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Distributed Algorithms for the Optimal Design of Wireless Networks

Abstract
This thesis studies the problem of optimal design of wireless networks whose operating points such as powers,
routes and channel capacities are solutions for an optimization problem. Different from existing work that rely
on global channel state information (CSI), we focus on distributed algorithms for the optimal wireless
networks where terminals only have access to locally available CSI. To begin with, we study random access
channels where terminals acquire instantaneous local CSI but do not know the probability distribution of the
channel. We develop adaptive scheduling and power control algorithms and show that the proposed algorithm
almost surely maximizes a proportional fair utility while adhering to instantaneous and average power
constraints. Then, these results are extended to random access multihop wireless networks. In this case, the
associated optimization problem is neither convex nor amenable to distributed implementation, so a problem
approximation is introduced which allows us to decompose it into local subproblems in the dual domain. The
solution method based on stochastic subgradient descent leads to an architecture composed of layers and
layer interfaces. With limited amount of message passing among terminals and small computational cost, the
proposed algorithm converges almost surely in an ergodic sense. Next, we study the optimal transmission over
wireless channels with imperfect CSI available at the transmitter side. To reduce the likelihood of packet losses
due to the mismatch between channel estimates and actual channel values, a backoff function is introduced to
enforce the selection of more conservative coding modes. Joint determination of optimal power allocations
and backoff functions is a nonconvex stochastic optimization problem with infinitely many variables.
Exploiting the resulting equivalence between primal and dual problems, we show that optimal power
allocations and channel backoff functions are uniquely determined by optimal dual variables and develop
algorithms to find the optimal solution. Finally, we study the optimal design of wireless network from a game
theoretical perspective. In particular, we formulate the problem as a Bayesian game in which each terminal
maximizes the expected utility based on its belief about the network state. We show that optimal solutions for
two special cases, namely FDMA and RA, are equilibrium points of the game. Therefore, the proposed game
theoretic formulation can be regarded as general framework for optimal design of wireless networks.
Furthermore, cognitive access algorithms are developed to find solutions to the game approximately.
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ABSTRACT

DISTRIBUTED ALGORITHMS FOR THE OPTIMAL DESIGN OF WIRELESS NETWORKS

Yichuan Hu

Alejandro Ribeiro

This thesis studies the problem of optimal design of wireless networks whose operating

points such as powers, routes and channel capacities are solutions for an optimization problem.

Different from existing work that rely on global channel state information (CSI), we focus on dis-

tributed algorithms for the optimal wireless networks where terminals only have access to locally

available CSI. To begin with, we study random access channels where terminals acquire instanta-

neous local CSI but do not know the probability distribution of the channel. We develop adaptive

scheduling and power control algorithms and show that the proposed algorithm almost surely

maximizes a proportional fair utility while adhering to instantaneous and average power con-

straints. Then, these results are extended to random access multihop wireless networks. In this

case, the associated optimization problem is neither convex nor amenable to distributed imple-

mentation, so a problem approximation is introduced which allows us to decompose it into local

subproblems in the dual domain. The solution method based on stochastic subgradient descent

leads to an architecture composed of layers and layer interfaces. With limited amount of mes-

sage passing among terminals and small computational cost, the proposed algorithm converges

almost surely in an ergodic sense. Next, we study the optimal transmission over wireless chan-

nels with imperfect CSI available at the transmitter side. To reduce the likelihood of packet losses

due to the mismatch between channel estimates and actual channel values, a backoff function is

introduced to enforce the selection of more conservative coding modes. Joint determination of

optimal power allocations and backoff functions is a nonconvex stochastic optimization problem

with infinitely many variables. Exploiting the resulting equivalence between primal and dual
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problems, we show that optimal power allocations and channel backoff functions are uniquely

determined by optimal dual variables and develop algorithms to find the optimal solution. Fi-

nally, we study the optimal design of wireless network from a game theoretical perspective. In

particular, we formulate the problem as a Bayesian game in which each terminal maximizes the

expected utility based on its belief about the network state. We show that optimal solutions for

two special cases, namely FDMA and RA, are equilibrium points of the game. Therefore, the

proposed game theoretic formulation can be regarded as general framework for optimal design

of wireless networks. Furthermore, cognitive access algorithms are developed to find solutions

to the game approximately.
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Chapter 1

Introduction

Optimal design is emerging as the future paradigm for wireless networking. The fundamental

idea is to select operating points as solutions of optimization problems, which, inasmuch as opti-

mization criteria are properly chosen, yield the best possible network. Results in this field include

architectural insights, e.g., [9], and protocol design, e.g., [13, 22], but a drawback shared by most

of these works is that they rely on global channel state information (CSI); i.e., the optimal vari-

ables of a terminal depend on the channels between all pairs of terminals in the network. While

availability of global CSI is plausible in certain situations, it is unlikely to hold if time varying

fading channels are taken into account. In this case, distributed algorithms in which terminals

operate based on locally available CSI are more practical. The focus of this thesis is to develop

distributed algorithms for the optimal design of wireless networks.

When only local CSI is available, operating variables of each terminal are selected as functions

of local CSI. This further leads to the selection of random access as the natural medium access

choice. Indeed, if transmission decisions depend on local channels only and these channels are

random and independent for different terminals, transmission decisions can be viewed as ran-

dom and resultant link capacities as limited by collisions. In this chapter, we present an overview

of random access channels and networks that will be used in the rest of the thesis.
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1.1 Background

1.1.1 Random access wireless channels

Consider a multiple access channel with n terminals contending to communicate with a common

AP. Time is divided in slots identified by an index t. We assume a backlogged system, i.e., all ter-

minals always have packets to transmit in each time slot. The time-varying nonnegative channel

hi(t) ∈ R+ between terminal i and the AP at time t is modeled as block fading – for this to be

true the length of a time slot has to be comparable to the coherence time of the channel. Channel

gains hi(t1) and hi(t2) of terminal i at different time slots t1 6= t2 are assumed independent and

identically distributed (i.i.d.) with pdfmhi(·). Channel gains hi(t) and hj(t) of different terminals

i 6= j are also assumed independent. Channels are assumed to have continuous pdf. This latter

assumption holds true for models used in practice, e.g., Rayleigh, Rician and Nakagami [14, Ch.

3]. We assume each terminal i has access to its channel gain hi(t) at each time slot t. While

there are various alternatives to obtain channel state information, the simplest would be for the

AP to send a beacon signal at the beginning of each time slot. This beacon signal would serve

the double purpose of providing a reference for channel estimation as well as a synchronization

signal.

Based on its channel state hi(t), node i decides whether to transmit or not in time slot t by

determining the value of a scheduling function qi(t) := Qi(hi(t)) : R+ → {0, 1}. Node i trans-

mits in time slot t if qi(t) = 1 and remains silent if qi(t) = 0. Notice that each terminal has a

different scheduling function and that schedules qi(t) are determined based on the CSI of each

node independently of other terminals. Although each node has access to its local CSI hi(t), the

underlying pdf mhi(·) is unknown.

Besides channel access decisions, terminals also adapt transmission power to their channel

gains through a power control function Pi(hi(t)) : R+ → [0, pinst
i ], where pinst

i ∈ R+ is a constant

representing the instantaneous power constraint of node i. By using this function, terminal i
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adjusts its transmission power Pi(hi(t)) in response to hi(t). Similar to qi(t), we define pi(t) :=

Pi(hi(t)), representing the power allocated to node i in time slot t. If node i transmits in time

slot t, pi(t) and hi(t) jointly determine the transmission rate through a function Ci(hi(t)pi(t)) :

R+ → R+. The exact form of Ci(hi(t)pi(t)) depends on how the signal is modulated and coded

at the physical layer. Examples considered later in the thesis include capacity-achieving codes

and adaptive modulation and coding (AMC). With capacity-achieving codes, Ci(hi(t)pi(t)) takes

the form

Ci(hi(t)pi(t)) = B log

(
1 +

hi(t)pi(t)

BN0

)
, (1.1)

where B and N0 are the channel bandwidth and the power spectral density of the channel noise,

respectively. With AMC, there are M transmission modes available. The mth mode affords com-

munication rate τm and is used when the signal to noise ratio (SNR) hi(t)pi(t)/BN0 is between

ηm and ηm+1. The rate function is therefore

Ci(hi(t)pi(t)) =

M∑

m=1

τmI
(
ηm ≤

hi(t)pi(t)

BN0
≤ ηm+1

)
, (1.2)

where I(·) denotes the indicator function. To keep the analysis general we do not restrict

Ci(hi(t)pi(t)) to take either specific form. It is only assumed that Ci(hi(t)pi(t)) is a nonnegative

increasing function of the product of hi(t) and pi(t) that takes finite values for finite arguments.

These assumptions are satisfied by (1.1) and (1.2) and are likely to hold in practice.

Since terminals contend for channel access, transmission of terminal i in a time slot t is suc-

cessful if and only if qi(t) = 1 and qj(t) = 0 for all j 6= i. If the transmission of terminal i is

successful, its transmission rate is determined by Ci(hi(t)pi(t)). As as consequence, the instanta-

neous transmission rate for terminal i in time slot t is

ri(t) = Ci (hi(t)pi(t)) qi(t)

n∏

j=1,j 6=i
[1− qj(t)] . (1.3)

Assuming an ergodic mode of operation, quality of service is determined by the long term be-
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havior of ri(t). This implies that system performance is determined by the ergodic limits

ri := lim
t→∞

1

t

t∑

u=1

ri(u)

= lim
t→∞

1

t

t∑

u=1


Ci (hi(u)pi(u)) qi(u)

n∏

j=1,j 6=i
[1− qj(u)]


 . (1.4)

Assuming ergodicity of schedules qi(t) = qi(hi(t)) and power allocations pi(t) = pi(hi(t)), the

limit ri can be written as a expected value over channel realizations,

ri = Eh


Qi(hi)Ci(hiPi(hi))

n∏

j=1,j 6=i
[1−Qj(hj)]


 , (1.5)

where we have defined the vector h = [h1, · · · , hn]T grouping all channels hi. An important

observation here is that since terminals are required to make channel access and power control

decisions independently of each other, Qi(hi) and Pi(hi) are independent of Qj(hj) and Pj(hj)

for all i 6= j. This allows us to rewrite ri as

ri = Ehi [Qi(hi)Ci(hiPi(hi))]

n∏

j=1,j 6=i

[
1− Ehj [Qj(hj)]

]
. (1.6)

In addition to instantaneous power constraints pi(t) ≤ pinst
i , terminals adhere to average power

constraints pavg
i ∈ R+ as in, e.g., [8]. This average power constraint restricts the long term average

of transmitted power that we either write as an ergodic limit or as an expectation over channel

realizations,

pi := lim
t→∞

1

t

t∑

u=1

qi(u)pi(u) = Ehi [Qi(hi)Pi(hi)]. (1.7)

1.1.2 Random access wireless networks

Consider an ad-hoc wireless network consisting of J terminals indexed as i = 1, . . . J . Network

connectivity is modeled as a graph G = (V, E) with vertices v ∈ V := {1, . . . , J} representing the J

terminals and edges e = (i, j) ∈ E connecting pairs of terminals that can communicate with each

other. Denote the neighborhood of terminal i asN (i) := {j | (i, j) ∈ E} and define the interference

neighborhood of the link (i, j) as the set of nodesMi(j) := N (j) ∪ {j}\{i} whose transmission
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can interfere with a transmission from i to j. The network supports a set K := {1, . . . ,K} of

end-to-end flows through multihop transmission. The average rate at which k-flow packets are

generated at i is denoted by aki . Terminal i transmits these packets to neighboring terminals at

average rates rkij and, consequently, receives k-flow packets from neighbors at average rates rkji.

To conserve flow, exogenous rates aki and endogenous rates rkij at terminal i must satisfy

aki ≤
∑

j∈N (i)

(
rkij − rkji

)
, for all i ∈ V, and k ∈ K. (1.8)

Further denote the capacity of the link from i → j as cij . Since packets of different flows k are

transmitted from i to j at rates rkij it must be

∑

k∈K
rkij ≤ cij , for all (i, j) ∈ E . (1.9)

Unlike wireline networks where cij are fixed, link capacities in wireless networks are dynamic.

Similar to what we did in Section 1.1.1, let time be divided into slots indexed by t and denote

the channel between i and j at time t as hij(t). The channel is assumed to be block fading and

channel gains hij(t) of link (i, j) are assumed independent and identically distributed with prob-

ability distribution function (pdf) mhij (·). For reference, define the vector of terminal i outgoing

channels hi(t) := {hij(t)|j ∈ N (i)} and the vector of all channels h(t) := {hij(t)|(i, j) ∈ E}.

Denote their pdfs as mhi(·) and mh(·), respectively.

Based on the channel state hi(t) of his outgoing links, terminal i decides whether to transmit

or not on link (i, j) in time slot t by determining the value of a scheduling function qij(t) :=

Qij(hi(t)) ∈ {0, 1}. If qij(t) = 1, terminal i transmits on link (i, j) and remains silent otherwise.

Further define qi(t) := Qi(hi(t)) :=
∑
j∈N (i)Qij(hi(t)) to indicate a transmission from i to any of

his neighbors. We restrict i to communicate with, at most, one neighbor per time slot implying

that we must have qi(t) ∈ {0, 1}. We emphasize that qij(t) := Qij(hi(t)) depends on local outgo-

ing channels only and not on global CSI. Further note that terminals have access to instantaneous

local CSI hi(t) but underlying pdfs mhi(·) are unknown.

Besides channel access decisions, terminals also adapt transmission power to local CSI through
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a power control function pij(t) := Pij(hi(t)) taking values in [0, pinst
ij ]. Here, pinst

ij represents the

maximum allowable instantaneous power on link (i, j). The average power consumed by termi-

nal i is then given as the expected value over channel realizations of the sum of Pij(hi) over all

j ∈ N (i), i.e.,

pi ≥ Ehi


 ∑

j∈N (i)

Pij(hi)Qij(hi)


 , (1.10)

where we also relaxed the equality constraint to an inequality, which can be done without loss

of optimality. If terminal i transmits to node j in time slot t, pij(t) and hij(t) determine the

transmission rate through a function Cij(hij(t)pij(t)) whose form depends on modulation and

coding.

Due to contention, a transmission from i to j at time t succeeds if a collision does not occur.

In turn, this happens if: (i) Terminal i transmits to j, i.e., qij(t) = 1. (ii) Terminal j is silent,

i.e., qj(t) = 0. (iii) No other neighbor of j transmits, i.e. ql(t) = 0 for all l ∈ N (j) and l 6= i.

Recalling the definition of interference neighborhoodMi(j) and that if a transmission occurs its

rate is Cij(hij(t)pij(t)) we express the instantaneous transmission rate from i to j in time slot t

as cij(t) := cij(hi(t)) = Cij(hij(t)pij(t))qij(t)
∏
l∈Mi(j)

[1− ql(t)]. Assuming an ergodic mode of

operation, the capacity of link i→ j can then be written as

cij = Eh


Cij(hijPij(hi))Qij(hi)

∏

l∈Mi(j)

[1−Ql(hl)]


 . (1.11)

Because terminals are required to make channel access and power control decisions indepen-

dently of each other, Qij(hi) and Pij(hi) are independent of Qlm(hl) and Plm(hl) for all i 6= l.

Since Ql(hl) :=
∑
m∈N (l)Qlm(hl(t)) by definition, it follows that Qij(hi) is also independent of

Ql(hl) for all i 6= l. This allows us to write the expectation of the product on the right hand side

of (1.11) as a product of expectations,

cij ≤ Ehi

[
Cij

(
hijPij(hi)

)
Qij(hi)

] ∏

l∈Mi(j)

[
1−Ehl

[
Ql(hl)

]]
, (1.12)
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where we also relaxed the equality constraint to an inequality, which can be done without loss of

optimality 1.

The operating point of a wireless network is characterized by variables aki , rkij , cij , pi and

functions Pij(hi), Qij(hi). Besides (1.8)-(1.12), these variables are subject to certain box con-

straints. Admission variables, have lower and upper bounds due to application layer require-

ments, i.e., amin
i ≤ aki ≤ amax

i . Similarly, routing variables, link capacities, and terminal power

budgets cannot be negative and are also subject to given upper bounds, i.e., 0 ≤ rkij ≤ rmax
ij ,

0 ≤ cij ≤ cmax
ij , and 0 ≤ pi ≤ pmax

i . Furthermore, according to definition, Pij(hi) and Qij(hi)

can only take values from [0, pinst
ij ] and {0, 1}, respectively. For notational simplicity, we define

vectors xi :=
{
pi, a

k
ij , r

k
ij , cij : ∀j ∈ N (i)

}
and Pi(hi) := {Pij(hi), Qij(hi) : ∀j ∈ N (i)} to group

all the variables related to terminal i and summarize these box constraints as {xi,Pi(hi)} ∈ Bi

with

Bi :=



xi,Pi(hi)

∣∣∣∣ amin
i ≤ aki ≤ amax

i , 0 ≤ rkij ≤ rmax
ij ,

0 ≤ cij ≤ cmax
ij , 0 ≤ pi ≤ pmax

i , 0 ≤ Pij(hi) ≤ pinst
ij ,

Qij(hi) ∈ {0, 1}, Qi(hi) ∈ {0, 1}



. (1.13)

1.2 Roadmap

Our first investigation focuses on random access channel where terminals contend for commu-

nicating with a the central AP. This models the physical layer of the wireless random access

network we shall study later on. We develop adaptive scheduling and power control algorithms

for random access in a multiple access channel where terminals acquire instantaneous channel

1If we have channel reciprocity hij(t) = hji(t) , the derivation of (1.12) from (1.11) is no longer valid since power

control and channel access functions of neighboring nodes will have common arguments implying that Qij(hi) and

Qji(hj) would not be independent. The general methodology used here seems applicable but is beyond the scope of the

present paper.
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state information but do not know the probability distribution of the channel [16]. In each time

slot, terminals measure the channel to the common access point. Based on the observed chan-

nel value, they determine whether to transmit or not and, if they decide to do so, adjust their

transmitted power. We show that the proposed algorithm almost surely maximizes a propor-

tional fair utility while adhering to instantaneous and average power constraints. These results

are presented in Chapter 2.

We then generalize the algorithm proposed for random access channel to wireless multihop

networks where each node determines its operating point using its local CSI distributedly [17].

Since the associated optimization problem is neither convex nor amenable to distributed imple-

mentation, a problem approximation is introduced. This approximation is still not convex but it

has zero duality gap and can be solved and decomposed into local subproblems in the dual do-

main. The solution method is through a stochastic subgradient descent algorithm that operates

without knowledge of the fading’s probability distribution and leads to an architecture com-

posed of layers and layer interfaces. With limited amount of message passing among terminals

and small computational cost, we show that the proposed algorithm converges almost surely in

an ergodic sense. These results are presented in Chapter 3.

Both above proposed algorithms require terminals to adapt transmission parameters such as

power and rate to time-varying channel conditions to improve system’s overall performance. Al-

though accurate CSI is essential to achieve this goal, perfect CSI is rarely available in practice due

to estimation errors and, perhaps more fundamentally, to feedback delay. Our next topic is to de-

velop algorithms to handle imperfect CSI in the transmission over wireless channels [18]. In par-

ticular, we consider three types of wireless channels, namely single user point-to-point block fad-

ing channels [15], multiuser downlink orthogonal frequency division multiplexing (OFDM) [38],

and multiuser uplink random access (RA) [29], where the transmitter adapt transmitted power

and coding mode to imperfect channel estimates in order to maximize expected throughput sub-

ject to average power constraints. To reduce the likelihood of packet losses due to the mismatch
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between channel estimates and actual channel values, a backoff function is further introduced to

enforce the selection of more conservative coding modes. Joint determination of optimal power

allocations and backoff functions is a nonconvex stochastic optimization problem with infinitely

many variables that despite its lack of convexity is part of a class of problems with null duality

gap. Exploiting the resulting equivalence between primal and dual problems, we show that op-

timal power allocations and channel backoff functions are uniquely determined by optimal dual

variables. This affords considerable simplification because the dual problem is convex and finite

dimensional. We further exploit this reduction in computational complexity to develop iterative

algorithms to find optimal operating points. These results are presented in Chapter 4.

So far the distributed algorithms we developed are based on local CSI only (either perfect

or imperfect). In practice, terminals may have knowledge about channels of neighboring nodes

in addition to local CSI. This motivates us to investigate wireless networks where each terminal

has a different belief about the global channel states and adapts its transmission policy to the

belief. In this setting, frequency division multiple access (FDMA) and channel aware random

access (RA) are two special cases where perfect global and local CSI are available, respectively.

To find solutions for general cases, we formulate the problem as a Bayesian game in which each

terminal maximizes the expected utility based on its belief. We show that optimal solutions for

both FDMA and RA are equilibrium points of the game. Therefore, the proposed game theoretic

formulation can be regarded as general framework for multiuser wireless communications. Fur-

thermore, we develop a cognitive access algorithm that solves the problem approximately. These

results are presented in Chapter 5.

9



Chapter 2

Distributed algorithms for optimal

random access channels

In this chapter, we consider wireless random access channels in which terminals contend for ac-

cess to a common access point (AP) as introduced in Section 1.1.1. To exploit favorable channel

conditions terminals adapt their transmitted power and access decisions to the state of the ran-

dom fading channels linking them to the AP. The challenges in developing this adaptive scheme

are that terminals have access to their own channel state information (CSI) only, and that the

probability distribution function (pdf) of the fading channel is unknown. Our goal is to develop

a distributed learning algorithm to determine optimal transmitted power and channel access

decisions relying on local CSI only.

The idea of adapting medium access and power control to CSI has been extensively explored

in wireless communications. Early references dealing with power adaptation on the uplink of

multiuser systems focus on centralized power control schemes where the AP collects channel

states for all terminals to select the one to be scheduled. In, e.g., [19], the AP schedules the ter-

minal with the best channel gain with a power adapted to the channel condition. Similar ideas

10



have also been used for scheduling and resource allocation in broadcast downlink channels, see

e.g., [3, 11, 23]. Although these centralized schemes exploit multiuser diversity, they require sig-

nificant information exchange between terminals and the AP; a problem exacerbated when the

number of users is large. To avoid this overhead, recent work integrates channel adaptation into

random access protocols. Exploiting the idea of aligning schedules to good channel opportuni-

ties, [29] develops a distributed channel-aware Aloha protocol in which terminals transmit only

when their channel gains exceed pre-defined thresholds. This algorithm is shown to be asymp-

totically optimal in the sense that the only performance loss compared to a centralized scheme is

due to user contention.

Under simple collision models, it has been shown that distributed threshold-based schedulers

with properly designed thresholds maximize total throughput of a network with homogeneous

users and total logarithmic throughput in the case of heterogeneous users [50]. Similar threshold-

based decentralized adaptive random access schemes have been investigated for other types of

networks with different packet reception models, see e.g., [1, 6, 25, 27, 30, 46, 51]. To compute

the optimal thresholds, however, terminals are assumed to know the probability distribution of

their fading channels. This is a restrictive assumption because the channel fading distribution is

usually unknown and can only be estimated based on channel observations. Overcoming this

limitation motivates the development of adaptive algorithms to learn optimal operating points

based on local CSI [4, 37]. The work in [4] proposes a heuristic adaptive algorithm for threshold-

based schedulers in which the thresholds are tuned based on local channel realizations in a time

window. The work in [37] develops an online learning algorithm for transmission probability

and power control under rate constraints using game-theoretic approaches. However, neither [4]

nor [37] guarantees global optimality.

The contribution of this chapter is the development of an optimal distributed adaptive algo-

rithm for scheduling and power control given that terminals only have access to local CSI and

operate independently of each other. At each time slot, terminals observe their channel states
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and decide whether to transmit or not. If they decide to transmit, they choose a power for their

communication attempt. As time progresses, power budgets are satisfied almost surely, while the

network almost surely maximizes a weighted proportional fair utility. We remark that terminals

operate independently without access to the channel state of other terminals and that the channel

pdf is unknown. The proposed algorithm can handle general non-convex, even discontinuous,

rate functions with manageable computational complexity. It is worth noting that under the

frame work of network utility maximization (NUM) algorithms for computing optimal channel

access probabilities in random access networks are developed (see e.g. [21]). However, neither

fading nor power adaptation is considered in these work.

The presentation begins by formulating optimal adaptive random access as a utility max-

imization problem whose objective is to maximize a weighted sum of throughput logarithms

(Section 2.1). The variables to be determined as a solution of this optimization problem are a

scheduling function that determines if a terminal should transmit or not based on its CSI, and

a power allocation function that maps a terminal CSI to its transmit power. It is important to

remark that: (i) because fading takes on a continuum of values, this optimization problem is

infinite-dimensional; (ii) the constraints modeling random access are non-convex; (iii) despite

the existence of these non-convex constraints optimization problems of this form are known to

have null duality gap [33]; and (iv) since the number of constraints turns out to be finite the op-

timization problem is finite-dimensional in the dual domain. A further complication is that the

original problem formulation yields solutions that require access to global CSI.

We start by overcoming the dependence on global CSI by introducing an equivalent decompo-

sition in per-terminal subproblems whereby nodes maximize local utilities (Section 2.2.A). While

this reformulation yields solutions that depend on local CSI only, attempting a solution in the

primal domain is difficult because the per-terminal subproblems inherit infinite dimensionality

and lack of convexity from the original problem formulation, as well as the need to have access to

the channel pdf. We therefore exploit the lack of duality gap to approach their solution through
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a stochastic subgradient descent algorithm in the dual domain (Section 2.2.B). Based on channel

realizations in each time slot, the algorithm computes instantaneous values for the scheduling

and power allocation functions and updates Lagrangian multipliers in a direction that can be

proven to point towards the set of optimal dual variables in an average sense (Proposition 1).

Exploiting this fact we prove that the throughput utility achieved by the algorithm almost surely

converges to a value close to the optimal utility. The gap between the optimal and the achieved

utility can be made arbitrarily small by reducing a fixed step size (Theorem 1). The chapter closes

with a numerical evaluation of the proposed algorithm for a randomly generated heterogeneous

network (Section 2.3). To illustrate generality of the proposed approach we consider a system

with terminals employing capacity achieving codes (Section 2.3.1) and a more practical scenario

with nodes employing adaptive modulation and coding (Section 2.3.2). Concluding remarks are

presented in Section 2.4.

2.1 Problem formulation

Consider a random access channel as introduced in Section 1.1.1. With rates ri given as in (1.6),

our objective is to maximize a weighted proportional fair (WPF) utility defined as

U(r) =

n∑

i=1

wi log(ri), (2.1)

where r = [r1, · · · , rn]T is the vector of rates and wi ∈ R+ is the weight coefficient for terminal i.

Setting wi = wj for all i 6= j in a homogenous system with all channels having the same pdf, the

WPF utility is equivalent to maximizing the sum of throughputs. In a heterogeneous network

where channel pdfs vary among users, maximizing U(r) yields solutions that are fair since it

prevents users from having very low transmission rates.

Grouping the objective in (2.1) with the constraints in (1.6) and (1.7), optimal adaptive random
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access is formulated as the following optimization problem

P = max U(r)

s.t. ri = Ehi [Qi(hi)Ci(hiPi(hi))]

n∏

j=1,j 6=i

[
1− Ehj [Qj(hj)]

]
,

Ehi [Qi(hi)Pi(hi)] ≤ p
avg
i ,

Qi(hi) ∈ Q, Pi(hi) ∈ Pi,∀i (2.2)

where Q is the set of functions R+ → {0, 1} taking values on {0, 1} and Pi represents the set of

functions R+ → [0, pinst
i ] taking values on [0, pinst

i ]. Notice that the joint optimization across users

required to solve (2.2) introduces functional dependence between the actions of different termi-

nals. This is not incongruent with the requirement of statistically independent schedules in each

time slot. In fact, the notations Qi(hi) and Pi(hi) in (2.2) stipulates that terminals are required

to make channel access and power allocation decisions based on local CSI only. Consequently,

although problem (9) requires joint optimization across users, it restricts optimization to policies

that result in statistically independent operations.

The goal of this chapter is to develop an online algorithm to determine schedules qi(t) and

power assignments pi(t) having statistics that solve the optimization problem in (2.2). The al-

gorithm is required to: (i) operate without knowledge of the channel distribution; and (ii) yield

functions qi(t) and pi(t) that depend on the current and past values of the local channel hi(t) but

are independent of other terminal’s channels hj(t) for j 6= i.

Remark 1. In order to allow terminals to know if their transmissions are successful or not, the AP provides

feedback on whether the transmission attempt was successful or a collision detected. If a terminal transmits

a packet but detects a collision, it can reschedule the packet for retransmission in a subsequent time slot.

We remark that feedback does not introduce correlation between the transmission decisions of different

terminals. The provided feedback only tells terminals if they should retransmit previous packets or not, but

does not enforce them to make channel access or power allocation decisions.
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2.2 Adaptive algorithms for optimal random access channels

The stated goal is to devise scheduling and power control policies based on local CSI that are

globally optimal as per (2.2). These two objectives, i.e., global optimality while relying on local

CSI, seem to contradict each other. Because ri depends not only on Qi(hi) and Pi(hi) but on

Qj(hj) for all j 6= i, it seems that optimal Qi(hi) and Pi(hi) solving (2.2) might also be functions

of other terminals’ CSI. To see that this is not the case, we will show that it is possible to decom-

pose (2.2) in per terminal subproblems. After introducing this decomposition the complicating

fact that the channel pdf fhi(hi) is unknown remains. To overcome this complication, we will

introduce a stochastic subgradient descent algorithm in the dual domain that is optimal in an

ergodic sense.

2.2.1 Problem decomposition and its dual

Begin then by separating (2.2) in per terminal subproblems. To do so, we substitute (1.6) into

(2.1) and express the logarithm of a product as a sum of logarithms. As a result, the global utility

in (2.1) can be rewritten as

U(r) =

n∑

i=1

wi


logEhi [Qi(hi)Ci(hiPi(hi))] +

n∑

j=1,j 6=i
log
[
1− Ehj [Qj(hj)]

]

 . (2.3)

Note that each summand in (2.3) only involves variables related to a particular node. Thus, we

can reorder summands in (2.3) to group all of the terms pertaining to node i. Further defining

w̃i :=
∑n
j=1,j 6=i wi, we can rewrite (2.3) as

U(r) =

n∑

i=1

[
wi log [Ehi [Qi(hi)Ci(hiPi(hi))]] + w̃i log [1− Ehi [Qi(hi)]]

]
:=

n∑

i=1

Ui, (2.4)

where we have defined the local utilities Ui. Since Ui only involves variables that are related

to terminal i, it can be regarded as a utility function for terminal i. To maximize U(r) for the

whole system it suffices to separately maximize Ui for each terminal i. Introducing auxiliary

variables xi = Ehi [Qi(hi)Ci(hiPi(hi))] and yi = Ehi [Qi(hi)], it follows that (2.2) is equivalent to
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the following per terminal subproblems

Pi = max wi log xi + w̃i log(1− yi)

s.t. xi ≤ Ehi [Qi(hi)Ci(hiPi(hi))] ,

yi ≥ Ehi [Qi(hi)] ,

Ehi [Qi(hi)Pi(hi)] ≤ p
avg
i ,

xi ≥ 0, 0 ≤ yi ≤ 1, Qi(hi) ∈ Q, Pi(hi) ∈ Pi, (2.5)

where we relaxed the equality constraints to inequality ones which can be done without loss of

optimality. Finding optimal solutions of (2.5) for all terminals i is equivalent to solving (2.2).

Different from (2.2), however, there is no coupling between variables of different terminals in

(2.5). This property leads naturally to optimal Qi(hi) and Pi(hi) that are independent of other

terminals’ CSI as required by problem definition. Alas, (2.5) inherits the complex structure of

(2.2).

As is the case with (2.2), solving (2.5) is difficult because: (i) The optimization space in (2.5)

includes functions Qi(hi) and Pi(hi) that are defined on R+, implying that the dimension of the

problem is infinite. (ii) The rate function Ci(hiPi(hi)) is in general non-concave with respect to

hiPi(hi), and may be even discontinuous as in (1.2). (iii) The constraints involve expected values

over random variables hi whose pdfs are unknown.

An important observation is that the number of constraints in (2.5) is finite. This implies that

while there are infinite variables in the primal domain, there are a finite number of variables

in the dual domain. This observation suggests that (2.5) is more tractable in the dual space.

Introduce then Lagrange multipliers λi = [λi1, λi2, λi3]T associated with the first three inequality

constraints in (2.5); define vectors xi := [xi, yi]
T and Pi(hi) := [Qi(hi), Pi(hi)]

T ; and write the

Lagragian of the optimization problem in (2.5) as

Li(xi,Pi(hi),λi) =wi log xi + w̃i log(1− yi) + λi1 [Ehi [Qi(hi)Ci(hiPi(hi))]− xi]
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+ λi2 [yi − Ehi [Qi(hi)]] + λi3
[
p

avg
i − Ehi [Qi(hi)Pi(hi)]

]

=λi3p
avg
i + [wi log xi − λi1xi] + [w̃i log(1− yi) + λi2yi]

+ Ehi [Qi(hi) [λi1Ci(hiPi(hi))− λi2 − λi3Pi(hi)]] . (2.6)

where the second equality follows after reordering terms in the first equation. Notice that the

first term in the second equality in (2.6) depends on xi only, the second term on yi and the third

term on Pi(hi) and Qi(hi). This property is exploited later on. The dual function is then defined

as the maximum of the Lagrangian over the set of feasible xi and Pi(hi), i.e.,

gi(λi) := max Li(xi,Pi(hi),λi)

s.t. xi ≥ 0, 0 ≤ yi ≤ 1, Qi(hi) ∈ Q, Pi(hi) ∈ Pi. (2.7)

We now can write the dual problem as the minimum of gi(λi) over positive dual variables, i.e.,

Di = min
λi≥0

gi(λi). (2.8)

In general, the optimal dual value Di of (2.8) provides an upper bound for the optimal primal

value Pi of (2.5), i.e., Di ≥ Pi. While the inequality is typically strict for non-convex problems,

for the problem in (2.5) Pi = Di as long as the fading distribution has no realization with positive

probability [33]. Notice that this is true despite the non-convex constraints present in (2.5). This

lack of duality gap implies that the finite dimensional convex dual problem is equivalent to the

infinite dimensional nonconvex primal problem. While this affords a substantial improvement

in computational tractability, it does not necessarily mean that solving the dual problem is easy

because evaluation of the dual function’s value requires maximization of the Lagrangian. In

particular, this maximization includes an expected value over the unknown channel distribution

fhi(hi). Still, convexity of the dual function allows the use of descent algorithms in the dual

domain because any local optimal solution is a global optimal solution λ∗i = [λ∗i1, λ
∗
i2, λ

∗
i3]T . This

property is exploited next to develop a stochastic subgradient descent algorithm that solves (2.8)

using observations of instantaneous channel realizations hi(t).
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2.2.2 Adaptive algorithms using stochastic subgradient descent

Instead of directly finding optimal xi, yi, Qi(hi) and Pi(hi) for the primal problem (2.5), the

proposed algorithm exploits the lack of duality gap to use a stochastic subgradient descent in the

dual domain. Starting from given dual variables λi(t), the algorithm computes instantaneous

primal variables xi(t), yi(t), qi(t) and pi(t) based on channel realization hi(t) in time slot t, and

uses these values to update dual variables λi(t + 1). Specifically, the algorithm starts finding

primal variables that optimize the summands of the Lagrangian in (2.6) (the operator [·]+ denotes

projection in the positive orthant)

xi(t) = argmax
xi≥0

{wi log xi − λi1(t)xi} =
wi

λi1(t)
, (2.9)

yi(t) = argmax
0≤yi≤1

{w̃i log(1− yi) + λi2(t)yi} =

[
1− w̃i

λi2(t)

]+

, (2.10)

{qi(t), pi(t)} = argmax
qi∈{0,1},pi∈[0,pinst

i ]

{qi [λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi]} , (2.11)

The maximization in (2.11) determines schedules and transmitted power associated with current

channel realization hi(t). Since qi in (2.11) takes values on {0,1} the objective is either 0 when

qi = 0 or λi1(t)Ci(hi(t)pi) − λi2(t) − λi3(t)pi when qi = 1. Thus, to solve (2.11) we only need to

find the optimal pi(t) when qi(t) = 1 and see if the resulting objective is greater than 0. Thus, we

can rewrite (2.11) as

pi(t) = argmax
pi∈[0,pinst

i ]

{λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi} ,

qi(t) = H

(
λi1(t)Ci(hi(t)pi(t))− λi2(t)− λi3(t)pi(t)

)
, (2.12)

where H(a) denotes Heaviside’s step function with H(a) = 1 for a > 0 and H(a) = 0 otherwise.

Based on xi(t), yi(t), qi(t) and pi(t), define the stochastic subgradient si(t)=[si1(t), si2(t),si3(t)]T

with components

si1(t) = qi(t)Ci(hi(t)pi(t))− xi(t), (2.13)

si2(t) = yi(t)− qi(t), (2.14)
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si3(t) = p
avg
i − qi(t)pi(t). (2.15)

The algorithm is completed with the introduction of a constant step size ε and a descent update

in the dual domain along the stochastic subgradient si(t)

λil(t+ 1) = [λil(t)− εsil(t)]+ , for l = 1, 2, 3. (2.16)

Notice that computation of variables in (2.9)-(2.16) does not require information exchanges be-

tween terminals. This guaranteesQi(hi) and Pi(hi) to be independent ofQj(hj) and Pj(hj) for all

i 6= j as required by problem formulation. The proposed algorithm is summarized in Algorithm

1.

To analyze convergence of (2.9)-(2.16) let us start by showing that si(t) is indeed a stochastic

subgradient of the dual function as stated in the following proposition.

Proposition 1. Given λi(t), the expected value of the stochastic subgradient si(t) is a subgradient of the

dual function in (2.7), i.e., ∀λi ≥ 0,

Ehi
[
sTi (t)|λi(t)

]
(λi(t)− λi) ≥ gi(λi(t))− gi(λi). (2.17)

In particular,

Ehi
[
sTi (t)|λi(t)

]
(λi(t)− λ∗i ) ≥ gi(λi(t))− Di ≥ 0. (2.18)

Proof. See Appendix 2.5.1.

Proposition 1 states that the average of the stochastic subgradient si(t) is a subgradient of

the dual function. We can then think of an alternative algorithm by replacing Ehi
[
si(t)

∣∣∣∣λi(t)
]

for

si(t) in the dual iteration step (2.16), which would amount to a subgradient descent algorithm for

the dual function. Since, Ehi
[
si(t)

∣∣∣∣λi(t)
]

points towards λ∗ – the angle between Ehi
[
si(t)

∣∣∣∣λi(t)
]

and λi(t)− λ∗i is positive as indicated by (2.18) –, it is not difficult to prove that λi(t) eventually

approaches λ∗i , e.g., [39, Ch. 2]. However, since we assume the pdf of hi is unknown, the subgra-

dient Ehi
[
si(t)

∣∣∣∣λi(t)
]

can only be approximated using past channel realizations hi(1), . . . , hi(t).

While this approach is possible, it is computationally costly.
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Algorithm 1: Adaptive scheduling and power control at terminal i

1 Initialize Lagrangian multipliers λi(0);

2 for t = 0, 1, 2, · · · do

3 Compute primal variables as per (2.9), (2.10), and (2.12):

4 xi(t) =
wi

λi1(t)
;

5 yi(t) =

[
1− w̃i

λi2(t)

]+

;

6 pi(t) = argmax
pi∈[0,pinst

i ]

{λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi};

7 qi(t) = H

(
λi1(t)Ci(hi(t)pi(t))− λi2(t)− λi3(t)pi(t)

)
;

8 if qi(t) = 1 then

9 Transmit with power pi(t);

10 end

11 Compute stochastic subgradients as per (2.13)-(2.15):

12 si1(t) = qi(t)Ci(hi(t)pi(t))− xi(t);

13 si2(t) = yi(t)− qi(t);

14 si3(t) = p
avg
i − qi(t)pi(t);

15 Update dual variables as per (2.16):

16 λil(t+ 1) = [λil(t)− εsil(t)]+ , for l = 1, 2, 3;

17 end
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The computation of the stochastic subgradient si(t), on the contrary, is simple because it only

depends on the current channel state hi(t). Furthermore, since si(t) points towards the set of

optimal dual variables λ∗i on average [cf. (2.18)] it is reasonable to expect the stochastic sub-

gradient descent iterations in (2.16) to also approach λ∗i in some sense. This can be proved true

and leveraged to prove almost sure convergence of primal iterates xi(t), yi(t), pi(t) and qi(t) to

an optimal operating point in an ergodic sense [31]. Specifically, Theorem 1 of [31] assumes as

hypotheses that the second moment of the norm of the stochastic subgradient si(t) is finite, i.e.,

Ehi
[
‖si(t)‖2

∣∣∣∣λi(t)
]
≤ Ŝ2

i , and that there exists a set of strictly feasible primal variables that sat-

isfy the constraints in (2.5) with strict inequality. If these hypotheses are true, primal iterates

of dual stochastic subgradient descent are almost surely feasible in an ergodic sense. For the

particular case of the problem in (2.5), [31, Theorem 1] implies that

lim
t→∞

1

t

t∑

u=1

qi(u)pi(u) ≤ pavg
i a.s., (2.19)

lim
t→∞

1

t

t∑

u=1

xi(u) ≤ lim
t→∞

1

t

t∑

u=1

qi(u)Ci(hi(u)pi(u)) a.s., (2.20)

lim
t→∞

1

t

t∑

u=1

yi(u) ≥ lim
t→∞

1

t

t∑

u=1

qi(u) a.s. (2.21)

It also follows from [31, Theorem 1] that xi(t) and yi(t) yield ergodic utilities that are almost

surely within εŜ2
i /2 of optimal, i.e.,

Pi − lim
t→∞

1

t

t∑

u=1

[wi log xi(u) + w̃i log(1− yi(u))] ≤ εŜ2
i

2
a.s. (2.22)

From (2.19) we can conclude that the ergodic limit of the power allocated by the proposed algo-

rithm satisfies the average power constraint. However, (2.22) does not imply that the scheduling

and power allocation variables pi(t) and qi(t) are optimal. The optimality claim in (2.22) is for the

auxiliary variables xi(t) and yi(t) but the goal here is to claim optimality of the scheduling and

power allocation variables pi(t) and qi(t). To prove optimality of the algorithm, we need to show

that the ergodic transmission rate ri of (1.4), achieved by allocations qi(t) and pi(t) is optimal in

the sense of maximizing the throughput utility U(r) =
∑n
i=1 wi log(ri).
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If the constraints in (2.5) were satisfied for all times t, i.e., if xi(t) ≤ qi(t)Ci(hi(t)pi(t)) and

yi(t) ≥ qi(t), transforming (2.22) into an almost sure near optimality claim for the ergodic limit

ri is a simple matter of substitution and algebraic manipulation. However, these inequalities do

not necessarily hold for all times t. They hold in an ergodic sense as stated in (2.20) and (2.21).

This subtle yet fundamental mismatch is addressed in the proof of the following theorem.

Theorem 1. Consider a random multiple access channel with n terminals using schedules qi(t) and

power allocations pi(t) generated by the algorithm defined by (2.9)-(2.16) resulting in instantaneous

transmission rates ri(t) as given by (1.3) and ergodic rates ri as defined by (1.4). Define vector r :=

[r1, . . . , rn]T , and let U(r) be the weighted proportional fair utility in (2.1). Assume that the second mo-

ment of the norm of the stochastic subgradient si(t) with components as in (2.13)-(2.15) is finite 1, i.e.,

Ehi
[
‖si(t)‖2

∣∣∣∣λi(t)
]
≤ Ŝ2

i , and that there exists a set of strictly feasible primal variables that satisfy the

constraints in (2.5) with strict inequality. Then, the average power constraint is almost surely satisfied

lim
t→∞

1

t

t∑

u=1

qi(u)pi(u) ≤ pavg
i a.s., (2.23)

and the utility of the ergodic limit of the transmission rates almost surely converges to a value within

ε/2
∑n
i=1 Ŝ

2
i of optimality,

P− U(r) := P−
n∑

i=1

wi log

(
lim
t→∞

1

t

t∑

u=1

ri(u)

)
≤ ε

2

n∑

i=1

Ŝ2
i . (2.24)

Proof. The hypotheses of Theorem 1 are chosen to satisfy the hypotheses guaranteeing conver-

gence of ergodic stochastic optimization algorithms [31, Theorem 1]. Thus, almost sure feasibility

and almost sure near optimality of iterates xi(t), yi(t), pi(t) and qi(t) follows in the sense of (2.19)-

(2.22). To establish almost sure satisfaction of average power constraints as per (2.23) just notice

that this inequality coincides with the one in (2.19). To establish (2.24) start by rearranging terms

in (2.22) to conclude that Pi − εŜ2
i /2 ≤ limt→∞ 1

t

∑t
u=1 [wi log xi(u) + w̃i log(1− yi(u))]. Due to

1The finite assumption of the second moment of the subgradients is necessary for the proof of almost sure near opti-

mality of the ergodic stochastic optimization algorithm [31].
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continuity and concavity of the logarithm function we can further bound Pi − εŜ2
i /2 as

Pi −
εŜ2
i

2
≤ wi log

[
lim
t→∞

1

t

t∑

u=1

xi(u)

]
+ w̃i log

[
1− lim

t→∞
1

t

t∑

u=1

yi(u)

]
. (2.25)

The limits in (2.25) are equal to the limits in the left hand sides of the inequalities in (2.20) and

(2.21). Thus, using this almost sure ergodic feasibility results Pi − εŜ2
i /2 is bounded as

Pi −
εŜ2
i

2
≤ wi log

[
lim
t→∞

1

t

t∑

u=1

qi(u)Ci(hi(u)pi(u))

]
+ w̃i log

[
1− lim

t→∞
1

t

t∑

u=1

qi(u)

]
. (2.26)

Ergodicity, possibly restricted to an ergodic component, allows replacement of the ergodic limits

in (2.27) by the corresponding expected values, leading to the bound

Pi −
εŜ2
i

2
≤ wi logEhi [Qi(hi)Ci(hiPi(hi))] + w̃i logEhi [1−Qi(hi)]. (2.27)

Recall that P =
∑n
i=1 Pi per definition, and consider the sum of the inequalities in (2.27) for all

terminals i so as to write

P−
n∑

i=1

εŜ2
i

2
≤

n∑

i=1

wi logEhi [Qi(hi)Ci(hiPi(hi))] + w̃i logEhi [1−Qi(hi)]

≤
n∑

i=1

wi log


Ehi [Qi(hi)Ci(hi(t)Pi(hi))]

n∏

j=1,j 6=i
Ehj [1−Qj(hj)]


 , (2.28)

where the second inequality follows by using the definition w̃i :=
∑n
j=1,j 6=i wi, reordering terms

in the sum, and rewriting a sum of logarithms as the logarithm of a product.

The fundamental observation in this proof is that the scheduling function Qi(hi) and the

power allocation functionPi(hi) are independent of the correspondingQj(hj) andPj(hj) of other

terminals. This is not a coincidence, but the intended goal of reformulating (2.2) as (2.5). Using

this independence, the product of expectations in (2.28) can be written as single expectation over

the vector channel h to yield

P−
n∑

i=1

εŜ2
i

2
≤

n∑

i=1

wi log


Eh


Qi(hi)Ci(hiPi(hi))

n∏

j=1,j 6=i
(1−Qj(hj))




 . (2.29)

To finalize the proof use ergodicity, possibly restricted to an ergodic component, to substitute the
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expectation in (2.29) by an ergodic limit to yield

P−
n∑

i=1

εŜ2
i

2
≤

n∑

i=1

wi log


 lim
t→∞

1

t

t∑

u=1

qi(u)Ci(hi(u)pi(u))

n∏

j=1,j 6=i
(1− qj(u))


 := U(r), (2.30)

where we have used the definitions of the ergodic rate in (1.4) and of the utility in (2.1). The result

in (2.24) follows after reordering terms in (2.30).

Theorem 1 states that the stochastic dual descent algorithm in (2.9)-(2.16) computes sched-

ules qi(t) and power allocations pi(t) yielding rates ri(t) that are almost surely near optimal in

an ergodic sense [cf. (2.24)]. It also states that pi(t) satisfies the average power constraint with

probability 1. Notice that the stochastic dual descent algorithm in (2.9)-(2.16) does not compute

the optimal scheduling and power control functions for each terminal. Rather, it draws schedules

qi(t) and power allocations pi(t) that are close to the optimal functions. This is not a drawback

because the latter property is sufficient for a practical implementation. Further note that the use

of constant step sizes ε endows the algorithm with adaptability to time-varying channel distri-

butions. This is important in practice because wireless channels are non-stationary due to user

mobility and environmental dynamics. The gap between U(r) and P can be made arbitrarily

small by reducing ε.

Remark 2. The desired optimal schedules Q∗(h(t)) and power allocations P ∗(h(t)) as prescribed in Sec-

tion 2.1 are functions of the current channel realizations only. The proposed online policy, however, com-

putes schedules qi(t) and power allocations pi(t) based on the current channel hi(t) and dual variables

λi(t). In each time slot the iterative policy updates λi(t) using λi(t−1) and stochastic subgradients si(t)

which depend on qi(t), pi(t) and hi(t). As a result, the dual variable λi(t) depends on all previous chan-

nel gains from hi(0) up to hi(t). Since qi(t) and pi(t) are functions of λi(t), they depend on all previous

channel gains as well. This is not a contradiction because as the algorithm progresses, λi(t) approaches

the optimal multiplier λ∗i , implying that the time-dependent variables qi(t), pi(t) converge towards the

optimal policy P ∗(h(t)), Q∗(h(t)). As a matter of fact, λi(t) does not converge to λ∗i , but to a neighbor-

hood of λ∗i . This results in some residual time dependence in the variables qi(t), pi(t) that accounts for the
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algorithm’s (arbitrarily small) optimality penalty as stated in Theorem 1.

2.2.3 Structure of the optimal primal solution

While the algorithm in (2.9)-(2.16) provides a method to find the optimal operating point for the

random multiple access channel, it does not provide intuition on the properties of this operating

point. This section studies structural properties of the optimal primal solution.

In convex optimization problems optimal primal variables are obtained as the Lagrangian

maximizers for optimal dual variables. The optimization problem in (2.5) is not convex. This

is not a hindrance because the recovery of optimal primals from optimal duals through La-

grangian maximization follows from the lack of duality gap, which is a property that (2.5) does

possess [33]. Let us then begin by showing that the optimal primal variables x∗i = [x∗i , y
∗
i ]T and

P∗i (hi) = [Q∗i (hi), P
∗
i (hi)]

T of the primal problem in (2.5) can be obtained from the maximizers

of the Lagrangian Li(xi,Pi(hi),λ
∗
i ). From the definition of the dual function in (2.7), the optimal

dual value can be written as

Di =gi(λ
∗
i ) = maxLi(xi,Pi(hi),λ

∗
i ) (2.31)

s.t. xi ≥ 0, 0 ≤ yi ≤ 1, Qi(hi) ∈ Q, Pi(hi) ∈ Pi.

Since the maximization in (2.31) is with respect to all primal variables satisfying the stated con-

straints and the optimal variables x∗i and P∗i (hi) satisfy these constraints, it must be

Di ≥ Li(x∗i ,P∗i (hi),λ
∗
i ). (2.32)

Consider now the explicit expression of Li(x∗i ,P∗i (hi),λ
∗
i ) as it follows from the definition in (2.6)

Li(x∗i ,P∗i (hi),λ
∗
i ) = wi log x∗i + w̃i log(1− y∗i ) + λ∗i1 [Ehi [Q∗i (hi)Ci(hiP

∗
i (hi))]− x∗i ]

+ λ∗i2 [y∗i − Ehi [Q∗i (hi)]] + λ∗i3
[
p

avg
i − Ehi [Q∗i (hi)P

∗
i (hi)]

]
. (2.33)

Since x∗i and P∗i (hi) are solutions of (2.5), they are feasible, i.e., they satisfy the inequalities in

(2.5). Thus, the terms Ehi [Q∗i (hi)Ci(hiP
∗
i (hi))] − x∗i ≥ 0, y∗i − Ehi [Q∗i (hi)] ≥ 0, and p

avg
i −
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Ehi [Q∗i (hi)P
∗
i (hi)] ≥ 0 are all nonnegative. Since the Lagrange multipliers λi1 ≥ 0, λi2 ≥ 0, and

λi3 ≥ 0, are also nonnegative, it holds

Di ≥ Li(x∗i ,P∗i (hi),λ
∗
i ) ≥ wi log x∗i + w̃i log(1− y∗i ) = Pi, (2.34)

where the first inequality follows from (2.32) and the last equality from the fact that x∗i is optimal.

Since the duality gap is null, i.e., Di = Pi, the inequalities in (2.34) must hold with equality. It then

must be that x∗i and P∗i (hi) are a solution to the maximization in (2.31). Further note that because

xi and Pi(hi) appear in different terms in Li(xi,Pi(hi),λ
∗
i ), the joint maximization with respect

to xi and Pi(hi) can be carried out as separate maximizations with respect to xi and Pi(hi) [cf.

(2.42)]. In particular, for P∗i (hi) we have

{Q∗i (hi), P ∗i (hi)} ∈ argmax
Qi(hi),Pi(hi)

Ehi [Qi(hi) [λ∗i1Ci(hiPi(hi))− λ∗i2 − λ∗i3Pi(hi)]] . (2.35)

where the relation is belong to (∈) rather than equality (=) because there might be more than one

argument that maximizes the expression in (2.35).

Due to linearity of the expectation operator Ehi [·], to maximize the expected value with re-

spect to the functions Qi(hi) ∈ Q and Pi(hi) ∈ Pi it is equivalent to maximize with respect to

individual values. Therefore, it must be for all hi > 0,

{Q∗i (hi), P ∗i (hi)} ∈ argmax
qi∈{0,1},pi∈[0,pinst

i ]

{qi [λ∗i1Ci(hipi)− λ∗i2 − λ∗i3pi]} . (2.36)

Using the expression in (2.36) it is possible to infer that the optimal scheduling function Q∗i (hi) is

a threshold rule as stated in the following theorem.

Theorem 2. The optimal scheduling function Q∗i (hi) solving (2.5) is a threshold rule. I.e., there exists a

constant h0 such that Q∗i (hi) = H(hi − h0).

Proof. Let us start by elaborating on the implications of (2.36). Define ui(pi, hi) := λ∗i1Ci(hipi) −

λ∗i2 − λ∗i3pi as the part of the maximand of (2.36) that depends on pi and let vi(hi) :=

maxpi∈[0,pinst
i ] {ui(pi, hi)} be the maximum of ui(pi, hi) over allowed pi. If for given hi, we have
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vi(hi) > 0 it then must be Q∗i (hi) = 1 because qi = 1 is the sole argument maximizing the

expression in (2.36). Likewise, if vi(hi) < 0 it must be Q∗i (hi) = 0. When vi(hi) = 0 the value of

Q∗i (hi) cannot be inferred from (2.36) because both qi = 0 and qi = 1 are maximizing arguments.

We then conclude the following two implications pertaining to Q∗i (hi) = 1: (i) if vi(hi) > 0 then

Q∗i (hi) = 1; and (ii) if Q∗i (hi) = 1 then vi(hi) ≥ 0.

To prove that the optimal schedule is a threshold rule it suffices to prove that if Q∗i (hi) = 1

for some given hi then Q∗i (h
′
i) = 1 for any h′i > hi. We will prove that for h′i it must be vi(h′i) > 0

from where Q∗i (h
′
i) = 1 follows as per implication (i) of the previous paragraph. To prove that

vi(h
′
i) > 0 let p0 denote a maximizer of ui(pi, hi) so that vi(hi) = ui(p0, hi). Since Q∗i (hi) = 1 it

follows from implication (ii) in the previous paragraph that ui(p0, hi) = vi(hi) ≥ 0. Observing

that for pi = 0 we have ui(0, hi) = −λ∗i2 < 0 it follows that it must be p0 > 0. Define now

power p′0 = (hi/h
′
i)p0. With this selection it follows hip0 = h′ip

′
0 and as a consequence C(hip0) =

C(h′ip
′
0). We can then write the difference ui(p′0, h′i)− ui(p0, hi) as

ui(p
′
0, h
′
i)− ui(p0, hi) =

[
C(h′ip

′
0)− λ∗i2 − λ∗i3p′0

]
−
[
C(hip0)− λ∗i2 − λ∗i3p0

]

= λ∗i3p0

(
1− hi

h′i

)
> 0 (2.37)

where the inequality indicating a strictly positive difference follows from the fact that h′i > hi and

that p0 6= 0. Since ui(p0, hi) ≥ 0 it follows from (2.37) that ui(p′0, h′i) > 0 and as a consequence that

the maximum value vi(h′i) ≥ ui(p
′
0, h
′
i) > 0. From implication (i) it then follows that Q∗i (h

′
i) = 1

and that the optimal schedule is a threshold rule as already argued.

When there is no power control function and the rate function is continuous, the optimality of

threshold-based schedulers has been proved in [50]. This result is extended here to general cases

allowing for power control and the use of discontinuous rate functions. It is worth emphasizing

that the optimality of a threshold-based scheduler is independent of the specific form of the rate

function Ci(hiPi(hi)). Recall that the sole constraint on the function Ci(hiPi(hi)) is that is must

be finite for finite argument.
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If the form of the transmission rate function Ci(hiPi(hi)) is known, it is also possible to infer

functional forms for the optimal power control functions P ∗i (hi). If AMC is used at the physical

layer the rate function takes the form in (1.2). In this case it is possible to find unique maximizers

of (2.36) that as a consequence determine the form of the optimal power allocation P ∗i (hi). The

corresponding functional form requires finding the AMC mode m∗ = argmaxm={1,...,M}{λ∗1τm −

λ∗2 − λ∗3
ηmN0B
hi
} and setting the transmitted power to

P ∗i (hi) =
ηm∗N0B

hi
Qi(hi), (2.38)

With capacity achieving codes used at the physical layer the rate function takes the form in (1.1).

The optimal power control function then takes the form

P ∗i (hi) =

(
λ∗i1
λ∗i3
− N0

hi

)
BQ(hi), (2.39)

because the P ∗i (hi) in (2.39) are the unique arguments maximizing (2.36). The expression in (2.39)

implies the optimality of power waterfilling across fading states.

Remark 3. Since the optimal policy is a function of the channels’ probability distribution, it seems that

these distributions have to be estimated in order to design the optimal policy. However, the proposed

Algorithm 1 only maintains three Lagrange multipliers λi1(t), λi2(t) and λi3(t). The reason for this is

that as can be seen in (2.36) the optimal solution can be uniquely determined by the optimal Lagrange

multipliers λ∗i1, λ∗i2 and λ∗i3. Thus, instead of learning the channels’ probability distribution it suffices

to learn the optimal dual variables λ∗i . Learning λ∗i is, in effect, the purpose of Algorithm 1. This is an

important simplification. Whereas the unknown channel distributions are infinite-dimensional, the dual

variables λ∗i are 3-dimensional.

Remark 4. It is possible to interpret (2.36) in economic terms. Consider λ∗i1 as the reward for transmitting

a unit of information, while regarding λ∗i2 and λ∗i3 as the prices for accessing the channel once and for

consuming a unit of transmit power, respectively. With these interpretations, ui(pi, hi) represents the

profit generated by transmitting with power pi when the channel state is hi, and vi(hi) is the maximum
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Figure 2.1: An example multiple access channel with n = 20 nodes communicating with a common access

point (AP). Nodes are randomly placed in a 100 m × 100 m square and the AP is located at the center of

the square. Nodes’ labels represent indexes and distances to the AP. Subsequent numerical experiments use

this realization of the random placement.

profit that can be obtained while satisfying the instantaneous power constraint. Consequently, (2.36) can

be interpreted as stating that terminals are allowed to transmit if and only if their maximum possible profits

are positive.

2.3 Numerical results

To illustrate performance of the proposed algorithms, we conduct numerical experiments on a

network with n = 20 terminals randomly placed in a square with side L = 100 m and a common

AP located at the center of the square. Numerical experiments here utilize the realization of this
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random placement shown in Fig. 2.1. Communication between terminals and the AP is over a

bandlimited Gaussian channel with bandwidth B and noise power spectral density N0. We set

B = 1 so that capacities are measured in bits per second per Hertz (b/s/Hz) and N0 = 10−10 W.

Channel gains hi(t) are Rayleigh distributed with mean h̄i and are independent across terminals

and time. The average channel gain h̄i := E [hi] follows an exponential pathloss law, h̄i = αd−βi

with α = 10−6m−1 and β = 2 constants and di denoting the distance in meters between terminal

i and the AP. All weights in the proportional fair utility in (2.1) are set to wi = 1. Throughout, the

performance metric of interest is the average transmission rate r̄i(t) of terminal i at time t defined

as

r̄i(t) =
1

t

t∑

u=1

ri(u), (2.40)

where ri(u) is normalized so that it represents bits/s/Hz. The system’s throughput utility by

time t is then defined in terms of r̄i(t) as Ū(t) :=
∑n
i=1 wi log(r̄i(t)).

The algorithm in (2.9)-(2.16) is first tested in a network where nodes use capacity achieving

codes and have instantaneous power constraints but do not have average power constraints;

see Section 2.3.1. We then consider nodes that have average as well as instantaneous power

constraints using AMC; see Section 2.3.2.

2.3.1 System with instantaneous power constraint

Assume the use of capacity achieving codes so that the rate function for terminal i takes the

form in (1.1). Further assume that there is an instantaneous power constraint pinst
i = 100 mW

for each terminal, but that there is no average power constraint. Since the rate function is a

nonnegative increasing function of power it is optimal for each terminal to transmit with its

maximum allowed instantaneous power every time it decides to transmit. Therefore, the power

control function is a constant pi(t) = pinst
i and the system’s performance depends solely on the

terminals’ scheduling functions qi(t). In this simplified setting, a closed form solution for qi(t) is
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Figure 2.2: Convergence of the proposed algorithm to near optimal utility with instantaneous power con-

strains but no average power constraints. Throughput utility of the proposed adaptive algorithm and of the

optimal offline scheduler are shown as functions of time for one realization and for the ensemble average

of realizations. In steady state the adaptive algorithm operates with minimal performance loss with respect

to the optimal offline scheduler. A utility gap smaller than 10 is achieved in about 350 iterations. Power

constraint pinst
i = 100 mW, step size ε = 0.1, capacity achieving codes.

known if the channel pdf is available [50]. Our interest in this simplified problem is that it allows

a performance comparison between the schedules yielded by (2.9)-(2.16) and those of the optimal

offline scheduler.

Convergence of (2.9)-(2.16) to a near optimal operating point is illustrated in Fig. 2.2 for step

size ε = 0.1. The ergodic utility Ū(t) is shown through 500 iterations and is compared with

the utility of the optimal offline scheduler. When using (2.9)-(2.16) the total throughput utility

converges to a value with negligible optimality gap with respect to the offline scheduler. Ob-

31



serve that convergence is fast as it takes less than 180 iterations to reach a utility with optimality

gap smaller than 20 and 360 iterations to get an optimality gap smaller than 10. Figs. 2.3 and

2.4 respectively show average rates and transmission probabilities after 500 iterations for each

terminal. Observe in Fig. 2.3 that all terminals achieve average rates that are very close to the op-

timal ones. Further observe that even though terminals experience different channel conditions,

fair schedules are obtained as a consequence of the use of a logarithmic utility. Indeed, as seen

in Fig. 2.4, average transmission probabilities are close for all terminals. Note, however, that the

achieved rates shown in Fig. 2.3 are different because terminals have different average channels.

To test how the optimality gap changes as the step size ε varies, we ran the algorithm (2.9)-

(2.16) with different step sizes. Fig. 2.5 shows the optimality gap when the step size ε varies

between 10−2 to 10−1. The optimality gap indeed decreases as the step size ε is reduced. This

corroborates the result of Theorem 1 that ensures a vanishing optimality gap as ε → 0. Using

smaller step size, however, leads to slower convergence. This tradeoff between convergence

speed and optimality gap determines the choice of ε for practical implementations.

2.3.2 System with average power constraint

For the same network in Fig. 2.1, consider now the case in which each terminal adheres to both,

instantaneous and average power constraints. We also deviate from Section 2.3.1 in the use of

AMC instead of capacity achieving codes at the physcial layer, so that the rate function for termi-

nal i takes the form in (1.2). Each terminal has M = 4 AMC modes with respective rates τ1 = 1

bits/s/Hz, τ2 = 2 bits/s/Hz, τ3 = 3 bits/s/Hz, and τ4 = 4 bits/s/Hz. The transitions between

AMC modes are at SNRs η1 = 1, η2 = 4, η3 = 8, and η4 = 16. The instantaneous power constraint

is set to pinst
i = 100 mW and the average power constraint to pavg

i = 5 mW for all terminals i.

To demonstrate optimality of the proposed algorithm, we compute the primal objective Ū(t),

the dual value D(t) =
∑n
i=1 gi(λi(t)), and examine the duality gap between them. Fig. 2.6

shows Ū(t) and D(t) for 103 time slots. As time grows, the duality gap decreases and eventually
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Figure 2.3: Average transmission rates (bits/s/Hz) in 500 time slots, i.e., r̄i(500) as defined in (2.40), for all

terminals. The optimal offline scheduler and the proposed adaptive algorithm yield similar close to optimal

average rates. The variation in achieved rates is commensurate with the variation in average signal to noise

ratios (SNRs) due to different distances to the access point. For the network in Fig.2.1 and the pathloss and

power parameters used here, average signal to noise ratios vary between 0.4 and 10. Instantaneous power

constraint pinst
i = 100 mW, step size ε = 0.1, capacity achieving codes.

approaches a small positive constant, implying near optimality of the proposed algorithm.

To test the satisfaction of the average power constraint, define the average power consump-

tion of terminal i by time t as

p̄i(t) =
1

t

t∑

u=1

pi(u). (2.41)

Average power consumptions p̄3(t) and p̄13(t) for terminals 3 and 13 are shown in Fig. 2.7. Ob-

serve that in both cases the average power constraints are satisfied as time increases. For Terminal

3, p̄3(t) is always smaller than pavg
3 since channel conditions are unfavorable, resulting in Termi-
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Figure 2.4: Average transmission probabilities in 500 time slots for all terminals. Offline and adaptive opti-

mal schedulers shown. Despite different channel conditions all terminals transmit with a similar probability

close to 1/n = 0.05. This is consistent with the use of a logarithmic, i.e., proportional fair, utility. Instanta-

neous power constraint pinst
i = 100 mW, step size ε = 0.1, capacity achieving codes.

nal 3 utilizing only mode 1 for communication to the AP. Finally, notice that the average power

consumed by Terminal 3 is smaller than the available budget pavg
3 = 5 mW. For Terminal 13, p̄13(t)

falls below p
avg
13 after 600 iterations. This is as expected due to the almost sure feasibility result of

Theorem 1.

Fig. 2.8 illustrates the relationship between instantaneous power allocations pi(t) and instan-

taneous channel gains hi(t) for terminals 3 and 13. Consistent with the fact that the optimal

power allocation is a threshold rule, no power is allocated when channel realizations are bad.

Further note that Terminal 3 only uses the AMC mode with the lowest rate τ1 = 1 bits/s/Hz

while Terminal 13 uses two modes with rates τ2 = 2 bits/s/Hz and τ3 = 3 bits/s/Hz. This
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Figure 2.5: Steady state optimality gap between proposed adaptive algorithm and optimal offline scheduler

as a function of step size ε. Values of ε between 10−2 and 10−3 shown. As the step size decreases, the

optimality gap decreases. The optimality gap can be made arbitrarily small by reducing ε. Instantaneous

power constraint pinst
i = 100 mW, capacity achieving codes.

happens because terminal 13, being closer to the AP, has a better average channel than terminal

3.

2.4 Summary

We developed optimal adaptive scheduling and power control algorithms for random multiple

access channels. Terminals are assumed to know their local channel state information but have no

access to the probability distribution of the channel or the channel state of other terminals. In this

setting, the proposed online algorithm determines schedules and transmitted powers that maxi-
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Figure 2.6: Primal and dual objectives when instantaneous and average power constraints are in effect.

One realization and ensemble average of realizations shown. As time grows the duality gap decreases,

eventually approaching a small positive constant and implying near optimality of the achieved rates. In-

stantaneous power constraint pinst
i = 100 mW, average power constraint pavg

i = 5 mW, step size ε = 0.1,

adaptive modulation and coding with M = 4 modes with rates τ1 = 1 bits/s/Hz, τ2 = 2 bits/s/Hz, τ3 = 3

bits/s/Hz, and τ4 = 4 bits/s/Hz and transitions at SNRs η1 = 1, η2 = 4, η3 = 8, and η4 = 16.

mize a global proportional fair utility. The global utility maximization problem was decomposed

in per-terminal utility maximization subproblems. Adaptive algorithms using stochastic subgra-

dient descent in the dual domain were then used to solve these local optimizations. Almost sure

convergence and almost sure near optimality of the proposed algorithm was established. Im-

portant properties of the algorithm are low computational complexity and the ability to handle

non-convex rate functions. Numerical results for a randomly generated network under different

physical layer settings corroborated theoretical results.
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Figure 2.7: Average power consumption for terminals 3 and 13, i.e., p̄3(t) and p̄13(t) as defined in (2.41).

Average power constraints pavg
i = 5 mW are satisfied as time grows. Power p̄3(t) consumed by Terminal 3

is smaller than the allowed budget pavg
3 due to unfavorable channel conditions. Terminal 13 adheres to its

power budget after approximately 600 iterations. Parameters as in Fig. 2.6

2.5 Appendices

2.5.1 Proof of Proposition 1

Proof. To show that the expected value of the stochastic subgradient si(t) given λi(t) is a subgra-

dient of the dual function gi(λi), we have to establish the validity of the relationship in (2.17). To

do so start noticing that in the Lagrangian Li(xi,Pi(hi),λi(t)) the terms involving xi and Pi(hi)

are decoupled [cf. (2.6)]. Consequently, the maximization of Li(xi,Pi(hi),λi(t)) in (2.7) required

to evaluate the dual function’s value gi(λi(t)) can be undertaken as maximizations of separate

37



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Channel gain

In
st

an
ta

ne
ou

s 
po

w
er

 (w
at

t)

0 0.2 0.4 0.6 0.8 1 1.2

x 10−8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Channel gain

In
st

an
ta

ne
ou

s 
po

w
er

 (w
at

t)

(a) Furthest terminal (b) Closest terminal

Figure 2.8: Instantaneous power allocations pi(t) for terminals i = 3 and i = 13 plotted against the channel

realization hi(t). Notice that the channel axes scales are different in (a) and (b). In both cases, no power

is allocated when channel realizations are bad. Terminal 3 uses only the AMC mode with the lowest rate

τ1 = 1 bits/s/Hz, while Terminal 13 uses two modes with rates τ2 = 2 bits/s/Hz and τ3 = 3 bits/s/Hz.

This happens because Terminal 13, being closer to the AP, has a better average channel than Terminal 3.

Parameters as in Fig. 2.6.
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terms with respect to xi and Pi(hi). Therefore, gi(λi(t)) can be written as

gi(λi(t)) =λi3(t)p
avg
i + max

xi≥0
{wi log xi − λi1(t)xi}+ max

0≤yi≤1
{w̃i log(1− yi) + λi2(t)yi}

+ max
Q(hi),P (hi)

Ehi(t)
[
Γi(Qi(hi), Pi(hi), hi,λi(t))

∣∣∣∣λi(t)
]
, (2.42)

where for notational simplicity we defined Γi(qi, pi, hi,λi) := qi [λi1Ci(pi, hi)− λi2 − λi3pi]. The

expected value is conditional with respect to λi(t) because λi is deterministic in (2.7) but random

in (2.42).

The last summand on the right hand side of (2.42) is the maximum over the set of functions

taking values Q(hi) ∈ Q and P (hi) ∈ Pi. Due to linearity of the expectation operator Ehi(t)[·],

this maximum over functions is equal to the expected value of maxima with respect to individual

function values. This allows rewriting of (2.42) as

gi(λi(t)) =λi3(t)p
avg
i + max

xi≥0
{wi log xi − λi1(t)xi}+ max

0≤yi≤1
{w̃i log(1− yi) + λi2(t)yi}

+ Ehi(t)

[
max

qi∈{0,1},pi∈[0,pinst
i ]

Γi(qi, pi, hi(t),λi(t))

∣∣∣∣λi(t)
]
. (2.43)

Notice that the maximizations over xi, yi, and {qi, pi} in (2.43) coincide with the primal iteration

maximizations in (2.9)-(2.11). Therefore, xi(t), yi(t), qi(t), and pi(t) obtained from (2.9)-(2.11)

maximize the right hand side of (2.43) implying that (2.43) is equivalent to

gi(λi(t)) =λi3(t)p
avg
i + [wi log xi(t)− λi1(t)xi(t)] + [w̃i log(1− yi(t)) + λi2(t)yi(t)]

+ Ehi(t)
[
Γi(qi(t), pi(t), hi(t),λi(t))

∣∣∣∣λi(t)
]
. (2.44)

Because xi(t) and yi(t) are deterministic functions of λi(t) it follows that xi(t) = Ehi(t)[xi(t)|λi(t)]

and yi(t) = Ehi(t)[yi(t)|λi(t)]. Use this fact and rearrange terms in (2.44) to obtain

gi(λi(t)) = [wi log xi(t) + w̃i log(1− yi(t))] + λi1(t)Ehi(t)
[
qi(t)Ci(hi(t)pi(t))− xi(t)

∣∣∣∣λi(t)
]

+ λi2(t)Ehi(t)
[
yi(t)− qi(t)

∣∣∣∣λi(t)
]

+ λi3(t)Ehi(t)
[
p

avg
i − qi(t)pi(t)

∣∣∣∣λi(t)
]
. (2.45)

According to the definitions in (2.13)-(2.15) the terms inside the expectations in (2.45) are the
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components si(t) of the stochastic subgradient. It then follows

gi(λi(t)) = wi log xi(t) + w̃i log(1− yi(t)) + Ehi(t)
[
sTi (t)|λi(t)

]
λi(t). (2.46)

Consider now an arbitrary dual variable λi ≥ 0 and the corresponding value of the dual function

g(λi) given by the maximum of the Lagrangian Li(xi,Pi(hi),λi) [cf. 2.7]. As was done for

λi = λ(t) repeat the steps in (2.42) and (2.43) to express gi(λi) as

gi(λi) =λi3p
avg
i + max

xi≥0
{wi log xi − λi1xi}+ max

0≤yi≤1
{w̃i log(1− yi) + λi2yi}

+ Ehi(t)

[
max

qi∈{0,1},p∈[0,pinst
i ]

Γi(q, p, hi(t),λi)]

∣∣∣∣λi(t)
]
, (2.47)

where the conditioning on λi(t) is irrelevant because all variables are independent of λi(t) but

will be exploited later on. Since the expression in (2.47) involves maximizations with respect to

xi, yi, and {qi, pi} a lower bound of gi(λi) is obtained by evaluating the maximands at xi = xi(t),

yi = yi(t) and {qi, pi} = {qi(t), pi(t)}. Thus

gi(λi) ≥λi3p
avg
i + [wi log xi(t)− λi1xi(t)] + [w̃i log(1− yi(t)) + λi2yi(t)]

+ Ehi(t)
[
Γi(qi(t), pi(t), hi(t),λi)

∣∣∣∣λi(t)
]
. (2.48)

Reordering terms as when obtaining (2.45) from (2.44) we rewrite the bound in (2.48) as

gi(λi) ≥ [wi log xi(t) + w̃i log(1− yi(t))] + λi1Ehi(t)
[
qi(t)Ci(hi(t)pi(t))− xi(t)

∣∣∣∣λi(t)
]

+ λi2Ehi(t)
[
yi(t)− qi(t)

∣∣∣∣λi(t)
]

+ λi3Ehi(t)
[
p

avg
i − qi(t)pi(t)

∣∣∣∣λi(t)
]
. (2.49)

Using the definition of the stochastic subgradient as when going from (2.45) to (2.46) it finally

follows

gi(λi) ≥wi log xi(t) + w̃i log(1− yi(t)) + Ehi(t)
[
sTi (t)|λi(t)

]
λi. (2.50)

Subtracting (2.50) from (2.46) yields (2.17). Eq. (2.18) is a particular case of (2.17) with λi = λ∗i

and g(λi) = g(λ∗i ) = Di.

40



Chapter 3

Distributed algorithms for optimal

random access networks

In this chapter, we focus on random access networks as introduced in Section 1.1.2 where termi-

nals only have access to local CSI and operate without cooperating with each other. Our goal is

to develop distributed algorithms that allow terminals to operate optimally according to certain

criteria. Due to additional variables and constraints in random access networks, the distributed

algorithm for optimal random access channel developed in Chapter 2 cannot be directly applied.

However, we can still leverage the property of null duality gap of the optimization problem

and develop distributed algorithms in the dual domain. To do so, we begin by introducing an

optimization problem that defines the optimal random access network (Section 3.1). Since this

problem is not amenable to distributed implementation we proceed to a suboptimal approxima-

tion through a problem that while still not convex has zero duality gap [34] (Section 3.1.2). We

further observe that solution is simpler in the dual domain – and equivalent because of the lack

of duality gap – and proceed to develop stochastic dual descent algorithms that converge to the

optimal operating point (Section 3.2). The resultant algorithm decomposes in a layered architec-
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ture and is computationally tractable in that iterations require a few simple algebraic operations

(Section 3.2.2). We also explain a decentralized implementation based on information exchanges

with neighboring terminals (Section 3.2.3). Results on ergodic stochastic optimization from [32]

are finally leveraged to show that the proposed algorithm yields operating points that are almost

surely close to optimal (Section 3.3). Numerical results and concluding remarks are presented in

Sections 3.4 and 3.5.

3.1 Problem formulation

3.1.1 Optimal operating point

Consider a random access wireless network as introduced in Section 1.1.2. As network designers,

we wish to find the optimal operating point of the wireless network defined as a set of variables

aki , rkij , cij , pi and functions Qij(hi), Pij(hi) that satisfy constraints (1.8)-(1.10), (1.12), and (1.13)

and are optimal according to certain criteria. In particular, we are interested in large rates aki

and low power consumptions pi. Define then increasing concave functions Uki (·) representing

rewards for accepting aki units of information for flow k at terminal i and increasing convex

functions Vi(·) typifying penalties for consuming pi units of power at i. The optimal network

based on local CSI is then defined as the solution of

P = max
{xi,Pi(hi)}∈Bi

∑

i∈V,k∈K
Uki
(
aki
)
−
∑

i∈V
Vi(pi) (3.1)

s.t. constraints (1.8), (1.9), (1.10), (1.12).

Our goal is to develop a distributed algorithm to solve (3.1) without accessing the channel pdf

mh(·). This is challenging because: (i) The optimization space in (3.1) includes functions Qij(hi)

and Pij(hi) implying that the dimension of the problem is infinite. (ii) Since the capacity con-

straint (1.12) is non-convex and the capacity function may be even discontinuous, (3.1) is a non-

convex optimization problem. (iii) Constraints (1.10) and (1.12) involve expectations over chan-
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nel states h whose pdf is unknown. (iv) The fact that the transmission rate cij is determined

not only by the transmitter but also by the receiver and his neighbors [cf. (1.12)] hinders the

development of distributed optimization algorithms.

Notice that the number of constraints in (3.1) is finite. This implies that while there are infi-

nite number of variables in the primal domain, there are a finite number of variables in the dual

domain. Thus, while working in the dual domain may entail some loss of optimality due the

non-convex constraints in (3.1), it does overcome challenge (i) because the dual function is fi-

nite dimensional. It also overcomes challenge (ii) since the dual function is always convex, while

challenge (iii) can be solved by using stochastic subgradient descent algorithms on the dual func-

tion; see e.g., [16] and [32]. However, working with the dual problem of (3.1) does not conduce

to a distributed optimization algorithm due to the coupling introduced by constraint (1.12). This

prompts the introduction of a decomposable approximation that we pursue in the next section.

3.1.2 Problem approximation

For reasons that will become clear in Section 3.2 a distributed solution of the problem in (3.1) is

not possible because scheduling functions Qij(hi) and Ql(hl) are coupled as a product in con-

straint (1.12). If we reformulate this constraint into an expression in which the termsCij(hijPij(hi))

Qij(hi) and 1 − Ql(hl) appear as summands instead of as factors of a product the problem will

become decomposable in the dual domain. This reformulation can be accomplished by taking

logarithms on both sides of (1.12), yielding

c̃ij := log cij ≤ logEhi

[
Cij

(
hijPij(hi)

)
Qij(hi)

]
+

∑

l∈Mi(j)

log [1− Ehl [Ql(hl)]] , (3.2)

where we defined c̃ij := log cij . While scheduling functions of different terminals now appear as

summands on the right hand side of (3.2), the link capacity constraint (1.9) mutates into the non-

convex constraint
∑
k∈K r

k
ij ≤ ec̃ij . To avoid this issue we use the linear lower bound 1+c̃ij ≤ ec̃ij

and approximate this constraint as
∑
k∈K r

k
ij ≤ 1 + c̃ij . Upon defining the average attempted
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transmission rate of link (i, j) as

xij := Ehi [Cij (hijPij (hi))Qij (hi)] , (3.3)

and the transmission probability of terminal i as

yi := Ehi [Qi (hi)] , (3.4)

the original optimization problem P is approximated by

P ≥ P̃ = max
{x̃i,Pi(hi)}∈Bi

∑

i∈V,k∈K
Uki
(
aki
)
−
∑

i∈V
Vi (pi) (3.5)

s.t. aki ≤
∑

j∈N (i)

(
rkij − rkji

)
,
∑

k∈K
rkij ≤ 1 + c̃ij ,

c̃ij ≤ log xij +
∑

l∈Mi(j)

log (1− yl) ,

xij ≤ Ehi

[
Cij

(
hijPij (hi)

)
Qij

(
hi

)]
, yi ≥ Ehi [Qi (hi)] ,

pi ≥ Ehi


 ∑

j∈N (i)

Pij (hi)Qij (hi)


 ,

where we defined x̃i := [xi, xij , yi] and relaxed the definitions of attempted transmission rate and

transmission probability, which we can do without loss of optimality. Problems (3.1) and (3.5)

are not equivalent because of the linear approximation to the link capacity constraint. However,

since 1+ c̃ij is a lower bound on ec̃ij , any operating point that satisfies the constraints in (3.5) also

satisfies the constraints in (3.1). In particular, the solution of (3.5) is feasible in (3.1), although

possibly suboptimal. Further note that variables associated with different terminals appear as

different summands of the objective and constraints in (3.5). This is the signature of optimization

problems amenable to distributed implementations as we explain in the next section.

3.2 Distributed stochastic learning algorithm

To define the dual of the optimization problem in (3.5) introduce Lagrange multipliers Λi, as-

sociated with terminal i where Λi :=
{
λki , µij , νij , αij , βi, ξi : ∀j ∈ N (i)

}
. The dual variable λki
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is associated with the flow conservation constraint in (1.8), the multiplier µij with the refor-

mulated rate constraint
∑
k∈K r

k
ij ≤ 1 + c̃ij , the variable νij with the link capacity constraint

c̃ij ≤ log xij +
∑
l∈Mi(j)

log (1− yl), multiplier αij with the attempted transmission rate con-

straint in (3.3), βi with the transmission probability constraint in (3.4), and ξi with the average

power constraint in (1.10). The Lagrangian for the optimization problem in (3.5) is given by the

sum of the objective and the products of the constraints with their respective multipliers,

L (x̃,P(h),Λ) =
∑

i∈V,k∈K
Uki
(
aki
)
−
∑

i∈V
Vi (pi) +

∑

i∈V,k∈K
λki


 ∑

j∈N (i)

(
rkij − rkji

)
− aki




+
∑

(i,j)∈E
µij

[
(1 + c̃ij)−

∑

k∈K
rkij

]
+
∑

(i,j)∈E
νij


log xij +

∑

l∈Mi(j)

log (1− yl)− c̃ij




+
∑

(i,j)∈E
αij [Ehi [Cij (hijPij (hi))Qij (hi)]− xij ] +

∑

i∈V
βi [yi − Ehi [Qi (hi)]]

+
∑

i∈V
ξi


pi − Ehi


 ∑

j∈N (i)

Pij (hi)Qij (hi)




 . (3.6)

where we introduced vectors x̃, P(h), and Λ grouping x̃i, Pi(hi), and Λi for all nodes i ∈ V . The

dual function is now defined as the maximum of the Lagrangian in (3.6) over the set of feasible

x̃i and Pi(hi) and the dual problem as the minimum of g(Λ) over positive dual variables, i.e.,

D̃ = min
Λ≥0

g(Λ) = min
Λ≥0

max
{x̃i,Pi(hi)}∈Bi

L (x̃,P(h),Λ) . (3.7)

Despite being non-convex, the structure of the problem in (3.5) is such that P̃ = D̃ as long as

the fading distribution has no realization of nonzero probability; see [34]. This lack of duality

gap implies that the finite dimensional and convex dual problem is equivalent to the infinite

dimensional and nonconvex primal problem.

Further note that the Lagrangian in (3.6) exhibits a separable structure because all summands

involve a single primal variable. Consider all summands of (3.6) that involve network variables

associated with terminal i and define the local Lagrangian at terminal i as

L(1)
i (x̃i,Λ) :=

∑

k

Uki
(
aki
)
−λki aki +

∑

j∈N (i)

(
λki − λkj − µij

)
rkij+

∑

j∈N (i)

(
µij− νij

)
c̃ij+

(
ξipi− Vi(pi)

)
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+
∑

j∈Ni
[νij log xij− αijxij ] + βiyi +


 ∑

k∈N (i)


νki +

∑

l∈Mi(j)

νlk




 log(1− yi).

(3.8)

Define also the local per channel Lagrangian L(2)
i

(
Pi(hi),hi,Λ

)
grouping all summands of (3.6)

that involve resource allocations of a given terminal i and a given channel realization hi, i.e.,

L(2)
i (Pi(hi),hi,Λ) :=

∑

j∈N (i)

Qij (hi) [αijCij (hijPij (hi))− βi − ξiPij (hi)] . (3.9)

It is easy to see by reordering summands in (3.6) that we can rewrite the Lagrangian as a sum of

the local termsL(1)
i (x̃i,Λ) and an expectation of the local per channel componentsL(2)

i (Pi(hi),hi,Λ),

L (x̃,P(h),Λ) =
∑

i∈V
L(1)
i (x̃i,Λ) + Ehi

[
L(2)
i (Pi(hi),hi,Λ)

]
. (3.10)

This separability on per-terminal terms L(1)
i

(
x̃i,Λ

)
and per-terminal and per-channel elements

L(2)
i

(
Pi(hi),hi,Λ

)
is exploited in the next section to develop a distributed stochastic subgradi-

ent descent algorithm on the dual domain that solves the dual problem (3.7) and, indirectly, the

primal problem (3.5).

3.2.1 Stochastic subgradient descent

The dual stochastic subgradient descent algorithm consists of recursive updates of dual variables

along stochastic subgradient directions s(t) moderated by a constant stepsize ε,

Λ(t+ 1) =

[
Λ(t)− εs(t)

]+

, (3.11)

where the operator [·]+ denotes projection to the nonnegative quadrant. The stochastic subgra-

dient s(t) in (3.11) is a vector whose expectation is a descent direction of the dual function.

The important observation is that a stochastic subgradient s(t) can be computed from primal

maximizers of the Lagrangian L (x̃,P(h),Λ(t)). At time t terminal i proceeds to compute pri-

mal variables x̃i(t) = [aki (t), rkij(t), c̃ij(t), pi(t), xij(t), yi(t)] that maximize the local Lagrangian
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L(1)
i

(
x̃i,Λ

)
,

x̃i(t) = argmax
x̃i

L(1)
i (x̃i,Λ(t)) . (3.12)

It then observes local channel realizations hi(t) and determines instantaneous resource allocation

variables Pi(t) = [pij(t), qij(t)] that optimize the local per-channel Lagrangian

L(2)
i (Pi(hi(t)),hi(t),Λ) associated with the observed channel realization hi(t), i.e.,

Pi(t) = argmax
Pi

L(2)
i (Pi,hi(t),Λ(t)) . (3.13)

Based on the primal Lagrangian maximizers x̃i(t) and Pi(t) defined in (3.12)-(3.13), a stochastic

subgradient s(t) is obtained by evaluating the resultant constraint slack; see e.g., [32]. E.g., the

multiplier λki is associated with the flow conservation constraint
∑
j∈N (i)

(
rkij − rkji

)
− aki . Con-

sequently, the stochastic subgradient component sλki (t) along the λki direction is given by the

constraint slack

sλki (t) =
∑

j∈N (i)

(
rkij(t)− rkji(t)

)
− aki (t). (3.14)

Likewise, components sµij (t) along the µij direction and sνij (t) along the νij direction can be

obtained as

sµij (t) = (1 + c̃ij(t))−
∑

k∈K
rkij(t),

sνij (t) = log xij(t) +
∑

l∈Mi(j)

log(1− yl(t))− c̃ij(t). (3.15)

For the components sαij (t), sβi(t), and sξi(t) along the αij , βi, and ξi directions the corresponding

constraints involve expectation with respect to the channel distribution. Since we implement

stochastic subgradient descent algorithm, we compute instantaneous constraint slacks where the

expectation is replaced by the values associated with the current channel realizations hi(t)

sαij (t) = Cij (hij(t)pij(t)) qij(t)− xij(t),

sβi(t) = yi(t)− qi(t),
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sξi(t) = pi(t)−
∑

j∈N (i)

pij(t)qij(t). (3.16)

Further note that since network variables x̃i = [aki , r
k
ij , c̃ij , pi, xij , yi] appear as separate sum-

mands in L(1)
i (x̃i,Λ(t)) [cf. (3.10)], the maximization in (3.12) can be carried out separately with

respect to individual variables. Specifically, rkij(t) and c̃ij(t) are obtained by solving the following

maximization problems

rkij(t) = argmax
0≤rkij≤rmax

ij

(
λki (t)− λkj (t)− µij(t)

)
rkij ,

c̃ij(t) = argmax
0≤c̃ij≤c̃max

ij

(µij(t)− νij(t)) c̃ij . (3.17)

Notice that the maximands in (3.17) are linear functions of bounded variables which therefore

have trivial solutions. E.g., rkij(t) = rmax
ij if λki (t) − λkj (t) − µij(t) > 0 and rkij(t) = 0 otherwise.

Solving for aki (t), pi(t), xij(t) and yi(t) is also easy as it involves maximizing concave functions

over convex sets of variables,

aki (t) = argmax
amin
i ≤aki≤amax

i

Uki
(
aki
)
− λki (t)aki ,

pi(t) = argmax
0≤pi≤pmax

i

ξi(t)pi − Vi (pi) ,

xij(t) = argmax
xij≥0

νij(t) log xij − αij(t)xij ,

yi(t) = argmax
0≤yi≤1

βi(t)yi +


 ∑

j∈N (i)


νji(t) +

∑

l∈Mi(j)

νlj(t)




 log (1− yi) (3.18)

Closed-form solutions for the maximizations in (3.18) can be easily obtained by solving for the

zero of the derivative with respect to the optimization variable, and projecting the result on the

feasible set. E.g., the solution for the attempted transmission rate is xij(t) = νij(t)/αij(t).

The maximization in (3.13) can be written explicitly as

{pij(t), qij(t)} = argmax
∑

j∈N (i)

qij

[
αij(t)Cij(hij(t)pij)− βi(t)− ξi(t)pij

]
(3.19)

s.t. pij ∈
[
0, pinst

ij

]
, qij ∈ {0, 1} ,

∑

j∈N (i)

qij ∈ {0, 1} .
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Different from the maximizations in (3.17)-(3.18), the one in (3.19) is a non-convex problem be-

cause Cij(hijpij) may be a non-convex function of pij and in any event the channel access in-

dicator qij is an integer variable. Solving (3.19) is still simple, however, as it involves just two

variables; see Remark 5.

To complete the definition of the stochastic subgradient descent algorithm we need an expres-

sion for cij(t). Recall that in formulating (3.5) we made cij = ec̃ij ≥ 1 + c̃ij , which implies that at

time t we should set

cij(t) = 1 + c̃ij(t). (3.20)

While the sequence of primal variables x̃i(N) and Pi(N) is a byproduct of the dual stochastic

subgradient descent algorithm, it is the optimality of these sequences, not Λ(N), that we want to

study. In general, individual primal iterates x̃i(t) and Pi(t) may not be optimal but sequences

x̃i(N) and Pi(N) have ergodic limits that are almost surely feasible and give a utility yield close

to P̃; see Section 3.3. In order to simplify upcoming discussions, define the ergodic limit of the

sequence of operating points xi(N) as

¯̃xi := lim
t→∞

1

t

t∑

u=1

xi(u). (3.21)

Note that subsumed in the definition in (3.21) are corresponding definitions for each of the indi-

vidual sequences of admission rates āki :=limt→∞ 1
t

∑t
u=1a

k
i (u), routes, r̄kij :=limt→∞ 1

t

∑t
u=1r

k
ij(u),

link capacities c̄ij := limt→∞ 1
t

∑t
u=1 cij(u), powers p̄i := limt→∞ 1

t

∑t
u=1 pi(u), attempted trans-

mission rates x̄ij :=limt→∞ 1
t

∑t
u=1xij(u), and transmission probabilities ȳi :=limt→∞ 1

t

∑t
u=1yi(u).

Remark 5. To find pij(t) and qij(t) that solve (3.19) observe that since qij ≥ 0 and the constraints

on pij are separate for different j, the optimal selection for pij is

pij(t) = argmax
pij∈[0,pinst

ij ]
αij(t)Cij(hij(t)pij)− βi(t)− ξi(t)pij . (3.22)

Also note that qij can only take values from {0, 1} and that only one of the qij variables can be

set to 1. If all the optimal objectives computed by (3.22) are negative, i.e., αij(t)Cij(hij(t)pij(t))−
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βi(t) − ξi(t)pij(t) ≤ 0, the optimal solution for (3.19) is qij(t) = 0 for all neighbors. Otherwise,

the optimal solution for (3.19) is obtained by setting qij(t) = 1 for the neighbor with the largest

objective in (3.22). In summary, we determine

j∗(t) = argmax
j∈N (i)

αij(t)Cij(hij(t)pij(t))− βi(t)− ξi(t)pij(t) (3.23)

and set qij(t) = 0 for j 6= j∗(t). For j = j∗(t) we set qij(t) = qij∗(t)(t) = 1 as long as

αij(t)Cij(hij(t)pij(t))− βi(t)− ξi(t)pij(t) > 0 or we make qij∗(t)(t) = 0 otherwise.

Remark 6. If the channel probability distribution is known we can compute powers correspond-

ing not only to h(t) as in (3.13), but to generic channel realization h

Pi(h,Λ(t)) = argmax
Pi

L(2)
i (Pi,hi,Λ(t)) . (3.24)

We can then use knowledge of the channel distribution to compute not instantaneous constraint

slacks as in (3.16) but actual (average) constraint slacks

s̃αij (t) = E


Cij (hijpij(h,Λ(t))) qij(h,Λ(t))


− xij(t),

s̃βi(t) = yi(t)− E


qi(h,Λ(t))


,

s̃ξi(t) = pi(t)− E



∑

j∈N (i)

pij(h,Λ(t))qij(h,Λ(t))


. (3.25)

The constraint slacks s̃αij (t), s̃βi(t), and s̃ξi(t) are gradients of the dual function and can be used

in the descent equation (3.11) in lieu of the stochastic subgradients sαij (t), sβi(t), and sξi(t). This

will result in faster convergence but necessitates estimation of the channel probability distribu-

tion. The use of stochastic subgradients not only avoids this estimation problem but is also less

computationally demanding and makes it easier to adapt to changes in channel statistics.
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aki (t) = argmax
amin
i
≤ak
i
≤amax
i

Uki

(
aki

)
− λki (t)a

k
iTransport Layer

λki (t + 1) =
[
λki (t)− ε

[∑
j∈N(i)

(
rkij(t)− r

k
ji(t)

)
− aki (t)

]]+

rkij(t) = argmax
0≤rk

ij
≤rmax
ij

(
λki (t)− λ

k
j (t)− µij(t)

)
rkijNetwork Layer

µij(t + 1) =
[
µij(t)− ε

[
1 + c̃ij(t)−

∑
k∈K r

k
ij(t)

]]+

c̃ij(t) = argmax0≤c̃ij≤c̃max
ij

µij(t)c̃ij − νij(t)c̃ij , cij(t) = 1 + c̃ij(t)Link Layer

νij(t + 1) =
[
νij(t)− ε

[
log xij(t) +

∑
l∈Mi(j)

log (1− yl(t))− c̃ij(t)
]]+

pi(t) = argmax0≤pi≤pmax
i

ξi(t)pi − Vi (pi)

xij(t) = argmaxxij≥0 νij(t) log xij − αij(t)xij

yi(t) = argmax0≤yi≤1 βi(t)yi +
[∑

j∈N(i)

[
νji(t) +

∑
l∈Mi(j)

νlj(t)
]]

log (1− yi)

MAC Layer

αij(t + 1) =
[
αij(t)− ε

[
Cij

(
hij(t)pij(t)

)
qij(t)− xij(t)

]]+
βi(t + 1) = [βi(t)− ε [yi(t)− qi(t)]]+

ξi(t + 1) =
[
ξi(t)− ε

[
pi(t)−

∑
j∈N(i) qij(t)pij(t)

]]+
{
pij(t), qij(t)

}
= argmax

pij∈
[
0,pmax

ij

]
,qij∈{0,1}

∑
j∈N(i) qij

[
αij(t)Cij(hij(t)pij)− βi(t)− ξi(t)pij

]
Physical Layer

Figure 3.1: Layers and layer interfaces. The stochastic subgradient descent algorithm in terms of layers

and layer interfaces. Layers maintain primal variables aki (t), rkij(t), c̃ij(t), pij(t), qij(t) as well as auxiliary

variables pi(t), xij(t), and yi(t) while multipliers λki (t), µij(t), νij(t), αij(t), βi(t) and ξi(t) are associated

with interfaces between adjacent layers. Primal variables can be easily computed based on multipliers from

interfaces to adjacent layers and dual variables are updated using information from adjacent layers.

3.2.2 Network operation, layers, and layer interfaces

To describe the role of different variables as computed in (3.17)-(3.20) in the network’s operation it

is convenient to think in terms of a layered architecture with aki (t) associated with the transport

layer, rkij(t) with the network layer, cij(t) with the link layer, xij(t), yi(t), and pi(t) with the

medium access (MAC) layer, and pij(t) and qij(t) with the physical layer; see figs. 3.1 and 3.2.

Variables aki (t), rkij(t), cij(t), pij(t) and qij(t) determine network operation by controlling the
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flow of packets through queues associated with their corresponding layers; see Fig. 3.2. In the

transport and network layers there are queues associated with each of the |K| flows. In the link

and physical layers, queues for each of the |N (i)| outgoing links (i, j) are maintained. The value

of aki (t) determines how many packets are moved from the k-flow queue in the transport layer to

the k-flow queue at the network layer at time t. The number of packets transferred at time t from

the k-flow network layer queue to the (i, j) queue at the link layer is determined by rkij(t). Notice

that packets of a particular queue in the network layer may be distributed to different queues in

the link layer. Conversely, packets in a particular queue in the link layer may come from different

network layer queues, i.e., they may belong to different flows. At time t there are cij(t) packets

moved from the (i, j) queue at the link layer to the (i, j) queue at the physical layer.

At the physical layer queues are emptied through transmission to neighboring terminals.

Resource allocation variables qij(t) and pij(t) determine the scheduling and transmitted power

of link (i, j). If a transmission is scheduled and successful, i.e., a collision does not occur,

Cij(hij(t)pij(t)) units of information are transferred to terminal j from the (i, j) physical layer

queue at terminal i. If a collision occurs, they stay at the same queue awaiting retransmission

in a future time slot. When a packet is successfully decoded by terminal j it determines which

flow they belong to and what destination they are heading for. If the terminal happens to be the

destination, packets are forwarded to the application layer. If the terminal is not the designated

destination, packets are put into a network layer queue according to their flow identifications.

Besides administering queues, layers are also responsible for updating the values of their cor-

responding primal variables according to (3.17)-(3.20); see Fig. 3.1. The transport layer updates

aki (t) as in (3.18), the network layer keeps track of rkij(t) as per (3.17), while the link layer com-

putes c̃ij(t) as in (3.17) and cij(t) using (3.20). The MAC layer updates pi(t), xij(t), and yi(t)

according to the expressions in (3.18), while the physical layer determines pij(t) and qij(t) as

dictated by (3.19).

Computation of these primal per layer updates necessitates access to Lagrange multipliers
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Figure 3.2: Queue dynamics. Terminal i operates by controlling queues in different layers based on operating

points aki (t), rkij(t), cij(t), pij(t) and qij(t). In the transport layer and the network layer, each flow k has a

queue. In the link layer and the physical layer, each outgoing link (i, j) maintains a queue. In this particular

example, there are two flows k1 and k2 and there are two neighboring nodes j1 and j2. Packets for flow k1

are marked red while packets for k2 are in blue.

motivating the introduction of layer interfaces to maintain and update their values. E.g., since

λkij(t) is associated with the flow conservation constraint that relates transport variables aki (t) and

network variables rkij(t) it provides a natural interface between the transport and network lay-

ers. Thus, we introduce a transport-network interface tasked with computing the dual stochastic

subgradient component sλki (t) in (3.14) and executing the update λki (t + 1) = [λki (t) − εsλki (t)]+.

Similarly, a network-link interface is introduced to keep track of multipliers µij(t), compute the

dual stochastic subgradient component sµij (t) in (3.15), and execute the corresponding update. A

link-MAC interface does the proper for multipliers νij(t) and dual stochastic subgradient compo-

nents sνij (t) in (3.15). The remaining multipliers αij(t), βi(t), and ξi(t) provide a MAC-physical

interface with stochastic subgradient components sαij (t), sβi(t), and sξi(t) as given in (3.16). Ob-

serve that primal variables are updated with information available at adjacent interfaces, while

dual variable updates are undertaken with information available at adjacent layers. Their def-

inition is thereby justified, because information is exchanged only between adjacent layers and

interfaces.

We remark that MAC layer variables xij(t), yi(t), and pi(t) do not affect network operation,

i.e., queue dynamics, at time t. The role of these variables is to record average behaviors of the
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Figure 3.3: Message passing. (a) Terminal i begins by transmitting dual variables λki (t) and νij(t) to all

neighbors j ∈ N (i). (b) It then computes and shares
∑
k∈N (i) νki(t) with all j ∈ N (i). This information,

along with locally available multipliers, is then used to perform the primal iterations associated with all the

layers in Fig.3.1. (c) Terminal i passes primal variables yi(t) and rkij(t) to all neighbors j ∈ N (i). (d) It then

evaluates and broadcasts
∑
k∈N (i) yk(t) to j ∈ N (i). Dual updates associated with the layer interfaces in

Fig.3.1 are now performed using these and locally accessible primal variables. We proceed to (a) for the next

iteration.

terminal to affect determination of cij(t), pij(t), and qij(t) in subsequent time slots. This role is

consistent with the definitions of pi as the the average transmitted power [cf. (1.10)], xij as the

average attempted transmission rate [cf. (3.3)], and yi as the (average) transmission probability

[cf. (3.4)].

3.2.3 Message passing

Most primal and dual variable updates in Fig. 3.1 can be done locally at terminal i. E.g., the

physical layer update at terminal i requires access to multipliers αij(t), βi(t), and ξi(t) which

are available at the physical-MAC interface of terminal i. The updates for primal variables rkij(t)

and yi(t), as well as duals λkij(t) and νij(t), however, necessitate access to variables of other
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terminals. The update of multiplier λki (t) at the network-transport interface depends on network

variables rkij(t) and aki (t) which are available at terminal i, but also on the variable rkji(t) available

at (neighboring) terminal j. Similarly, the rkij(t) update at the network layer depends on locally

available multipliers λki (t) and µij(t), but also on the neighboring multiplier λkj (t). The update

of multiplier νij(t) is somewhat more complex as it depends on local variables xij(t) and c̃ij(t),

1-hop neighborhood variables yj(t), and 2-hop neighborhood variables yl(t) for all l ∈ N (j).

Likewise, the update for yi(t) at the MAC layer depends on local dual variables βi(t), 1-hop

neighborhood variables νji(t) for all j ∈ N (i), and 2-hop neighboring variables νlj(t) for all

l ∈ N (j) in the neighborhood of j for some j ∈ N (i) in the neighborhood of i. Therefore,

implementation of these four updates requires sharing appropriate variables with 1-hop and 2-

hop neighbors.

Given that these four updates depend on quantities available at 1-hop and 2-hop neighbors

it is necessary to devise a message passing mechanism among terminals to share the necessary

values. For doing so we use the 4-step message passing mechanism illustrated in Fig. 3.3. At the

beginning of primal iteration, terminal i transmits λki (t) and νij(t) to all his neighbors j ∈ N (i);

Fig. 3.3(a). As a result, terminal i receives multipliers λkj (t) and νji(t) from all of their neighbors

j ∈ N (i). Terminal i follows by computing and broadcasting the term
∑
l∈N (i) νli(t) to all his

neighbors j ∈ N (i); Fig. 3.3(b). Upon receiving this information, terminal j subtracts νji(t)

from the received value to evaluate the expression
∑
l∈N (i),l 6=j νli(t). The terms required for

computing primal variables rkij(t) and yi(t) are now available at i. Since the variables necessary

for the remaining primal updates are locally accessible the primal iterations associated with all

the layers in Fig.3.1 are performed at each terminal.

After completing the layer updates, primal iterates rkij(t) and yi(t) need to be exchanged be-

tween neighbors to perform the dual updates associated with the layer interfaces in Fig.3.1. Ter-

minal i starts passing variables yi(t) and rkij(t) to all his neighbors; Fig. 3.3(c). Having received

yj(t) from all j ∈ N (i) terminal i computes and broadcasts the sum
∑
l∈N (i) yl(t) to all his neigh-
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bors; Fig. 3.3(d). With this information in hand terminal j adds yi(t) and subtracts yj(t) from this

value to evaluate
∑
l∈Mj(i)

yl(t) =
∑
l∈N (i) yl(t) + yi(t) − yj(t). Quantities necessary to update

λki (t) and νij(t) are now available along with the terms necessary for the remaining dual updates

that were locally available. The dual updates associated with the layer interfaces in Fig.3.1 are

now performed and we proceed to the next primal iteration.

We remark that rkij(t) and λki (t) are transmitted to 1-hop neighbors, whereas yi(t) and νij(t)

are sent to 2-hop neighbors. This latter fact holds because transmissions of a given terminal can

interfere with neighbors two hops away from her.

3.2.4 Successive convex approximation

As mentioned in the problem reformulation in Sec. 3.1.2, we a use linear lower bound to approx-

imate the capacity constraint. In general, we can use a concave function fij(c̃ij) which is smaller

than ec̃ij to approximate ec̃ij . As a result, instead of directly computing link capacity variable

cij(t), an approximated version c̃ij(t) is calculated in the primal iteration. In the network op-

eration, the link capacity cij(t) = fij(c̃ij(t)) is used in the link layer. While this approximation

convexifies the capacity constraint and provides a feasible solution to the original problem, it

reduces the size of the feasible set of primal variables. This implies that this obtained link ca-

pacity cij(t) may not be optimal to the original problem. To reduce its impact on optimality,

we use different fij(c̃ij) at different time slots and hope the approximations become better as

time grows. Define then ¯̃cij(t) := 1/t
∑t
u=1 c̃ij(u) and lower bound ec̃ij(t+1) with the first order

approximation

ec̃ij(t+1) ≥ e¯̃cij(t)c̃ij(t+ 1) + e
¯̃cij(t) [1− ¯̃cij(t)] . (3.26)

Notice that the right hand side of (3.26) is a linear function of c̃ij(t+ 1) and thus concave. We can

then choose f (t+1)
ij (c̃ij) = e

¯̃cij(t)c̃ij + e
¯̃cij(t) [1− ¯̃cij(t)] to approximate ec̃ij at time slot t+ 1.
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3.3 Feasibility and optimality

Solving the optimization problem in (3.1) entails finding optimal variables x∗i , and power allo-

cations P∗i (hi) that satisfy problem constraints and offer optimal yield P. This would require

knowledge of the channels’ probability distributions and a joint optimization among terminals.

To overcome these restrictions and develop an adaptive distributed solution, we reformulated

the problem as in (3.5) entailing a performance degradation to P̃ ≤ P. This reformulation permits

introduction of the dual stochastic subgradient descent algorithm, defined by recursive applica-

tion of (3.11) - (3.19), that produces a sequence of network operating points xi(N) and Pi(N) –

as well as sequences of auxiliary variables xij(N) and yi(N) – which given results in [32] are ex-

pected to be almost surely feasible and give a utility yield close to P̃ in an ergodic sense. Notice

however, that since (3.11) - (3.19) descends on the dual function of the reformulated problem,

feasibility holds with respect to the constraints in (3.5). Our main intent here is to show that se-

quences of operating points xi(N) and Pi(N) generated by (3.11) - (3.19) are also feasible for the

optimization problem in (3.1). Specifically, our goal is to prove the following theorem.

Theorem 3. Consider a wireless network G(V, E) using random access at the physical layer so that ergodic

link capacities are as given in (1.12). Let aki (N), rkij(N), cij(N), pi(N), qij(N) and pij(N) be sequences

of network operating points generated by the stochastic descent algorithm in (3.11) - (3.19) and denote

as āki , r̄kij , c̄ij , and p̄i the corresponding ergodic limits of aki (N), rkij(N), cij(N), and pi(N). Assume the

following hypotheses: (h1) The second moment of the norm of the stochastic subgradient s(t) is finite,

i.e., Eh

[
‖s(t)‖2

∣∣∣∣Λ(t)

]
≤ Ŝ2. (h2) There exists a set of strictly feasible primal variables that satisfy the

constraints of the reformulated optimization problem in (3.5) with strict inequality. (h3) The dual function

g(Λ) of the reformulated problem as defined in (3.7) has a unique minimizer Λ∗. It then holds:

(i) Near feasibility of physical layer constraints. There exists a functionM(ε) with limε→0M(ε) =

0 such that the average transmission rate constraint in (1.12) is almost surely satisfied with feasibility gap
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smaller than M(ε) in an ergodic sense, i.e.,

c̄ij ≤ lim
t→∞

1

t

t∑

u=1


Cij(hij(u)pij(u))qij(u)

∏

k∈Mi(j)

[1− qk(u)]


M(ε), a.s. (3.27)

(ii) Feasibility of upper layer constraints. The flow conservation constraint in (1.8), the link capacity

constraint in (1.9) and the average power constraint in (1.10) are almost surely satisfied in an ergodic sense,

i.e.,

āki ≤
∑

j∈N (i)

[
r̄kij − r̄kji

]
,

∑

k∈K
r̄kij ≤ c̄ij , a.s., (3.28)

p̄i ≥ lim
t→∞

1

t

t∑

u=1

∑

j∈N (i)

pij(u)qij(u), a.s. (3.29)

(iii) Utility yield. The utility yield of the ergodic averages of sequences aki (N) and pi(N) converges to a

value within εŜ2/2 of P̃, i.e.,

P̃−


 ∑

i∈V,k∈K
Uki
(
āki
)
−
∑

i∈V
Vi (p̄i)


 ≤ εŜ2

2
, a.s. (3.30)

The feasibility results in (3.28) for the flow conservation and rate constraints are identical to

(1.8) and (1.9). As such they imply that the ergodic limits āki , r̄kij , c̄ij obtained from recursive

application of (3.11) - (3.19) satisfy these constraints with probability 1. Notice that these limits

may be different for different realizations of the algorithm’s run. Nonetheless, constraints (1.8)

and (1.9) are satisfied for almost all runs. The feasibility result in (3.27) for the link capacity con-

straint, however, is not identical to (1.12). The difference is not only the presence of the M(ε)

feasibility gap, but the fact that (1.12) involves an expectation over channel realizations whereas

(3.27) does not. In fact, asides from the M(ε) constant, (3.27) is stronger than (1.12). The fea-

sibility result in (3.27) states that even though sequences xi(N) and Pi(N) may not be ergodic,

the possibly different ergodic limits in the right and left hand sides of (3.27) satisfy the stated

inequality. This implies that operating the network using variables xi(t) and Pi(t) as generated

by (3.11) - (3.19) results in long-term feasibility in that all packets are (almost surely) delivered

to their corresponding destinations. Further notice that the power feasibility result in (3.29) is
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not identical to the corresponding power constraint in (1.10) because (1.10) involves an expected

value whereas (3.29) does not. The same comments stated for the comparison of (3.27) and (1.12)

extend naturally.

The utility yield result in (3.30) states that the long term performance of the network, as de-

termined by average end-to-end rates āki and powers p̄i, is close to the optimal yield P̃ of the

reformulated problem. The gap between P̃ and the attained yield can be controlled by reducing

ε. Notice that reducing the step size ε also reduces the feasibility gap M(ε) in (3.27). We also re-

mark that the use of constant step sizes ε endows the algorithm with adaptability to time-varying

channel distributions. This is important in practice because wireless channels are non-stationary

due to user mobility and environmental dynamics.

3.3.1 Proof of Theorem 3

Hypotheses (h1) and (h2) are sufficient for Theorem 1 of [32] to hold. The utility yield result in

(3.30) is a direct consequence of [32, Theorem 1]. It also follows that all constraints in problem

(3.5) are almost surely satisfied in an ergodic sense. Since the flow conservation constraint in (1.8)

and the power constraint in (1.10) are part of (3.5) the first inequality in (3.28) and the inequality

in (3.29) follow from direct application of [32, Theorem 1]. In addition, considering the constraint

∑
k∈K r

k
ij ≤ 1 + c̃ij Theorem 1 of [32] gives us

∑

k∈K
r̄kij(u) ≤ lim

t→∞
1

t

t∑

u=1

[1 + c̃ij(u)] , a.s.. (3.31)

Recall now that at every iteration we set the link capacity to cij(u) = 1 + c̃ij(u). Substitut-

ing this equality into (3.31) the second inequality in (3.28) follows from the definition c̄ij :=

limt→∞ 1
t

∑t
u=1 cij(u).

The result that does not follow as a simple application of [32, Theorem 1] is the almost sure

near feasibility of the average transmission rate constraint as shown in (3.27). Since we intro-

duced auxiliary variables xij and yi and decomposed the average transmission rate constraint
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in two separate constraints [32, Theorem 1] does not make a claim on the feasibility of (1.12).

Instead, the claim is for the last three constraints in (3.5), i.e.,

lim
t→∞

1

t

t∑

u=1

c̃ij(u) ≤ log [x̄ij(u)] +
∑

k∈Mi(j)

log [1− ȳk(u)] , a.s., (3.32)

x̄ij ≤ lim
t→∞

1

t

t∑

u=1

Cij(hij(u)pij(u))qij(u), a.s., (3.33)

ȳi ≤ lim
t→∞

1

t

t∑

u=1

qi(u), a.s., (3.34)

Since link capacity iterates are set to cij(u) = 1 + c̃ij(u) we use the fact that 1 + x ≤ ex for all x to

write

c̄ij := lim
t→∞

1

t

t∑

u=1

cij(u) = 1 + lim
t→∞

1

t

t∑

u=1

c̃ij(u) ≤ exp

[
lim
t→∞

1

t

t∑

u=1

c̃ij(u)

]
. (3.35)

Substitute now the inequality in (3.32) into the exponent in (3.35) to obtain

c̄ij ≤ exp


log [x̄ij(u)] +

∑

l∈Mi(j)

log [1− ȳl(u)]


 = x̄ij

∏

l∈Mi(j)

[
1− ȳl(u)

]
, (3.36)

where in the equality we cancelled out the exponential and logarithm functions. Further substi-

tuting (3.33) and (3.34) into the right hand side of (3.36) yields

c̄ij ≤

[
lim
t→∞

1

t

t∑

u=1

Cij(hij(u)pij(u))qij(u)

] ∏

l∈Mi(j)

[
lim
t→∞

1

t

t∑

u=1

[1− ql(u)]

]
. (3.37)

While similar, (3.37) is substantially different from the statement in (3.27) that we want to prove.

To see the difference exploit ergodicity, possibly restricted to an ergodic component, to replace

the ergodic limit in (3.27) by the corresponding expected value so as to write

lim
t→∞

1

t

t∑

u=1


Cij(hij(u)pij(u))qij(u)

∏

l∈Mi(j)

[1− ql(u)]


= lim

t→∞
E


Cij(hij(t)pij(t))qij(t)

∏

l∈Mi(j)

[1− ql(t)]


 .

(3.38)

Similarly, consider the product of ergodic limits in (3.37) and use ergodicity, also possibly re-

stricted to an ergodic component, to write each individual limit as an expectation,

c̄ij ≤ lim
t→∞

E
[
Cij(hij(t)pij(t))qij(t)

] ∏

l∈Mi(j)

E
[

[1− ql(t)]
]
. (3.39)
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If schedules of different terminals were independent, the expectation in (3.38) would coincide

with the product of expectations in (3.39) yielding the result in (3.27) with M(ε) = 0 after sub-

stituting (3.38) into (3.39). However, due to the message passing between neighboring terminals

correlation in transmission decisions is introduced, independence is violated, and the expecta-

tion in (3.38) may not coincide with the product of expectations in (3.39). It follows from this

discussion that the key point in establishing (3.27) is to show that the correlation between sched-

ules introduced by message passing is small so that the expectation in (3.38) equals the product

of expectations in (3.39) except for the vanishingly small difference M(ε).

To prove so start noting that while Cij(hij(t)pij(t))qij(t) and ql(t) for l ∈ Mi(j) correlate

through message passing, they are conditionally uncorrelated if multipliers Λ(t) are given. This

is true because for given Λ(t) schedules and power allocations depend only on local channel

realizations, which are assumed independent for different channels. We can therefore write

Eh


Cij(hij(t)pij(t))qij(t)

∏

l∈Mi(j)

[1− ql(t)]

∣∣∣∣∣∣
Λ(t)




= Ehi


Cij(hij(t)pij(t))qij(t)

∣∣∣∣∣∣
Λ(t)


 ∏

l∈Mi(j)


1−Ehl


ql(t)

∣∣∣∣∣∣
Λ(t)




. (3.40)

The conditional expectations in (3.40) and the (unconditional) ones in (3.38) and (3.39) can be

related through double integration, e.g.,

E [qi(t)] =

∫
Ehi [qi(t)|Λ(t)] dΛ(t). (3.41)

The crucial observation is that since (3.11) - (3.19) descends in the dual domain, Λ(t) approaches

the optimal multiplier Λ∗ as t grows; see e.g., [32, Theorem 2]. This motivates the introduction

of a set A containing all multipliers Λ within a given small distance
√
δ of Λ∗, i.e., A = {Λ

∣∣∣∣||Λ−

Λ∗||2 ≤ δ}. We can then separate the integration with respect to Λ(t) in (3.41) into terms that

contain multipliers inside and outside A,

E [qi(t)] =

∫

Λ(t)∈A
Ehi [qi(t)|Λ(t)] dΛ(t) +

∫

Λ(t)∈Ac
Ehi [qi(t)|Λ(t)] dΛ(t). (3.42)

61



By making δ small enough the first integral in (3.42) can be made arbitrarily close to

Ehi [qi(t)|Λ(t) = Λ∗]. Since Λ(t) gets close to Λ∗ as t increases, the second integral can be made

small for sufficiently large t.

While we have exemplified the argument for the expectation E [qi(t)] the same is true for

the other expectations in (3.38) and (3.39). The idea to complete the proof is to show that for

sufficiently large t all expectations can be written as conditional expectations given Λ∗ plus small

error terms. Conditional independence is then used to claim (3.40) from the equivalence of the

right hand sides of (3.38) and (3.39). In summary we need to make the following arguments in

order to conclude the proof:

(A1) For sufficiently large t, the probability of Λ(t) staying within a small distance of Λ∗ is close

to 1. The distance can be made arbitrarily small and the probability arbitrarily close to 1 by

reducing ε. This argument is formalized and proved in Lemma 1.

(A2) All of the expectations in (3.38) and (3.39) can be written as integrals of conditional expec-

tations of the form shown in (3.42) for E [qi(t)]. By making the ball A sufficiently small the (first)

integral with respect to multipliers Λ(t) ∈ A can be made arbitrarily close to the expectation

conditional on Λ(t) = Λ∗. From (A1) it follows that for any small ball A the (second) integral

with respect to Λ(t) for multipliers Λ(t) /∈ A can be made close to 0 by reducing ε. Therefore, it

follows that unconditional, e.g., E [qi(t)], and conditional, e.g., Ehi [qi(t)|Λ(t) = Λ∗], expectations

get arbitrarily close as ε→ 0. This argument is formalized and proved in Lemma 2.

(A3) From Argument (A2), it follows that the unconditional expectation in (3.38) can be ex-

pressed as an expectation conditioned on Λ(t) = Λ∗ plus an arbitrarily small error term. Recall-

ing the fact that given Λ(t) schedules and power allocations for different terminals are uncorre-

lated we can write the resulting conditional expectation as a product of conditional expectations

[cf. (3.40)]. In turn, Argument (A2) implies that each of these expectations is close to the uncon-

ditional expectation plus an small error term. The result in (3.27) follows from ergodicity. This
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argument is formalized after Lemma 2 to conclude the proof.

Let us start by formalizing argument (A1) in the following lemma. The proof of is technical and

relegated to Appendix A.

Lemma 1. Consider the the stochastic descent algorithm in (3.11) - (3.19) with the same hypotheses and

definitions of Theorem 3. Let the dual variable Λ(T0) at given time T0 be given. Then, there exists time

T1 > T0 such that for all t > T1 it holds

Pr


||Λ(t)−Λ∗||2 ≥ L(ε)

∣∣∣∣∣∣
Λ(T0)


 ≤ L(ε), (3.43)

where L(ε) is a function of the step size ε such that limε→0 L(ε) = 0.

Proof. See Appendix 3.6.1.

Lemma 1 states, as required by argument (A1), that the probability of Λ(t) being outside

arbitrarily small distance
√
L(ε) of Λ∗ is the arbitrarily small factor L(ε). To formalize (A2) we

introduce a bounded function D(h(t),P(t)) to stand in for the functions inside the expectations

in (3.38) and (3.39). We show that for arbitrary bounded function D(h(t),P(t)), its unconditional

mean is within a small N(ε) constant of its expectation conditional on Λ(t) = Λ∗ as long as the

conditional expectation is a continuous function of Λ(t).

Lemma 2. Consider the stochastic descent algorithm in (3.11) - (3.19) with the same hypotheses and

definitions of Theorem 3. Let 0 ≤ D(h(t),P(t)) ≤ Dmax be a nonnegative continuous function of h(t),

p(t) and q(t) upper bounded by Dmax. Assume the dual variable Λ(T0) at given time T0 is given and

that the conditional expectation Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
is continuous in Λ(t). Then almost surely there

exists T1 > T0 such that for all t > T1 it holds
∣∣∣∣∣∣
E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
] ∣∣∣∣∣∣
≤ N(ε), (3.44)

where the first and the second expectations are with respect to h(T0), · · · ,h(t) and h(t), respectively, and

N(ε) is a function of the step size ε such that limε→0N(ε) = 0.
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Proof. Start noting that we can write Eh

[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
as an integral of conditional ex-

pectations [cf. (3.41)],

E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
=

∫
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t),Λ(T0)

]
dΛ(t)

=

∫
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t), (3.45)

where the second equality follows because Λ(N) is a Markov process. Partitioning the integration

space into the sets Aε = {Λ|‖Λ − Λ∗‖2 < L(ε)} and Acε = {Λ|‖Λ − Λ∗‖2 ≥ L(ε)} allows us to

rewrite (3.45) as [cf. (3.42)]

E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
=

∫

Λ(t)∈Aε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t)

+

∫

Λ(t)∈Acε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t). (3.46)

Since we are assuming that 0 ≤ D(h(t),P(t)) ≤ Dmax we can bound the second integral on the

right hand side of (3.46) by

0 ≤
∫

Λ(t)∈Acε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t) ≤ DmaxPr

[
Λ(t) ∈ Acε

∣∣∣∣Λ(T0)

]
. (3.47)

According to Lemma 1, we know that there exists time T1 > T0 such that for all t > T1 we have

Pr
[
Λ(t) ∈ Acε

∣∣∣∣Λ(T0)

]
= Pr

[
||Λ(t)−Λ∗||2 ≥ L(ε)

∣∣∣∣Λ(T0)

]
≤ L(ε). Substituting this bound into

(3.47) yields

0 ≤
∫

Λ(t)∈Acε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t) ≤ DmaxL(ε) (3.48)

for all times t > T1. For the first integral on the right hand side of (3.46), observe that since

Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
is continuous in Λ(t) we can use the mean value theorem to write the

integral as

∫

Λ(t)∈Aε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t) = Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
Pr
[
Λ(t) ∈ Aε

∣∣∣∣Λ(T0)

]
,

(3.49)
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for a certain Λ0 ∈ Aε. Since for any t > T1 we have 0 ≤ Pr
[
Λ(t) ∈ Acε

∣∣∣∣Λ(T0)

]
≤ L(ε), it follows

that 1− L(ε) ≤ Pr
[
Λ(t) ∈ Aε

∣∣∣∣Λ(T0)

]
≤ 1. Substituting this into (3.49) we have

[1− L(ε)]Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
≤
∫

Λ(t)∈Aε
Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
dΛ(t)

≤ Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
, (3.50)

Substituting (3.48) and (3.50) into (3.46) yields

[1− L(ε)]Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
≤ E

[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]

≤ DmaxL(ε) + Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
. (3.51)

To show that (3.44) is true we find upper bounds for

E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]

and its opposite

Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]
− E

[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
.

Define L′(ε) :=

∣∣∣∣Eh

[
D(h(t),P(t))

∣∣∣∣ Λ(t) = Λ0

]
−Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]∣∣∣∣ and observe that

since Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
is continuous in Λ(t) and Λ0 ∈ Aε, it follows that limε→0 L

′(ε) = 0.

Using this definition for L′(ε) and the upper bound in (3.51) we obtain

E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]

(3.52)

≤ DmaxL(ε) + Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]

≤ DmaxL(ε) + L′(ε). (3.53)

Similarly, using the definition of L′(ε) and the lower bound in (3.51) we have

Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]
− E

[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]

≤ Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]
− [1− L(ε)]Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
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= L(ε)Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]
+ Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
]

− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ0

]

≤ DmaxL(ε) + L′(ε). (3.54)

where the last inequality follows from the fact that D(h(t),P(t)) ≤ Dmax. From (3.52) and (3.54)

we conclude

∣∣∣∣E
[
D(h(t),P(t))

∣∣∣∣Λ(T0)

]
− Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t) = Λ∗
] ∣∣∣∣ ≤ DmaxL(ε) + L′(ε). (3.55)

Making N(ε) := DmaxL(ε) + L′(ε) in (3.55) yields (3.44). Since both L(ε) and L′(ε) approach 0 as

ε goes to 0, it follows limε→0N(ε) = 0.

In Lemma 2, continuity of Eh

[
D(h(t),P(t))

∣∣∣∣Λ(t)

]
is assumed. Specifically, we need continu-

ity of Ehi

[
qi(t)

∣∣∣∣Λ(t)

]
and Ehij

[
qij(t)C(hij(t)pij(t))

∣∣∣∣Λ(t)

]
. This is indeed true as claimed by the

following lemma.

Lemma 3. Consider the calculation of primal variables pij(t) and qij(t) as shown in (3.19), Ehi

[
qi(t)

∣∣∣∣Λ(t)

]

and Ehij
[
qij(t)C(hij(t)pij(t))

∣∣∣∣Λ(t)

]
are continuous functions of Λ(t).

Proof. See Appendix 3.6.2.

Using Lemma 3 we conclude that the hypotheses of Lemma 2 are satisfied. Applying the

result in Lemma 2 we then have that for sufficiently large time index t we can rewrite (3.39) as

c̄ij ≤ E
[
Cij(hij(t)pij(t))qij(t)

∣∣∣∣Λ(t) = Λ∗
] ∏

l∈Mi(j)

E [1− ql(t)|Λ(t) = Λ∗] +N1(ε), (3.56)

where limε→0N1(ε) = 0. Given Λ(t), Cij(hij(t)pij(t))qij(t) and ql(t) are uncorrelated [cf. (3.40)].

This allows us to write the product of expectations on the right hand side of (3.56) as an expecta-

tion of products, i.e.,

c̄ij ≤ Ehi


Cij(hij(t)pij(t))qij(t)

∏

l∈Mi(j)

[1− ql(t)]

∣∣∣∣∣∣
Λ(t) = Λ∗


+N1(ε). (3.57)
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Figure 3.4: Connectivity graph of a network with n = 15 terminals randomly placed in a square with side

L = 100 meters. Terminals can communicate with neighbors whose distances are within 30 meters. The

numbers on each edge shows the distance (in meters) between two communicating terminals.

Using Lemma 2 again, the conditional expectation on the right hand side of (3.57) can be ex-

pressed as an unconditional expectation plus a small term N2(ε), leading us to

c̄ij ≤ Ehi


Cij(hij(t)pij(t))qij(t)

∏

l∈Mi(j)

[1− ql(t)]


+N2(ε) +N1(ε), (3.58)

where limε→0N2(ε) = 0. Define M(ε) = N1(ε) + N2(ε) and substitute (3.38) into (3.58) to obtain

(3.27).

3.4 Numerical results

We illustrate performance of the proposed algorithm by implementing and simulating it over a

network with n = 15 terminals randomly placed in a square with side L = 100 meters. Terminals

can communicate with neighbors whose distances are within 30 meters. Numerical experiments

here utilize the realization of this random placement shown in Fig. 3.4. Channel gains hij(t)
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are Rayleigh distributed with mean h̄ij and are independent across links and time. The average

channel gain h̄ij := E [hij ] follows an exponential pathloss law, h̄ij = αd−βij with dij denoting the

distance in meters between Ti and Tj and constants α = 10−1m−1 and β = 2.5. Assume the use

of capacity achieving codes so that the instantaneous transmission rate takes the form

Cij(hij(t)pij(t)) = log

(
1 +

hij(t)pij(t)

N0

)
, (3.59)

where N0 is the channel noise set to N0 = 10−4 for all links. Fading channels are generated

as i.i.d. There are two flows supported by the network, one from T1 to T2 and the other from

T8 to T11. For each flow the minimum and maximum amount of information to be delivered are

constrained by amin
i = 0.1 bits/s/Hz and amax

i = 1 bits/s/Hz for all nodes i. The routing and link

capacity variables are bounded by rmin
ij = cmin

ij = 0 bits/s/Hz and rmax
ij = cmax

ij = 1 bits/s/Hz.

The maximum average power consumption per terminal and maximum instantaneous power

consumption per terminal are set to 2, i.e., pmax
i = pinst

ij = 2. Our objective is to maximize total

amount of information delivered by the network, i.e., Uki (aki ) = aki and Vi(pi) = 0. We set ε = 0.02

and the simulation is conducted for 104 time slots. Successive convex approximation is used.

Fig. 3.5 shows feasibility of the proposed algorithm in terms of constraint violations. Specif-

ically, V̄λki (t), V̄µij (t), V̄νij (t) and V̄ξi(t), representing average violations of the flow conservation,

link capacity, average rate and average power constraints, respectively, are presented in the fig-

ure. At each time t, we compute

V̄λki (t) =
1

t

t∑

u=1


 ∑

j∈N (i)

(
rkij(u)− rkji(u)

)
− aki (u)


 , (3.60)

V̄µij (t) =
1

t

t∑

u=1

[
cij(u)−

∑

k∈K
rkij(u)

]
, (3.61)

V̄νij (t) =
1

t

t∑

u=1


Cij

(
hij(u)pij(u)

)
qij(u)

∏

k∈Mi(j)

[1− qk(u)]− cij(u)


, (3.62)

V̄ξi(t) =
1

t

t∑

u=1


pi(u)−

∑

j∈N (i)

pij(u)qij(u)


 . (3.63)

If the above values are nonnegative, it means the corresponding constraints are satisfied in an
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(a) Flow conservation constraint (b) Link capacity constraint
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(c) Average rate constraint (d) Average power constraint

Figure 3.5: Feasibility. After about 500 steps, all constraints are satisfied in an ergodic sense within 10−2

tolerance. The average rate constraint takes the longest time to be satisfied. This is because the transmission

rate on link Ti → Tj depends not only on schedules and powers of Ti but also on those of Tj and neighbors

of Tj . This requires information to be received from, and propagated to, 2-hop neighbors.

average sense. As we can see, after about 500 steps all constraints are satisfied within 10−2

tolerance. The average rate constraint takes the longest time to be satisfied (see Fig. 3.5 (c)).

This is because the transmission rate on link Ti → Tj depends not only on schedules and powers

of Ti but also on those of Tj and his neighbors. This requires information to be received from,

and propagated to, 2-hop networks.
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Figure 3.6: (a) Optimality. As time grows, primal and dual objectives approach each other. (b) Correlation

between Q1(t) and Q6(t). At the beginning, there is significant correlation between Q1(t) and Q6(t). But as

time grows, the correlation vanishes and becomes negligible.

To show optimality of the algorithm we compare ergodic primal and dual objectives. Since

we are maximizing total admission control variables, the ergodic primal objective is

P(t) = 1/t

t∑

u=1

∑

k∈K
aki (u). (3.64)

Furthermore, upon defining average Lagrange multipliers as λ̄ki (t) = 1/t
∑t
u=1 λ

k
i (u), µ̄ij(t) =

1/t
∑t
u=1 µij(u), ν̄ij(t) = 1/t

∑t
u=1 νij(u) and ξ̄i(t) = 1/t

∑t
u=1 ξi(u), we can compute the ergodic

dual objective as

D(t) = P(t) +
∑

i∈V

∑

k∈K
V̄λki (t)λ̄ki (t) +

∑

(i,j)∈E
V̄µij (t)µ̄ij(t) +

∑

(i,j)∈E
V̄νij (t)ν̄ij(t) +

∑

i∈V
V̄ξi(t)ξ̄i(t).

(3.65)

Fig. 3.6 (a) compares the ergodic primal and dual objectives. As time grows, the convergence

of the proposed algorithm is observed as the primal and dual values approach each other. By

Theorem 3, the algorithm is almost surely near optimal in the sense that the ergodic average of

the utility almost surely converges to a value with optimality gap smaller than εŜ2/2 with respect

to the optimal objective. Indeed, this is true as shown in Fig. 3.6 (a) that the gap between primal
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(a) Flow 1: from T1 to T2 (b) Flow 2: from T8 to T11

Figure 3.7: Optimal routes for flow 1 (from T1 to T2) and flow 2 (from T8 to T11).

and dual values becomes a small constant (about 0.05) as t increases. Moreover, we compute the

correlation between Q1(t) and Q6(t) using samples from time 1 to t. The result is shown in Fig.

3.6 (b). At the beginning, there is significant correlation between Q1(t) and Q6(t). But as time

grows, the correlation vanishes and becomes negligible.

Optimal routes for flow 1 and 2 are shown in Fig. 3.7 (a) and (b). In addition to the shortest

path from source to destination, other longer paths are used to deliver information for both flows.

For example, the shortest path for flow 2 is T8 → T14 → T6 → T11, but a longer path T8 → T10 →

T5 → T4 → T11 is utilized as well. It is interesting to note that the longer path delivers more

information than the shorter path does. This is because the shorter path goes through T14 and

T6 which interfere with the source node of flow 1 (T1). To limit interference with flow 1, some

packets in flow 2 are transmitted via other longer paths.

3.5 Summary

We developed algorithms for optimal design of wireless networks using local channel state in-

formation. Due to the time-varying nature of fading states, random access is the natural medium
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access choice leading to the formulation of an optimization problem for random access networks.

To obtain a distributed solution, we approximated the problem so that it can be decomposed in

the dual domain and developed a stochastic subgradient descent algorithm. Based on instan-

taneous local channel conditions, the algorithm finds network operating points that are almost

surely feasible and optimal in an ergodic sense. The solution exhibits a layered architecture in

which variables in each layer are computed using information from interfaces to adjacent layers.

The algorithm is fully distributed in that all operations necessary to achieve optimal operation

are based on local information and information exchanges between neighboring terminals. The

computational cost per iteration is minimal. In the proposed algorithm, all terminals act inde-

pendently of each other. Algorithms that consider collaboration among terminals will be a future

research direction.

3.6 Appendices

3.6.1 Proof of Lemma 1

Define g(t) := g(Λ(t)). According to Thereom 2 in [32], for arbitrary δ > 0, g(t) − D̃ falls below

εŜ2/2+δ at least once almost surely as t grows. If g(t)−D̃ falls below εŜ2/2+δ, it may stay below

or jump above εŜ2/2 + δ. The key idea in this proof is to show that if g(t) exceeds D̃ + εŜ2/2 + δ

the probability that it gets even bigger is very small. Let us then define T1 as a time at which

g(T1) stays below D̃+ εŜ2/2 + δ but jumps above it at time T1 + 1, i.e., g(T1 + 1)− D̃ > εŜ2/2 + δ.

The rest of the proof relies on the following chain of arguments:

(A1) The expected value of the distance between Λ(T1 + 1) and the optimal dual variable Λ∗ is

bounded by a function L0(ε) where limε→0 L0(ε) = 0, i.e.,

E
[
||Λ(T1 + 1)−Λ∗||2

]
≤ L0(ε). (3.66)

(A2) Define gbest(t) = minu∈[0,t] g(u) and ψ(t) = ||Λ(T1 + t)−Λ∗||2I
{
gbest(T1 + t)− D̃ ≥ εŜ2/2

}
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for t = 1, 2, · · · and I{·} denotes the indicator function. Then, ψ(t) is a supermartingale, i.e.,

E [ψ(t+ 1)|ψ(1 : t)] ≤ ψ(t). (3.67)

(A3) Assume L0(ε) is small enough such that L0(ε) <
√
L0(ε). Define then a stopping rule

ψ(t) ≥
√
L0(ε) or ψ(t) = 0. Let T be a stopping time, by the optional stopping theorem [44,

Theorem 10.10] we have

E[ψ(T )] ≤ E[ψ(1)]. (3.68)

Using the fact that ψ(1) = ||Λ(T1 + 1)−Λ∗||2 and results in (3.66) we can further bound (3.68) by

E[ψ(T )] ≤ E
[
||Λ(T1 + 1)−Λ∗||2

]
≤ L0(ε), (3.69)

According to the stopping rule, either ψ(T ) ≥
√
L0(ε) or ψ(T ) = 0. As a result, we can lower

bound E[ψ(T )] by

E[ψ(T )]≥
√
L0(ε)Pr

[
||Λ(T1 + T )−Λ∗||2≥

√
L0(ε)

∣∣∣∣Λ(T0)

]
. (3.70)

Substituting (3.70) into (3.69) and dividing both sides by
√
L0(ε) yields

Pr
[
||Λ(T1 + T )−Λ∗||2 ≥

√
L0(ε)

∣∣∣∣Λ(T0)

]
≤
√
L0(ε). (3.71)

(A4) For any t > 0, the event ||Λ(T1 + t)−Λ∗||2 ≥
√
L0(ε) happens only when there exists T ≤ t

such that T is a stopping time and ||Λ(T1 + T )−Λ∗||2 ≥
√
L0(ε). Then, we have

Pr
[
||Λ(T1 + t)−Λ∗||2 ≥

√
L1(ε, δ)

∣∣∣∣Λ(T0)

]

≤ Pr
[
||Λ(T1 + T )−Λ∗||2 ≥

√
L0(ε)

∣∣∣∣Λ(T0)

]
≤
√
L0(ε) (3.72)

where the second inequality follows from (3.71). Substituting L(ε) =
√
L0(ε) into (3.72) com-

pletes the proof. In the following, we provide detailed proofs for (A1) and (A2).

First, we show that (3.66) is true, i.e., E
[
||Λ(T1 + 1)−Λ∗||2

]
≤ L0(ε). Start by noting that g(t)

is a convex function of Λ(t) with a unique minimizer Λ∗, then g(T1)−D̃ ≤ εŜ2/2+δ is equivalent
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to

||Λ(T1)−Λ∗||2 ≤ L1(εŜ2/2 + δ), (3.73)

where L1(·) is a nonnegative function such that limx→0 L1(x) = 0. According to the dual update

(3.11), we can write ||Λ(T1 + 1)−Λ∗||2 as

||Λ(T1 + 1)−Λ∗||2 = || [Λ(T1)− εs(T1)]
+ −Λ∗||2 (3.74)

≤ ||Λ(T1)−Λ∗ − εs(T1)||2 (3.75)

= ||Λ(T1)−Λ∗||2 + ε2||s(T1)||2 − 2εsT (T1) [Λ(T1)−Λ∗] , (3.76)

where inequality (3.75) follows because setting negative elements in Λ(T1) − εs(T1) to zero re-

duces its distance to Λ∗. Expanding (3.75) yields (3.76). Taking expectation conditioned on Λ(T1)

for both sides of (3.76) yields

E
[
||Λ(T1 + 1)−Λ∗||2

∣∣∣∣Λ(T1)

]
≤ ||Λ(T1)−Λ∗||2 + ε2E

[
||s(T1)||2

∣∣∣∣Λ(T1)

]

− 2εE
[
sT (T1)

∣∣∣∣Λ(T1)

]
[Λ(T1)−Λ∗] . (3.77)

Note that the first term on the right hand side of (3.77) is upper bounded by L1(εŜ2/2 + δ)

[cf. (3.73)]. As per the hypothesis, E
[
||s(T1)||2|Λ(T1)

]
is upper bounded by Ŝ2. The third term

is lower bounded by 0 because E [s(T1)|Λ(T1)] is subgradient of g(Λ(T1)) [32, Proposition 1].

Plugging these bounds into (3.77) yields

E
[
||Λ(T1 + 1)−Λ∗||2

∣∣∣∣Λ(T1)

]
≤ L1(εŜ2/2 + δ) + ε2Ŝ2 := L2(ε, δ). (3.78)

where we defined function L2(ε, δ). Taking expectation with respect to Λ(T1) on both sides of

(3.78) and defining L0(ε) = limδ→0 L2(ε, δ) lead us to (3.66).

We then show ψ(t) is a supermartingale. We discuss two cases ψ(t) = 0 and ψ(t) > 0

separately. If ψ(t) = 0, it implies either Λ(T1 + t) = Λ∗ or gbest(T1 + t) − D̃ < εŜ2/2. If

Λ(T1 + t) = Λ∗, then it must be g(T1 + t) = D̃. Since the dual function is lower bounded by

D̃, it implies gbest(T1 + t + 1) = gbest(T1 + t) = D̃. If gbest(T1 + t) − D̃ < εŜ2/2, it follows that
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gbest(T1 + t + 1) − D̃ < εŜ2/2 since gbest(T1 + t + 1) ≤ gbest(T0 + t). In either case, ψ(t + 1) = 0

and (3.67) holds for equality. If ψ(t) 6= 0, it must be gbest(T1 + t) − D̃ ≥ εŜ2/2, which implies

g(T1 + t) − D̃ ≥ εŜ2/2 and ψ(t) = ||Λ(T1 + t) − Λ∗||2. Since ψ(t) is completely determined by

Λ(t), we can write following relationship

E [ψ(t+ 1)|ψ(1 : t)] = E
[
ψ(t+ 1)

∣∣∣∣Λ(T1 + 1 : T1 + t)

]
(3.79)

≤ E
[
||Λ(T1 + t+ 1)−Λ∗||2

∣∣∣∣Λ(T1 + 1 : T1 + t)

]
(3.80)

= E
[
||Λ(T1 + t+ 1)−Λ∗||2

∣∣∣∣Λ(T1 + t)

]
, (3.81)

where inequality (3.80) follows sinceψ(t+1)= ||Λ(T1+t+1)−Λ∗||2I
{
gbest(T1 + t+ 1)−D̃≥εŜ2/2

}

≤ ||Λ(T1 + t + 1) − Λ∗||2 and equality (3.81) is true since Λ(N) is a Markov process. Using the

dual update rule (3.11) we can bound (3.81) by

E [ψ(t+ 1)|ψ(1 : t)] ≤ ||Λ(T1 + t)−Λ∗||2 + ε2E
[
||s(T1 + t)||2

∣∣∣∣Λ(T1 + t)

]

− 2εE
[
sT (T1 + t)

∣∣∣∣Λ(T1 + t)

]
[Λ(T1 + t)−Λ∗] (3.82)

≤ ||Λ(T1 + t)−Λ∗||2 + εŜ2 − 2ε
[
g(T1 + t)− D̃

]
(3.83)

≤ ||Λ(T1 + t)−Λ∗||2 = ψ(t). (3.84)

where (3.83) follows because E
[
||s(T1 + t)||2|Λ(T1 + t)

]
≤ Ŝ2 and E

[
sT (T1 + t)|Λ(T1 + t)

]

[Λ(T1 + t)−Λ∗] is lower bounded by g(T1 + t) − D̃ and (3.84) follows from the fact that g(T1 +

t)− D̃ ≥ εŜ2/2. Therefore, for both cases ψ(t) = 0 and ψ(t) > 0 (3.67) holds true.

3.6.2 Proof of Lemma 3

For notational simplicity, we ignore time index t in this proof. Recall that qi is uniquely deter-

mined by hi and Λi. Thus, we can write qi as a function of hi and Λi, i.e. qi(hi,Λi). To show

Ehi [qi|Λi] is continuous in Λi, we have to establish that for any sequence Λi(n) that converges
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to Λi as n→∞, Ehi [qi|Λi(n)] converges to Ehi [qi|Λi], i.e.,

lim
n→∞

∫
qi(hi,Λi(n))dhi =

∫
qi(hi,Λi)dhi. (3.85)

To show (3.85) is true, define

Wij(hi,Λi) = max
p∈[0,pinst

ij ]
{αijCij(hijp)− βi − ξip} , (3.86)

and

Wi(hi,Λi) = max
j∈N (i)

{Wij(hi,Λi)} . (3.87)

Note that the objective on the right hand side of (3.86) is a linear function of Λi. Given hi,

Wij(hi,Λi) is the maximum of a set of linear functions of Λi. As a consequence, Wij(hi,Λi) is

a convex function of Λi given hi. Moreover, note that Wi(hi,Λi) is the maximum of Wij(hi,Λi)

for all j ∈ N (i), then given hi it is a convex function of Λi as well. Since convexity implies

continuity, Wi(hi,Λi) is a continuous function of Λi for any given hi. This implies

lim
n→∞

Wi(hi,Λi(n)) = Wi(hi,Λi). (3.88)

Recall that qi(hi,Λi) equals to 1 if Wi(hi,Λi) > 0 and 0 otherwise. Therefore, qi(hi,Λi(n)) con-

verges pointwise to qi(hi,Λi) almost everywhere. Furthermore, note that qi(hi,Λi(n)) is upper

bounded by 1. Using dominated convergence theorem [44, Chapter 5.9], (3.85) follows. The

argument for the continuity of the expectation Ehi [qijCij(hijpij)|Λi] is analogous.
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Chapter 4

Optimal wireless communications

with imperfect CSI

In Chapter 2 and Chapter 3, we developed distributed algorithms for optimal random access

channels and networks, respectively. In both cases, terminals are assumed to have access to

perfect local CSI. In practice, however, perfect CSI is rarely available due to estimation errors

and, perhaps more fundamentally, to feedback delay. Algorithms to handle imperfect CSI in the

transmission over wireless channels are the subject matter of this chapter. We focus on three

types of channels: single user point-to-point block fading channels [15], multiuser downlink

orthogonal frequency division multiplexing (OFDM) [38], and multiuser uplink random access

(RA) [29]. In all three cases we develop algorithms adapting to imperfect CSI that maximize

ergodic throughputs subject to average power constraints.

As in the case of perfect CSI, transmitters adapt their power and coding mode to channel

observations in order to exploit favorable channel conditions. However, due to the inaccuracy

of imperfect CSI, channel outages occur when the rate selected turns out too aggressive for the

actual channel realization. From a practical perspective it is recognized that to mitigate the nega-
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tive effect of outages caused by imperfect CSI a channel backoff function is needed to enforce the

selection of more conservative coding modes; see e.g. [52]. Instead of selecting a code adapted to

the channel estimate, we select a code adapted to a smaller channel realization. This reduces the

transmission rate but also reduces the likelihood of a channel outage resulting on overall larger

throughput. Ideally, power allocation and rate backoff should be jointly optimized but this re-

sults in a nonconvex optimization problem. Since we need to determine power allocation and

backoff for each fading state and fading takes on a continuum of values it further follows that

the problem is infinite dimensional. Infinite dimensionality compounded with lack of convexity

results in computational intractability.

Computational intractability notwithstanding, the problem can be simplified through the im-

position of additional restrictions to yield more tractable formulations that lead to the successful

development of transmission strategies for various types of wireless channels. Most relevant to

the work presented here are works on point-to-point channels, e.g., [24, 48, 49], broadcast chan-

nels [2, 5, 40–42, 45] and random access channels [12, 43, 52]. E.g., when power is fixed and only

rate adaptation is considered the problem is reduced to the determination of the optimal backoff

function; e.g. [41]. A second possibility is to fix a target outage probability and separate the opti-

mization problem into the determination of a backoff function for target outage, followed by op-

timal power allocation over estimated channels [42]. A third possible restriction is to assume that

the backoff function takes a certain parametric form and proceed to optimize the corresponding

parameters, e.g. [52]. These different reformulations yield tractable problems but the resulting

throughputs are not optimal for the original problem.

Rather than reformulating the original problem into a suboptimal tractable alternative, the

contribution of this chapter is to develop algorithms that jointly find optimal power allocations

and channel backoff functions. Key in achieving this goal is the recognition that the structure

of the resulting optimization problem makes it part of a class of problems that despite their lack

of convexity have null Lagrangian duality gap [34]. The Lagrangian dual problem of the joint
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power and backoff function optimization is convex, because dual problems are convex regardless

of the convexity of the primal problem, and their dimensionality is given by the number of power

constraints which is typically equal to the number of terminals. The combination of convexity

and small finite dimensionality results in computational tractability that has to be contrasted

with the computational intractability that follows from the infinite dimensionality and lack of

convexity of the primal problem. Let us emphasize that lack of duality gap makes primal and

dual problems equivalent.

We begin by studying optimal transmission over a single user point-to-point channel with

imperfect CSI to illustrate the methodology we will later generalize to multiuser OFDM and

RA channels (Section 4.1). In the case of point-to-point channels there is only one constraint

and consequently the dual problem is one-dimensional. Lack of convexity is leveraged to show

that the optimal power allocation and channel backoff functions are uniquely determined by the

optimal dual variable. With the optimal multiplier available, determination of optimal power

allocation and channel backoff decomposes into two-dimensional per-fading state optimization

subproblems (Section 4.1.2). We further develop a stochastic subgradient descent algorithm in

the dual domain that converges to the optimal Lagrange multiplier and yields the optimal power

allocation and channel backoff function as a byproduct (Section 4.1.3). This algorithm operates

based on instantaneous channel estimates and does not require access to the channel’s probability

distribution function (pdf).

We then consider optimal transmission over a downlink multiuser OFDM channel with im-

perfect CSI (Section 4.2). The objective is to maximize a convex utility of the ergodic rates of all

users subject to an average sum power budget. In addition to power allocations and channel

backoffs, the algorithm for OFDM needs to determine subcarrier assignments for each channel

realization. Similar to the case of single-user channels, jointly optimal backoff and frequency and

power allocations are uniquely determined by a finite number of Lagrange multipliers equal to

the number of users served plus one. With the optimal multiplier available, the problem of deter-
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mining optimal operating points decomposes into two-dimensional per-frequency, per-terminal,

and per-fading state subproblems (Section 4.2.1). Stochastic subgradient descent algorithms to

find optimal operating points are developed as well (Section 4.2.2).

We finally investigate uplink multiuser RA channels whereby users contend for communica-

tion with a common receiver (Section 4.3). In this case, terminals do not coordinate their trans-

mission attempts and make transmission decisions based on estimates of their own channels

only. If they decide to transmit, they choose a power and a rate for their communication at-

tempt. The objective is to maximize proportional fair utility of ergodic rates subject to individual

power constraints at each terminal. Decompositions and stochastic subgradient descent algo-

rithms analogous to those derived for single user and OFDM channels are derived (sections 4.3.1

and 4.3.2).

Numerical results are presented in Section 4.4 and concluding remarks in Section 4.5.

4.1 Point-to-point channels

Consider a wireless channel with time slots indexed by t. The channel at time t is denoted as

h(t). The channel is assumed to be block fading. The pdf mh(h) of the channel h is unknown.

We assume channels have continuous pdf. In each time slot the transmitter computes an esti-

mate ĥ(t) of the current gain h(t) to adapt transmitted power and code selection to the channel

state. The accuracy of estimates ĥ(t) is characterized through the conditional probability distri-

bution mh|ĥ(h|ĥ) that determines the probability of the actual channel being h when the estimate

is ĥ. The probability distribution mh|ĥ(h|ĥ) depends on the channel estimation method and is

assumed known, although we make no assumptions on its specific form – see Remark 7 below.

Based on the value of the channel estimate ĥ, the transmitter decides on a power allocation

P = P (ĥ) : R+ → [0, pinst], where pinst > 0 is the maximum instantaneous power the trans-

mitter can use. The communication rate through the channel is a function of the transmitted
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power P (ĥ) and the actual channel gain h that we generically denote as C(P (ĥ), h). The function

C(P (ĥ), h) depends on how signals are coded and modulated at the physical layer. To achieve

rate C(P (ĥ), h) the transmitter has to select an appropriate code adapted to the received SNR

P (ĥ)h/N0, e.g., the appropriate modulation and coding mode if AMC is used. This is not pos-

sible however, because the code selection depends on the unknown channel gain h. A feasible

alternative is to adapt the code to the estimated received SNR P (ĥ)ĥ/N0 and attempt transmis-

sion at a rate C(P (ĥ), ĥ). Observe that the transmitted rate does not coincide with the channel

throughput due to the possibility of lost packets. Indeed, a channel outage is assumed to occur

when the transmitted rate C(P (ĥ), ĥ) exceeds the maximum rate C(P (ĥ), h) the channel can af-

ford, i.e. when C(P (ĥ), ĥ) > C(P (ĥ), h) or simply when ĥ > h. The instantaneous rate achieved

in the channel is therefore given by

R(h, ĥ) = C(P (ĥ), ĥ)I[ĥ ≤ h], (4.1)

which corrects for lost packets through the indicator I[ĥ ≤ h].

Selecting a code to attempt transmission at rate C(P (ĥ), ĥ) would likely result in a substantial

number of dropped packets. For the sake of argument suppose that the conditional distribution

mh|ĥ(h|ĥ) is symmetric around ĥ. In such case about half of the packets are lost as the outage

probability would be P
{
ĥ > h

}
= 0.5. To alleviate the negative effect of outages, a channel

backoff function B = B(ĥ) : R+ → R+ is used to determine a backed-off channel gain B(ĥ).

The code is then adapted to the received SNR P (ĥ)B(ĥ)/N0 – as opposed to P (ĥ)ĥ/N0 – and

communication proceeds at a rateC(P (ĥ), B(ĥ)). With codes adapted to P (ĥ)B(ĥ)/N0, an outage

occurs if B(ĥ) > h. Thus, the instantaneous transmission rate can be written as

R(h, ĥ) = C(P (ĥ), B(ĥ))I
{
B(ĥ) ≤ h

}
. (4.2)

The idea is that makingB(ĥ) < ĥ reduces the chance of an outage thereby increasing the effective

rateR(h, ĥ) even if the attempted transmission is more conservative [cf. (4.1) and (4.2)]. However,

as we shall show later, making B(ĥ) > ĥ is optimal in some cases.
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4.1.1 Ergodic rate optimization

Our goal is to find the optimal power allocation function P and channel backoff function B such

that the expected transmission rate is maximized subject to an average power constraint P0,

Ps = maxEh,ĥ

[
C(P (ĥ), B(ĥ))I

{
B(ĥ) ≤ h

}]

s.t. Eĥ
[
P (ĥ)

]
≤ P0. (4.3)

Solving (4.3) is challenging because: (I1) The objective includes an expectation over the random

channel gain h, whose realizations are not available at the transmitter and whose pdf is unknown.

(I2) Variables in this optimization problem are functions P and B defined on R+, implying the

dimensionality of the problem is infinite. (I3) The objective and the constraint involve expec-

tations over channel estimates ĥ, whose realizations are observed in each time slot but whose

pdf is unknown. (I4) The channel capacity function C(P (ĥ), B(ĥ)) may be nonconvex or even

discontinuous as in the case of AMC.

To overcome issue (I1), we rewrite the expectation in the objective of (4.3) as a conditional

expectation over h with ĥ given, followed by an expectation over ĥ, i.e.

Eh,ĥ

[
C(P (ĥ), B(ĥ))I

{
B(ĥ) ≤ h

}]
= Eĥ

[
C(P (ĥ), B(ĥ))Eh|ĥ

[
I
{
B(ĥ) ≤ h

}] ]
. (4.4)

Note that the inner expectation in (4.4) is just the probability Pr(B(ĥ) ≤ h|ĥ) of the backed off

channel being smaller than the actual channel h for a given estimate ĥ. This probability can be

written in terms of the complementary cumulative distribution function (ccdf) Mh|ĥ(·) of h given

ĥ as

Mh|ĥ(B(ĥ)) := Pr(B(ĥ) ≤ h|ĥ) = Eh|ĥ
[
I
{
B(ĥ) ≤ h

}]
. (4.5)

Since mh|ĥ(·) is known – see Remark 7 – the ccdf Mh|ĥ(B(ĥ)) is available. This allows us to

simplify (4.4) to

Eh,ĥ
[
C(P (ĥ), B(ĥ))I

{
B(ĥ) ≤ h

}]
= Eĥ

[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))

]
. (4.6)
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Using (4.6) the objective in (4.3) can be written as a single expectation over ĥ yielding the equiv-

alent formulation

Ps = maxEĥ
[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))

]

s.t. Eĥ
[
P (ĥ)

]
≤ P0. (4.7)

Problems (4.3) and (4.7) are equivalent. Our goal is to find the optimal power allocation P ∗

with values P ∗(ĥ) and backoff function B∗ with values B∗(ĥ) that jointly solve problem (4.7).

Since actual channel gains h are not present in (4.7), issue (I1) has been resolved. Issues (I2)-(I4),

however, still hold for problem (4.7). Sections 4.1.2 and 4.1.3 discuss a method to solve (4.7) that

overcomes these issues. We pursue this after the following remark.

Remark 7. The probability distribution mh|ĥ(h|ĥ) depends on the channel estimation method.

A typical way of estimating the channel is to send a training signal that is known to both the

transmitter and the receiver and get feedback from the receiver on the measured channel gain.

Due to estimation error and/or feedback delays, estimated channels ĥ are different from actual

channels h and are modeled as

ĥ = h+ e, (4.8)

where e is a complex Gaussian random noise CN (0, σ2
e). For the model in (4.8) it holds that the

pdf of h given ĥ is a noncentral chi-square given by [28]

mh|ĥ(h|ĥ) =
1

σ2
e

exp

(
−h+ ĥ

σ2
e

)
I0

(
2
√
hĥ

σ2
e

)
, (4.9)

where I0(x) =
∑∞
i=0 (x2/4)i/(i!)2 is the zeroth order modified Bessel function of the first kind.

This particular form for the conditional pdf mh|ĥ(h|ĥ) is used to provide numerical results in

Section 4.4. The rest of the development in the chapter holds independently of the particular

form of this pdf. Note that we assume the conditional pdf mh|ĥ(h|ĥ) does not change over time.
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4.1.2 Optimal power allocation and channel backoff functions

The optimization problem in (4.7) has only one constraint, implying that while the primal prob-

lem is infinite dimensional, the dual problem is one-dimensional. More importantly, it has been

shown that problems like (4.7), where the non-convex functions appear inside expectations, have

null duality gap as long as the pdf of the random variable with respect to which we take the

expected value has no points of strictly positive probability (see Appendix 4.6.1). As a result,

working in the dual domain is equivalent. To introduce the dual function associate Lagrange

multiplier λ with the power constraint and define the Lagrangian as

L(P,B, λ) = Eĥ
[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))

]
+ λ

[
P0 − Eĥ

[
P (ĥ)

]]

= Eĥ
[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))− λP (ĥ)

]
+ λP0, (4.10)

where we rearranged terms to write the second equality. The dual function is then defined as the

maximum of the Lagrangian over the sets of feasible functions P and B, i.e.,

g(λ) = max
P,B
L(P,B, λ). (4.11)

We now can write the dual problem as the minimum of g(λ) over nonnegative λ, i.e.,

Ds = min
λ≥0

g(λ) (4.12)

Since the problem (4.7) and its dual (4.12) have been shown to have null gap we have that Ps = Ds.

This property can be exploited to characterize the optimal power allocation and channel backoff

functions as is done in the following theorem.

Theorem 4. The optimal power allocation function P ∗ with values P ∗(ĥ) and optimal backoff function

B∗ with values B∗(ĥ) that solve problem (4.7) are determined by the optimal dual variable λ∗ of the dual

problem (4.12). In particular,

{
P ∗(ĥ), B∗(ĥ)

}
∈ argmax
b∈[0,∞),p∈[0,pinst]

{
C(p, b)Mh|ĥ(b)− λ∗p

}
. (4.13)
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Proof. According to the definition of the dual function [cf. (4.11)], g(λ∗) is the maximum of the

Lagrangian L(P,B, λ∗) across all functions P and B. Since optimal functions P ∗ and B∗ are

possible arguments of the Lagrangian in this maximization it follows that L(P ∗, B∗, λ∗) must be

bounded above by g(λ∗), i.e.,

Ds = g(λ∗) = max
P,B
L(P,B, λ∗) ≥ L(P ∗, B∗, λ∗). (4.14)

As per its definition in (4.10) the Lagrangian L(P ∗, B∗, λ∗) can be written as

L(P ∗, B∗, λ∗) =Eĥ
[
C(P ∗(ĥ), B∗(ĥ))Mh|ĥ(B∗(ĥ))

]
+ λ∗

[
P0 − Eĥ

[
P ∗(ĥ)

]]
.

Since B∗ and P ∗ are feasible for the primal problem, the average power constraint must be satis-

fied, i.e., P0−Eĥ
[
P ∗(ĥ)

]
≥ 0. Since we also know that λ∗ ≥ 0 we conclude that λ∗

[
P0−Eĥ

[
P ∗(ĥ)

]]

≥ 0 and as a result

L(P ∗, B∗, λ∗) ≥ Eĥ
[
C(P ∗(ĥ), B∗(ĥ))Mh|ĥ(B∗(ĥ))

]
= Ps. (4.15)

Substituting (4.15) into (4.14) gives us

Ds = g(λ∗) ≥ L(P ∗, B∗, λ∗) ≥ Ps. (4.16)

Since the duality gap is null, i.e. Ds = Ps, the inequalities in (4.16) must be satisfied with equali-

ties, i.e.

Ds = g(λ∗) = L(P ∗, B∗, λ∗) = Ps. (4.17)

The equality g(λ∗) = L(P ∗, B∗, λ∗) in (4.17) implies that P ∗ and B∗ are maximizers of the La-

grangian L(P,B, λ∗),

{P ∗, B∗} ∈ argmax
P,B

L(P,B, λ∗). (4.18)

Note that in (4.18) we used set inclusion instead of equality because the maximizer may not be

unique. Using the definition of the Lagrangian [cf. (4.10)], we can rewrite (4.18) as

{P ∗, B∗} ∈ argmax
P,B

Eĥ
[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))− λ∗P (ĥ)

]
, (4.19)
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where we ignored the term λ∗P0 since it does not depend on P (ĥ) or B(ĥ). Due to the linearity

of the expectation operator, the maximization in (4.19) can be carried out inside the expectation.

This yields separate maximizations for each channel state estimate ĥ as indicated in (4.13).

Provided that λ∗ is available, Theorem 4 states that P ∗(ĥ) and B∗(ĥ) can be obtained by

solving the maximization in (4.13). Although the problem in (4.13) might be nonconvex, solving

it is by no means a difficult task as it only involves two variables. This provides a great advantage

because the problem dimensionality is reduced from infinity to 1. Also, we remark that Theorem

4 is true no matter what the capacity function is and how the underlying channel is distributed.

Next, we shall develop online algorithms that find the optimal solutions for problem (4.7) using

only instantaneous imperfect CSI.

4.1.3 Online learning algorithms

Unlike the nonconvex primal problem, the dual problem in (4.12) is always convex. This suggests

that gradient descent algorithms in the dual domain are guaranteed to converge to the optimal

multiplier λ∗. In particular, we use stochastic subgradient descent algorithms that iteratively

compute primal and dual variables. Given dual variable λ(t), the algorithm proceeds to a primal

iteration in which it computes power allocation p(t) and backoff function b(t) as

{p(t), b(t)} ∈ argmax
p∈[0,pinst],b≥0

{
C(p, b)Mh|ĥ(t)(b)− λ(t)p

}
. (4.20)

Multipliers λ(t+ 1) are then updated based on λ(t) and p(t) as

λ(t+ 1) = [λ(t)− ε(t) [P0 − p(t)]]+ , (4.21)

where [x]+ = max{0, x} denotes projection on the nonnegative reals and ε(t) > 0 is a possibly

time dependent step size. The difference P0− p(t) in (4.21) is a stochastic subgradient of the dual

function as it can be shown that the expected value of P0 − p(t) is a (deterministic) subgradient

of the dual function [16,32]. This property implies that P0− p(t) points to λ∗ on an average sense
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Algorithm 2: Optimal power control and channel backoff for point-to-point channels

1 Initialize Lagrangian multiplier λ(0);

2 for t = 0, 1, 2, · · · do

3 Compute primal variables as per (4.20):

4 {p(t), b(t)} ∈ argmax
p∈[0,pinst],b≥0

{
C(p, b)Mh|ĥ(t)(b)− λ(t)p

}
;

5 Transmit with power p(t) and rate C(p(t), b(t));

6 Update dual variables as per (4.21):

7 λ(t+ 1) = [λ(t)− ε(t) [P0 − p(t)]]+;

8 end

and can be exploited to prove convergence in the dual domain. The computations in (4.20) and

(4.21) are summarized in Algorithm 2.

Particular convergence properties depend on whether constant or time varying step sizes are

used. We first consider diminishing step sizes. If ε(t) is nonsummable but square summable, i.e.,

∑∞
t=0 ε(t) = ∞ and

∑∞
t=0 ε

2(t) < ∞, then using standard stochastic approximation techniques it

can be shown that λ(t) converges to λ∗ almost surely [20]. As a consequence of Theorem 4, this

indicates that the primal variables almost surely converge to the optimal values as time grows,

i.e., p(t) = P ∗(ĥ(t)) and b(t) = B∗(ĥ(t)) almost surely as t goes to infinity.

In addition to diminishing step size, constant step size can be used for the algorithm. How-

ever, with a constant step size the dual iterates λ(t) no longer converge to the optimal value

almost surely. Instead, they stay within a small distance of λ∗ with probability close to 1 as t goes

to infinity and convergence can be established in a time average sense only [32]. Specifying The-

orem 1 of [32] to the stochastic subgradient descent algorithm in (4.20)-(4.21) yields the following

property.

Property 1. If constant step sizes ε(t) = ε > 0 for all t are used in Algorithm 2, the average power
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constraint is almost surely satisfied

lim
t→∞

1

t

t∑

u=1

p(u) ≤ P0 a.s., (4.22)

and the ergodic limit of C(p(t), b(t))Mh(t)|ĥ(t)(b(t)) almost surely converges to a value within κε/2 of

optimal,

Ps − lim
t→∞

1

t

t∑

u=1

C(p(u), b(u))Mh(u)|ĥ(u)(b(u)) ≤ κε/2 a.s., (4.23)

where κ ≥ E
[(
P0 − p(t)

)2 ∣∣∣∣λ(t)

]
is a constant bounding the second moment E

[(
P0 − p(t)

)2 ∣∣∣∣λ(t)

]

of the stochastic subgradient P0 − p(t).

Since p(t) can only take values in [0, pinst], the constant κ in (4.23) is upper bounded by

max{P 2
0 , (Pmax − P0)2}. It follows that the time average of C(p(t), b(t))Mh(t)|ĥ(t)(b(t)) can be

made arbitrarily close to optimal by reducing the step size ε. Notice however that the rate

C(p(t), b(t))Mh(t)|ĥ(t)(b(t)) is an average across possible channel realizations h(t) for given es-

timate ĥ(t), which is in general different from the instantaneous transmission rate C(p(t), b(t))

I {b(t) ≤ h(t)} achieved by the algorithm. Despite this disparity in instantaneous values, their

ergodic limits are almost surely equal. To see this just note that according to its definition in (4.5)

it holds Mh(t)|ĥ(t)(b(t)) = Eh(t)|ĥ(t)

[
I {b(t) ≤ h(t)}

]
. With estimates ĥ(N) given for all times t, the

stochastic process h(N) is ergodic. It then follows that we must have

lim
t→∞

1

t

t∑

u=1

C(p(u), b(u))I {b(u) ≤ h(u)} = lim
t→∞

1

t

t∑

u=1

C(p(u), b(u))Eh(u)|ĥ(u)

[
I {b(u) ≤ h(u)}

]
a.s.,

(4.24)

because with ĥ(N) given the term C(p(u), b(u)) is just a constant. Substituting the equality

Mh(t)|ĥ(t)(b(t)) = Eh(t)|ĥ(t)

[
I {b(t) ≤ h(t)}

]
into (4.24) and the resulting expression into (4.23)

gives

Ps − lim
t→∞

1

t

t∑

u=1

C(p(u), b(u))I {b(u) ≤ h(u)} ≤ κε/2 a.s.. (4.25)

88



Eq. (4.25) shows that although the algorithm with constant step sizes does not find P ∗(ĥ(t)) and

B∗(ĥ(t)) it generates sequences p(t) and b(t) whose time averages are almost surely near optimal.

The near optimality gap can be made arbitrarily small by reducing the step size ε as we have

already noted. The advantage of using a constant step size is that if the channel distributions

change slowly the algorithm can adapt to that change.

4.2 Orthogonal frequency division multiplexing

Consider now an OFDM channel where a common access point (AP) spends an average power

budget P0 to communicate with N terminals {Tn}Nn=1 using a set of orthogonal frequencies F .

As in the point-to-point channel case of Section 4.1, time is slotted and indexed by t. The time-

varying channel gain between the AP and terminal Tn for all frequencies f ∈ F is modeled as

block fading and denoted by hfn(t). In each time slot the AP observes channel gain estimates

for all terminals and frequencies which we denote as a vector ĥ(t) := {ĥfn(t) : n ∈ N , f ∈ F}.

Based on ĥ(t), the AP decides on frequency allocation qfn(t) := Qfn(ĥ(t)) ∈ {0, 1} and power

allocation pfn(t) := P fn (ĥ(t)) ∈ [0, pinst]. If qfn(t) = 1, it transmits to Tn using frequency f . Since

a given frequency cannot be used by more than one terminal in the same time slot, we require

∑N
n=1Q

f
n(ĥ) ≤ 1 for all f ∈ F . Define the vector Qf (ĥ) := [Qf1 (ĥ), · · · , Qfn(ĥ)]T grouping the

schedules of all terminals for given frequency and channel realization. We can then express the

frequency exclusion constraint as

Qf (ĥ) ∈ Q :=
{
q = [q1, · · · , qN ]T : qn ∈ {0, 1},qT1 ≤ 1

}
, (4.26)

which simply states that at most one component of Qf (ĥ) can be 1.

If frequency f is scheduled for communication to Tn the AP determines power allocations

P fn (ĥ(t)) for the communication to terminal Tn in frequency f for joint channel estimates ĥ(t) as

well as a channel backoff value Bfn(ĥ(t)) that we also let be a function of all channel estimates

ĥ(t). The intent of the backoff function Bfn(ĥ(t)) is to reduce the likelihood of channel outages as
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in the point-to-point channel case discussed in Section 4.1. Therefore, channel coding is selected

according to the value of the product P fn (ĥ(t))Bfn(ĥ(t)) and communication is attempted at a rate

C
(
P fn (ĥ(t)), Bfn(ĥ(t))

)
. The instantaneous throughput for the link to terminal Tn has to discount

for channel outages and to account for all frequencies f ∈ F scheduled for this transmission

yielding the instantaneous rate

Rn(h, ĥ) =
∑

f∈F
Qfn(ĥ(t))C

(
P fn (ĥ(t)), Bfn(ĥ(t))

)
I
{
Bfn

(
ĥ(t)

)
≤ hfn(t)

}
. (4.27)

The term Qfn(ĥ(t)) in (4.27) is a binary indicator of wether Tn is scheduled in frequency f for

channel realization ĥ(t), the factor C
(
P fn (ĥ(t)), Bfn(ĥ(t))

)
is the attempted transmission rate in

such case, and the indicator I
{
Bfn(ĥ(t)) ≤ ĥfn(t)

}
accounts for dropped packets.

Since we are interested in ergodic rates, we define the average rate rn := Eh,ĥ

[
Rn(h, ĥ)

]
.

Upon defining Mhfn|ĥfn(·) as the ccdf of hfn given ĥfn, we can express the ergodic rate from the AP

to Tn as [cf. (4.6)]

rn = Eĥ


∑

f∈F
Qfn(ĥ(t))C

(
P fn (ĥ(t)), Bfn(ĥ(t))

)
Mhfn|ĥfn

(
Bfn(ĥ(t))

)



:= Eĥ


∑

f∈F
Qfn(ĥ(t))Rfn

(
P fn (ĥ(t)), Bfn(ĥ(t)); ĥfn(t)

)

 , (4.28)

where in the second equality we defined Rfn
(
P fn (ĥ),Bfn(ĥ);ĥfn

)
:=C

(
P fn (ĥ),Bfn(ĥ)

)
Mhfn|ĥfn

(
Bfn(ĥ)

)

as the expected throughput of terminal n on frequency f . The expected throughput is the rate

at which the AP expects to convey information to terminal Tn on frequency f when the channel

estimate is ĥ. By expected throughput here we refer to the conditional expectation with respect

to h given ĥ.

To evaluate the performance of the system, introduce utility functions Un(rn) to measure

the value of ergodic rate rn for terminal n. The AP’s goal is to find optimal subcarrier assign-

ment, power allocation and channel backoff functions such that the sum utility
∑N
n=1 Un(rn) is

maximized. Recalling the expression for rn in (4.28) and introducing an average sum power
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constraint, the optimal operating point is obtained as the solution of the optimization problem

Pb = max

N∑

n=1

Un(rn)

s.t. rn ≤ Eĥ


∑

f∈F
Qfn(ĥ)Rfn

(
P fn (ĥ), Bfn(ĥ); ĥfn

)

 , P0 ≥ Eĥ




N∑

n=1

∑

f∈F
Qfn(ĥ)P fn (ĥ)


 ,

Qf (ĥ) ∈ Q, P fn (ĥ) ∈ [0, pinst], Bfn(ĥ) ≥ 0, rn ∈ [0, rmax], (4.29)

where rmax is a given upper bound on the rates rn of each user. The relaxation of the rate equality

constraint in (4.28) to the corresponding inequality constraint in (4.29) is without loss of optimal-

ity. The average sum power constraint is enforced by the inequality P0 ≥

Eĥ

[∑N
n=1

∑
f∈F Q

f
n(ĥ)P fn (ĥ)

]
in (4.29). The factor Qfn(ĥ)P fn (ĥ) is the power used for commu-

nication to Tn on frequency f for channel estimate ĥ. This term is not null only if Qfn(ĥ) = 1

which means that terminal Tn is scheduled on frequency f . Individual power consumptions

Qfn(ĥ)P fn (ĥ) are summed for all terminals n = 1, . . . , n and all frequencies f ∈ F to determine

the total power consumption for gain estimate ĥ. These sums of instantaneous power consump-

tions are averaged over the distribution of ĥ to determine the average power expenditure that

cannot exceed the budget P0.

Solving problem (4.29) bears the same challenges as solving (4.7). The problem is infinite

dimensional due to the optimization variables being functions of the channel estimates ĥ and

the expectations are with respect to the random variable ĥ whose pdf is unknown. The problem

is also not convex because the function Rfn

(
P fn (ĥ), Bfn(ĥ); ĥfn

)
is not concave on the variables

P fn (ĥ) and Bfn(ĥ). In this case we also have the requirement of variables Qfn(ĥ) being binary as

represented by the nonconvex set constraint Qf (ĥ) ∈ Q. As we show in the next section, and as

in the case of point-to-point channels, these issues are resolved by working on the dual domain.
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4.2.1 Optimal solution

The optimization problem in (4.29) also has the structure of the problems shown to have null

duality gap in [34, 36]. Therefore, we can work on its dual problem which is finite dimen-

sional and convex without loss of optimality. To do so, introduce multipliers λn associated with

the ergodic rate constraint of user Tn and µ associated with the average power constraint [cf.

(4.29)]. Further define the vector Λ := {λ1, · · · , λN , µ} grouping all dual variables and vec-

tors P(ĥ) :=
{
Qfn(ĥ), P fn (ĥ), Bfn(ĥ) : n ∈ {1, · · · , N} , f ∈ F

}
and r := {r1, · · · , rN} respectively

grouping resource allocation and ergodic rates. Further let P stand for the resource allocation

function with values P(ĥ). The Lagrangian of the optimization problem in (4.29) can then be

written as

L(P, r,Λ) =

N∑

n=1

Un(rn) +

N∑

n=1

λn


Eĥ


∑

f∈F
Qfn(ĥ)Rfn

(
P fn (ĥ), Bfn(ĥ); ĥfn

)

− rn




+ µ


Eĥ


P0 −

N∑

n=1

∑

f∈F
Qfn(ĥ)P fn (ĥ)




 . (4.30)

The dual function and the dual problem are then given by

Db = min
λn≥0,µ≥0

g(Λ) = min
λn≥0,µ≥0

max
P,r
L(P, r,Λ). (4.31)

Note that the Lagrangian in (4.30) exhibits a separable structure because all summands involve a

single primal variable. To explain this observation consider all summands of (4.30) that involve

transmission rate rn associated with terminal n and define the Lagrangian component associated

with r as

L(1) (r,Λ) :=

N∑

n=1

[Un(rn)− λnrn] . (4.32)

Define also the per channel Lagrangian components L(2)

(
P(ĥ), ĥ,Λ

)
grouping all summands

of (4.30) that involve resource allocation P(ĥ) and a given channel estimate ĥ, i.e.,

L(2)
(
P(ĥ), ĥ,Λ

)
:=

N∑

n=1

∑

f∈F
Qfn(ĥ)

[
λnR

f
n

(
P fn (ĥ), Bfn(ĥ); ĥfn

)
− µP fn (ĥ)

]
. (4.33)
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It is easy to see by reordering summands in (4.30) that we can rewrite the Lagrangian as a sum of

the component L(1) (r,Λ) and an expectation of the per channel components L(2)
(
P(ĥ), ĥ,Λ

)
,

L(P, r,Λ) = L(1) (r,Λ) + Eĥ

[
L(2)

(
P(ĥ), ĥ,Λ

)]
+ µP0. (4.34)

By leveraging the null duality gap, i.e., the equivalence Pb = Db, and the Lagrangian separabil-

ity in (4.34) we can characterize the optimal solution of the primal problem using the optimal

solution of the dual problem, as shown in the following theorem.

Theorem 5. The optimal subcarrier assignment function Qf∗n with values Qf∗n (ĥ), channel backoff func-

tion Bf∗n with values Bf∗n (ĥ) and power allocation function P f∗n with values P f∗n (ĥ) for solving problem

(4.29) are determined by the optimal variables λ∗n and µ∗ of the dual problem (4.31). In particular, for

a given frequency f ∈ F and channel estimate ĥ values P f∗n (ĥ) and Bf∗n (ĥ) of the optimal power and

backoff functions are given by

{
P f∗n (ĥ), Bf∗n (ĥ)

}
∈ argmax
p∈[0,pinst],b≥0

λ∗nR
f
n

(
p, b; ĥfn

)
− µ∗p. (4.35)

To determine optimal frequency allocation valuesQf∗n (ĥ) compute discriminants λ∗nRfn
(
P f∗n (ĥ),Bf∗n (ĥ);ĥfn

)

− µ∗P f∗n (ĥ) for all n and f . Determine the index of the terminal with maximum discriminant,

nf = argmax
n

λ∗nR
f
n

(
P f∗n (ĥ), Bf∗n (ĥ); ĥfn

)
− µ∗P f∗n (ĥ), (4.36)

and set Qf∗n (ĥ) = 0 for all n 6= nf . For n = nf set Qf∗n (ĥ) = 1 if λ∗nRfn
(
P f∗n (ĥ), Bf∗n (ĥ); ĥfn

)
−

µ∗P f∗n (ĥ) > 0.

Proof. As we have shown in the proof of Theorem 4, the fact that Pb = Db implies that optimal

functions P∗ and variables r∗ are maximizers of the Lagrangian L(P, r,Λ∗), i.e.

{P∗, r∗} ∈ argmax
P,r

L(P, r,Λ∗). (4.37)

Since P and r appear in different summands in L(P, r,Λ∗) [cf. (4.32)-(4.34)], we can separate the

maximizations for P(ĥ) and r and write P∗ as

P∗ ∈ argmax
P

N∑

n=1

∑

f∈F
Eĥ

[
Qfn(ĥ)

[
λ∗nR

f
n

(
P fn (ĥ), Bfn(ĥ); ĥfn

)
− µ∗P fn (ĥ)

]]
. (4.38)
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Due to the linearity of expectation, the maximization in (4.38) can be carried out inside the ex-

pectation. Using the definition of P∗(ĥ) we have the following relationship

{
Qf∗n (ĥ), P f∗n (ĥ), Bf∗n (ĥ)

}
∈ argmax

P

∑

f∈F
Qfn(ĥ)

[
λ∗nR

f
n

(
P fn (ĥ), Bfn(ĥ); ĥfn

)
− µ∗P fn (ĥ)

]
. (4.39)

Since for a fixed f ∈ F at most one Qf∗n (ĥ) can be 1 [cf. (4.26)], the computation of Qf∗n (ĥ),

P f∗n (ĥ), and Bf∗n (ĥ) as per (4.39) can be further separated into the computations in (4.35) and

(4.36). Indeed, if Qf∗n (ĥ) = 1 the best possible values for P f∗n (ĥ) and Bf∗n (ĥ) are the ones that

maximize the factor λ∗nRfn
(
P fn (ĥ), Bfn(ĥ); ĥfn

)
−µ∗P fn (ĥ). If Qf∗n (ĥ) = 0 any value of P f∗n (ĥ) and

Bf∗n (ĥ) is optimal, in particular the one that maximizes this factor. Therefore

{
P f∗n (ĥ), Bf∗n (ĥ)

}
∈ argmax
P fn (ĥ)∈[0,pinst],Bfn(ĥ)≥0

λ∗nR
f
n

(
P fn (ĥ), Bfn(ĥ); ĥfn

)
− µ∗P fn (ĥ). (4.40)

Upon the change of variables p = P fn (ĥ) and b = Bfn(ĥ) (4.35) follows.

To decide on indicator variables Qfn(ĥ) substitute the optimal power and backoff values in

(4.40) into the sum maximization in (4.39) to obtain

{
Qf∗n (ĥ)

}
∈ argmax

Qf (ĥ)∈Q
Qfn(ĥ)

[
λ∗nR

f
n

(
P f∗n (ĥ), Bf∗n (ĥ); ĥfn

)
− µ∗P f∗n (ĥ)

]
. (4.41)

If all discriminants λ∗nRfn
(
P f∗n (ĥ), Bf∗n (ĥ); ĥfn

)
− µ∗P f∗n (ĥ) are negative, the maximum in (4.41)

is attained by making Qfn(ĥ) = 0 for all n implying that frequency f is not used by any terminal

during the time slot. Otherwise, the largest objective in (4.41) is obtained by making Qf∗n (ĥ) for

the terminal with the largest discriminant. These computations coincides with (4.36).

With optimal multipliers given, optimal power allocation and channel backoff can be com-

puted using (4.35). Optimal frequency allocations are determined by comparing the discrimi-

nants in (4.36) and assigning frequency f to the terminal with the largest discriminant if this

discriminant is positive. Notice that the maximization required in (4.35) is of a nonconvex ob-

jective, but this involves just two variables and is analogous to the maximand in (4.20) for the

case of point-to-point channels. We can interpret (4.20) as establishing a decomposition on per
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terminal, per frequency and per fading state subproblems. Further observe that Theorem 5

indicates that the optimal solution is opportunistic. Frequency f is used only when at least

one terminal observes a good channel on this frequency so as to have a positive discriminant

λ∗nR
f
n

(
P f∗n (ĥ), Bf∗n (ĥ); ĥfn

)
− µ∗P f∗n (ĥ) [cf. (4.36)].

4.2.2 Online learning algorithms

Similar to the case of point-to-point channels we can solve the optimization problem in (4.29)

using stochastic subgradient descent in the dual domain. To determine stochastic subgradients

of the dual function start with given dual variable Λ(t) and channel realization ĥ(t) and proceed

to determine the Lagrangian maximizers

r(t) ∈ argmax
r
L(1) (r,Λ(t)) , (4.42)

p(t) ∈ argmax
p

L(2)
(
p, ĥ(t),Λ(t)

)
, (4.43)

Notice that in (4.43) we determine a power allocation that corresponds to the current channel

estimate ĥ(t). Using the definition of the Lagrangian components L(1) (r,Λ), L(2)
(
P(ĥ), ĥ,Λ

)

[cf. (4.32) and (4.33)] and attempted transmission rate Rfn
(
P fn (ĥ), Bfn(ĥ); ĥfn

)
, the primal iterates

in (4.42) and (4.43) can be computed as

rn(t) = argmax
rn∈[0,rmax]

Un(rn)− λn(t)rn, (4.44)

{qfn(t), pfn(t), bfn(t)} = argmax
a∈Q, p∈[0,pinst], b>0

∑

n,f

qfn

[
λn(t)Rfn(b, p; ĥfn(t))− µ(t)p

]
. (4.45)

Following the logic used for deriving (4.35)-(4.36) the maximization in (4.45) can be further sim-

plified to the computation of power allocation and backoff function

{pfn(t), bfn(t)} = argmax
p∈[0,pinst],b≥0

λn(t)Rfn(b, p; ĥfn(t))− µ(t)p, (4.46)

followed by the determination of terminal indices

nf (t) = argmax
n

λn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− µ(t)pfn(t). (4.47)
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We then set qfn(t) = 0 for all n 6= nf (t) and qfn(t) = 1 for n = nf (t) if λn(t)Rfn(pfn(t), bfn(t); ĥfn(t))−

µ(t)pfn(t) > 0.

A subgradient of the dual function g(Λ(t)) can be obtained by evaluating the instantaneous

constraint slacks associated with the Lagrangian maximizers. Denoting as sλn(t) the subgradient

components along the λn direction and sµ(t) the component along the µ direction we have

sλn(t) =
∑

f∈F
qfn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− rn(t),

sµ(t) = P0 −
N∑

n=1

∑

f∈F
qfn(t)pfn(t). (4.48)

The algorithm is completed with an update of the dual variables along the stochastic subgradient

direction moderated by a possibly time varying step size ε(t),

λn(t+ 1) =


λn(t)− ε(t)


∑

f∈F
qfn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− rn(t)






+

, (4.49)

µ(t+ 1) =


µ(t)− ε(t)


P0 −

N∑

n=1

∑

f∈F
qfn(t)pfn(t)






+

, (4.50)

As in the case of point-to-point channels, particular convergence properties depend on whether

constant or time varying step sizes are used. With diminishing step size, λn(t) and µ(t) converge

to optimal dual variables λ∗n and µ∗ almost surely. With constant step size convergence is estab-

lished in an ergodic sense by applying Theorem 1 of [32] to the optimization problem in (4.29)

and the stochastic dual descent algorithm in (4.44) and (4.46)-(4.50). The resulting property is

specified in the following.

Property 2. If constant step sizes ε(t) = ε > 0 for all t are used in Algorithm 3, rate and power constraints

are almost surely satisfied on average

lim
t→∞

1

t

t∑

u=1

rn(u) ≤ lim
t→∞

1

t

t∑

u=1


∑

f∈F
qfn(u)Rfn

(
pfn(u), bfn(u); ĥfn(u)

)

 a.s., (4.51)

lim
t→∞

1

t

t∑

u=1




N∑

n=1

∑

f∈F
qfn(u)pfn(u)


 ≤ P0 a.s. (4.52)
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The sum utility of the ergodic limit of rfn(t) almost surely converges to a value within κε/2 of optimal,

Pb −
N∑

n=1

Un


 lim
t→∞

1

t

t∑

u=1

∑

f∈F
rfn(u)


 ≤ κε/2 a.s., (4.53)

where κ ≥ E
[∑

n s
2
λn

(t) + s2
µ(t)

∣∣∣∣λ(t)

]
is a constant bounding the second moment of the norm of the

stochastic subgradient with components given as in (4.48).

Property 2 establishes optimality of the sequences of primal variables generated by (4.44) and

(4.46)-(4.50). In particular, ergodic limits of these sequences almost surely satisfy problem con-

straints and are within a small factor of optimal. As in the case of point to point channels the

rate qfn(u)C

(
pfn(u), bfn(u)

)
Mhfn(u)|ĥfn(u)

(
bfn(u)

)
in the ergodic limit in (4.51) is different from the

instantaneous transmission rate qfn(u)C

(
pfn(u), bfn(u)

)
I
{
bfn(u) ≤ hfn(u)

}
achieved by the algo-

rithm. However, their ergodic limits are equivalent since the stochastic process h(N) is ergodic

given estimates ĥ(N), i.e.,

lim
t→∞

1

t

t∑

u=1

qfn(u)C
(
pfn(u), bfn(u)

)
Mhfn(u)|ĥfn(u)

(
bfn(u)

)
(4.54)

= lim
t→∞

1

t

t∑

u=1

qfn(u)C
(
pfn(u), bfn(u)

)
I
{
bfn(u) ≤ hfn(u)

}
a.s..

Substituting (4.54) into (4.51) and the resulting expression into (4.53) we have

Pb −
N∑

n=1

Un


 lim
t→∞

1

t

t∑

u=1

∑

f∈F
qfn(u)C

(
pfn(u), bfn(u)

)
I
{
bfn(u) ≤ hfn(u)

}

 ≤ κε/2 a.s.. (4.55)

The inequality in (4.55) establishes that the utility of the ergodic limits of the transmission rates

achieved by the algorithm is within κε/2 of the optimal value Pb. Since κ is a constant, the

optimality gap can be made arbitrarily small by reducing the step size ε.

The procedure is summarized in Algorithm 3. Multipliers λn(0) and µ(0) are initialized at

time slot 0. Primal and dual variables are computed iteratively in subsequent time slots. In

particular, for each time slot t the algorithm first computes variable rn(t) for all users as per

(4.44) which decides the number of packets to be accepted into Tn’s queue awaiting for trans-

mission (line 3). The algorithm then iterates over frequencies and calculates power allocation
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pfn(t), channel backoff bfn(t) for all n by solving the two-variable maximization as per (4.46) (line

7). The subcarrier assignments qfn(t) are then determined by setting qfn(t) = 1 for n such that

λn(t)Rfn(t) − µ(t)pfn(t) the largest positive discriminant among all n as per (4.47) while setting

qfn(t) = 0 for all the rest users (line 11). Note that for a given frequency there is at most one

qfn(t) = 1. If qfn(t) = 1, the AP transmit to Tn over frequency f using power pfn(t) and rate

C(pfn(t), bfn(t)). The algorithm then proceeds to update multipliers for the next time slot based

on multipliers and primal variables of the current time slot according to (4.49) and (4.50) (lines

15-16).

4.3 Random access

Consider now a multiple access channel in which N terminals contend for communication to a

common AP using random access. The channel between terminals and the AP is modeled as

block fading and denoted as hn(t). Assume each terminal only observes an imperfect version

of its local channel ĥn(t). Based on its local channel, terminals decide channel access qn(t) :=

Qn(ĥn) ∈ {0, 1}, power allocations pn(t) := Pn(ĥn) ∈ [0, pinst] and channel backoffs bn(t) :=

Bn(ĥn) ≥ 0. We remark that Qn, Pn and Bn are functions of local channels only as opposed to

functions of all channel realizations as in the case of OFDM considered in Section 4.2. Since ter-

minals contend for channel access, a transmission from terminal Tn in time slot t is successful if

and only if qn(t) = 1 and qm(t) = 0 for all m 6= n. If the transmission of Tn is successful, its trans-

mission rate is determined by C(pn(t), bn(t)). As as consequence, the instantaneous transmission

rate for Tn in time slot t is

rn(t) = C (pn(t), bn(t)) I {bn(t) ≤ hn(t)} qn(t)

N∏

m=1,m 6=n
[1− qm(t)] . (4.56)
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Algorithm 3: Optimal subcarrier assignment, power control and channel backoff for OFDM

1 Initialize Lagrangian multipliers λn(0), µ(0);

2 for t = 0, 1, 2, · · · do

3 Compute primal variables rn(t) = argmax
rn∈[0,rmax]

Un(rn)− λn(t)rn as per (4.44) for all n

4 Accept rn(t) packets to Tn’s queue for transmission

5 for each frequency f ∈ F do

6 For all n, compute primal variables pfn(t), bfn(t) as per (4.46):

7 {pfn(t), bfn(t)} = argmax
p∈[0,pinst],b≥0

λn(t)Rfn(p, b; ĥfn(t))− µ(t)p;

8 Find terminal with maximum discriminant as per (4.47):

9 nf (t) = argmax
n

λn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− µ(t)pfn(t);

10 if n = nf (t) and λn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− µ(t)pfn(t) > 0 then

11 Set qfn(t) = 1, transmit to Tn on frequency f with power pfn(t) and rate

C(pfn(t), bfn(t));

12 end

13 end

14 Update dual variables as per (4.49) and (4.50):

15 λn(t+ 1) =

[
λn(t)− ε(t)

[∑

f∈F
qfn(t)Rfn(pfn(t), bfn(t); ĥfn(t))− rn(t)

]]+

;

16 µ(t+ 1) =

[
µ(t)− ε(t)

[
P0 −

N∑

n=1

∑

f∈F
qfn(t)pfn(t)

]]+

;

17 end
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The ergodic rate is given by a time average of the instantaneous rates in (4.56) which due to

ergodicity can be equivalently written as

rn = Eĥ


C

(
Pn

(
ĥn

)
, Bn

(
ĥn

))
Mhn|ĥn(t)

(
Bn(ĥn)

)
Qn(ĥn)

N∏

m=1,m6=n

[
1−Qm

(
ĥm

)]



= Eĥ


Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
Qn(ĥn)

N∏

m=1,m 6=n

[
1−Qm

(
ĥm

)]

 , (4.57)

where in the second equality we defined the average attempted transmission rate for terminal

n as Rn
(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
= C

(
Pn

(
ĥn

)
, Bn

(
ĥn

))
Mhn|ĥn

(
Bn(ĥn)

)
. An important ob-

servation here is that since terminals are required to make channel access and power control deci-

sions independently of each other, Qn(ĥn), Pn(ĥn), Bn(ĥn) are independent of Qm(ĥm), Pm(ĥm),

Bm(ĥm) for all n 6= m. This allows us to rewrite rn as

rn = Eĥn
[
Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
Qn(ĥn)

] N∏

m=1,m6=n

[
1− Eĥm

[
Qm

(
ĥm

)]]
. (4.58)

The objective is to maximize the proportional fair utility of the ergodic rates rn, i.e.,

U(r) =

N∑

n=1

log(rn), (4.59)

where r := {rn : n ∈ {1, · · · , N}}. In a network where channel pdfs vary among users, maximiz-

ing sum log utility U(r) yields solutions that are fair since it prevents users from having very low

transmission rates. The optimal random access with imperfect CSI is formulated as the following

optimization problem

Pr = max U(r)

s.t. rn = Eĥn
[
Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
Qn(ĥn)

] N∏

m=1,m6=n

[
1− Eĥm

[
Qm(ĥm)

]]
,

Eĥn
[
Qn(ĥn)Pn(ĥn)

]
≤ P0n,

Qn(ĥn) ∈ {0, 1}, Pn(ĥn) ∈ [0, pinst], Bn(ĥn) ≥ 0, (4.60)

where the second inequality indicates each terminal has an average power budget of P0n. Since

we require Qn, Pn and Bn to be functions of local channel estimates only, we need a distributed
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solution for problem (4.60). However, its formulation is not amenable for distributed implemen-

tations because the rate constraint involves actions of all terminals. Thus, we need to separate

problem (4.60) into per terminal subproblems. To do so, we substitute rn into U(r) and express

the logarithm of a product as a sum of logarithms so as to write

U(r) =

N∑

n=1


logEĥn

[
Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
Qn(ĥn)

]
+

N∑

m=1,m 6=n
log
[
1− Eĥm

[
Qm(ĥm)

]]



(4.61)

=

N∑

n=1

[
logEĥn

[
Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
Qn(ĥn)

]
+ (N − 1) log

[
1− Eĥn

[
Qn(ĥn)

]] ]
.

(4.62)

where in (4.62) we grouped terms related to Tn. To maximize U(r) for the whole system it suffices

to separately maximize corresponding summand for each terminal n. Upon introducing auxiliary

variables xn = Eĥn
[
Qn(ĥn)Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)]
and yn = Eĥn

[
Qn(ĥn)

]
, it follows that

(4.60) is equivalent to the following per terminal subproblems

Pr,n = max
∑

f∈F
log xn + (N − 1) log(1− yn)

s.t. xn ≤ Eĥn
[
Qn(ĥn)Rn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)]
, yn ≥ Eĥn

[
Qn(ĥn)

]
,

P0n ≥ Eĥn
[
Qn(ĥn)Pn(ĥn)

]
,

xn ≥ 0, 0 ≤ yn ≤ 1, Qn(ĥn) ∈ {0, 1}, Pn(ĥn) ∈ [0, pinst], Bn(ĥn) ≥ 0. (4.63)

In particular, we have Pr =
∑N
n=1 Pr,n. Therefore, to solve problem (4.60) we only need to solve

problem (4.63) for all terminals in a distributed manner.

4.3.1 Optimal solution

Similar to the case of point-to-point channel, problem (4.63) has null duality gap which allows

us to work on its dual domain without loss of optimality. To define the problem’s Lagrangian,

associate multipliers αn with the constraint involving xn in (4.63), βn with the constraint involv-

ing yn, and νn with the average power constraint. Further define Λn := {αn, βn, νn}, Pn(ĥn) :=
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{
Qn(ĥn), Pn(ĥn), Bn(ĥn)

}
, xn := {xn, yn} grouping all multipliers, resource allocation variables

and auxiliary variables, respectively. The Lagrangian is then given by

Ln(Pn,xn,Λn) = log xn + (N − 1) log(1− yn) + αn

[
Eĥn

[
Qn(ĥn)Rn

(
Pn

(
ĥn

)
,Bn

(
ĥn

)
;ĥn

)]
−xn

]

+ βn

[
yn − Eĥn

[
Qn(ĥn)

]]
+ νn

[
P0n − Eĥn

[
Qn(ĥn)Pn(ĥn)

]]
. (4.64)

The dual problem can then be written as

Dr,n = min
αn≥0,βn≥0,νn≥0

gn(Λn) = min
αn≥0,βn≥0,νn≥0

max
Pn,xn

Ln(Pn,xn,Λn). (4.65)

Observe that primal variables Pn and xn appear in different summands in (4.64). This allows

us to regroup terms involving Pn and xn and decompose the Lagrangian. To do so, define

L(1)
n (xn,Λn) as the per terminal local Lagrangian component involving auxiliary variable xn

L(1)
n (xn,Λn) = [log xn − αnxn] + [(N − 1) log(1− yn) + βnyn] , (4.66)

and L(2)
n (Pn(ĥn), ĥn,Λn) as the per terminal per fading state Lagrangian component involving

resource allocation variable Pn(ĥn)

L(2)
n (Pn(ĥn), ĥn,Λn) = Qn(ĥn)

[
αnRn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
− βn − νnPn(ĥn)

]
. (4.67)

As a result, the Lagrangian in (4.64) can be rewritten as

Ln(Pn,xn,Λn) = L(1)
n (xn,Λn) + Eĥn

[
L(2)
n (Pn(ĥn), ĥn,Λn)

]
+ νnP0n, (4.68)

By leveraging the property of null duality gap, i.e., Pr,n = Dr,n, we can characterize the optimal

solution of the primal problem using the optimal solution of the dual problem, as shown in the

following theorem.

Theorem 6. The optimal subcarrier assignment function Q∗n with values Q∗n(ĥn), channel backoff func-

tion B∗n with values B∗n(ĥn) and power allocation function P ∗n with values P ∗n(ĥn) for solving problem

(4.63) are uniquely determined by the optimal variables α∗n, β∗n and ν∗n of the dual problem (4.65). In
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particular, for given terminal n we have

{
P ∗n(ĥn), B∗n(ĥn)

}
∈ argmax
p∈[0,pinst],b≥0

α∗nRn
(
p, b; ĥn

)
− β∗n − ν∗np, (4.69)

Q∗n(ĥn) = I
{
α∗nRn

(
P ∗n(ĥn), B∗n(ĥn); ĥn

)
− β∗n − ν∗nP ∗n(ĥn)) > 0

}
. (4.70)

Proof. As we did in the proof of Theorem 4, by exploiting the null duality gap we can show that

the optimal functions P∗n and variables xn are maximizers of the Lagrangian Ln(Pn,xn,Λ
∗
n), i.e.

{P∗n,x∗n} ∈ argmax
Pn,xn

Ln(Pn,xn,Λ
∗
n). (4.71)

Note that since P∗n and x∗n appear in different summands in Ln(Pn,xn,Λ
∗
n) [cf. (4.66)-(4.68)], we

can write P∗n as the maximizer of the corresponding summand, i.e.,

P∗n ∈ argmax
Pn

Eĥn
[
Qn(ĥn)

[
α∗nRn

(
Pn

(
ĥn

)
, Bn

(
ĥn

)
; ĥn

)
− β∗n − ν∗nPn(ĥn)

]]
. (4.72)

Due to the linearity of expectation, the maximization in (4.72) can be carried out inside the ex-

pectation. We therefore have

{
Q∗n(ĥn), P ∗n(ĥn), B∗n(ĥn)

}
∈ argmax
a∈{0,1},p∈[0,pinst],b>0

a
[
α∗nRn

(
p, b; ĥn

)
− β∗n − ν∗np

]
. (4.73)

where we have used the definition of the aggregate variable Pn(ĥn) :=
{
Qn(ĥn), Pn(ĥn), Bn(ĥn)

}
.

Since the variable a in (4.73) can only take values in {0, 1}, the objective in (4.72) can only be 0

or α∗nRn
(
p, b; ĥn

)
−β∗n−ν∗np. Thus, to solve (4.73) we just need to find the optimal P ∗n(ĥn), B∗n(ĥn)

when a = 1 and set Q∗n(ĥn) = 1 if the resulting objective is strictly positive. This procedure is

what (4.69) and (4.70) state.

Given the optimal dual variable Λ∗n, optimal functions for power allocation P ∗n(ĥn), channel

backoff B∗n(ĥn), and channel access Q∗n(ĥn) can be determined in a distributed manner through

(4.69) and (4.70) using local information only. This satisfies the design requirement that terminals

have to operate independently of each other. It is also worth remarking that the resulting trans-

mission policy is opportunistic with respect to channel estimates ĥn because terminal n transmits
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only when α∗nRn
(
P ∗n(ĥn), B∗n(ĥn); ĥn

)
− β∗n − ν∗nP ∗n(ĥn) > 0. For this inequality to be true we

need to have a sufficiently large rate Rn
(
P ∗n(ĥn), B∗n(ĥn); ĥn

)
, which in turn requires large chan-

nel estimates ĥn. In fact it is not difficult to see that (4.70) implies a threshold policy in which

terminals transmit if and only if the channel ĥn exceeds a threshold that can be computed in

terms of the optimal multiplier values. This is consistent with similar observations in the case of

perfect CSI [16, 17].

The computation of the optimal power allocation and optimal channel backoff in random

access [cf. (4.69)] is similar to that of OFDM [cf. (4.35)] in the sense that they both solve a

two-variable nonconvex optimization problem. However, determination of their correspond-

ing optimal subcarrier assignments is different. For a given frequency, the optimal subcarrier

assignment Qf∗n (ĥ) in OFDM is determined jointly for all n and at most one Qf∗n (ĥ) can be 1. The

optimal Q∗n(ĥn) in the case of random access is computed locally and there might be more than

one Q∗n(ĥn) set to 1 in for different n. This is because in the case of random access all terminals

act independently of each other and there is no coordination among them while in the case of

OFDM the AP plays the role of a central decision maker.

4.3.2 Online learning algorithms

To solve problem (4.63) without knowledge of the channel pdf we implement the stochastic sub-

gradient descent algorithm in the dual domain as we did in the case of point-to-point and OFDM

channels. To find stochastic subgradients we compute maximizers of the local Lagrangian com-

ponents L(1)(xn,Λn) and L(2)(pn, ĥn,Λn) for given channel estimate ĥn(t) and Lagrangian mul-

tiplier Λn(t), i.e.,

xn(t) = argmax
xn

L(1)
n (xn,Λn(t)) , (4.74)

pn(t) = argmax
pn

L(2)
n

(
pn, ĥn(t),Λn(t)

)
, (4.75)

104



Recall that xn and yn appear in different summands in L(1)
n (xn,Λn(t)) [cf. (4.66)]. As a result, we

can separate the maximizations for xn(t) and yn(t), i.e.,

xn(t) = argmax
x≥0

log x− αn(t)x =
1

αn(t)
, (4.76)

yn(t) = argmax
0≤y≤1

(N − 1) log(1− y) + βn(t)y =

[
1− N − 1

βn(t)

]+

. (4.77)

Furthermore, using the definition of pn(t) and L(2)
n

(
pn, ĥn(t),Λn(t)

)
, the resource allocation

computation in (4.75) can be rewritten as

{qn(t), pn(t), bn(t)} = argmax
a∈{0,1},p∈[0,pinst],b≥0

a
[
αn(t)Rn(pn(t), bn(t); ĥn(t))− βn(t)− νn(t)p

]
.

(4.78)

Optimizations for xn(t) and yn(t) are relatively easy because their objectives are both convex

functions with a single variable [cf. (4.76) and (4.77)]. Determination of qn(t), bn(t) and pn(t) as

per (4.78) is more complicated but it can be simplified since qn(t) can only take values in {0, 1}.

Using this fact as we did in the proof of Theorem 6 we conclude that (4.78) is equivalent to

{bn(t), pn(t)} = argmax
p∈[0,pinst],b≥0

αn(t)Rn(pn(t), bn(t); ĥn(t))− βn(t)− νn(t)p, (4.79)

qn(t) = I
{(
αn(t)Rn(pn(t), bn(t); ĥn(t))− βn(t)− νn(t)pn(t)

)}
. (4.80)

The stochastic subgradients of the dual function are obtained by evaluating the instantaneous

constraint violations using pn(t) and xn(t). The dual variables are then updated using the

stochastic subgradient as

αn(t+ 1) =
[
αn(t)− ε(t)

[
qn(t)Rn(pn(t), bn(t); ĥn(t))− xn(t)

]]+
, (4.81)

βn(t+ 1) = [βn(t)− ε(t) [yn(t)− qn(t)]]
+
, (4.82)

νn(t+ 1) = [νn(t)− ε(t) [Pn − qn(t)pn(t)]]
+
. (4.83)

As in algorithms point-to-point channel and OFDM channel, the use of diminishing step sizes

results in almost sure convergence whereas use of constant step sizes results in an ergodic mode

of convergence that we summarize in the following property.
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Property 3. If constant step size ε(t) = ε > 0 is used in Algorithm 4, it follows from [16, Theorem 1] that

primal variables generated by the algorithm are almost surely feasible and almost surely near optimal in

an ergodic sense for problem (4.63). In particular, the average power constraint in (4.63) is almost surely

satisfied, i.e.,

lim
t→∞

1

t

t∑

u=1

qn(u)pn(u) ≤ P0,n a.s., (4.84)

and the utility of the ergodic limit of the transmission rates almost surely converges to a value within κε

of optimal,

Pr −
N∑

n=1

log


 lim
t→∞

1

t

t∑

u=1

Rn

(
pn(u), bn(u); ĥn(u)

)
qn(u)

N∏

m=1,m 6=n
[1− qm(u)]


 ≤ κε a.s., (4.85)

where κ is a constant upper bounding the second moment of the norm of the stochastic subgradient.

Note that the term Rn

(
pn(u), bn(u); ĥn(u)

)
qn(u)

∏N
m=1,m 6=n [1− qm(u)] in (4.85) is different

from the instantaneous transmission rate rn(u) in (4.56) achieved by the policy. To establish opti-

mality results for the ergodic limits of the instantaneous transmission rate, we write the follow-

ing relationship by using the definition of Rn
(
pn(u), bn(u); ĥn(u)

)
and the ergodicity property

of hn(N) given ĥn(N)

lim
t→∞

1

t

t∑

u=1

Rn

(
pn(u), bn(u); ĥn(u)

)
qn(u)

N∏

m=1,m6=n
[1− qm(u)]

= lim
t→∞

1

t

t∑

u=1

C (pn(u), bn(u)) I
{
bn(u) < ĥn(u)

}
qn(u)

N∏

m=1,m6=n
[1− qm(u)] = lim

t→∞
1

t

t∑

u=1

rn(u) a.s..

(4.86)

Substituting (4.86) into (4.85) we can show the sum logarithm of the ergodic limits of the instan-

taneous transmission rate rn(t) is within κε of the optimal value Pr, i.e.,

Pr −
N∑

n=1

log

(
lim
t→∞

1

t

t∑

u=1

rn(u)

)
≤ κε a.s., (4.87)

The procedure is summarized in Algorithm 4. The algorithm initializes multipliers αn(0), βn(0)

and νn(0) at time 0. In each time slot t, it iteratively computes primal variables xn(t), yn(t),
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pn(t), bn(t), qn(t) by (4.76) - (4.80) (lines 4-7). If αn(t)Rn(pn(t), bn(t); ĥn(t)) − βn(t) − νn(t)pn(t)

is greater than 0, qn(t) is set to 1 and terminal n transmits on frequency f using power pn(t)

and rate C(pn(t), bn(t)). Dual variables αn(t), βn(t), νn(t) are then computed according to (4.81)

- (4.83) (lines 12-14). Note that while the algorithm for OFDM (see Algorithm 3) is applied to

the system with n users the presented algorithm for RA is for each individual terminal. In RA

channels, each terminal distributedly operates based on Algorithm 4. Since each terminal makes

channel access decisions based only on its local imperfect CSI and channels for different terminals

are assumed to be independent, terminals’ actions are independent of each other.

4.4 Numerical results

The performance of the proposed algorithms is further evaluated through numerical tests. We

consider point-to-point channels in Section 4.4.1, OFDM channels in Section 4.4.2, and random

access channels in Section 4.4.3.

4.4.1 Point-to-point channel

We assume the real channel coefficient h follows a complex Gaussian distribution CN (0, 2) and

the channel estimation error is modeled by (4.8). The average power budget is P0 = 1 and the

channel capacity function takes the form of log(1 +P (ĥ)B(ĥ)/N0). Without loss of generality, we

assume N0 is normalized to 1.

In the first set of tests, two channel estimation error variances σ2
e = 0.1 and σ2

e = 0.7, cor-

responding to small and large channel errors, are simulated. We apply diminishing step size

ε(t) = 1/
√
t to obtain the optimal dual variable λ∗ for both cases and then find the optimal power

allocation function P ∗(ĥ) and the optimal channel backoff function B∗(ĥ) according to Theorem

4, as shown in Fig. 4.1. For comparison purposes, P ∗(ĥ) and B∗(ĥ) for σ2
e = 0 are also depicted.

For both small and large channel errors, the optimal power allocation functions are given by
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Algorithm 4: Optimal channel access, power control and channel backoff for Tn in random

access

1 Initialize Lagrangian multipliers αn(0), βn(0) and νn(0);

2 for t = 0, 1, 2, · · · do

3 Compute primal variables as per (4.76) - (4.80):

4 xn(t) = argmax
x≥0

log x− αn(t)x =
1

αn(t)
;

5 yn(t) = argmax
0≤y≤1

(N − 1) log(1− y) + βn(t)y =

[
1− N − 1

βn(t)

]+

;

6 {bn(t), pn(t)} = argmax
p∈[0,pinst],b≥0

αn(t)Rn(p, b; ĥn(t))− βn(t)− νn(t)p;

7 an(t) = I
{(
αn(t)Rn(pn(t), bn(t); ĥn(t))− βn(t)− νn(t)pn(t)

)}
;

8 if qn(t) = 1 then

9 Transmit using power pn(t) and rate C(pn(t), bn(t));

10 end

11 Update dual variables as per (4.81) - (4.83):

12 αn(t+ 1) =
[
αn(t)− ε(t)

[
qn(t)Rn(pn(t), bn(t); ĥn(t))− xn(t)

]]+
;

13 βn(t+ 1) = [βn(t)− ε(t) [yn(t)− qn(t)]]
+;

14 νn(t+ 1) =

[
νn(t)− ε(t)

[
Pn − qn(t)pn(t)

]]+

;

15 end
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Figure 4.1: Optimal power allocation function P ∗(ĥ) (left) and channel backoff function B∗(ĥ) (right) for

single user point-to-point channel. Curves shown for channel state information (CSI) variance σ2
e = 0.1,

σ2
e = 0.1, and σ2

e = 0, corresponding to perfect CSI. As CSI variance increases power allocation is more

conservative for small channel values. When the CSI variance is large, the backoff function selects codes of

a higher rate than what is dictated by the channel estimate. Channel coefficient follows a complex Gaussian

distribution CN (0, 2), average power budget P0 = 1 , and channel conditional pdf mh|ĥ as in (4.9).
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water-filling as in the case of perfect CSI. However, as the error in channel estimates increases,

power is allocated more conservatively when channel gain estimates are small. The difference

between the channel backoff functions for small and large channel errors are more significant.

When σ2
e = 0.1, the channel backoff is almost linear and B∗(ĥ) < ĥ for all ĥ, i.e. making B∗(ĥ)

smaller is always beneficial. When σ2
e = 0.7 the channel backoff function is farther away from

linear. It is interesting to note that B∗(ĥ) > ĥ for small channel estimates 0.5 ≤ ĥ ≤ 1.2. In that

sense the use of the term backoff is a misnomer as it is actually beneficial to select a transmission

mode more aggressive than what the channel estimate indicates. The intuition here is that when

σ2
e is comparable to ĥ, it is likely that h is greater than ĥ because we must have h ≥ 0. Therefore,

making B(ĥ) a little bigger than h is not likely to result in an outage.

In our next simulation, we test the algorithm with constant step size ε = 0.01 and assuming

channel error σ2
e = 0.1. Other parameters remain the same as before. We define the average trans-

mission rate r̄(t) = (1/t)
∑t
u=1 C(p(u), b(u)) · I{b(u) ≤ h(u)} and average power consumption

p̄(t) = (1/t)
∑t
u=1 p(u). We compare average rates achieved by: 1) with both power allocation

and channel backoff; 2) with channel backoff only (i.e., p(t) = P0); 3) with power allocation only

(i.e., b(t) = ĥ(t)). Fig. 4.2 (left) shows average rates achieved by these algorithms. There is a con-

siderable improvement in average transmission rate when power allocation and channel backoff

are jointly optimized. Furthermore, Fig. 4.2 (right) shows that the average power constraint is

always satisfied, coinciding with the almost sure feasibility result in (4.22).

4.4.2 Downlink OFDM channel

To test Algorithm 3 for downlink OFDM channels, we assume that the number of users is N = 8

and that there are |F| = 4 frequency tones available. As in the case of single user point-to-

point channel, we model the complex channel coefficients hfn as random variables with complex

Gaussian distributions CN (0, 2) and the channel estimation error as having a complex Gaus-

sian distribution CN (0, σ2
e) with σ2

e = 0.1 modeled by (4.8). The total average power budget
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Figure 4.2: Convergence of average transmission rate (left) and average power consumption (right) for Al-

gorithm 2. Average transmission rate as a function of time is shown for Algorithm 2 and cases in which

only the backoff function is optimized – meaning p(t) = P0 – or only the power allocation function is opti-

mized – implying b(t) = ĥ(t). Joint optimization yields substantial increase of average communication rate.

Average power budget P0 = 1, constant step size ε = 0.01, and channel estimation error σ2
e = 0.1.
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Figure 4.3: Rate (left) and power (right) convergence of Algorithm 3. Sum of average transmission rates

is shown for Algorithm 3 and two suboptimal solutions. One case uses a backoff function with fixed out-

age probability 0.01 and the other case optimizes power allocation only – implying bfn(t) = ĥfn(t). Joint

optimization yields substantial increase of average communication rate. Average power budget P0 = 4,

constant step size ε = 0.01, and channel estimation error σ2
e = 0.1.
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is P0 = 4 and the channel capacity function takes the form of (1.1). Without loss of gener-

ality, we assume noise power is normalized to N0 = 1. Sum utility Un(rn) = rn is used.

We define the average utility as the sum of average transmission rates Ū(t) =
∑N
n=1 r̄n(t) =

(1/t)
∑N
n=1

∑
f∈F

∑t
u=1 C(pfn(u), bfn(u))·I{bfn(u) ≤ hfn(u)} and the average total power consump-

tion as the sum of average power allocated to each terminal p̄(t) = (1/t)
∑N
n=1

∑
f∈F

∑t
u=1 p

f
n(u).

Average sum utility Ū(t) is shown in Fig. 4.3 (left) and average power p̄(t) is shown in Fig. 4.3

(right).

In addition to Algorithm 3, two alternative solutions are also implemented. For the first

method, the value of the channel backoff function is chosen such that a fixed outage probability

0.01 is achieved [42], i.e., bfn(t) is calculated such that Mhfn(t)|ĥfn(t)(b
f
n(t)) = 1 − 0.01 = 0.99 for

each observed ĥfn(t), and power is then allocated such that the average total power constraint

is satisfied. For the second one, we do not perform any channel backoff, i.e. bfn(t) = ĥfn(t). We

remark that both are suboptimal solutions since power allocation and channel backoff functions

are not jointly optimized.

We run Algorithm 3 and these two suboptimal alternatives with constant step size ε(t) = 0.01

and compare their performance in terms of average utility Ū(t). Fig. 4.3 (left) shows that the av-

erage utilities over 3000 time slots achieved by the proposed algorithm, the algorithm with fixed

outage probability and the algorithm without channel backoff are 6.6, 5.5 and 2.8, respectively.

By introducing channel backoff functions, there is a significant increase in average utility (6.6 vs.

2.8). This implies that channel backoff is indeed very important when dealing with imperfect CSI.

Moreover, jointly optimizing power allocation and channel backoff results in 20% performance

improvement (6.6 vs. 5.5). Fig. 4.3 (right) shows the total average power used by the proposed

Algorithm 3. We see that the average power budget P0 = 4 is satisfied.
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Figure 4.4: Rate (left) and power (right) convergence of Algorithm 4. Proportional fair utility of average

transmission rates is shown for Algorithm 4 and two suboptimal solutions in which only the backoff func-

tion – meaning pn(t) = P0,n – or only the power allocation function – implying bn(t) = ĥn(t) – are op-

timized. Joint optimization yields substantial increase of average communication rate. Average power

budget P0,n = 1 (right), constant step size ε = 0.01, and channel estimation error σ2
e = 0.1.

4.4.3 Uplink RA channel

We run a set of simulations to test algorithms for the random access channel with imperfect CSI.

Assume similar parameters as in the case of OFDM: N = 8, N0 = 1, channel coefficient and

channel estimation error modeled by complex Gaussian distributions CN (0, 2) and CN (0, 0.1),

respectively. The power constraint for each terminal is set to P0,n = 1.

The proposed Algorithm 4 is implemented in which channel access, power allocation and

channel backoff functions are jointly optimized. Two other suboptimal solutions are also simu-

lated: an alogrithm without power control – pn(t) = P0,n is always constant – and an algorithm

without channel backoff – bn(t) = ĥn(t) always equal to the real estimated channel gain. To com-

pare their performance, define the average proportional fair utility as the sum of the logarithms

of the average transmission rates, i.e., Ū(t) =
∑N
n=1 log r̄n(t) =

∑N
n=1 log(1/t)

∑t
u=1 rn(u). Fur-

ther define the average power consumption of each terminal as p̄n(t) = (1/t)
∑t
u=1 pn(u). Fig.
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4.4 (left) compares the average proportional fair utility Ū(t) achieved by the three algorithms.

The utility over 3000 time slots achieved by the proposed algorithm, the algorithm with fixed

outage probability and the algorithm without channel backoff are -13.8, -15.3 and -20.7, respec-

tively. Again, we observe that by jointly optimizing the channel access, power allocation and

channel backoff the proposed algorithm achieves the highest utility. Moreover, Fig. 4.4 (right)

shows that the average power budget for terminal 1 is satisfied. Note that the convergence rate

of the algorithm for random access [cf. Fig. 4.4 left] is slower than the rate of OFDM [cf. Fig. 4.3

left]. This is because it takes longer to average out randomness in the case of RA since in OFDM

the central decision maker has access to the channel of all users whereas in the case of RA each

terminal only knows its own channel.

4.5 Summary

We considered optimal transmission over single user point-to-point channels, downlink OFDM

channels and uplink RA channels with imperfect CSI in order to maximize expected transmission

rates subject to average power constraints. For all cases we showed that the optimal solutions are

determined by parameters in the form of the optimal multipliers of the Lagrange dual problem.

We further developed stochastic subgradient descent algorithms on the dual domain that operate

without knowledge of the channels’ probability distributions. For vanishing step sizes these

dual stochastic descent algorithms converge to the optimal multipliers. With constant step sizes

optimal multipliers are not found but a policy that is optimal in an ergodic sense is determined.

Numerical results showed significant performance gains of the proposed algorithms.
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4.6 Appendices

4.6.1 Proof of null duality gap of problem (4.7)

To prove probem (4.7) has null duality gap, we introduce variable c=Eĥ
[
C(P (ĥ),B(ĥ))Mh|ĥ(B(ĥ))

]

and rewrite problem (4.7) as

Ps = max c

s.t. Eĥ
[
C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ))

]
≥ c,

Eĥ
[
−P (ĥ)

]
≥ −P0, (4.88)

where we relaxed the first equality to inequality without loss of optimality. Further define P(ĥ) =

[P (ĥ), B(ĥ)]T , f1(ĥ,P(ĥ)) = [C(P (ĥ), B(ĥ))Mh|ĥ(B(ĥ)),−P (ĥ)]T ,x = [c,−P0]T and f0(x) = c

and write (4.88) as

Ps = max f0(x)

s.t. Eĥ
[
f1(ĥ,P(ĥ))

]
− x ≥ 0. (4.89)

Note that problem (4.89) and (4.7) are equivalent. To establish zero duality gap, consider a per-

turbed version of (4.89)

Ps(δ) = max f0(x)

s.t. Eĥ
[
f1(ĥ,P(ĥ))

]
− x ≥ δ, (4.90)

where we allow the constraint to be violated by δ. To prove that the duality gap for problem

(4.89) is zero, it suffices to show that Ps(δ) is a concave function of δ; see, e.g., [7, Sec. 6.2]. Let δ

and δ′ be a pair of perturbations, and (P,x), (P′,x′) be optimal solutions corresponding to the

perturbations. Define δα = αδ + (1− α)δ′ where α ∈ [0, 1]. We are interested in showing

Ps(δα) = Ps(αδ + (1− α)δ′)

≥ αPs(δ) + (1− α)Ps(δ
′). (4.91)
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To establish concativity of the perturbation function, we study properties of the expectation

Eĥ
[
f1(ĥ,P(ĥ))

]
. Define Y as a set that contains all possible values that Eĥ

[
f1(ĥ,P(ĥ))

]
can

take, i.e., Y :=
{

y : ∃P for which y = Eĥ
[
f1(ĥ,P(ĥ))

]}
. If channel pdf has no points of positive

probability, then Y is convex [36, Theorem 3]. Therefore, there must exist Pα(ĥ) such that

Eĥ
[
f1(ĥ,Pα(ĥ))

]
= αEĥ

[
f1(ĥ,P(ĥ))

]
+ (1− α)Eĥ

[
f1(ĥ,P′(ĥ))

]
. (4.92)

Since P(ĥ) and P′(ĥ) are feasible to problem (4.90), it follows that

Eĥ
[
f1(ĥ,P(ĥ))

]
≥ x + δ. (4.93)

Eĥ
[
f1(ĥ,P′(ĥ))

]
≥ x′ + δ′. (4.94)

Substituting (4.93) and (4.94) into (4.92) yields

Eĥ
[
f1(ĥ,Pα(ĥ))

]
≥ α(x + δ) + (1− α)(x′ + δ′)

= αx + (1− α)x′ + δα. (4.95)

Define xα = αx + (1 − α)x′, then we have Eĥ
[
f1(ĥ,Pα(ĥ))

]
≥ xα + δα implying that Pα(ĥ)

and xα are feasible for problem (4.90) with perturbation δα. In addition, since f0(x) is a linear

function of x we have

f0(xα) = f0(αx + (1− α)x′) = αf0(x) + (1− α)f0(x′). (4.96)

Since (P,x) is optimal for perturbation δ, we have Ps(δ) = f0(x), and likewise, Ps(δ
′) = f0(x′).

Further note that the optimal solution Ps(δα) for perturbation δα must exceeds f0(xα), we con-

clude that

Ps(δα) ≥ αPs(δ) + (1− α)Ps(δ
′). (4.97)

(4.97) coincides with (4.91). This completes the proof since (4.97) holds for any δ and δ′, and all

α ∈ [0, 1].
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Chapter 5

Cognitive access algorithms for

wireless communications

Consider a multiple access fading channel in which terminals contend for communicating with a

central access point. To exploit favorable channel conditions, terminals adapt their channel access

as well as transmission power to the random states of the fading channel. The goal is to max-

imize the expected value of the sum transmission rates over all terminals subject to terminals’

average power constraints. This problem has been studied extensively in the past and depend-

ing on the availability of the channel state information (CSI) the optimal solutions are different.

When global CSI is available, i.e., each terminal knows the channel states of others, they can co-

operate with each other to avoid collision. This is known as frequency-division multiple access

(FDMA) in which the terminal with the largest channel state gets the opportunity to transmit,

see e.g., [26, 35]. However, global CSI is usually not available in many practical scenarios and

it is more reasonable to assume terminals only have access to local CSI. In this case, terminals

make transmission decision and power allocation based on their local CSI without cooperating

with each other. This is known as channel aware random access (RA), and it has been show the
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optimal solution is a threshold-based strategy, i.e., transmission is scheduled only when the local

CSI exceeds certain threshold, see e.g., [16, 50].

FDMA and RA can be regarded as two special cases for multiple access channel where global

CSI and local CSI are available for terminals. There are many other cases in between. For ex-

ample, terminals may have some imperfect information about the global channel states. In other

words, terminals are cognitive in the sense that each terminal has a different belief about the

channel states. In this setting, it is natural to formulate the problem as a Bayesian game in which

each terminal is a self-interested but rational player that maximizes the expected utility based on

its belief. Bayesian game has been used to study random access channels in which each terminal

knows the prior distributions of other channels [10, 47]. However, these algorithms cannot be

generalized to the cognitive setting where beliefs change over terminals and time. This moti-

vates us to develop cognitive access algorithms that determine an optimal allocation of resources

taking into account the fact that different terminals have different beliefs on the channel state.

The rest of the chapter is organized as follows. In Section 5.1, we investigate multiple access

channel where terminals have different beliefs about the channel states contending for commu-

nication with the central access point. We define the Bayesian game for this case and show that

optimal solutions for FDMA and RA are Bayesian Nash Equilibrium (BNE) points of the game.

Furthermore, we develop a cognitive access algorithm that finds solution for the Bayesian game

approximately. These results are extended to the case of wireless networks in Section 5.2. Nu-

merical results and summary are presented in Section 5.3 and 5.4, respectively.

5.1 Cognitive access algorithm for multiple access channel

Consider a multiple access channel as introduced in Section 1.1.1. Define the aggregate channel

as h(t) := {hj(t)}nj=1 and the channel complement of terminal i as h−i(t) := {hj(t)}nj=1,j 6=i. At

time t, the state of the multiple access channel can be described by the aggregate channel h(t).
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However, what terminals observe is not h(t) but an estimated version of h(t). In particular,

from terminal i’s perspective the channel state is h̃i(t) := {h̃ij(t)}nj=1, where h̃ij(t) is terminal

i’s estimation of hj(t). We assume h̃ij has the same distribution as hj and the accuracy of h̃ij

is indicated by conditional probability distributions of hj given h̃ij , i.e., fhj |h̃ij (h) (see Remark

8). When the channel estimation is perfect, i.e., h̃ij = hj , it implies that fhj |h̃ij (h) = δ(h − h̃ij).

When h̃ij does not reveal any information about hj , the conditional pdf fhj |h̃ij (h) is the same

as the prior distribution of hj , i.e. fhj |h̃ij (h) = fhj (h). The conditional pdf fh|h̃i(h) is called

terminal i’s belief about the multiple access channel. We remark that for different terminals

beliefs are different and the beliefs change over time. For future reference define the aggregate

channel estimate as H̃(t) := {h̃i(t)}ni=1 and the channel estimate complement of terminal i as

h̃−i(t) := {h̃j(t)}nj=1,j 6=i.

We assume a backlogged system where all terminals have packets to transmit all the time.

Upon observing its own channel estimate h̃i(t) node i makes a decision on whether to trans-

mit or not in the current time slot and if it chooses to do so it selects a transmit power for the

communication attempt. Transmission decisions for node i are based on the attempt function

Qi : R → {0, 1} and the power allocation function Pi : R+ → [0, pinst
i ], where pinst

i > 0 is a

limit on the instantaneous power transmitted by terminal i. Given the channel estimate h̃i(t)

terminal i makes a transmission attempt in time slot t if and only if Qi(h̃i(t)) = 1 in which case

it does so with power Pi(h̃i(t)). The pair of functions Pi := (Qi, Pi) is termed the transmis-

sion strategy profile of terminal i. The joint strategy is defined as the grouping P := {Pj}nj=1

of all individual strategy profiles and the complementary strategy of terminal i as the grouping

P−i := {Pj}nj=1,j 6=i of all strategies except the one of i. Observe that specifying the joint strategy

P is equivalent to specifying the individual strategy Pi and the complementary strategy P−i.

A communication attempt with power Pi(h̃i(t)) when the channel is hi(t) proceeds at a rate

C[hi(t), Pi(h̃i(t))], where C : R+ × [0, pinst
i ] → R+ is a function mapping channels and powers

to transmission rates. Similar to the random access channel considered in Chapter 2, we assume
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a collision occurs if more than one terminal attempts transmission in the same time slot. Thus,

user i is able to reach the AP at time t if and only if Qi(h̃i(t)) = 1 and Qj(h̃j(t)) = 0 for all j 6= i.

Therefore, the instantaneous transmission rate for terminal i at time t is

ri(hi(t), H̃(t),P(H̃(t))) = C

[
hi(t), Pi(h̃i(t))

]
×Qi(h̃i(t))

n∏

j=1,j 6=i
[1−Qj(h̃j(t))], (5.1)

Furthermore, we define the instantaneous utility as the sum of instantaneous transmission rate,

i.e.,

U(h(t), H̃(t),P(H̃(t))) =

n∑

i=1

ri(hi(t), H̃(t),P(H̃(t))). (5.2)

It then follows that the expected utility associated with policy P is given by

Ū(P) = Eh,H̃


U(h, H̃,P)


 = Eh,H̃




n∑

i=1

ri(hi, H̃,P)


. (5.3)

where we dropped the time index because the channel distribution is assumed stationary. Fur-

ther note that each communication attempt, successful or not, incurs a power cost Pi(h̃i). There-

fore, the average power consumption of terminal i is the expectation Eh̃i

[
Qi(h̃i)Pi(h̃i)

]
and in

order to satisfy an average power budget pavg
i we must have

Eh̃i

[
Qi(h̃i)Pi(h̃i)

]
≤ pavg

i . (5.4)

The goal of each terminal is to select the policy Pi that maximizes the average sum rate utility

Ū(P) in (5.3) while satisfying the average power constraint in (5.4). However, terminal i lacks

the information to do so. The rate ri(hi, H̃,P(H̃)) attained by terminal i is dependent upon the

scheduling Qi(h̃i) of all terminals [cf. (5.1)]. For terminal i to be able to solve this problem,

it requires policies P−i and channel estimations H̃−i of all other terminals. Since neither P−i

nor H̃−i is available to terminal i, it is impossible for terminal i to solve the problem without

having access to other terminals’ policies P−i and channel estimations H̃−i. In this chapter, we

aim at developing algorithms that allow terminals solve this problem approximately without

cooperating with each other.
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Remark 8. The probability distribution fhj |h̃ij (h) depends on the channel estimation method.

A typical way is to assume that h̃ij is an outdated version of hj modeled by an order-1 autore-

gressive (AR) process. For example, suppose hj is complex Gaussian with pdf CN (0, 2), then the

estimation can be modeled by hj = ρh̃ij +ej where ρ is the correlation coefficient between hj and

h̃ij and ej is complex Gaussian random noise with pdf CN (0, 1 − ρ2). In this case, fhj |h̃ij (h) is a

noncentral chi-square distribution [28]

fhj |h̃ij (h) =
1

2(1− ρ2)
exp

(
−h+ ρ2h̃ij

2(1− ρ2)

)
I0


ρ

2
√
hh̃ij

(1− ρ2)


 , (5.5)

where I0(x) =
∑∞
i=0 (x2/4)i/(i!)2 is the zeroth order modified Bessel function of the first kind.

This particular form for the conditional pdf fhj |h̃ij (h) is used to provide numerical results in

Section 5.3. The rest of the development in the chapter holds independently of the particular

form of this pdf.

5.1.1 Multiple access channel without power control

Bayesian Nash Equilibrium

Let us first consider the case without power control, i.e. Pi(h̃i) is a constant for all terminals. In

this case, we can ignore the power control functions Pi(h̃i) and the instantaneous transmission

rate for terminal i can be simplified to

ri(hi, H̃,P) = C[hi]Qi(h̃i)

n∏

j=1,j 6=i
[1−Qj(h̃j)]

= ri(hi, h̃i, h̃−i, Qi, Q−i), (5.6)

where the second equality holds true because H̃ = {h̃i, h̃−i}. From terminal i’s perspective, we

can rewrite the instantaneous sum rate utility as U(h, h̃i, h̃−i, Qi, Q−i) and the expected sum rate

utility as

Ū(Qi, Q−i) = Eh,h̃i,h̃−i

[
U(h, h̃i, h̃−i, Qi, Q−i)

]
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= Eh̃i

[
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i, Qi, Q−i)

]]
, (5.7)

where the second equality follows from the fact that joint pdf equals to the product of prior pdf

and conditional pdf, i.e., f(h, h̃i, h̃−i) = f(h̃i)·f(h, h̃−i|h̃i). The outer expectation in (5.7) is taken

over terminal i’s observations h̃i while the inner expectation in (5.7) is with respect to terminal

i’s belief about the global channel states and beliefs of other terminals, i.e., h given h̃i and h̃−i

given h̃i. Since we consider the case without power control, the average power constraint can be

ignored [cf. (5.4)]. As a result, maximizing the expected sum rate utility Ū(Qi, Q−i) is equivalent

to maximizing the inner expectation Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i, Qi, Q−i)

]
for every given h̃i. How-

ever, terminal i still lacks information to do so because the expectation depends on policies of

other terminals. Since terminals are not allowed to cooperate with each other, each terminal has

to make transmission decisions independently. This situation can be modeled as a game with

incomplete information where each terminal makes decisions on its own belief about channels

while receives a global utility.

Suppose terminal i’s belief h̃i and other terminals’ policies Q−i are given, the best response

terminal i can take is to maximize the expected value of the sum rate utility based on its belief

QBR
i (h̃i, Q−i) := argmax

Qi∈{0,1}
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i, Qi, Q−i)

]
. (5.8)

In this game, each terminal solves an optimization problem like (5.8). The equilibrium point of

the game is defined by the following:

Definition 1. For multiple access channel without power control, qBNE
i is Bayesian Nash Equilibrium

(BNE) if for all i the following holds true

QBNE
i (h̃i) = argmax

Qi∈{0,1}
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i, Qi, Q

BNE
−i )

]
. (5.9)

At BNE, every terminal plays best response to the policies of other terminals. A natural ques-

tion arises is how to obtain solutions for BNE. Let us first investigate two special cases when

122



terminals have perfectly correlated beliefs (fhj |h̃ij (h) = δ(h − h̃ij) for all j) and uncorrelated

beliefs (fhj |h̃ij (h) = fhj (h) for all j 6= i).

When terminals’ belief about others is perfect, this implies that each terminal has access to

the global channel state, i.e., h̃i = h for all i. By using global CSI, terminals can cooperate with

each other so that collision can be avoided. To do so, we introduce a constraint
∑n
i=1Qi(h) ≤ 1

which allows only at most one terminal to transmit in each time slot. Since collision is avoided,

the instantaneous rate ri can be rewritten as Qi(h)C(hi). As a result, each terminal can solve the

following global optimization problem locally

Qi = argmaxEh

[
n∑

i=1

Qi(h)C(hi)

]
(5.10)

s.t.

n∑

i=1

Qi(h) ≤ 1

Note that problem (5.10) is the optimal FDMA with single carrier and without average power

constraint. To maximize the expectation in (5.10), it is equivalent to maximizing
∑n
i=1Qi(h)C(hi)

for any given channel realization h. Since at most one Qi(h) can be 1 for any given h, the op-

timal solution is to set Qi(h) = 1 if the instantaneous transmission rate achieved by terminal

i is greater than that of all other terminals, i.e., C(hi) > maxj 6=i C(hj). Therefore, the optimal

solution QFDMA
i (h) can be expressed as

QFDMA
i (h) = H

(
C(hi) > max

j 6=i
C(hj)

)
(5.11)

where H(·) is the Heaviside function. We show this solution has the following property.

Proposition 2. For multiple access channel without power control, suppose terminals have perfect beliefs

about the channel states, i.e., fhj |h̃ij (h) = δ(h − h̃ij) or h̃i = h, then QFDMA
i obtained by (5.11) that

solves problem (5.10) is BNE of the game as is defined by (5.9).

Proof. When terminals have perfect beliefs about the channel states, we have h̃i = h for all i. As

a result, the conditional pdfs f(h|h̃i) and f(h̃j |h̃i) in (5.9) are delta functions and the BNE in this
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case is given by

QBNE
i (h) = argmax

Qi∈{0,1}
U(h, Qi, Q

BNE
−i ). (5.12)

We need to show that QFDMA
i (h) obtained by (5.11) satisfies (5.12) for all i. Suppose for a given h,

hi is the largest among all channels, i.e., hi > maxj 6=i hj . According to (5.11), the optimal solution

for FDMA isQFDMA
i (h) = 1 andQFDMA

j (h) = 0 for all j 6= i. It can be easily verified thatQFDMA
i (h)

and QFDMA
j (h) satisfies (5.12) for all i.

We proceed to the case where terminals have uncorrelated beliefs. In this case, terminals

have perfect knowledge about its local channel but only have prior knowledge about channels

of others, i.e., fhi|h̃ii(h) = δ(h − h̃ii) and fhj |h̃ij (h) = fhj (h). Since h̃ij does not reveal any

information about hj , we can write the policy of terminal i as a function of its local channel hi

only, i.e., Qi(hi). As a result, the expected sum rate utility in (5.8) can be written as

Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i, Qi, Q−i)

]
= Eh−i [U(h, Qi, Q−i)]

= Eh−i




n∑

j=1

C(hj)Qj(hj)

n∏

k=1,k 6=j
[1− qk(hk)]


 . (5.13)

Given hi and Q−i, the best response terminal i can take is to maximize the expected value of sum

rate utility in (5.13)

QBR
i (hi, Q−i) := argmax

Qi∈{0,1}
Eh−i




n∑

j=1

C(hj)Qj(hj)

n∏

k=1,k 6=j
[1− qk(hk)]


 . (5.14)

We show in this case the BNE is a threshold policy.

Proposition 3. For multiple access channel without power control, suppose terminals have perfect knowl-

edge about its local channel but only have prior knowledge about channels of others, i.e., fhi|h̃ii(h) =

δ(h− h̃ii) and fhj |h̃ij (h) = fhj (h), then BNE of the game is a threshold policy.

Proof. Since all terminals play best response at BNE, in order to show BNE is a threshold policy

we need to show the best response defined by (5.14) is a threshold policy. To do so, we rewrite
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the expectation in (5.14) as

Eh−i




n∑

j=1

C(hj)Qj(hj)

n∏

k=1,k 6=j
[1− qk(hk)]




= Qi(hi)C(hi)Eh−i




n∏

j=1,j 6=i
[1−Qj(hj)]




+ [1−Qi(hi)]Eh−i




n∑

j=1,j 6=i


Cj(hj)Qj(hj)

n∏

k=1,k 6=j,k 6=i
[1− qk(hk)]






:= Qi(hi)C(hi)S1(Q−i) + [1−Qi(hi)]S2(Q−i), (5.15)

where we defined expectations in the second equality as two functions of Q−i, i.e., S1(Q−i)

and S2(Q−i), respectively. Since Qi(hi) can only take 0 or 1, and the expected sum rate util-

ity equals to C(hi)S1(Q−i) or S2(Q−i) when Qi(hi) is 1 or 0, respectively. Therefore, to max-

imize Qi(hi)C(hi)S1(Q−i) + [1 − Qi(hi)]S2(Q−i) we just need to set Qi(hi) to 1 if and only if

C(hi)S1(Q−i) > S2(Q−i), i.e.,

QBR
i (hi, Q−i) = H(C(hi) > S2(Q−i)/S1(Q−i)). (5.16)

Since channel capacityC(hi) is a nondecreasing function of hi, there must exist a constant hi,0 > 0

such that C(hi) > S2(Q−i)/S1(Q−i) if and only if hi > hi,0. Therefore, the best response in (5.16)

is equivalent to

QBR
i (hi, Q−i) = H(hi > hi,0), (5.17)

where hi,0 is a threshold. This completes the proof.

When terminals have access to local CSI and operate independently without cooperating with

each other, this is known as channel-aware random access, see e.g. [29, 50]. For symmetric chan-

nel, the optimal solution is shown to be a threshold strategy and the optimal threshold h0 is given

by the solution to the following equation [50]

(n− 1)

∫ ∞

h0

C(h)f(h)dh = C(h0)

∫ h0

0

f(h)dh. (5.18)
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Therefore, the solution for optimal random access for symmetric channel is given by

QRA
i (hi) = H(hi > h0). (5.19)

We show that QRA
i (hi) obtained by (5.19) is the BNE of the game as is defined by (5.9).

Proposition 4. For multiple access channel without power control, suppose channel is symmetric and

terminals have perfect knowledge about its local channel but only have prior knowledge about channels of

others, i.e., fhi|h̃ii(h) = δ(h− h̃ii) and fhj |h̃ij (h) = fhj (h), then the optimal random access policy QRA
i

obtained by (5.19) is BNE of the game defined by (5.9).

Proof. We have shown that the BNE is a threshold policy. For symmetric channel, the threshold

for different terminals should be same which we assume to be ĥ0. We need to show ĥ0 is equal to

h0 given by the solution of (5.18). According to (5.16), we know that the following equality holds

true when hi = ĥ0

C(ĥ0)S1(QBNE
−i ) = S2(QBNE

−i ), (5.20)

where S1(QBNE
−i ) is given by

S1(QBNE
−i ) =

n∏

j=1,j 6=i
Ehj [1−Qj(hj)]

=

(∫ ĥ0

0

f(h)dh

)n−1

, (5.21)

where the first equality follows from the fact that hi and hj are independent for i 6= j and for the

same reason S2(QBNE
−i ) can be expressed as

S2(QBNE
−i ) =

n∑

j=1,j 6=i
Ehj [Cj(hj)Qj(hj)]

n∏

k=1,k 6=j,k 6=i
Ehk [1− qk(hk)]

=

n∑

j=1,j 6=i

∫ ∞

ĥ0

C(h)f(h)dh

(∫ ĥ0

0

f(h)dh

)n−2

= (n− 1)

∫ ∞

ĥ0

C(h)f(h)dh

(∫ ĥ0

0

f(h)dh

)n−2

. (5.22)
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Substitute (5.21) and (5.22) into (5.20) we have

C(ĥ0)

∫ ĥ0

0

f(h)dh = (n− 1)

∫ ∞

ĥ0

C(h)f(h)dh, (5.23)

which coincides with (5.18) implying ĥ0 = h0. This completes the proof.

In summary, when terminals have perfectly correlated and uncorrelated beliefs about other

terminals it is possible to formulate the problem as FDMA or RA and find corresponding optimal

solutions. Interestingly, optimal solutions for these two different problems both coincide with the

BNE defined by (5.9). In other words, BNE can be used as a unified framework to model multiple

access channels. Indeed, from an individual terminal’s point of view the only difference between

FDMA and RA is the knowledge about other channels which is captured by the belief in BNE.

However, for intermediate cases where beliefs are neither perfectly correlated nor uncorrelated

finding the BNE solution is not an easy task because the objective in (5.9) evolves policies of

other terminals which is unknown to terminal i. Next, we develop algorithms that solve (5.9)

approximately.

Cognitive access algorithm

The key in designing an algorithm for solving (5.9) is to model the actions of other terminals. Let

Q̃ij(·) be the modeling of terminal j’s action from terminal i’s perspective. The easiest way of

modeling terminal j is to assume that h̃ij is the true channel gain and terminal j makes decision

based on h̃i, i.e., Q̃ij(h̃i). The intuition behind this modeling is that each terminal finds a strategy

that is optimal when their belief about other terminals are perfect as in the case of optimal FDMA

(5.10). As a result, terminal i solves the following problem locally

{QCA
i , Q̃CA

−i } = maxEh̃ii
[
Qi(h̃i)C(h̃ii)

]
+

n∑

j=1,j 6=i
Eh̃ij

[
Q̃ij(h̃i)C(h̃ij)

]
(5.24)

s.t. Qi(h̃i) +

n∑

j=1,j 6=i
Q̃ij(h̃i) ≤ 1.
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Note that problem (5.24) is the same as the one for FDMA (5.10) except that qj is replaced by Q̃ij .

The optimal solution for (5.24) is given by

QCA
i (h̃i) = H

(
C(h̃ii) > max

j 6=i
C(h̃ij)

)
, (5.25)

In practice, terminal i makes transmission according to (5.25). When terminal i is scheduled

for transmission, it assumes other terminals are silent, i.e., Q̃ij = 0 for all j 6= i, and the attained

transmission rate is C(hi). However, this may not be true since the modeled action Q̃ij may be

different from the real action Qj of terminal j which is obtained by terminal j solving another

maximization problem like (5.24). Therefore, collision may happen when all terminals operate by

following (5.25). However, we can show that the performance achieved by this algorithm is the

same as FDMA when channel is perfect and is nearly good as RA when channel is uncorrelated.

Let the expected utilities achieved byQCA
i andQFDMA

i are ŪCA and ŪFDMA, respectively. We show

that the performance of the proposed cognitive access algorithm for the following two cases.

Proposition 5. If terminals have perfectly correlated belief, i.e., fhj |h̃ij (h) = δ(h − h̃ij), the expected

utility achieved by QCA
i is the same as that of FDMA, i.e., ŪCA = ŪFDMA.

Proof. When terminals have perfectly correlated belief, h̃ij = hj . This implies that the problem

(5.24) solved by the proposed algorithm is the same as the problem (5.10) solved by FDMA.

Therefore, the performance achieved by both algorithms are identical, i.e., ŪCA = ŪFDMA.

Proposition 6. If terminals have perfect correlated belief about its local channel, i.e., fhi|h̃ii(h) = δ(h−

h̃ii), and uncorrelated belief about channels of other terminals, i.e., fhj |h̃ij (h) = fhj (h), the expected

utility achieved byQCA
i is a fraction of that of FDMA, i.e., ŪCA = βŪFDMA, where β ∈ [0, 1] is a constant.

In particular, when channels are symmetric, β = 1/e as the number of terminals goes to infinity.

Proof. In both FDMA and the proposed algorithm, transmission decision for each terminal is

made by comparing its local channel with maximum of the channels of others [cf. (5.11) and

(5.25)]. Therefore, given local channel hi terminal i transmits with certain probability under both
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policies. Let αFDMA
i (hi) and αCA

i (hi) be the probability that terminal i transmit in the proposed

algorithm and FDMA, respectively. According to (5.11) and (5.25), αFDMA
i (hi) and αCA

i (hi) are

given by

αFDMA
i (hi) = Pr

(
C(hi) > max

j 6=i
C(hj)

)
, (5.26)

αCA
i (hi) = Pr

(
C(hi) > max

j 6=i
C(h̃ij)

)
. (5.27)

Since h̃ij , hj have the same distribution, we conclude that αCA
i (hi) = αFDMA

i (hi) = αi(hi). As a

result, the expected utility achieved by QFDMA
i is

ŪFDMA =
∑

i

Ehi [C(hi)αi(hi)] , (5.28)

and the expected utility achieved by QCA
i is

ŪCA =
∑

i

Ehi [C(hi)αi(hi)]
∏

j 6=i

[
1− Ehj [αj(hj)]

]
, (5.29)

where the product
∏
j 6=i
[
1− Ehj [αj(hj)]

]
in (5.29) represents the probability that all terminals

other than terminal i are silient. Define βi :=
∏
j 6=i
[
1− Ehj [αj(hj)]

]
and rewrite (5.29) as

ŪCA =
∑

i

βiEhi [C(hi)αi(hi)]. (5.30)

Let βmin = mini βi and βmax = maxi βi, then there must exist β ∈ [βmin, βmax] such that

ŪCA = β
∑

i

Ehi [C(hi), P
CA
i (hi))αi(hi)]. (5.31)

Substitute (5.28) into (5.31) yields

ŪCA = βŪFDMA. (5.32)

When the channels are symmetric, it can be show that β = (1 − 1/n)n−1. Since limn→∞(1 −

1/n)n−1 = 1/e, ŪCA goes to 1/e · ŪFDMA as n goes to infinity.
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5.1.2 Multiple access channel with power control

Bayesian Nash Equilibrium

We now proceed to the case with power control. Similar to what we did in the case without

power control, we rewrite the expected sum rate utility as

Ū(Pi,P−i) = Eh̃i

[
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i,Pi,P−i)

]]
, (5.33)

Suppose other terminals’ policies P−i are given, the best response terminal i can take is to maxi-

mize the expected value of the sum rate utility based on its belief subject to the average power

constraint

PBR
i (P−i) := argmaxEh̃i

[
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i,Pi,P−i)

]]
(5.34)

s.t. Eh̃i

[
Qi(h̃i)Pi(h̃i)

]
≤ pavg

i ,Pi ∈ Pi

where Pi = {Pi|Qi(h̃i) ∈ {0, 1}, Pi(h̃i) ∈ [0, pinst
i ]} is the set of values that Pi can take. Com-

paring to the best response for the case without power control [cf. (5.8)], the objective in (5.34)

is to maximize the double expectation and there exist additional average power constraints. In

this game, each terminal solves an optimization problem like (5.34). The equilibrium point of the

game is defined by the following:

Definition 2. PBNE
i is Bayesian Nash Equilibrium (BNE) if for all i the following holds true

PBNE
i = argmaxEh̃i

[
Eh,h̃−i|h̃i

[
U(h, h̃i, h̃−i,Pi,P

BNE
−i )

]]
(5.35)

s.t. Eh̃i

[
Qi(h̃i)Pi(h̃i)

]
≤ pavg

i ,Pi ∈ Pi

At BNE, every terminal plays best response to the policies of other terminals. A natural ques-

tion arises is how to obtain solutions for BNE. As we did for the case without power con-

trol, we start by investigating two special cases when terminals have perfectly correlated beliefs

(fhj |h̃ij (h) = δ(h− h̃ij) for all j 6= i) and uncorrelated beliefs (fhj |h̃ij (h) = fhj (h) for all j 6= i).
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When terminals’ belief about others is perfect, terminals can cooperate with each other so that

collision can be avoided. As a result, each terminal can solve the following global optimization

problem locally

PFDMA
i = argmax

n∑

i=1

Eh [Qi(h)C(hi, Pi(h))] (5.36)

s.t. Eh [Qi(h)Pi(h)] ≤ pavg
i ,Pi ∈ Pi ∀i

n∑

i=1

Qi(h) ≤ 1

It can be shown that problems like (5.36) have null duality gap [34, 36], and the optimal solution

is uniquely determined by the optimal solution for its dual problem. Let λFDMA
i be the optimal

dual variable for the dual problem of (5.36), the optimal solution PFDMA
i for (5.36) is then given

by

P FDMA
i (hi) = max

Pi∈Pi
C(hi, Pi)− λFDMA

i Pi, (5.37)

QFDMA
i (h) = H

(
gFDMA
i (hi) > max

{
max
j 6=i

gFDMA
j (hj), 0

})
(5.38)

where gFDMA
i (hi) is defined by

gFDMA
i (hi) = C(hi, P

FDMA
i (hi))− λFDMA

i P FDMA
i (hi). (5.39)

gFDMA
i (hi) can be regarded as a local utility function that only depends on terminal i’s local CSI hi.

In each time slot, terminals compute their local utilities gFDMA
i (hi) and the one with the largest

nonnegative utility gets the opportunity to transmit. We show this solution has the following

property.

Proposition 7. For multiple access channel with power control, suppose terminals have perfect beliefs

about other terminals, i.e., fhj |h̃ij (h) = δ(h− h̃ij) or h̃i = h, then PFDMA
i obtained by (5.37) and (5.38)

that solves problem (5.36) is BNE of the game defined by (5.35).

Proof. When terminal i has perfect beliefs about other terminals, we have h̃i = h. As a result, we
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can write the maximization problem in (5.34) as

PBR
i (P−i) = argmaxEh [U(h,Pi,P−i)] (5.40)

s.t. Eh [Qi(h)Pi(h)] ≤ pavg
i ,Pi ∈ Pi.

To show PFDMA
i is BNE, we need to show that given P−i = PFDMA

−i the optimal solution for

(5.40) is PBR
i (PFDMA

−i ) = PFDMA
i . We prove this by contradiction. Suppose given P−i = PFDMA

−i the

optimal solution for (5.40) is PBR
i (PFDMA

−i ) 6= PFDMA
i . This implies

Eh

[
U(h,PBR

i (PFDMA
−i ),PFDMA

−i )
]
> Eh[U(h,PFDMA

i ,PFDMA
−i )]. (5.41)

Moreover, the constraint in (5.40) implies that PBR
i (PFDMA

−i ) is feasible for the FDMA problem.

This contradicts with the fact that PFDMA
i is the global maximizer for the FDMA problem (5.36).

Therefore, it must be PBR
i (PFDMA

−i ) = PFDMA
i .

Next, we investigate the case where each terminal has perfect knowledge about its local chan-

nel but only has uncorrelated belief about channels of other terminals. In this case, terminals

solves the following optimization problem

PRA
i = argmaxEh [U(h,P)] (5.42)

s.t. Ehi [Qi(hi)Pi(hi)] ≤ p
avg
i ,Pi ∈ Pi ∀i

This is known as the optimal random access channel as we studied in Chapter 2. We show that

PRA
i has the following property:

Proposition 8. For multiple access channel with power control, suppose terminals have perfect knowledge

about its local channel but only have prior knowledge about channels of others, i.e., fhi|h̃ii(h) = δ(h− h̃ii)

and fhj |h̃ij (h) = fhj (h), then PRA
i that solves problem (5.42) is BNE of the game defined by (5.35).

Proof. When terminal i has uncorrelated beliefs about other terminals, we have fhj |h̃ij (h) =
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fhj (h). As a result, we can rewrite the maximization problem in (5.34) as

PBR
i (P−i) = argmaxEh [U(h,Pi,P−i)] (5.43)

s.t. Ehi [Qi(hi)Pi(hi)] ≤ p
avg
i ,Pi ∈ Pi.

To show PRA
i is BNE, we need to show that given P−i = PRA

−i the solution for (5.43) is

PBR
i (PRA

−i ) = PRA
i . To see this is true, note that given P−i = PRA

−i problem (5.42) and (5.43)

are identical. In this case, optimal solution for (5.42) is the optimal solution for (5.43), i.e.,

PBR
i (PRA

−i ) = PRA
i .

Cognitive access algorithm

Similar to the case without power control, we develop cognitive access algorithms that solves

problem (5.35) approximately. Let Q̃ij(·) be terminal i’s modeling of terminal j’s action. From

terminal i’s perspective, it assumes that h̃ij is the true channel gain and terminal j makes decision

based on it, i.e., Q̃ij(h̃ij). As a result, terminal i solves the following problem locally

{PCA
i , P̃CA

−i } = maxEh̃i

[
Qi(h̃i)C(h̃ii, Pi(h̃i))

]
+

n∑

j=1,j 6=i
Eh̃i

[
Q̃ij(h̃i)C(h̃ij , p̃j(h̃i))

]
(5.44)

s.t. Eh̃i

[
Qi(h̃i)Pi(h̃i)

]
≤ pavg

i ,Pi ∈ Pi

Eh̃i

[
Q̃j(h̃i)p̃j(h̃i)

]
≤ pavg

j , P̃j ∈ Pj ∀j 6= i

Qi(h̃i) +

n∑

j=1,j 6=i
Q̃j(h̃i) ≤ 1.

Note that problem (5.44) is the same as the one for FDMA (5.36) except that P−i is replaced by

P̃−i. Suppose the optimal dual variable for the dual problem of (5.44) is λCA
i , then the optimal

solution for (5.44) is given by

PCA
i (h̃ij) = max

Pi∈Pi
C(h̃ij , Pi)− λCA

i Pi, (5.45)

QCA
i (h̃i) = H

(
gCA
i (h̃ii) > max

{
max
j 6=i

gCA
j (h̃ij), 0

})
, (5.46)
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where gCA
i (hi) is given by

gCA
i (h̃ij) = C(h̃ij , P

CA
i (h̃ij))− λCA

i PCA
i (h̃ij) (5.47)

In practice, each terminal solves (5.44) offline locally to find the optimal multiplier λCA
i . Based

on λCA
i , terminal i makes transmission and power allocation decisions according to (5.45)-(5.47).

Before proceeding to show the performance of the proposed algorithm, we first prove the next

properties.

Proposition 9. Let λCA
i and λFDMA

i be optimal multipliers associated with terminal i’s average power

constraints in (5.44) and (5.36), then λCA
i = λFDMA

i . Let PCA
i (h̃ii) and P FDMA

i (hi) be the optimal power

allocations for terminal i that solve problems (5.44) and (5.36), then PCA
i (h̃ii) = P FDMA

i (hi) if h̃ii = hi.

Proof. Since h̃ij and hj have the same pdf, the dual problems of (5.44) and (5.36) are the same.

Therefore, the optimal dual variables for their dual problems are the same, i.e., λCA
i = λFDMA

i .

To see PCA
i (h̃ii) = P FDMA

i (hi) for h̃ii = hi, observe that PCA
i (h̃ii) and P FDMA

i (hi) are functions

of λCA
i and λFDMA

i , respectively [cf. (5.45) and (5.37)]. Since we have shown λCA
i = λFDMA

i , it

follows that PCA
i (h̃ii) = P FDMA

i (hi) if h̃ii = hi. This completes the proof.

Let the expected utilities achieved by PCA
i and PFDMA

i are ŪCA and ŪFDMA, respectively. We

show that the performance of the proposed algorithm for the following two cases.

Proposition 10. If terminals have perfectly correlated belief, i.e., fhj |h̃ij (h) = δ(h − h̃ij), the expected

utility achieved by PCA
i is the same as that of FDMA, i.e., ŪCA = ŪFDMA.

Proof. When terminals have perfectly correlated belief, h̃ij = hj . This implies that the problem

(5.44) solved by the proposed algorithm is the same as the problem (5.36) solved by FDMA.

Therefore, the performance achieved by both algorithms are identical, i.e., ŪCA = ŪFDMA.

Proposition 11. If terminals have perfect correlated belief about its local channel, i.e., fhi|h̃ii(h) = δ(h−

h̃ii), and uncorrelated belief about channels of other terminals, i.e., fhj |h̃ij (h) = fhj (h), the expected
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utility achieved by PCA
i is a fraction of that of FDMA, i.e., ŪCA = βŪFDMA, where β ∈ [0, 1] is a constant.

In particular, when channels are symmetric, β = 1/e as the number of terminals goes to infinity.

Proof. In both FDMA and the proposed algorithm, transmission decision for each terminal is

made by comparing its local utility with maximum of the utilities of others [cf. (5.38) and (5.46)].

Therefore, given local channel hi terminal i transmits with certain probability under both policies.

Let αFDMA
i (hi) and αCA

i (hi) be the probability that terminal i transmit in the proposed algorithm

and FDMA, respectively. According to (5.38) and (5.46), αFDMA
i (hi) and αCA

i (hi) are given by

αFDMA
i (hi) = Pr

(
gFDMA
i (hi) > max

{
max
j 6=i

gFDMA
j (hj), 0

})
(5.48)

αCA
i (hi) = Pr

(
gCA
i (hi) > max

{
max
j 6=i

gCA
j (h̃ij), 0

})
. (5.49)

By definition, gFDMA
j and gCA

j are functions of the local channel hi, corresponding optimal mul-

tipliers and optimal power allocations [cf. (5.39) and (5.47)]. Since λCA
i = λFDMA

i and PCA
i (hi) =

P FDMA
i (hi) by Proposition 9, for the same channel we have gCA

j (hj) = gFDMA
j (hj). Moreover, since

h̃ij , hj have the same distribution, we conclude that αCA
i (hi) = αFDMA

i (hi) = αi(hi). As a result,

the expected utility achieved by PFDMA
i is

ŪFDMA =
∑

i

Ehi
[
C(hi), P

FDMA
i (hi))αi(hi)

]
, (5.50)

and the expected utility achieved by PCA
i is

ŪCA =
∑

i

Ehi [C(hi), P
CA
i (hi))αi(hi)]

∏

j 6=i

[
1− Ehj [αj(hj)]

]
, (5.51)

where the product
∏
j 6=i
[
1− Ehj [αj(hj)]

]
in (5.51) represents the probability that all terminals

other than terminal i are silient. Define βi :=
∏
j 6=i
[
1− Ehj [αj(hj)]

]
and rewrite (5.51) as

ŪCA =
∑

i

βiEhi [C(hi), P
CA
i (hi))αi(hi)]. (5.52)

Let βmin = mini βi and βmax = maxi βi, then there must exist β ∈ [βmin, βmax] such that

ŪCA = β
∑

i

Ehi [C(hi), P
CA
i (hi))αi(hi)]
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= β
∑

i

Ehi [C(hi), P
FDMA
i (hi))αi(hi)], (5.53)

where the second equality follows from the fact that PCA
i (hi) = P FDMA

i (hi). Substitute (5.50) into

(5.53) yields

ŪCA = βŪFDMA. (5.54)

When the channels are symmetric, it can be show that β = (1 − 1/n)n−1. Since limn→∞(1 −

1/n)n−1 = 1/e, ŪCA goes to 1/e · ŪFDMA as n goes to infinity.

5.2 Cognitive access algorithm for wireless networks

In the previous sections, we investigated multiple access channels in which terminals have beliefs

about the global channel state and developed cognitive access algorithms that allow terminals to

exploit this information to improve system performance. It is straightforward to extend the cog-

nitive algorithms for multiple access channels to the case of wireless networks where terminals

have beliefs about the global network CSI. In this section, we consider wireless networks from a

game theoretical point of view and develop cognitive access algorithms similar to what we did

in the case of multiple access channels.

Consider a random access wireless network as introduced in Section 1.1.2. Let h denote the

actual channels of links in the network. Different from the assumptions made in Section 1.1.2

that each terminals only has access to its local CSI, we assume each terminal observes an esti-

mated version of the global CSI denoted by h̃i. The accuracy of the estimation is reflected by the

conditional pdf fh|h̃i(h̃i). The channel access function Qij and power allocation function Pij are

functions of h̃i. Define channel complement of terminal i as h̃−i := {h̃j}nj=1,j 6=i. In this setting,

the optimal operating point of the wireless network is given by the solution for the following

optimization problem:

max
{xi,Pi}∈Bi

∑

i∈V,k∈K
Uki
(
aki
)
−
∑

i∈V
Vi(pi) (5.55)

136



s.t. aki ≤
∑

j∈N (i)

(
rkij − rkji

)
∀i,

∑

k∈K
rkij ≤ cij ∀(i, j),

pi ≥ Eh̃i


 ∑

j∈N (i)

Pij(h̃i)Qij(h̃i)


 ∀i,

cij ≤ Eh̃i


Eh,h̃−i|h̃i


Cij

(
hijPij(h̃i)

)
Qij(h̃i)

∏

l∈Mi(j)

[
1−Ql(h̃l)

]



 ∀(i, j).

Solving problem (5.55) is not an easy task because terminals are not allowed to cooperate with

each other. Moreover, since h̃i and h̃j may be correlated the approximation method used to

decompose the channel capacity constraint [cf. 3.1.2 ] cannot be applied here. On the other hand,

we can model the problem as a game in which each terminal has its own belief about the global

CSI and terminals’ joint actions determine the system utility. The equilibrium point of the game

is defined as follows.

Definition 3. PBNE
i is Bayesian Nash Equilibrium (BNE) if for all i the following holds true

{xBNE
i ,PBNE

i } = argmax
{xi,Pi}∈Bi

∑

k∈K
Uki
(
aki
)
− Vi(pi) (5.56)

s.t. aki ≤
∑

j∈N (i)

(
rkij − rkBNE

ji

)
,
∑

k∈K
rkij ≤ cij ∀j ∈ N (i),

pi ≥ Eh̃i


 ∑

j∈N (i)

Pij(h̃i)Qij(h̃i)


 ,

cij≤Eh̃i


Eh,h̃−i|h̃i


Cij

(
hijPij(h̃i)

)
Qij(h̃i)

∏

l∈Mi(j)

[
1−QBNE

l (h̃l)
]



 ,∀j ∈ N (i).

Comparing (5.56) and (5.55), note that only utilities and constraints associated with terminal

i are present in (5.56). To find solutions to this game, we develop cognitive access algorithms

similar to what we did in the previous sections. Recall that the key in designing cognitive access

algorithms is to model the behaviors of other terminals and one of the easiest way is to assume

h̃i is the true network CSI and terminal i solves a local FDMA problem base on this belief. Let

{x̃CA
i , P̃CA

i } be the solution to the following problem

max
{x̃i,P̃i}∈Bi

∑

i∈V,k∈K
Uki
(
ãki
)
−
∑

i∈V
Vi(p̃i) (5.57)
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s.t. aki ≤
∑

j∈N (i)

(
r̃kij − r̃kji

)
∀i,

∑

k∈K
r̃kij ≤ c̃ij ∀(i, j),

p̃i ≥ Eh̃i


 ∑

j∈N (i)

P̃ij(h̃i)Q̃ij(h̃i)


 , ∀i

c̃ij ≤ Eh̃i

[
Cij

(
h̃ijP̃ij(h̃i)

)
Q̃ij(h̃i)

]
. ∀(i, j),

Q̃A ≤ I.

where in the last constraint A is a matrix with binary values and I is a vector with all elements

equal to 1. When this constraint is satisfied, all the terminals coordinate with each other to pre-

vent collisions from happening. However, since terminals beliefs are not always perfect colli-

sion may still occur if terminals operate according to {P̃ij(h̃i), Q̃ij(h̃i)}. As a consequence, the

achieved channel capacity c̃ij for link (i, j) will be smaller than the solution c̃CA
ij . In fact, the actual

instantaneous link capacity achieved by terminals following {P̃ij(h̃i), Q̃ij(h̃i)} is given by

c̃ij(t) = Cij

(
hij(t)P̃ij(h̃i(t))

)
Q̃ij(h̃i(t))

∏

l∈Mi(j)

[
1− Q̃l(h̃l(t))

]
. (5.58)

Note that c̃ij is a function of the actual channel h and terminal i’s belief h̃i. Given c̃ij , we can find

solutions for aki , rkij and cij by solving the following optimization problem

max
xi∈Bi

∑

i∈V,k∈K
Uki
(
aki
)

(5.59)

s.t. aki ≤
∑

j∈N (i)

(
rkij − rkji

)
∀i,

∑

k∈K
rkij ≤ cij ∀(i, j),

cij ≤ Eh,h̃i
[c̃ij ] ∀(i, j).

Note that the utility and constraints associated with p̃i and P̃i, i.e., the utility of average power

consumption, the average power constraint and the channel capacity constraint, do not exist in

the problem (5.59). This is because p̃i and P̃i are obtained by solving problem (5.57). Since all the

variables appear in summands of the constraints in (5.59), they can be decomposed in the dual

domain. Given instantaneous values c̃ij(t), problem (5.59) can be solved using stochastic sub-

gradient descent in the dual domain. In summary, the proposed cognitive access algorithm for
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wireless networks is consisted of three steps: 1) Each terminal obtains lower layer variables pCA
i

and PCA
i by solving a local optimization problem (5.57); 2) The instantaneous channel capacity

c̃ij(t) is calculated by using (5.58); 3) All terminals jointly solve a global optimization problem

(5.59) and obtain upper layer variables akCA
i , rCA

ij and cCA
ij .

We now analyze the performance of the proposed cognitive access algorithm. Let the utilities

achieved by PCA
i and PFDMA

i are ŪCA and ŪFDMA, respectively. We show that the performance of

the proposed algorithm for the following two cases.

Proposition 12. If terminals have perfectly correlated belief, i.e., fh|h̃i(h) = δ(h − h̃i), the utility

achieved by PCA
i is the same as that of FDMA, i.e., ŪCA = ŪFDMA.

Proof. When terminals have perfectly correlated belief, this implies that the problem (5.57) solved

by the proposed algorithm is the same as the problem solved by FDMA. Therefore, the perfor-

mance achieved by both algorithms are identical, i.e., ŪCA = ŪFDMA.

Proposition 13. Consider sum rate utility, i.e., Uki (aki ) = aki and Vi(pi) = 0. If terminals have perfect

correlated belief about its local channel, i.e., fhi|h̃ii(hi) = δ(hi − h̃ii), and uncorrelated belief about

channels of other terminals, i.e., fhj |h̃ij (hj) = fhj (hj), the expected utility achieved by PCA
i is a fraction

of that of FDMA, i.e., ŪCA = βŪFDMA, where β ∈ [0, 1] is a constant. In particular, when channels are

symmetric, β = 1/e as the number of terminals goes to infinity.

Proof. In the first step of the proposed cognitive access algorithm, each terminal solves a local

optimization problem like (5.57). This problem has the same structure as FDMA except for the

variables are different. By following the same method used in proving Proposition (11), we can

easily show that the expected value of the channel capacity achieved by the cognitive access

algorithm is a fraction of the average channel capacity achieved by FDMA, i.e.,

E[c̃ij ] = βijc
FDMA
ij , (5.60)
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where βij is a constant between 0 and 1. Let β = min(i,j) βij , then we have

E[c̃ij ] ≥ βcFDMA
ij . (5.61)

If we replace the capacity constraint cij ≤ Eh,h̃i
[c̃ij ] in (5.59) by cij ≤ βcFDMA

ij , then the feasible

set of the problem is reduced. Since all constraints in problem (5.59) are linear, it can be easily

seen that βakFDMA
i , βrFDMA

ij and βcFDMA
ij are feasible for problem (5.59). As a result, the achieved

utility is given by Ū =
∑
i,k βa

kFDMA
i . Since akCA

i is the optimal solution, the utility achieved by

akCA
i must be greater than that achieved by βakFDMA

i , i.e.,

ŪCA ≥
∑

i,k

βakFDMA
i = βŪFDMA. (5.62)

This completes the proof.

5.3 Numerical results

Numerical tests are conducted to evaluate performance of the proposed algorithm. We assume

local channel hi follows a complex Gaussian distribution CN (0, 2) and the imperfect channel es-

timation h̃ij is modeled by (5.5). Assume capacity achieving codes are used for transmission and

the capacity function takes the form of C(hi, Pi(hi)) = log(1 + hiPi(hi)/N0) where N0 is normal-

ized noise power. Without loss of generality, we assume N0 = 1. The average power budget is

1 for all terminals, i.e. pavg
i = 1 for all i. We conducted simulations for different total number

of terminals n ∈ {10, 20, 30, 40, 50} and different correlation coefficient ρ ∈ {0, 0.1, 0.2, · · · , 1}. In

the simulation, stochastic subgradient descent algorithm [36] is used to iteratively compute the

primal and dual variables. Optimal solutions for FDMA (when ρ = 1) and RA (when ρ = 0) are

also computed.

Fig. 5.1 compares the expected sum rate achieved by optimal FDMA (when ρ = 1), optimal

RA (when ρ = 0) and the proposed algorithm (when ρ ∈ {0, 0.1, 0.2, · · · , 1}) for n = 10. When

ρ = 1 the expected utility achieved by the proposed algorithm is 1.87 which is equal to that
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Figure 5.1: Comparison of the expected sum rate utility achieved by the optimal FDMA (ρ = 1), the optimal

RA (ρ = 0) and the proposed algorithm (ρ ∈ {0, 0.1, 0.2, · · · , 1}). The total number of terminals is n = 10.
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Figure 5.2: The expected sum rate utility achieved by the proposed algorithm normalized by that achieved

by the optimal FDMA for n = 10 and n = 50. The horizontal line is 1/e ≈ 0.368.

achieved by the optimal FDMA. This corroborates the results in Proposition 10. As the correlation

ρ decreases, the performance of the proposed algorithm degrades gracefully and achieves an

expected utility of 0.72 when ρ = 0. This is very close to the expected utility achieved by the

optimal RA (0.78).

In Proposition 11, it is shown for symmetric channel the expected utility achieved by the pro-

posed algorithm for ρ = 0 is about 1/e of the utility achieved by optimal FDMA as n goes to infin-

ity. To show this is true, we normalized the expected utility achieved by the proposed algorithm

by the utility achieved by the optimal FDMA. Fig. 5.2 shows the normalized expected utility

achieved by the proposed algorithm for n = 10 and n = 50. The horizontal line is 1/e ≈ 0.368.

Indeed, for n = 50 the normalized utility converges to 1/e when ρ = 0. Moreover, notice that

the normalized utility decreases as n increases. This is because when n increases the imperfect

channel estimation is more likely to cause collisions.
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Figure 5.3: The expected sum rate utility achieved by the proposed algorithm for different ρ. For all cases,

the expected utility increases as the total number of terminals grows.
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Table 5.1: β for channels with different asymmetry levels.

a 0.500 1.581 5.000 15.811 50.000 158.114 500.000

ŪCA 0.527 0.837 1.250 1.689 2.107 2.561 2.950

ŪFDMA 1.358 2.119 3.245 4.303 5.423 6.614 7.801

β 0.388 0.395 0.385 0.393 0.389 0.387 0.378

For both FDMA and RA, it is well known that by adapting transmission power to random

channel states multiuser diversity can be obtained, i.e., the expected sum rate utility increases as

the number of terminals grows. This is also true for the proposed algorithm. Fig. 5.3 shows the

expected utility achieved by the proposed algorithm for different ρ. As we can see, as n increases

the system utility increases.

When terminals have uncorrelated beliefs about other channels, we proved that the expected

utility achieved by the algorithm is a fraction of that of FDMA, i.e., ŪCA = βŪFDMA, where β

approaches 1/e when channels are symmetric (see Proposition 6 and 11). It is interesting to see

how β changes when the channels are asymmetric. To do so, we conduct a set of simulations

where channels have different levels of asymmetry. We assume the total number of terminals

n = 30 and all the channels follow exponential distributions. The expected values of the channels

are drawn from a uniform distribution [0, 2a] where the parameter a controls the asymmetry of

the channels. Table 5.1 shows the average utility achieved by the proposed algorithm and FDMA

for different a. As we can see, the resultant β does not change much as a changes.

For the case of wireless network, we run simulations in a network with connectivity graph

the same as Fig. 3.4. All the settings are the same as the simulation conducted in Chapter 3.

We compared the average sum utility of the network achieved by the proposed cognitive access

algorithm with the optimal FDMA and the RA proposed in Chapter 3. As we can see, when the

correlation is perfect , the performance of the proposed algorithm is the same as the one achieved
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Figure 5.4: Comparison of the average sum rate utility of the network achieved by the optimal FDMA

(ρ = 1), the RA (ρ = 0) and the proposed algorithm (ρ ∈ {0, 0.1, 0.2, · · · , 1}). The network connectivity

graph is the same as the one shown in Fig. 3.4.

by the optimal FDMA. As correlation decreases, the performance of the proposed algorithm de-

grades gracefully and achieves similar utility as the distributed algorithm proposed in Chapter 3

as ρ goes to zero.

5.4 Summary

We considered algorithms that adapts transmission policy to the random channel states in multi-

ple access fading channels where each terminal has a different belief about the channel states. In

this setting, we formulated the problem as a Bayesian game in which each terminal maximizes

the expected utility based on its belief subject to an average power constraint. We showed that

optimal solutions for both FDMA and RA are Bayesian Nash Equilibrium (BNE) points of the
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formulated game. Therefore, the proposed game theoretic formulation can be regarded as gen-

eral framework for multiple access channels. Moreover, a cognitive algorithm is developed to

solve the problem approximately. Numerical results show that the proposed algorithm achieves

performance equal to as the optimal FDMA when the channel estimation is perfectly correlated

and performance very close to the optimal RA when channel estimation is uncorrelated.
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