber and 

CHARMED (2, 6), the role of axon shape in assessment of ADD requires further 

investigation beyond the scope of this dissertation. It should be noted that these results 

are limited to healthy WM tracts. There is no expectation that the ADD will remain 

gamma distributed under pathologic conditions. This suggests the need for a non-

parametric approach for estimating ADD, which is under current investigation. 

 

4.5 Conclusions 

 The work presented here demonstrates the advantage of having sufficient 

displacement resolution for QSI experiments. The one-compartment method approach 

was able to differentiate between WM tracts based only on MAD, although MAD was 

overestimated by approximately 20%. The two-compartment method separated the ECS 

and ICS displacement PDF and was able to measure MAD as accurately as compared to 

histology. It also allowed for measurement of ICS volume fraction and ADD, which 

provide additional information on axon morphology. The accuracy of these 

measurements is dependent on fulfilling the SGP approximation. Results from increasing 

the diffusion gradient duration show a narrowing of the displacement PDF as predicted 

from theory. 
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Chapter 5: Low q-value Method 

5.1 Introduction 

 The low q-value method was developed to address the need for q-space imaging 

(QSI) to have sufficient displacement resolution for accurate measurements of axon 

morphology like mean axon diameter (MAD) as demonstrated in Chapter 4. The need for 

high resolution coupled with the need to fulfill the short gradient pulse (SGP) 

approximation necessitates the use of large gradient amplitudes that are not commercially 

available. The method presented here attempts to characterize axon morphology from the 

echo attenuation, E(q), at low q-values instead of from the displacement probability 

density function (PDF). By only acquiring data at low q-values, the need for large 

gradient amplitudes can be avoided. Similar to the displacement method, a two-

compartment model is applied to account for diffusion in both the extracellular (ECS) 

and intracellular (ICS) spaces. All acquisition parameters are described in Chapter 2 and 

only details related to this method specifically are described here. 

 

5.2 Methods 

As mentioned in Chapter 1, architecture information of pore systems can also be 

obtained from diffraction patterns in the echo attenuation. Although WM is too 

heterogeneous to observe diffraction patterns in q-space (1), the MAD can be estimated 

from the initial decay of the echo attenuation. From a series expansion of the Fourier 

transform relationship, the initial echo attenuation at low q-values at a given diffusion 

time, Δ, where q << MAD-1, can be expressed as  

( )2222exp),( RMSZqqE π−=Δ        (5.1) 
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where ZRMS is the root-mean-squared (RMS) displacement during the diffusion time, i.e. 

the width of the displacement PDF (2-4). As long as the SGP approximation (δ << Δ) is 

fulfilled, ZRMS may be used as an estimate of MAD by fitting the initial echo attenuation 

decay to Eq. 1. However, the q-space echo attenuation is comprised of both ECS and ICS 

signals. Similar to the displacement PDF method, a two-compartment version of Eq. 5.1 

could be used to account for the ECS and ICS signals: 

 ( ) ( )222222 2exp2exp),( ICSICSECSECS ZqfZqfqE ππ −+−=Δ    (5.2) 

where fECS and fICS are the relaxation-weighted ECS and ICS volume fractions and ZECS 

and ZICS are the RMS displacements of diffusing molecules in the ECS and ICS.  

Echo attenuations were fit to both Eq. 5.1 and 5.2 with a nonlinear minimization 

algorithm in Matlab (Mathworks, Natwick, MA, USA). Two sets of echo attenuations 

were processed. One was acquired with a diffusion gradient duration of 0.4 ms in order to 

fulfill the SGP approximation. The other was acquired with a diffusion gradient duration 

of 5 ms in order to investigate the effects of not fulfilling the SGP approximation on the 

low q-value method. When fitting to Eq. 5.2, the following parameter constraints were 

applied: fECS + fICS =1 and ZECS <8μm (as RMS displacement in ECS cannot be larger than 

that of free water). WM tract MAD previously estimated from histology (Chapter 2) were 

used to identify the low q-value regime by only fitting E(q) at q< (MAD−1)/10 (the first 

11 to 5 q-values for the smallest to largest WM tract MAD, respectively). MAD, and ECS 

and ICS volume fractions were then estimated from ZICS, fECS and fICS, respectively. 
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5.3 Results 

 Figure 5.1 shows data acquired with a diffusion gradient duration of 0.4 ms. 

Figure 5.1a shows sample fits of experimental data with Eq. 5.1 and 5.2 using the low q-

value method. Figure 5.1b shows a plot of experimental MAD estimated from one- and 

two-compartment fits (ZRMS and ZICS, respectively) vs. histologic MAD averaged for each 

WM tract. An outlier ZICS value for the FC WM tract was removed as its value was less 

than the smallest MAD observed histologically. A Bland-Altman plot between the ZRMS  

from the one-compartment fit and histology was generated (not shown) and the 95% 

confidence interval was from 0.26 to 0.75 μm. A Bland-Altman plot between the ZICS and 

histology was generated (not shown) and the 95% confidence interval was from –0.11 to 

0.24 μm.  

As defined in Eq. 2, fICS is used to estimate the ICS volume fraction. Similar to the 

displacement PDF method, a single ICS volume fraction estimate was obtained for each 

specimen by averaging over the WM tracts, because an ANOVA test indicated that there 

was no significant difference in ICS volume fractions calculated from histology among 

WM tracts. There was no correlation observed between fICS and histologic ICS volume 

fraction. The average fICS was 0.89±0.01, which is higher than the average histologic ICS 

volume fraction of 0.68±0.07. In addition, a Bland-Altman plot between the fICS and 

histologic ICS volume fraction was generated (not shown) and the 95% confidence 

interval was from 0.15 to 0.27. No significant correlation was found between ZECS, the 

RMS displacement of water molecules in the ECS, and histologic MAD, and average 

ZECS was 6.8±1.2μm. 
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Figure 5.2 shows data acquired with a diffusion gradient duration of 5 ms. Figure 

5.2a shows a plot of experimental MAD estimated from one- and two-compartment fits 

(ZRMS and ZICS, respectively) vs. histologic MAD averaged for each WM tract. An outlier 

ZICS value for the FC WM tract was removed as its value was less than the smallest MAD 

observed histologically. A Bland-Altman plot between the ZRMS from the one-

compartment fit and histology was generated (not shown) and the 95% confidence 

interval was from 0.01 to 0.43 μm. A Bland-Altman plot between the ZICS and histology 

was generated (not shown) and the 95% confidence interval was from –0.32 to 0.06 μm. 

Unlike the data acquired with the shorter diffusion gradient duration, a significant 

correlation was found between ZECS, the RMS displacement of water molecules in ECS, 

and histologic MAD, as shown in Figure 5.2b. The average ZECS was 5.13±0.71 μm.  

A single ICS volume fraction estimate was again obtained for each specimen by 

averaging over the WM tracts. In this case, there was significant correlation between fICS 

Figure 5.1. Low q-value method with short diffusion gradient (δ=0.4 ms): (a) Sample 
fits of a normalized signal decay curve from dCST WM tract (diamonds). Only the first 
11 points were used for fitting (solid diamonds) in order to fulfill the low q-value 
condition. (b) Plot of average WM tract histologic vs. experimental MADs (upper curve 
(orange triangles): one-compartment model; lower curve (green squares): two-
compartment model) with equation of line of best fit.
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and histologic ICS volume fraction (Figure 5.2c). The average fICS was 0.91±0.02, which 

is higher than the average histologic ICS volume fraction of 0.68±0.07. A Bland-Altman 

plot between the fICS and histologic ICS volume fraction was generated (not shown) and 

the 95% confidence interval was from 0.17 to 0.28. 

  

 

 

 

5.4 Discussion  

For the data acquired while fulfilling the SGA approximation, histology derived 

MAD correlated with corresponding values from both one- and two-compartment low q-

Figure 5.2. Low q-value method with long diffusion gradient (δ=5 ms): (a) Plot of 
average WM tract histologic vs. experimental MADs (upper curve (green diamonds): 
one-compartment model; lower curve (blue circles): two-compartment model) with 
equation of line of best fit. (b) Plot of ZECS, i.e. RMS displacement in ECS, vs. histologic 
MAD with equation of line of best fit. (c) Plot of experimental vs. histologic ICS volume 
fraction (ICF) with line of best fit and mean values.



 99

value methods (Figure 5.1b). The two-compartment fit of the echo attenuation has a 

higher average R2 (0.96 versus 0.88) suggesting that it may be a better model for the echo 

attenuation at low q-values (Figure 5.1a). The MAD estimate from the two-compartment 

fit, ZICS, does show closer correspondence with histology as evidenced by the linear 

regression slope close to one and y-intercept close to zero. The Bland-Altman results 

between ZRMS and histology suggest that ZRMS consistently overestimates MAD. This is 

congruent with the fact that the diffusion in the ECS is broadening the ZRMS. The Bland-

Altman results suggest good agreement between MAD measured with histology and the 

two-compartment low q-value method.   

The lack of correlation between fICS and histologic ICS volume fraction coupled 

with an average fICS that is higher than the average histologic ICS volume fraction 

suggests that fICS does not accurately measure ICS volume fraction. The Bland-Altman 

results also suggest that fICS systematically overestimates ICS volume fraction. 

Furthermore, according to our model that water molecules in the ECS experience 

hindered diffusion, ZECS should have a value less than the RMS displacement of freely 

diffusing water molecules. The average ZECS was within expected range of the RMS 

displacement of free water at a diffusion time of 10 ms. 

For the data acquired while violating the SGA approximation, the results for one- 

and two-compartment low q-value methods appear similar to the results while fulfilling 

the SGA approximation. While both the ZRMS and ZICS showed significant correlation with 

histologic MAD, the Bland-Altman results between ZRMS and histology again suggest that 

ZRMS consistently overestimates MAD. On the other hand, the Bland-Altman results 

suggest good agreement between ZICS and histology. Therefore, despite violating the SGP 
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approximation, the two-compartment low q-value method appears to still accurately 

measure MAD. Further investigation is required to confirm this observation. This may be 

an important quality as any implementation of this method on commercial gradient 

hardware will most likely necessitate violation of the SGP approximation. The effect of 

increasing the gradient duration further is explored in Chapter 8. 

Unlike the data acquired while fulfilling the SGP approximation, this data showed 

significant correlation between histology and experimental ICS volume fraction and ZECS. 

The Bland-Altman results still suggest that fICS systematically overestimates ICS volume 

fraction. Perhaps due to the longer gradient duration, discrimination between ECS and 

ICS signals is more robust. As will be discussed further in Chapter 6, the diffusion in 

ECS is expected to be hindered and in ICS it is expected to be restricted. Therefore ECS 

and ICS signals are expected to display a different dependence on the diffusion gradient 

duration – namely, the ECS signal is unaffected while the ICS signal will attenuate less 

with increasing duration. The increased discrimination between ECS and ICS signals may 

allow the two-compartment low q-value method to be sensitive to inter-specimen 

variations in ICS volume fraction as well as provide a more accurate ZECS  estimate.  

A positive correlation between ZECS, the RMS displacement in ECS, and MAD is 

not wholly unexpected. As reported in Chapter 2, there is a negative correlation between 

axon density and MAD. Schwartz et al. (5) showed that ADC measured transversely to 

the axon long axis was negatively correlated with axon density. This is related to the 

decrease in tortuosity of the ECS as increases in axon diameter lead to larger inter-axonal 

spacing. At the low b-values (<2500 s/mm2) used by Schwartz et al., the authors only 

observed a mono-exponential decay. It is therefore reasonable to assume that the 
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measured ADC primarily reflected diffusion in ECS only (6). Indeed, the authors did not 

report any significant correlation between ADC and MAD or ICS volume fraction. The 

RMS displacement in ECS, therefore, could negatively correlate with axon density as 

axon density decreases with increasing MAD as observed here. 

It should be emphasized that the experimental protocol used here was not 

optimized for fitting the echo attenuation at low q-values as the data was initially 

collected to maximize the displacement resolution.  As a result, only the first 5-11 points 

of the q-space echo attenuation fulfilled the low q-value condition, q << MAD-1, 

depending on the WM tract. Using a relatively small number of data points significantly 

limits the degrees of freedom for fitting, especially for the two-component fit. This may 

explain the higher estimate of ICS volume fraction, ECS RMS displacement and lower R2. 

In an experimental protocol optimized for the low q-value method, q-values greater than 

~0.1 μm−1 would not be necessary to fulfill the low q-value condition. The time saved 

could be used to improve the fitting by sampling more low q-value points or averaging 

the signal. Finally, the data shown here was only intended to demonstrate feasibility and 

is limited by its small sample size. Further investigations are needed to confirm the 

reported results. 

 

5.5 Conclusions 

 The results reported here suggest that the low q-value method has potential to 

indirectly assess axonal architecture without the need for strong gradients as with the 

displacement PDF method. The one-compartment method shows good correlation with 

histology, but the two-compartment method may provide accurate estimates of MAD as 
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compared with histology. However, the ICS volume fraction was consistently 

overestimated by this method. The low q-value method also seems robust to experimental 

conditions violating the SGP approximation. In particular, the two-compartment method 

may be better at separating the ECS and ICS signals under such conditions. While further 

investigation is needed, the low q-value method shows potential to be implemented on 

commercial hardware and this will be studied further in Chapter 7. 
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Chapter 6: Varying Gradient Pulse Duration (VGPD) Method 

6.1 Introduction 

 As shown in previous chapters, the separation of the extracellular space (ECS) 

and intracellular space (ICS) signals is important for accurate measurements of axon 

morphology as the hindered diffusion in ECS masks ICS displacement and broadens the 

measured mean axon diameter (MAD). The varying gradient pulse duration (VGPD) 

method is an empirical approach to separating the ECS and ICS signals based on their 

diffusion properties. This stands in contrast to the displacement PDF (Chapter 5) and low 

q-value (Chapter 6) methods covered earlier which use a two-compartment model to 

separate the ECS and ICS signals. The displacement PDF method models the overall 

displacement PDF as a sum of two ECS and ICS PDFs. The low q-value method models 

echo attenuation at low q-values as a sum of two Gaussian ECS and ICS echo 

attenuations.  

The accuracy of these two-compartment models depends on their a priori 

assumptions, including the shape of the ECS and ICS displacement PDFs and echo 

attenuations at low q-value, which may not hold true in every sample especially in the 

presence of pathology. Furthermore, introducing models to account for the ECS and ICS 

signals negates the very property that makes QSI attractive in the first place, which is that 

it empirically measures displacement PDF and does not assume any model for diffusion. 

By not making any assumptions on underlying diffusion properties the way conventional 

diffusion MRI does, QSI has the potential to provide new information on axonal 

architecture. Therefore an empirical method to separate ECS and ICS signals in QSI 
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would be of interest. The VGPD method is one such potential approach and is described 

in this chapter. 

 

6.2 Methods 

6.2.1 General theory  

The general theory behind the VGPD method is based on the work by Malmborg 

et al. (1) who proposed a method to empirically measure ICS volume fraction. This 

method exploits the different behavior of the echo attenuation for restricted and free 

diffusion with respect to the diffusion gradient duration, δ, as described by Mitra & 

Halperin (2). Under conditions of restricted diffusion, increasing δ  for a given q-value 

and at constant diffusion time Δ, causes the echo to attenuate less, whereas for free 

diffusion the echo attenuation is not dependent on δ. The reason for this is illustrated in 

Figure 6.1.  

 

 

 

 

Figure 6.1. Trajectory of a diffusing particle confined in pore with a reflecting wall. 
Starting and ending positions are shown as blue circles. The thickened green lines 
correspond to the trajectory during the diffusion gradient pulses. The dotted line 
corresponds to the trajectory in between the gradient pulses. The center of masses of the 
trajectory segments during the pulses are marked by the red stars. 
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As described by Mitra & Haplerin, the position of the particle is given by the 

center-of-mass average of the trajectory segment during the application of the diffusion 

gradient. With infinitesimally short pulses, the particle can be labeled at any position 

within the pore, even next to the pore wall. As the gradient duration increases, the 

probability of labeling the position close to the pore wall decreases. At the limit of long 

gradient pulses, the position of the particle will be labeled as the center of the pore as the 

entire pore space will have been sampled with equal probability during the pulse. 

Therefore with increasing gradient duration, the apparent displacement of the center-of-

mass position during the diffusion period will decrease leading to an increase in echo 

intensity. On the other hand, if the particle is not confined to a pore, there is no such 

limitation on the displacement of the center-of-mass position and the echo attenuation is 

not dependent on the gradient duration. 

Since diffusion in the ICS is restricted whereas in the ECS it is hindered (3), the 

echo amplitude from spins in each compartment should exhibit a different dependence on 

the gradient duration. From a comparison of echo attenuations obtained at the same q-

values but with varying δ (Figure 6.6), the initial decay does not vary with δ and should 

represent signal from ECS (3). However, at increasing q-values, the decay represents 

signal attenuation arising primarily from ICS and will exhibit less attenuation with 

increasing δ. A relaxation-weighted estimate of ICS volume fraction can then be inferred 

from the point at which the echo attenuations obtained at varying δ begin to diverge.  
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6.2.2. Empirically separating ECS and ICS signals 

 A natural continuation of the theory described above provides a method to 

empirically separate the ECS and ICS signals and allow for characterizations of diffusion 

in both spaces. Assuming that the point of deviation, Pd, is an accurate estimate of ICS 

volume fraction, then the ECS signal must have decayed significantly by the time the 

echo attenuation has reached Pd. Therefore, the echo attenuation after Pd must 

predominantly arise from ICS signal. Likewise, the echo attenuation before Pd must 

predominantly arise from ECS signal. Pd can then be used to empirically divide the echo 

attenuation into ECS and ICS parts.   

The Fourier transform of the subdivided echo attenuations would give the ECS 

and ICS displacement PDFs without any modeling or assumptions of the peak shape. The 

PDFs can then be characterized in different ways to assess axonal architecture as 

described in Chapter 1. The FWHM can be used to characterize the average molecular 

displacement in ECS and ICS, which should correlate with ECS tortuosity and cellularity 

(4, 5) and MAD (6-8), respectively. The zero-displacement probability (ZDP) is inversely 

related to FWHM and reflects the fraction of molecules that experience zero-

displacement. The kurtosis of the PDF is a measure of the degree of restriction to 

diffusion and may correlate with axon density (9, 10). 

 Due to the finite maximum q-value possible in experiments, the subdivision of the 

echo attenuation will reduce the displacement resolution of the ECS and ICS 

displacement PDFs. Depending on the precise location of the point of deviation, Pd, this 

may lead to artifacts such as observing an ECS displacement PDF with a FWHM greater 

than the RMS displacement expected for freely diffusing water. Another artifact could be 



 108

an ICS displacement PDF with a larger FWHM and the overall displacement PDF 

calculated from the full echo attenuation, which is erroneous as the overall PDF is the 

sum of the ECS and ICS PDFs. In order to correct these artifacts, an interpolation method 

is needed to improve the reduced displacement resolution. The approach chosen here is a 

non-linear interpolation method based on subvoxel processing and is described in the 

following section. 

 

6.2.3. QSI subvoxel processing  

 Subvoxel processing was proposed by Hwang & Wehrli (11) and applied to MR 

images of trabecular bone. It is a non-linear post-processing interpolation method to 

increase the apparent resolution of an image while minimizing blurring due to partial 

voluming and can be applied to images containing two discrete intensities. The subvoxel 

processing algorithm is empirical rather than derived from mathematical theory, and is 

based on two axioms: 1) smaller voxels are more likely to have higher signal, and 2) 

voxels containing signal are generally in close proximity with other signal containing 

voxels. These principles drive the basic strategy of subvoxel processing, which is to 

subdivide the original voxels and assign new intensities to each subvoxel on the basis of 

neighboring voxel intensities and conservation of mass criteria.   

 The application of subvoxel processing to displacement PDFs is best described by 

looking at the specific example in Figure 6.2, which shows an example of a displacement 

PDF measured from an ROI within the ReST tract of a mouse spinal cord as described in 

Chapter 2. The PDF was calculated by first averaging the echo attenuation over the ROI 

and then performing the Fourier transform. The averaged echo attenuation had 64 q-
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values. It was then truncated to 32, 16 and 8 q-values to simulate reduced displacement 

resolution by factors of 2, 4 and 8. The resulting PDFs are shown in Figure 6.2. The PDF 

with full resolution, i.e. with 64 q- values, is treated as the gold standard. The PDFs at 1/2, 

1/4, and 1/8 resolution can then be compared to it. 
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 Decreasing displacement resolution lowers the ZDP and broadens the PDF, which 

leads to a higher FWHM. It is important to note that the linear interpolation as shown in 

Figure 6.2 would not reduce the measured FWHM of the PDFs with lower resolution. 

Therefore any interpolation method designed to infer what the PDF would be at higher 

resolution must increase ZDP and decrease FWHM.  

In order to investigate whether subvoxel processing would be an appropriate 

interpolation method, its basic principles as applied to displacement PDFs must be 

Figure 6.2. Sample displacement PDF from the ReST tract of a mouse cervical spinal 
cord. PDFs are shown for full, 1/2, 1/4, and 1/8 displacement resolution. No zero-filling 
was applied. Markers are used to identify calculated PDF points and linear interpolation 
was used to fill in missing values. 
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examined. First, it is clear that the displacement PDF is not a made up of two discrete 

intensities, but rather a continuum of intensities. This invalidates the condition for 

conservation of mass and can be observed in the PDFs with reduced resolutions where 

the point values are not simply the average of the neighboring point values of the PDF 

with full resolution. Second, it is evident that higher displacement resolution, which 

results in smaller pixels, lead to higher values of the PDF, which fulfils the first axiom of 

subvoxel processing. Third, it is also apparent that non-zero point values of the 

displacement PDF are in close proximity to other non-zero point values, which fulfills the 

second axiom of subvoxel processing. This suggests that using neighboring voxel 

intensities to assign new subvoxel intensities without the need for conservation-of-mass 

may be the appropriate approach. 

 A final consideration is how to calculate the interpolated value of ZDP. Subvoxel 

processing alone will not interpolate it properly. As the PDF is symmetric about zero-

displacement, subvoxel processing will assign the original ZDP to the zero-displacement 

subvoxels. Instead, linear extrapolation is used to estimate the zero-displacement 

probability of the subvoxel. 

 With the above background covered, the algorithm for application of subvoxel 

processing to displacement PDF, hereafter known as QSI subvoxel processing, can now 

be described. All programming was done in Matlab (The Mathworks, Natick, MA). As 

the displacement PDF is symmetric about zero-displacement, only the left half is 

processed, which is then copied into the right half.  To illustrate the process, imagine 

there are three pixels i–1, i, and i+1 from the displacement PDF at displacements xi-1, xi, 

and xi+1 each with probabilities Pi-1, Pi, and Pi+1 as shown in Figure 6.3a.  
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The original width of each pixel is Δx. Note that pixel i+1 is closer to the zero-

displacement pixel by definition. To process pixel i, it is first divided into two subpixels 

labeled il and ir. The width of each subpixel is Δx/2. By defining the displacement to be 

located at the center of the pixel, the subpixel displacements can be defined as  
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The probabilities of the subpixels, Pi
l and Pi

r, are calculated by multiplying the 

original pixel probability, Pi, by normalized weights for the il and ir subpixels. These 

weights, wi
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Figure 6.3. Schematic of displacement PDF pixels to illustrate the QSI subvoxel 
processing algorithm. See text for details. (a) General case for processing. (b) The case 
for interpolating the zero-displacement probability. 
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These weights are identical to the weights defined by Hwang & Wehrli (11) except the 

left subvoxel weight, wi
l, is multiplied by an extra factor of 2. This was done to further 

compact the interpolated displacement PDF. While these weightings do not fulfill the 

conservation of mass condition, it was argued earlier that this condition does not apply to 

displacement PDFs. The subvoxel probabilities, Pi
l and Pi

r, can now be expressed as 
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 Figure 6.3b depicts the situation for calculating the new ZDP.  As only the left 

side of the displacement PDF is being processed, the zero-displacement pixel will be 

labeled n with probability Pn. In this case, the displacement for pixel n, xn, is zero. Note 

that, for the purposes of this algorithm, there is effectively no pixel after n since at the 

end of the process all the subpixel values from the left side will be copied to the right side. 

To process the zero-displacement pixel n, it is divided into two subpixels labeled nl and nr. 

The width of each subpixel is Δx/2 and the subpixel displacements can be defined as 
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The subpixel probabilities are Pn
l and Pn

r. The probability Pn
r is calculated first by 

linear extrapolation from displacement values and probabilities of the n-1 and nl pixels 

where Pn is used as an estimate for Pn
l. After Pn

r is calculated, Pn
l is calculated as 

describe above by multiplying the original pixel probability, Pn, by a normalized weight. 

The weight for the subpixel nl can then be defined as 
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The subvoxel probability Pn
l can then be calculated as 
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The subpixel nr is the new zero-displacement pixel and all of the subpixels up to 

and including nl are copied to the right side. This ensures that there always are an odd 

number of points in the interpolated PDF to match the original PDF, which centers the 

PDF about the zero-displacement. A two-point moving average window was used to 

make sure that the interpolated PDF was smooth. The interpolated displacement 

resolution is always half of the original resolution. It is possible to repeat the above 

procedure to further enhance the resolution and compact the PDF. In this case, the 

interpolated resolution can only be increased by multiples of two. 

 

6.2.4. Data analysis protocol 

All data acquisition details are given in Chapter 2. Using the ROIs drawn for the 

displacement PDF method (Chapter 4), average echo attenuations within each WM tract 

were obtained by averaging all the individual pixel echo attenuations within each ROI. 

As there were five spinal cord each with seven WM tract ROIs, there were 35 possible 

echo attenuations. Data acquired with both diffusion gradient durations (0.4 and 5 ms) 

were analyzed which meant there were 70 averaged echo attenuations overall. 

 

QSI subvoxel processing validation 

In order test the accuracy of QSI subvoxel processing, the averaged echo 

attenuations acquired with δ = 0.4 ms was used as a test data set. By truncating the echo 

attenuations, displacement PDFs with reduced resolution were generated. As QSI 
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subvoxel processing can only increased displacement resolution by factors of two, the 

echo attenuations were truncated by factors of two and four. This produced PDFs with 

resolutions that were 1/2 and 1/4 of the original. By applying the QSI subvoxel once, i.e. 

single-pass, to the 1/2 resolution PDFs, in theory, the original resolution should be 

recovered. Similarly, the original resolution should be recovered by applying the QSI 

subvoxel twice, i.e. double-pass, to the 1/4 resolution PDFs. The accuracy of QSI 

subvoxel processing was then tested by comparing FWHM and ZDP of the subvoxel 

processed PDFs with the original PDFs at full resolution.  

 

VGPD method 

The VGPD method requires both sets of averaged echo attenuations acquired with 

δ = 0.4 and 5 ms (E(δ=0.4ms) and E(δ=5ms), respectively). For the same WM tract and 

specimen, the echo attenuation value at which E(δ=0.4ms) and E(δ=5ms) begin to deviate 

from each other, Pd, (as observed by Malmborg et al. (1) when 

E(δ=5ms)/E(δ=0.4ms)>1.2) provides a relaxation-weighted estimate of ICS volume 

fraction. However, unlike Malmborg et al., Pd was taken as the value of E(δ=5ms) 

immediately prior to where the ratio E(δ=5ms)/E(δ=0.4ms) >1.2. This was done because 

we observed that the echo attenuation curves had already deviated when 

E(δ=5ms)/E(δ=0.4ms) >1.2. The VGPD measured ICS volume fraction was then 

compared with fractions measured from histology to assess accuracy. 

The following protocol to empirically separate the ECS and ICS signals was 

applied to both sets of average echo attenuations acquired with δ = 0.4 and 5 ms in order 

to investigate the effect of violating the SGP approximation. The point of deviation, Pd, 
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was used to empirically divide the echo attenuation into ECS and ICS parts, as previous 

discussed. ECS and ICS displacement PDFs were then calculated and FWHM, ZDP, and 

kurtosis measurements were recorded. For comparison, the full echo attenuation was used 

to generate overall PDFs and the same measurements were recorded. The ECS PDF was 

scaled relative to the ICS PDF so that the sum of their ZDPs would equal to that of the 

overall PDF. Note that scaling does not affect FWHM as the entire PDF is simply 

multiplied by a constant value.  

The overall PDFs were also used to decide when to use QSI subvoxel processing 

on the ICS displacement PDFs. If the FWHM of the ICS PDF were smaller than 90% of 

the overall PDF FWHM, then it would be inferred that the ICS displacement resolution 

was sufficient and no further processing was done. On the other hand, if the FWHM of 

the ICS displacement PDF were larger than 90% of the overall PDF, then it would be 

inferred that the ICS displacement resolution was too low and a single-pass QSI subvoxel 

processing algorithm was then run. For the dCST tract data, a double-pass QSI subvoxel 

processing algorithm was used. This was done because the dCST tract had the smallest 

MADs and the interpolated displacement resolution after single-pass QSI subvoxel 

processing was still large in comparison.   

The criterion for deciding when to use QSI subvoxel processing on the ECS 

displacement PDFs was based on the belief that water in ECS cannot displace farther than 

the RMS displacement of free water. Given the diffusion time of 10 ms, this RMS 

displacement is approximately 7 μm. If the FWHM of the ECS PDF were smaller than 7 

μm, then it would be inferred that the ECS displacement resolution was sufficient and no 

further processing was done. On the other hand, if the FWHM of the ECS PDF were 
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larger than 7 μm, then it would be inferred that the ECS displacement resolution was not 

sufficient and a single-pass QSI subvoxel processing algorithm was then run. If the 

single-pass FWHM of the ECS PDF were still larger than 7 μm, then a double-pass QSI 

subvoxel processing algorithm would be used. For the δ = 0.4 ms dataset, about 60% of 

the ICS and 30% of the ECS PDFs needed QSI subvoxel processing. For the δ = 5 ms 

dataset, 100% of the ICS and 25% of the ECS PDFs needed QSI subvoxel processing. 

 

6.3 Results 

6.3.1 QSI subvoxel processing validation  

Figure 6.4a shows sample full resolution, 1/2 resolution, and single-pass QSI 

subvoxel processed displacement PDFs. Figure 6.4b shows sample full resolution, 1/4 

resolution, and double-pass QSI subvoxel processed displacement PDFs. Note the close 

correspondence between the full resolution PDFs (blue diamonds) and QSI subvoxel 

processed PDFs (green squares). 

 

 
Figure 6.4. Sample PDFs from the ReST tract in a single specimen. (a) Full resolution, 
1/2 resolution, and single-pass QSI subvoxel processed displacement PDFs (b) Full 
resolution, 1/4 resolution, and single-pass QSI subvoxel processed displacement PDFs. 
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Figure 6.5a shows a plot of FWHM of lower resolution and subvoxel processed 

PDFs vs. the original full resolution PDF with equations for lines of best fit, R2 and p 

values. Each point is a mean value for a specific WM tract that was averaged over all five 

specimens. All processed FWHMs show excellent correlation with FWHMs from the 

original full resolution PDFs. Lines of best fit for 1/2 and 1/4 resolution FWHMs have 

slopes close to unity, but have large y-intercepts. This suggests that reducing 

displacement resolution increases measured FWHM as expected. Lines of best fit for QSI 

subvoxel processed FWHMs still have slopes close to unity, but the y-intercepts are 

greatly reduced. This suggests that the QSI subvoxel processed FWHMs have better 

agreement with the original FWHMs. 

Figure 6.5b shows a plot of ZDP values of lower resolution and subvoxel 

processed PDFs vs. the original full resolution PDF with equations for lines of best fit, R2 

and p values. Each point is a mean value for a specific WM tract that was averaged over 

all five specimens. All processed ZDPs show excellent correlation with ZDPs from the 

original full resolution PDFs. Lines of best fit for 1/2 and 1/4 resolution ZDPs have 

slopes less than unity, which suggests that reducing displacement resolution decreases 

measured ZDP as expected. Lines of best fit for QSI subvoxel processed ZDPs have 

increased slopes, which suggests that the QSI subvoxel processed ZDPs are in better 

agreement with the original ZDPs. 
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In order to properly compare the agreement between measurements from full 

resolution PDFs and processed PDFs, Bland-Altman plots were generated and the 95% 

confidence interval limits were recorded. Table 6.1 shows the results for comparisons 

between various measurements with measurements from full resolution PDFs. Note that 

Figure 6.5. (a) Plot of FWHM of lower resolution and subvoxel processed PDFs vs the 
original full resolution PDF with lines of best fit. (b) Plot of ZDP of lower resolution and 
subvoxel processed PDFs vs. the original full resolution PDF with lines of best fit. The 
dotted line is line of identity. 
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only QSI subvoxel processed measurements displayed 95% confidence intervals which 

span zero. 

Table 6.1. Processed vs. full res. Bland-Altman plot 95% confidence interval limits 

Bland-Altman plot 
confidence limits (μm) 

Bland-Altman plot 
confidence limits (a.u.) FWHM 

measurement1 

+95%  −95%  

ZDP 
measurement1 

+95%  −95%  

1/2 Resolution 0.54 0.44 1/2 Resolution −0.03 −0.07 

1/2 Resolution 
QSI Subvoxel 

Processed 
0.16 −0.03 

1/2 Resolution 
QSI Subvoxel 

Processed 
0.01 −0.01 

1/4 Resolution 1.81 1.64 1/4 Resolution −0.06 −0.17 

1/4 Resolution 
QSI Subvoxel 

Processed 
0.09 −0.13 

1/4 Resolution 
QSI Subvoxel 

Processed 
0.02 −0.04 

1 All measurements are compared with measurements from full resolution PDFs 
 

6.3.2 VGPD method 

Figure 6.6a shows sample echo attenuations (E(δ=0.4ms) and E(δ=5ms)) from the 

VST WM tract of a single specimen used for the VGPD method and how the ratio 

E(δ=5ms)/E(δ=0.4ms) is used to determine ICS volume fraction from the point of 

deviation, Pd. Note how Pd is defined as the point before E(δ=5ms)/E(δ=0.4ms) > 1.2. 

Figure 6.6b shows a plot of histologic vs. experimental ICS volume fractions. For each 

specimen, in both experiments and histology, a single ICS volume fraction was calculated 

by averaging all WM tract ICS volume fractions as an ANOVA test determined there was 

no significant difference in ICS volume fraction among the WM tracts. A Bland-Altman 

plot between the experimental and histologic ICS volume fractions (not shown) indicates 

the 95% confidence interval to fall in the range from –0.01 to –0.06. 
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All of the echo attenuation points before Pd are used to generate the ECS 

displacement PDF, while all the points afterwards, including Pd, are used to generate the 

ICS displacement PDF.  Figure 6.7 shows examples of the overall (blue diamonds), ECS 

(red squares), and ICS (green triangles) PDFs from a FG tract in a single specimen. 

Single-pass QSI subvoxel processing was performed on the ICS PDF. This can be seen in 

the increased number of points in the ICS PDF. No processing was needed for the ECS 

PDF. Note the few number of points that describe the peak due to the larger displacement 

resolution. 

Figure 6.6. (a) Sample E(δ=0.4ms) and E(δ=5ms) curves on logarithmic axes for the 
VST tract in a single specimen. R = E(δ=0.4ms)/E(δ=5ms). Left arrow indicates the 
E(δ=5ms) value used to estimate ICF.  (b) Plot of individual specimen histologic vs. 
experimental ICFs with line of best fit and mean values. Dotted line is line of identity. 
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Figure 6.8 shows a plot of FWHM of the overall and ICS displacement PDFs vs. 

histologic MAD with equations for lines of best fit, R2 and p values. Each point is a mean 

value for a specific WM tract that was averaged over all five specimens. The FWHMs of 

the overall and ICS PDF show excellent correlation with histologic MAD. For the short 

gradient experiments, the lines of best fit slopes close to unity, but have different y-

intercepts. The overall PDF has a y-intercept of 0.25, which is in agreement with the 

observation that the overall PDF FWHM overestimated MAD by ~20% (see Chapter 4). 

The ICS PDF has a reduced y-intercept that suggests that the separation of the ECS and 

ICS signals improved the estimate of MAD. The long gradient experiments showed 

similar behavior: similar slopes of the lines of best fit but with the overall PDF having a 

larger y-intercept than the ICS PDF. However, the slopes were both less than one, which 

suggests that FWHMs of both PDFs underestimated MAD.  

 

Figure 6.7. Examples of overall (blue diamonds), ECS (red squares), and ICS (green 
triangles) PDFs from a FG tract in a single specimen. 
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Table 6.2 summarizes the Pearson correlation coefficients between various VGPD 

measurements with histologic MAD under both short and long diffusion gradient 

durations. Significant correlations were defined as p<0.05. As reported earlier (Chapter 4), 

there were significant positive correlations between the FWHM of the overall PDF for δ 

= 0.4 and 5 ms and histologic MAD. There significant negative correlations between the 

ZDP and kurtosis of the overall PDF for δ = 0.4 and 5 ms and histologic MAD. The ICS 

PDF displayed similar behavior. The ECS PDF showed significant positive correlation 

between FWHM and histologic MAD for both δ = 0.4 and 5 ms. No significant 

correlation was found for ECS ZDP. There was significant negative correlation between 

ECS kurtosis and histologic MAD for both δ = 0.4 and 5 ms. 

 

 

 

 

 

Figure 6.8. Plots of FWHM of overall and ICS displacement PDFs vs histologic MAD 
with lines of best fit for different gradient duration. (a)  δ = 0.4 ms and (b) δ = 5 ms. The 
dotted line is the line of identity. 



 123

Table 6.2. Pearson correlations between VGPD measurements and histologic MAD 

r, p-value FWHM 
Measurement δ = 0.4 ms δ = 5 ms 

Overall PDF 0.97, p=0.0002 0.95, p=0.001 

ICS PDF 0.98, p=0.0001 0.95, p=0.001 

ECS PDF 0.83, p=0.0202 0.94, p=0.0019 

r, p-value ZDP 
Measurement δ = 0.4 ms δ = 5 ms 

Overall PDF −0.95, p=0.0013 −0.91, p=0.0042 

ICS PDF −0.89, p=0.0072 −0.88, p=0.0091 

ECS PDF 0.04, p=0.9339 0.59, p=0.1642 

r, p-value Kurtosis 
Measurement δ = 0.4 ms δ = 5 ms 

Overall PDF −0.95, p=0.0009 −0.94, p=0.0017 

ICS PDF −0.93, p=0.0023 −0.92, p=0.003 

ECS PDF −0.94, p=0.0015 −0.94, p=0.0017 
 

Table 6.3 summarized the Bland-Altman plot 95% confidence intervals for the 

FWHM of the overall and ICS PDFs vs. histologic MAD. This was done to investigate the 

accuracy of the FWHM as an estimate for MAD. As previously reported (Chapter 4), the FWHM 

of the overall PDF overestimated MAD at short gradient duration and underestimated MAD at 

long gradient duration. Similar to the two-compartment displacement method, the FWHM of the 

ICS PDF accurately estimated MAD compared with histology at short gradient duration. At long 

gradient duration, the ICS FWHM still underestimated MAD. 

Table 6.3. FWHM vs. histologic MAD Bland-Altman plot 95% confidence interval 
Bland-Altman plot 

confidence limits (μm) 
Bland-Altman plot 

confidence limits (μm) δ = 0.4 ms 
+95% −95% 

δ = 5 ms 
+95% −95% 

Overall PDF 0.34 0.19 Overall PDF −0.04 −0.35 

ICS PDF 0.028 −0.09 ICS PDF −0.31 −0.59 
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6.4 Discussion  

6.4.1 QSI subvoxel processing validation 

 By using data from biological tissue acquired under ideal QSI experimental 

conditions, a standard test data set can be created to investigate the validity of the QSI 

subvoxel processing algorithm. Reduced displacement resolution can be generated by 

systematically truncating the echo attenuations and the original PDF at full resolution can 

serve as the control comparison. Examples of single-pass and double pass QSI subvoxel 

processed 1/2 and 1/4 resolution displacement PDFs show good agreement with full 

resolution displacement PDFs (Figure 6.4). 

 All processed FWHM and ZDP values showed excellent correlation with values 

from the original full resolution PDFs (Figure 6.5). As processed PDFs are being 

compared with unprocessed PDFs, it is expected that if QSI subvoxel processing truly 

corrects low resolution, the lines of best fit of this processed data would have a slope of 

unity and zero y-intercept. This is most clearly observed with the FWHM plots (Figure 

6.5a). The ZDP plots also show this behavior, but the QSI subvoxel processed 1/4 

resolution ZDP line of best fit had a slope less than unity. However, the slope did 

increase compared without QSI subvoxel processing. 

 Bland-Altman plot analysis determines if two measurement methods are identical.  

If QSI subvoxel processing truly corrects low resolution, it is expected that the Bland-

Altman analysis will show that the subvoxel of processed and full resolution PDF 

measurements are identical. Indeed, the results shown in Table 6.1 indicate that lower 

displacement resolution alone increases FWHM and decreased ZDP, as expected. After 
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QSI subvoxel processing, FWHM and ZDP measurements are identical to measurements 

from the original full resolution PDFs. 

 Taken as a whole, these results suggest that the QSI subvoxel processing 

algorithm accurately corrects for low displacement resolution and may be used to 

interpolate displacement PDFs to improve resolution. Only a specific range of low 

displacement resolutions were studied and further investigation with a broader range is 

needed. Nevertheless, the displacement resolution values used in the VGPD method fall 

within the tested range, which suggests that QSI subvoxel processing is valid to use here. 

 

6.4.2 VGPD Method 

The first step of the VGPD method is to define the point of deviation, Pd, to 

estimate ICS volume fraction. Histologic and experimental ICS volume fractions are well 

correlated (Figure 6.6b). Furthermore, all experimental ICS volume fractions fall within 

the expected range of 60-80% (12). The Bland-Altman results suggest that the volume 

fraction method slightly underestimates the histologic ICS volume fraction. Nevertheless, 

the data indicates that this method may provide ICS volume fraction estimates in WM in 

fair agreement with those observed histologically, thereby validating the prior results by 

Malmborg et al. (1).  

It should be noted that this method only provides a relaxation-weighted ICS 

volume fraction estimate from Pd. The exact relaxation weighting effect on Pd is unclear. 

Nevertheless, as a result of the short TE used here, ECS and ICS signals did not decay 

significantly, errors from different T2 relaxation times in the two compartments should be 

small (ECS and ICS T2s have been reported as 78 and 300 ms, respectively (13)).  Further, 
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as the technique only differentiates between restricted and free diffusion, histologic ICS 

volume fraction included both the ICS and myelin regions since the myelin water is 

restricted by the myelin sheaths as discussed earlier. Unlike the displacement PDF 

method, there is no need for sufficient displacement resolution to resolve the restricted 

diffusion in myelin as the volume fraction method uses the echo attenuation in q-space. 

This may explain why the ICS volume fraction measured with this method, and not the 

displacement PDF method, showed correlation with histology.  

Finally, due to the cylindrical geometry of axons, the observed fraction of 

restricted diffusion, and hence ICS volume fraction, depends on the orientation of the 

applied diffusion gradients as discussed by Malmborg et al. For example, if the gradients 

were applied parallel to the axon direction, then the ICS signal would not be restricted. 

True ICS volume fraction requires the diffusion gradients to be applied orthogonal to the 

axon. While the choice of spinal cord tissue allowed the diffusion gradients to be oriented 

orthogonal to the WM tracts, the VGPD method may be applied to tortuous WM tracts in 

the brain with a tensor analysis (14) so that the q-space echo attenuation from diffusion 

orthogonal to the WM tract can always be computed. 

The ICS volume fraction results suggest that Pd can be used as the boundary 

between the ECS and ICS echo attenuations. It is important to note that as Pd changes for 

every data set, qmax will change for the ECS and ICS echo attenuations. Therefore, there 

is not a common displacement resolution for the ECS and ICS PDFs. This was not an 

issue for the ICS PDFs as the resolution was generally under 1 μm after truncation. 

Corrections were still necessary with QSI subvoxel processing, but the initial resolution 

was still quite high. As a consequence of the observed Pd, the ECS displacement 
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resolution was much lower than the ICS displacement resolution. As it can be seen in 

Figure 6.7, there are few points to describe the ECS PDF. Therefore, the measured 

FWHM may be inaccurate and likely overestimated due to the low resolution. 

For the short gradient duration data, the FWHM, ZDP, and kurtosis values of the 

ICS PDF showed the expected correlations with MAD. Again, according to the Bland-

Altman results, the FWHM of the overall PDF overestimates MAD, while the FWHM of 

the ICS PDF accurately measures MAD as compared with histology. These results 

suggest that the ICS displacement PDF represents diffusion within the axon. The FWHM, 

and kurtosis values of the ECS PDF also showed significant positive and negative 

correlations with MAD, respectively. As reported in Chapter 2, there is a negative 

correlation between axon density and MAD. The positive FWHM correlation suggests 

that the ECS displacement decreases with higher axon density, while the negative 

kurtosis correlation suggests that the ECS diffusion is less hindered with decreased axon 

density. These results suggest that ECS FWHM is sensitive to the tortuosity in ECS. As 

axon density increases, axons are crowded together and ECS water molecules will not 

displace as far. This behavior as been observed in WM tissue (5) and in cancerous tumors 

where hypercellularity reduces the RMS displacement of water molecules in ECS (4). 

It is important to note that no correlations between ECS FWHM or RMS 

displacement were observed with the two-compartment displacement PDF (Chapter 4) or 

low q-value (Chapter 5) methods. The major difference between these methods is that 

they required a two-compartment model to separate the ECS and ICS signals while the 

VGPD method empirically separates the two. Inaccuracies in the model assumptions may 

have distorted the observed ECS displacement behavior. As it is reasonable to expect that 
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the ECS diffusion to be sensitive to axon density as described above, the results support 

the use of an empirical approach to better study diffusion in ECS and ICS. 

In order to investigate the effects of violating the SGP approximation, the VGPD 

method was applied to data with long diffusion gradient duration (δ = 5 ms). As expected, 

the FWHM of the overall and ICS PDFs are decreased (2), and, unlike the short gradient 

results, the Bland-Altman analysis shows that both underestimate MAD. Nevertheless, 

the same correlation behavior between FWHM, ZDP, and kurtosis values and histologic 

MAD was observed. This suggests that while violating the SGP approximation may no 

longer allow the VGPD method to accurately estimate MAD, it may still be sensitive to 

variations in MAD and axon density. The VGPD method may therefore still be useful for 

detecting changes in axon morphology even under conditions violating the SGP 

approximation. 

 

6.5 Conclusions 

 The results reported here suggest that the VGPD method has potential to 

indirectly assess axon morphology and separate the ECS and ICS signals without the 

need for modeling. A QSI subvoxel processing algorithm was developed to increase the 

apparent displacement resolution and validated with experimental data. Experimental ICS 

volume fractions showed good correlation with histology. The FWHM, ZDP, and 

kurtosis of the ICS PDF showed good correlation with histology and the FWHM may 

provide accurate estimates of MAD as compared with histology. However, the ICS 

volume fraction was underestimated by this method. The FWHM, and kurtosis of the 

ECS PDF showed good correlation with histology and may provide a measurement of 
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ECS tortuosity. Violating the SGP approximation may reduce the accuracy of the VGPD 

method and underestimate MAD. However, the method may still be sensitive to relative 

changes in MAD and axon density. 
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Chapter 7: Feasibility of Implementation on a Clinical Scanner 

7.1 Introduction 

 In previous chapters, several different QSI-based methods (displacement PDF, 

low q-value, and VGPD) have been shown to have the potential to indirectly assess axon 

morphology and make accurate measurements of mean axon diameter (MAD) and 

intracellular space (ICS) volume fraction. In this chapter, preliminary data is presented to 

investigate the feasibility of implementing these methods on a clinical scanner for 

potential in vivo studies. The data reported here only investigates the major hardware 

limitation with a  clinical scanner, i.e. maximum gradient strength, and not issues relating 

to in vivo imaging itself, which are numerous and varied. Issues relating to feasibility of 

in vivo imaging will be briefly discussed in the Discussion section. 

As discussed in Chapter 2, maximum gradient strength is a major concern as it 

imposes an inherent limitation on QSI – the achievable displacement resolution. The 

resolution is determined by qmax, which is proportional to the area of the gradient pulse at 

maximum gradient strength. The maximum gradient strength of the Micro-Z gradient was 

5000 G/cm, while the maximum gradient strength of the clinical scanner used here is 

only 4 G/cm. Even with violating the SGP approximation, the factor of 1000 decrease in 

gradient strength severely limits the maximum achievable displacement resolution.  

The preliminary data presented here therefore investigates what type of indirect 

measurements of axon morphology using the previously described methods are possible 

with the limitation in gradient strength and displacement resolution in mind. Data 

collected on fixed pig spinal cord is analyzed with each of the displacement PDF, low q-

value and VGPD methods. 
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7.2 Methods 

7.2.1 Material and methods 

Animal specimens 

 Fixed cervical spinal cord specimens were harvested from five skeletally mature 

Yucatan mini-pigs (70-90 kg, ~18 months old). The pigs were obtained from Dr. Schaer 

in the Comparative Orthopaedic Research Laboratory (CORL) at the New Bolton Center, 

Veterinary Medicine, University of Pennsylvania. Within 1 hr of euthanasia, the whole 

cervical spinal cord was immediately harvested (~15 cm long) and the dura mater was 

punctured before immersing in 10% neutral buffered formalin (Sigma-Aldrich, St. Louis, 

MO, USA). The spinal cords were immersed in fixing solution for a period of 3-14 days. 

Afterwards, excess meninges were removed and the cords were placed in storage tubes 

with PBS. Before experiments, the cords were trimmed and placed in 14 ml screw top 

conical tubes filled with Fomblin (Sigma-Aldrich, St. Louis, MO, USA), a fluorinated oil, 

to keep the specimens hydrated and to remove any background signal. All five tubes 

containing cervical cord specimens were taped together for simultaneous imaging. 

 

Imaging hardware 

 All experiments were performed on a 1.5T Siemens Sonata MRI scanner 

(Erlangen, Germany) with 40 mT/m gradients (slew rate- 200 T/m/s). The body coil was 

used for transmit and a custom-built 4-channel phased array coil (Insight MRI, 

Worchester, MA, USA) was used for receive. No parallel imaging was employed and the 

four channels were used to improve SNR. The five tubes taped together containing spinal 
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cord specimens immersed in Fomblin were placed within the coil. Sandbags and a plastic 

buckle were used to secure the RF coil.  

 

Pulse sequence 

 All pulse sequence development was done in Sequence Tree 

(www.thesouthpoles.com/sequencetree), which is an open source MRI pulse sequence 

programming environment developed by Jeremy F. Magland. To reduce scan time, a 2D 

single-slice PGSE with multi-shot echo-planar-imaging (EPI) readout sequence (1) was 

used (Figure 7.1). To simplify reconstruction, k-space lines were acquired in a non-

alternating fashion, i.e. only equal polarity echoes were used. The echo time (TE) in the 

PGSE portion was chosen so that the echo formed in the center of the EPI acquisition 

window. The EPI imaging parameters were as follows: reconstructed matrix size = 

128×128, FOV = 64×64 mm, slice thickness = 10 mm, number of shots = 8, number of 

echoes = 16, dummy scans = 16, NA = 36, TR = 2 s, echo spacing = 4 ms, readout BW = 

100 kHz. The PGSE parameters were diffusion time = 98.7 ms and TE = 257 ms. Two 

combinations of diffusion gradient duration (δ) and maximum gradient strength (G) were 

run and chosen to have identical q-values: δ/G = 55 ms/34 mT/m and 90 ms/20.778 

mT/m. For both sets of parameters, 16 equally spaced q-values were acquired with 

identical qmax = 0.08 μm-1, which gave a displacement resolution of 6.3 μm. The total 

scan time was ~2.5 hours. For the shorter gradient duration parameters, an additional data 

set was acquired with 32 equally spaced q-values for low q-value fitting with a total scan 

time ~5 hours. The experimental data acquired with the above parameters was analyzed 

in different ways depending on the method applied as described below. 
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7.2.2 Data analysis 

 After Fourier transform of the k-space data with a factor of two zero-filling using 

Matlab (Mathworks, Natwick, MA, USA), a 3D matrix of 16 or 32 2D images at various 

q-values was obtained. Using ImageJ (NIH, Bethesda, USA), ROIs were drawn in the 

dorsal, ventral, and lateral columns of the spinal cords (Figure 7.2). Average echo 

attenuations were calculated for each ROI for further processing depending on the 

method applied. The basic processing for the displacement PDF, low q-value and VGPD 

methods have been described in previous chapters. Specific processing steps for each 

method used here are described below. 

 For the displacement PDF method, only the one-compartment protocol was 

applied as the displacement resolution was so low (6.3 μm) that the two-compartment 

model would not have significantly improved MAD estimation. Furthermore, the shape 

Figure 7.1. Diagram of PGSE with multi-shot EPI readout sequence. Labels: D = 
diffusion gradient, Δ = diffusion time, δ = diffusion gradient duration, ADC = analog to 
digital converter. Darker gradients signify spoiling and crusher gradient moments. 
Number of echoes was reduced for display purposes only.
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of ICS displacement PDF may not be the exponential decay peak used in Chapter 4 as the 

diffusion gradient duration is much longer here. Mitra & Halperin (2) predicted that at 

very long gradient durations, the displacement PDF of molecules restricted within a pore 

approximates a Gaussian. The average echo attenuations were reflected about q = 0, and a 

Fourier transform was done to produce a purely real displacement PDF. The FWHM, 

ZDP, and kurtosis values were then measured. 

 For the low q-value method, the data set with δ = 55 ms and 32 q-values was 

analyzed. As the echo attenuations were to be fit to a model, a data with 32 q-values was 

preferred to 16 q-values. Since qmax = 0.08 μm-1, it was reasonable to assume that all the 

q-values fulfilled the low q-value requirement of q << MAD-1 for MAD of 1-2 μm. 

Therefore the full echo attenuations were fit with the one and two-compartment low q-

value method as described in Chapter 5 (Eq. 5.1 and 5.2). The only major difference 

between the fitting protocol use here and in Chapter 5 was that ZECS (RMS displacement 

in ECS) was not constrained to be less than 8 μm. 

 For the VGPD method, the major concern for feasibility on a clinical scanner is 

the much longer gradient durations required. As described in Mitra & Halperin (2), with 

increasing gradient duration, for restricted diffusion, the echo attenuation will be 

attenuated less. With changes in very long gradient durations, i.e. 55 vs. 90 ms, the 

differences in echo attenuations become smaller as the center-of-mass displacement 

differences are also smaller (see Chapter 6 and (2)). It is not clear whether or not the 

gradient durations used here would still show differences in echo attenuation due to 

restricted diffusion. Furthermore, due to the lower gradient strengths, it is not apparent 

whether the achievable qmax (0.08 μm-1) is sufficient to observe the differences between 
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hindered and restricted diffusion in the echo attenuations. Note that in Chapter 6, the 

point of deviation was observed between 0.1–0.3 μm-1. However, the diffusion time is 

much larger here (10 vs. 98.7 ms) and differences between hindered and restricted 

diffusion may be accentuated. Finally, as with the displacement PDF method, the 

displacement resolution is so low that there is not sufficient resolution to properly resolve 

ECS and ICS PDFs. While QSI subvoxel processing can be used to improve resolution, it 

has not been validated for use with such low resolutions. Due to these concerns, the full 

VGPD method is not applied here. Only a comparison between echo attenuations with δ 

= 55 and 90 ms was performed to investigate the feasibility of differentiating hindered 

and restricted diffusion based on a different dependence on diffusion gradient duration. 

 

Statistical Analysis 

All statistical analysis was performed with Excel (Microsoft, Redmond, WA, 

USA). ANOVA was used to evaluate differences in FWHM, ZDP, and kurtosis values 

between ROIs (dorsal, lateral, and ventral columns), and, if significant, paired t-tests 

were used post hoc to evaluate how the ROIs specifically differed. Paired t-tests were 

used as the comparison was between ROIs in the same specimen. A correction for 

multiple-comparisons was not used here.  

 

7.3 Results 

In order to test that the pulse sequence program runs properly, it was used to 

measure ADC of a bottle of 1mM Gd doped water. All the imaging parameters were the 

same except that the gradient duration and strength were set to 11 ms and 34 mT/m so 
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that b-values ranged from 0 to ~1000 s/mm2. The calculated ADC was 1.98×10-3 mm2/s 

which matches literature values (3). This result suggested that the PGSE diffusion-

weighted multi-shot EPI pulse sequence was working properly. 

Figure 7.2 shows sample diffusion-weighted 8-shot EPI magnitude images at q = 

0 μm-1 and qmax = 0.08 μm-1. Sample ROI locations are shown for the dorsal (red), lateral 

(green) and ventral (blue) WM columns. Note the clear discrimination between GM and 

WM at q = 0 μm-1. This distinction is lost at qmax = 0.08 μm-1. In comparison with images 

acquired with the Micro-Z gradient (Chapter 4), it appears that qmax is not high enough to 

reverse the GM and WM contrast (4). The SNR at q = 0 μm-1 ranged from 10-25. The 

SNR at qmax ranged from 3-15.  The dorsal column consistently exhibited the lowest SNR 

while the lateral columns exhibited the highest SNR. There is a hyper-intense region 

outside one of the spinal cords due to residual PBS. This generates a ghosting artifact due 

to insufficient spoiling. The artifact did not affect the QSI results and was not corrected. 

 

 

 

 

 

Figure 7.2. Sample diffusion-weighted 8-shot EPI magnitude images at q = 0 μm-1 and 
qmax = 0.08 μm-1. The white bar represents a length of 10 mm. ROI locations are shown 
for the dorsal, ventral and lateral WM columns. The bright spot in above the center top 
cord in the q = 0 μm-1 image is due to residual surface PBS. 
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7.3.1 Displacement PDF method 

 Figure 7.3 shows sample echo attenuations and displacement PDFs for dorsal, 

lateral, and ventral WM columns for δ = 55 ms. Note that only five points describe the 

PDF peaks due to the very low displacement resolution. The data suggests that all three 

PDFs have similar shape and the dorsal column PDF has the highest ZDP. Regional 

differences in the echo attenuations are apparent. The dorsal echo attenuation is 

attenuated less than the lateral and ventral echoes, which implies that the dorsal 

displacement PDF should also have a smaller FWHM. 

 

 

 

 Figure 7.4 shows bar graphs of FWHM, ZDP, and kurtosis values for each ROI 

average over all five specimens for δ = 55 ms. ANOVA analysis indicated there were 

significant differences in the measured values between the ROIs. Therefore, paired t-tests 

were used to compare specific values between ROIs. Significant p-values (<0.05) 

between different ROIs are indicated in Figure 7.4. There is a trend of increasing FWHM 

and decreasing ZDP and kurtosis from dorsal to lateral to ventral ROIs. This suggests that 

the dorsal column contains smaller axons than the other two ROIs. Figure 7.5 shows bar 

Figure 7.3. Sample echo attenuation, E(q) (a) and displacement PDFs (b) from dorsal, 
lateral and ventral column ROIs for δ = 55 ms.  
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graphs of FWHM, ZDP, and kurtosis values for each ROI average over all five specimens 

for δ = 90 ms. The data for δ = 90 ms is similar to that for δ = 55 ms except that paired t-

tests indicated significant differences in FWHM, ZDP and kurtosis between the lateral 

and ventral columns. There is again a trend of increasing FWHM and decreasing ZDP 

and kurtosis from dorsal to lateral to ventral ROIs. 

 

 

 

 

 

 

 

Figure 7.4. Bar graphs of mean FWHM, ZDP, and kurtosis values for each ROI average 
over all five specimens for δ = 55 ms. Standard deviation bars are shown. Significant p-
values (<0.05) of paired t-tests between the different ROIs are shown.  



 141

 

 

 

 

 

To better visual differences, Figure 7.6 shows bar graphs of FWHM, ZDP, and 

kurtosis values for each ROI average over all five specimens for δ = 55 and 90 ms. The 

longer gradient duration data exhibit lower FWHM and higher ZDP and kurtosis values 

as expected (2). As indicated in the figure, paired t-tests between FWHM, ZDP and 

kurtosis values with shorter and longer gradient durations indicate that these differences 

are significant.  

Figure 7.5. Bar graphs of mean FWHM, ZDP, and kurtosis values for each ROI average 
over all five specimens for δ = 90 ms. Standard deviation bars are shown. Significant p-
values (<0.05) of paired t-tests between the different ROIs are shown.  
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7.3.2 Low q-value method 

 Figure 7.7 shows a sample average echo attenuation plot for a lateral WM column 

ROI (blue diamonds) along with one-compartment (green line) and two-compartment 

(red line) low q-value fits. It is readily apparent that the one-compartment fit does not fit 

the measured echo attenuation well, whereas the two-compartment fit shows good 

Figure 7.6. Bar graphs of mean FWHM, ZDP, and kurtosis values for each ROI average 
over all five specimens for δ = 55 (red) and 90 (green) ms. Standard deviation bars are 
shown. Asterisks indicate p-values of paired t-tests between the different gradient 
durations.  
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agreement (R2 >0.98). All one-compartment fits were similar to that shown in Figure 7.7. 

Therefore, one-compartment fit results are not reported. 
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 Figure 7.8 shows bar graphs of ECS weighting, ECS RMS displacement, ICS 

weighting, and ICS RMS displacement calculated from the two-compartment low q-value 

fit for each ROI average over all five specimens. It is important to note that the ECS 

RMS displacements are lower than that expected for free water with a diffusion time of 

98.7 ms (~20 μm). The ADC calculated from the ECS RMS displacements were 

~0.25×10-3 mm2/s which agrees with literature values for fixed spinal cord WM tissue (5). 

It is also noteworthy that the ICS RMS displacements fall within 1-2 μm, which is the 

expected range of axon diameters in mammals (6). 

 

Figure 7.7. Plots of echo attenuation, E(q), for a lateral WM column ROI (blue 
diamonds) with one-compartment (green line) and two-compartment (red line) low q-
value fits. 
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An ANOVA analysis indicated that there was no significant difference in ECS 

and ICS weighting among all three ROIs, whereas there was a significant difference in 

ECS and ICS RMS displacement. Paired t-tests were the performed between ECS and 

ICS RMS displacement of various pairs of ROIs in order to discern what the significant 

difference was and significant p-values (<0.05) are shown in Figure 7.8.  The results 

indicate that the dorsal WM column ECS and ICS RMS displacements are significantly 

smaller than those of the ventral WM column. No significant differences were found 

between the lateral and ventral WM columns. 

 

Figure 7.8. Bar graphs of ECS weighting, ECS RMS displacement, ICS weighting, and 
ICS RMS displacement calculated from the two-compartment low q-value fit for each 
ROI average over all five specimens. Standard deviation bars are shown. Significant p-
values (<0.05) of paired t-tests between the different ROIs are shown. 
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7.3.3 VGPD method 

 Figure 7.9 shows echo attenuation plots for dorsal, lateral, and ventral ROIs 

averaged over all five specimens for both δ = 55 and 90 ms. The initial part of the echo 

attenuation does not show a clear difference between δ = 55 and 90 ms. However at 

higher q-values, it is clear that longer gradient duration leads to less echo attenuation for 

all ROIs. The difference in attenuation is much less than that observed for δ = 0.4 and 5 

ms (Chapter 6). A rough estimate of Pd by visual inspection falls within the range of 0.85 

to 0.95. Note that the standard deviation for the dorsal echo attenuations is largest as its 

SNR was lowest among the WM column ROIs. 

 

 

 

Figure 7.9. Echo attenuation plots for dorsal, lateral, and ventral ROIs averaged over all 
five specimens for both δ = 55 and 90 ms. Standard deviation bars are shown.  
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7.4 Discussion 

 It was necessary to acquire images with sufficient spatial resolution in order to 

spatially resolve GM and WM. Otherwise, partial voluming of GM and WM will 

complicate interpretation of the results as GM will introduce new hindered (ECS) and 

restricted (ICS) diffusion components. However to achieve this spatial resolution, the 

slice thickness had to be greatly increased to compensate for the loss of SNR. A slice 

thickness of 10 mm was deemed appropriate as the average vertebral cervical cord 

segment was ~20 mm, and it was assumed that axon morphology did not change 

significantly within a segment. In any in vivo spinal cord, however, there will be partial 

voluming of GM and WM. How this blurring of GM and WM affects the QSI-based 

methods described here is unclear and further investigation is needed. 

 

7.4.1 Displacement PDF method 

 It was not expected that this method would provide accurate estimates of axonal 

architecture. The imaging parameters used here were chosen to try and maximize 

displacement resolution and it was still a factor of 10 lower that what was achieved with 

the Micro-Z gradient (Chapter 4). Furthermore, the gradient durations are over a factor of 

10 longer, and this is known to narrow the displacement PDF. There are, therefore, two 

competing effects: a broadening of the PDF due to low displacement resolution and a 

narrowing of the PDF due to long gradient durations. A quantitative understanding of the 

interaction of these effects is lacking, but based on previous literature applying QSI to 

clinical scanners (7-9) it seems that low displacement resolution is the dominant effect. 
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 A previous QSI study of excised pig spinal cord (10) reported FWHMs of ~13-14 

μm, which is double what is reported here. This can be easily explained as that study has 

a lower displacement resolution (~10 μm vs. ~6 μm). Despite these limitations in 

resolution, these studies report enhanced sensitivity of FWHM and ZDP to pathology (7-

10). Indeed, there seemed to be regional differences observed in the PDFs measure here 

on the pig cervical spinal cords. While there was no histology done on these cords, it is 

not unreasonable to expect in mammals that the dorsal column to contain the smaller 

axon compared with the lateral and ventral columns (6, 11, 12). Therefore, it would be 

expected that the dorsal ROI displacement PDFs would have smaller FWHM, and higher 

ZDP and kurtosis as it was observed. 

 Another interesting observation, which has implications for the VGPD method, 

was that the PDFs still showed the expected behavior when the gradient duration was 

increased. Specifically, the FWHM decreased while ZDP and kurtosis increased with 

longer gradient durations; these observations were statistically different from those with 

shorter gradient durations. Therefore, despite the much longer gradient durations and low 

displacement resolutions, the PDFs were still sensitive to changes in gradient durations. 

This suggests that the VGPD method may still be applicable on clinical scanners. 

Furthermore, this observed gradient duration dependence, which is only true for restricted 

diffusion (2), supports the assumption that ICS diffusion is still restricted even at 

diffusion time as long as Δ = 98.7 ms. 
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7.4.2 Low q-value method 

 This method showed the greatest potential for clinical feasibility as its 

measurements of axon morphology did not depend on high displacement resolution. 

However, there were still uncertainties regarding the long gradient durations needed on 

the clinical scanner. The Gaussian approximation of the echo attenuation at low q-values 

is only strictly valid under the SGP limit (13, 14). While this condition could easily be 

fulfilled using the Micro-Z gradient, the SGP approximation would certainly be violated 

using clinical gradient hardware. In Chapter 5, the low q-value method was used under 

conditions violating the SGP approximation and ECS and ICS RMS displacements still 

showed good correlation and agreement with histology. However, in that case the 

gradient duration was only increased to 5 ms and it is not clear how those results would 

hold up when the gradient duration was pushed to 55 ms as it was done here. 

 In this preliminary data, it appears that the two-compartment low q-value method 

provides metrics that agree well with expected axon morphology. For example, the ICS 

RMS displacements fall within the range of 1-2 μm, which is the expected range of axon 

diameters in mammals (6). This estimate of MAD is a large improvement over the PDF 

FWHM used in the displacement PDF method. The ICS RMS displacement also showed 

regional differences and suggested that the dorsal column contained smaller axons, which 

as discussed above, may be a reasonable expectation.  Again, it should be emphasized 

that these measurements were made without the need for high displacement resolution. 

Furthermore, the ICS weighting was ~0.7, which falls within the range of 0.6-0.8 

expected for ICS volume fractions in nervous tissue (15). No significant regional 
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differences were observed for ICS weighting as was seen previously in mouse spinal 

cords (16).  

The ECS RMS displacement fits also give interesting insight into axon 

morphology. The ADCs calculated from the ECS RMS displacement agree well with 

reported values. This provides further evidence that ADCs measured at low b-values 

(<2500 s/mm2) primarily reflect diffusion in ECS (12, 17). ECS RMS displacement also 

shows regional differences and suggests that the dorsal column has the smallest ECS 

displacement due to diffusion. This agrees with our previous observations with the 

VGPD method that ECS displacement is correlated with MAD. Recall that the dorsal 

column may have smaller axons and hence a more tortuous ECS. 

 It is encouraging that the two-compartment low q-value method still provides 

insights into axon morphology as described above at a long gradient duration of 55 ms. 

Perhaps the long duration better discriminates between ECS and ICS signals due to their 

different echo attenuation dependence on gradient duration as discussed in Chapter 6. 

Unfortunately, there is no histologic data for the pig spinal cords. Therefore, while the 

results show interesting insights into anticipated axonal architecture, the low q-value 

method has not been rigorously validated. However, the preliminary results here are 

certainly encouraging and warrant further investigation. 

 

7.4.3 VGPD method 

 The central requirement in the VGPD method is that diffusion in ECS is hindered, 

while diffusion in ICS is restricted (18). This means that the ECS and ICS echo 

attenuations have a different dependence on gradient duration. If this difference in 
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behavior cannot be observed, then the VGPD method cannot be applied. As mentioned 

earlier, the difference in echo attenuation for restricted diffusion between shorter and 

longer gradient duration is smaller with increasing duration (2). Therefore it was unclear 

whether or not echo attenuations acquired with δ = 55 and 90 ms would exhibit the 

necessary behavior for the VGPD method. 

 As already remarked with the displacement PDF method data, it appears that even 

with these long gradient durations, restricted diffusion behavior is observed in the echo 

attenuations as shown in Figure 7.9. The echo attenuation with a gradient duration of 90 

ms (E(δ = 90ms)) is attenuated less than the echo attenuation with a gradient duration of 

55 ms (E(δ = 55ms)). Thus a point of deviation, Pd, can be defined, but it is more difficult 

to observe as the differences between E(δ = 90ms) and E(δ = 55ms) are smaller. The 

metric used in Chapter 5, where Pd was defined as the point before E(δ = 90ms)/E(δ = 

55ms)  >1.2 is not valid here. The largest ratio of E(δ = 90ms)/E(δ = 55ms)  is ~ 1.1, 

which is at qmax; therefore, it does not define a point of deviation and another metric must 

be developed.  

It is important to remember that Pd is a relaxation-weighted estimate of ICS 

volume fraction. In order to maximize qmax, the gradient duration had to be increased 

substantially. This in turn will increase the TE of the PGSE diffusion preparation. When 

TE was set to 257 ms, as is done here, there must be significant ECS and ICS signal 

attenuation due to T2, which will affect the accuracy of Pd as an estimate of ICS volume 

fraction. The Pd was roughly estimated by visual inspection to be in the range of 0.85-

0.95, which is higher than the expected the range of 0.6-0.8 for ICS volume fractions in 

nervous tissue (15). This may be the result of a longer T2 for ICS signal than ECS signal 
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(19). The exact relaxation dependence of Pd is not clear and would require further 

investigation. 

 The VGPD method still suffers from the inherent limitation of the displacement 

PDF method, which is the need for high displacement resolution. By splitting up the echo 

attenuation into ECS and ICS parts, the resolution for the ECS and ICS displacement 

PDFs will be worse than that for the displacement PDF method results above. The PDFs 

will be significantly broadened and any accurate measurement of MAD is unlikely. 

While the QSI subvoxel processing was designed to improve displacement resolution, it 

was only used to improve the resolution by a factor of two or four (Chapter 6). The PDFs 

shown here need an improvement in resolution by a factor of eight or more, and QSI 

subvoxel processing has not been validated for these conditions. While accurate measures 

of axonal architecture may not be possible, as discussed with the displacement PDF 

method, the VGPD method may still find utility if it can differentiate between changes in 

axon morphology either due to anatomy or pathology. 

 

7.4.4 Feasibility of in vivo application 

 As mentioned earlier, the focus of this chapter was to investigate the feasibility of 

implementing the various QSI-based methods on a clinical scanner. The main focus was 

to study the effects of the much lower gradient amplitudes available and longer gradient 

durations necessary to achieve a significant q-value. In this section, various issues 

relating to in vivo applications are discussed. 

 In vivo imaging introduces various physiologic processes not present in excised 

tissue. In particular, motion due to blood flow, breathing, and both voluntary and 
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involuntary movement produces artifacts in diffusion MRI experiments (20-22). The 

diffusion gradients will encode for any displacement of the spins whether it arises from 

diffusion, flow or another type of movement. Any non-diffusion displacement will 

therefore complicate interpretation of the results. Motion correction methods such as 

parallel imaging (23) and navigator echoes (22) should be used to mitigate such artifacts. 

 There are significant differences in MR properties between fixed and unfixed 

tissue that must be considered (24). T1 and T2 relaxation constants and ADC tend to be 

reduced after fixation. It has been suggested that the observed ADC at low b-values 

primarily reflects diffusion in ECS (12, 18) and the effects of fixation on diffusion in ICS 

is not clear. Fixation also affects membrane permeability and thus the water exchange 

rate between ECS and ICS. It has been reported that fixation increases membrane 

permeability (24), which suggests that diffusion observed in vivo may be more restricted 

in ICS than in fixed tissue. Further, tissue temperature in vivo would be higher than that 

for the results reported here and it is known that higher temperature increases ADC (25).  

 All these changes in relaxation and diffusion properties between fixed and 

unfixed tissue must be considered for in vivo imaging. The longer T1 and T2 relaxation 

constants for unfixed tissue may aid in vivo imaging by improving SNR. The differences 

in diffusion and membrane permeability properties will determine the validity of the 

underlying assumption that diffusion in ECS is hindered while in ICS it is restricted. 

Increased ADC and water exchange may lessen the differences in diffusion properties 

and limit the ability to separate ECS and ICS signals. The precise effect of these changes 

on diffusion in ECS and ICS observed in vivo is not clear and requires further 

investigation. 
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 Total scan time is an important consideration for in vivo imaging. A live subject 

cannot be imaged indefinitely and scan times on the order of minutes is preferred. The 

experimental parameters used in this chapter were chosen without regard to this 

requirement and the scan times were several hours long. This was done because of the 

need to have high spatial resolution to distinguish GM and WM. The high resolution 

necessitated a multi-shot EPI readout with averaging to improve SNR, which 

significantly increased scan time. As mentioned earlier, partial voluming of GM and WM 

will introduce new hindered (ECS) and restricted (ICS) diffusion components to the 

overall signal. The effects of these new components on the QSI experiment are not clear 

and would need further investigation. In vivo spinal cord imaging would not resolve GM 

and WM due to limits on scan time (9) and so understanding these partial voluming 

effects is important.  

Another way to minimize scan time would be to reduce the number of q-values 

that are acquired. In particular, the low q-value method implemented in this work used 32 

q-values, but similar results may be obtained with 16 or fewer q-values. The minimum 

number of q-values needed for proper fitting should be determined so that total scan time 

can be as short as possible. Finally, a PGSE with a single-shot EPI readout sequence 

would also greatly reduce scan time at the sacrifice of image resolution which would lead 

to partial voluming effects as discussed. Much can be done to optimize the 

implementation of the QSI-based methods for in vivo imaging and requires further 

investigation. 
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7.5 Conclusion 

 Preliminary data was presented here to investigate the feasibility of implementing 

the displacement PDF, low q-value, and VGPD methods on a clinical scanner. The major 

limitation was the maximum gradient strength available, which restricts the achievable 

displacement resolution. For the displacement PDF and VGPD methods, this leads to a 

broadened PDF and decreasing the likelihood of any accurate measurement of axon 

morphology. The two-compartment low q-value method showed the most promising 

results that provided anticipated insights into axonal architecture. Most importantly, the 

estimate of MAD was between 1-2 μm, which is within the range of expected axon 

diameters in mammals.  Unfortunately, there was no histologic data so this method was 

not rigorously validated. Furthermore, any future in vivo application has significant 

challenges that must be overcome. The results are nonetheless encouraging and warrant 

further investigation. 

 



 155

7.6 Literature citations 

1. Schmitt, F., M.K. Stehling, and R. Turner, Echo-planar imaging: theory, 

technique, and application. 1998, Berlin: Springer-Verlag. 

2. Mitra, P. and B. Halperin, Effect of finite gradient pulse width in pulsed gradient 

diffusion measurements. Journal of Magnetic Resonance, Series A, 1995. 113(1): 

p. 94-101. 

3. Mills, R., Self-diffusion in normal and heavy water in the range of 1-45 degrees. J 

Phys Chem, 1973. 77: p. 685-688. 

4. Wright, A.C., et al., Construction and Calibration of a 50 T/m Z-Gradient Coil 

for q-Space Microscopy. Journal of Magnetic Resonance, 2007. 186: p. 17-25. 

5. Schwartz, E.D., et al., Ex vivo evaluation of ADC values within spinal cord white 

matter tracts. AJNR Am J Neuroradiol, 2005. 26(2): p. 390-7. 

6. Williams, P.L., et al., eds. Gray's anatomy: the anatomical basis of medicine and 

surgery. 38th ed. 1995, Churchill Livingstone: New York, NY. 

7. Assaf, Y., et al., High b-value q-space analyzed diffusion-weighted MRI: 

application to multiple sclerosis. Magn Reson Med, 2002. 47(1): p. 115-26. 

8. Assaf, Y., et al., High b value q-space-analyzed diffusion MRI in vascular 

dementia: a preliminary study. J Neurol Sci, 2002. 203-204: p. 235-9. 

9. Farrell, J.A., et al., High b-value q-space diffusion-weighted MRI of the human 

cervical spinal cord in vivo: feasibility and application to multiple sclerosis. 

Magn Reson Med, 2008. 59(5): p. 1079-89. 



 156

10. Biton, I.E., et al., Improved detectability of experimental allergic 

encephalomyelitis in excised swine spinal cords by high b-value q-space DWI. 

Exp Neurol, 2005. 195(2): p. 437-46. 

11. Ong, H.H., et al., Indirect measurement of regional axon diameter in excised 

mouse spinal cord with q-space imaging: simulation and experimental studies. 

Neuroimage, 2008. 40(4): p. 1619-32. 

12. Schwartz, E.D., et al., MRI diffusion coefficients in spinal cord correlate with 

axon morphometry. Neuroreport, 2005. 16(1): p. 73-6. 

13. Basser, P.J., Relationships between diffusion tensor and q-space MRI. Magn 

Reson Med, 2002. 47(2): p. 392-7. 

14. Malmborg, C., et al., Mapping the intracellular fraction of water by varying the 

gradient pulse length in q-space diffusion MRI. J Magn Reson, 2006. 180(2): p. 

280-5. 

15. Sykova, E. and C. Nicholson, Diffusion in brain extracellular space. Physiol Rev, 

2008. 88(4): p. 1277-340. 

16. Ong, H.H. and F.W. Wehrli, Quantifying axon diameter and intra-cellular volume 

fraction in excised mouse spinal cord with q-space imaging. Neuroimage, 2010. 

51(4): p. 1360-6. 

17. Charles-Edwards, E.M. and N.M. deSouza, Diffusion-weighted magnetic 

resonance imaging and its application to cancer. Cancer Imaging, 2006. 6: p. 

135-43. 



 157

18. Assaf, Y., et al., New modeling and experimental framework to characterize 

hindered and restricted water diffusion in brain white matter. Magn Reson Med, 

2004. 52(5): p. 965-78. 

19. Peled, S., et al., Water diffusion, T(2), and compartmentation in frog sciatic nerve. 

Magn Reson Med, 1999. 42(5): p. 911-8. 

20. Haacke, E.M., Magnetic resonance imaging : physical principles and sequence 

design. 1999, New York: Wiley. xxvii, 914 p. 

21. Rohde, G.K., et al., Comprehensive approach for correction of motion and 

distortion in diffusion-weighted MRI. Magn Reson Med, 2004. 51(1): p. 103-14. 

22. Norris, D.G., Implications of bulk motion for diffusion-weighted imaging 

experiments: effects, mechanisms, and solutions. J Magn Reson Imaging, 2001. 

13(4): p. 486-95. 

23. Bammer, R. and S.O. Schoenberg, Current concepts and advances in clinical 

parallel magnetic resonance imaging. Top Magn Reson Imaging, 2004. 15(3): p. 

129-58. 

24. Shepherd, T.M., et al., Aldehyde fixative solutions alter the water relaxation and 

diffusion properties of nervous tissue. Magn Reson Med, 2009. 62(1): p. 26-34. 

25. Einstein, A., R. Fürth, and A.D. Cowper, Investigations on the theory of the 

Brownian movement. 1956, [New York]: Dover Publications. 119 p. 

 

 



 158

Chapter 8: Summary and Conclusions 

8.1 Summary and conclusions 

White matter is comprised of axons that transmit electric signals to and from 

neurons (1, 2). They can be covered with a myelin sheath that helps improve conduction 

velocity. Axon morphology is closely related to function.  Evaluating axon morphology 

would provide insights into connectivity, maturation, and disease pathology. 

Unfortunately, the only way to directly assess axon morphology is histology, which is 

destructive and cannot be done in vivo. Diffusion MRI is a valuable tool for indirectly 

assessing tissue architecture without resolving the underlying structure (3). Conventional 

diffusion MRI methods like DWI and DTI can provide metrics that are related to axon 

morphology, but they cannot measure specific morphologic parameters such as mean 

axon diameter (MAD) or intracellular space (ICS) volume fraction.  

Q-space imaging (QSI) is an advanced diffusion MRI technique that may be able 

to provide information on axonal architecture not amenable by conventional diffusion 

MRI techniques. It has already been demonstrated that QSI may be more sensitive than 

DTI to changes in axon morphology due to pathology (4, 5). However, QSI has several 

limitations that impair accurate assessment of axonal architecture. First, the maximum 

gradient amplitude available on the commercial systems is too low for the displacement 

resolution needed to study axon structure at cellular length scales. Second, QSI of 

biological tissues is complicated by the presence of water in extracellular and 

intracellular spaces (ECS and ICS) and exchange of molecules between these 

compartments. Third, up until now, MAD is the only specific measurement of axon 

morphology provided by QSI and other metrics would be valuable. 
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The main objective of this dissertation is to address the above limitations of QSI 

mentioned and to evaluate its capacity to accurately assess axonal architecture in vivo. 

First, a custom built high amplitude gradient coil was utilized to address the limitations in 

the maximum gradient amplitude achievable with commercial systems. Second, QSI 

simulations are used to investigate the effects of the presence of both ECS and ICS 

signals on QSI. Third, three QSI-based methods (displacement PDF, low q-value, and 

VGPD) designed to account for ECS and ICS signals and to extract different axonal 

architecture metrics are evaluated for accuracy and potential application in vivo. 

The gradient coil was previously built in our laboratory (6). The coil had a 

maximum gradient of 5000 G/cm and showed reliable ADC measurements and diffusion-

weighted images. Based on these results, it was concluded that the gradient coil was 

suitable for high resolution QSI experiments. 

Q-space simulations were performed on both synthetic and histologic images of 

axons to investigate the effects of having signal from both ECS and ICS and of variability 

in cell size and shape on QSI measurements of axonal architecture. The simulation results 

showed that despite all the variable and unknown effects, QSI may still provide accurate 

measures of axon morphology. The insights from these results support the potential of 

QSI to indirectly assess axonal architecture 

The three QSI-based methods were applied to fixed mouse spinal cords and 

various white matter tracts were analyzed. The results for each method are described 

below. 

The one-compartment PDF method approach was able to differentiate between 

WM tracts based only on MAD, although MAD was overestimated by approximately 
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20%. The two-compartment PDF method separated the ECS and ICS displacement PDF 

and was able to measure MAD as accurately as compared to histology. It also allowed for 

measurement of ICS volume fraction and ADD, which provide additional information on 

axon morphology. However, the accuracy of these measurements is dependent on 

fulfilling the short gradient pulse (SGP) approximation. Results from increasing the 

diffusion gradient duration show a narrowing of the displacement PDF as predicted from 

theory. 

The low q-value method has potential to indirectly assess axonal architecture 

without the need for strong gradients as needed with the displacement PDF method. The 

one-compartment method shows good correlation with histology, but the two-

compartment method may provide accurate estimates of MAD as compared with 

histology. However, the ICS volume fraction was consistently overestimated by this 

method. The low q-value method also seems robust to experimental conditions violating 

the SGP approximation. This suggests the potential for the low q-value method to be 

implemented on commercial hardware.  

The VGPD method has potential to separate ECS and ICS signals without the 

need for modeling. A QSI subvoxel processing algorithm was developed to increase the 

apparent displacement resolution and validated with experimental data. Experimental ICS 

volume fractions showed good correlation with histology. The FWHM, ZDP, and 

kurtosis of the ICS PDF showed good correlation with histology and the FWHM may 

provide accurate estimates of MAD as compared with histology. However, the ICS 

volume fraction was underestimated by this method. The FWHM, and kurtosis of the 

ECS PDF showed good correlation with histology and may provide a measurement of 
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ECS tortuosity. Violating the SGP approximation may reduce the accuracy of the VGPD 

method and underestimate MAD.  

All three methods were implemented on a 1.5T Siemens Sonata MRI scanner to 

investigate their respective feasibility of application on a clinical scanner. The major 

limitation was the maximum gradient strength available, which restricts the achievable 

displacement resolution. For the displacement PDF and VGPD methods, this leads to a 

broadened PDF and decreasing the likelihood of any accurate measurement of axon 

morphology. The two-compartment low q-value method showed the most promising 

results that provided anticipated insights into axonal architecture. Unfortunately, there 

was no histologic data so this method was not rigorously validated.  

 

8.2 Future work 

 The results of this dissertation demonstrated the potential for QSI and related 

methods to indirectly and accurately assess axonal morphology and suggest several 

avenues for future work.  

First, histology should be done on the pig spinal cords used in the feasibility study 

in order to validate the results shown. The low q-value method showed the greatest 

promise of clinical feasibility and its measurements of MAD and ICS volume fraction 

need to be compared with histology to evaluate accuracy. If these histology results 

support the clinical potential of the low q-value method, then further work should include 

investigating the effects of GM and WM partial voluming on the QSI measures of axon 

morphology. Also, the implementation should be optimized to reduce scan time. 
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Second, all the work presented here has only looked at healthy WM tissue and the 

potential of the methods described in this dissertation to assess changes in axon 

morphology due to pathology should be investigated. There are several mouse models of 

WM diseases that could be used. For example, experimental autoimmune 

encephalomyelitis is an animal model for MS. Another approach could be using a spinal 

cord injury mouse model where the spinal cord is transected or crushed.  

Finally, the feasibility of these methods to assess WM in the tortuous tracts of the 

brain should be tested. The ability to study WM in the brain would add clinical 

significance to the methods described in this dissertation. The accuracy of the QSI and 

related methods rely on the diffusion gradient being applied orthogonally to the WM tract. 

Different methods have been proposed to correct for non-orthogonal angles for QSI 

application in the brain (4, 7) and should be investigated for feasibility of implementation 

with displacement PDF, low q-value, and VGPD methods. 
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