
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2016

Factors Influencing Regulatory T Cell Maintenance
for the Control of Autoimmunity
Theresa Marie Leichner
University of Pennsylvania, leichner@mail.med.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons,
and the Medical Immunology Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1840
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Leichner, Theresa Marie, "Factors Influencing Regulatory T Cell Maintenance for the Control of Autoimmunity" (2016). Publicly
Accessible Penn Dissertations. 1840.
http://repository.upenn.edu/edissertations/1840

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/681?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1840?utm_source=repository.upenn.edu%2Fedissertations%2F1840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1840
mailto:libraryrepository@pobox.upenn.edu


Factors Influencing Regulatory T Cell Maintenance for the Control of
Autoimmunity

Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive function and are critical in limiting
autoimmunity. Increasing Treg numbers can be beneficial in the treatment of several inflammatory disorders.
Here, we investigate the roles played by various factors on the control of Treg homeostasis. We provide
evidence that the skin can exert strong systemic effects on Treg numbers by producing the cytokine thymic
stromal lymphopoietin (TSLP) in response to topical administration of the vitamin D3 analog MC903.
Widespread increases in Tregs were observed in mice treated topically but not systemically with MC903.
TSLP receptor (TSLP-R) but not hematopoietic vitamin D receptor signaling was important for this increase
in Treg numbers and MC903 treatment did not lead to changes in Treg development, but drove increased
Treg proliferation. However, TSLP-R expression by Tregs themselves was not required for the expansion
induced by MC903 treatment. Rather, TSLP promotes Treg proliferation by affecting dendritic cell
(DC)/Treg interactions, as mice lacking DCs did not have an increase in Tregs after MC903 treatment, and
TSLP enhanced proliferation of Tregs co-cultured with DCs. To test whether MC903 could influence
progression of autoimmunity, non-obese diabetic (NOD) mice were treated topically with MC903 and it was
found that this treatment significantly lowered the incidence of diabetes. Other than TSLP-driven expansion,
Treg numbers are known to rely on the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) signals. We
found that Foxp3- conventional T cells (Tconvs) produce IL-2 in response to self-peptides and that Tconvs
possessing TCRs with greater self-reactivity express more IL-2 at baseline. Furthermore, selective disruption
of TCR signaling in Tconvs led to a trend towards decreased expression of IL-2 and diminished the ability of
Tconvs to maintain Treg numbers. These data suggest that the role of TCR in Treg maintenance includes the
ability of Tconvs to signal in response to self-peptides. Together, this work investigates multiple factors that
have important effects on Treg maintenance. These findings have potential implications on development of
therapies that seek to modulate immune activation in autoimmune settings.
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ABSTRACT 
 

FACTORS INFLUENCING REGULATORY T CELL MAINTENANCE FOR THE 

CONTROL OF AUTOIMMUNITY 

Theresa Leichner 

Taku Kambayashi 

 Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive 

function and are critical in limiting autoimmunity. Increasing Treg numbers can be 

beneficial in the treatment of several inflammatory disorders. Here, we 

investigate the roles played by various factors on the control of Treg 

homeostasis. We provide evidence that the skin can exert strong systemic 

effects on Treg numbers by producing the cytokine thymic stromal lymphopoietin 

(TSLP) in response to topical administration of the vitamin D3 analog MC903. 

Widespread increases in Tregs were observed in mice treated topically but not 

systemically with MC903. TSLP receptor (TSLP-R) but not hematopoietic vitamin 

D receptor signaling was important for this increase in Treg numbers and MC903 

treatment did not lead to changes in Treg development, but drove increased Treg 

proliferation. However, TSLP-R expression by Tregs themselves was not 

required for the expansion induced by MC903 treatment. Rather, TSLP promotes 

Treg proliferation by affecting dendritic cell (DC)/Treg interactions, as mice 

lacking DCs did not have an increase in Tregs after MC903 treatment, and TSLP 

enhanced proliferation of Tregs co-cultured with DCs. To test whether MC903 

could influence progression of autoimmunity, non-obese diabetic (NOD) mice 
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were treated topically with MC903 and it was found that this treatment 

significantly lowered the incidence of diabetes. Other than TSLP-driven 

expansion, Treg numbers are known to rely on the cytokine interleukin-2 (IL-2) 

and T cell receptor (TCR) signals. We found that Foxp3- conventional T cells 

(Tconvs) produce IL-2 in response to self-peptides and that Tconvs possessing 

TCRs with greater self-reactivity express more IL-2 at baseline. Furthermore, 

selective disruption of TCR signaling in Tconvs led to a trend towards decreased 

expression of IL-2 and diminished the ability of Tconvs to maintain Treg 

numbers. These data suggest that the role of TCR in Treg maintenance includes 

the ability of Tconvs to signal in response to self-peptides. Together, this work 

investigates multiple factors that have important effects on Treg maintenance. 

These findings have potential implications on development of therapies that seek 

to modulate immune activation in autoimmune settings. 
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CHAPTER I: 

Introduction 

 

T cells in the adaptive immune system 

The survival of an organism is critically dependent on its ability to protect 

from and defend against exposure to a large variety of pathogens. In order to 

effectively achieve this protection, there are two branches of the immune system 

that work in concert. When exposed to a pathogen, the innate immune system 

acts in a rapid, non-specific manner using germ-line encoded receptors to clear 

the threat. In contrast, cells of the adaptive immune system, called lymphocytes, 

express receptors of diverse specificities that are able to detect a wide array of 

potential pathogens. Recognition of foreign pathogens by these antigen specific 

receptors on lymphocytes triggers the cells to become activated and divide. In 

this way, the proliferation of the antigen specific lymphocytes help to clear the 

pathogen. 

One type of lymphocyte important in the adaptive immune system is the 

CD4+ T lymphocyte, or CD4+ T cell. CD4+ T cells express the T cell receptor 

(TCR) on their surface and develop in a specialized immune organ, the thymus. 

In the course of an immune response, the ability of CD4+ T cells to recognize 

antigen depends on interaction of the TCR with another receptor known as major 

histocompatibility complex class II (MHC-II) present on specialized antigen 
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presenting cells (APCs). APCs such as dendritic cells (DCs) first recognize 

pathogen, process it and present fragments of the foreign peptides on its surface 

bound to the MHC-II molecules. It is only within the context of MHC-II on APCs 

that pathogens can be detected by CD4+ T cells, resulting in activation of this 

arm of the immune response. 

 

T cell development and central tolerance 

 The development of CD4+ T cells is centered on the formation of the 

antigen specific TCR. Every T cell that develops has to go through a process of 

recombining germ-line gene segments found within the TCR gene locus. In a 

process termed VDJ recombination, for the gene segments used in the process 

(Variable, Diversity, and Joining), specialized proteins select one each of V, D, 

and J segments to form a complete TCR. The combinatorial diversity that arises 

from joining these segments in a largely random manner leads to the ability of 

the immune system to develop a large number of unique TCRs with 25 million 

different TCR specificities (Arstila et al., 1999). The large diversity of TCRs 

affords protection against the vast majority of foreign pathogens that an organism 

may face, while also putting the host at risk of developing T cells with TCRs that 

react against host-derived antigens. 

The risk associated with the random development of the TCR is in part 

corrected for through selection of T cells during the development in the thymus. 

The process of T cell selection ensures both the functionality of the TCR as well 
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as the removal of T cells containing TCRs that are reactive against host-derived 

antigens. T cells that do not bind with a high enough affinity to the MHC 

molecules present in the thymus do not survive and perish in a process called 

“death by neglect”. T cells that bind to MHC in the thymic cortex and induce weak 

TCR signals are positively selected and proceed to the thymic medulla (Hogquist 

et al., 1994; Hedrick, 2012). It is here that negative selection of T cells occurs, in 

which T cells that bind too strongly to self-antigen/MHC complexes are removed 

from the pool of mature T cells (Starr et al., 2003; Palmer, 2003). Through these 

stages of selection, T cells with self-reactive TCRs are removed from existence, 

and the rest of the T cells are allowed to migrate out of the thymus and into the 

periphery. 

 Despite this complex process, there is still evidence of self-reactive T cells 

being found peripherally (Semana et al., 1999; Lohmann et al., 1996; Zehn and 

Bevan, 2006; Bouneaud et al., 2000). While mechanisms have developed in 

order express and present self-antigens within the thymus during the process of 

selection, the production of self-reactive T cells during their development remains 

dangerous due to the inability of certain tissue or temporally specific antigens to 

be expressed as part of the selection process. To correct for these gaps in 

central tolerance resulting from T cell selection, there exist peripheral tolerance 

mechanisms to prevent activation of potentially self-reactive T cells existing in the 

periphery (Xing and Hogquist, 2012). 
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 One way in which peripheral tolerance is maintained is through peripheral 

deletion of self-reactive T cell clones. This is mediated through an induced death 

of T cells that receive prolonged TCR stimulation, as the majority of self-reactive 

cells would, through Fas-mediated signals (Strasser and Pellegrini, 2004; 

Kawabe and Ochi, 1991). A second method to peripherally induce tolerance is to 

inactivate self-reactive cells through a process known as anergy (Schwartz, 

2003). Anergy occurs when a T cell receives a TCR mediated signal, but lacks 

the second signals necessary to induce full activation of the cell. The result of 

this is alteration of the signaling capabilities of the T cell such that it survives in 

the periphery, but remains in a hyporesponsive state (Lechler et al., 2001). 

Anergy can also be achieved not through loss of the second signal, but by 

receiving this signal through a different receptor, such as cytotoxic T-lymphocyte-

associated protein 4 (CTLA4) (Perez et al., 1997). Both deletion and anergy 

serve to remove the threat that peripheral self-reactive T cells pose and although 

these preventative methods are important, an additional method of dominant 

tolerance is still required in order to truly prevent activation of the immune system 

by self-antigens (Rudensky, 2005; Walker and Abbas, 2002). 

 

Discovery of regulatory T cells and their role in peripheral tolerance 

In 1969 and 1970, two important studies were performed to begin to 

understand the role of T cells in establishing immune tolerance (Sakaguchi et al., 

2007). It was discovered that there existed a cell produced in the thymus that had 
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the ability to suppress antibody mediated immune responses (Gershon and 

Kondo, 1970). Additionally, work by Nishizuka and Sakakura illuminated the need 

for thymus derived cells throughout life, as symptoms suggesting a loss of 

tolerance to the ovaries arose in mice thymectomized at day 3 after birth 

(Nishizuka and Sakakura, 1969). Further studies illuminated the presence of a 

thymus-derived factor important in preventing autoimmunity in many different 

organs that was not present in the mice thymectomized at day 3 after birth 

(Kojima and Prehn, 1981). Evidence of thymectomy causing a loss of tolerance 

was also present in rodent models of type 1 diabetes (T1D) (Penhale et al., 1973; 

1990). Interestingly, protection against the autoimmune symptoms was conferred 

with a transfer of normal syngeneic CD4+ T cells (Penhale et al., 1976; 

Sakaguchi et al., 1982). Together, these experiments suggested that the thymus 

produced both cells that mediated the effector immune response as well as a 

subset of CD4+ T cells that were important in enforcing tolerance, likely through 

dominant suppression of the response of other immune cells (Sakaguchi et al., 

1985). 

The suppressive CD4+ T cells important in maintaining tolerance were 

initially recognized by the expression of a set of surface receptors. Included in 

this phenotype were high expression of CD5 and low expression of CD45RB 

(Sugihara et al., 1988; Powrie and Mason, 1990; McKeever et al., 1990; Powrie 

et al., 1993; Morrissey et al., 1993). The lack of a functional marker for the 

suppressive cells led to difficulties in studying this cell type for many years, but 

the discovery of high expression of CD25 as a reliable marker for suppressive 
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CD4+ T cells became a turning point in the study of these cells (Sakaguchi et al., 

1995). It was recognized that depletion of CD25+CD4+ T cells mimicked the 

neonatal thymectomy autoimmune model and that transfer of these cells 

specifically protected from autoimmunity in both the neonatal thymectomy model 

as well as in antigen specific autoimmune models (Itoh et al., 1999; Asano et al., 

1996; Suri-Payer et al., 1998). With an easily measurable surface marker to label 

the suppressive CD4+ T cells, they were given the name of regulatory T cells, or 

Tregs. 

Discovery of the forkhead box P3 (Foxp3) gene as the mutated gene that 

lead to spontaneous autoimmunity in Scurfy mice lead to further breakthroughs in 

the study of Tregs (Brunkow et al., 2001). In conjunction with this discovery in 

mice, mutations in the Foxp3 gene were recognized as also being important in 

the development of an analogous human disease known as IPEX (immune 

dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) (Chatila et 

al., 2000; Bennett et al., 2001; Wildin et al., 2001). With this knowledge, a 

number of groups in rapid succession identified the essential role that Foxp3 

played in the development of Tregs in the mouse (Hori et al., 2003; Fontenot et 

al., 2003; Khattri et al., 2003).  

The unearthing of Foxp3 as the most reliable marker for Tregs caused it to 

become a tool to better understand the biology of these cells. It was shown that 

the Foxp3 gene regulates hundreds of additional genes important in Treg 

development and function through direct and indirect methods (Zheng et al., 
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2007; Wu et al., 2006; Ono et al., 2007; Marson et al., 2007). In fact, forcing 

expression of Foxp3 in Foxp3- conventional T cells (Tconvs) conferred 

suppressive ability, leading to the recognition of Foxp3 as a driver of the Treg 

lineage (Hori et al., 2003; Fontenot et al., 2003).  

 

Generation of regulatory T cells 

Thymic Treg generation 

 Tregs that develop within the thymus are termed thymically-derived Tregs 

(tTregs) and the factors required for this development have been extensively 

studied. Early experiments provided strong suggestions for TCR specificity in the 

development of Tregs. These experiments revealed that presence of a specific 

organ, such as a sex-related organ, was required to find Tregs that were able to 

suppress autoimmunity to that tissue (Garza et al., 2000; Taguchi et al., 1994). 

This requirement for TCR stimulation in tTreg development was further directly 

supported by studies in which double transgenic mice that expressed TCRs 

specific for the flu antigen hemagglutinin (HA) only developed Tregs when the 

HA antigen was also expressed within the thymus (Jordan et al., 2001). Resulting 

from these studies is a model where the majority of T cells arise with low TCR 

stimulation during thymic development, while Tregs develop within the range of 

TCR signal strength between negative and positive selection (Maloy and Powrie, 

2001). In the wild type (WT) thymus, the protein called the autoimmune regulator 

(Aire) plays a critical role in expressing peripheral self-antigens for T cell negative 
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selection (Anderson et al., 2002). While it is likely that the expression of these 

self-antigens play some role in Treg development, it has not been conclusively 

shown that generation of tTregs requires Aire driven expression of tissue-specific 

antigens (Aschenbrenner et al., 2007; Anderson et al., 2005). 

 Aside from TCR signals, tTreg generation has also been shown to require 

cytokines and costimulation during development. As had been appreciated, 

Tregs express CD25, the high affinity subunit of the interleukin 2 (IL-2) receptor. 

The expression of this receptor is critical in the development of tTregs as they 

require IL-2 induced signal transducer and activator of transcription 5 (STAT5) 

signals to upregulate Foxp3 (Lio and Hsieh, 2008). Furthermore, the cytokine 

thymic stromal lymphopoietin (TSLP) has been implicated in the development of 

tTregs in humans. Through production by Hassal’s corpuscles, TSLP is believed 

to instruct DCs to drive Foxp3 expression and tTreg development (Watanabe et 

al., 2005). The role that TSLP plays in Treg development is less clear in the 

mouse. While TSLP may drive the upregulation of Foxp3 in CD4+ single positive 

T cells in vitro, global removal of TSLPR does not change the ability of Tregs to 

develop in vivo (Mazzucchelli et al., 2008; Lee et al., 2007; Jiang et al., 2006). In 

addition to these cytokine requirements, tTreg generation has been shown to 

require CD28 costimulation (Tai et al., 2005). In mice lacking CD28 or the binding 

partners CD80 and CD86, the majority of tTreg generation is lost (Lio et al., 

2010). 
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Peripheral Treg generation 

Tregs can be generated within the thymus as demonstrated, but they can 

also arise through induction of Foxp3 expression in naïve Tconvs in the 

periphery. Tregs that arise in this manner are called peripherally-derived Tregs, 

(pTregs). The proportion of total Tregs in a mouse that derive from tTregs or 

pTregs is not completely clear (Lee et al., 2011a). There are a number of studies 

looking in adoptive transfers as well as comparing TCR specificities between 

Foxp3+ Tregs in the thymus and periphery that have concluded that pTregs make 

up somewhere between 4-7% of the total Treg population (Lathrop et al., 2008; 

Pacholczyk et al., 2006; Wong et al., 2007). A second method of measuring the 

contribution of pTregs to the total Treg population surfaced with the identification 

of Helios as a marker of tTregs. While the fidelity of this marker is controversial, 

its expression on Tregs suggested that pTregs may actually be about 30% of the 

peripheral Tregs (Thornton et al., 2010). In reality, the percentage of pTregs 

likely varies by the location studied, as in the gut it has been shown with Helios 

expression patterns that pTregs may comprise up to 80% of the total Tregs (Lee 

et al., 2011a; Richards et al., 2015). 

It was appreciated initially that long-term treatment with low doses of 

antigen could cause antigen-specific naïve Tconvs to become CD25+ 

suppressive cells (Apostolou and Boehmer, 2004). A number of other studies 

supported the notion that foreign antigen could induce Foxp3 expression in naïve 

Tconv cells under the right conditions (Mucida et al., 2005; Verginis et al., 2008; 

Kretschmer et al., 2005). Like the shared requirements of TCR stimulation, the 
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other conditions essential for pTreg generation are not that far different from 

those required for tTreg generation (Lee et al., 2011a). Cytokines play an 

important role in the production of these cells, in particular IL-2 and transforming 

growth factor beta (TGFβ) have been shown to be required for optimal pTreg 

development (Chen et al., 2003; Knoechel et al., 2005; Zheng et al., 2010). 

Interestingly, the role of CD28 costimulation on Tconvs for pTreg generation is 

controversial with studies supporting both a positive as well as an inhibitory role 

for CD28 signals in inducing Foxp3 expression in in vitro induced Tregs (iTregs) 

(Guo et al., 2008; Liang et al., 2005; Kim and Rudensky, 2006). Despite the 

partially analogous requirements for tTreg and pTreg generation, stability of 

Foxp3 expression is much lower in pTregs due to complex epigenetic differences 

between these populations that are now beginning to be illuminated (Josefowicz 

et al., 2009; Floess et al., 2007; Zheng et al., 2010). 

 

Peripheral homeostasis of regulatory T cells 

 While development plays a large part in the overall number of Tregs, there 

are a several factors that play an important role in the maintenance of Tregs in 

the periphery, some of which overlap with those required for development 

(Smigiel et al., 2014b). The requirements for peripheral Tconv homeostasis have 

been broadly studied and despite the potential overlap with the mechanisms of 

Treg maintenance, details of the factors important in the homeostasis of Tregs 

are still not fully understood. 
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Role of IL-2 

 The first and potentially most apparent factor important in Treg 

maintenance is the cytokine IL-2, as Tregs were initially distinguished by their 

expression of the high affinity subunit of the IL-2 receptor, CD25. While IL-2 has 

long been associated with the expansion of activated T cells, Tregs are unique in 

their ability to constitutively express CD25 through regulation by Foxp3 (Williams 

and Rudensky, 2007; Chen et al., 2006). Furthermore, STAT5 signaling through 

the IL-2 receptor leads to further stabilization of the expression of CD25 in Tregs 

(Kim et al., 2001; Boyman and Sprent, 2012). Despite this dependence on IL-2, 

Tregs are unable to produce this key cytokine themselves, and instead depend 

on the production of IL-2 by Tconvs (Cheng et al., 2011; Almeida et al., 2006; 

Setoguchi et al., 2005; Almeida et al., 2002). This was elucidated in mixed bone 

marrow chimeras in which it was observed that WT T cells could rescue the 

inability of IL-2 knock out (KO) cells to maintain Tregs (Almeida et al., 2002). 

Furthermore, neutralization of IL-2 using anti-IL-2 antibodies leads to an acute 

depletion of Tregs in the periphery, even in the setting of thymectomy to correct 

for the known role of IL-2 in Treg generation (Setoguchi et al., 2005). At a time 

when IL-2 was thought to be primarily immunostimulatory, it was intriguingly 

found that treatment with IL-2 was protective against autoimmune diabetes in the 

non-obese diabetic (NOD) mouse model (Serreze et al., 1989). With the 

discovery of the tolerogenic role that IL-2 plays in Treg biology, these 

autoimmune protective observations became clear. Additionally, it has been 

found that treatment of mice with IL-2 cytokine/anti-IL-2 antibody complexes (IL-2 
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IC) to target the high affinity IL-2 receptor lead to widespread proliferation and 

expansion of Tregs resulting in protection from autoimmunity in both the NOD 

diabetes model as well as experimental autoimmune encephalomyelitis (EAE) 

(Webster et al., 2009; Boyman et al., 2006; Tang et al., 2008). 

 Despite this knowledge, the exact role that IL-2 plays in Treg maintenance 

is only beginning to be clarified. While there are stark reductions in Tregs with 

mutations within the IL-2 signaling pathway, none are as complete as are seen 

with Foxp3 mutations, suggesting that while IL-2 is needed to maintain tolerance, 

there are likely IL-2 independent Tregs (Smigiel et al., 2014b). In fact, studies 

were done to demonstrate that Tregs are found in one of two subsets, termed 

central and effector Tregs. Maintenance of central Tregs is dependent on IL-2, 

while effector Tregs rely more heavily on binding of the surface receptor, 

inducible T cell costimulator (ICOS) (Smigiel et al., 2014a). Tregs overall are a 

highly proliferative subset of T cells, and with the ability of exogenous IL-2 to 

drive enhanced proliferation of Tregs, it was believed for a time that the role of IL-

2 in Treg homeostasis was to drive this constant proliferation at the steady state. 

The studies on the subsets of Tregs demonstrated that IL-2 was required instead 

for the survival of the non-proliferating quiescent central Tregs (Smigiel et al., 

2014a). 
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Role of DCs and Costimulation 

 Tregs constitutively express several T cell specific costimulatory surface 

receptors. A number of these play a role in the homeostasis of both Tconv and 

Tregs. In particular, CD28 was recognized as having an important role in the 

maintenance of tolerance through Tregs with the initially paradoxical 

observations that CD28 KO mice develop widespread autoimmunity (Zhang et 

al., 2013; Tang et al., 2003; Salomon et al., 2000).   Furthermore, the expression 

of ICOS that was identified as being important for the maintenance of effector 

Tregs has been appreciated in a number of other models as well. Both ICOS KO 

as well as blockade of ICOS lead to decreases in peripheral Treg numbers, while 

thymic Treg generation is preserved (Burmeister et al., 2008; Herman et al., 

2004).  

 While the mechanisms by which costimulation maintains Tregs 

peripherally are largely unknown, there is evidence to suggest that many of the 

receptor engagement interactions occur between Tregs and DCs. A number of 

studies have demonstrated that DCs are a critical cell type in Treg maintenance 

with loss of DCs leading to decreases in Tregs as well as expansion of DCs 

leading to increases (Swee et al., 2009; Darrasse-Jèze et al., 2009). These 

studies varied in the conclusions about the specific role that DCs played in Treg 

maintenance, with one suggesting it was MHC-II/TCR mediated and the other 

suggesting that it was TCR independent. The true requirements may actually be 

a combination of TCR dependent and independent interactions between DCs 

and Tregs. Illustrating this, mixed chimera experiments showed that DCs are the 
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source of CD80 and CD86 molecules for CD28 driven Treg homeostasis in vivo 

(Bar-On et al., 2011). In addition, in vitro experiments have supported this notion, 

showing the DC-induced Treg expansion is CD80/86 and CD28 dependent 

(Smigiel et al., 2014b; Zou et al., 2010). 

 

Role of TCR 

On the other hand, MHC-II expression is also required, as experiments in 

lymphopenic hosts have exhibited that MHC-II signals are required in vivo for 

both Treg survival and proliferation (Gavin et al., 2001; Bhandoola et al., 2002). 

In fact, Tregs receive constitutive TCR signals in the periphery as has been 

shown using Nur77 as a marker. Nur77 is an early, immediately upregulated 

gene with TCR stimulation (Osborne et al., 1994). Creation of a green fluorescent 

protein (GFP)-tagged Nur77 molecule demonstrated that Tregs receive constant 

TCR signals that are higher than that of Tconvs (Moran et al., 2011). 

Furthermore, studies have associated the need for TCR signaling molecules lck 

and linker of activated T cells (LAT) in the homeostasis of Tregs independent of 

their thymic generation (Kim et al., 2009; Shen et al., 2010). Studies using 

antigen specific Tregs in vivo and in vitro illuminated that like the costimulatory 

requirement, the TCR stimulation was also provided by DCs (Fehervari and 

Sakaguchi, 2004; Yamazaki et al., 2003). Even within a polyclonal Treg TCR 

repertoire, it has been demonstrated that DC-derived TCR stimulation may play 

an important role in the proliferation critical for Treg homeostasis (Zou et al., 

2010). 
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 Many of the manipulations used to look at peripheral homeostasis of 

Tregs target important molecules in Tconv biology as well. This has led to 

confounding results in many studies. As had been demonstrated by multiple 

groups, the IL-2 required for Treg maintenance is produced by the Tconvs that 

share many of these target molecules. Despite this, the requirement for IL-2, 

costimulation, TCR, and DC-Treg interactions are clearly important in the 

peripheral homeostasis of Tregs. Discovery of additional factors important in this 

process will open new doors to understanding Treg biology and hold the potential 

to be able to better control Treg numbers. 

 

Regulatory T cells for therapeutic use 

 With the knowledge of cytokines and interactions that can alter the 

number of Tregs, this cell type quickly became an important target for therapeutic 

use. The ability to suppress the immune response with increases in Tregs as well 

as potentially to enhance responses through inhibiting Treg maintenance is 

appealing for its clinical implications. Despite the findings in mouse models 

linking Treg numbers to various forms of autoimmunity, few autoimmune patients 

exhibit decreases in Tregs (Smigiel et al., 2014b). While systemic lupus 

erythematosus (SLE) patients do in fact display decreases in Treg numbers, type 

1 diabetic (T1D), rheumatoid arthritis (RA), psoriasis, Chrohn’s disease, and 

multiple sclerosis (MS) patient samples have exhibited conflicting results 

suggesting that human Treg therapy may not be as straight forward as it is in the 
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mouse (Brusko et al., 2007; Putheti et al., 2004; Lee et al., 2006; Miyara et al., 

2005; Hahn et al., 2015). Of note, measurements of Tregs in these patients are 

within the circulating blood and not at the sites of immune activation. 

Furthermore, recognition of Tregs in humans is less clear than the mouse using 

current markers, as human activated effector T cells upregulate Foxp3 as well 

(Ziegler, 2007; R Walker et al., 2003; Morgan et al., 2005). It is only when looking 

at demethylation of the Foxp3 locus that it is clear if the Foxp3+ T cell is a true 

Treg or an activated effector cell (Baron et al., 2007; Wieczorek et al., 2009). 

While these data are suggestive of little causative effect in the 

development of autoimmunity, it does not rule out the ability of Treg increases to 

affect negative regulation of the immune response in human patients. There are 

still many barriers to being able to effectively use Treg transfers in human 

therapies. Creation of human iTregs in vitro for therapeutic use has not been 

successful due to stability of Foxp3 expression after transfer (Rossetti et al., 

2014). A more promising approach that has shown to be effective in graft versus 

host disease (GVHD) and decreasing effector responses in T1D patients is the 

expansion of pre-existing Tregs either through in vitro or in vivo means (Rossetti 

et al., 2014; Koreth et al., 2011; Matsuoka et al., 2013; Rosenzwajg et al., 2015). 

The studies performed with in vivo targets utilize treatment with low dose IL-2 to 

drive Treg expansion, similar to a number of mouse studies. Importantly, it has 

been recognized that in order for ex vivo Treg expansion and cell transfer 

approaches to be effective, there must exist the proper environment and minimal 

competition from pre-existing Tregs in the host (Cabello-Kindelan et al., 2014). 
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Overall, the potential use of Tregs as a therapy requires greater understanding of 

the factors and environment necessary to maintain and manipulate this 

population of complex immune cells. 

 

Skin and the immune system 

 While a large amount of the immune system exists within the primary and 

secondary immune organs, such as the bone marrow, thymus, spleen and lymph 

nodes, immune cells also reside in non-immune tissues. The roles these tissue 

resident immune cells play are varied and important for the development of 

appropriate immune responses. Within the skin, there are a number of 

interactions between the immune system and non-immune cells to control 

immune responses. This is an important communication due to the large size of 

the skin as an organ and the constant exposure to the external environment. 

Dysregulated immune responses in the skin can lead to a number of harmful 

inflammatory disorders including atopic dermatitis, contact hypersensitivity, and 

psoriasis (Gratz and Campbell, 2014). The need for the skin to be involved in the 

immune response requires both driving the activation of the immune system 

against pathogens as well as a protective regulatory response of tolerance to 

benign commensals (Matzinger and Kamala, 2011). This is an important balance, 

as a number of locations in the skin in fact harbor a more diverse set of 

commensals than those found in the gut and lungs (Costello et al., 2009; Grice et 

al., 2009). 
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 Locally within the skin, signals in response to these commensals have 

been shown to be important in the steady state to control the frequency of Tregs 

(Naik et al., 2012). Furthermore, commensals are able to control the ability of the 

skin to mount protective Th1 immune responses during dermal infections 

(Belkaid and Naik, 2013). Skin resident DCs are found to be involved in many of 

these processes, as Langerhans cells are able to drive both tolerance through 

Tregs as well as immunity through memory T cells (Seneschal et al., 2012). 

Responses within the skin have also been observed to be able to control the 

immune system in more than just the local tissue, having additional effects on 

systemic immunity. This is not a totally foreign concept, as commensals in the 

gut have been shown to be able to affect the development of autoimmunity in 

distal sites (Wu et al., 2010; Lee et al., 2011b). Treatment of the skin with the 

chemical compound MC903, that signals through the Vitamin D Receptor (VDR), 

leads to the production of TSLP by keratinocytes (Li et al., 2006; 2009). While 

this results in the local development of Th2 inflammation resembling atopic 

dermatitis, it can also lead to systemic effects in the immune system through the 

driving of basophil hematopoiesis (Zhang et al., 2009; Siracusa et al., 2011). In 

all these ways, the skin and skin-derived commensals are able to interact with 

and control immune responses in both local as well as newly appreciated 

systemic manners. 

 In the reverse direction, immune cells are also known to play a role in the 

maintenance of skin cells through the production of keratinocyte growth factor 

(KGF) by γδ T cells for the growth of keratinocytes (Boismenu and Havran, 



	
   19	
  

1994). This KGF pathway is similar to the recently appreciated role of growth 

factor production by innate lymphoid cells that is important in the healing of 

damaged epithelial cells in the gut in a model of colitis (Monticelli et al., 2015).  

Altogether, it is appreciated that within the skin there is a diverse interplay 

between immune cells, non-immune cells, and commensals that control the 

homeostasis of this large organ at the steady state.   

 

Vitamin D and the immune system 

 Vitamins have been shown to have effects on the immune system in 

specific (receptor mediated) and non-specific (antioxidant) manners in both the 

innate and the adaptive immune system (Mora et al., 2008). One of the early-

appreciated vitamins to play a role in the immune system was vitamin D3 (Lemire 

et al., 1984; Rigby et al., 1984). This effect was initially believed to be a direct 

interaction due to the observation that vitamin D receptor (VDR) is expressed 

within a number of immune cells including macrophages, DCs, T cells and B cells 

(Bikle, 2011). Furthermore, some activated immune cells have the ability to 

convert vitamin D3 into the active form that is able to bind to the VDR (Mora et 

al., 2008). Due to these observations, the effect of vitamin D3 on the immune 

system has primarily been appreciated and studied as a direct effect of this 

compound on immune cells. 

 Overall, the role of vitamin D3 in the adaptive immune system is one of 

inhibition resulting from decreases in the proliferation of a number of cells types 
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and general switching of the immune response away from an inflammatory Th1 

response (Rigby et al., 1987; Reichel et al., 1987). Furthermore, vitamin D3 has 

been implicated in the promotion of suppressive immune responses through 

Tregs, some of which may have additional roles in autoimmunity and 

atherosclerosis. (Takeda et al., 2010; Meehan et al., 1992; Gorman et al., 2010). 

In fact, low serum levels of active vitamin D3 have been associated with the 

development of autoimmune disorders including type 1 diabetes and SLE 

(Littorin et al., 2006; Muller et al., 1995). The possibility to treat autoimmunity in 

these patients by augmenting vitamin D3 through oral administration has been 

plagued by the toxic effects of high levels of active vitamin D3, leading to the 

need for alternate analogues that have immunomodulatory effects without the 

negative outcome of hypercalcemia (van Etten and Mathieu, 2005). Alternatively, 

the effects of vitamin D3 on the immune system have begun to be understood to 

not solely act through a direct effect on immune cells, but also through VDR 

signals in non-immune cells that are then able to alter the immune response 

(Zhang et al., 2009; Siracusa et al., 2011). 

Better recognition of how exactly vitamin D3 and vitamin D3 analogues are 

able to exert inhibitory effects on the immune system will allow for safer and 

more effective future use of this known immunomodulatory compound in clinical 

settings of over-activation of the immune system. 
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Structure of the thesis 

 Despite broad study of the maintenance of Tregs, there is still much to 

learn about the cell types and factors important in controlling the homeostasis of 

these cells. In this thesis, I investigate the role of factors deriving from non-Treg 

cells in the maintenance and expansion of Tregs. This examination will help to 

clarify the environment that is needed to best support Tregs in both the steady 

state as well as in therapeutic applications. 

In chapter II, I examine the ability of local tissue responses to produce 

factors that can drive systemic expansion of Tregs. This expansion is achieved 

through a series of events involving a number of cell types located within the skin 

and elsewhere as well as cytokine mediated signals between them to drive Treg 

proliferation. In chapter III, I further investigate the previously accepted role that 

Tconvs play in Treg maintenance. Specifically, I look at the role of TCR signaling 

within Tconvs for the production of the essential cytokine IL-2 in the maintenance 

of Tregs. 

Within chapter IV, I will go over the findings of the previous two chapters 

and discuss the implications of the results in the context of what is known about 

Treg homeostasis. Additionally, I will discuss the important future directions of 

this work and what it may mean for the ability to manipulate Treg maintenance 

for therapeutic uses. 
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CHAPTER II: 

RESULTS 

Skin mediated control of systemic regulatory T cell numbers and 
protection against type 1 diabetes 

 

Summary 

Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive 

function. Tregs are critical in limiting autoimmunity and increasing Treg numbers 

can be beneficial in the treatment of various inflammatory disorders. Here, we 

provide evidence that the skin can exert strong systemic effects on Treg numbers 

by producing the cytokine thymic stromal lymphopoietin (TSLP) in response to 

topical administration of the Vitamin D3 analog MC903. A 2 fold increase in the 

proportion (out of all CD4+ T cells) and absolute number of Tregs was observed 

in the blood, lymph nodes, and spleen of mice treated topically but not 

systemically with MC903. The increase in Treg numbers was dependent on 

TSLP-R signaling but not on Vitamin D receptor signaling in hematopoietic cells. 

However, TSLP-R expression by Tregs themselves was not required for the 

proliferation of Tregs induced by topical MC903 treatment. Rather, TSLP 

promotes Treg proliferation by affecting the DC/Treg interaction, as TSLP alone 

or in combination with IL-2 induced the proliferation of Tregs co-cultured with 

DCs. To test whether these effects of MC903 could influence progression of an 

autoimmune disorder, nonobese diabetic (NOD) mice were treated topically with 
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MC903. Treatment with MC903 compared to vehicle significantly lowered the 

incidence of diabetes from 100% to 40%. Together, these data demonstrate that 

the skin has the remarkable potential to control systemic immune responses and 

that topical MC903 treatment could serve as a novel strategy to induce systemic 

immunomodulation in autoimmune diseases. 
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Introduction 

The interaction between the immune system and local tissue has been 

investigated by a number of studies looking at the ability of skin and intestinal 

resident cells to alter the local immune response (Saenz et al., 2008). Tissues 

such as these that interface with the outside environment have a powerful ability 

to signal to and instruct the progress of a local, compartmentalized immune 

response (Belkaid and Naik, 2013). What has been recently appreciated is the 

ability of local responses to then alter the progression of systemic immune 

effects. In particular, the presence of segmented filamentous bacteria (SFB) in 

the intestine has been shown to play a role in the development of autoimmune 

diseases in the mouse at sites far from the SFB exposure (Wu et al., 2010; Lee 

et al., 2011b). In a comparable event, chemical treatment of the skin with a 

vitamin D3 analogue has shown to have effects of the hematopoiesis of basophils 

(Siracusa et al., 2011). 

This effect was mediated by the systemic increase in thymic stromal 

lymphopeitin (TSLP) resulting from the production of this cytokine by 

keratinocytes in the skin (Zhang et al., 2009). TSLP has traditionally been 

recognized as a Th2 driving cytokine, but the role that it may play in regulatory T 

cell (Treg) development has begun to be highlighted by a number of studies 

(Watanabe et al., 2005; Besin et al., 2008). While the factors effecting 

homeostasis of Tregs have primarily been investigated within immune sites, 
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these results introduce the possibility for additional factors dependent on cells 

situated within non-immune tissues to play a role in immune suppression. 

Preservation of immunologic tolerance to self is a complex process that 

involves development of both central and peripheral mechanisms (Josefowicz et 

al., 2012; Sakaguchi et al., 2008; Bilate and Lafaille, 2012). Development and 

maintenance of Tregs is pivotal in this process (Smigiel et al., 2014b; Webster et 

al., 2009; Smigiel et al., 2014a; Kim et al., 2001; Gavin et al., 2001; Boyman and 

Sprent, 2012; Setoguchi et al., 2005; Fisson et al., 2003). Loss of Tregs leads to 

development of a widespread autoimmune syndrome in both mice and humans 

(Sakaguchi et al., 1995; Fontenot et al., 2003; Lahl et al., 2007; Brunkow et al., 

2001). Furthermore, impaired homeostasis and function within the Treg subset 

leads to a number of other common autoimmune diseases such as type 1 

diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and systemic lupus 

erythematous (Lindley et al., 2005; Viglietta, 2004; Ehrenstein, 2004; Horwitz, 

2008). To this effect, increases in Treg number have been shown to be beneficial 

in limiting inflammation in mouse models of autoimmunity (Lepault and 

Gagnerault, 2000; Szanya et al., 2002; Besin et al., 2008; Webster et al., 2009). 

Tregs depend on a number of other cell types in order to develop in the 

thymus as well as survive in the periphery. Two essential cell types are 

conventional T cells (Tconvs) and dendritic cells (DCs) that provide fundamental 

cytokines as well as cellular contacts for Tregs (Almeida et al., 2006; Swee et al., 

2009; Zou et al., 2010). Despite this knowledge, there is likely a large, complex 
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network of interactions between immune cells and other potentially unidentified 

cell types important in the maintenance of Tregs in both steady state and 

inflammatory environments. 

The capability to manipulate an easily accessible organ such as the skin 

provides a clear advantage in the development of clinical therapies for 

autoimmune diseases. In particular, the skin has been an important location in 

which vitamin D3 therapy has been efficacious. Vitamin D3 has been implicated 

as an immunosuppressive compound due to a number of in vitro studies (Mora et 

al., 2008). The ability to utilize vitamin D3 as a therapy has been hindered by 

toxicity issues associated with oral administration of efficacious doses. In 

contrast, the vitamin D3 analogue MC903 has been quite effective as an immune 

therapy when used as a topical treatment in psoriasis, an autoimmune disease of 

the skin. As mentioned, topical MC903 has been shown to have specific effects 

on hematopoiesis within the immune system in murine models, suggesting an 

ability for this compound locally to have widespread immune effects (Siracusa et 

al., 2011). 

In this study, we assess the ability of local responses in the skin to alter 

systemic immunity. We discovered that topical application of MC903 led to 

production of the cytokine TSLP, which was found systemically within the serum 

of mice. This cytokine skewed DCs to a non-inflammatory phenotype that was 

able to stimulate the proliferation of Tregs both in vivo and in vitro. In the topical 

MC903 treatment model, the effect was solely through DC-driven Treg 
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proliferation, as Tregs did not need to sense the TSLP directly and the treatment 

did not stimulate production of Tregs either centrally or peripherally. The DC 

driven expansion of Tregs was partially dependent on CD80/CD86 interactions 

with Tregs. This topical treatment alone was able to decrease the incidence of 

diabetes in the non-obese diabetic (NOD) mouse model of T1D. Together, this 

work demonstrates a remarkable ability of the skin to produce 

immunomodulatory effects that can have therapeutic results in the setting of 

autoimmune diseases. 
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Results 

 
Topical MC903 treatment increases Treg numbers through TSLP signaling 

To test the hypothesis that systemic TSLP would promote increases in 

Treg numbers, we utilized the MC903 topical treatment model. MC903 is an 

analogue of vitamin D3 with added modifications to optimize it as a topical 

therapy. MC903 is retained in the skin to a greater extent than vitamin D3 and 

what little compound does make it into the circulation, has a significantly 

decreased half-life (Knutson et al., 1997; Kissmeyer and Binderup, 1991). 

Together, these effects provide MC903 less than 1% of the negative calcium 

metabolism related activity of vitamin D3, leading to greatly decreased toxicity in 

comparison. We tested the ability of this topical treatment in wild type (WT) mice 

to affect the levels of Tregs. WT mice were treated with 2 nmol MC903 or 

equivalent volume of EtOH vehicle on both ears daily for 7 days. On day 8, Treg 

percentages were measured as Foxp3+% of total CD4+ T cells by flow cytometry 

in the spleen, blood, skin, and skin-draining cervical lymph nodes (dLN) (Fig. 

2.1A). In all locations tested, we observed significant increases in the percentage 

of Foxp3+CD4+ Tregs (Fig. 2.1B-C). Additionally, increases in absolute Treg 

numbers were seen in lymphoid organs with MC903 treatment in comparison to 

EtOH (Fig. 2.1D). 

Vitamin D3 is known to have effects on the immune system through direct 

interactions (Mora et al., 2008). To test the possibility that MC903 was driving 
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Treg increases due to it becoming systemic, we compared topical to systemic 

MC903 administration. The observed Treg increases were only obtained with 

topical treatment, as intraperitoneal (i.p.) injection of 4nmol of MC903 did not 

lead to any change in Treg proportions (Fig. 2.1E). The inability of MC903 to 

cause Treg increases with i.p. administration also suggested that the effects of 

treatment with the vitamin D3 analogue were on a skin resident cell rather than 

on circulating immune cells. To further test this and to determine the requirement 

of vitamin D signals in this model, we created vitamin D receptor knock out (VDR 

KO) bone marrow (BM) chimeras. 4x106 bone marrow cells from either VDR KO 

or WT C57BL/6 mice were transferred into lethally irradiated C57BL/6.SJL mice. 

At 9-10 weeks post-transfer, mice were treated with either 2nmol MC903 or EtOH 

vehicle. Treg percentages were increased in VDR KO BM chimeras with MC903 

topical treatment to a similar extent as WT BM chimeras (Fig. 2.1F). This 

demonstrates that Treg increases occur independently of VDR signaling in the 

hematopoietic system. 

Instead this suggests that VDR signaling is required within a skin resident 

population. It has been shown previously that topical MC903 treatment induces 

TSLP found in the serum and that this is produced solely by keratinocytes (Li et 

al., 2006; 2009). We confirmed that TSLP was produced and found systemically 

within our model as well by looking in the serum at day 3 of topical MC903 or 

EtOH treatment. Consistent with previous reports, TSLP was undetectable in the 

serum by ELISA in EtOH treated animals, but found at high levels in MC903 

treated mice (Fig. 2.2A). To determine if TSLP could be playing a role in the Treg 
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increases we observed, we treated WT and TSLP receptor knock out (TSLPR 

KO) mice with EtOH or MC903 topically for 7 days. On day 8, we observed 

increases in both Treg percentages as well as total numbers in WT mice, but not 

in the TSLPR KO mice (Fig. 2.2B-C). This demonstrated that the ability of Treg 

percentages to increase with topical MC903 treatment was dependent on the 

production of TSLP and the ability to signal through the TSLPR. 

Together, these data suggest that the topical treatment with MC903 leads 

to TSLP production resulting from VDR signals within the skin. This leads to 

increases in Treg percentages systemically that are dependent on signals 

through the TSLPR. 

 

Treg increases with topical MC903 treatment occur through proliferation of 

existing Tregs  

TSLP has been suggested to play a potential role in the thymic production 

of Tregs through studies in the human thymus (Watanabe et al., 2005). 

Additional findings have provided conflicting evidence for a role for TSLP in the 

generation of in vitro induced Tregs (iTregs) (Besin et al., 2008; Sun et al., 2007). 

Furthermore, TSLP has been linked to DC-driven proliferation of Tconvs 

(Watanabe et al., 2004). Due to these links between TSLP and T cell 

homeostasis, we assessed the role of each of these processes in the Treg 

increases in our MC903 topical treatment model. 
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To first look at the generation of thymically derived Tregs (tTregs) with 

MC903 topical treatment, we assessed Treg percentages within the thymus of 

mice treated with EtOH or 2nmol MC903 topically for 7 days. We observed no 

increase in the percentage of Tregs in the thymus of mice treated with MC903 

(Fig. 2.3A). To further assess the contribution of tTreg production with topical 

MC903 treatment, we utilized a mouse model that allows one to visualize cells 

that were recently produced in the thymus. RAG2-GFP mice express GFP under 

the RAG2 promoter and when T cells express RAG2 during development GFP is 

produced, marking the cells in the periphery that are recent thymic emigrants 

(Boursalian et al., 2004).  When RAG2-GFP mice were treated with EtOH or 

MC903 topically, we found no difference in the percentage of GFP+ Tregs in the 

spleen at day 8 (Fig. 2.3B). Further suggesting that in this topical treatment 

model, the observed Treg percentage increases are not being driven by greater 

tTreg production. 

While tTreg production did not change in our treatment model, the 

production of peripherally derived Tregs (pTreg) may have been altered with 

MC903 treatment. Analysis of helios and neuropilin-1 expression on Tregs in the 

spleen showed no difference in the expression profiles of these markers between 

Tregs from EtOH and MC903 treated mice, suggesting no change in the 

generation of pTregs with topical MC903 treatment (Fig. 2.3C). To further test the 

contribution of pTregs to the observed Treg increases, we utilized an adoptive 

transfer model to track the generation of pTregs. Congenically disparate Tconvs 

and Tregs were co-transferred into a lymphoreplete host and 3 days later the 
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host mice were treated with EtOH or MC903 topically. We found that of the 

recovered donor Foxp3+ cells at the end of the treatment, that there was no 

increased contribution from the transferred Tconvs to the Foxp3+ T cells with 

MC903 treatment compared to EtOH (Fig. 2.3 D-E). This demonstrates that 

pTreg generation does not account for the Treg percentage increases with 

topical MC903 treatment. In fact, we observed that TSLP decreased the ability to 

generate in vitro iTregs, suggesting that it is unlikely that conversion of Tconv to 

Foxp3+ pTregs occurred in the presence of the large amount of TSLP in the 

serum of MC903 treated mice (Fig. 2.3F). 

Tregs are a subset of cells with a fairly high proliferative capacity and 

TSLP has been linked to proliferation of Tconvs, so we tested the role that 

proliferation played in the increases in Tregs with topical MC903 treatment 

(Watanabe et al., 2004). To measure the proliferation of the Treg population with 

topical MC903, on the final day of MC903 treament, mice were fed 

Bromodeoxyuridine (BrdU) in their drinking water for 3 days, at the end of which 

BrdU uptake by Tregs was determined by flow cytometry. We found that there 

was significantly more BrdU incorporation in Tregs from MC903 treated animals 

in comparison to EtOH treatment (Fig. 2.4A-B). When this result is considered 

with the data showing the lack of new tTreg and pTreg production, it suggests 

that the increase in Treg numbers with MC903 treatment was likely a result of the 

increased proliferation of existing Tregs. 
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Tregs can be divided into subsets known as central and effector, with the 

central subset being quiescent and the effector subset being more proliferative 

(Smigiel et al., 2014b; a). Along with the observed increase in proliferation, we 

found that the resulting Tregs in MC903 treated mice exhibited an effector 

phenotype through other markers as well. They were CD62LLO and had greater 

expression of a number of other markers including CTLA4, ICOS, and CD39 (Fig. 

2.4C-D). Despite the effector phenotype of the Tregs in MC903 mice, they were 

no more functional on a per-cell basis as tested by an in vitro Tconv proliferation 

suppression assay (Fig. 2.4E). 

Stimulation through the TCR has also been shown to be important in Treg 

proliferation, so we performed experiments in which TCR/MHC-II interactions 

were lost in the periphery to determine if MC903 was able to drive Treg 

expansion without TCR stimulation. The K14 mouse has limited MHC-II 

expression, with the gene for MHC-II being driven by the K14 promoter. This 

leads MHC-II expression in the thymus, but little exposure to TCR stimulation in 

the periphery due to lack expression of MHC-II in APCs (Laufer et al., 1996). In 

the K14 mouse, CD4+ Tcells, including Tregs, are able to develop but do not 

encounter TCR stimulation within the periphery, providing an environment in 

which we could determine the requirement for TCR stimulation in Treg increases 

with MC903 treatment. We treated WT and K14 mice with EtOH or MC903 

topically for 7 days. On day 8, we analyzed the Treg percentage in the spleen 

and in the dLN of mice. We found that within the spleen, both WT and K14 mice 

exhibited an increase in Treg percentages with MC903 treatment (Fig. 2.4F). In 
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contrast, in the dLN K14 mice did not have increases in Treg percentages to the 

same extent as WT mice (Fig. 2.4G).  

Together, these data demonstrate that Treg increases with MC903 

treatment are established through proliferation of existing Tregs as opposed to 

production of tTreg or pTregs. Despite comparable function in vitro, these 

resulting Tregs in MC903 treated mice are found to be more effector-like. 

Interestingly, the local Treg increases may be more dependent on TCR signals 

than the systemic increases in the spleen. 

 

Tregs increase with MC903 treatment independent of a Th2 response 

Topical MC903 treatment has been studied for its ability to cause an 

immune response in the skin of mice that models the Th2-driven atopic dermatitis 

(AD). This model has been shown to be dependent on the ability of keratinocytes 

in the skin to produce TSLP and that production of this cytokine drives the 

development of Th2 inflammation characterized by increased IgE, production of 

Th2 cytokines such as IL-4 and IL-13 and increased levels of eosinophils (Li et 

al., 2009). Due to this known effect of MC903, it is important to understand if the 

Treg increases that we have seen with topical MC903 are in response to and 

dependent on the presence of the developing Th2 inflammation. While the 7-day 

treatment model used here is a shorter course of treatment than that used to 

model AD, there is still some inflammation present in the skin as evidenced by 

thickening of the ear skin during MC903 treatment (Fig. 2.5A). We therefore 
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wanted to examine the ability of topical MC903 to drive Treg increases in an 

environment with decreased Th2 inflammation after MC903 treatment. 

AD is characterized by an increase in the levels of Th2 cells and 

decreases in Th1 cells (Harskamp and Armstrong, 2013). Current strategies to 

treat this condition target the important Th2 cytokine, IL-4, and neutralization of 

this cytokine has in fact shown to be beneficial in lessening the symptoms of AD 

(Montes-Torres et al., 2015). We therefore sought to analyze Treg increases in 

response to topical MC903 in IL-4 KO mice, which should have similar decreases 

in the AD symptoms. 

We treated WT and IL-4 KO mice with EtOH or 2nmol/ear MC903 topically 

for 7 days and followed ear thickness over the course of treatment as a measure 

of inflammation. Additionally, Treg percentages were measured in the spleen at 

day 8. We found that IL-4 KO mice had significantly less ear thickening with 

MC903 treatment than that found with WT treated mice (Fig. 2.5A). Despite the 

partial decrease in the AD inflammation, we observed a comparable increase in 

Treg percentages in the spleen at day 8 between both WT and IL-4 KO mice that 

were treated with MC903. (Figure 2.5B) These data suggest that the Treg 

increases are not solely a response to Th2 inflammation as they are the same in 

the presence of lessened AD, and that the mechanism of increase likely occurs 

through a pathway independent of the Th2 inflammation. 
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Tregs are increased with topical MC903 indirectly through effects of TSLP 

on dendritic cells 

Expression of the TSLP cytokine is largely restricted to epithelial cells, 

while expression of the TSLP receptor has been found in many immune cell 

types, including Tregs (He and Geha, 2010). To determine if the proliferating 

Tregs required a direct TSLP interaction, we co-transferred 5x106 MACS-purified 

CFSE-labeled WT C57BL/6 and TSLPR KO CD4+ T cells into a congenically 

disparate WT host and treated the mice with EtOH or 2nmol MC903 topically 

(Fig. 2.6A). Both WT and TSLPR KO Tregs diluted CFSE to a similar extent with 

EtOH treatment and both populations had significant increases in proliferation 

with MC903 treatment (Fig. 2.6B-C). Additionally, the WT and the TSLPR KO 

cells had equivalent increases in Treg percentages with MC903 treatment in 

comparison to EtOH treated mice (Fig. 2.6D). These data suggest that the 

proliferating Tregs do not require a direct TSLP interaction, and that the effect of 

TSLP on Treg proliferation is likely through another cell type. 

It has been appreciated that both in vivo and in vitro, Treg proliferation is 

largely dependent on dendritic cells (DCs) (Yamazaki et al., 2003; Tarbell et al., 

2006; Fehervari and Sakaguchi, 2004; Zou et al., 2010). This proliferation is 

stimulated by both antigen dependent and independent interactions between 

Tregs and DCs (Zou et al., 2010). To determine if DCs were playing a role in the 

expansion of Tregs with topical MC903 treatment, we employed a model in which 

mice were lacking DCs. CD11c-Cre and ROSA-DTA mice were crossed to create 



	
   37	
  

CD11c-DTA mice which results in the deletion of CD11cHI cells, and therefore the 

majority of DCs. CD11c-DTA and WT littermates were treated with EtOH or 

MC903 topically for 7 days and on day 8, Tregs were assessed in the spleen and 

locally within the skin of the mice. While WT mice showed significant Treg 

increases in both these locations, there was no increase in the proportion of 

Tregs in the CD11c-DTA mice (Fig. 2.6E-F). This suggested the requirement for 

DCs in this model of MC903 induced Treg expansion. 

To further understand the role of DCs in this model and to determine if the 

DC-driven Treg increases were dependent on the ability of DCs to respond to 

TSLP, we transferred 2-5x106 CD11c+ MACS-purified WT DCs into TSLPR KO 

mice at day 0 and day 4 of EtOH and MC903 treatment and measured the ability 

of the WT DCs to rescue the Treg expansion that was lost in TSLPR KO mice. 

We found that there was a small but significant increase in the proportion of 

Tregs with MC903 topical treatment in the dLN of TSLPR KO mice that received 

WT DCs (Fig. 2.6G). Together, these experiments demonstrate that there is a 

requirement in the topical MC903 treatment model for TSLP to act on DCs in 

order to stimulate increases in Tregs. 

In addition to the requirement of DCs in vivo, we found that DCs alone 

were able to stimulate Treg proliferation in vitro in the presence of TSLP. More 

dramatically, TSLP was able to strongly amplify Treg proliferation by DCs in the 

presence of IL-2 (Fig. 2.7A). This effect was dependent on the expression of 

TSLPR on DCs, but was independent of expression on Tregs. Altogether, these 
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data suggest that TSLP-sensing DCs are an integral intermediary in the Treg 

increases observed in the topical MC903 treatment model. 

The ability of DCs to drive Treg proliferation is linked to the expression of 

costimulatory molecules on the surface of DCs. Topical treatment with MC903 

increased the expression of costimulatory receptors on DCs, including CD80, 

CD86, and PD-L1 by day 4 of treatment in vivo (Fig. 2.8A-B). Additionally, DCs 

unregulated these receptors with in vitro treatment with 50 ng/ml TSLP for 24 

hours (Fig 2.8C). To test the role of this phenotypic change on the ability of DCs 

to promote TSLP driven Treg proliferation, we blocked the costimulatory 

interactions in vitro with 20 ug/ml anti PD-L1 antibody or CTLA4-Ig. Blockade of 

PD-L1 interactions did not alter the ability of DCs to stimulate Treg proliferation, 

while CD80/CD86 blockade with CTLA4-Ig partially reduced Treg proliferation by 

both TSLP as well as IL-2 (Fig. 2.8D). Indicating that there is little need for PD-

L1/PD-1 interactions between DCs and Tregs for the increased proliferation, 

while there may still be a requirement for direct contact between DCs and Tregs 

through CD80/CD86.  

 

Topical MC903 treatment decreases the incidence of diabetes in NOD mice 

Multiple studies have shown that there is a link between the incidence of 

diabetes in the nonobese diabetic (NOD) model of type 1 diabetes and the 

number of Tregs. Increases in Tregs delay the onset of disease, while depletion 

of Tregs accelerates disease progression (Salomon et al., 2000; Lepault and 
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Gagnerault, 2000; Szanya et al., 2002; Besin et al., 2008). This strong link 

between Treg number and autoimmune diabetes led us to test the ability of 

topical MC903 treatment to affect diabetes incidence in NOD mice. 

We treated female NOD mice with MC903 with a modified, chronic 

treatment model. Mice were given EtOH or MC903 (2nmol/ear) three times a 

week, every other week. This allowed for continual treatment of the mice over a 

prolonged period. In NOD mice treated with MC903, we found that Tregs in the 

peripheral blood remained elevated in comparison the EtOH treated mice (Fig. 

2.9A). Incidence of diabetes was determined by two consecutive readings of 

≥250mg/dl blood glucose level. NOD mice receiving topical MC903 treatment 

had a decreased incidence of diabetes in comparison to EtOH treated mice (Fig. 

2.9B). These data demonstrate that the topical treatment with MC903 has the 

ability to decrease the rate of diabetes in NOD mice and that this is associated 

with a peripheral increase in Tregs. 
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Discussion 

Results presented here describe the ability of local skin responses to alter 

systemic Treg numbers and in turn, to alter the progression of autoimmunity in 

the NOD mouse model of T1D. We show that topical treatment to the ears of 

mice with the vitamin D3 analogue, MC903, led to systemic two-fold increases in 

Tregs throughout the animal. As had previously been observed, we found that 

TSLP was increased in the serum of mice that had been treated topically with 

MC903. Related to this, signaling through the TSLPR was absolutely required for 

the observed increases in Tregs. 

This increase required topical treatment, as i.p. injection did not lead to 

any increase in Tregs. The lack of increases with i.p. administration suggests that 

it is unlikely that the MC903 topical treatment is causing any Treg changes due to 

the compound passing through the skin to the bloodstream. Furthermore, 

leakiness of the system is not expected with MC903 treatment because the 

compound was created to be retained in the skin and to have a very short half-

life if it were to make it to the circulation. Due to previous findings that vitamin D3 

can have direct effects on the immune system, we tested this possibility in our 

model. We observed similar increases in Tregs in VDR KO and WT BM 

chimeras. Supporting the conclusion that MC903-driven Treg increases did not 

require hematopoietic expression of vitamin D receptor. 

The peripheral Treg population is maintained through a combination of 

production of new Tregs and proliferation of existing Tregs. Phenotypic analysis 
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and transfer studies elucidated that the increases in Tregs with MC903 treatment 

were not occurring due to an increase in the production of either tTregs or 

pTregs, This was further supported by the observation that addition of TSLP to in 

vitro iTreg generation assays led to decreases in the induction of Foxp3 

expression in Tconvs. The increases in Tregs observed were occurring primarily 

due to a large increase in the proliferation of existing Tregs. In agreement with 

literature on subsets of Tregs, the proliferating Tregs found in MC903 mice 

exhibited an effector phenotype with decreased expression of CD62L and 

increases in a number of phenotypic markers. Despite this effector phenotype of 

the Tregs, they were no more suppressive of Tconv proliferation on a per-cell 

basis in an in vitro assay of Treg function. 

Despite the known ability of topical MC903 to drive Th2 immune 

activation, Treg increases did not occur solely as a response to this effect. 

Decreasing the Th2 AD response through genetic knockout of the important Th2 

cytokine IL-4 did not abrogate the Treg increases observed. Further suggesting 

that the Treg increases with topical MC903 are through an alternate pathway, 

and not solely a response to the inflammation. Additionally, due to differences 

observed in the requirement for TCR stimulation in local versus systemic Treg 

increases in the K14 mouse model, there is a possibility that local Th2 responses 

in the skin play a larger role and in a different pathway to drive the Treg 

increases than what is working systemically. More should be done to determine if 

the local response in this model is driving antigen specific Treg expansion to fully 
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understand the role of TCR in the local expansion of Tregs with topical MC903 

treatment. 

Surprisingly, despite the ability of Tregs to express the TSLPR, the 

requirement of TSLP for Treg proliferation with MC903 topical treatment was not 

direct, as Tregs lacking TSLPR still proliferated in response to MC903. In fact, it 

appeared that the TSLP signaling requirement fell on dendritic cells. Without the 

presence of DCs, the increase in Treg numbers with MC903 topical treatment 

was lost. Furthermore, WT DCs were able to partially rescue the ability of MC903 

to drive Treg increase in TSLPR KO mice. Addition of TSLP to in vitro co-cultures 

of Tregs and DCs demonstrated an ability of TSLP to drive Treg proliferation, 

requiring the expression of TSLPR on DCs, but not on Tregs. 

With MC903 topical treatment, DCs unregulated the PD-L1 surface 

receptor associated with a non-inflammatory environment and CD80/CD86, 

which are implicated in the ability of DCs to stimulate Treg proliferation. The 

change in DC receptor expression was partially expected due to previous studies 

demonstrating that TSLP treated DCs upregulate these surface markers and 

adopt a noninflammatory phenotype (Hanabuchi et al., 2012; He and Geha, 

2010; Rimoldi et al., 2005; Liu et al., 2007). The in vitro Treg proliferation driven 

by TSLP and DCs did not require PD-L1/PD-1 interactions, as anti PD-L1 

blockade did not alter the proliferative capacity. CD80/CD86 may still be 

required, as blockade of these receptors partially reduced the TSLP driven Treg 

proliferation. 
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The NOD mouse model of T1D has been show to be affected by 

alterations in Treg numbers. We found that topical treatment of NOD mice with 

MC903 led to long term increases in Treg percentages during the course of 

treatment. Correlated with this, we observed a reduction in diabetes incidence 

from 85-100% in EtOH treated mice to 40-50% in MC903 treated mice. While this 

effect was striking, it is not yet clear if the increases in Tregs are part of the 

protection. There are possibilities that the increased level of TSLP in the serum 

of mice treated with MC903 could lead to other effects resulting in protection from 

diabetes for a subset of these mice. Further studies would have to be performed 

to determine the complete spectrum of effects of topical MC903 in the NOD 

mouse. 

Taken together, these data present a model in which topical MC903 is 

able to increase Treg percentages through the production of TSLP and 

interactions between DCs and Tregs (Fig 2.10). This suggests a compelling 

potential for the simple topical treatment with vitamin D3 analogues to create a 

systemic immunosuppressive effect. Vitamin D3 as an immunomodulatory 

treatment has not lived up to the expectations that previous work had suggested, 

possibly due to the lack of recognition that the method of administration is 

incredibly important in the efficacy of vitamin D3 therapy. This is particularly of 

importance as we begin to recognize the strong ability of local tissue responses, 

in places such as the skin, to alter the immune cells outside of the immediate 

environment. There is great potential in creating therapies with such ease of 
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administration by taking advantage of the biology in the skin to produce the 

intermediary cytokines needed for systemic immune alterations.  
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Figures 

 

Figure 2.1.  Topical MC903 treatment increases Treg numbers independent of VDR 
expression on hematopoietic cells.  A. C57BL/6 mice were treated with Ethanol 
(EtOH) vehicle or MC903 (2nmol/ear) once daily for 7 days. On day 8, mice were 
euthanized and analyzed. B. Representative flow plots of live CD4+ cells from spleens of 
EtOH and MC903 treated mice at day 8. C. Treg percentages of total CD4+ cells in 
blood, spleen, skin-draining lymph nodes (dLN) and skin at day 8. Summary data plotted 
as mean ± SEM (n=6-10/group from 4 independent experiments) D. Total Treg numbers 
in the spleen and dLN at day 8. Summary data plotted as mean ± SEM (n=6-10/group 
from 3 independent experiments). E. Treg percentages at day 8 from mice treated with 
EtOH or MC903 (2nmol/ear) topically or through intraperitoneal injection (i.p.; 4nmol 
MC903 or equivalent EtOH volume in 500µL PBS). Summary data plotted as mean ± 
SEM (n=5-6/group from 2 independent experiments) F. WT and VDR KO bone marrow 
chimeras were created by transferring 4x106 bone marrow cells into lethally irradiated 
C56BL/6.SJL hosts. 9-10 weeks post-transfer, chimeras were treated with EtOH or 
MC903 (2nmol/ear). Treg percentages were measured on day 8 after treatment in the 
spleen. Summary data plotted as mean ± SEM (n=4-5/group from 2 independent 
experiments) * p<0.05 and ***p<0.001 by unpaired, two tailed Student’s t test. 
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Figure 2.2. Treg increases are dependent on TSLPR signaling. A. Serum TSLP 
measured by ELISA on day 3 of EtOH and MC903 (2nmol/ear) topical treatment. 
Summary data of one representative experiment plotted as mean ± SEM B. Treg 
percentages measured in the spleen at day 8 after EtOH or MC903 (2nmol/ear) 
treatment of WT and TSLPR KO mice. Summary data plotted as mean ± SEM (n=6-
7/group from 2 independent experiments) C. Total Treg numbers in the spleen at day 8 
after EtOH or MC903 (2nmol/ear) treatment of WT and TSLPR KO mice. Summary data 
plotted as mean ± SEM (n=6-7/group from 2 independent experiments) ***p<0.001 by 
unpaired, two tailed Student’s t test. 
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Figure 2.3. Treg increases do not occur due to tTreg or pTreg generation. A. Treg 
percentages in the thymus at day 8 after EtOH or MC903 (2nmol/ear) treatment. 
Summary data plotted as mean ± SEM (n=6/group from 2 independent experiments) B. 
RAG2-GFP reporter mice were treated with EtOH or MC903 (2nmol/ear) for 7 days. On 
day 8, the percentage of RAG2-GFP+CD4+CD25HI Tregs was measured in the spleen. C. 
Helios and neuropilin-1 staining of Tregs in the spleen of mice on day 8 after EtOH or 
MC903 (2nmol/ear) treatment. D. FACS-sorted Tconvs (CD45.2+Foxp3.GFP-) and Tregs 
(CD45.1+Foxp3.GFP+) were transferred into lymphoreplete C57BL/6.Thy1.1 WT mice. 
Mice were treated with EtOH or MC903 (2nmol/ear) topically 3 days after cell transfer for 
7 days. Representative flow plots gated on live, CD4+ Foxp3-GFP+ cells showing Tregs 
derived from Tconv (CD45.2+) and Treg (CD45.1+) transferred cells. E. Percent of Tregs 
derived from pTreg formation in EtOH and MC903 treated mice. Summary data of one 
representative experiment plotted as mean ± SEM (n=4/group) F. FACS-sorted DCs and 
CFSE labeled Tconvs were plated at a 1:1 ratio (15,000-20,000 each/well)  for 96 hours 
and iTreg generation was measured in the presence and absence of TSLP in vitro. 
Statistical analysis was performed using two-tailed unpaired Student’s t test. 
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Figure 2.4. Tregs are proliferative and gain an effector phenotype in MC903 treated 
mice. A. EtOH and MC903 (2nmol/ear) treated mice were given BrdU in one injection 
and in the drinking water from day 6-9 after treatment. BrdU incorporation was measured 
in Tregs in the spleen at day 9. B. Percent of Tregs incorporating BrdU at day 9. 
Summary data plotted as mean ± SEM (n=7-8/group of two independent experiments) C. 
Phenotypic surface markers were measured on Tregs in the spleen at day 8 after EtOH 
or MC903 (2nmol/ear) treatment. D. Summary data of the MFI relative to EtOH on Tregs 
in the spleen at day 8 after treatment. Summary data plotted as mean ± SEM (n=3-
7/group) E. in vitro suppression assay of Tconv proliferation by Tregs from EtOH and 
MC903 treated mice. One representative experiment plotted as mean ± SEM. F. WT and 
K14 mice were treated with EtOH or MC903 (2nmol/ear) for 7 days. Treg percentages 
were measured in the spleen at day 8. Summary data plotted as mean ± SEM (n=5-
6/group of two independent experiments). G. WT and K14 mice were treated with EtOH 
or MC903 (2nmol/ear) for 7 days. Treg percentages were measured in the draining 
lymph node at day 8. Summary data plotted as mean ± SEM (n=5-6/group of two 
independent experiments).  * p<0.05. ** p<0.01 and ***p<0.001 by unpaired, two tailed 
Student’s t test. 
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Figure 2.5. Treg increases occur independently of the Th2 response to topical 
MC903. A. WT and IL-4 KO mice were treated with EtOH or MC903 (2nmol/ear) for 7 
days. Ear thickness was measured over the course of the experiment. Representative 
data are plotted as percent change in ear thickness from baseline (n=3-4/group, one 
representative experiment). B. WT and IL-4 KO mice were treated with EtOH or MC903 
(2nmol/ear) for 7 days. Treg percentages were measured in the spleen on day 8. 
Representative data are plotted as mean ± SEM (n=3-4/group, one representative 
experiment). ** p<0.01 and ***p<0.001 by unpaired, two tailed Student’s t test. 
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Figure 2.6. Tregs are increased with topical MC903 treatment indirectly through 
TSLP and dendritic cells. A.  5x106 MACS-sorted WT CD90.1+ and TSLPR KO 
CD45.2+ CD4+ T cells were CFSE labeled and transferred into lymphoreplete WT 
CD45.1+ hosts. Mice were treated with EtOH or MC903 (2nmol/ear) from day 3-7 and 
analyzed on day 11. B. Representative CFSE dilution plots of CD4+ Foxp3+ T cells of WT 
and TSLPR KO origin in dLN of EtOH and MC93 treated mice at day 11. C.  Summary 
data of the percent of Tregs in the dLN at day 11 that are CFSE low. Plotted as mean ± 
SEM (n=8/group from 2 independent experiments) D. Fold increase in Treg percentage 
(% Treg in MC903 treated/average % Treg in EtOH treated) for both WT and TSLPR KO 
Tregs. Summary data plotted as mean ± SEM (n=8/group from 2 independent 
experiments) E. WT and CD11c-DTA mice were treated with EtOH or MC903 
(2nmol/ear) and Tregs were measured in the spleen at day 8. Summary data plotted as 
mean ± SEM (n=6-8/group from two independent experiments) F. WT and CD11c-DTA 
mice were treated with EtOH or MC903 (2nmol/ear) and Tregs were measured in the 
skin at day 8. Summary data plotted as mean ± SEM (n=5-8/group from two independent 
experiments) G. WT dendritic cells or PBS as a control were transferred into TSLPR KO 
mice on day 0 and day 4 of EtOH or MC903 (2nmol/ear) treatment. Treg percentages 
were measured in the dLN at day 8. Summary data of one representative experiment 
plotted as mean ± SEM (n=3-4/group). * p<0.05. ** p<0.01 and ***p<0.001 by unpaired, 
two tailed Student’s t test. 
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Figure 2.7. TSLP stimulates Treg proliferation in vitro through dendritic cells. A. 
WT or TSLPR KO Tregs were CFSE labeled and co-cultured with or without dendritic 
cells (1:1 15,000-20,000 each/well) from either WT or TSLPR KO mice for 96 hours with 
TSLP (50ng/ml) and/or IL-2 (50U/ml). Division index and percent divided were measured 
through CFSE dilution using FlowJo. 
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Figure 2.8. TSLP stimulates upregulation of DC costimulatory receptors. A. 
Representative flow plots showing CD80, CD86 and PDL1 on the surface of dendritic 
cells at day 4 of EtOH or MC903 (2nmol/ear) treatment. B. Summary data of surface MFI 
of CD80, CD86 and PDL1. Representative experiment plotted as mean ± SEM 
(n=3/group) C. Representative flow plots showing CD80, CD86 and PDL1 on the surface 
of dendritic cells cultured in vitro with and without TSLP (50ng/ml) for 24 hr D. WT Tregs 
were co-cultured with WT dendritic cells (1:1 15,000-20,000 each/well) for 96 hours in 
the presence or absence of costimulatory blockade with CTLA4-Ig or anti PD-L1 (both at 
20µg/ml). ** p<0.01 and ***p<0.001 by unpaired, two tailed Student’s t test. 
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Figure 2.9. Long-term topical MC903 treatment increases Tregs in NOD mice and 
decreases the incidence of diabetes. A. Female NOD mice were treated with EtOH or 
2nmol/ear MC903 three times a week every other week beginning at 5 weeks of age. 
Treg percentage in the peripheral blood was measured every two weeks. Summary data 
from one representative experiment plotted as mean ± SEM (n=7-8/group) ***p<0.001 by 
unpaired, two tailed Student’s t test. B. Percent diabetic (two consecutive blood glucose 
readings ≥250 mg/dl) over time of EtOH and MC903 treated NOD mice of one 
representative experiment (n=7-8/group). p=0.015 by Mantel-Cox test. 
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Figure 2.10. Model of topical MC903 mediated Treg increases. Data here suggest 
that topical MC903 increases Treg percentages through the production of TSLP by 
keratinocytes in the skin leading to systemic TSLP levels that alter interactions between 
DCs and Tregs to drive the expansion through proliferation of Tregs. 
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CHAPTER III: 

Results 

TCR signaling by conventional CD4+ T cells is required for optimal 
maintenance of peripheral regulatory T cell numbers 

	
  

Summary 

To maintain immune tolerance, regulatory T cell (Treg) numbers must be 

closely indexed to the number of conventional T cells (Tconvs) so that an 

adequate Treg:Tconv ratio can be maintained. Two factors important in this 

process are the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) stimulation 

by major histocompatibility complex class II (MHC-II). Here, we report that in 

addition to TCR stimulation of Tregs themselves, the maintenance of Tregs also 

requires TCR signaling by Tconvs. We found that Tconvs produce IL-2 in 

response to self-peptide-MHC-II complexes and that Tconvs possessing more 

highly self-reactive TCRs express more IL-2 at baseline. Furthermore, selective 

disruption of TCR signaling in Tconvs led to a trend towards decreased 

expression of IL-2 and attenuated their ability to maintain Treg numbers. These 

data suggest that in order to maintain an adequate Treg:Tconv ratio, Tregs are 

continuously indexed to self-peptide-MHC-II-induced TCR signaling of Tconvs. 

These results have implications in attempts to modulate immune tolerance, as 

Treg numbers adjust to the self-reactivity, and ultimately IL-2 production by the T 

cells around them. 

 



	
   56	
  

Introduction 

Development of immunological tolerance to self is an essential biologic 

process to prevent over-activation of the immune system and resulting 

autoimmunity. This tolerance is effectively achieved through selection of T 

lymphocytes with low affinity to self-antigens as well as the creation and 

maintenance of Foxp3+ regulatory T cells (Treg)s, a subset of T cells with 

suppressive function. Failure to develop Tregs results in the development of a 

widespread, fatal autoimmune disease (Sakaguchi et al., 1995; Fontenot et al., 

2003). The maintenance of the peripheral Treg population is achieved through a 

combination of survival and proliferation attained by signaling through the 

cytokine receptor for interleukin 2 (IL-2) and through the T cell Receptor (TCR) 

(Hogquist et al., 1994; Fisson et al., 2003; Hedrick, 2012; Setoguchi et al., 2005; 

Bhandoola et al., 2002; Gavin et al., 2001). 

Despite the homeostatic requirement for IL-2 and the expression of the 

high affinity IL-2 receptor (CD25) on Tregs, these cells do not produce this 

cytokine themselves (Setoguchi et al., 2005). Instead, Treg maintenance and/or 

development depends on IL-2 produced by other TCRab+ T cells (Almeida et al., 

2006). In fact, it has been shown that the number of Tregs surviving in the 

periphery is directly indexed to the number of CD4+ conventional T cells (Tconv)s 

able to produce IL-2 (Almeida et al., 2006). However, the mechanism by which 

IL-2 is produced by Tconvs in the steady state to maintain Tregs is not known. 

Since TCR stimulation drives IL-2 production in T cells, we hypothesized that 
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Treg numbers might be indexed to TCR signaling by Tconvs (as a readout of 

activation state), rather than to the absolute numbers of Tconvs.  

To test this notion, we hereby examined the role of TCR signaling in 

Tconvs at the steady state for both their ability to produce IL-2 as well as their 

capacity to maintain the Treg population. Through in vivo and in vitro 

approaches, we find that Tconvs produce IL-2 through sub-activating TCR 

stimulation by self-peptide MHC class II (MHC-II) complexes. Furthermore, the 

selective attenuation of TCR signaling in Tconvs results in decreased IL-2 

production and an impairment in Treg maintenance. Our data suggest that Treg 

numbers are indexed to TCR signaling by Tconvs, both from sub-threshold self-

antigens in the steady state as well as foreign, activating antigens in an immune 

response. 
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Results 

Tconvs produce IL-2 in response to self peptide-MHC-II complexes  

We hypothesized that Tconvs produce IL-2 in the steady state due to 

interactions of their TCR with self-peptide MHC-II complexes. To test this 

hypothesis, we first tested the ability of self-peptide MHC-II complexes to 

stimulate TCR-mediated IL-2 production in an in vitro system (Fig 3.1A). When 

co-cultured with syngeneic DCs for 96 hours, naïve WT Tconvs 

(CD4+CD45RBhiCD25−) produced IL-2 in response to syngeneic WT DCs but not 

when the DCs were derived from MHC-II KO mice (Fig 3.1B). Next, we disrupted 

TCR signaling in response to MHC-II ligation by using T cells from mice with a 

YàF mutation in Y145 (Y145F) of the adaptor molecule SLP-76, which leads to 

decreased TCR-mediated PLCγ1 activation (Jordan et al., 2008). Co-culture of 

naïve Y145F Tconvs with syngeneic DCs for 96 hours showed significantly 

decreased IL-2 production compared to WT Tconvs (Fig 3.1B). Together, these 

data suggest that self-peptide MHC-II complexes induce IL-2 production in a 

TCR/MHC-II signaling-dependent manner. 

To test the role of TCR/self MHC-II peptide complex interactions in IL-2 

production in vivo, T cells possessing high affinity TCRs were compared to T 

cells with low affinity TCRs against self MHC-II peptide complexes. The 

expression level of CD5 on T cells correlates with TCR affinity to self MHC-II 

peptide complexes, which is established during thymic selection and maintained 

in the periphery (Azzam et al., 1998). Recent work has shown that Tconvs with 
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higher affinity for self-peptide MHC-II, as detected by the amount of CD5 

expression, have a greater level of proximal TCR signals in the form of TCR ζ-

chain phosphorylation (Mandl et al., 2012). Consistent with our hypothesis, we 

have found that Tconvs with high CD5 expression (top 20%) have a significantly 

elevated amount of IL-2 mRNA expression in comparison to Tconvs with low 

CD5 expression (bottom 20%) (Fig 3.1C-D). This suggests that steady-state IL-2 

production by Tconvs correlates with their TCR affinity for self-peptide MHC-II 

complexes. 

 

TCR signaling by Tconvs is required for maintenance of the Tconv:Treg 

ratio 

To test if the baseline TCR interaction with self-peptide MHC-II complexes 

was important in maintaining Treg numbers, we utilized an adoptive transfer 

system in which expression of MHC-II was lacking in hematopoietic cells. In this 

model, lethally irradiated CD45.1+ WT hosts were reconstituted with CD45.2+ WT 

or MHC-II KO bone marrow (BM) and adoptively transferred with CD90.1+ WT 

CD4+ T cells (Fig 3.2A). We found that the CD90.1+ Tregs adoptively transferred 

into MHC-II KO BM chimeric mice were unable to maintain their numbers in the 

peripheral blood to the same extent as WT BM chimeric mice 20 days post 

transfer (Fig 3.2B). Linked to this, CD90.1+ Tconvs in the MHC-II KO BM 

chimeric mice expressed significantly lower IL-2 mRNA in comparison to Tconvs 

from WT BM chimeric mice (Fig 3.2C). Furthermore, we utilized IL-2/anti IL-2 
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antibody immune complexes (IL-2 IC) to determine if the lack of IL-2 was playing 

a role in the maintenance of Tregs in this model (Webster et al., 2009). Indeed, 

we found that treatment with IL-2 IC partially restored Treg percentages in the 

peripheral blood of the MHC-II KO BM chimeric mice, suggesting that the lack of 

IL-2 contributes to the failure to maintain Tregs in the absence of MHC-II/TCR 

interactions (Fig 3.2B). 

In MHC-II KO BM chimeric mice, Tregs and Tconvs both lose MHC-II/TCR 

interactions. Thus, the lack of TCR signaling by Tregs could also contribute to 

defective maintenance in this model. In order to more fully test whether the 

baseline TCR signaling ability of Tconvs alone was important in the maintenance 

of Tregs in vivo, it was necessary to utilize a second system whereby TCR 

signaling was attenuated in Tconvs but not in Tregs. To accomplish this task, we 

designed an adoptive transfer model in which TCR signals could be inducibly 

decreased specifically in Tconvs (Fig 3.3A). We utilized a Tamoxifen-inducible 

system in which a WT loxp-flanked SLP-76 allele is deleted upon treatment, 

leaving either a single WT SLP-76 allele (cSLP76) or a SLP-76 Y145F mutant 

allele (cY145F) (Wu et al., 2011). Tconv from either cSLP76 or cY145F mice 

were mixed with WT Tregs at a 4:1 ratio and adoptively transferred into T cell-

deficient TCRβ/δ KO mice. We waited for T cell reconstitution and steady state to 

be reached, i.e., until the peripheral blood CD4+ T cells reached a constant 

percentage of lymphocytes (~8-10 weeks). The mice were then treated with 

Tamoxifen to induce deletion of the loxp-flanked WT SLP-76 allele (Fig 3.3A). 5 

weeks after Tamoxifen treatment, Tconvs from peripheral lymphoid organs were 
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analyzed for IL-2 expression. The CD45.2+CD4+ Tconvs from the spleen of the 

cY145F adoptive transfer showed a trend towards decreased IL-2 mRNA 

expression in comparison to the Tconvs from the cSLP76 transfer (Fig 3.3B). 

Longitudinal analysis of the Treg percentage (of CD4+ T cells) in the peripheral 

blood showed a significant decrease in mice transferred with cY145F compared 

to cSLP76 Tconvs starting at week 3, which was sustained through week 12 (Fig 

3.3C). Moreover, at week 12 post-Tamoxifen treatment, we found that CD45.1+ 

WT Tregs made up a smaller fraction of the total CD4+ T cell pool in the spleens 

of mice with Tconvs from cY145F compared to cSLP76 mice (Fig 3.3D-E). This 

was observed despite finding variable reconstitution levels of Tconvs between 

mice within each group, further suggesting that the primary effect of this 

manipulation in our model was the ability of Treg numbers to be indexed to the 

TCR signaling capacity of Tconvs (data not shown). Together, these data 

suggest that TCR signaling by Tconvs is important for steady state IL-2 

production, which correlates with their ability to maintain Tregs.  
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Discussion 

Our data provided here in this manuscript support a model by which Treg 

numbers are indexed to IL-2 produced by Tconvs through TCR stimulation by 

self peptide/MHC-II complexes. We examined IL-2 production from Tconvs in 

vivo using quantitative PCR, since direct measurement of IL-2 protein production 

in a naïve mouse is difficult to measure, as steady state IL-2 most likely remains 

local to the secondary lymphoid organs. Still, antibody neutralization of IL-2 

demonstrates that a functionally significant amount of IL-2 plays a role in 

maintenance of peripheral Tregs (Setoguchi et al., 2005). Using CD5 as a 

measure of TCR affinity for self peptide/MHC-II complexes showed that high 

TCR affinity of Tconvs correlated with increased IL-2 mRNA expression. 

Moreover, an acute decrease in TCR signaling by Tconvs through the Y145F 

mutation showed a trend towards decreased IL-2 mRNA expression. The latter 

analysis may not have reached statistical significance due to the nature of the 

Tamoxifen-inducible system, which results in incomplete deletion of the loxp-

flanked WT SLP-76 allele. Thus, the contamination of Tconvs that have not 

deleted SLP-76 may have contributed to higher IL-2 mRNA expression in this 

setting. Further support of this concept was found in the observation of 

significantly decreased IL-2 mRNA in Tconvs transferred into an MHC-II deficient 

environment. This was associated with a decrease in Treg proportions that was 

partially rescued after treatment with IL-2 IC. 
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The ability of Tconvs to produce IL-2 in response to TCR stimulation has 

long been appreciated as a result of signals provided by an activating, often 

foreign, antigen. The potential for Tconvs to produce IL-2 at baseline, or from 

non-activating ligands has not been studied despite evidence for its existence, 

primarily from observations of normal percentages of Tregs in germ free mice 

(Min et al., 2007; Östman et al., 2006). The absence of foreign antigen in germ 

free mice suggests that the IL-2 required for Treg maintenance is not produced 

through stimulation of the TCR on Tconvs by foreign peptides presented on 

MHC-II. Therefore, we propose that baseline IL-2 production is a result of TCR 

interactions with self-peptide MHC-II complexes.  

Tregs are characterized to be part of either central or effector subsets, 

which are distinguished by varying surface receptor phenotypes, proliferative 

capacity, function, and dependence on IL-2 (Smigiel et al., 2014a; Campbell and 

Koch, 2011; Siegmund, 2005). Given that IL-2 was dependent on TCR signaling 

by Tconvs, one would predict that the Tregs remaining in the cY145F adoptive 

transfer would be enriched for the IL-2-independent and highly proliferative 

effector Treg subset. However, we could not test this in our adoptive transfer 

model, since in all locations observed (spleen, LN, gut, mLN) the WT Treg had 

an effector phenotype, regardless of whether the adoptively transferred Tconv 

were of cSLP76 and cY145F origin (data not shown). This phenotype was likely 

acquired during the lymphopenic expansion that occurred prior to the SLP-76 

deletion, which precluded the analysis of the Treg subsets that remained. 
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Despite the caveat of initial lymphopenic expansion for reconstitution of the T 

cell-deficient mouse, our adoptive transfer model corrected for a number of 

concerns involved in testing the role of TCR signaling by Tconvs in Treg 

maintenance. First, the SLP-76 protein was altered only in Tconvs, allowing for 

all Treg-intrinsic homeostatic factors to remain intact. Second, deletion of SLP-76 

using the Tamoxifen-inducible cre-lox system negated the concern that Tconvs 

with decreased TCR signaling would develop differently than the WT controls, 

potentially leading to an altered TCR repertoire or cytokine production 

downstream of TCR stimulation. Finally, in order to minimize any confounding 

factors associated with lymphopenic expansion, we deleted the loxp-flanked 

SLP-76 allele only after the transferred cells of both types (cSLP76 and cY145F) 

fully expanded and reached a steady state.  

 The results of these studies demonstrate a previously unrecognized role 

of TCR affinity of Tconvs to self-peptide MHC-II complexes in the maintenance of 

Tregs. These are novel findings because they link the size of the Treg population 

not only to activated T cells producing high levels of IL-2, but to the broad level of 

self-reactivity found in the Tconv pool. It is reasonable then to propose that 

thymic positive selection of CD4+ Tconvs, which creates a population of Tconvs 

with low affinity to self-peptide MHC-II complexes, allows Tregs to be 

appropriately indexed to Tconvs in the steady state for immune tolerance. 

Overall, these observations are important in the understanding of autoimmunity 

because they demonstrate a potential avenue in which self-tolerance 

mechanisms can fail. Additionally, they provide important considerations in 
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formulating Treg-based immunotherapies, as the transfer of Tregs paired with 

inhibition of TCR signaling might actually lessen the ability of the transferred 

Tregs to maintain sufficient numbers to be effective over time.  
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Figures 
 

 

 

Figure 3.1. IL-2 is induced by stimulation of CD4+ Tconvs by self peptide-
MHC-II complexes A. Naïve T cells (CD4+CD25-CD45RBhi) from WT or Y145F 
mice were FACS-sorted and co-cultured at a 1:1 ratio with DCs from either WT or 
MHC-II KO mice with no added TCR stimulation. B. 96 hours later, IL-2 content in 
the supernatant was assessed by ELISA. One representative of two experiments 
is shown. C. Sorting strategy for upper and lower 20% of CD5 expressing (CD5hi 
and CD5lo, respectively) Tconvs (CD4+GFP-) cells from C57BL/6 Foxp3.GFP 
reporter mice is shown. D. IL-2 mRNA expression in the CD5hi and CD5lo Tconv 
populations, plotted as mean ± SEM of 6 mice from two individual experiments is 
shown. Statistical analysis was performed using two-tailed paired Student’s t test. 
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Figure 3.2. Lack of IL-2 Production in MHCII deficient environment leads to 
decreased Treg percentages A. T cell depleted bone marrow from WT or 
MHCII KO mice (both CD45.2+) was acquired through MACS-sorting and 
transferred with MACS-sorted CD4+ T cells (CD90.1+) into lethally irradiated WT 
(CD45.1+) hosts. IL-2 IC (0.25ug IL-2 and 1.25ug αIL-2 mAB) or PBS control 
were given from day 14-19. B. Treg percentages were measured in the 
peripheral blood over time after cell transfer to irradiated recipients. Summary 
data plotted as the mean ± SEM (n=12 per group) from 3 independent 
experiments. C. IL-2 mRNA was measured from the CD90.1+CD4+CD25- FACS-
sorted Tconvs from the spleens of WT or MHCII KO chimeras at day 21 post 
transfer. Summary data plotted as the mean ± SEM (n=5 per group) of 2 
independent experiments. * p<0.05 or as noted by unpaired, two tailed Student’s 
t test. 
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Figure 3.3. Selective ablation of TCR signaling in CD4+ Tconvs leads to 
decreased Treg numbers A. FACS-sorted CD45.2+ Tconvs (CD4+CD25-) from 
conditional WT SLP-76 (cSLP76) or conditional Y145F mutant SLP-76 (cY145F) 
mice were mixed with CD45.1+ WT Tregs and transferred into TCR β/δ KO mice 
at a 4:1 ratio. After 8-10 weeks, the mice were treated with Tamoxifen. B. IL-2 
mRNA was assessed in FACS-sorted splenic CD45.2+CD4+ T cells at week 5 
post-Tamoxifen treatment. Summary data from two independent experiments are 
represented by mean ± SEM with n=5-6/group.  C. The change in percentage of 
peripheral blood CD45.1+CD4+Foxp3+ Tregs was plotted against time post-
Tamoxifen treatment. One representative experiment is plotted as the mean ± 
SEM (n=4-6 per group) of 3 independent experiments. D. Representative flow 
plots of total CD4+ T cells from mouse spleens at 12 weeks post-Tamoxifen 
treatment is shown. The number in each plot represents the proportion of 
CD45.1+CD4+Foxp3+ cells of total CD4+ T cells. E. A summary graph depicts 
mean %CD45.1+CD4+Foxp3+ cells of total CD4+ T cells ± SEM of n=4-6/group. * 
p<0.05 and ** p<0.01 or as noted by unpaired, two tailed Student’s t test. 
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CHAPTER IV: 

DISCUSSION 

 

Overview 

 Although a number of the factors important in Treg homeostasis have 

been revealed through extensive study of these cells since their discovery, there 

is still much to unveil about the cell types and factors that have the potential to 

alter Treg numbers. This thesis sought to further elucidate the biological 

influences important in peripheral Treg maintenance through both looking at 

novel tissue interactions as well as further understanding known links between 

Tregs and Tconvs. 

While interactions between Tregs and other immune cells have been the 

focus of many of the studies on Treg homeostasis, work by a number of labs has 

begun to appreciate the complex interface between non-immune cells and cells 

of the immune system in local tissues (Saenz et al., 2008). Particularly, sites that 

interface with the environment, such as the skin, gut and lungs provide important 

sensors that can dictate nearby immune responses (Belkaid and Naik, 2013; 

Naik et al., 2012; Monticelli et al., 2015; Belkaid and Artis, 2013). What has 

become apparent in recent years is that these local, non-immune responses 

have the ability to not only modify the immediate immune environment, but can in 

fact cause widespread alterations in the systemic immune response (Siracusa et 

al., 2011; Lee et al., 2011b; Wu et al., 2010). While many of these tissue specific 



	
   70	
  

studies have focused on enhancement of effector T cell responses, we sought to 

determine if local responses within the skin had the ability to alter systemic 

tolerance through increasing the immunosuppressive cell type of Tregs. 

We found that a simple treatment of the skin was able to produce wide-

reaching effects on the immune system through increases in Treg numbers. 

Production of the cytokine TSLP, which canonically has been associated with 

type 2 helper (Th2) T cell responses, is crucial for the Treg increases and likely 

works through altering DCs to be more tolerogenic. In addition to the clarification 

of how Treg numbers increase with this treatment, we also observed general 

tolerance induction within the NOD diabetes mouse model, with treatment of the 

skin leading to a reduction in diabetes incidence. These results add to the 

recently appreciated, yet complex understanding of the role of TSLP in Treg 

biology. 

  A second cytokine that is profoundly important in Treg homeostasis is IL-

2.  IL-2 has been studied for its tolerogenic properties since it was first observed 

that this cytokine is not solely immunostimulatory (Malek and Bayer, 2004). The 

source of this critical cytokine for Treg maintenance has been determined to be 

Tconvs, but the ability of this cell type to make IL-2 in the steady state, without 

overt immune activation, has been an accepted, yet unclear process (Almeida et 

al., 2006). In the work presented within this thesis, we have observed that TCR 

signals specifically within the Tconv population are important for IL-2 production 

without full activation of the cells. In turn, this Tconv-specific TCR signaling is 
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required for the maintenance of Tregs. Recent intriguing findings from the 

laboratory of Dr. Ron Germain have begun to further illuminate this process of IL-

2 production and the following discussion sections will describe our current 

findings in relation to these recently published results (Liu et al., 2015). 

Together, these findings have advanced our understanding of the complex 

networks that maintain tolerance within the immune system through homeostasis 

of the crucially immunosuppressive cells, Tregs. Here we will discuss the 

immunologic and clinical implications of these discoveries as well as outline the 

questions that remain to be studied. 

 

Skin mediated control of systemic regulatory T cell numbers 

 There is a recognized importance of non-immune cells within local tissue 

to produce factors critical in the immune response. In particular, epithelial cells 

(ECs) have been linked to the production of a number of cytokines that are 

known to play roles in immune activation (Saenz et al., 2008; Belkaid and Artis, 

2013). In the lungs, ECs are important in producing signals to limit the 

inflammation associated with infections as well as trigger tissue repair through 

the immune system (Snelgrove et al., 2011). Similarly, within the intestine, ECs 

produce critical cytokines after induction of colitis inflammation to trigger a 

cascade of immunologic signals for repair (Monticelli et al., 2015; García-Miguel 

et al., 2013). Furthermore, intestinal signals driven by the presence of segmented 

filamentous bacteria (SFB) have been found to be important in the activation of 
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not only local responses, but also can have effects on EAE and autoimmune 

arthritis in sites far removed from SFB exposure (Lee et al., 2011b; Wu et al., 

2010). It has been found recently that the skin also possesses the ability to alter 

immune responses in more than just the local tissue. Treatment of the skin of 

mice with the vitamin D3 analogue, MC903, leads to the production of the 

cytokine TSLP by the keratinocytes in the skin and leads to the hematopoiesis of 

basophils from the bone marrow (Siracusa et al., 2011; Zhang et al., 2009). 

 Work in this thesis sought to understand the ability of the local skin 

response to MC903 to control the number of Tregs found systemically. Despite 

its traditionally Th2-driving role, TSLP has been linked to Tregs through a 

number of findings. Global TSLPR KO does not lead to decreases in Tregs, yet 

there has been work supporting an enhancement of tTreg generation with TSLP 

(Watanabe et al., 2005; Mazzucchelli et al., 2008). Additionally, there have been 

studies suggesting no need for TSLP signals in iTreg generation, yet other 

observations demonstrate an enhancement of this process with TSLP treatment 

(Besin et al., 2008; Sun et al., 2007). Due to the noteworthy, albeit contradictory, 

links between TSLP and Tregs, and the large amounts of TSLP generated by 

keratinocytes with topical MC903 treatment, we hypothesized that the skin would 

be able to stimulate increases in the Treg population through TSLP production (Li 

et al., 2009). We found that with topical MC903 treatment, TSLP was significantly 

increased in the serum of mice, and that there were widespread increases in 

Treg number as well as Treg percentage of CD4+ T cells. The possibility of this 

effect being mediated by the passing of MC903 through the skin and entering the 
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circulation was ruled out through administering MC903 systemically with an 

intraperitoneal injection. We found that only the topical treatment lead to 

increases in Tregs, further supporting the role of skin tissue in altering Treg 

numbers and adding this ability to the already known effects that the skin can 

have on the immune system. 

 Vitamin D3 has been studied as a compound with immunosuppressive 

effects. It has been shown to be able to interact with many different immune cell 

types, including T cells, B cells, DCs and macrophages (Mora et al., 2008; 

Gorman et al., 2010; Penna and Adorini, 2000). Our studies have shown that this 

direct effect of Vitamin D3 on the immune system is not at play in our model. 

Generation of Vitamin D receptor (VDR) KO BM chimeras demonstrated that 

VDR was not required on cells of the hematopoietic system to drive increases in 

Tregs with MC903 treatment; establishing here, as well as agreeing with 

previously published data, that the effects of topical MC903 on the immune 

system are driven primarily by the production of TSLP within the skin. 

 

Role of TSLP in expansion of regulatory T cells 

As would be suggested by previous studies as well as the results already 

discussed here, we found that the ability of topical MC903 treatment to increase 

Tregs was mediated through TSLP. This was demonstrated by our observation 

that topical MC903 treatment of TSLPR KO mice did not result in any increases 

in Tregs. Drawing from known Treg homeostasis mechanisms as well as 
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previous studies looking at TSLP effects on Tregs, there are a number of 

potential pathways by which this cytokine could be driving Treg increases. 

One potential mechanism for the Treg increases is the initiation of more 

tTreg generation within the thymus. Human studies have shown that TSLP 

production by Hassall’s corpuscles drive the production of Tregs through 

conditioning thymic DCs (Watanabe et al., 2005). While mice do not have 

Hassall’s corpuscles in the thymus to drive this process, work has shown that in 

vitro, TSLP is able to increase the development of Foxp3+ Tregs from CD4 single 

positive thymocytes (Lee et al., 2007). We found that in our topical MC903 

treatment model there was no increase in Tregs within the thymus, supporting, 

but not decisively showing, that there was no enhancement of tTreg generation 

after MC903 treatment. 

To begin to better understand this, we took advantage of a mouse model 

that allows us to visualize recently generated cells of the adaptive immune 

system. A mouse that expresses GFP-tagged RAG2 protein is a reliable reporter 

for recently produced T cells. Tregs in this mouse that have newly developed in 

the thymus will express high levels of the RAG2-GFP reporter due to the 

expression of RAG2 during formation of the TCR (Boursalian et al., 2004). 

Studies we have performed using this RAG2-GFP reporter mouse have shown 

no increase in RAG2-GFPHIGH Tregs in mice treated with MC903, further 

suggesting that topical MC903 treatment is not driving tTreg generation. 
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A role for TSLP in the in vitro generation of iTregs has been studied by a 

number of groups. It was initially observed that bone marrow derived DCs were 

able to induce Foxp3 expression in a greater number of naïve Tconvs if the DCs 

developed in conditions containing TSLP (Besin et al., 2008). The specific role 

that these TSLP-DCs played in generating a greater number of iTregs was not 

fully clear, as they also observed greater expansion of Tregs after conversion. 

This role for TSLP in DC-mediated iTreg generation was further confused by the 

observation of another group showing no need for TSLP responsiveness on DCs 

to generate iTregs (Sun et al., 2007). While these studies focus on the production 

of iTregs specifically, our work has shown through adoptive transfer experiments 

that in vivo generation of pTregs is not enhanced with MC903 treatment. 

Furthermore, in in vitro iTreg generation assays, addition of TSLP to the culture 

led to a decrease in the ability of naïve Tconvs to up-regulate Foxp3 expression, 

further suggesting that the presence of systemic TSLP in the serum would not be 

inducing pTreg generation in our model. In agreement with these analyses, Tregs 

in MC903 treated mice did not develop any changes in the level or percentage of 

cells expressing either helios or neuropilin-1, suggesting no shift in the 

contribution of pTregs to the peripheral Treg pool. 

These conclusions allowed us to rule out novel Treg production, whether it 

is through tTreg or pTreg generation, as the source of Treg increases and led us 

to the hypothesis that the expansion of the Treg population is due to an increase 

in Treg proliferation. It has been shown that TSLP has the ability to expand naïve 

CD4+ Tconvs through proliferation driven by DCs, so we tested the ability of 
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Tregs to respond similarly (Watanabe et al., 2004). We observed an increase in 

the incorporation of the thymidine analogue Bromodeoxyuridine (BrdU) by Tregs 

with MC903 treatment, suggesting an increase in proliferation of Tregs. 

Furthermore, adoptive transfer of CFSE labeled Tregs showed large amounts of 

proliferation with topical MC903 treatment, supporting this conclusion. Related to 

this, the Tregs in MC903 treated mice exhibited an effector phenotype that is 

characteristic of proliferating Tregs.  

One additional factor that may lead to increases in Treg numbers that still 

needs to be tested is the ability of this treatment to increase Treg survival. 

Because this subset of T cells has such a high turnover, with Tregs constantly 

dying by apoptosis, an increase in survival of the Tregs could add to the effects 

we observe with increased Treg proliferation (Tai et al., 2013; Barron et al., 

2010). The anti-apoptotic Bcl-2 family member, Mcl-1, has been shown to be 

important in driving the survival of Tregs (Pierson et al., 2013). It will be of 

interest to determine if there is any change in expression of this important 

survival factor in Tregs with MC903 treatment. 

With the knowledge of proliferation as the driving process resulting in the 

increased percentage of Tregs, it was important to consider the Treg effect in the 

context of MC903 topical treatment. This treatment was first studied because it 

was observed that it is a useful model of atopic dermatitis (AD) in mice (Li et al., 

2006). The Th2 inflammation present in AD could drive the expansion of Tregs 

as a response to the immune activation in this model. This was not completely 
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the case, as we observed decreased inflammation in IL-4 KO compared to WT 

mice with MC903 treatment with a similar increase in Tregs in both genotypes. 

Suggesting the ability of MC903 to cause Treg increases was not linked directly 

to the amount of Th2 inflammation, and that in fact there may be a separate 

pathway driving the Treg increases unrelated to the level of Th2 inflammation. 

 

Dendritic cells are intermediates to TSLP driven regulatory T cell 

proliferation 

Intriguingly, we found that TSLP driven Treg expansion did not require 

TSLPR expression on the proliferating cells. This suggested that the TSLP 

requirement for Treg proliferation was dependent on an additional intermediate 

factor. The ability of DCs to control Treg homeostasis has been long appreciated 

(Swee et al., 2009; Darrasse-Jèze et al., 2009; Zou et al., 2010). Moreover, a 

number of studies have shown that DCs express TSLPR and respond to TSLP 

treatment in vitro (Hanabuchi et al., 2012; Zhang and Zhou, 2012). Because of 

this, we sought to determine if DCs were the potential intermediate between 

TSLP production and Treg increases. We observed no increases in Treg 

numbers with MC903 treatment in mice lacking DCs, suggesting a requirement 

for this cell type in the TSLP-driven Treg proliferation. Additionally, we found a 

partial rescue of Treg increases with the injection of WT DCs into TSLPR KO 

mice, further supporting the conclusion that DCs, through their ability to signal 

through the TSLPR, are able to stimulate Treg increases. 
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Co-culture of DCs and Tregs in vitro further demonstrated that TSLP was 

able to drive Treg proliferation as well as drastically augment IL-2 stimulated 

proliferation. In agreement with our in vivo studies, this was dependent on 

TSLPR expression on DCs but not Tregs. DCs are known to be able to control 

both Treg maintenance as well as overall immune tolerance through providing 

costimulation with CD80, CD86, and PD-L1 surface receptors to both Tconvs and 

Tregs (Bar-On et al., 2011; Fife and Bluestone, 2008; Francisco et al., 2009). We 

observed that with MC903 treatment in vivo as well as TSLP treatment in vitro, 

that DCs up-regulated the expression of these key costimulatory molecules. 

Further analysis through blocking these pathways in vitro showed that PD1/PD-

L1 interaction was not required for TSLP induced Treg proliferation, while 

CD80/CD86 interactions were required for optimal proliferation. The overarching 

accepted importance of DCs and the costimulation they provide in Treg 

maintenance is further supported by the observations we have made here. 

 Apart from the costimulatory cell contact provided by DCs, MHC-II/TCR 

interactions have also been implicated in Treg maintenance (Gavin et al., 2001; 

Bhandoola et al., 2002). Here we have shown preliminary work performed to 

determine the precise role of TCR mediated signals in the Treg proliferation after 

MC903 treatment. The K14 mouse is an ideal model to test this idea due to its 

limited MHC-II expression, with the gene for MHC-II being driven by the K14 

promoter. This leads to development of CD4+ T cells including Tregs through 

MHC-II expression in the thymus, but little exposure to TCR stimulation in the 

periphery due to lack expression of MHC-II in APCs (Laufer et al., 1996). Using 
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this model of decreased MHC-II/TCR interactions, we have found that there is no 

requirement for TCR stimulation for the systemic Treg increases seen in the 

spleen of MC903 treated mice. Further studies should be done to fully determine 

if TCR stimulation is required in this model, due to the contrasting data in the dLN 

of MC903 treated mice. 

The loss of the Treg increases in the dLN of K14 mice suggests that there 

may be a different pathway leading to the increase in Tregs seen locally with 

MC903 treatment versus the increases seen in the spleen and blood of treated 

mice. The dependence on TCR signals for MC903 driven Treg increases within 

the dLN may signal the expansion of antigen specific Tregs. Tregs within the skin 

and skin draining LN have a different TCR repertoire than those found in the 

spleen, making it likely that these Tregs could be more dependent on TCR-

specific signals for their proliferation (Lathrop et al., 2008). If this is the case, 

further studies should be done to determine if the local Treg increases are 

dependent on the TCR specificity, or if it is potentially only dependent on 

syngeneic TCR/MHC-II interactions. Alongside this, it would be of interest to 

further assess the need for TCR signals in the expansion of Tregs within the 

systemic organs including the spleen and blood of MC903 treated mice using 

genetic models. If there is truly a different pathway leading to Treg proliferation 

locally versus systemically, it would give more insight into the processes that are 

important in control Treg expansion in response to inflammation as well as in 

response to interactions with tolerogenic DCs. 
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Skin mediated protection from type 1 diabetes 

 Changes in Treg numbers have been implicated in both the prevention 

and the enhancement of the progression of type 1 diabetes (T1D) in the NOD 

mouse model. Depletion of Tregs leads to a significantly faster onset of disease 

as measured by blood glucose level (Salomon et al., 2000). Alternatively, 

increasing Tregs through either adoptive transfer or treatment with agents to 

increase Tregs in vivo leads to protection from diabetes (Lepault and Gagnerault, 

2000; Szanya et al., 2002; Besin et al., 2008). As MC903 treatment results in 

comparable increases in Tregs as were observed in these studies, we sought to 

determine if this skin mediated control would have the potential to limit incidence 

of T1D. Topical MC903 treatment of NOD mice led to sustained Treg increases 

in the peripheral blood of mice during the treatment period. Results showed that 

control treated NOD mice reached near 100% incidence of diabetes, while only 

about 40% of mice that received topical MC903 developed overt diabetes, as 

measured by blood glucose level. 

 Even though the observation of decreased incidence correlated with the 

increases in Tregs, more work will have to be performed in order to determine if 

there is a causal relationship between the increases in Tregs and protection from 

diabetes. The systemic TSLP induction with this topical MC903 model has the 

potential to drive other effects within the NOD mouse. TSLP has traditionally 

been studied as a Th2 driving cytokine and the role that it plays in creating a Th2 

environment within the NOD mouse must be assessed. There has been work 
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demonstrating protection from diabetes with a skewing of the immune response 

away from the Th1 inflammation that drives diabetes by enhancing the Th2 

response (Wang et al., 1998; Rabinovitch, 1994; Walker and Herrath, 2015). 

Further studies in the lab will investigate and draw apart the role of both Treg 

increases, as well as potential Th2 skewing in the MC903-mediated protection of 

NOD mice. This will be performed by removing the ability of the treatment to 

enhance either of these pathways through depletion and genetic manipulation. 

The ability or inability of MC903 to protect against diabetes in each setting will 

add to our knowledge on how this topical treatment is leading to suppression of 

overt autoimmunity. 

 

TCR requirements for regulatory T cell maintenance 

 In Chapter III of this thesis, the focus shifted from the novel skin mediated 

control of Tregs to studies aimed at better understanding the currently 

appreciated roles of Tconv and IL-2 in Treg homeostasis. The possibility that the 

accepted role of TCR stimulation was in fact for the production of IL-2 by Tconvs 

and not solely for direct stimulation of Tregs had not been completely 

investigated.  Our studies on this subject importantly linked the baseline TCR 

signal strength with the ability of Tconvs to produce IL-2, both through in vitro 

analysis of syngeneic MHC-II/TCR interactions as well as looking at IL-2 

production in Tconvs with greater reactivity to self. These findings link the need 
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for TCR signaling in the production of the low levels of IL-2 in response to self-

peptide MHC-II complexes. 

In a transfer model in which hematopoietic cells were lacking MHC-II 

expression, we observed drastic decreases in Treg percentages and a near 

complete loss of IL-2 production by Tconvs. Treatment with IL-2 immune 

complexes led to a partial rescue of the Treg percentage, suggesting that the 

lack of IL-2 production in this transfer setting was in part responsible for the loss 

of Treg maintenance. Due to the fact that this model did not fully distinguish 

between the loss of TCR signals in Tconvs and Tregs, we utilized a second, 

more specific model. This approach created a targeted decrease in TCR 

signaling ability solely within Tconvs. With this one modification, we found 

decreases in the percentage of Tregs, demonstrating a role for TCR signals in 

Tconvs for the peripheral maintenance of Tregs. Furthermore, this modification 

led to a trend towards decreased IL-2 production by Tconvs with lower TCR 

signaling ability. Together, suggesting a role for IL-2 as a mediator of the 

indexing of Tregs to the TCR signaling capacity of Tconvs. 

A revealing study was published recently from the Germain lab showing 

that Tconvs can be found in lymphoid tissue interacting with DCs expressing self 

antigens in order to produce IL-2 (Liu et al., 2015). Tregs are found in this cluster 

of immune cells as well, with high levels of phosphorylated STAT5 indicating they 

are utilizing the IL-2 produced by this Tconv/DC interaction. These findings 

suggest that there is a subset of self-reactive Tconvs that produce IL-2 in 
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response to syngeneic contacts with DCs in the steady state of a healthy mouse. 

This is similar to the in vitro findings in which we observed IL-2 production to self-

peptide MHC-II complexes as well as supports our finding that Tconvs with 

greater self-reactivity make more IL-2 in the steady state. The Tconvs that take 

part in this process are described by Liu et. al. as being “proto-effector” T cells 

which are critical to maintain the Tregs that are then reciprocally pivotal in 

suppressing the stimulation of these Tconvs into full auto-reactive effector cells 

(Liu et al., 2015; Amado et al., 2013). This all leads to a model in which the 

immune system is poised at a highly regulated point between auto-reactivity and 

tolerance dependent on both TCR signals as well as production and competition 

for IL-2. 

Future work on this topic should look at the TCR repertoire of the IL-2 

producing Tconvs to determine if these cells truly possess self-reactive TCRs. 

The existence of Tconvs that escape central tolerance mechanisms to exist in 

the periphery may in fact play a role in this process of IL-2 production. The 

Tconvs that have been thought to be a mistake in their escape from the negative 

selection may in fact be more likely to become the “proto-effector” Tconvs that 

play a role in Treg maintenance. Clarification of these findings will add to our 

understanding of the complex and slightly precarious nature of the Treg/Tconv 

balance. 
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Implications for regulatory T cell therapeutics 

 The potential for Treg therapy to be used in human patients is critically 

dependent on the ability to create stable, functional Tregs that survive in the 

patient. Current ex vivo expansion techniques have been hampered by the 

inability to create Tregs that survive long term after transfer (Rossetti et al., 

2014). The most promising Treg based therapies involve treatment with small 

molecules and proteins that drive the expansion of pre-existing Tregs. The 

primary example of this has been the use of low dose IL-2 therapy. The efficacy 

of IL-2 has been exhibited in the setting of GVHD, with robust increases in 

Foxp3+ Tregs as well as reductions in chronic GVHD manifestations (Koreth et 

al., 2011; Matsuoka et al., 2013).  Furthermore, low dose IL-2 therapy has been 

successful in lessening symptoms associated with chronic hepatitis C virus 

(HCV) infection (Saadoun et al., 2011; Schlaak et al., 2002). Human T1D 

patients have also demonstrated increases in Tregs with low dose IL-2 therapy 

resulting in decreases in the activation of effector T cells (Rosenzwajg et al., 

2015). With these promising findings, future studies must be performed to 

optimize the dose in each setting for Treg-specific expansion (Pham et al., 2016). 

 In a similar manner to low dose IL-2 treatment, MC903 topical application 

expands pre-existing Tregs in the host, making it a promising method to 

suppress immune responses. MC903, also known as calcipotriol and marketed 

as “Dovonex”, is currently used as a treatment for autoimmune psoriasis. Despite 

its established efficacy in treating psoriasis, the mechanism of action is unclear. 
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Further studies would need to be performed to test the hypothesis, but there is 

potential that treatment of psoriatic lesions may lead to TSLP production and 

expansion of Tregs for suppression of the autoimmune response in human 

psoriasis patients. If Tregs are observed to expand systemically in human 

patients, as they have been found to do in mouse models, it would be useful to 

determine the ability of MC903 treatment to work as a therapy for diseases that 

have been shown to benefit from systemic Treg increases, such as GVHD, 

chronic HCV, and in particular, T1D. The potential for topical MC903 to extend 

past treating just skin disorders is highly desirable as a therapy due to the low 

cost and ease of treatment. As we begin to better understand the ability of skin 

tissue to instruct immune responses, we open doors to be able to provide simpler 

therapies that require less invasive procedures. 

 

Conclusions 

 In total, this work has expanded our knowledge on the extrinsic factors 

important in regulating Treg numbers. We have demonstrated the ability of the 

skin to alter the systemic maintenance of Tregs by driving proliferation through 

DCs that sense increased levels of TSLP. Furthermore, we have illuminated 

additional details associated with the complex requirements of TCR signals and 

IL-2 in the indexing of Tregs to Tconv numbers. Together with additional 

published knowledge on Treg homeostasis, this information will be critical in 

understanding the environment that best maintains the most important 
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immunosuppressive cell type, the Treg. This significance is highlighted by the 

fact that the skin mediated control of Tregs proved to be able to prevent 

autoimmunity from developing in the NOD mouse model of T1D. While much 

more needs to be determined in order to translate these observations to clinical 

impact, the importance of understanding these mechanisms of tolerance is clear. 
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APPENDIX I: 

List of Abbreviations 

A 

APC:  antigen presenting cell 

 

B 

BrdU:  bromodeoxyuridine 

BM:  bone marrow 

 

C 

CFSE:  carboxyfluorescein succinimidyl ester 

CTLA4: cytooxic T-lymphocyte-associate protein 4 

cSLP76: conditional WT SLP76 expressing cells 

cY145F: conditional Y145F SLP76 expressing cells 

 

D 

DC:  dendritic cell 

dLN:  skin-draining lymph node 

 

E 

EAE:  experimental autoimmune encephalomyelitis 

ELISA: enzyme-linked immunosorbent assay 

EtOH:  ethanol 
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F 

FACS:  fluorescence activated cell sorting 

Foxp3: forkhead box P3 

 

G 

GFP:  green fluorescent protein 

 

H 

HA:  hemagglutinin 

 

I 

i.p.:  intraperitoneal 

IL-2:  interleukin 2 

IL-2 IC: interleukin 2 cytokine/anti-interleukin-2 antibody complexes 

iTreg cell:  in vitro induced regulatory T cell 

 

K 

KO:  knock out 

 

L 

Lck:  lymphocyte specific protein tyrosine kinase 

LAT:  linker of activated T cells 
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LN:  lymph node 

 

M 

MACS: magnetic activated cell sorting 

MHC-II:  major histocompatibility complex class II 

MFI:  mean fluorescence intensity 

 

N 

NOD:  non-obese diabetic 

 

P 

PBS:  phosphate buffered saline 

pTreg:  peripherally-derived regulatory T cell 

 

S 

SEM:  standard error of the mean 

SLP-76: Src homology 2 domain-containing leukocyte protein of 76 kD 

STAT5: signal transducer and activator of transcription 5 

 

T 

T1D:  type 1 diabetes 

Tconv:  conventional CD4+ T cell 

TCR:  T cell receptor 
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TGFβ:  transforming growth factor beta 

Treg:   regulatory CD4+ T cell 

TSLP:  thymic stromal lymphopoietin 

tTreg:  thymically-derived regulatory T cell 

 

V 

VDR:  vitamin D receptor 

 

W 

WT:  wild type 

 

Y 

Y145F: SLP76.Y145F mutant 

YFP:  yellow fluorescent protein 
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APPENDIX II: 

Materials and Methods 

Chapter II 

Mice 

TSLPR KO mice were a generous gift from Dr. Warren Leonard. K14 mice were 

a generous gift from Dr. Terri Laufer. CD11cDTA, C56BL/6.Thy1.1, C56BL/6 

Foxp3.GFP and C57BL/6.SJL Foxp3.GFP reporter mice are maintained in our 

animal facility. All other mice were purchased from The Jackson Laboratory or 

Charles River. Mice were housed in pathogen-free conditions and treated in strict 

compliance with Institutional Animal Care and Use Committee regulations of the 

University of Pennsylvania. 

 

MC903 treatment 

MC903 (Tocris Cat# 2700) was dissolved in 100% EtOH. Mice were treated on 

both ears with 2nmol or EtOH vehicle for 5-7 days. MC903 and EtOH treatment 

intraperitoneally consisted of injecting 4nmol MC903 or an equivalent volume of 

EtOH in 500µL PBS for 5 days. 
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Flow cytometry, cell sorting, and data analysis 

Antibodies for flow cytometry were purchased from eBioscience (San Diego, CA), 

BD Bioscience (San Jose, CA), or Tonbo Bioscience (San Diego, CA). Flow 

cytometry was performed with an LSR II, FACSCanto, or a FACSCalibur. Cell 

sorting was performed with a FACSAria cell sorter (BD Biosciences) or MACS 

Cell Separation (Miltenyi Biotec; San Diego, CA). Data were analyzed with 

FlowJo software (TreeStar) and Prism (GraphPad).  

 

Tissue Processing 

Ear skin tissue was obtained by separating the dermal sheets of the ear and 

digesting in 250 µg/ml LiberaseTL (Roche, Cat# 5401020001) and 10 µg/ml 

DNAse (Roche, Cat# 10104159001) for 90 min at 37°C. Digestion was quenched 

with complete media and tissue was mashed through cell strainers and washed 

twice for flow cytometry. 

 

VDR KO chimeras 

C57BL/6.SJL mice were lethally irradiated with a split dose of 11 Gy and 

reconstituted with 4 x 106 MACS-purified T cell-depleted (CD90.2) bone marrow 

of either C57BL/6 or VDR KO origin. 9-10 weeks post reconstitution, mice were 

treated with EtOH or MC903 (2nmol/ear) topically for 7 days. 
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Serum TSLP ELISA 

Serum was collected from mice on day 3 of EtOH and MC903 (2nmol/ear) topical 

treatment. ELISA was performed using 2 µg/ml capture antibody (R&D Cat 

#MAB5551) and 0.1 µg/ml detection antibody (R&D Cat #BAF555) and read by 

TMB reaction. 

 

pTreg adoptive transfer 

FACS-sorted Tconvs (CD45.2+Foxp3.GFP-) and Tregs (CD45.1+Foxp3.GFP+) 

were transferred into lymphoreplete C57BL/6.Thy1.1 WT mice at a Tconv:Treg 

ratio of 3:1 (approximately 1.5x106 Tconv: 0.5x106 Treg). Three days post 

transfer, mice were treated with EtOH or MC903 (2nmol/ear) topically from day 3-

9 and analyzed on day 11. 

 

in vitro iTreg assay 

FACS-sorted DCs (Dump (CD3ε,CD19,DX5)-CD11c+IAbB+) and Tconvs 

(CD4+Foxp3.GFP-) and were plated at a 1:1 ratio of 15,000-20,000 each/well for 

96 hours. Culture medium consisted of MEM-a with 10% FBS, 1% 

penicillin/streptomycin, 10 mM HEPES, and 1x10-5M 2-mercaptoethanol and 

contained anti-CD3 (1 µg/ml), IL-2 (100 U/ml), TGFβ (1 ng/ml), and TSLP (50 

ng/ml). 
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in vivo BrdU treatment 

Mice were treated with EtOH or MC903 (2nmol/ear) topically from day 0-6. On 

the final day of topical treatment, mice were administered BrdU with an initial 

bolus of BrdU (2 mg in 200 ml PBS) i.p. and given drinking water containing BrdU 

(1 mg/mL) until the time of sacrifice 3 days later.  

 

in vitro suppression assay 

Tregs were FACS-sorted (CD90.2+CD8α-Foxp3.GFP+) from EtOH and MC903 

(2nmol/ear) topically treated WT C57BL/6.SJL Foxp3.GFP mice at day 8 

and Tconvs (CD4+GFP−) from WT C57BL/6 Foxp3.GFP reporter mice. The 

Tconvs were CFSE-labeled and cultured at various ratios with 15,000 Tregs/well 

in the presence of irradiated T cell–depleted feeder cells and soluble anti-CD3 (1 

µg/ml). CFSE labeling was performed by resuspending cells with PBS containing 

CFSE (5 mM) at 37°C followed by continuous shaking for 9 min. The reaction 

was then immediately quenched with 100% FBS, and the cells were washed 

before culture. CFSE dilution of Tconvs was assessed by flow cytometry after 4 d 

in culture.  

 

CFSE labeled Tcell adoptive transfer 

MACS-sorted CD4+ T cells from WT C57BL/6.SJL or TSLPR KO (CD45.2+) mice 

were CFSE labeled and 5 x 106 cells of each type we co-transferred into WT 
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C57BL/6.Thy1.1 host mice. Mice were treated with EtOH or MC903 (2nmol/ear) 

topically from day 3-7 and analyzed on day 11. 

 

WT DC adoptive transfer 

WT DCs were obtained from spleens of mice subcutaneously injected 8-10 days 

prior with FLT3L-expressing EL4 cells. 2-5x106 DCs were injected i.v. at day 0 

and day 4 of treatment. Mice were treated with EtOH or MC903 (2nmol/ear) 

topically from day 0-6 and analyzed on day 8. 

 

in vitro DC/Treg co-cultures 

FACS-sorted DCs (Dump(CD3ε,CD19,DX5)-CD11c+IAbB+) and CFSE labeled 

Tregs (CD90.2+CD8α-Foxp3.GFP+) and were plated at a 1:1 ratio of 15,000-

20,000 each/well for 96 hours. Culture medium included combinations of IL-2 (50 

U/ml) and TSLP (50 ng/ml). CTLA4 Ig and anti-PDL1 were used at 20 µg/ml. 

 

NOD T1D model 

Female NOD mice were treated with EtOH or MC903 (2nmol/ear) topically three 

times a week, every other week, beginning between 5 and 12 weeks of age. 

Development of diabetes was determined by two consecutive blood glucose 

readings ≥250mg/dl. 
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Chapter III 

Mice 

Y145F knock-in mice, SLP-76flox/Y145F conditional mutant (cY145F), and SLP-

76flox/+ conditional heterozygous (cSLP76) mice were generated as previously 

described (Jordan et al., 2008; Wu et al., 2011) and bred in our facility. TCRβ/δ 

KO, I-Abβ KO (MHC-II KO), C57BL/6 CD90.1, C57BL/6 Foxp3.GFP and 

C57BL/6.SJL Foxp3.GFP reporter mice were purchased from The Jackson 

Laboratory or Charles River and were bred and maintained in our animal facility. 

Mice were housed in pathogen-free conditions and treated in strict compliance 

with Institutional Animal Care and Use Committee regulations of the University of 

Pennsylvania.  

 

Flow cytometry, cell sorting, and data analysis 

Antibodies for flow cytometry were purchased from eBioscience (San Diego, CA), 

BD Bioscience (San Jose, CA), or Tonbo Bioscience (San Diego, CA). Flow 

cytometry was performed with an LSR II, FACSCanto, or a FACSCalibur. Cell 

sorting was performed with a FACSAria cell sorter (BD Biosciences) or MACS 

Cell Separation (Miltenyi Biotec; San Diego, CA). Data were analyzed with 

FlowJo software (TreeStar) and Prism (GraphPad).  
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In vitro co-cultures and IL-2 detection 

FACS-sorted Naïve Tconvs (CD4+CD25-CD45RBhi) from either C57BL/6 or 

SLP76.Y145F mice were co-cultured with CD11c+ MACS-sorted DCs at a 1:1 

ratio in 200 µl T cell media (MEM-α with 10% FBS, 1% penicillin/ streptomycin, 

10 mM HEPES, and 1 × 10−5 M 2-mercaptoethanol) with mouse GM-CSF (10 

ng/ml; PeproTech, Rocky Hill, NJ). Culture supernatant was collected at 96 h and 

analyzed by ELISA for IL-2 production. CD11c+ DCs were sorted from spleens of 

mice subcutaneously injected 8-10 days prior with FLT3L-expressing EL4 

cells. IL-2 was detected using the Mouse IL-2 ELISA Ready-SET-Go! kit 

(eBioscience). 

 

CD5 high and low Tconv sort, RNA extraction, and Quantitative PCR 

Tconvs were FACS sorted using a FACSAria sorting on CD4+CD25- T cells and 

then on CD5 levels (highest and lowest 20%). RNA was isolated using 

QIAshredder columns paired with the RNeasy minikit (QIAGEN; Germantown, 

MD). Expression of IL-2 mRNA was measured by real-time PCR (Applied 

Biosystems StepOnePlus Real-Time PCR System; Carlsbad, CA) using SYBR 

Green Master Mix (Applied Biosystems) on 1000-cell equivalents of cDNA 

template and 100nM primer concentration. The oligonucleotides used to amplify 

the template DNA were Il2 fwd, 5′-AGCAGCTGTTGATGGACCTA-3′; Il2 rev, 5′-
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CGCAGAGGTCCAAGTTCAT-3′; 18S fwd, 5’-TCAAGAACGAAAGTCGGAGG-3’; 

18S rev, 5’-GGACATCTAAGGGCATCACA-3’. 

 

Irradiation, Reconstitution and IL-2 IC treatment 

C57BL/6.SJL mice were lethally irradiated with a split dose of 11 Gy and 

reconstituted with 5 x 106 MACS-purified T cell-depleted (CD90.2) bone marrow 

of either C57BL/6 or MHC-II KO origin. At the same time as the bone marrow 

transfer, the mice received 5 x 106 MACS-purified CD4+ T cells. At day 14 post 

transfer, mice were treated with IL-2 immune complexes (0.25ug IL-2 and 1.25ug 

αIL-2 mAB) or PBS for 5 days. Treg percentages were measured in the 

peripheral blood at day 14, 20 and 27 post transfer. 

 

Adoptive transfers and Tamoxifen administration 

Tconvs (CD45.2+CD4+CD25-) were FACS-sorted from spleens of SLP-76flox/Y145F 

conditional mutant (cY145F) and SLP-76flox/+ conditional heterozygous (cSLP76) 

mice. Tconvs from either source were transferred in a 4:1 ratio with FACS-sorted 

WT Tregs (CD45.1+CD4+GFP+) from C57BL/6.SJL Foxp3.GFP reporter mice into 

TCRβ/δ KO mice. For deletion of the loxp-flanked SLP-76 allele 8-10 weeks after 

cell transfer, mice were orally given 200 µg/g body weight of Tamoxifen in corn 

oil every day for 5 days. Mice were bled weekly to measure circulating Tconvs 

and Tregs for 12 weeks. Spleens were dissociated and set in erythrocyte lysis 
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buffer (140mM NH4Cl, 17 mM Tris pH 7.5) for 2 minutes. Cells were then filtered 

through 70 micron nylon mesh to obtain a single cell suspension for flow 

cytometry staining. Treg percentages were assessed as CD4+CD45.1+Foxp3+ 

percent of total CD4+ T cells. 
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