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Abstract
Platelet aggregation is one of the body's first responses to vascular damage to prevent blood loss; upon injury
to the endothelium platelets react to the exposed extracellular matrix and undergo a host of intracellular
biochemical changes enabling them to activate and form a "plug" at the site of injury. Internally, platelets
respond to their environment by exhibiting a sharp rise in cytosolic calcium that triggers a series of chemical
and morphological changes which are critical to platelet activation and subsequent clot propagation. This
thesis develops a mechanistic, computational model of platelet calcium regulation using coupled sets of
ordinary differential equations. This thesis extends previous work modeling calcium release mediated by
inositol 1,4,5-trisphosphate (IP3) to engineer what is the first, to date, complete model of store-operated
calcium entry (SOCE) integrated into a systems model for calcium signaling. SOCE is a ubiquitous
extracellular calcium entry pathway which is activated by calcium store depletion, is seen in many cells types
and is yet to be fully understood. Our model for SOCE regulation consists of diffusion-limited dimerization of
the calcium sensor STIM1, followed by fast, cytosolic calcium-dependent association of STIM1 dimers with
Orai1 channels in the plasma membrane resulting in graded store-operated channel activation. Appropriate
model resting states were characterized using a dense Monte Carlo technique on an initial condition sampling
space constrained by available data on species concentrations and protein copy numbers. From this set of
resting configurations, following application of physiologic IP3 stimuli, we selected for resting states exhibiting
calcium dynamics that are in agreement with experimental data. We also selected for states presenting
significant SOCE current based on differences in cytosolic calcium between simulations run with and without
extracellular calcium. Low resting levels of IP3 are required for system robustness and for simultaneous
appropriate dynamic response to physiologic agonists. Platelets require a resting electrical potential across the
membrane surrounding the calcium stores of greater than -70 mV in order to exhibit significant agonist-
induced calcium release.
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ABSTRACT 
 

SYSTEMS MODELING OF CALCIUM HOMEOSTASIS AND MOBILIZATION IN 

PLATELETS MEDIATED BY IP3 AND STORE-OPERATED CALCIUM ENTRY 

Andrew T. Dolan 

Scott L. Diamond  

 

Platelet aggregation is one of the body’s first responses to vascular damage to prevent 

blood loss; upon injury to the endothelium platelets react to the exposed extracellular 

matrix and undergo a host of intracellular biochemical changes enabling them to activate 

and form a “plug” at the site of injury. Internally, platelets respond to their environment 

by exhibiting a sharp rise in cytosolic calcium that triggers a series of chemical and 

morphological changes which are critical to platelet activation and subsequent clot 

propagation. This thesis develops a mechanistic, computational model of platelet calcium 

regulation using coupled sets of ordinary differential equations. This thesis extends 

previous work modeling calcium release mediated by inositol 1,4,5-trisphosphate (IP3) to 

engineer what is the first, to date, complete model of store-operated calcium entry 

(SOCE) integrated into a systems model for calcium signaling. SOCE is a ubiquitous 

extracellular calcium entry pathway which is activated by calcium store depletion, is seen 

in many cells types and is yet to be fully understood. Our model for SOCE regulation 

consists of diffusion-limited dimerization of the calcium sensor STIM1, followed by fast, 

cytosolic calcium-dependent association of STIM1 dimers with Orai1 channels in the 

plasma membrane resulting in graded store-operated channel activation. Appropriate 

model resting states were characterized using a dense Monte Carlo technique on an initial 

condition sampling space constrained by available data on species concentrations and 
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protein copy numbers. From this set of resting configurations, following application of 

physiologic IP3 stimuli, we selected for resting states exhibiting calcium dynamics that 

are in agreement with experimental data. We also selected for states presenting 

significant SOCE current based on differences in cytosolic calcium between simulations 

run with and without extracellular calcium. Low resting levels of IP3 are required for 

system robustness and for simultaneous appropriate dynamic response to physiologic 

agonists. Platelets require a resting electrical potential across the membrane surrounding 

the calcium stores of greater than -70 mV in order to exhibit significant agonist-induced 

calcium release. 
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Chapter 1 

 

Introduction 

 
Cells interact with their environment by sensing external chemical signals through 

binding events at receptors on their surface. External signals are transmitted internally by 

a successive relay of chemical reactions occurring within the cell’s cytoplasm and 

organelles. These chemical changes ultimately manifest in a change in the cell’s 

phenotype or behavior. Some individual biochemical reactions in cells are relatively 

simple. Consider the hydrolysis of sucrose to glucose and fructose catalyzed by invertase. 

In this case the reaction can be fully characterized by a Michaelis-Menten relationship 

and a few fixed parameters. However there are many such reactions occurring 

simultaneously within cells and even just a few nonlinear interactions can produce 

complex and completely counterintuitive behavior. An example is the “chemical clock” 

Belousov-Zhabotinsky reaction where just a few reactants will spontaneously form 

numerous pulsing, spiraling waves of oscillating color until the reactants are consumed 

[1]. Another would be the complex, unique fractal structures of snowflakes forming from 

crystallizing water droplets. These are examples of the phenomenon of emergence, or 
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how complex behaviors arise from relatively simple interactions. In biology, nonlinear 

chemical or physical couplings among biomolecules, inorganic ions and other 

compounds allow cells to function as biochemical systems which are far greater than the 

sum of their parts.  

Some examples of emergent behavior in biology include 

 Cell differentiation during development. A central question in developmental 

biology is how groups of precursor cells can selectively differentiate to form 

organs. Using the Drosophila fruit fly as a model, many seminal studies revealed 

such patterned development arises from concentration gradients of morphogenic 

compounds. These gradients are the consequence of directed transport through the 

tissue, or nondirectional secretion from cells. Through binding and activating cell 

surface receptors, the morphogens themselves can affect the rate of secretion, 

creating a feedback loop reliant on intracellular kinetics and processes [2]. 

 Spread of infectious disease. The spread of pathogens through a population is 

strongly influenced by the rate of propagation of the disease between organisms. 

These rates are affected by population factors such as environment or 

demographics and individual factors like behavior and health. At the molecular 

biology level, acquired immunity or resistance, and genetic immune disorders also 

affect transmission. With the increasing amount of demographic data available, 

agent based modeling finds utility in incorporating data on average individual’s 

daily activities, social interactions, and travels to develop models that allow 

agencies such as the CDC to anticipate risk of contagion of new pathogens. 
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 Thrombus formation in damaged blood vessels. Thrombus formation involves 

chemical reactions in the flowing blood occurring in response to exposed 

compounds in the damaged vessel wall to generate thrombin, and activation of 

rolling or captured platelets by thrombin and collagen on the endothelium via 

outside-in cell signaling. Activated platelets can aggregate at the wound site using 

fibrin, which is generated by thrombin, as a scaffold. Platelets also release 

agonists to cause autocrine and paracrine signaling and can serve as a substrate 

for thrombin generation. These interactions make thrombosis a truly multiscale 

process resulting from complex interactions at the molecular to the cellular level. 

Molecular biology is often reductionist in nature. The goal of systems biology is 

to integrate individual complex cell signaling mechanisms to predict emergent behavior 

at the cellular, tissue, or organismal scale
1
. As both the quantity of biological data and 

available computing power increase at exponential rates, computational models become a 

natural tool for this purpose. The most common computational approach taken is to use 

networks of ordinary differential equations to model the interactions of every reactant in 

a detailed manner; techniques such as molecular dynamics can be useful in providing 

information about individual components in these networks [3]. 

This thesis focuses on the application of these holistic modeling approaches to 

intracellular signaling in one biological system in particular - human platelets. These cells 

play important roles in cessation of blood flow and wound healing following injury as 

well as in cardiovascular diseases. The major objective of this work is to model how the 

                                                 
1  Our discussion is limited to how metabolic or genomic reactions integrate at the cellular level however 

this concept can readily be extended to how cells integrate to form tissues and organs, which in turn 

interact to form entire organisms. 
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platelet responds to chemical agonists generated during blood clot formation. Chapter 2 

shows how a previously developed bottom-up model of G-protein coupled receptor 

mediated calcium regulation was extended to include mechanisms for calcium influx 

from the extracellular space. In Chapter 3, a dense Monte Carlo sampling is applied to a 

physiologically constrained initial condition and parameter search space to reveal how 

the programmed topology (i.e. the reaction network) affects the model’s preferred resting 

states. These resting configurations are then characterized based on their cytosolic 

calcium responses to a transient stimulatory input. The remainder of this chapter will 

provide background on the biology and clinical relevance of platelets (Section 1.1), a 

brief introduction to the systems biology modeling paradigm (Section 1.2), an overview 

of some previous platelet calcium signaling modeling work (Section 1.3) and end with a 

discussion and overview of store-operated calcium entry (Section 1.4), the extracellular 

calcium entry mechanism that we seek to model. 

 

1.1 Platelets: Biology and Significance 
 

Platelets are critical mediators of hemostasis, the process of stopping blood loss 

following injury to a blood vessel. The blood is a complex fluid environment consisting 

of red blood cells, white blood cells, and platelets; the noncellular portion of blood, 

plasma, is a complex chemical cocktail of ions and proteins. Platelets must be able to 

precisely respond to chemical or physical signals and changes in this environment to 

initiate thrombosis, the process of blood clot formation, while being robust to small 

stochastic changes so as not to activate at inappropriate times (e.g. in the absence of an 

actual injury). Dysregulation or diseases such as atherosclerosis can result in pathological 
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thrombus formation and embolism, which is the process where a blood clot breaks loose 

from the blood vessel wall and travels through the bloodstream. When these dislodged 

blood clots occlude a coronary artery or cerebral blood vessel, they can lead to 

myocardial infarction or ischemic stroke, respectively. Approximately one American 

every minute will die of a coronary event, and coronary heart disease alone was 

responsible for about 1 of every 6 deaths in the United States in 2009 [4]. 

The internal signaling machinery of platelets allows them to rapidly respond to 

changes in their external environment. Platelets do not adhere to an intact vessel wall, 

termed the endothelium, in healthy individuals. Following injury to the endothelium, 

platelets traveling through the bloodstream can be captured by exposed collagen 

mediated by glycoprotein Ib and von Willebrand factor (vWF) multimers. These 

interactions result in a platelet monolayer at the wound site, however this monolayer is 

insufficient to fully stop bleeding [5]. 

Extension of a thrombus beyond an initial platelet monolayer is heavily dependent 

on platelet-platelet interactions which use fibrin and fibrinogen as a bridge. Recruitment 

of additional platelets at this stage is strongly potentiated by local action of agonists such 

as ADP or thromboxane A2 (TxA2) which activated platelets release from their storage 

granules, and the action of thrombin, a serine protease in the bloodstream which is 

initially generated at the injury site following exposure of tissue factor on the damaged 

endothelium. These three agonists function by binding to G-protein coupled receptors 

(GPCRs) on the platelet surface, activating phospholipase C  which in turn cleaves 

inositol 1,4,5-trisphosphate (IP3) from membrane-bound phosphatidylinositol 4,5-

bisphosphate (PIP2). IP3 triggers Ca
2+

 release from the intracellular Ca
2+

 stores [6], 

http://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
http://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
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causing Ca
2+

 in the cytosol to rise from resting levels of ~100 nM to as high as 1 M [7]. 

Collagen itself also causes Ca
2+

 elevation by signaling through the tyrosine kinase GPVI; 

this avenue to Ca
2+

 release is particularly important as the first monolayer of platelets 

deposits at the wound site during clot initiation [8]. 

A rise in cytosolic Ca
2+

 has important downstream effects responsible for 

changing the platelet’s phenotype to one which is able to participate in and effect the 

further extension of a thrombus. Ca
2+

 mediates Rap1B via Cal-DAG GEF (Ca
2+

 and 

diacylglycerol dependent guanine nucleotide exchange protein) [9] which is a precursor 

to integrin αIIbβ3 activation; this integrin binds to fibrin and fibrinogen and so functions 

to link platelets to one another during thrombus extension. Ca
2+

 drives shape change and 

spreading at the wound site via activation of myosin light chain kinase which allows for 

reorganization of the cytoskeleton [10, 11]. Platelets store agonists such as serotonin, 

ADP, and TxA2 in storage granules [12]
2
 which are released into the extracellular space 

following Ca
2+

 elevation [13, 14]; this leads to localized autocrine and paracrine 

signaling events to further drive platelet aggregation. Active platelets expose 

phosphatidylserine (PS) on their outer plasma membrane leaflet in a Ca
2+

 and caspase 

dependent manner [15]. This causes the platelet’s surface to take on a negative charge 

and be able to serve as a substrate for thrombin generation. 

Platelet signaling defects can lead to bleeding diatheses or pathological thrombus 

formation. Dysfunctional calcium signaling can lead to pathological thrombus formation 

[16] and has also been linked to diabetes [17, 18] and hypertension [19]. Defects or 

                                                 
2 Platelet -granules contain numerous other factors including mediators of hemostasis (factor V, 

fibrinogen) but also mediators of angiogenesis (VEGF, PDGF) and cytokines, causing platelets to play 

important roles in angiogenesis and inflammation. 
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mutations in genes encoding G-protein subunits can lead to impaired platelet aggregation 

and prolonged bleeding times [20, 21]. These examples underlie the importance of proper 

platelet intracellular signaling in thrombosis. 

Platelets act as an ideal system for initial model development primarily due to 

their simplicity and availability. Platelets lack a nucleus [22], removing the need to 

consider the milieu of transcriptional regulation pathways that are present in the most 

other cell types. Platelets are also readily available from healthy donors or patients 

exhibiting a particular disease of interest. Many cellular regulatory mechanisms are 

highly conserved in biology so that conclusions or predictions drawn from a working 

model are often readily extensible to other cell types. An accurate model of platelet 

activation also has significance on its own as a predictor of physiologic hemostasis and 

pathophysiologic thrombosis. 

The signaling cascades involved in the platelet activation process are complex at 

both the extracellular and intracellular level. But, as has been seen in many other 

biological signaling networks, calcium plays a large role in intracellular signaling and is 

involved in a host of critical biological processes [23], frequently serving as the focal 

point of a signaling network diagram and thusly represents a natural starting point for a 

systems model of platelet metabolism. 

 

1.2 Systems Biology 

Cellular systems are incredibly complex with numerous, often competing 

reactions occurring simultaneously. Systems biology bridges the junction between 

mathematics and biology by applying mathematical modeling techniques to make 
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quantitative predictions about a system’s overall behavior or derive new insights into how 

subcomponents of a system interact. As an example, one of the most well studied 

phenomena in this field has been E. Coli chemotaxsis which is governed by relatively 

few proteins whose interactions have been well characterized [24]. In fact, the 

understanding of bacterial chemotaxis has been so well developed that the field has 

turned to population modeling. For example, Korobkova et al. [25] combined 

experimental measurements and a simple two-state chemoreceptor model [26] to show 

that some of the parameters in the chemotactic sensory system are fixed in such a manner 

that a bacterial population can respond to chemical signals stochastically and 

nonuniformly, and that this type of response has survival value to the group of cells as a 

whole.  

Much work has also been done on modeling transport into and out of the cell 

nucleus via the nuclear pore complex (NPC). A gradient across the nuclear membrane of 

RanGTP mediates the specificity of importin and exportin proteins which regulate the 

actual transport of compounds through NPCs. This work spanned several groups and 

involved several model variants of increasing complexity. The earliest model used 

Michaelis-Menten kinetics to simplify several multistep reactions [27]. The next variant 

removed the Michaelis-Menten simplifications but only characterized transport by the 

RanGTP gradient rather than explicitly modeling fluxes through the carrier proteins [28]. 

Eventually a more detailed model coupling the RanGTP gradient to the importin system 

[29] revealed that the Ran guanine-nucleotide exchange factor (RanGEF), the protein 

responsible for converting RanGDP to RanGTP, is not the limiting factor and the 

concentration of Ran and other molecules may be more important, settling a point of 
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contention between the prior model variants and revealing to experimentalists which 

parameters and species are the best candidates to explore with greater accuracy in the 

laboratory. This example illustrates value of more complex models and the collaborative 

and sequential nature of model building where models take on greater detail between 

generations. Standard model interfaces such as the Systems Biology Markup Language 

(SBML) [30] have been developed to facilitate model sharing between groups and the 

stepwise process of model development. Subcomponents of cellular machinery separated 

on the basis of function, like glycolysis or DNA replication are frequently developed as 

distinct computational modules which can serve as parts with which to assemble full 

integrative models of cell behavior [31]. 

Common approaches to modeling cell signaling typically rely on coupled systems 

of ordinary differential equations (ODEs) [32, 33] when the cell can be considered a 

well-mixed chemical reactor (often broken into subcellular compartments representing 

different organelles). Each ODE represents the sum of all rates of change of an individual 

cellular component which could be a divalent cation like Ca
2+

 or an enzyme such as DNA 

ligase. The nuclear transport models discussed above were based on coupled ODEs. ODE 

systems have the natural benefit of mechanistic detail and are particularly well suited to 

the study of systems where kinetic data is available for all state variables and components 

under study; these systems can be modeled either deterministically or stochastically [34] 

depending on the length scales under consideration. ODE networks have been used to 

model GPCR dynamics [35], epidermal growth factor stimulation of mitogen-associated 

kinsases [36], regulation of the cell cycle and budding in fission yeast [37, 38], and 

phosphoinositide and Ca
2+

 regulation in human platelets. A multicellular ODE model of 
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pancreatic beta cells, using stochastic modeling of K
+
 channels, revealed insulin bursting 

in as an emergent phenomena resulting from electrical coupling of individual cells [39].  

ODEs are by no means the only methods available to systems biologist. When a 

sufficient level of topological detail is not available to design a full mechanistic model, 

data-driven approaches such as clustering methods, principal components analysis, or 

partial least squares regression can be used to derive insight about a system when large 

enough datasets are available [40]. Bayesian network analysis [41] can be used to draw 

correlations between signaling components, in doing so perhaps directing new avenues of 

discovery. One group has used this technique on multivariate flow cytometry data to 

make causal predictions of signaling molecule interactions [42]. Neural networks have 

been used to incorporate topological and time dependent features of human platelet 

calcium signaling to accurately predict responses of platelets simultaneous application of 

multiple chemical agonists [43] and have been incorporated into multiscale flow models 

of platelet aggregation [44]. 

Often the emergent or complex system behavior is actually the part of the system 

which is experimentally observable. The most relevant example is how the intracellular 

calcium concentration, a complex function of the concerted action of channels, pumps, or 

buffering agents in cells such as platelets can be quantified by labeling the cells with a 

fluorescent, calcium-sensitive dye. In this case the system biologist’s task is to estimate 

unknown mechanisms or parameters in the system using the available kinetic and 

mechanistic data as a benchmark or guide. This is the “inverse” problem of engineering 

new interactions, estimating unknown parameters or reparameterizing measured 

parameters whose effective values may be different in the integrated system [45]; often 



11 

this process must be performed with noisy or incomplete datasets. Global techniques for 

parameter estimation and validation which are applied to systems of ODEs or 

differential-algebraic equations include particle swarm [46], simulated annealing [47], 

and genetic algorithms [48, 49]. 

Of course, either due to computational limitations or lack of complete datasets, 

modeling cells’ entire metabolic states is not feasible. Basic understanding derived from 

experiments performed on the system of interest and some biological intuition are 

necessary for choosing the most important components to model. To deal with large and 

computationally intractable or non-identifiable models, reduction techniques such as 

sensitivity analysis [50-52] to determine the species or parameters having the greatest 

effects on model outputs, or the time-scale arguments [53] to make simplifying 

assumptions can be employed to reduce model size. 

Finally, it is important to note the value of integrative, mechanistic or bottom-up 

models which have been validated against experimental results is not just to recapitulate 

previously observed phenomena, but also to indentify new, experimentally verifiable 

hypotheses and thereby make manifest new avenues for research and discovery [33, 40]. 

Complicated, fine-grained cellular models which can reproduce experimentally measured 

behavior approach the pinnacle of becoming reflections of an actual cell. Modelers can 

exert precise control over every aspect of these virtual cells; one can easily probe the 

effects small changes made to one component may have on other components of the 

model, something which may be very difficult to do in live cells. Models can also be used 

to discern new candidate signaling pathways for pharmacological treatment, to estimate 

the efficacy of existing drugs [54], or to predict potential off-target effects. These are 
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particularly practical applications considering the high cost of drug discovery and 

development which has been estimated to cost upwards of $1.8 billion USD per drug 

after accounting for cost of capital [55]. 

 

1.3 Previous work in modeling platelet intracellular signaling 

There are only a few current examples of platelet signaling models in the 

literature. One group has modeled thrombin stimulation of calcium release through 

PAR1,  as well as downstream activation of Akt, PKC, CalDAG-GEF, 2b3, and dense 

granule release [56] using ODEs. Purvis et al. [57] developed another ODE model of IP3-

mediated Ca
2+

 release stimulated by ADP binding the P2Y1 receptor. This large network 

of over 70 species was calibrated [58] by breaking the overall model down into 

functionally distinct modules [31], scanning each module’s initial condition space for 

configurations satisfying physiologically derived homeostasis constraints, and then 

combining each set of solutions into a global initial condition space for the entire system. 

The model was also required to be responsive to P2Y1 stimulation. The full model was 

able to accurately predict: 1.) steady-state resting concentrations for intracellular Ca
2+

, 

IP3, diacylglycerol, and phosphoinositides. 2.) intracellular Ca
2+

 transients following 

stimulation with doses of ADP, and 3.) the relative volume of the platelet dense tubular 

system. 

Other modeling approaches in platelets are phenomenological rather than 

mechanistic. One data-driven approach has used neural networks to model the response 

of calcium over time to multiple stimuli [43]; another group has modeled the action of 
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sodium-calcium exchangers and store-operated calcium entry using very coarse-grained 

diffusive mass transfer equations for the transport activity of key calcium channels and 

pumps [59]. Such procedures can be very efficient for developing a model which yields a 

desired output as they require less knowledge about the underlying reaction topology, but 

as they lack molecular detail they are less useful for making novel predictions about the 

interactions among system subcomponents.  

 

1.4 Store-operated calcium entry 
 

Store-operated calcium entry (SOCE) is a ubiquitous mechanism that enables 

Ca
2+

 influx into cells from the extracellular fluid, operates in response to Ca
2+

 store 

depletion, and terminates as stores refill [60]. SOCE acts synergistically with Ca
2+

 release 

from stores to elevate cytosolic Ca
2+

 as well as to allow stores to refill. Most commonly, 

store depletion is the result of surface receptor activation leading to IP3 production and 

activation of IP3 receptor (IP3R) Ca
2+

 channels in the endoplasmic reticulum (ER) 

membrane (the dense tubular system or DTS is the ER equivalent in platelets). The 

phenomenon of store-induced Ca
2+

 influx was first observed many years ago [61], but the 

molecular mechanisms for the process have only more recently begun to be elucidated. 

Irreversible SERCA inhibitors such as thapsigargin (TG) which can deplete stores 

independently of receptor activation have been instrumental in studying SOCE and led to 

the discovery of this type of current in many cell types [60], which many groups have 

dubbed “Ca
2+

 release-activated Ca
2+

 current” (CRAC). 
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Some of the hallmark characteristics of store-operated channels (SOCs), apart 

from their unique feature of being regulated by state of the cell’s Ca
2+

 stores, are 1.) high 

selectivity for Ca
2+ 

[62], 2.) high single channel open probability [63], and 3.) low single-

channel conductance [62, 64]. The Ca
2+

 current through active SOCs is commonly 

abbreviated ISOC. siRNA screenings for SOCE inhibitors in HeLa cells led to the 

identification of the transmembrane protein STIM1 in 2005 as the calcium sensor 

responsible for regulating SOC opening [65]. Embedded in the ER membrane, it contains 

a luminal facing EF-hand domain for which Ca
2+

 serves as a ligand. Loss of bound 

calcium results in self-association and translocation of STIM1 to regions of the cell 

where the ER membrane and plasma membrane (PM) are in close contact [66-69]. These 

aggregates of STIM1 close to the PM are called puncta. Mutations of the EF-hand 

domain of STIM1 result in constitutive puncta formation and SOCE channel activation 

[65, 66, 70]. STIM1’s Ca
2+

 affinity has been measured to be between 200 – 600 M [71]. 

Forster resonance energy transfer (FRET) studies have shown STIM1 oligomerizes prior 

to puncta entry [69]. About a year following the initial discovery of STIM1, additional 

siRNA screens in Drosophila cells revealed the Orai1 protein
3
 as being the actual channel 

pore-forming subunit in the plasma membrane [73-75]. Mammalian cells possess genes 

for two additional variants of Orai [76]. Of these three, Orai1 is the most likely candidate 

as the mediator of CRAC on the basis that loss of function mutations in T cells [73] and 

mouse platelets [77] largely abolishes SOCE. Orai1 accumulates in puncta over similar 

time scales as STIM1 [78]. 

                                                 
3
  The gene Orai derives its name from Greek mythology where the Orai are the three keepers of the gates 

of heaven: Eunomia (Order, Harmony), Dike (Justice), and Eirene (Peace) 72. Homer, R. Fagles, and B. 

Knox, The Iliad. 1990, New York, N.Y., U.S.A.: Viking. xvi, 683 p. 
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More recent publications have studied the molecular interactions between STIM1 

and Orai1. Orai1 has its N and C termini facing the cytosol [79-81]; STIM1 can interact 

with both of these domains via its so called Stim-Orai Activating Region (SOAR) in 

order to gate the channel [82, 83]. Channel opening occurs in a graded fashion as a 

function of the number of STIM1 dimers bound; maximal channel activation requires a 

stoichiometry of 4 STIM1 dimers per tetrameric Orai1 complex [84, 85]. High levels of 

Orai1 expression can actually reduce ISOC [66, 86-88], possibly be decreasing the ratio of 

STIM1:Orai1 and thereby lowering the average channel open probability [85]. Figure 1.1 

illustrates the general process of SOCE activation.  

 

 

Figure 1.1 Mechanism for store-operated calcium entry activation. 

In a resting cell, STIM1 and Orai1 are dispersed throughout their respective membranes 

(left). Following store depletion, STIM1 loses its bound Ca
2+

 ligand (right), self-

associates to form dimers, colocalizes with Orai1 at sites of inner membrane and plasma 

membrane contact where it can initiate channel opening. Abbreviations: EX: extracellular 

space; PM: plasma membrane; CYT: cytosol; IM: inner membrane; DTS, dense tubular 

system, the Ca
2+

 stores of platelets. 
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Many studies have shown SOCE playing a direct role in physiologic and 

pathophysiologic processes including metastasis [89], endothelial proliferation [90] and 

muscle cell contraction and motility [91-93]. In the context of platelets and thrombosis, 

mouse platelets lacking STIM1 and Orai1 showed reduced Ca
2+

 response to collagen and 

thrombin and impaired thrombus formation in vitro flow systems [16, 77, 94]. SOCE also 

has been shown to be required for PS exposure in agonist-stimulated human platelets 

[95]. Ca
2+

 entry through Orai1 has been shown to induce primary keratinocytes in the 

basal epidermis to proliferate and migrate while inhibiting terminal differentiation [96]. 

Interestingly, STIM1
-/-

 mouse platelets show normal IIb3 activation, aggregation and 

degranulation through GPCR-induced store depletion. STIM1 and Orai1 knockout had a 

cardioprotective effect in mouse models of arterial thrombosis and ischemic brain 

infarction while being associated with only mildly prolonged bleeding times [77]. This 

evidence may suggest that in platelets SOCE may play a role in events following the 

early events of thrombosis such as thrombus stabilization or clot retraction [97]. 

So far no group has modeled the complete process for store-operated calcium 

entry outlined in Figure 1.1 with mechanistic detail in any cell type. A central portion of 

the work in this thesis has been to integrate the current understanding of SOCE into a 

previously published model of IP3 mediated calcium release in platelets [57]. 
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Chapter 2  
 
Model Construction 

 

The regulation of intracellular calcium is essential to numerous cellular processes. 

During hemostasis, platelets maintain a low resting intracellular cytoplasmic calcium 

concentration ([Ca
2+

]cyt) as they transit through healthy vessels, yet rapidly activate and 

mobilize [Ca
2+

]cyt to stop bleeding at injury sites. Platelet [Ca
2+

]cyt mobilization is 

associated with integrin activation, dense () and -granule release, thromboxane A2 

synthesis, shape change, and phosphatidylserine exposure. Receptor-mediated signaling 

through the collagen receptor (GPVI), ADP receptor (P2Y1), thromboxane A2 receptor 

(TP), and thrombin receptors (PAR1 and PAR4 in human platelets) results in inositol 

[1,4,5]-trisphosphate (IP3)-mediated calcium release from the dense tubular system 

(DTS) via IP3-receptor (IP3R) activation. The DTS transmembrane protein stromal 

interaction molecule 1 (STIM1) becomes activated as DTS calcium ([Ca
2+

]dts) drops, 

resulting in formation of clusters of STIM1-Orai complexes as the DTS membrane forms 

a punctate association with the plasmalemma membrane (PM) containing Orai1. The 

STIM1-Orai1 complexes mediate store-operated calcium entry (SOCE) to enhance the 
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activation state of the cell. Platelets deficient in SOCE show reduced response to agonist-

induced stimulation and impaired thrombus growth and stability under flow [77]. 

Following stimulus, [Ca
2+

]cyt is then returned to near-resting levels by the action of two 

ATP-dependent pumps, the plasma membrane and sarco/endoplasmic reticulum Ca
2+

-

ATPase’s (PMCA and SERCA). The SERCA is responsible for DTS refilling. 

A systems biology approach to quantify platelet homeostasis and activation must 

consider diverse molecular mechanisms that act in concert to regulate intracellular 

calcium. Platelets are an excellent tool for signal transduction studies: they are routinely 

available from human donors, lack a genome (obviating the need to predict gene 

regulation), are amenable to high throughput experiments, and present numerous 

druggable targets. The molecular components of calcium regulation in the platelet include 

IP3R, SERCA, calmodulin-regulated PMCA, puncta formation, and STIM1-Orai (Figure 

2.1), components that are also well represented in many other cell types. An accurate 

model of platelet activation may help predict hemostasis, thrombosis, or drug response. 
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Figure 2.1 Overall model topology. 

The full model is comprised of 34 species, 35 reactions, 86 parameters and 5 

compartments. Three dimensional compartments are: extracellular (EX), dense-tubular 

system (DTS) and the cytoplasm. Two dimensional compartments are the DTS inner 

membrane (IM) and the plasma membrane (PM). [Ca
2+

]cyt has a biphasic influence on 

IP3R activity; it stimulates IP3R at lower concentrations and becomes inhibitory at high 

concentrations. [Ca
2+

]cyt is also defined as a regulator of puncta formation. The system is 

activated by IP3 (blue) which is explicitly controlled as a function of time with 

exponential or piecewise polynomial forcing functions. 
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In a prior bottom-up ODE model [57, 58], GPCR signaling through P2Y1 activation by 

ADP was combined with Gq activation of phospholipase-C, phosphoinositide 

metabolism, PKC activation, and calcium release by IP3 and reuptake by the SERCA 

pump. With 132 fixed kinetic parameters taken from the literature, this model topology 

accurately predicted population and single cell dynamics in the absence of extracellular 

calcium influx (as in experiments employing extracellular EDTA). Central to finding 

allowable initial conditions for unknown species concentrations, the homeostasis 

assumption requires the initial condition to be a steady state solution with low resting 

[Ca
2+

]cyt that also allows responsiveness to elevated IP3. The work presented in this and 

the next Chapter [98] extends this model by allowing for external calcium entry. 

Calcium entry from the extracellular environment is important for sustained 

platelet activation. The present study considers the regulation of calcium flux across the 

plasma membrane by store-operated channels (SOCs), which are a calcium channel found 

in many excitable and non-excitable cell types [60]. The defining characteristics of SOCs 

are: low single channel conductance, high open probability, and high selectivity for 

calcium [60]. Known platelet copy number for many of the key constituents [99] 

provided a starting point for a high dimensional exploration of the model’s behavior. The 

model accurately predicted stable resting [Ca
2+

]cyt and [Ca
2+

]dts as well as IP3-triggered 

calcium mobilization in both calcium-containing and calcium-free (EDTA) extracellular 

buffer. Additionally, the dynamics of DTS membrane-plasmalemma puncta formation 

during activation (as a prerequisite for SOCE) was essential to predicting appropriate 

platelet characteristics in the presence of extracellular calcium ([Ca
2+

]ex). 
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2.1 Model Construction and Simulation 
 

The set of reactions describing the model topology (see Figure 2.1 and Figure 2.2 

and Table 2.1) were modeled as a coupled set of ordinary differential equations (ODEs) 

spanning five compartments. For a system with n state variables the governing equations 

can be represented as  

 
  

  
        

     
     
 

     

              (2.1) 

Each element fi is the sum of all reactions or transport equations which produce, consume 

or transport state i. For reactions occurring at compartmental interfaces, concentrations of 

species in a two dimensional compartment were scaled to the bulk (three dimensional) 

compartment following the procedure described by Kholodenko et al. [100]. Each 

compartment was assumed to be well mixed on the basis of the platelet’s small volume (< 

10 fL) [101]. Except for specific cases discussed in sections to follow, reactions were 

modeled with either mass action kinetics or kinetics similar to Michaelis-Menten. Model 

simulations were performed using the SBToolBox2 software package add-on for 

MATLAB (The MathWorks, Natick, MA) [102]. 

 

2.2 Model Overview 
 

The calcium model (see Figure 2.1) comprises five compartments: the 

extracellular space (EX), cytosol (CYT) and dense tubular system (DTS) which are 

separated by the plasma membrane (PM) and DTS inner membrane (IM). Calcium is kept 
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in balance by four major processes which can be separated into kinetically distinct 

submodules shown in Figure 2.2, A–D. In the resting platelet, a low intracellular calcium 

concentration ([Ca
2+

]cyt) is maintained by the action of Ca
2+

 ATPases in the PM and IM. 

The calmodulin (CaM) dependent Ca
2+

 transporter PMCA (Figure 2.2 C) pumps calcium 

into the EX and SERCA (Figure 2.2 A) pumps Ca
2+

 across the IM into the DTS.
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Table 2.1 Reaction equations, rate laws, and kinetic constants. 

All of the model reactions or algebraic equations are presented and grouped according to 

the major mechanism which they govern: SERCA, IP3R, SOCE, or PMCA. All fixed 

parameters are taken from the references given in the final column and listed below. Rate 

constants for STIM1 dimerization and the parameters in the puncta entry Hill function 

equation were estimated in the present study. 

 

Table 2.1 References 

1. Dode, L., B. Vilsen, K. Van Baelen, F. Wuytack, J. D. Clausen, and J. P. 

Andersen. 2002. Dissection of the functional differences between 

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by 

steady-state and transient kinetic analyses. J Biol Chem 277:45579-45591. 

 

2. Sneyd, J., and J. F. Dufour. 2002. A dynamic model of the type-2 inositol 

trisphosphate receptor. Proc Natl Acad Sci U S A 99:2398-2403. 

 

3. Alberts, B. 2002. Molecular biology of the cell. Garland Science, New York. 

 

4. Lewis, R. S., M. M. Wu, and R. M. Luik. 2007. Some assembly required: 

Constructing the elementary units of store-operated Ca2+ entry. Cell Calcium 

42:163-172. 

 

5. Hoover, P. J., and R. S. Lewis. 2011. Stoichiometric requirements for trapping 

and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal 

interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A. 

 

6. Lewis, R. S. 2011. Store-operated calcium channels: new perspectives on 

mechanism and function. Cold Spring Harb Perspect Biol 3. 

 

7. Caride, A. J., A. G. Filoteo, J. T. Penniston, and E. E. Strehler. 2007. The Plasma 

Membrane Ca2+ Pump Isoform 4a Differs from Isoform 4b in the Mechanism of 

Calmodulin Binding and Activation Kinetics: Implications for Ca2+ Signaling. 

Journal of Biological Chemistry 282:25640-25648. 

 

8. Juska, A. 2010. Plasma membrane calcium pump and sodium-calcium exchanger 

in maintenance and control of calcium concentrations in platelets. Biochem 

Biophys Res Commun 392:41-46. 

 

9. Purvis, J. E., M. S. Chatterjee, L. F. Brass, and S. L. Diamond. 2008. A molecular 

signaling model of platelet phosphoinositide and calcium regulation during 

homeostasis and P2Y1 activation. Blood 112:4069-4079. 
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IP3R channels (Figure 2.2 B) release Ca
2+

 from the DTS into the cytosol in response to a 

rise in [IP3]. SOCs (Figure 2.2 D) allow calcium entry into the CYT across the PM in 

response to store depletion. Calcium pumping via SERCA was modeled using a kinetic 

study and model of the SERCA3b isoform [103] which is the most abundant isoform in 

platelets [99]. 

IP3R kinetics are described with a six state model [104] with two active 

confirmations that are positively regulated by [IP3] and biphasically regulated by 

[Ca
2+

]cyt. Channel open probability (Po) is based on the total number of tetrameric 

channels in either of the two active confirmations (Table 1). For PMCA transport, we use 

a kinetic model of PMCA 4b, an isoform abundant in platelets and erythrocytes [99, 105]. 

PMCA independently and irreversibly transports Ca
2+

 and if bound to CaM transports 

Ca
2+

 with much higher affinity and turnover rate [106, 107]. The volume of the human 

platelet cytosol is ~6 fL [108] and the volume of the DTS has been estimated to range 

from 1 – 10% of the cytosol volume by electron microscopy of glucose-6 phosphatase 

stained platelets[57, 109]. 

 



26 

 

Figure 2.2 Submodule schematics and calcium current equation. 

(A) SERCA Transport. Subscripts: E1, facing cytosol; E2, facing DTS; P, 

phosphorylated. (B) IP3R dynamics. Subscripts: n, native; i1, inhibited; o, open; a, active; 

s, shut; i2, inhibited. (C) PMCA Transport. PMCA can irreversibly transport calcium 

independently (slow) or with CaM as a cofactor (fast). Subscripts: C, calmodulin bound; 

2, two calcium ions bound; 4, four calcium ions bound. (D) SOC assembly and dynamics. 

Calcium dissociation results in cytosolic calcium dependent translocation of dimerized 

STIM to puncta. STIM in the puncta instantaneously equilibrates with Orai according to a 
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set of Monod-Wyman-Changeux (MWC) equilibrium relationships determined by 

Hoover et al. [85]. Subscripts: m, monomeric STIM; 2, dimeric STIM. (E) Calcium 

current equation. In panels A – D, an arrow with two arrowheads indicates a reversible 

reaction while a single arrowhead indicates an irreversible reaction. Red text indicates 

calcium is bound. A green outline indicates a channel is open. 
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2.3 Modeling ion channel current and membrane potential 
 

The driving force across an ion channel embedded in a biological membrane is 

the difference between the electrical potential across the membrane (Em) and the reversal 

potential of the ion which is given by the Nernst equation [110]. Net calcium current is 

therefore given by Eq. (2.2): 

 

 
          

  
 
   

  

  
   

      
   

     
   

       (2.2) 

 

N is the total number of channels per platelet,  the single channel conductance, Po the 

channel open probability, and z the number of elementary charges per ion (2 in the case 

of calcium). The quantity NA/F (Avogadro’s number divided by the Faraday constant) 

represents the number of elementary charges per second per Ampere of current and is 

necessary to convert from units of current to moles of calcium per second. In this general 

equation, [Ca
2+

out] represents the calcium concentration in the outer compartment and 

[Ca
2+

in] represents calcium concentration in the inner compartment, e.g. for SOCs 

[Ca
2+

out] = [Ca
2+

]ex and [Ca
2+

in] = [Ca
2+

]cyt. For purposes of determining SOC current, the 

product N*Po is equal to the total number of open SOC channels which is obtained from 

the MWC equations which will be discussed in Section 2.4.2.  

Using the Hodgkin and Huxley framework, the plasma membrane is modeled as 

an RC circuit where fluxes of different ions are considered to be a set of resistors in 

parallel, we arrive at the following equation for modeling the change in membrane 

potential over time [111]: 
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     (2.3) 

 

Calcium flow across the membrane, ICa, is the sum of all sources of current such as flow 

through pumps, channels, or passive leakage. The specific membrane capacitance, CM, is 

a relatively conserved quantity across cell types [112] and for this study is estimated to be 

approximately 2 F/cm
2
 based on whole-cell patch clamp measurements that suggest 

platelet specific capacitance is somewhat higher than the 1 F/cm
2
 value typically seen in 

other cell types due to platelets’ extensive surface invaginations [113]. Resting potential 

across the plasma membrane is maintained by voltage-dependent K
+
 channels and has 

been estimated with voltage sensitive fluorescent dyes to be between -60 and -70 mV [6, 

114, 115]. In practice in human platelets, plasma membrane potential (VPM) is fairly 

constant during platelet activation by common agonists [115]. The resting potential 

across the DTS membrane (VIM) is much less certain and remains unmeasured. The fact 

that slow calcium leakage from the endoplasmic reticulum is observed in the presence of 

SERCA inhibitors implies resting VIM is more inside negative than the reversal potential 

of Ca
2+

 across the IM. Assuming a resting [Ca
2+

]dts of 300 M, VIM must be greater than -

100 mV [116]. Experiments in mouse pancreatic acinar cells [117] and rat sensory 

neurons [118] in which [Ca
2+

]cyt was held constant with a BAPTA/Ca
2+

 buffer solution, 

calcium stores were depleted using SERCA inhibitors and store Ca
2+

 content measured 

with Mag-Fura2 found that stores plateau at a level greater than clamped [Ca
2+

]cyt. 

Assuming these plateaus are the result of net zero flux out of IM Ca
2+

 channels, from Eq. 

(2.2) one can calculate a VIM as high as -74 mV. 
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2.4 SOCE Modeling 
 

Several important features of SOCE have only recently been elucidated. SOCE 

activation consists of the calcium sensor STIM1 [65, 119] unbinding Ca
2+

 from its DTS-

facing EF hand domain when [Ca
2+

]dts drops relative to its Kd. Calcium unbinding allows 

STIM1 oligomerization, translocation to regions of the DTS membrane in close 

opposition to the plasma membrane, and finally association with tetrameric [120, 121] 

Orai1 protein channels in the PM. Orai1 passes current when at least one dimer is bound. 

We model the active form of STIM1 as a STIM1 dimer (STIM2) and model the first two 

steps using mass action kinetics. STIM1 dimerization is assumed to be diffusion-limited. 

Patch clamp studies on larger mammalian cells indicate that store-operated current is 

inwardly rectifying, i.e. that the channels only allow current into the cell and do not 

operate in reverse under physiological conditions [122]. Platelets possess several other 

isoforms of STIM and Orai [99, 123]. Of these, STIM1 and Orai1 are the best studied and 

they are the most likely candidates for the components of functional SOC channels. For 

the purpose of this study, we refer to STIM1 and Orai1 as simply STIM and Orai. 

 

2.4.1 Puncta formation 
STIM and Orai are localized in separate membranes that require close contact for 

SOC activation [81, 124]. Store depletion causes STIM and Orai to undergo a 

rearrangement from being diffusely distributed in their respective membranes to a co-

localized state at junctions between the IM and PM called puncta [65]. STIM can enter 
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the puncta by two mechanisms. One is passive diffusion (D ~ 0.1–0.15 m
2
/s) [69]. This 

mechanism accounts well for the time lag between STIM oligomerization and puncta 

formation in larger mammalian cells [125], however platelets are small enough that 

timescales for diffusion limited translocation would be < 1 s. When STIM puncta entry 

was modeled in this fashion (i.e. STIM in the puncta is essentially equal to total bulk 

STIM due to fast diffusion), we observed that the simulation could not satisfy 

homeostatic constraints on calcium while simultaneously observing significant 

contribution of SOCE to [Ca
2+

]cyt following IP3 stimulus. Thus, we modeled STIM2 entry 

into the puncta with a [Ca
2+

]cyt-dependent Hill function applied to bulk IM STIM2. 

                   (2.4) 

 

 
     

         
 

  
            

        (2.5) 

 

Only STIM dimers (STIM2) are allowed to enter the puncta on the basis of evidence that 

STIM oligomerization precedes puncta formation [125]. Eq. (2.5) effectively reduces the 

amount of STIM2 available for binding to Orai as only STIM in the puncta ((STIM2)p) is 

able to interact with Orai. The parameter α represents the maximum fraction of STIM2 

that can enter the puncta and was set to 0.2. KM is the value of [Ca
2+

]cyt at which p is 

50% of its maximum value; n is the Hill coefficient. The offset of 0.01 is needed to 

prevent p being much less than unity at rest; p << 1 would lead to scenarios where 

[Ca
2+

]cyt is the more dominant regulator of SOCE activity than [Ca
2+

]dts which goes 

against the current understanding of the process. This regulation could represent an 

unidentified scaffold or helper protein that is regulated by [Ca
2+

]cyt and necessary for 
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STIM2 puncta entry. Alternatively it also could represent an increase in the amount of 

surface contact between the IM and PM as a result of actin-dependent cytoskeletal 

reorganization [126]. 

2.4.2 Channel Assembly 
A recent study employing Orai tetramers fused with variable numbers of STIM 

dual C-terminal domains has shown a graded relationship between the number of STIM2 

bound and the activation state of the SOC channel [84]. To model association of 

(STIM2)p with Orai, we adopt a similar Monod-Wyman-Changeux (MWC) [85, 127] 

equilibrium framework to model cooperative ligand binding. Channels exist in four states 

having 0 to 4 STIM2 ligands bound. Each channel state can either be open (O, OS, OS2, 

OS3, OS4) or closed (C, CS, CS2, CS3, CS4). (STIM2)p binds to Orai tetramers with 

negative cooperativity and channels open with positive cooperativity as a function of the 

number of (STIM2)p bound. To satisfy mass balance all channel states (open and closed) 

must sum to the number of Orai tetramers. All states have the same conductance, but only 

open channels can pass current. At any given instant, not all (STIM2)p is bound to Orai. 

The concentration of (STIM2)p accessible to (i.e. in the puncta) but not bound to Orai is 

called Sf and is obtained by mass balance. Figure 2.2 D shows the possible transitions 

that can occur among these 10 states; the equations corresponding to these relationships 

are given in Table 1. General equations to represent the equilibrium relationships are 

 
  

 

 
                   

          
       

 
                              

 

(2.6) 

In these equations, L is the intrinsic opening equilibrium constant, Ka is the association 

constant for (STIM2)p binding Orai, a is the binding cooperativity factor, and f is the 
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opening cooperativity factor [85]. Similar equations can be written for the closed states. 

The values for fixed parameters f, a, Ka and L were selected to yield an average open 

probability of ~0.8 at saturating levels of STIM2 (see the Supporting Information of [85]) 

based on the results of noise analysis performed in store-depleted Jurkat T cells [63]. 

Following a procedure similar to that of Hoover et al., we generated analytic solutions to 

these 9 nonlinear equations coupled with mass balances on total (STIM2)p and Orai using 

the MATLAB Symbolic Toolbox; these equations are listed in Appendix A. These 

algebraic equations are in terms of Orai and Sf. However at model runtime it is Orai and 

(STIM2)p that are known from the kinetic equations discussed in previous sections. We 

used a linear set search algorithm to search for values of Sf which give the correct 

solutions for sets of pairs of Orai and (STIM2)p. The result was a two dimensional lookup 

table (LUT) that returns Sf as a function of Orai and (STIM2)p. Linear interpolation is 

used to calculate Sf at points not recorded in the LUT. Using a LUT in this way is much 

faster than having to search for the value of Sf that solves the equations given [Orai, 

(STIM2)p] at every time step of a simulation despite the significant extra memory 

overhead that is involved. With Sf in hand, the channel states can be calculated from the 

analytic solutions to the MWC equations. Figure 2.3 A – E illustrate the evolution of SOC 

states as a function of (STIM2)p and Orai. 
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Figure 2.3 Analytical solutions to MWC equations as a function of interacting 

Orai and STIM dimers. 

(A – E) These panels present the distribution of SOC states with 0 – 4 STIM ligands 

bound for variable numbers of Orai tetramers and STIM dimers. To determine these 

quantities, Sf is estimated at each [Orai, (STIM2)p] pair from the LUT and the channel 

states are calculated using the expressions in Appendix A. (F) Pavg as a function of Orai 

tetramers and STIM dimers. The line [STIM12] = 4[Orai] in the STIM-Orai plane is 
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overlaid in blue. When STIM2 is greater than 4 times the number of Orai tetramers, all 

SOCs exist with four STIM2 ligands bound and Pavg becomes equal to Po4. 

 

 

The open probability of channel state i is the ratio of the open channels in state i 

divided by the total number of channels in state i 

 

 
    

   
       

 
     

  

        
  
 (2.7) 

 

and is a fixed quantity for each channel state. The second equality in Eq. (2.7) comes 

from substituting in the appropriate expressions for OSi and CSi which are given in 

Appendix A. Table A.1 lists these values. 

 

SOC channel state Po Value  

Po0 0.00001 

Po1 0.00142 

Po2 0.0198 

Po3 0.223 

Po4 0.803 

Table 2.2 Individual SOC channel state open probabilities. 

Presented are the open probabilities of the tetrameric Orai channels with zero to four 

STIM dimer ligands bounds. Po values are calculated according to Eq. (2.7). In the model 

Po0 is rounded to zero. 

 

 

Average open probability (Pavg) is the sum of all open channel states divided by 

the total number of channels (i.e. the number of Orai tetramers) and is shown in Figure 

2.3 F. When (STIM2)p = 0, Pavg is zero as all channels have zero (STIM2)p bound. As the 

amount of (STIM2)p exceeds Orai by four fold (indicated by the blue line), all channels 

exist with four STIM2 ligands bound and Pavg = Po4 ~ 0.8. 
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For purposes of modeling net current, or calcium flux, through SOCs we need 

only know the total number of open channels. Figure 2.4 A illustrates the relationship 

between the total number open channels and (STIM2)p and Orai. The total number of 

open channels, that is 

     

 

     

 

is equivalent to the quantity NP0 in Eq. (2.3). Figure 2.4 B illustrates the general 

procedure for SOCE current (ISOC) calculation. Because SOC current is inwardly 

rectifying [62, 122], in our model we do not allow SOCE to pass current in the reverse 

direction (i.e. out of the cell, which otherwise could occur in simulations run without 

Caex). 
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Figure 2.4 SOCE current determination.  

(A) The total number of open SOCs is determined by the MWC equations as a function of 

STIM2 in the puncta and Orai. (B) Procedure for determination of SOCE current. At 

every given time step in a simulation, the amount of STIM2 in the puncta is determined 

by kinetic rate laws and Eq. (2.4). These quantities are passed to a pre-generated lookup 

table, presented as a surface in panel A, which yields the total number of open channels 

used in the equation for store-operated current. 

 

2.5 IP3 forcing function 
 

Common platelet activation signaling pathways lead to PLC mediated hydrolysis 

of PIP2 to produce IP3, the IP3R channel mediator. Agonist stimulated generation of IP3 is 

well studied [128, 129]; previous work has modeled ADP mediated Ca
2+

 release via the 

G protein-coupled receptor P2Y1 [57]. For the present study in which we explore 

combined IP3-mediated and SOCE regulation of intracellular calcium, we removed 

upstream pathways leading to IP3 generation in order to simplify the modeling process 

and reduce the number of unknowns requiring estimation. Thus instead of [IP3] dynamics 

being governed by a reaction network, we impose an explicitly defined supply of [IP3] as 
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a forcing function over time in order to simulate an activated platelet. To model [IP3] 

over time we fitted experimental human platelet [IP3] time course data [130] using a 

cubic Hermite interpolant [131]; this is a type of spline fit designed to minimize 

oscillations between data points. In the fitting data, values were only recorded to 30s 

post-stimulation. Platelet calcium dynamics typically occur over timescales longer than 1 

minute; therefore time points greater than 30 s were extrapolated. Prior to fitting, the data 

was normalized by the resting value at t = 0 s. The general shape of the [IP3] versus time 

curve, particularly in the region based on extrapolated data points, was loosely based on 

the results of previous modeling work [57]. In the final fit, IP3 rises to about 5 fold higher 

than its resting value within 5 s of stimulation, and returns to a new steady level within 

200 s. Other [IP3] measurements in human platelets stimulated with a high dose of 

thrombin [132] also present a similar fold increase in [IP3], indicating that a 5 – 6 fold 

increase may represent a saturating limit of the phosphoinositide pathway. Figure 2.5 

illustrates the forcing function; this function was used for the parameter scans discussed 

in Chapter 3. 
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Figure 2.5 Spline fit IP3 forcing function. 

Normalized [IP3] versus time data recorded in human platelet preparations stimulated 

with ADP at t = 0s were fitted with a cubic Hermite interpolating polynomial. Data points 

for fitting at t > 30s were estimated based on previous modeling of ADP mediated IP3 

generation. 

 

 

For the IP3 dose response simulations discussed in Chapter 3 in which it was 

desirable to have more precise control over the shape of the curve we cast [IP3] as an 

exponential function of time. For an IP3 dose delivered at t = 0 s, this equation is 

 
                   

          
  

   
      (2.8) 

 

This equation is able to generate curves with shapes similar to the fit in Figure 2.5. The 

expressions in this equation and values for the fixed parameters a, b, and c as well as the 

exponent of 0.6 were determined through trial and error. The second rational function 
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term is present to allow [IP3] to settle to a value higher than baseline at long times. For 

both types of fits, the initial level of IP3 ([IP3]0) varies with the model resting state. 
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Chapter 3 
 
Steady-state kinetic modeling of regulators of 
calcium homeostasis 

 

Computational models are useful for quantifying large reaction networks in 

complex biological systems [36, 58, 133, 134] which often exhibit very nonlinear 

behavior which makes them difficult to solve analytically or to predict using intuition. 

While data on reaction mechanisms, rate constants, and other physical parameters are 

frequently available in databases or scientific publications [135-137] (also see Table 2.1), 

integrating individually studied mechanisms to gain a systems level understanding of a 

model can be quite challenging. This is partly because such mechanisms are often studied 

ex vivo or in isolation. For example, the kinetic properties of SERCA have been assessed 

by isolating vesicles from COS-1 or HEK-293 cells engineered to express human SERCA 

2 and 3 isoforms [103, 138]. One can imagine how the effective kinetic properties of such 

a complex protein may be different when observed in an environment outside the normal 

cellular milieu. 

Thus one of the challenges of systems biology is tuning often large sets of 

parameters to get a model of integrated biological mechanisms to behave in a way which 
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is consistent with available experimental data; only after a model is so calibrated can it be 

expected to make realistic quantitative and qualitative predictions
4
 [139]. In this context, 

“parameters” can also include diffusible species concentrations or protein copy numbers 

(i.e. elements of a model’s initial condition vector). An additional hurdle is datasets 

themselves are often noisy or incomplete.  

Numerous parameter estimation algorithms have been developed. These can fall 

into the category of being local or global. Local methods such as Nelder-Mead Simplex 

or Levenberg Marquardt [140] are less computationally demanding but are inappropriate 

for systems with complex objective function landscapes as they will (relatively) quickly 

converge to a local minimum [45, 141]. Methods can also be classified as deterministic or 

stochastic. Stochastic methods which randomly sample initial condition/parameter spaces 

for starting points are much less computationally demanding than deterministic methods 

but are also not guaranteed to reach a global minimum; such an uncertainty can usually 

be minimized for most problems when one allows for a reasonable number of samplings 

of state space. Some examples of stochastic global algorithms include particle swarm, 

simulated annealing, and genetic algorithms [45]. 

The behavior of complex, interconnected reaction networks is often more 

sensitive to models’ initial conditions rather than to topology or fixed parameters [142]. 

Species concentrations may be expected to be more variable in nature as well. While rate 

constants are largely fixed by genetics and should be constant across healthy populations 

(genetic mutations are a notable and clinically relevant exception to this), stochastic 

                                                 
4  This ignores the commonly encountered problem of overfitting, where a model has been optimized to fit  

a set of data very well but is not robust to state changes or is unable to predict the results of other related 

experiments. 
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variations at the molecular level in processes like transcription and translation can result 

in individual cells of the same type with different distributions of molecular constituents. 

As cell division results in some memory in the daughter cells as to the molecular makeup 

of the parent cell, these stochastic variations can manifest at the organismal level. We can 

use the platelet as a specific example. Platelets are formed by “blebbing” off from larger 

megakaryocytes in the bone marrow [143]. During this process, it is reasonable to 

imagine individual platelets acquiring different copy numbers of proteins and other 

biological molecules. Recent modeling work has suggested that the stronger response of 

platelets to thrombin versus the weaker agonist ADP can largely be explained by 

differences in copy numbers of their respective receptors [57], as the intermediate 

signaling steps leading to calcium mobilization are otherwise very similar for these two 

agonists. Thus the parameter scanning procedure discussed in the following sections 

primarily seeks to explore the effect of varying species concentrations and protein copy 

numbers on model’s behavior. 

 

3.1 Introduction: Platelet Calcium Balance 

At rest, the platelet maintains stable sub-micromolar levels (40 – 100 nM) [6] of 

cytoplasmic calcium in balance with: nanomolar levels of IP3 [132, 144, 145], high sub-

millimolar storage pool calcium levels (100 to 400 M) [146], and millimolar 

extracellular calcium (~ 1.5 mM) [147]. In achieving calcium homeostasis, the cell must 

balance the four interacting molecular modules: IP3R, SERCA, PMCA, and SOCE. 

Additionally, at the moment of GPCR activation, the dynamics of IP3 synthesis and 
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conversion mediate a large increase in intracellular calcium that is typically partially 

restored to resting levels while the calcium store refills following store operated calcium 

entry.  

Several constraints must be simultaneously met by a dynamic model of calcium 

regulation. The model must:  

1)   Maintain low cytoplasmic calcium at rest in the presence of finite IP3 levels.       

2)   Maintain high store concentration at rest, even in the absence of extracellular   

Ca
2+

.  

3)   Present an increase in cytoplasmic calcium following stimulation. 

4)   Refill the store following transient cellular activation.  

  

To meet these requirements in the resting cell the system is in a state of dynamic 

equilibrium; PMCA pumping out of the cell must equal SOCE flux into the cell. Also at 

rest, IP3R flux must equal SERCA pumping. Importantly, placement of EDTA (calcium 

chelators) outside a cell must not cause a rapid depletion of store calcium. For example, 

platelets sitting in EDTA for an hour can still mobilize calcium following agonist 

stimulation. For platelets, resting cytosolic calcium is ~25 to 100 nM [7, 101] and DTS 

calcium is ~250 M [146]. At resting [Ca
2+

]cyt, SERCA likely cannot pump against 

concentrations higher than 500 M Ca which places an upper limit on store Ca
2+

 levels 

[148].  In the following two sections we present and apply a numerical method to 

investigate which sets of initial conditions allow the platelet calcium model to satisfy the 

above four homeostatic and dynamic constraints. 
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3.2 Monte Carlo method for exploring topologically enforced 
homeostatic constraints 

 

Common stochastic parameter estimation routines are very abstract in that they 

view the problem as a black box by minimizing an objective function quantifying the 

difference between model output (or multiple outputs) and set(s) of data. The method 

used here is different in that it exploits the system’s programmed physiology to search for 

resting configurations which are candidates for viable models. This method has the 

advantage of being completely independent of experimental time course data. 

Where data on the cell’s resting state is unavailable, intuition can be used to 

estimate a feasible sampling range. For example, a cell can reasonably be expected to 

have at least one copy of a protein. Similarly, a cell can only fit so many molecules inside 

itself. For example, assuming a spherical platelet of 3 m diameter and an average 

transmembrane protein cross-sectional size of 35 nm
2
, fewer than 200,000 proteins could 

fit into the plasma membrane. These arguments are simplistic and ignore the presence of 

other proteins (or even phospholipids in the case of our membrane example) in the 

system but are still useful as an order of magnitude estimate on the upper bounds for 

sampling ranges.  

With a sampling space established, samples can be randomly drawn from this space 

and passed as initial conditions to the model and the model simulated until reaching 

steady state. Note that this parameter estimation scheme applies just as well to fixed 

parameters; these quantities can be considered to be state variables whose rate of change 

is zero. This scheme is summarized in Figure 3.1. 
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Figure 3.1 Monte Carlo state and parameter space scanning routine. 

First one defines a physiologically derived sampling space with a number of dimensions 

equal to the number of unknowns in the system. Initial conditions (and parameters) can 

be drawn from this space, and the model is simulated to steady state. This gives the 

modeler a set of resting configurations which can then be further analyzed or filtered 

based on static or dynamic criteria. 



47 

To apply this method to our model, we densely sampled a 12-dimensional space 

of several protein species (IP3R, SERCA, STIM, Orai, CaM, and PMCA), non-protein 

species ([Ca
2+

]cyt, [Ca
2+

]dts, [IP3]), VIM, and two unknown fixed parameters (Km, n) in the 

model (see Table 3.1). For proteins, the search space was in a local region constrained by 

available LCMS data [116]. In general, copy numbers were allowed to vary by a factor of 

2 above and below the measured values. All other rate parameters were fixed. VPM was 

set to -60 mV [114] and [Ca
2+

]ex to 1.2 mM. Resting states were accepted based on 

[Ca
2+

]cyt, [Ca
2+

]dts and [IP3] satisfying the physiologic constraints outlined in the column 

“Acceptance Criteria” in Table 3.1 and discussed in Section 3.1. There is no need for 

acceptance criteria to be placed on the total protein counts as there is no protein 

generation or degradation present in the model. 
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State/Param (units) Known Values Sampling Range 
Acceptance  

Criteria 
Reference 

Cacyt (nM) 75 10 – 100 25 – 100 Siess, 1989, [7] 

Cadts (M) 250 80 – 1000 100 – 400 Sage, 2011, [146] 

IP3 (nM) ~ 130 20 – 200  1 Nakagawa, 2002, [145] 

IP3R (copies/cell) 1,700 850 – 3,400 
 

Burkhart, 2012, [99] 

SERCA (copies/cell) 16,300 4,600 – 18,400 
 

Burkhart, 2012, [99] 

STIM (copies/cell) 3,700 1,850 – 7,400 
 

Burkhart, 2012, [99] 

Orai (copies/cell) 425 212 – 850 
 

Burkhart, 2012, [99] 

CaM (copies/cell) 15,600 7,200 – 32,500 
 

Burkhart, 2012, [99] 

PMCA (copies/cell) 640 320 – 1,280 
 

Burkhart, 2012, [99] 

VIM (mV) > -100 mV -100 – -60 
 

Burdakov, 2005, [116] 

KM (nM) 
 

100 – 300 
 

This study 

n 
 

1 – 3 
 

This study 

Table 3.1 List of 12-dimensional state space sampling ranges. 

The sampling space is chiefly derived from literature measurements. The units listed in 

parentheses in the first column also apply to values in the following three columns. 

Protein copy numbers ranges were generally set with upper and lower bounds 2-fold 

above and below mean values measured by LCMS. The acceptance criteria for [Ca
2+

]cyt 

and [Ca
2+

]dts are unequal to the sampling ranges because these species quickly get bound 

to proteins like SERCA or STIM1 or transported to other compartments after the model is 

initialized with a random initial condition vector making their final resting values 

oftentimes very different from their initial values; the sampling ranges were adjusted 

based on these facts to make it easier to find resting configurations satisfying the 

acceptance criteria. The acceptance criterion for IP3 exists to ensure the number of IP3 

copies is greater than unity. 

 

 

We accepted a sample as being at steady state if the relative absolute value of the -norm 

of the rate of change vector was less than 0.1%. Expressed mathematically: 

 
 
         

 
        (3.1) 
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We did not consider configurations which exhibit oscillations; the number of such 

configurations which demonstrated oscillatory behavior was quite few (< 0.1% of steady 

states sampled). 

 

3.3 Results 
 

3.3.1 Filtering configurations based on robustness and dynamic 
constraints. 

 

A dense sampling of over 2.6 million initial conditions from this 12-dimensional 

sampling space produced 150,000 steady states which satisfied the homeostatic 

requirements that were enforced. An important additional resting criterion is that states 

remain stable upon Caex removal; this is particularly important in the context of our 

modeling as Caex chelation is an important experimental technique for measuring the 

contribution of extracellular calcium entry (e.g. SOCE) to the overall Ca
2+

 response. To 

apply this condition we selected for states that exhibited less than a 5 M decline in 

[Ca
2+

]dts over 333 s following Caex removal. This constraint is supported by experiments 

in which cells did not respond to calcium re-addition after having been stored in EDTA 

for more than 10 minutes (implying their stores were not significantly drained) [149].  

The set of accepted resting states were further characterized and grouped based on 

their responses to a 5.5-fold IP3 stimulus (see Section 2.5 of Chapter 2). First, 

configurations were filtered for those that were responsive to IP3 based on peak [Ca
2+

]cyt 

reaching a concentration greater than 200 nM following IP3 application. Second, 

configurations were filtered for those that also showed SOCE activity. This criterion was 
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based on difference in peak [Ca
2+

]cyt in simulations with and without Caex reaching a 

value greater than 100 nM. We chose to use [Ca
2+

]cyt as the metric for SOCE activity as 

this quantity is commonly measured and numerous data in the literature point to a 

substantial difference in [Ca
2+

]cyt in human platelets labeled with fluorescent dyes 

following agonist stimulation with and without Caex present [126, 150, 151]; the value of 

100 nM was based on the measurements of one study in particular which used ADP 

[150], a weaker platelet agonist. These filtering criteria and the number of resting states 

which satisfy each are tabulated in Table 3.2. In the analysis and discussion to follow 

these filters are applied sequentially such that configurations falling into the last group 

listed in Table 3.2 also satisfy all the other conditions. Notably, less than 0.06% of all 

sampled initial conditions satisfied all 4 homeostatic and dynamic constraints which 

indicates the system is well constrained by these criteria. 

 

Condition  Mathematical constraint  States  Percent  

Steady State Calcium 
25 nM  Cacyt  100 nM, 

150,000 5.64% 
100 M  Cadts  400 M  

Stable in EDTA 
Resting DTS leak  

18,932 0.71% 
< 0.015 M/s  

Active Max(Cacyt) > 200 nM with IP3  8,093 0.30% 

SOCE 
(Max(Cacyt) in +/-EDTA) 

1,513 0.06% 
 > 100 nM   

Table 3.2 List of resting configuration filtering constraints. 

Resting configurations were divided into groups based on: (1) resting [Ca
2+

]cyt and 

[Ca
2+

]dts being within physiologic ranges; (2) calcium levels being stable upon Caex 

removal; (3) active states in which [Ca
2+

]cyt rises above 200 nM following 5.5-fold IP3 

stimulus; (4) difference in [Ca
2+

]cyt following 5.5-fold IP3 stimulus with and without Caex 

is at least 100 nM. Constraints are applied sequentially, e.g. resting configurations 

satisfying the SOCE constraint also satisfy those constraints listed in the rows above. 

Percentages are relative to the initial set of 2.6 million resting configurations. 
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Figure 3.2 presents the probability distributions of each search dimension for the three 

filtered populations (i.e., functional phenotypes) of resting initial condition 

configurations. The filter is indicated by the shaded circle and corresponds to the 

descriptions in Table 3.2. Where applicable, an arrowhead indicates measured resting 

values. The model topology and parameterization and filtering criteria placed sufficient 

constraint to push resting [Ca
2+

]cyt, [Ca
2+

]dts to the lower end of the search range. Platelets 

that met all criteria had IP3 levels constrained fairly narrowly between 20 and 40 nM (< 

200 copies per platelet), somewhat lower than the measured 130 nM value [145]. The 

model accepts lower [Ca
2+

]dts than the measured value of ~250 M [146]. This is likely 

due to the constraints our sampling ranges have placed on the ratio of SERCA to IP3R. 
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Figure 3.2 Resting configuration probability distributions. 

Probability distributions of model species and parameter configurations satisfying the 

“Stable in EDTA”, “Active” and “SOCE” filtering constraints. All distributions also 

satisfy the “Steady State Calcium” criterion. An arrow at the top of the first bar for 

protein species indicates the experimentally measured protein copy numbers [99]. 

 

 

Currently, no experimental measurements of VIM exist due to technical difficulties in 

measuring potential across the ER membrane using patch-clamp. We allowed our scans 

to sample VIM in the range of -100 to -60 mV based on arguments in the Section 2.3. 

Model configurations stable in EDTA show a lower (i.e., more negative) inner membrane 

potential however, in stark contrast, configurations that are responsive to IP3 as well as 

those which also demonstrate SOCE posses a higher VIM that clusters near the upper 

bound of the sampling range. The parameters n and KM which govern STIM entry into 
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puncta appear to become more monodisperse as additional filtering conditions are 

applied.  

 

3.3.2 Transient behavior following IP3 stimulus 
 

Calcium release from the stores requires transient stimulation of IP3R by IP3. 

Literature measurements of IP3 time courses in human platelets stimulated by strong 

doses of agonists such as thrombin and ADP show [IP3] rising sharply by several fold and 

peaking within 2.5 – 30 s following agonist delivery [132, 144, 145]. Furthermore, [IP3] 

and [Ca
2+

]cyt return to nearly resting levels 30 – 60 s following agonist stimulation [130] 

as IP3 is degraded by phosphatases and Ca
2+

 is pumped back into the DTS. Figure 3.3 

shows the response of a subset of the fully filtered population of resting states to an IP3 

stimulus constructed to mimic these measured behaviors (see Section 2.5).  
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Figure 3.3 Representative model responses to IP3 stimulus. 

15 resting states satisfying all filtering criteria were stimulated with 5.5 fold IP3 dose 

starting at t = 20 s. The IP3 doses are illustrated in the inset in the upper right panel. (B) 

Calcium traces for DTS and cytosolic Ca
2+

 of a representative configuration taken from 

this population to the six IP3 doses shown in the inset in the upper right panel. The colors 

of the curves correspond to the IP3 dose. Left column: [Ca
2+

]ex = 1.2 mM; right column: 

[Ca
2+

]ex = 1 pM. 

 

 

[Ca
2+

]cyt generally peaks within 15 – 20 s of IP3 application (the [IP3] time courses which 

are shown in the inset peak ~3 s following application), and reaches a higher peak and 

remains more sustained in the presence of extracellular calcium. [Ca
2+

]dts partially refills 

in simulations run with Caex and shows no refilling in calcium-free media. [Ca
2+

]cyt peaks 

earlier in simulations without Caex; this is due to SOCE continuing to be partially active 
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as stores refill rather than there being a time delay in ISOC activation following store 

depletion (see Figure 3.6 A). 

Figure 3.4 B shows the calcium responses of a representative configuration from 

the stable population to a series of increasing [IP3] stimulations shown in Figure 3.4 A. 

The 1.5x and 2x stimulations were too weak to elicit substantial SOCE; at higher IP3 

doses, stores become depleted enough that SOCE manifests itself via elevated [Ca
2+

]cyt 

and substantial store refilling. The model predicts faster time to peak [Ca
2+

]cyt at stronger 

IP3 doses in –Caex simulations; in contrast, in +Caex simulations peak [Ca
2+

]cyt is higher 

and delayed until stores refill to sufficiently inactivate SOCE (also see Figure 3.6).  

 

  



56 

 

Figure 3.4 Response of population stable in EDTA to a dose of IP3.  

(A) The population of states satisfying the stability criterion (n = 18,932) were stimulated 

with a dose of IP3 which is summarized as a percentage increase over baseline. The IP3 

stimulus begins at 10 s. (B) Calcium traces for DTS and cytosolic Ca
2+

 of a representative 

configuration taken from this population to the six IP3 doses presented in panel A. The 

colors of the curves correspond to the IP3 dose. Left column: [Ca
2+

]ex = 1.2 mM; right 

column: [Ca
2+

]ex = 1 pM. (C) Distributions of peak [Ca
2+

]cyt for each IP3 dose. The black 

vertical dotted line indicates mean resting [Ca
2+

]cyt and the red dotted line indicates our 

cutoff for a configuration to be considered “responsive” to stimulus. The number and 

percentage of configurations satisfying this criterion are indicated in red in the upper 

right of each histogram. Increasing the IP3 dose makes more states satisfy this criterion; 

in addition peak [Ca
2+

]cyt largely saturates beyond 5x IP3. 
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Figure 3.4 C shows histograms of peak [Ca
2+

]cyt of the entire set of stable configurations 

(n = 18,932) following application of each dose of IP3 in panel A. Stronger doses of IP3 

predictably result in higher average [Ca
2+

]cyt; this effect saturates past 5x IP3.  

Figure 3.5 compares the model’s [Ca
2+

]cyt response to the 10x IP3 stimulation 

(left) with experimental time course data (right) from human PRP fluorescently labeled 

with fura-2 and treated with 40 M ADP at t = 20s [150]. The simulations generally 

agree very well with the experimental data; there is a small time delay of ~20s in peak 

[Ca
2+

]cyt in the +Caex simulation compared to experiment; this time delay is reproducible 

using other model initial conditions (data not shown). 

 

 

Figure 3.5 Comparison of model output with experimentally measured calcium 

transient. 

The 10x IP3 simulated [Ca
2+

]cyt time course from Figure 3.3 B (left) is compared with 

calibrated fura-2 time course data in human platelets treated with 40 M ADP at t = 20 s 

(right) [150]. 

 

 

To attempt to explain the source of this time delay, Figure 3.6 A plots simulations of Ca
2+

 

flux via PMCA (blue curve) and SOCE (red curve) following a 5.5x IP3 dose applied at t 
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= 10s. The corresponding [Ca
2+

]cyt and [Ca
2+

]dts traces are shown in Figure 3.6 B with 

peak [Ca
2+

]dts and [Ca
2+

]cyt times indicated by the bolded solid and dashed lines, 

respectively. SOCE flux peaks at the time [Ca
2+

]dts reaches its minimum. This implies 

there is no delay in SOCE activation with respect to [Ca
2+

]dts. As stores do not refill 

immediately, there is a slow inactivation of SOCE current which continues to drive 

[Ca
2+

]cyt higher even after the stores have finished emptying; [Ca
2+

]cyt does not peak until 

the SOCE flux is nearly overtaken by the PMCA flux out of the cell. 

 

Figure 3.6 Time delay in +Caex simulations is due to slow SOCE inactivation.  

(A) This panel plots Ca
2+

 flux across the PM, the blue curve being Ca
2+

 flux out of the 

cell via PMCA, and the red curve Ca
2+

 flux into the cell via open SOCs. ISOC peaks at 

about the time when [Ca
2+

]dts reaches its minimum value (peak time indicated by a 

vertical solid black line). [Ca
2+

]cyt does not peak (peak time indicated by a vertical dashed 

black line) until the extra Ca
2+

 influx into the cytosol is reduced to near zero by PMCA. 

(B) Calcium traces of [Ca
2+

]cyt and [Ca
2+

]dts corresponding to the simulation shown in A; 

each are normalized by their maximum value. The bolded vertical lines are the same as in 

panel A. 

 

 

In Figure 3.7, model configurations in the stable in EDTA population were 

subjected to a 10x IP3 dose at t = 0 s with [Ca
2+

]ex set to 1.2 mM. Panel A shows no 

correlation between the time at which [Ca
2+

]cyt reaches its peak and fractional store 
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refilling. Panel B shows that the peak [Ca
2+

]cyt time decreases as the SERCA to IP3R ratio 

increases. As SERCA and IP3R act in direct opposition to one another, configurations 

with a higher SERCA / IP3R ratio are able to refill stores more quickly. 

 

Figure 3.7  Rate of store refilling is an important determinant of peak [Ca
2+

]cyt 

time in +Caex simulations. 

(A) Scatter plot of the time at which [Ca
2+

]cyt peaks versus fractional amount of store 

refilling reveals no correlation between the metrics. Fractional refilling is calculated as 

the final value of [Ca
2+

]dts in a simulation divided by the initial drop following IP3 

stimulus. (B) Scatter plot of the time at which [Ca
2+

]cyt peaks versus the SERCA / IP3R 

ratio.  

 

 

3.3.3 Perturbation of the fraction of STIM able to enter puncta 
 

Next we explored the effect altering fixed parameters governing SOCE would 

have on the model’s steady state and dynamics following stimulus. An in silico 

experiment like this is very much analogous to simulating the effect of a mutation in a 

gene. Genetic mutations can often have disastrous consequences for the organism. For 

example, mutations in the HEX A gene encoding the lysosomal protein hexosaminadase 

A result in a nonfunctional enzyme which is unable to remove an amino sugar residue 
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from GM2 gangliosides, leading to a dangerous buildup of this compound in the brain 

[152]. These mutations are associated with Tay-Sachs disease.  

For the work presented here, we focused on the parameter  which establishes the 

maximum fraction of STIM2 that can enter the puncta (see Eqs. (2.4) and (2.5)). Mutation 

of the glutamate or aspartate residues responsible for Ca
2+

 binding in the STIM EF-hand 

domain leads to constitutive puncta entry and associated higher basal ISOC [65, 86]. 

Following perturbation and after allowing for an adjustment phase of at least 200 s, the 

model was checked for being at steady state as per Eq. (3.1). The perturbations were 

performed on the resting configurations that satisfied all filtering conditions (n = 1,513; 

also see Section 3.3.1).  was perturbed from 0.2 (the initial value for all configurations) 

to 0.5, 0.75 and 1. 

In Figure 3.8 we present resting [Ca
2+

]cyt (left) and [Ca
2+

]dts (right) distributions 

following parameter perturbation. 
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Figure 3.8 Resting Ca
2+

 for the state population satisfying all resting and 

dynamic constraints following  perturbation. 

The fixed parameter  was altered to the levels indicated for the population of 

configurations that were stable in EDTA. The Ca
2+

 concentrations reported for  = 0.5, 

0.75, 1 are those following adjustment to new steady state;  = 0.2 was the initial value 

used in all simulations in prior Sections. 

 

 

[Ca
2+

]cyt is very stable to all levels of perturbation. Raising  increases [Ca
2+

]dts 

somewhat. Despite the relatively modest changes in models’ resting states, peak [Ca
2+

]cyt 

distributions resulting from a 5.5x IP3 stimulus applied to the new resting states are right-

shifted as  increases for simulations ran with 1.2 mM Caex (Figure 3.9, left) but not 

without Caex (Figure 3.9, right). 
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Figure 3.9 Peak [Ca
2+

]cyt following IP3 stimulus for the state population satisfying 

all resting and dynamic constraints following  perturbation. 

A 5.5x IP3 stimulus was applied to the population of configurations stable in EDTA 

following adjustment of  to the indicated values. Simulations were run with Caex set to 

1.2 mM (left) or to 1 pM (right). The green and red dotted lines indicate average resting 

and peak [Ca
2+

]cyt for  = 0.2. 

 

 

These results imply the increase in peak [Ca
2+

]cyt in +Caex simulations as  is raised is 

due to more STIM2 entering the puncta following store depletion and not due to higher 

basal [Ca
2+

]dts or high  being able to decouple SOCE from [Ca
2+

]dts by strengthening the 

influence of [Ca
2+

]cyt on the amount of STIM2 available to Orai (see Eqs. (2.4) and (2.5)). 
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Figure 3.10  Increasing  leads to reduced system stability in Ca
2+

-free media. 

Histograms of resting ISOC for the fully filtered state population following  perturbation 

to the indicated values. The red dotted line indicates the value of ISOC above which the 

stability criterion (see “Stable in EDTA” in Table 3.2) would be violated. 

 

 

In Figure 3.10 we observe the effect of  on resting ISOC. Increasing the  

parameter in the puncta formation equation reduces the number of stable configurations 

in the population initially satisfying all filtering conditions. A higher value of  increases 

the number of active (STIM2)p at rest; resting ISOC increases correspondingly due to there 

being more open channels. Configurations with higher resting ISOC lose calcium more 

quickly following EDTA application. The ISOC cutoff is equivalent to the rate of change 

of [Ca
2+

]dts criterion indicated in Table 3.2; this is because PM flux is the rate-limiting 

step for Ca
2+

 leakage. As a more extreme example we could set the entire p parameter to 

unity (i.e. making all STIM2 is available to Orai) which causes the entire population of 

configurations that were previously viable according to our criteria to fail the stability in 
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EDTA criterion (data not shown). Thus a higher  is able to cause more STIM dimers to 

be present in the puncta under resting conditions, despite higher levels of store filling. 

 

3.4 Discussion 
 

This chapter has been devoted to solving the inverse problem discussed in the 

introduction as applied to a mechanistic model of SOCE in human platelets. In the 

context of this problem, the “fitting data” consisted of both homeostatic constraints 

derived from experiment and intuition and experimental [Ca
2+

]cyt transients in human 

platelet populations stimulated in calcified and calcium-free conditions [150]. Our 

parameter scan results reveal how a model’s topology and fixed parameters naturally 

enforce constraints on the steady state configurations that a model is able to exhibit. The 

model is able to take on physiologically acceptable configurations with mean values that 

differ by no more than a factor of two from experimentally measured values for protein 

copy numbers (typically measured with light scattering mass spectroscopy) or calcium 

concentrations. Low resting levels of IP3 are required for system robustness and for 

appropriate dynamic response to physiologic agonists.  

Multiple steady states (the 1,513 ICs meeting the filtering criteria, see Figure 3.2 

and Table 3.2) are expected and were sought out because: (i) total protein measurements 

(Table 3.1) do not define the distribution of the protein sub-species (e.g. SERCAE1, 

SERCAE2, etc) within the individual modules (Figure 2.2) where the six measured protein 

levels for IP3R, SERCA, STIM, Orai, CaM, and PMCA are actually distributed over 24 

states/complexes (see Table 2.1) which are not known but must be consistent with the 



65 

topology, kinetic parameters, homeostasis requirement, and filtering criteria; (ii) cellular 

heterogeneity is expected around a population average measurement and variations for a 

particular protein could easily be ± 100 %; and (iii) the filtering criteria defined in Table 

3.2 are based upon ranges and upper and lower bounds, not strict values (e.g. steady state 

[Ca
2+

]cyt = 75 nM). The IC exploration range was also fairly restricted for IP3R, SERCA, 

Orai, STIM, CaM, and PMCA around their measured values (Figure 3.2). The filtering 

criteria and model topology was more restrictive of allowed ICs for SERCA, STIM, and 

PMCA, but less so for IP3R, Orai, and CaM suggesting less model sensitivity to the 

values of IP3R, Orai, and CaM; these broader distributions are also partly a consequence 

of the relatively narrow sampling ranges used in comparison to prior work [57].  

Membrane electric potential is an important parameter for modeling channel 

current as it affects the driving force for passage of charged particles across a membrane. 

The potential across the inner membrane (VIM) is largely unexplored due to being 

difficult to assess with traditional patch-clamp techniques [116]. VIM acts in opposition to 

the favorable calcium concentration gradient across the IM, effectively acting as a brake 

on calcium release and functionally placing a lower bound on [Ca
2+

]dts by setting the 

Nernst potential at which calcium flux out of the DTS via IP3R is zero (see Eq. (2.2)). In 

agreement with this idea, in our model resting configurations satisfying only the static 

constraint of being stable in EDTA show a broad distribution of VIM values (see Figure 

3.2), however following application of the two dynamic constraints, VIM clusters to the 

high (less negative) end of the sampling range; a higher VIM is evidently required to 

support the rate and amount of calcium release required for platelet activation. 
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The requirement of a resting model configuration approximately remaining at 

steady state on Caex removal necessitates a low resting flux through SOCs. This is 

coupled with a requirement that following activation SOCE flux rises to levels that are 

sufficient to elevate [Ca
2+

]cyt and effects store refilling. These points mean that a model 

for SOCE needs to have significant cooperativity with respect to decreases in [Ca
2+

]dts. 

Cooperativity is introduced in three steps. The first is STIM oligomerization following 

loss of bound DTS Ca
2+

 which is well supported by experiments showing increases in 

STIM-STIM FRET following store depletion [60, 153]. The second facet of cooperativity 

comes from graded activation of Orai by association with multiple STIM dimers modeled 

with Eq. (2.6) [85]. We model STIM-Cadts association and STIM dimerization with mass 

action kinetics; this leads to nonzero STIM2 at rest even when stores are full. The third 

cooperative mechanism, enforcing STIM2 needing to be in the puncta before being able 

to associate with Orai, is necessary for the model to both have a low enough resting ISOC 

flux to be stable in EDTA and to simultaneously exhibit appreciable SOCE contribution 

to [Ca
2+

]cyt following stimulus (see Figure 3.10). We see a small time delay in peak 

[Ca
2+

]cyt compared to simulations run without Caex (see Figure 3.3, Figure 3.4 B and 

Figure 3.5) which could conceivably be due to this puncta mechanism because of its 

dependence on [Ca
2+

]cyt. Fluorescently labeled human platelets stimulated with ADP 

show [Ca
2+

]cyt peaking within 5 – 10 s of agonist addition and show little difference in 

peak time in calcium-containing versus calcium-free conditions (see right panel in Figure 

3.5) [150]. However some groups have observed in fluorescently labeled cells following 

application of thrombin, which is a stronger platelet agonist, a fast rise in [Ca
2+

]cyt 

followed by a slower increase [151]. In addition our own group routinely observes a time 
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difference of about 20 s between agonist delivery and peak [Ca
2+

]cyt in fluorescently 

labeled 10% PRP under calcium-free conditions [43]. 

This lag in SOCE deactivation may be due to missing regulation rather than a 

deficiency with our method of handling puncta entry. Evidence for alternative regulation 

of SOCE inactivation has been observed in the literature. Studies have reported that 

CRACR2A, a transmembrane protein with a cytosol facing EF-hand domain, may be 

responsible for stabilizing the STIM-Orai complex and that this effect is inhibited at high 

[Ca
2+

]cyt [154]. STIM also may be able to interact with phosphoinositides in the PM via 

its cytosolic polybasic domain. Inhibition of phosphotidylinositol 3-and 4-kinases has 

been shown to reduce SOCE [155]. However, PIP and PIP2 levels do not change 

appreciably in thrombin stimulated platelets [156]. Additionally, many Ca
2+

 channels, 

including SOCs, are affected by the phenomena of Ca
2+

-dependent inactivation (CDI) in 

which Ca
2+

 influx results in local domains of high [Ca
2+

]cyt which interferes with channel 

operation [60]. This effect is independent of store refilling [157]. In the future, modeling 

these regulatory mechanisms may allow for faster SOCE inactivation as stores refill. 

Store refilling is often indirectly measured by observing changes in [Ca
2+

]cyt, 

[Ca
2+

]dts or ISOC following Ca
2+

 addition in cell populations where stores have been 

depleted with ionomycin and/or SERCA inhibitors such as thapsigargin [60, 157, 158]; 

these studies are not reflective of normal store refilling during agonist stimulation. Only a 

few groups have directly measured [Ca
2+

]dts versus time in human platelets; this is 

because most fluorescent calcium dyes are higher affinity dyes designed to measure 

[Ca
2+

]cyt. One group has used Fluo-5N to measure [Ca
2+

]dts in human platelets following 

stimulation with ADP and thrombin, among other compounds [146]. In the absence of 
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Caex, no store refilling was observed following addition of these agonists; our model is 

consistent with these measurements (see Figure 3.3). This same group observed fast 

(within 30 s of agonist addition) but partial refilling when thrombin was added to 

platelets in calcified media. Under strong IP3 stimulus with Caex, our model is capable of 

0 to over 100% store refilling depending on the resting configuration. In Figure 3.7 A we 

see the model does not show the amount of fractional refilling of stores being correlated 

with peak [Ca
2+

]cyt time. However, Figure 3.7 B does show a correlation with the SERCA 

/ IP3R ratio; taken together with the time courses shown in Figure 3.6, this implies that in 

order to avoid a significant time delay in [Ca
2+

]cyt, the stores need to refill quickly only to 

a level such that PMCA can overtake the SOCE flux rather than needing to refill 

completely. CDI could be modeled to directly cause faster store refilling in early times 

following activation as high [Ca
2+

]cyt in puncta microdomains also results in faster 

SERCA activity in those regions; this scheme would create a scenario of fast store 

refilling through active SERCA positively regulated by locally higher Ca
2+

 and CDI 

dependent inactivation followed by a slower inactivation phase (perhaps dependent on 

residual store refilling through less active SERCA mediated by bulk [Ca
2+

]cyt and 

CRACR2A destabilization) which may be important for fully shutting off ISOC in model 

configurations where stores only partially refill. 
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Chapter 4 
 
Conclusions and future directions 

 

In this thesis, we have combined kinetic, mechanistic and electrochemical data to 

produce a computational model of IP3-mediated calcium release and SOCE in human 

platelets that can estimate the resting and dynamic behavior of platelets in both calcium-

containing and calcium-free conditions. The result is a systems-level model, integrating 

measurements and observations from dozens of independent studies. 

The model presented in this thesis is the first to our knowledge to incorporate a 

complete mechanism for SOCE into a larger scale systems model of calcium signaling. In 

Chapter 2 we outlined the model framework, using previous modeling work as a 

foundation, which casts intracellular Ca
2+

 regulation as a function of the delicate balance 

between the opposing actions of Ca
2+

 channels and pumps: IP3R, SERCA, SOCE, and 

PMCA. The mechanism for SOCE employed mass action kinetics to model Ca
2+

 binding 

and dimerization of the Ca
2+

 sensor STIM, a [Ca
2+

]cyt dependent Hill function to 

determine STIM2 entry into the puncta, and a cooperative equilibrium model to govern 

the association of STIM2 ligands with the channel-pore forming subunit, Orai.  
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In Chapter 3 we studied how applying various homeostatic and dynamic 

constraints affected the preferred resting configuration of the model. The model was able 

to exhibit physiologic resting states with protein counts and fixed parameters (besides 

those estimated in this study) close to cited literature values. The model predicted that 

values of VIM, an experimentally inaccessible quantity, need to be greater than -70 mV in 

order to achieve calcium release following agonist stimulation (Figure 3.2). The model 

also possessed a subset of resting configurations that were able to recapitulate 

experimentally measured [Ca
2+

]cyt time courses in human platelets under high ADP 

stimulation (Figure 3.5). The ability of the model to maintain steady state in EDTA was 

heavily dependent on enforcing physical separation of STIM2 and Orai at rest; increasing 

the maximum fraction of STIM2 that is able to interact with Orai led to more resting 

states failing our stability criterion due to raising constitutive leak through SOCs (Figure 

3.10). Given the complexity of calcium regulation in biological systems, a cellular 

signaling model will likely never be fully “complete.” In the future, incorporating 

additional experimental data will allow for more tightly distributed protein copies and 

will enable the inclusion of downstream platelet functionality such as granule secretion, 

integrin activation, and phosphatidylserine exposure as well as the modeling of receptors 

for other important platelet agonists such as thrombin and thromboxane.  

There are two logical next steps one could take to further develop the model. The 

first would be to incorporate calcium dependent inactivation of the STIM-Orai complex 

as already discussed in Section 3.4. The second direction one could take is motivated by 

the considerable homology in the activation pathways of the platelet agonists which 

signal through GPCRs, namely: ADP (via the P2Y1 receptor), thrombin (via the PAR1 
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and PAR4 receptors) and TxA2 (via the TP receptor). Following receptor binding, these 

agonists stimulate Ca
2+

 release from stores via Gq (and Gi to a lesser extent) mediated 

activation of PLC isoforms leading to phosphoinositide hydrolysis and IP3 generation 

[5]. Upstream data on ADP mediated IP3 generation is already available from previous 

modeling work [57]. Platelets experience these chemical cues simultaneously (among 

others such as collagen which signals through GPVI and integrin 21). Most groups 

still only measure the response of platelets to one agonist at a time; however, high-

throughput “Pairwise Agonist Scanning” techniques have recently been developed to 

yield high resolution Ca
2+

 fluorescence time course data on PRP stimulated with multiple 

agonists simultaneously [43]. This technique has produced sufficient data to train neural 

networks which have been used to model platelet activation in a multiscale lattice kinetic 

Monte Carlo simulation of platelet aggregation under flow conditions [44] and these 

works have already demonstrated the synergistic or non-additive effects applying 

combinations these agonists have on platelets’ calcium responses. 

One of the themes of the first chapter was how simple behaviors or mechanisms 

can interact in nonlinear fashions to produce complex outputs or unexpected results. In 

that vein, unexpected behaviors or interesting new predictions may result from modeling 

PAR1, PAR4 and TP simply as three receptors of differing copy numbers and ligand 

affinities, all sharing the same downstream signaling pathways. 

Cell signaling networks are studied in a laboratory setting by delivering inputs to 

cells (e.g. agonists) and then observing some measureable output, such as fluorescence 

over time in cells labeled with a Ca
2+

 sensitive dye like fura-2. Accurate, mechanistic, 

systems-level computational models of these networks serve as an invaluable partner to 
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these wet-lab experiments by allowing one to probe the effects of altering the internal 

workings of the system (i.e. a cell) on the output in a manner which may be technically 

infeasible or impossible to do in a laboratory setting. In this way a systems model can 

serve as a platform from which one can gain a greater understanding of biology and guide 

future investigations of signaling pathways. With the amount of biological knowledge 

becoming increasingly vast, computational models will likely take on an even more 

important role going forward. Even with the advent of high-throughput experimental 

techniques it is infeasible to explore the entire reaction network in cells (much less model 

it). In light of this limitation, in the future systems models should serve both as a guide to 

biologists as to which problems to solve and as a tool in interpreting complex 

experimental results. 
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APPENDIX 

Appendix A. Analytical solutions to the MWC equations 

The system of equations given by Eq. (2.6) in Section 2.4.2 which govern the 

association of (STIM2)p and Orai and set the distribution of SOC channel states do not 

have a closed form solution in terms of Orai and (STIM2)p. The ten channel states were 

solved for analytically in terms of Sf, the amount of STIM in the puncta which is not 

bound to Orai, using the MATLAB Symbolic Toolbox. These solutions are listed below; 

OraiT is the number of Orai tetramers in the system (and was one of the quantities that 

were allowed to vary during parameter scan sweeps). 
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Appendix B. Summary of algebraic IP3 forcing function 
parameters 

Max fold increase* a b c tmax (s) 

1.5 0.03 0.06 0.15 12.7 

2 0.1 0.06 0.2 11.2 

3 0.3 0.08 0.38 8.3 

5 0.7 0.08 0.4 7.9 

8 1.35 0.08 0.4 7.8 

10 1.75 0.08 0.4 7.2 

*Values are approximate. 

Table A.1 Exponential forcing function parameter sets. 

Lists sets of parameters capable of eliciting various maximal fold increases in [IP3] using 

the algebraic forcing function given by Eq. (2.8) in Section 2.5. The time gap between the 

beginning of the IP3 stimulus and maximal [IP3] is indicated in the last column. 
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