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ABSTRACT
INVERSION OF THE STAR TRANSFORM

Fan Zhao
Vadim A. Markel

We define the star transform as a generalization of the broken ray transform

for image reconstruction in single scattering tomography. Using the star trans-

form provides advantages including possibility to reconstruct the absorption and

the scattering coefficients of the medium separately and simultaneously. We de-

rive the star transform from physical principles, and derive several computationally

efficient algorithms for its inversion. We discuss mathematical properties and an-

alyze numerical stability of inversion, and obtain necessary conditions for stable

reconstruction. An approach combining scattered rays and ballistic rays to improve

reconstruction is provided, and total variation and L1 regularization are utilized

to remove noise. Numerical experiments are carried out to test the algorithms of

inversion, the possibility to recover the absorption and the scattering coefficients,

and the effect of different regularizations.
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Chapter 1

Introduction

In medical imaging, absorption and scattering are two major factors that affect

the data. Different models that describe the propagation of photons are developed

during last decades. Models need to be carefully chosen according to the problem.

The problem is usually described by its scale compared to the mean free path of

the photons [30].

The most widely and successfully used technology is computerized tomogra-

phy (CT). CT reconstructs the attenuation in the medium that X-rays penetrate

through, to provide tomographic images. In CT, scattering is neglected in the

model, therefore the propagation of photons is described as straight lines. Mathe-

matically, the projection data of CT are line integrals in 2-D plane. The reconstruc-

tion procedure can be considered as inversion of an integral transform consisting of

the integrals of a function over straight lines. The transform is known as Radon
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transform.

CT can provide high-contrast images with speed and accuracy, but it also has its

limitations. One main limitation of conventional CT is that it can not be applied to

low-absorption high-scattering medium. Even in low-scattering medium, artifacts

caused by scattering affect the image of CT. Therefore, techniques are needed to

remove artifacts from the reconstruction [18]. Moreover, CT requires 180 degrees of

data collection, due to the requirement of inverting Radon transform, which limits

the size of the examined object. One more issue of concern is the radiation dose [15].

CT is regarded as a moderate- to high-radiation technique, which might increase

risk, especially when repeated tests are needed.

For higher scattering medium, models with scattering need to be taken into

account. A mathematical model for describing photon propagation with scattering

is radiative transfer equation (RTE). In RTE, radiance is defined as energy flow per

unit normal area per unit solid angle per unit time. Green’s function is essential for

analytically solving RTE, but the solution can only be obtained for simple cases.

Frameworks for solving RTE is given for different geometries [1, 5, 11,23,24,32]. In

tomography, we need to solve inverse radiative transfer problem. Inverse source

problems and inverse boundary-condition problems with RTE are studied in [10,

33]. Solving the equation numerically is computational expensive, because radiance

depends on position, direction and time, which contains six different independent

variables. The problem would be six-dimensional for three-dimensional tomography.
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For strong scattering medium, a widely used approximation for RTE is diffu-

sion approximation. A modality of medical imaging that has been developed is

diffusion optical tomography (DOT), which utilize visible light as source instead

of X-ray. It is applicable to breast imaging, and can be used to monitor brain

function and pathological changes [4, 9, 16]. In diffusion approximation, the prop-

agation of light can be described with a photon diffusion equation. However, the

diffusion approximation can only be applied to medium where scattering coefficient

is much larger than absorption coefficient, It’s not applicable near the source or

surface, with highly directed light, or in biological tissue that scatters light strongly

in forward direction. In these situations, more complicated approximation may be

required. Moreover, the inverse problem to the diffusion equation is ill-posed due

to the physics of the propagation.

Reconstruction on diffusion approximation for highly absorbing media with col-

limated sources are studied in [34, 38]. A generalized model is provided for both

steady-state and frequency-domain, which is suggested to give accurate solution

to both low and high scattering media, and also have the capacity to predict the

transition from the highly anisotropic light distribution near the collimated light

source to the isotropic light distribution in the far field. Therefore, it may be ap-

plicable to turbid medium with high absorption, and medium close to the source.

These studies suggest that generalized methods may be able to overcome some of

the limitations of diffusion approximation.
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Another approach in DOT is higher-order approximation. PN approximation

is one of these techniques. In PN approximation, RTE is expended into spherical

harmonics and truncated at order N . When N = 1, P1 approximation gives us the

photon diffusion equation in diffusion approximation. Higher order approximation

models the anisotropy in the radiation more accurately [3, 19–21]. In application,

High-order equation is suggested to be able to applied to regions, such as cere-

brospinal fluid (CSF), which the first-order equation fails to describe, and it’s also

suggested to provide possibility to prevent the ill-posedness in solving the parabolic

equation in first-order approximation [21].

Coupled model combining RTE and diffusion approximation is proposed to over-

come the limitations when utilizing the two approaches alone [35,36]. In this model,

RTE is used in domains that assumption of diffusion is invalid, including proximity

of the source and boundary, and diffusion approximation is used elsewhere. Nu-

merical results are obtained with finite element method, and show that the coupled

model describes photon migration in low-scattering and non-scattering medium bet-

ter than only using diffusion approximation.

The model describing scattering in this thesis is on another direction from radia-

tive transfer. We focus on a weak scattering medium, and makes a single scattering

assumption. The medium should has less scattering than that for diffusion ap-

proximation and RTE, and has more scattering than that for CT. This assumption

leads to single scattering tomography (SSOT), that overcomes some limitations of
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conventional CT. It introduces new geometries that avoid the restriction of object

size, and also provides opportunity to recover scattering and absorption coefficients

of the medium.

Theoretically, in SSOT, Radon transform can be generalized to circle [7] parabo-

las [25], and also to a more general class of curves [8]. Compton scattering tomog-

raphy is designed to recover the local Compton-scattering cross section. The ray

is emitted and collected from one side of the object. This geometry does not re-

quire 180o access as required in CT, therefore it has the potential to utilize it for

internal structure of large objects. In this modality, attenuation due to absorption

is neglected and the measurements are related to the weighted integrals of elec-

tron density along circular arcs. An analytical solution to the inverse problem is

provided, which is analogous to the convolution backprojection algorithm used in

conventional CT [28]. A more general family of circular-arc Radon (CAR) trans-

forms is defined in [27]. The inversion of CAR is presented, which is described as

rapid and restricted to an adjustable reduced volume in order to meet the need

for imaging of smaller objects in non-destructive industrial testing, as well as in

medical imaging.

Here, instead of circles or other smooth curves, we are interested in a class of

more simple curves : piecewise line segments. In [37], three types of V-line trans-

forms are defined on a curve formed by a pair of half-lines forming the vertical letter

V. An analytical inversion is derived by Fourier transform. Filtered backprojection
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reconstruction algorithm is also provided for the V-line transform [26].

In [12], broken-ray Radon (BRT) transform is derived by single scattering ap-

proximation to the radiative transport equation (RTE) for known scattering coef-

ficient. BRT is defined on curves formed by a pair of half-line segments. BRT can

be considered as a generalization of V-line transform, but it does not require the

half-line segments to be symmetrical about vertical axis. The inverse problem can

be solved by discretizing the integral equations. Numerical experiment shows that

the inverse problem is only mild ill-posed. An analytical inversion formula involving

second order derivatives is derived in [14], which is analogous to filtered backpro-

jection formula. In [14], a method for separate reconstructions of absorption and

scattering coefficients is suggested. Numerical result shows that image quality is

relatively low for discontinuous attenuation coefficient, which also confirms the mild

ill-posedness of inverting broken-ray Radon transform.

Approaches to invert BRT through only first order derivatives are developed

recently. Using the measurement of three detectors and only one source, recon-

struction could be done by a method that involves only first order derivatives of

the data. This method is local and does not require a complete data set, so that

it provides more freedom in source-detector arrangement. The range of the BRT is

also described [22].

In this research, we further develop the methods of [12–14]. We focus on the

geometry of an open strip wherein angularly-resolved sources and detectors are em-

6



ployed but no energy resolution or sensitivity is assumed. We also assume scattering

occurs in the entire domain therefore the complete data can be collected. In [12],

reconstruction for BRT of a single broken-ray is studied. However, the problem is

ill-posed and reconstruction without regularization is unstable, therefore high level

regularization is needed for that method.

In this thesis, we define star transform that includes more than one broken-

rays, which will be discussed further in the next chapter. Analysis shows that it

introduces a less ill-posed inverse problem. Numerical experiments also suggest that

the reconstruction is more stable than the one with only one broken-ray. Recovering

scattering and absorption coefficients simultaneously is also studied in this thesis.

The reconstruction is theoretically feasible and the numerical experiments also show

stable results. Experiments with more realistic simulated data are needed for future

research.

However, the results in our numerical experiments are susceptible to noise. In

order to have better results, we can include data of the ballistic rays, which can be

collected simultaneously when the scattered data is measured. Without scattering,

data of ballistic ray is supposed to have higher intensity and have less noise, therefore

we expect the additional data provided by ballistic rays can help reduce the effect

of the noise from the data of scattering rays.

The techniques of SSOT mentioned before do not involve ballistic ray in the

models. Including ballistic ray introduces a new generalized model of SSOT, which

7



provides opportunity to apply SSOT for medium with lower scattering. CT requires

180o projection data of ballistic rays to perform reconstruction, but a full collection

of ballistic data may be impossible in SSOT models. However, with the limited

ballistic data we are able to collect, we can find reconstruction of SSOT that is

consistent with it, without significant change to the image reconstruction procedure.

In this thesis, we derive an algorithm in Fourier domain to find the reconstruction

consistent with the ballistic data, by only a minor adjustment to the inversion

algorithm for star transform. We expect including ballistic ray to be an effective

improvement to our model.

Other approaches to improve the image quality is utilizing different regulariza-

tions. Tikhonov regularization is added during the procedure of reconstruction to

overcome the ill-posedness of the inverse problem, but it does not provide good im-

age when noise level is high. We present algorithms to implement the total variation

regularization and L1 regularization. These two regularizations can help remove the

noise while preserving the shape of the image.

8



Chapter 2

The problem

2.1 Geometry

In single scattering tomography, image reconstruction can be performed for 3-D

medium by reconstructing 2-D images slice by slice. In each slice, the problem is

reduced to a 2-D problem. Therefore, in this thesis we only focus on the problem of

2-D reconstruction. Suppose the domain for imaging is a 2-D slice of a 3-D medium

with X = const. The geometry of this slice is an open strip S = {0 < z < L} as

shown in Figure 2.1, which is assumed to be infinitely long in direction of Y -axis.

In contrast to conventional CT, which assume that no scattering occurs, we as-

sume that the majority of incident photons undergo single scattering in the medium.

To be specific, we require the width L of the strip along the Z-direction to match

the scattering property of the medium, µsL = O(1) (µs is scattering coefficient).
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The reconstruction is designed based on this assumption.

Suppose a photon incident from one side of the strip undergoes a single scattering

and its direction changes. The propagation trajectory is a broken line. The power

of the incident ray attenuates along the trajectory, which is caused by two major

factors : absorption and scattering. The strength of absorption and scattering at

location R is described by absorption coefficient µa(R) and scattering coefficient

µs(R). These two coefficients vary inside the medium, so they can be considered as

two non-negative functions spatially distributed on S. The attenuation coefficient

is the sum of the previous two :

µ(R) = µa(R) + µs(R) . (2.1.1)

We will focus on reconstructing function µ(R) first, and recover µa(R) and µs(R)

in the next step.

The data for this problem is obtained in the following way: sources that emit

photons are aligned on one side of the strip. On the other side of the strip, we have

angularly fixed collimated detectors, which only collect signals of rays with certain

outgoing directions. Suppose a photon is sent into the medium at the location Y1

with direction û1, and it’s received at location Y2 with direction û2. Each pair of

(Y1, Y2) determines a broken line as shown in Figure 2.2. The vertex of the broken

line, R = (y, z), is where scattering occurs. Suppose the directions û1 and û2 are

fixed, the data can be considered as a function of (Y1, Y2). For û1 = (u1y, u1z),

10



û2 = (u2y, u2z), R = (Y, Z), the coordinates of R and (Y1, Y2) have the following

relation,

Y1 = Y − u1y
u1z

Z , Y2 = Y − u2y
u2z

(L− Z) . (2.1.2)

Therefore, the data can also be considered as a function of R. We denote the data

collected at Y2 by W (R). The goal of single scattering tomography is to recover

µ from W . We assume that scattering coefficient is strictly positive everywhere in

the medium: µs(R) > µ̄s > 0 for every R ∈ S̄. In order to have W (R) exist on

the entire domain S, it is important to have this assumption. Otherwise, W (R)

does not exist because no scattering occurs at R. Here µ̄s is a positive constant

indicates the scattering strength on the background. This assumption also implies

that µ(R) > µ̄s > 0 in S. W0 and W have the following relation,

W (R) = W0S12µs(R) exp {− [I1(R) + I2(R)]} , (2.1.3a)

Ik(R) =

∫ `k(R)

0

µ (R + ûk`) d` , k = 1, 2 . (2.1.3b)

Here `k(R) is the value that R + ûk`k(R) = 0, or L, depending on the sign of ukz.

S12 is the phase function describing the geometry, which only depends on û1 and

û2. It’s determined when the directions are fixed. W0 and S12 are both assumed to

be known constants. We define the signal function Φ by taking logarithm of W ,

Φ(R) = − log

(
W (R)

W0S12µ̄s

)
= I1(R) + I2(R)− log [µs(R)/µ̄s] . (2.1.4)

11



Φ(R) is the integral of µ along a broken line, plus a term involving scattering

coefficient µs(R). If µs is a known constant in the medium, Φ(R) only involves

integral of µ. However, when µs is not constant, the problem involves both functions

µ and µs. We’d like first remove µs from (2.1.4), so we can turn the problem into an

inverse integral problem for µ. The method to remove µs is to utilize more signals.

Suppose we have K fixed vectors ûk, k = 1, . . . , K. Each vector can be an

incident direction or an outgoing direction of the rays, or both. Each pair of them

defines a collection of data, so we totally have K(K − 1)/2 data: Wij, i, j = 1, . . . ,

K, i 6= j. Wij is the data corresponding to ûi and ûj. Figure 2.2 (a) shows the case

for K = 3. The signal function introduced by Wij(R) is:

Φij(R) = − log

(
Wij(R)

W0Sijµ̄s

)
= Ii(R) + Ij(R)− log [µs(R)/µ̄s] . (2.1.5)

All signal functions have three terms, the first two of them are line integrals

of µ. The third term which contains µs(R) is shared by all signal functions. This

term can be canceled by adding up these functions with weighted factors. We

choose coefficients cij, i, j = 1, . . . , K, i 6= j, such that
∑

i 6=j cij = 0, and define

coefficients si =
∑

j 6=i cij. Adding up the signal functions Φij multiplied by cij, it

12



gives us a system of equations without scattering coefficient involved :

Φ(R) =
∑
i,j

cijΦij(R)

=
∑
i,j

cij [Ii(R) + Ij(R)− log (µs(R)/µ̄s)]

=
∑
i

∑
j 6=i

cijIi(R)−
∑
i 6=j

cij log (µs(R)/µ̄s)

=
K∑
i=1

siIi(R) .

(2.1.6)

We define (2.1.6) to be star transform with K branches:

Φ(R) =
K∑
i=1

siIi(R) , Ik(R) =

∫ `k(R)

0

µ (R + ûk`) d` . (2.1.7)

The star transform can be well defined for function in L1(S). In the next chapter,

we will present methods to invert star transform.

13



Figure 2.1: A broken line incident at Y1 in û1, scattering at R, outgoing at Y2 in
û2.

2û1û

( , )Y Z R

ZL0

Y

3û

0! "

1(Z) 
1Y 2Y

3Y

0!  ZL0

Y

R

(a) (b)

Figure 2.2: (a) Sketch of the imaging geometry for the case N = 3 (the distances `2
and `3 are not shown). (b) Imaging geometry in which simultaneous measurements
of the ballistic and single-scattered rays (due to the same source) are utilized.
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Chapter 3

Inversion of the star transform

In this chapter, we turn to the problem of inverting star transform. An simple idea

to find the inverse is discretizing the transform. However, attenuation coefficient and

the signal function are both 2-D functions, so the computation complexity would be

large. Suppose the domain is discretized into N ×N grid, the problem would have

N2 equations of size N2. This will be infeasible in numerical aspect. Moreover, it’s

difficult to analyze the stability and add regularization in that approach. In this

thesis, we will present an approach to find the inverse in Fourier domain.

3.1 The star transform in Fourier domain

We assume that attenuation coefficient µ inside the medium is compactly sup-

ported, so Fourier transforms of Φ and µ are well defined. First, we introduce some

notations:

15



Fourier transform: F : S (S)→ S (S) (3.1.1a)

Inverse Fourier transform: F−1 : S (S)→ S (S) (3.1.1b)

Star transform: F : L1(S)→ L1(S) (3.1.1c)

Here S (S) is the Schwarz space on S, which is a subspace of L1(S). The recon-

struction procedure is

Φ
F−−−−−−→ Φn(q)

Inverse problem in Fourier domian−−−−−−−−−−−−−−−−−−−−→ µn(q)
F−1

−−−−−−−→ µ .

We first compute Fourier transform of Φ and then solve the inverse problem in

Fourier domain. Finally, taking inverse transform gives us the attenuation coeffi-

cient µ. The Fourier transform is defined as

µ(y, z) =

∫ ∞
−∞

dq

2π
eiqyµ̃(q, z) =

∫ ∞
−∞

dq

2π
eiqy

1

L

∞∑
n=−∞

µn(q)eiκnz , (3.1.2a)

µn(q) =

∫ ∞
−∞

dye−iqy
∫ L

0

dze−iκnzµ(y, z) , (3.1.2b)

κn =
2πn

L
. (3.1.2c)

In (3.1.2), q is the Fourier parameter corresponding to y, and κn is the parameter

corresponding to z. Notice that the domain S is bounded in Z-direction and is
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unbounded in Y -direction, this is the reason that the definition of our Fourier

transform differs in Y and Z directions. To find the relation between Φn(q) and

µn(q), we start by taking Fourier transform (2.1.7) with respect to Y :

Φ̃(q, Z) =
K∑
k=1

sk

∫ `k(Z)

0

d`

∫ ∞
−∞

µ(Y + uky`, Z + ukz`)e
iqY dY

=
K∑
k=1

sk

∫ `k(Z)

0

e−iquky`µ̃(q, Z + ukz`)d`

=
K∑
k=1

sk
ukz

e−iβk(q)Z
∫ ξk

Z

eiβk(q)zµ̃(q, z)dz

=
K∑
k=1

sk
ukz

e−iβk(q)Z
∫ ξk

Z

eiβk(q)z
∑
m

µm(q)eiκmzdz

=
K∑
k=1

sk
ukz

e−iβk(q)Z
∞∑

n=−∞

ei[βk(q)+κn]ξk − ei[βk(q)+κn]Z

i[βk(q) + κn]
µn(q) . (3.1.3)

In the above derivation, we have used the fact that the upper limit of integration

over `, `k(Z), is independent of Y . The notations in (3.1.3) are defined as

βk(q) = q
uky
ukz

, ξk =


L , if ukz > 0

0 , if ukz < 0

. (3.1.4)

Here ξk is the Z-coordinate of the k-th ray intersection with the boundary of S. Since

we assume that all rays intersect the strip boundaries, the quantities in (3.1.4) are

well defined. We also have that exp(iξkκn) = 1 for all k.

To shorten the notations, we will omit the parameter q in (3.1.3) below by

writing βk, µn instead of βk(q), µn(q). We then fix q and take Fourier transform
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of (3.1.3) with respect to Z, which results in the following infinite system of linear

equations:

Φn = µn

K∑
k=1

isk
ukz(βk + κn)

+
K∑
k=1

ske
iβkξk

(
e−iβkL − 1

)
Lukz(βk + κn)

∞∑
m=−∞

µm
βk + κm

. (3.1.5)

Introducing notations

dn =
K∑
k=1

isk
ukz(βk + κn)

=
K∑
k=1

isk
ûk · (q, κn)

, αk =
eiβkξk

(
e−iβkL − 1

)
Lukz

, (3.1.6)

we can rewrite (3.1.5) in the form

Φn = dnµn +
K∑
k=1

skαk
βk + κn

∞∑
m=−∞

µm
βk + κm

. (3.1.7)

Furthermore, (3.1.7) can also be written in matrix form:

Ax = Dx +
K∑
k=1

αkaka
∗
kx = Φ . (3.1.8)
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The matrices and vectors are defined as

A = D +
K∑
k=1

αkaka
∗
k , (3.1.9a)

D =


. . . ∑K

k=1
isk

ukz(βk+κn)

. . .

 , (3.1.9b)

ak =

(
· · · 1

βk + κn
· · ·
)T

, (3.1.9c)

Φ = (· · · Φn · · · )T . (3.1.9d)

Matrix A is a diagonal matrix D with K separable terms (Rank-1 matrix). We

can use this feature to find specific algorithm for inversion of A, with advantages

in effectiveness and stability.

3.2 Direct inversion

As defined in (3.1.7), each equation has infinitely many terms. Theoretically, an

inversion algorithm for (3.1.7) exists. We assume D in equation (3.1.8) to be in-

vertible. Multiplying the equation from left by aj
∗D−1, gives us

yj +
K∑
k=1

Mjkyk = zj , j = 1, . . . , K , (3.2.1)
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where yj, Mjk and zj are defined as

yj = aj
∗x , Mjk = αkaj

∗D−1ak , zj = aj
∗D−1Φ . (3.2.2)

Although (3.1.7) has infinitely many equations and unknowns, (3.2.1) has only K

equations with K unknowns. Suppose variables in (3.2.2) are well defined, the

system of equations is of a small size K, which can be easily solved. Then the

solution x can be computed by

x = D−1Φ−
K∑
k=1

αkykD
−1ak . (3.2.3)

D is a diagonal matrix, (3.2.3) can be computed entry by entry. To be more specific,

the nth entry in (3.2.3) is

xn = dn
−1Φn −

K∑
k=1

αkykdn
−1akn . (3.2.4)

One issue needed to be discussed before using (3.2.3) is whether variables in

(3.2.2) are well defined. The variables are defined as sum of infinitely terms, so we

need to guarantee those sums converge. Let’s first consider Mjk,

Mjk = αk

∞∑
n=−∞

1

dn(βj + κn)(βk + κn)
. (3.2.5)

We will expend the terms into Taylor series with respect to κn
−1. For n 6= 0,
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1

βj + κn
can be expended as

1

βj + κn
= κn

−1(βj/κn + 1)−1

= κn
−1 [1− βjκn−1 + βj

2κn
−2 +O(κn

−3)
]

= κn
−1 − βjκn−2 + βj

2κn
−3 +O(κn

−4) .

(3.2.6)

Then the following functions can also be expended into series with respect to κn
−1,

1

(βj + κn)(βk + κn)
= κn

−2 − (βj + βk)κn
−3 +O(κn

−4) , (3.2.7a)

dn = t1κn
−1 − t2κn−2 +O(κn

−3) , (3.2.7b)

dn
−1 = t1

−1κn + t1
−2t2 +O(κn

−1) , (3.2.7c)

where the notations are

t1 =
K∑
k=1

isk/ukz , t2 =
K∑
k=1

iskβk/ukz .

Therefore, taking into account that κn = −κ−n = 2πn/L, the terms in (3.2.5) with
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odd n are canceled. t1, t2 are independent with n, so

Mjk =
1

βjβkd0
+
∑

n6=0 {t1κn−1 + [t1
−2t2 − t1(βj + βk)]κn

−2 +O(κn
−3)}

=
1

βjβkd0
+
∑∞

n=1 {[t1−2t2 − t1(βj + βk)]κn
−2 +O(κn

−4)} .

(3.2.8)

κn ∼ O(n), so the sum in (3.2.8) converges. Mjk are well defined. Next we turn to

zj = aj
∗D−1Φ. Using the result in (3.2.7), the nth entry of aj

∗D−1 is

(
aj
∗D−1

)
n

= t1
−1 +O(κn

−1) . (3.2.9)

(aj
∗D−1)n is bounded. Φ is the Fourier coefficients of signal function, so

∑
n Φn <

∞. Therefore zj = aj
∗D−1Φ < ∞ is also well defined. In this section we have

presented a direct method that is theoretically applicable for even infinite system.

In practice, we need to truncate the Fourier series to have a finite system. In the

next section, we will talk about an approach to compute the numerical inverse of

A with truncation, which is used in the simulation chapter in this thesis.

3.3 Inversion of star transform in Fourier domain

In this section, we will introduce an iterative method to compute the inverse of

(3.1.7). Here we assume the data is discretized on a N ×N grid. Then the matrix

A is N × N , and the vectors in (3.1.9) are N × 1. Before considering inverting

(3.1.7), we first start with inverting a matrix that contains only one separable term.
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Let this matrix A be

A = D + ba∗ . (3.3.1)

D is a N×N diagonal matrix, a and b are both N×1 vectors. The inversion formula

is derived from Sherman-Morrison formula. We first assume D to be invertible, to

be specific, all diagonal entries of D are not zero. We also assume D to be nonzero,

which is defined as

D = 1 + a∗D−1b . (3.3.2)

When the two assumptions hold, the inversion formula is given by

T = D−1ba∗ , A−1 = D−1 −D−1TD−1 . (3.3.3)

Requiring |D | > 0 is essential because the determinant of A is given by

|A| = D |D| = D
N∏
n=1

dn . (3.3.4)

So the two assumptions above are actually equivalent to A is invertible. When

utilizing this formula in numerical computation, a small singular value of D or a

small |D | can lead to unstable result. Therefore, we need more strict conditions.

We require |D | > σ, where σ > 0 is some pre-selected small constant. Formula

(3.3.3) is only applicable to invertible A, but in some case even A is not invertible,

we can still get a inversion formula. Suppose D has only one small singular value
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ε, the inverse of D is

D−1 = Dreg
−1 +

1

ε
vw∗ , v∗Dreg = Dregw = 0 . (3.3.5)

v and w are the singular vectors corresponding to singular value 1/ε in the singular

value decomposition (SVD) of D−1. Plugging (3.3.5) to (3.3.3), and taking ε → 0,

it gives us a formula for inverting A,

A−1 = Dreg +
Dreg

a∗vb∗w
vw∗ − 1

a∗v
va∗Dreg

−1 −Dreg
−1bw∗

1

w∗b
, (3.3.6a)

Dreg = 1 + a∗Dreg
−1b . (3.3.6b)

We can use (3.3.3) when D is invertible, or (3.3.6) when it has a small singular

value. In both cases, the inversion for matrix with one separable term is simple to

compute. Notice that (3.3.3) and (3.3.6) only involve the inverse of D, so they are

applicable as long as we know the inverse of D, even D is not diagonal.

We can generalize this algorithm for the matrix with K separable terms, by

repeating (3.3.3). Suppose we have a matrix

A = D +
K∑
i=1

biai
∗ . (3.3.7)

Here D is also a diagonal matrix and ai, bi are vectors in CN . Compared with

24



(3.1.8), we have bi = αiai. We will introduce more notations. Let Ak be the

matrix with the first k separable terms, k ≤ K,

Ak = D +
k∑
i=1

biai
∗ , k = 0, · · · , K . (3.3.8)

The two special cases are A0 = D and AK = A. We start with inverting A0

and iteratively calculate the inverse of Ak for k = 1, 2 , . . . , K. When Ak
−1 is

obtained, we use (3.3.3) to compute the inverse of Ak+1. This is a direct method,

because we are guaranteed to find the inverse of A when the algorithm terminates

after K steps. The iteration in detail is

• First iteration step. Assume that D has no small singular value or only one

small singular value, otherwise the algorithm is not applicable. Then start

with A0 = D and consider the first step of iteration, A1 = A0 + b1a1
∗.

• Iteration step. Assume that A−1k is obtained for some k < K. Compute the

determinant

Dk = 1 + ak+1
∗Ak

−1bk+1. (3.3.9)

If |Dk| < σ, where σ is a pre-selected small constant, iteration is theoretically

feasible, but numerically unstable. Otherwise, compute the k-th update of

the matrix according to

Tk = D−1k bk+1ak+1
∗. (3.3.10)
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Next, compute Ak+1
−1 according to

A−1k+1 = A−1k −A−1k TkA
−1
k , (3.3.11)

and move to the next iteration step.

• Termination. The procedure is terminated after K iterations and converges

to A−1 = AK
−1 as long as all determinants Dk (k = 1, 2, . . . , K − 1) satisfy

the condition |Dk| > σ.

For this algorithm to be feasible, we assume that all |Dk| > 0. Similar to the case for

K = 1, |Dk| > 0 is equivalent to Ak is invertible. Therefore we have a more strict

requirement for A: not only A needs to be invertible but also all the intermediate

Ak.

3.4 The special case for q = 0

In the last section, we omit a fact: when q = 0, all βk in (3.1.4) are zero, so D,

bk, ak are not well defined because all entries with q = 0 are infinite. Therefore we

need to consider the inversion for the special case q = 0 separately. We start with
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the derivation of (3.1.3). The equations that we obtain are different from (3.1.7),

Φ̃(0, Z) =
K∑
k=1

sk

∫ `k(Z)

0

d`

∫ ∞
−∞

µ(Y + uky`, Z + ukz`)dY

=
K∑
k=1

sk

∫ `k(Z)

0

µ̃(0, Z + ukz`)d`

=
K∑
k=1

sk
ukz

∫ ξk

Z

µ̃(0, z)dz

=
K∑
k=1

sk
ukz

(∑
n6=0

1− eiκnZ

iκn
µn(0) + (ξn − Z)µ0(0)

)
. (3.4.1)

Applying Fourier transform with respect to Z to Φ̃(0, Z), and taking eiκnL = 1 into

account, equation (3.1.7) becomes

Φn = iΣ1
µn − µ0

κn
, n 6= 0 , (3.4.2a)

Φ0 =
LΣ0

2
µ0 − i

∑
m 6=0

Σ1

κm
µm , (3.4.2b)

where the constants Σ0 and Σ1 are

Σ0 =
K∑
k=1

sk
|ukz|

, Σ1 =
K∑
k=1

sk
ukz

. (3.4.3)

27



(3.4.2) is much simpler than (3.1.7). Suppose |Σ0| > 0 and |Σ1| > 0, (3.4.2) can be

solved with

µ0 =
2

LΣ0

∑
m

Φm , (3.4.4a)

µn = µ0 − i
κnΦn

Σ1

. (3.4.4b)

This algorithm is not only applicable for truncated equations, but also for the direct

method with infinite system of equations. In the later one, the term
∑

m Φm equals

to Φ̃(0, 0). The value of Σ0 and Σ1 depend on the directions of ûk and the coefficients

sk. We need to prevent them to be too small when choosing ûk.

3.5 Pseudo-inverse of star transform in Fourier

domain

In the last section, we have discussed an algorithm for inverting (3.1.7). The algo-

rithm works when Ak are invertible and Dk are not too small, for k = 1, 2 , . . . , K.

However, for star transform we are not guaranteed to have them hold. When the

requirements are not met, we still want to reconstruct µ. We can compute the

pseudo inverse and add regularization. The pseudo inverse of a matrix A is defined

as

A† = (A∗A + λI)−1A∗ . (3.5.1)
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Pseudo inverse of a matrix is widely used in solving linear least-square problem,

or finding the minimum norm solution to s linear system. For pseudo inverse, we

don’t need A to be invertible or even square. Here λ is the regularization parameter.

When A is invertible and λ→ 0, the pseudo inverse converges to the inverse A−1,

so pseudo inverse is an extension of conventional inverse. A†x is the minimizer of

the optimization problem

min
x
‖Ax−Φ‖2 + λ‖x‖2 . (3.5.2)

For single scattering tomography, we assume that the number of detectors is no less

than the image resolution, so we have on less equations than unknowns. It means

that the matrix has more rows than columns. For a N ×M matrix A (N ≥ M),

we define two matrices to help compute pseudo-inverse. One is of size N ×N and

the other is M ×M . The two matrices are defined as

SN = (AA∗ + λIN)−1 , (3.5.3a)

SM = (A∗A + λIM)−1 . (3.5.3b)

Here IN and IM are the identity matrices of the size N×N and M×M respectively.

SN and SM are well defined when λ > 0. Then the pseudo inverse of A is given by

A† = SMA∗ = A∗SN . We will introduce an algorithm similar to the one in Section

3.3. In contrast to the previous one, we need to update both SN and SM in each
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step. We first introduce some notations:

SN,k = (AkA
∗
k + λIN)−1 , (3.5.4a)

SM,k = (A∗kAk + λIM)−1 . (3.5.4b)

These matrices correspond to the pseudo inverse of Ak defined in (3.3.8). The

iteration starts with computing SN,0 and SM,0. For λ > 0, even D is singular, SN,0

and SN,0 are well defined. In the case of Star transform, SN,0 and SM,0 are diagonal

matrices with the diagonal entries

sm =
1

|dm|2 + λ
, m = 1 , 2 , · · · , M . (3.5.5)

In the case N > M , the matrix SN,0 has sm as the first M diagonal entries and

1/λ2 as the last N −M entries, while SM,0 is the M ×M minor of SN,0. Compared

to the case in computing inverse in Section 3.3, we also need two matrices TN,k and

TM,k, instead of only one Tk. The main iteration step is

SN,k+1 = SN,k − SN,kTN,kSN,k , (3.5.6a)

SM,k+1 = SM,k − SM,kTM,kSM,k , (3.5.6b)

Ak+1
† = Ak+1

∗SN,k+1 = SM,k+1Ak+1
∗ . (3.5.6c)
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Here TN,k and TM,k are updated with

TM,k =
1

Dk

[
γkak+1bk+1

∗Ak + H.c.

+ λ2Qkak+1ak+1
∗ − PkAk

∗bk+1bk+1
∗Ak

]
, (3.5.7a)

TN,k =
1

Dk

[
γkAkak+1bk+1

∗ + H.c.

+ λ2Pkbk+1bk+1
∗ −QkAkak+1ak+1

∗Ak
∗
]
, (3.5.7b)

where ”H.c.” stands for Hermitian conjugate of the preceding term and

γk = 1 + ak+1
∗Ak

†bk+1 , (3.5.8a)

Pk = ak+1
∗SM,kak+1 > 0 , Qk = bk+1

∗SN,kbk+1 > 0 , (3.5.8b)

Dk = |γk|2 + λ2PkQk > 0 . (3.5.8c)

Here ak is M × 1 vector and bk is N × 1 vector. This iteration terminates when

k = K, and A† = ASN,K = SM,KA. Computing the pseudo inverse is more

complicated than computing the inverse. The basic requirement is Dk > 0. The

analysis of complexity and stability is needed to be studied carefully and it will be

discussed in the next chapter.
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Chapter 4

Analysis of the algorithms

4.1 Computational complexity

One advantage of the two algorithms in the last chapter is computational effec-

tiveness. Suppose the domain S is discretized into a N × N grid. For each sys-

tem of equations in form (3.1.7), the size of A is N × N . When computing the

inverse A−1, using the algorithm mentioned above is faster than Gaussian Elimi-

nation, which takes only O(N3) computation. The first iteration step is computing

A0
−1, which is simple because A0 = D is a diagonal matrix. When updating

Ak+1
−1 according to (3.3.11), we don’t compute the product of Ak

−1TkAk
−1 di-

rectly. We first compute Ak
−1bk+1 and Ak

−1ak+1, then compute Ak
−1TkAk

−1 =

D−1(Ak
−1bk+1)(Ak

−1ak+1)
∗. So we only need to compute product between a ma-

trix and a vector, not between matrices. Other computation in the iteration step
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can also be broken into product between matrix and vector, therefore the compu-

tational complexity for each iteration step is O(N2) and the total complexity for

solving each system of equations by this algorithm is O(KN2). For star transform,

K � N (In our simulation experiments, we use K = 3), so the complexity is much

less than O(N3).

The case for computing pseudo inverse is similar. When computing SN,kTN,kSN,k

and SM,kTM,kSM,k, we can always use the definitions of TN,k and TM,k to break

them into product of vectors, then all computation are between matrices and vec-

tors. Although the algorithm in computing A† is more complicated than computing

inverse, but we don’t need to compute product between matrices. The complexity

is also O(KN2) for solving each system of equations.

For the reconstruction, we have N systems of equations, so the total time needed

is O(KN3). We should also take the computation for Fourier transform into ac-

count. The computational amounts for 2-D Fourier transform and inverse Fourier

transform are O(N2 logN) when utilizing Fast Fourier Transform (FFT). Therefore

the total computational amount needed is O(KN3). For comparison, suppose we

discretize star transform (2.1.7) directly, the number of equations and unknowns

are both N2, therefore the size of the problem is N2. Using Gaussian Elimination

to solve the problem takes computation as much as O(N6). So the complexity for

our algorithm is much less than the direct method.
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4.2 Stability

Another issue needed to be considered is the stability of the algorithms. The com-

puting of the inverse is stable only if diagonal matrix D is stably inverted. For a

fixed parameter q, the entry of D is defined in (3.1.9). Let’s write the nth entry

dn(q) in the form of

dn(q) =
K∑
k=1

isk
ûk · (q, κn)

=
i

|(q, κn)|

K∑
k=1

sk
uk · v̂

, (4.2.1)

where v̂ = (q, κn)/
√
q2 + κ2n is a unit vector pointing to the direction of (q, κn). We

can consider dn(q) as a function of (q, κn). If there exists some (q, κn) such that

dn(q) ≈ 0, it leads to instability when inverting D. Define function

f(θ) =
K∑
k=1

sk
cos(θ − θk)

=
K∑
k=1

sk
uk · v̂

, (4.2.2)

where θ and θk are the angles of v̂ and ûk with the positive direction of Z-axis.

dn(q) = 0 for some (q, κn) if and only if f(θ) = 0 for some θ. One thing needs to

mention is that f(θ + π) = f(θ), therefore, it is sufficient to consider the interval

0 ≤ θ < π. Suppose f(θ) has a zero point θ̃ in [0, π), then for (q, κn) with angle

close to θ̃, the entry dn(q) would be very small. We expect f(θ) to have no zeros,

so we can prevent the singularity of D.

We have found necessary conditions for f(θ) has no zero: (i) First, K needs

to be odd; (ii) The directions of all skûk should not be placed on some half plane
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in Y Z plane. Before we prove that these are necessary conditions, we first clarify

some facts about f(θ). Let ηk,± denote θk ± π/2. Notice that f(θ) → ∞ when θ

goes to ηk,± (In geometry, this is when v̂ is perpendicular to ûk), so ηk,± are the

singular points of f(θ). Between two adjacent singular points, f(θ) is a continuous

function. Therefore, between two adjacent ηk,±, if f(θ)→∞ with different signs as

θ approaches to the two ends of the interval, there is at least one zero point inside

the interval. Another thing worth noticing is the signs of
sk

cos(θ − θk)
are different

inside (ηk,−, ηk,+) and outside this interval. Therefore, for each η = ηk,±, f(θ) has

different signs in interval (η−ε, η) and (η, η+ε), where ε is an infinitesimal constant.

With all the observations above, we can show the two conditions mentioned

above are necessary. Let’s place skûk onto the plane one by one. The first unit

vector s1û1 can be placed on the plane arbitrarily, and its perpendicular line divides

[0, 2π) into two intervals as shown in Figure 4.1 (a). In the figure, we use a circle

to indicate [0, 2π) and the two half circles are the two intervals divided by the

perpendicular line of û1. In each of this interval, f(θ) has the same sign near the

boundary of the interval. This is also easy to see from the formula of f(θ) with

K = 1. When adding the second vector s2û2, suppose s2û2 has a different direction

with s1û1, each of the half circles is divided into two. No matter how we place

the second vector, there must be two intervals in which f(θ) changes sign. This

is shown in Figure 4.1 (b). So f(θ) must have zero points for K = 2. Suppose

we are placing the third vector, if we place it such that its perpendicular line lies
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in the interval with different signs, we have a chance to prevent the appearance of

the intervals in which f(θ) has different signs. Figure 4.2 can help us prove this.

Suppose we already have two vectors placed in the plane. As discussed above, now

[0, 2π) is divided into four intervals, in two of which f(θ) have the same sign near

boundary and in the other two f(θ) have different signs. If we want f(θ) have the

same sign near boundary in all intervals after putting s3û3, θ3±π/2 must be placed

in the intervals in which f(θ) changes sign, like the case in Figure 4.2 (a). In this

case, the angles between any two adjacent skûk are less then π/2. Otherwise, as

shown in Figure 4.2 (b), there must be an interval in which f(θ) changes sign, so

f(θ) have zero points in this interval. Figure 4.3 is the plot of f(θ) corresponding

to Figure 4.2, we can see when conditions (ii) is not satisfied, f(θ) has zeros. This

necessary condition can be generalized for K > 3 in the same way.

However, even conditions (i) and (ii) are satisfied, it does not guarantee that

f(θ) has no zero. This is because even f(θ) has the same sign near the two ends of a

interval, it can still cross the line f(θ) = 0 inside the interval. Figure 4.4 shows the

case when (i) and (ii) hold but f(θ) still has zeros. In the simulation section, we will

demonstrate that whether f(θ) has zeros is essential to the stability of inversion.

Therefore for more stable reconstruction, we need to choose ûk and sk to make sure

|f(θ)| > σ > 0, where σ is some small constant.

Now we turn to the updating steps in the algorithm. By (3.3.10), if we can
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Figure 4.1: (a) Placing s1û1, the unit circle is divided into two parts. (b) Placing
the second vector s2û2, the unit circle is divided into four parts. The labels + or
− indicates the sign of f(θ) when θ approaches the blue dash line. In Figure (b),
f(θ) has zeros in the top-right and bottom-left intervals.
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Figure 4.2: Sign diagrams for the function f(θ) in the case K = 3 and θ1 = −π/6,
θ2 = 0.82π, θ3 = 0.23π. Angles are measured from the positive direction of the Z-
axis, which runs horizontally from left to right. The coefficients sk are s1 = s2 = 1,
s3 = 2 (a) and s1 = s2 = 1, s3 = −2 (b). It can be seen that the drawing of
the third line, which goes in this case from the top left to the bottom right corner,
removes the contradiction in the case (b) but not in (a). By inspection, it can be
verified that in (a) all vectors skûk can be placed in the same half-plane while in
(b) the same is not true.
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Figure 4.3: Plot for f(θ) in the case K = 3 and θ1 = −π/6, θ2 = 0.82π, θ3 =
0.23π. Angles are measured from the positive direction of the Z-axis, which runs
horizontally from left to right. The coefficients sk are s1 = s2 = 1, s3 = 2 (a) and
s1 = s2 = 1, s3 = −2 (b). f(θ) has zeros in (a) but no zero in (b).
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Figure 4.4: Plot for f(θ) in the case K = 3 and θ1 = −π/6, θ2 = 0.82π, θ3 = 0.23π
and coefficients are s1 = 1.4, s2 = 0.6, s3 = 2. ûk satisfy necessary conditions (i)
and (ii) but f(θ) still has zeros.
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guarantee Dk not to be too small, the process will be stable. We have discussed

before, Dk is the determinant of Ak, therefore the stability of reconstruction depends

on the invertibility of all Ak.

In the computation of pseudo inverse, adding regularization can help reduce the

instability. In each iteration step, since we have λ > 0, SM,k and SN,k in (3.5.4)

are both positive definite. Hence Pk and Qk in (3.5.8) are strictly larger than 0, so

Dk > 0 for each step k. The computing the pseudo-inverse is stable.

To be more specific, suppose Ak = UΣV∗ is the singular value decomposition

(SVD) of Ak, we have SM,k = V(Σ2+λ2IM)V∗. Similarly, SN,k = U(Σ2+λ2IN)U∗.

Then Pk and Qk can be written as

Pk =
M∑
i=1

|(Vak)i|2

σ2
i + λ2

, Qk =
N∑
i=1

|(Ubk)i|2

σ2
i + λ2

. (4.2.3)

Here (Vak)i is the ith entry of Vak, (Ubk)i is the ith entry of Ubk, and σi is the

ith diagonal entry of Σ. In Qk, σi = 0 for i > M . Then the second term in (3.5.8c)

is

λ2PkQk = λ2

(
M∑
i=1

|(Vak)i|2

σ2
i + λ2

)(
N∑
i=1

|(Ubk)i|2

σ2
i + λ2

)
. (4.2.4)

Suppose Ak is singular, |γk| = 0. In this case, there is some σn = 0, so Dk ∼ O(λ−2).

If we choose regularization parameter λ properly, we can guarantee Dk not to be

too small.
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Chapter 5

Reconstruction of scattering and

absorption coefficients

In the last two chapters, we have discussed the method for reconstructing atten-

uation coefficient µ, now we turn to reconstruction of scattering and absorption

coefficients. As mentioned before, one advantage of single scattering tomography

over CT is that it provides an opportunity to recover the scattering coefficient and

also absorption coefficient. This is because in our model scattering coefficient µs(R)

is a weighted factor in signal function Φjk(R). We rewrite signal function (2.1.5) as

µs(R) = µ̄s exp [Ij(R) + Ik(R)− Φjk(R)] . (5.0.1)

Here j and k can be any two distinct numbers from 1, 2, . . . , K. Since Φjk(R) is

data and µ̄s is assumed to be known, the only unknown terms on the right hand side
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are Ij(R) and Ik(R). This two terms are the line integrals of µ along broken line

with vertex R. One direct way to compute Ij(R) and Ik(R) is numerical integral.

In this thesis, we compute them in Fourier domain as well, and compute the sum

Ij + Ik together instead of computing them separately. Let

ψ(R) = Ij(R) + Ik(R) . (5.0.2)

The Fourier coefficients of ψ is defined as

ψn(q) =

∫ ∞
−∞

dye−iqy
∫ L

0

dze−iκnzψ(y, z) . (5.0.3)

Use the same method in deriving (3.1.7), the Fourier coefficients for ψ has the

relation with the Fourier coefficients of µ,

ψn = dnµn +
αj

βj + κn

∑
m

µm
βj + κm

+
αk

βk + κn

∑
m

µm
βk + κm

, (5.0.4)

Here βj, βk are defined in (3.1.4), and κn is the parameter defined in (3.1.2). The

matrices are the same as defined in Section 3.1. We also omit the q in the same

way in Section 3.1. This is actually a direct problem for the broken-ray Radon

transform. The Fourier coefficients of µ can be obtained during the reconstruction

of µ. After computing Fourier coefficients of ψ by (5.0.4), we take inverse Fourier
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transform with FFT, then we will have ψ = Ij + Ik:

µn(q)
(5.0.4)−−−−−−−−→ ψn(q)

F−1

−−−−−−→ ψ .

Then µs(R) can be computed by (5.0.1). We could use any signal function Φjk to

compute µs, or we could use more than one Φjk and compute the average of the

results. After recovering µs, the absorption coefficients µa is the difference between

µ and µs:

µa(R) = µ(R)− µs(R). (5.0.5)

In contrast to the reconstruction of µ, reconstructions of µs and µa do not

involve solving inverse integral problem. The procedure mentioned above won’t

cause instability. However, the reconstructions of µs and µa highly depend on the

reconstruction of µ.

For the aspect of computational complexity, computing Fourier coefficients of

ψ = Ij + Ik takes O(N2), and computing Fourier transform costs O(N2 logN).

This approach for computing ψ takes totally O(N2 logN). It just takes a little

more computation for recovering scattering and absorption coefficients. This is

another advantage of single scattering tomography.
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Chapter 6

Improving the image quality

Our imaging reconstruction assumes single scattering. If this assumption holds, it

provides us a chance to recover the scattering and absorption coefficients. However,

the scattering phenomenon also causes significant loss of the power of incident rays.

It also causes the signal to be susceptible to noise. Simulation results show that

the reconstruction suffers badly from high level noise. In this section, we will talk

about some approaches to reduce the effect of noise and improve the image quality.

6.1 Including ballistic data

The first approach is to include some less noised data to correct the image affected

by noise. In SSOT, ballistic ray are not included in the theory, but it exists and has

stronger intensity with less noise. Adding ballistic ray to our model may provide

better reconstruction. In CT, reconstructing µ with only ballistic rays requires 180-
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degree projection data. Without significant change to our model, we can collect

ballistic data for at most K directions, so we can not recover µ from only ballistic

data. In my thesis, we expect to find reconstruction that is consistent with ballistic

data. In this section, we will discuss an algorithm to reconstruct µ with both

scattered rays and ballistic rays, which only requires minor adjustments to data

collection and inversion algorithm introduced in Chapter 2 and 3.

We can collect the ballistic data at the same time of collecting scattering data.

Collecting ballistic data requires an additional collimated detector. While some of

incident photons undergo scattering inside the medium, a large quantity of photons

do not. These photons travel with straight trajectory, so detectors on the other

side of the strip facing the direction of incident rays can collect the projection data

of the ballistic rays. Like the signal in conventional CT, the power of the ballistic

rays attenuates and it also contains information of the attenuation coefficients µ.

Without scattering, the signal of the ballistic rays has larger intensity. We expect

including the ballistic ray can help improve the imaging quality.

Suppose an incident ray is sent into medium in direction ûj at Y , the power

detected at the opposite side of the strip is

Wj(Y ) = W0 exp[−Ij(Y )] , Ij(Y ) =

∫ `j(Y )

0

µ(Y + ûjy`, ûjz`)d` . (6.1.1)

Here W0 is the power of the incident ray. For fixed ûj, W is a function only defined
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for one parameter Y . Define the signal function for ballistic data as

Ψj(Y ) = − log [Wj(Y )/W0] =

∫ `j(Y )

0

µ(Y + ûjy`, ûjz`)d` . (6.1.2)

This signal function is the line integral of µ on the straight line that photons travels

through. Taking Fourier transform, we have the equation in Fourier domain

Ψ̃j(q) =
∑
n

µn(q)
ei(βj(q)+κn(q))/L − 1

iûjz(βj(q) + κn(q))
. (6.1.3)

The parameters β and κn are defined the same as in Section 3.1. To simplify the

notations, we omit q and use vector cj to denote the coefficients in the right hand

side of equation (6.1.3) :

cj =

(
· · · , e

i(βj+κn)/L − 1

iûjz(βj + κn)
, · · ·

)∗
. (6.1.4)

Suppose we are inverting star transform with K branches and ballistic data for

ûj, j = 1, 2, . . . , R (R ≤ K). For each q, combining the equations from star

transform and ballistic rays, we have system of equations:

Dx +
K∑
k=1

bkak
∗x = Φ , (6.1.5a)

cj
∗x = Ψ̃j , j = 1, 2, . . . , R . (6.1.5b)
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This is an overdetermined system of equations. We can use the extra equations

as constraints. As the same as before, we use A to denote D +
∑K

k=1 bkak
∗. We

introduce the optimization problem with constraints:

minx ‖Ax−Φ‖2

s. t. cj
∗x = Ψ̃j , j = 1, 2, . . . , R .

(6.1.6)

This is a constrained linear optimization problem. The solution to this problem

satisfies the Karush-Kuhn-Tucker conditions (KKT conditions):

A∗Ax−A∗Φ +
R∑
j=1

λjcj = 0 , (6.1.7a)

cj
∗x = Ψ̃j , j = 1, . . . , R . (6.1.7b)

The vector Λ = (. . . , λj, . . . ) here is the KKT multipliers, not the regularization

parameter mentioned in the previous sections. The objective of the optimization

function is convex and the constraints are linear, so the KKT conditions are suf-

ficient and necessary conditions for the solution. We have an approach to find

the analytic solution to (6.1.6). To derive the approach, we first consider another

optimization problem without constraint:

min
x
L(x) = ‖Ax−Φ‖2 + τ

R∑
j=1

∥∥∥cj∗x− Ψ̃j

∥∥∥2 . (6.1.8)
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This is a least square problem, for which we can find the analytic solution. The

second term is a penalty term and τ is the penalty parameter. When τ → ∞,

the solution of this problem converges to the solution to (6.1.6). Assume A∗A +

τ
∑R

j=1 cjc
∗
j is not singular, the solution of (6.1.8) is unique and it’s the zero point

of the derivative of L(x). The derivative of the objective function L(x) is

∂xL(x) = 2A∗Ax− 2A∗Φ + 2τ

[
R∑
j=1

cjcj
∗x− Ψ̃jcj

]
. (6.1.9)

The solution to (6.1.8) is the solution to ∂xL(x) = 0. The solution is given by

x̄ =

[
A∗A + τ

R∑
j=1

cjcj
∗

]−1(
A∗Φ + τ

R∑
j=1

Ψ̃jcj

)
. (6.1.10)

Before taking τ → ∞, we can simplify the expression of (6.1.10). The idea is

to apply Sherman-Morrison formula to [A∗A + τ
∑R

j=1 cjcj
∗]−1. Suppose A∗A is

invertible, we use S to denote (A∗A)−1. We first consider the simplest case of

(6.1.8) with R = 1. The matrix [A∗A + τc1c1
∗]−1 is simplified as S− τSc1c1

∗S

1 + τc1
∗Sc1

.

So the solution for R = 1 is

x̄ = SA∗Φ− τ(c∗1SA∗Φ− Ψ̃1)

1 + τc1
∗Sc1

Sc1 . (6.1.11)

Based on the assumption A is invertible, S is positive definite, so c1
∗Sc1 > 0.
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Taking τ →∞, (6.1.11) turns to be

x̄ = SA∗Φ− c1
∗SA∗Φ− Ψ̃1

c1
∗Sc1

Sc1 . (6.1.12)

It’s easy to check (6.1.12) satisfies the KKT conditions (6.1.7), with λ1 = −(c1
∗SA∗Φ−

Ψ̃1)/c1
∗Sc1. The first term on the right hand side of (6.1.12) is the solution

to the inverse star transform problem in Section 3.3. Therefore, this solution

can be considered as a projection of our previous solution to the linear space

{x ∈ CM |c1
∗x = Ψ̃1}.

This can be generalized for R > 1 by applying Sherman-Morrison formula for R

times. Define a R-column matrix with the constraint vectors cj, j = 1, . . . , R :

C = [c1, · · · , cR] , (6.1.13)

and a R×R matrix

H = C∗SC =


c1
∗

· · ·

cR
∗

S [c1, · · · , cR] . (6.1.14)
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Assume that H is invertible, the expression (6.1.10) can be written as

x̄ = SA∗Φ− τSC (IR + τH)−1 (C∗SA∗Φ−Ψ) . (6.1.15)

Taking τ →∞, (6.1.15) goes to

x̄ = SA∗Φ− SCH−1 (C∗SA∗Φ−Ψ) . (6.1.16)

(6.1.16) also satisfies the KKT (6.1.7) for R > 1, with Λ = H−1 (C∗SA∗Φ−Ψ).

The discussion above is for invertible A. In the case A is not invertible or even not

square, the derivation is the same. We only need to replace S by (A∗A + λIM)−1.

Here λ is the regularization parameter defined in Section 3.5.

When applying this formula to numerical experiments, we first compute the first

term following the procedure in Section 3.5, then compute the second term. The

computational complexity for the second term by formula (6.1.16) is O(N2R). In

our numerical experiments, R = 1 or 2, therefore it is O(N2).

6.2 Total variation regularization

In the last section, we discussed a possible approach to remove noise, which uses

ballistic data to correct the image. In this section, we will talk about another

method to improve image quality without extra information. We’d like to utilize
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the total variation regularization to help reduce the noise. Total variation denoising

is widely used in image processing. It’s supposed to have advantage in preserving

edges of the objects while removing noise. We will talk about how to utilize total

variation denoising during reconstruction.

Suppose f is a differentiable function defined on S ⊂ R2, and its derivative is

integrable, the total variation of f is defined as

TV(f) =

∫
S
|∇f(y, z)|dydz , ∇f(y, z) = (∂yf(y, z), ∂zf(y, z)) . (6.2.1)

It’s L1 norm of the derivative of f . For φ ∈ C1c (S), by Green’s identity,

∫
S
fdivφ = −

∫
S
φdivf . (6.2.2)

The definition can be extended to function f ∈ L1(S2) by (6.2.2),

TV(f) = sup

{∫
S
fdivφ : φ ∈ C1c (S) , ‖φ‖L∞ ≤ 1

}
. (6.2.3)

For 2-D image F , we can also define the total variation. For N ×M image {Fi,j},

i = 1, 2, . . . , N , j = 1, 2, . . . ,M , the total variation is

TV(F ) =
∑
i,j

√
|Fi+1,j − Fi,j|2 + |Fi,j+1 − Fi,j|2 . (6.2.4)

We assume attenuation coefficient is total variation bounded, i.e. µ ∈ B = {f :
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TV(f) < ∞}. We will use total variation as a penalty term to form an opti-

mization problem. Unlike the optimization problem mentioned in previous section,

this optimization is defined for the attenuation coefficient µ, instead of the Fourier

coefficients of µ. The optimization problem is

min
µ

L(µ) = ‖Fµ− Φ‖22 + τTV(µ) . (6.2.5)

Here F is the star transform, Φ is 2-D signal function, and τ is the regularization

parameter to control the level of regularization. The TV term is not differentiable,

so this optimization problem can’t be solved directly by gradient descent method or

other gradient dependent methods. In this thesis, we use Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) to minimize L(µ).

6.2.1 Brief description of FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a class of iterative

methods for solving inverse problems in image processing [2]. The general FISTA

is designed for problem

min F (x) ≡ f(x) + g(x) , (6.2.6)

where g : Rn → R is a continuous convex function, which is possibly nonsmooth.

f : Rn → R is a smooth convex function which is continuous differentiable with
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Lipschitz continuous gradient L. Lipschitz constant L is a number such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ , ∀ x, y ∈ Rn . (6.2.7)

In [2], a minimizer

PL(y) = arg min

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
}

. (6.2.8)

is defined. FISTA with constant step size starts with initial y1 = x0 and t1 = 1.

The main iteration step updates xk and yk with

xk = PL(yk) , (6.2.9a)

tk+1 =
1 +

√
1 + 4t2k
2

, (6.2.9b)

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1) . (6.2.9c)

It has been proved that xk converges to the optimal point x̄ with rate

F (xk)− F (x̄) ≤ L‖x0 − x̄‖2

(k + 1)2
. (6.2.10)

The main task in applying FISTA is to compute PL(x). When we turn to our

problem, the function f(µ) = ‖Fµ − Φ‖22, and g(µ) = τTV(µ). Both of them

satisfy the requirements in FISTA. Our f is the L2 norm of a linear operator of µ, the
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gradient∇f(µ) = 2F∗Fµ−2F∗Φ. Here F∗ is used to denote the conjugate operator

of F with respect to the inner product of L2(S): 〈f, g〉2 =
∫
S f(y, z)∗g(y, z)dydz.

The minimizer (6.2.8) becomes

PL(µ) = arg min
x

{
τTV(x) +

L

2

∥∥∥∥x− (µ− 2

L
(F∗Fµ−F∗Φ)

)∥∥∥∥2
}

. (6.2.11)

By Parseval’s theorem, for any f, g ∈ L2(S), we have

〈Ff, g〉2 = 〈FAF−1f, g〉2 = 〈f,FA∗F−1g〉2 . (6.2.12)

Here A is the operator defined in Fourier domain corresponding to star transform.

So the conjugate F∗ is given by FA∗F−1. In other word, computing F∗ is similar

to compute the direct problem of star transform. The only difference is we need to

replace A(q) by A(q)∗ for each q in Fourier domain. When computing F∗Fµ, we

can do it in the same way, only replacing A(q) by A(q)∗A(q).

For our problem, we can choose L = 2‖F∗F‖2 = 2 sup{‖F∗Fx‖2 : ‖x‖2 = 1}.

To be specific, by Parseval’s theorem,

‖F∗F‖2 = max
q
‖A(q)‖22 .

Therefore the Lipschitz constant L = 2 maxq ‖A(q)‖22.
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6.2.2 Computing PL

Computing PL is to solve the optimization problem (6.2.8). This problem is different

from the original problem (6.2.5), because it removes the linear operator F from x.

Let

y =
2

L
(F∗Fµ−F∗Φ) , (6.2.13)

the minimization problem of solving PL is a general total variation denoising prob-

lem for y. We use an algorithm in [6] to solve this problem. The algorithm is

designed for minimizing the total variation of image, and the convergence has also

been proved. It’s used to solve problem in the form

min
x

‖x− y‖2

2λ
+ TV(x) . (6.2.14)

In [6], the solution is given by x = y − πλK(y). Here πλK is a projection operator

to closed convex set

K = {div p : p ∈ Y , |pi ,j | ≤ 1 ,∀ i , j = 1 , . . . ,N } . (6.2.15)
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The pn in the algorithm is in Y = RN×N × RN×N . pi,j is the (i, j) element of p.

The divp is defined as

(divp)ij =


p1i,j − p1i−1,j 1 < i < N

p1i,j i = 1

−p1i−1,j i = N

+


p2i,j − p2i,j−1 1 < j < N

p2i,j j = 1

−p2i−1,j j = N

. (6.2.16)

πλK can be computed by a semi-implicit gradient descent algorithm. For pre-

fixed parameter σ > 0, choosing initial p0 = 0, for step n ≥ 0, the iteration is given

by

pn+1
i,j =

pni,j + σ(∇(divpn − y/λ))i ,j

1 + σ|(∇(divpn − y/λ))i ,j |
. (6.2.17)

Reference [6] has shown that λdivpn → πλ(y) when σ ≤ 1/8.

6.2.3 Algorithm for solving optimization problem with TV

regularization

Combining the two algorithms above, we have an algorithm to solve (6.2.5). It’s

an iterative algorithm, in which each step is also an optimization problem. To sum

up, the iteration for our problem is

• Initialize : Choose initial µ0. We can use the result in Section 3.3 as initial

value;
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• Iterative step : Updating µj by FISTA with constant step size in (6.2.9).

The Lipschitz parameter L is given by 2‖F∗F‖2 = 2 maxq ‖A(q)‖22. The

minimizer PL(µj) is computed by solving

min
x

‖x− (µj − 2(F∗Fµj −F∗Φ)/L) ‖2

2λ
+ TV(x) ,

according to algorithm described in Section 6.2.2. with λ = τ/L.

• Termination : Terminate iteration with some stopping criterion.

We expect the total variation regularized optimization can help reduce the noise.

However, one disadvantage of this approach is that this algorithm is not fast due

to the large amount of computation required for the iteration. We can compute

F∗Fµj and F∗Φ by direct problem in Fourier domain to reduce the computation.

6.3 L1 regularization

Another regularization that could be combined to the reconstruction is L1 regular-

ization. We use L1 norm as penalty term instead of the total variation mentioned

in the last section.

In general, the L1 regularization problem is looking for the solution to the opti-

mization problem

min
x

L(x) = ‖Ax− Φ‖22 + τ‖x‖1 . (6.3.1)
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This optimization problem can also be solved by FISTA [2]. The iterative step is

xk+1 = Tλt

(
xk − 2tAT (Axk − b)

)
. (6.3.2)

Here t is the step size, and Tλt is the shrinkage operator defined by

Tα(x)i = (|xi − α|)+ sgn(xi) . (6.3.3)

When applying L1 regularization to image processing, x in (6.3.1) could be the

coefficients of the image with respect to some wavelet base. Here we follow this

approach. Suppose H is the Haar transform, and x is the Haar coefficients of µ,

x = Hµ. We construct an optimization problem

min
x

L(x) = ‖FH−1x− Φ‖22 + τ‖x‖1 , (6.3.4)

and the attenuation coefficient µ = H−1x. Therefore, we can apply FISTA to

(6.3.4), with A = FH−1.
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Chapter 7

Simulations

In this chapter, we will present numerical experiments. Without real data, we

use simulation to ’generate’ data. Through the experiments, we intend to use our

algorithm to compute the inverse and pseudo inverse of star transform, and check

the stability of reconstruction. We also have experiments on recovering µs and

µa simultaneously. Finally, we are planning to validate feasibility of methods for

improving image quality, which are introduced in Chapter 6.

7.1 Generating data

We simulate data by ’inverse crime’, which means we compute the data under

single scattering assumption according to (2.1.3). We compute Ik(R) by numerical

integral with small step size. The constant Sij in our experiment is chosen to be

1/4π, which indicates isomorphic scattering. W0 is used to describe the power of
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incident rays. We use W0 as a parameter to control the level of noise in the data.

To check stability of the reconstruction, we add noise to data. The noise is

added according to the physical principle of single scattering tomography: Since

the intensity of received ray is proportional to the number of photons received, and

the number of photons follows the Poisson distribution, we add Poisson noise to the

data. W0 is used to describe the number of incident photons, and Wij is the number

of photons received. A large W0 indicates a low level of noise. When Wij(R) is com-

puted according to (2.1.3), we replace it with W̃ij(R) = Pois(Wij(R)), where Pois is

probability density of Poisson distribution. The mean and variance of Pois(Wij(R))

are both Wij(R). As W0 increases, Wij(R) increases, therefore the noised data

W̃ij(R) has larger mean and variance. As W0 → ∞, W̃ij(R) converges to Wij(R).

The signal data Φ for reconstruction is weighted sum of the noised data W̃ij(R). In

our experiments, noise is added with W0 = 1.6× 105, 4× 104, and 104.

The domain S is discretized into grid with step h = L/125. Here L is the width

of the strip. In Y direction, the strip is truncated and sampled with the same step

size h, for M = 625. We have samples in Y direction more than in Z direction. In

reconstruction, we have M = 625 systems of equations to solve in Fourier domain.
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7.2 Numerical experiments

7.2.1 Reconstruction of attenuation coefficient

We first present numerical experiments to validate the stability of inversion of star

transform. We have experiments for K = 2 and K = 3. For K = 2, we provide

two choices of û1 and û2 for comparison. They differ from each other in direction.

When we are inverting star transform for K = 2, the two sets of broken-line signals

Φ13 and Φ23 share the same û3. Therefore, using parameters s1 = −s2 = 1, the

terms with integral in direction û3 are canceled. The specific parameters are listed

in case (a) and (b) of Table 7.1. For K = 3, we provide two choices of ûk as well.

In one of them, the directions of all skûk are in a half plane, while in the other one

are not. For all cases, we have
∑K

k=1 sk = 0. The parameters are listed in case (c)

and (d) of Table 7.1. In Table 7.1, θk is the angle of ûk with the positive direction

of Z-axis. Σ0, Σ1 and the number of zeros of f(θ) in interval [0, π) are also listed

in the table. In Table 7.1, we also list the coefficients sk and the weighted factors

cij for Φij. In all cases except case (d), f(θ) have zeros, so we expect more stable

reconstruction for case (d). The vectors skûk in each case are shown in Figure 7.1.

We use two phantoms: a square and the Shepp-Logan phantom. The attenuation

coefficient varies from 0.005h−1 to 0.05h−1. In order to focus on reconstruction of

attenuation coefficient µ, the scattering coefficient in this experiment are constant

µ̄s = 0.005h−1. The phantoms are shown in Figure 7.2. The simulated data for
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square with parameters in case (d) is shown in Figure 7.3. The signal-noise-rate for

the three noised data are 20.6914, 10.3210 and 5.1229. Therefore the noise is very

high for W0 = 1 × 104. When computing pseudo inverse, regularizations are also

added. The regularization parameter λ is from 10−7 to 10−1.

Case a b c d
K 2 3
s1 1 1
s2 -1 1
s3 0 -2
c12 N/A 2
c13 1 -1
c23 -1 -1

θ1/π 0.82 1 0.0
θ2/π 0.23 0.25 0.80
θ3/π -0.1 1.25 0.25

Zeros 1 1 2 0
Σ0 -0.1488 -0.4142 -0.5924 -0.5924
Σ1 -2.5175 -2.4142 2.5924 -3.0645

Table 7.1: Parameters in simulation: sk are weighted factors corresponding to ûk;
cij are the weighted factors for Φij; θk are the angles of ûk with the positive direction
of Z-axis; The last three rows present the number of zeros of function f(θ) in [0, π),
Σ0 and Σ1. Σ0 and Σ1 are not very small in all cases.

The results without noise are shown in Figure 7.4. All results have artifacts. The

appearance of artifacts is due to the discontinuity of the phantoms. The results for

Shepp-Logan phantom are worse than those for square phantom in all cases, because

Shepp-Logan has more complicated structure than a square. We expect the result in

case (d) to be better, since the parameters in (d) satisfies the conditions described

in Section 4.2. The result validates our expectation. In contrast, case (a) and

(c) suffer from artifacts severely. The result for case (b) also shows very stable
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Figure 7.1: Figures (a) - (d) correspond to case (a) - (d) in Table 7.1. Vector labeled
skui in each figure indicates the directions of skûi. In case (c), the directions of all
skûk are in one half plane, but in case (d) they are not. θk is the angle of ûk with
the positive direction of Z-axis.
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Figure 7.2: (a) The phantom of a square in the center; (b) The Shepp-Logan phan-
tom. The background µ̄ = µ̄s = 0.005h−1.
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No noise W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

Figure 7.3: Simulated data Φ with different noise levels for case (d).

Case a Case b

Case c Case d

Figure 7.4: Reconstruction with no noise in experiment 1.
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Case a Case b

Case c Case d

Figure 7.5: Reconstruction without regularization, with noise level W0 = 1.6× 105

in experiment 1.
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W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

(a) Case c

W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

(b) Case d

Figure 7.6: Reconstruction with noise level W0 = 1.6 × 105 , 4 × 104 , 1 × 104 and
λ = 10−3 in experiment 1.
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λ = 0 λ = 10−7 λ = 10−6 λ = 10−5

λ = 10−4 λ = 10−3 λ = 10−2 λ = 10−1

(a) Case c

λ = 0 λ = 10−7 λ = 10−6 λ = 10−5

λ = 10−4 λ = 10−3 λ = 10−2 λ = 10−1

(b) Case d

Figure 7.7: Reconstruction with noise W0 = 4 × 104 and different regularization
parameters.
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reconstruction, though it does not meet the conditions in Section 4.2.

When we look at the results with noise added but no regularization, we can

only see artifacts in all results except case (d). This validates that the conditions

in Section 4.2 are essential for stable reconstruction. For reconstructions with K =

2, the artifacts have clear characteristic that their directions develop along the

direction of s1û1 + s2û2, in the other word, the angle of artifacts is θ = (θ1 + θ2)/2,

which is the zero of f(θ) in Section 4.2.

We next turn to the results with regularization. Figure 7.6 shows the reconstruc-

tion for case (c) and (d) with different noise levels. The regularization parameter is

λ = 10−3. Regularization improves the results for both cases. The results in case

(c) show bright and dark strips (in the left-top part of the results). but we don’t

have those artifacts in the results in (d).

The results turn worse when W0 goes smaller. For W0 = 1 × 104, we could

hardly see the details of the phantoms in Figure 7.6. Larger regularization can help

remove the noise. Figure 7.7 shows the effect of regularization for different levels.

For comparison, we show results for both case (c) and (d). For case (d), when λ is

small, the reconstructions are almost the same. In Contrast, in case (c) the image

quality continues getting worse as λ goes small, even for very small λ. When λ is

comparably large, the results in two cases are very similar. The results get smooth

as λ goes large. This is the reason that we’d like to involve other approaches to

improve the quality of reconstruction while preserving the shape.
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Figure 7.8: Phantoms 1: the total attenuation coefficient is two partly overlapped
squares; the scattering and absorption coefficients are both squares in different
locations. The background µ̄ = 0.01h−1 and µ̄s = 0.005h−1.

7.2.2 Reconstruction of scattering and absorption coeffi-

cients

We next turn to simultaneous reconstruction of scattering and absorption coeffi-

cients. We only perform experiments for K = 3. We use the same sk and ûk listed

in case (d) in Table 7.1. Sampling is done in the same way as in last section. The

scattering and absorption coefficients vary from 0.005h−1 to 0.03h−1. The atten-

uation coefficient is from 0.01h−1 to 0.06h−1. Scattering coefficient is positive for

the entire domain with µ̄s = 0.005h−1. We also use two phantoms: In the first one,

scattering and absorption coefficients are two overlapped squares; The second one

has Shepp-Logan phantom as attenuation coefficient, while absorption and scatter-

ing coefficients are parts of the Shepp-Logan phantom. The phantoms are shown

in Figure 7.8 and Figure 7.9.

Reconstruction without noise is shown in Figure 7.10. We have shown results for
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Figure 7.9: Phantoms 2: the total attenuation coefficient is the Shepp-Logan phan-
tom; the scattering and absorption coefficients are forming parts of the Shepp-Logan
phantom. The background µ̄ = 0.01h−1 and µ̄s = 0.005h−1.

µ µs µa

µ µs µa

Figure 7.10: Reconstruction of µs and µa with no noise for both square and Shepp-
Logan phantoms.
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µs µa µs µa

(a) W0 = 1.6× 105

µ µs µs µa

(b) W0 = 4× 104

Figure 7.11: Reconstruction of µs and µa with noise for square and Shepp-Logan
phantoms; (a) W0 = 1.6×105; (b) W0 = 4×104; Regularization parameter λ = 10−3.
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case (d) with both phantoms with different noise levels. All the results of µs have

very clear shape. We can still see the artifacts and the shape of µs in the results of

µa. When noise is added, as shown in Figure 7.11, reconstruction of µs are still very

clear for even high noise level. However, reconstruction of µa are highly affected by

noise. This is due to the way we generate our simulated data. In the ’inverse crime’,

µs is a weighted factor for Φij, so it has a more significant effect to the simulated

data.

7.2.3 Reconstruction with ballistic rays

For validating the approaches in improving image quality, experiments are done

for only Case (d). The phantom used is the square shown in Figure 7.2 (a). The

experiments are done with R = 1 and 2, where R is the number of ballistic rays.

We use ballistic rays with directions û2 and û3 as listed in Table 7.1. The ballistic

data is also computed by numerical integral, but no noise is added to it.

In Figure 7.12, we have reconstruction with noise level W0 = 4× 104. In Figure

7.13, we have reconstruction with noise level W0 = 4 × 104 and regularization

parameter λ = 10−3. In the second row of each figure, we also show the difference

between results in the first row. For both cases with R = 1 and 2, including ballistic

data does not provide much improvement for reconstruction. The difference only

appears near the boundary of the image. The differences between the results for

R = 2 and the other two are more significant than the difference between no ballistic
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(a) No ballisitc ray (b) R = 1 (c) R = 2

Difference (a) - (b) Difference (a) - (c) Difference (b) - (c)

Figure 7.12: Reconstruction with ballistic data for W0 = 4× 104. The second row
shows the differences between each images.

ray and R = 1. However, the improvement is still subtle.

7.2.4 Reconstruction with total variation regularization

For total variation regularized optimization, two issues need to be clarified. One

is the initial point of iteration, and the other is the terminating criterion. We

use the reconstruction in the first numerical experiment as the initial point. For

termination, we require the difference of µj in two consecutive step to be small

enough, i. e.

‖µj − µj−1‖ ≤ δ‖µ0‖ , (7.2.1)

72



(a) No ballisitc ray (b) R = 1 (c) R = 2

Difference (a) - (b) Difference (a) - (c) Difference (b) - (c)

Figure 7.13: Reconstruction with ballistic data for W0 = 4× 104 and regularization
λ = 10−3. The second row shows the differences between each images.
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W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

Figure 7.14: Reconstruction with total variation regularization for W0 = 1.6 ×
105 , 4× 104 , 1× 104 and regularization τ = 10−1.

where δ is some pre-chosen parameter. This criterion is used for both FISTA and the

computation of PL. We will present results for regularization parameter τ = 10−3

to 100.

Compared to the results with Tikhonov regularization, the reconstruction in

Figure 7.14 indeed provides images with less noise. For the square phantom, we

don’t have so much artifacts as the results shown in Section 7.2.1, but we still have

some artifacts when noise level is high (as shown in Figure 7.14 with W0 = 1×104).

For Shepp-Logan phantom, the total variation regularization removes some details

at the same time of removing noise. In Figure 7.15, we also present some results
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τ = 10−3 τ = 10−2 τ = 10−1

τ = 1 τ = 10 τ = 100

Figure 7.15: Reconstruction with total variation regularization for W0 = 4 × 104

and different regularization parameters.
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Figure 7.16: Cross sections of reconstruction with total variation regularization for
W0 = 4× 104 and different regularization parameters.
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for W0 = 4 × 104 with different regularization parameters. When regularization

parameter τ is between 10−1 to 10, the reconstruction have good shape as we expect.

7.2.5 Reconstruction with L1 regularization

For L1 regularization, we follow the same stopping criterion as described in the last

section. The regularization parameter used here is chosen after comparing different

choices. We will present results for regularization parameter τ = 10−4 to 10.

Regularization helps remove noise from the reconstruction. Even with higher

noise level, the results are similar to the ones with lower noise level. As the same as

in last section, results for square phantom are much better than the ones for Shepp-

Logan phantom, because of the simple shape of square. However, compared to the

results in experiment 1 and the ones with total variation regularization, the results

shown in Figure 7.17 lose details near the boundary of the objects. Figure 7.18

shows that the results look like low-resolution images when regularization parameter

is large. This is because the Haar wavelet is formed by a sequence of square-shaped

functions.
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W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

W0 = 1.6× 105 W0 = 4× 104 W0 = 1× 104

Figure 7.17: Reconstruction with L1 regularization for W0 = 1.6×105 , 4×104 , 1×
104 and regularization τ = 10−1.
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τ = 10−4 τ = 10−3 τ = 10−2

τ = 10−1 τ = 1 τ = 10

Figure 7.18: Reconstruction with L1 regularization for W0 = 4 × 104 and different
regularization parameters.
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Figure 7.19: Cross sections of reconstruction with L1 regularization for W0 = 4×104

and different regularization parameters.
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Chapter 8

Discussion

In the chapters above, we have introduced star transform and its inverse integral

problem, and talked about its potential application in finding attenuation coefficient

in single scattering tomography. In Chapter 3, we presented a fast inversion algo-

rithm for star transform in Fourier domain. The analysis of stability showed that

inverse star transform is less ill-posed than inverse Broken ray Radon transform.

We also provided necessary conditions for stable reconstruction in Chapter 4.

In later chapters, we provided an approach to recover scattering and absorption

coefficients, which is theoretically feasible under our single scattering assumption.

We also discussed approaches for removing noise from reconstructed attenuation

coefficient: by including ballistic data for correction, utilizing total variation or L1

regularization during reconstruction.

In the simulation chapter, we presented numerical experiments with simulated
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data generated with ’inverse crime’. With different choices of parameters , we vali-

dated the necessary conditions mentioned in chapter 4. Experiments with noise also

showed the necessity of regularization during reconstruction. The second experi-

ment provided promising results of simultaneous reconstruction of scattering and

absorption coefficients, even with high noise level.

Including ballistic data didn’t provide the improvement that we expected. We

can only use one or two sets of ballistic data, which may be much less than enough

to have impact on previous reconstructions. However, this approach provides us

a general idea how to combine scattered rays and ballistic rays together, while

scattered rays are neglected in conventional CT and ballistic rays are not taken into

account in SSOT. The hard constrained optimization problem gives us image that

is consistent with the less noised ballistic rays. This scheme requires only small

changes to the data collection and only a small amount of extra computation added

to the inversion of star transform. Increasing the number of ballistic data could be

a possible way to have greater improvement, but it requires significant modification

to the system. In our geometry of single scattering tomography, we are not able to

do that.

Total variation regularization helped us to obtain a sharp reconstruction for the

square phantom in numerical experiment, but we still lost details for Shepp-Logan

phantom. This suggested that further study is needed before it can be used in

realistic application, because the internal structure of the object could be much
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more complicated than simple objects like squares. The choice of regularization

parameter needs to be studied in the future for optimal results. Compared to total

variation regularization, L1 regularization provided ’compressed image’, for both

square and Shepp-Logan phantom, when regularization parameter is large. This

phenomenon is more obvious for the simpler square phantom than Shepp-Logan

phantom. This is because we apply the L1 regularization to the Haar coefficients of

the image. Total variation regularization could be a better choice to be utilized in

reconstruction.

More experiments for inverse star transform problem based on more realistic

data is needed in the future in order to prevent the advantages we obtained from

’inverse crime’. Data generated from solving RTE or Monte Carlo could be better

ones in the future research.
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